Breadcrumb

 
 

Data mining with bilattices

Title:

Data mining with bilattices

Wang, Xiaohong (2001) Data mining with bilattices. Masters thesis, Concordia University.

[img]
Preview
PDF
3742Kb

Abstract

Data mining has become a key research area in database after Agrawal and Sirkant introduced association rules in data mining and proposed Apriori for mining association. However, most of the works focuses on finding patterns on itemsets, especially associations between items. With the fast development of high technologies and large scale of information collection tools, the need for data mining has gone far beyond association mining. In this thesis, a new framework is established that largely extends the current existing data mining field. While the traditional data mining problems can be viewed as computing itemset lattice, vet another equal important data mining problem is mining circumstance which forms a second lattice: circumstance lattice. In itemset lattice, extensive work is done to introduce constraints in correlations mining and algorithms for computing different useful correlation queries are provided. For the new concept of circumstance mining, a close relationship is set up between computing circumstance lattice and data cube. Several algorithms, including new algorithms and modification of existing data cube algorithms, are given to answer circumstance mining queries. Finally, algorithms for the dual mining on bilattices--from itemset lattice to circumstance lattice and back, or vise versa are presented to compute the Armstrong Basis for a given transaction database.

Divisions:Concordia University > Faculty of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Thesis (Masters)
Authors:Wang, Xiaohong
Pagination:ix, 80 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:Theses (M.Comp.Sc.)
Program:Computer Science and Software Engineering
Date:2001
Thesis Supervisor(s):Lakshmanan, Laks V. S.
ID Code:1291
Deposited By:Concordia University Libraries
Deposited On:27 Aug 2009 13:18
Last Modified:08 Dec 2010 10:19
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer