Breadcrumb

 
 

Classification and discriminant analysis

Title:

Classification and discriminant analysis

Fazeli, Goldisse (2000) Classification and discriminant analysis. Masters thesis, Concordia University.

[img]
Preview
PDF
2393Kb

Abstract

This study provides a comprehensive review of the literature pertaining to the problem of classification. General concepts and principles of the classification problem are explored. These results are presented especially for populations under a normal distribution. Three major techniques of classification and discriminant analysis are presented: linear discriminant analysis, quadratic discriminant procedures and logistic regression. Logistic regression is reviewed in its general framework and as a classification tool. A few articles on the comparison of the efficiency of discriminant analysis and logistic regression are summarized. The discriminant approach is proven to be more efficient in the case of populations with a multivariate normal distribution. Under nonormality, logistic regression with maximum likelihood estimators outperforms discriminant analysis.

Divisions:Concordia University > Faculty of Arts and Science > Mathematics and Statistics
Item Type:Thesis (Masters)
Authors:Fazeli, Goldisse
Pagination:vii, 86 leaves ; 29 cm.
Institution:Concordia University
Degree Name:Theses (M.Sc.)
Program:Mathematics and Statistics
Date:2000
Thesis Supervisor(s):Chaubey, Yogendra P.
ID Code:1085
Deposited By:Concordia University Libraries
Deposited On:27 Aug 2009 13:16
Last Modified:08 Dec 2010 10:18
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer