
Towards Security Hardening of Scientific Demand-Driven and Pipelined
Distributed Computing Systems

Serguei A. Mokhov

Department of Computer Science and Software Engineering
Faculty of Engineering and Computer Science

Concordia University, Montreal, Quebec, Canada
E-mail: mokhov@cse.concordia.ca

Abstract

This work highlights and takes aim at the more crit-
ical security aspects required for two different types of
distributed systems for scientific computation. It cov-
ers two open-source systems written in Java: a demand-
driven system – General Intensional Programming System
(GIPSY) and a pipelined system – Distributed Modular Au-
dio Recognition Framework (DMARF), which represent the
distributed scientific computational engines as case stud-
ies with respect to the security aspects in the presence of a
malicious threat locally on the nodes and on the network
that can drop, inject, alter data, poison data value ware-
house(s) as well as incite malicious code injection. More
specific goals include data/demand integrity, data/demand
origin authentication, confidentiality, high availability, and
malicious code detection. We address some of the goals
to a degree, some with the Java Data Security Framework
(JDSF) as a work-in-progress.

1. Introduction

We introduce the purpose of the research presented in
this paper and then the two use-case systems we apply it to.
We begin with the problems we are taking aim to address,
the intermedia proposed solution details and their limita-
tions.

Problem Statement. When rather complex research and
scientific distributed systems are developed, sometimes ad-
hoc or sporadically, in research institutions, such as univer-
sities, or during a variety of course projects, by researchers
and students alike who come and go, there are little-to-no
rigor and formality usually present in typical software re-
quirements engineering processes when such systems are
designed and implemented. This especially applies to the
security aspects of such systems when they run over the
public Internet connections, as the security requirements are

often neglected in favor of the scientific computation func-
tionality, parallelism, and the efficiency thereof or even of-
ten just a possibility of distributed computation itself using
various distributed technologies. The security risks relate
to maliciously induced incorrect computation results and
cache (called a value warehouse that is used for dynamic
computation to avoid recomputing the same result value)
“poisoning”. Other issues revolve about availability issues,
spread of malware using the discussed systems for transport
as attack vectors, and if the systems work on the analysis
of confidential data, then the confidentiality issues arise as
well. While some of the mentioned threats can be over-
come by the underlying middleware technologies and pro-
tocols that already have security mechanisms in place (e.g.
over SSL or SSH, security options in SNMPv3, proprietary
protocols), they often cannot cope with some aspects of the
computation, e.g. denial of service or malicious code.

Proposed Solution. We overview two concrete scientific
research distributed systems, their needs and properties in
order to solicit the security requirements for two types of
distributed computing engines, draw on their parallels and
differences, generalize them, and offer some solutions. The
authors believe this analysis would apply to many systems
of these two kinds. We review the applicability of the Java
Data Security Framework (JDSF), proxy certificates, and
other solutions that can be implemented for the security
layer of the studied systems. We do realize the overhead
of any security mechanisms introduced vs. computation
and communication performance that often researchers are
looking for, so we define one of the requirements of the se-
curity layer being optional and being turned on on-demand
(dynamically recongfigurable) when the computing nodes
need to communicate to the outside of the local area net-
work potentially through a public channel.

Organization. The article is structured in such a way as
to get the reader the idea of the two distributed systems used
as case studies and their particularities followed by the brief
description of the JDSF. Then we review the threat model,



security requirements, and their applicability to the two sys-
tems, and then we conclude.

1.1. General Intensional Programming Sys-
tem (GIPSY)

GIPSY Overview. The General Intensional Program-
ming System (GIPSY) [28, 30, 36, 10, 31, 16, 29, 27]
is an open-source platform implemented primarily in Java
to investigate properties of the Lucid [1, 2, 3] family of
intensional programming languages and beyond. GIPSY
being developed and maintained by the GIPSY Research
and Development Group at Concordia University, Montreal,
Canada. It is a distributed system, designed as a modular
collection of frameworks where components related to the
development (RIPE, a Run-time Integrated Programming
Environment, implemented in gipsy.RIPE), compilation
(GIPC, the General Intensional Programming Compiler,
implemented in gipsy.GIPC), and execution (GEE, the
General Eduction Engine, implemented in gipsy.GEE) of
Lucid programs are separated allowing easy extension, ad-
dition, and replacement of the components.

Figure 1. High-level Structure of the GIPSY

GIPSY has a collection of compilers under the General
Intensional Programming Compiler (GIPC) framework and
the eduction execution engine (GEE) among other things
(see general architecture in Figure 1. The two modules
are the major primary components for compilation and ex-
ecution of intensional programs, which will require amend-
ments for the changes proposed in this work. In [16] and
previous works [4, 15, 14] a notion of JLucid and Objec-
tive Lucid languages (with sequential threads and commu-
nication procedures) was introduced that led to a more gen-
eral framework for greater interoperability between inten-
sional and imperative programming languages – GICF. The
availability of the Demand Migration System (DMS) [37]

makes GIPSY a truly distributed system. With the greater
flexibility that the languages, GICF, and DMS brought in
there arise the issues of security and demand monitoring.
GIPSY is also used as an investigation platform for the
distributed cyberforensics evaluation of the Forensic Lucid
programs [13, 25, 26]. GEE is the component where the dis-
tributed demand-driven evaluation takes place, e.g. relying
on the DMS. Thus, GIPSY has some raw implementation
of RMI and the one that relies on the DMS for its transport
needs.

Introduction to GICF. GLU [8, 7], JLucid [4], and later
Objective Lucid [15] prompted the development of a Gen-
eral Imperative Compiler Framework (GICF). The frame-
work targets the integration (embedding of) different im-
perative languages into GIPSY (see [36]) programs for I/O,
portability, extensibility, and flexibility reasons. GLU pro-
moted C and Fortran functions within; JLucid/Objective
Lucid promoted embedded Java. Since GIPSY targets to
unite all intensional paradigms in one research system, it
makes an effort to be as general as possible and as compat-
ible as possible and pragmatic at the same time. The GICF
is there if we want to be able to run, for example, GLU pro-
grams with minimum (if at all) modifications to the code
base. GIPSY is extended with a module in this case (a com-
piler) to support C-functions as it does for Java. GICF is
made extensible such that later on the language support for
C++, Perl, Python, shell scripts, or whatever can be rela-
tively easily added. Wiht GICF it is also possible to have
a multi-segment multi-language (with multiplicity of 3 or
more languages) GIPSY program with embedded code. The
provided embed() call allows the loading of code from a
variety of locations via standard protocols, such as HTTP,
HTTPS, FTP, and other Internet protocols via the URL pa-
rameter.

Security Problems Associated with GICF. JLucid, Ob-
jective Lucid, and GICF opened up doors for very flexible
use of external languages and resources as a part of coarse-
grain intensional computation. Unfortunately, there are se-
curity considerations to deal with when embedding a poten-
tially vulnerable unsigned code from a possibly untrusted
remote location and then propagate it to all the workers par-
ticipating in computation, which can result in either gain-
ing some unwanted privileges to the attackers, installing
backdoors, or performing DDoS through the compromised
worker nodes. The gained privileges would be that of the
user running a GIPSY service the malicious payload can
exploit in remote code execution or backdoor installation;
the DDoS in the simplest case can include a worker payload
with an infinite loop in its implementation that either opens
files, network connections, becomes a DDoS “zombi” for
future attacks, or spawns processes until the targeted host
is down. While some of these can be prevented at the op-



erating system level or the JVM by limiting the amount of
resources (memory, file descriptors, sockets, etc.) service
processes are allowed acquire, it is still better to prevent
such code from propagation in the first place.

Demand Migration System. The Demand Migration
System (DMS) is an implementation of the Demand Mi-
gration Framework (DMF) introduced by Vassev and ex-
tended by Pourteymour in [37, 32]. The initial version of
the DMS relies on Jini [9] for transport and storage of the
demands and the results in a JavaSpaces [11] repository act-
ing as a data warehouse cache for the most frequently de-
manded computations and their results (demand store). The
DMF is an architecture that is centered around the demand
store with transport agents (TAs) that implement a partic-
ular protocol (as a proof-of-concept Jini was used, now a
JMS [35] TA is under works [32]) to deliver demands be-
tween the demand store, workers (that do the actual compu-
tation for procedural demands), and generators (that request
the computation to be done). Thus, the distributed security
aspect here solely relies on the underlying communication
protocols (the bottom line is Java RMI [39]), but provides
no other measures or a way to harden the system if it runs
over a public unsecured network where the trust is not fully
established between the communicating agents, generators,
and the demand store (that may all reside in any number of
hosts in any quantity) and there is nothing preventing alter-
ation of the low-level packets with corrupt/incorrect results
or malicious code that either to spread or hog the computa-
tion or network otherwise.

1.2. Distributed MARF

DMARF [12] is based on the classical MARF (intro-
duced below) whose pipeline stages were made into dis-
tributed nodes and later extended to be managed over SN-
MPv2 [22].

Classical MARF. The Modular Audio Recognition
Framework (MARF) [17, 19, 18, 20] is another open-source
research platform and a collection of pattern recognition,
signal processing, and natural language processing (NLP)
algorithms written in Java and arranged into a modular
and extensible framework facilitating addition of new al-
gorithms for use and experiments by scientists. MARF can
run distributively [12] over the network, run stand-alone, or
may just act as a library in applications. MARF has a num-
ber of algorithms implemented for various pattern recog-
nition and some signal processing tasks. The backbone of
MARF consists of pipeline stages that communicate with
each other to get the data they need in a chained manner.
In general, MARF’s pipeline of algorithm implementations
is presented in Figure 2, where the implemented algorithms

Figure 2. MARF’s Pattern Recognition
Pipeline

are in white boxes, and the stubs or in-progress algorithms
are in gray. The pipeline consists of four basic stages: sam-
ple loading, preprocessing, feature extraction, and train-
ing/classification. There are a number of applications that
test MARF’s functionality and serve as examples of how to
use MARF’s modules. One of the most prominent appli-
cations SpeakerIdentApp – Text-Independent Speaker
Identification (who, gender, accent, spoken language, etc.).

Distributed Version and SNMP. The classical MARF
presented in the previous section was first extended [12] to
allow the stages of the pipeline to run as distributed nodes
as well as a front-end, as roughly shown in Figure 3. The
basic stages and the front-end were implemented without
backup recovery or hot-swappable capabilities at this point;
just communication over Java RMI [39], CORBA [33], and
XML-RPC WebServices [34]. Later, the DMARF was
further extended to allow management of its nodes with
SNMP [22] by implementing the proxy SNMPv2 [5] agents
and translating some of the management information to
DMARF’s “native” operations. For the DMARF, the re-
search and development group received its own SMI num-
ber [6]. There is also an undergoing project on the inten-
sional scripting language, MARFL [21] that allows to script
MARF tasks and applications and allows them to be run dis-
tributively either using MARF’s own infrastructure or over
the GIPSY. The latter fact presents the new hazards simi-
lar to those described in GIPSY. Thus, the security of this
distributed system as-is relies again on the underlying pro-
tocols of Java RMI, CORBA, XML-RPC, and SNMP. The
latter does provide some extensive security features for the
management information in the v3 of the protocol, but as-
is nothing assures data integrity and origin authentication.
Unlike GIPSY, DMARF doesn’t deal with explicit code ex-
ecution, so there is no malicious code injection problem in
this case.



Figure 3. The Distributed MARF Pipeline
1.3. Comparison of GIPSY and Distributed

MARF

Here we summarize the similarities and differences be-
tween the two systems in order to extract common and spe-
cific secruity-related requirements:

Demand-driven vs. pipelined. The GIPSY employs
a demand-driven eductive execution model: its General
Eduction Engine (GEE) evaluates intensional (Lucid di-
alects) or imperative expressions (e.g. Java methods, C++
functions, etc.) in presence of which a procedural demand is
generated, delivered to a networked demand store (we call it
a data value warehouse or cache), where it can be picked up
from by an observing worker on some other node for eval-
uation that procedure as an atomic sequential thread. Once
worker completes the evaluation, the result of the computa-
tion is stored back into the warehouse for the generator to
pickup and return back to the executing program. The de-
scribed type of distributed asynchronous communication is
managed by the earlier described DMS [37, 38]. DMARF
due its nature of application, implements a pipelined or
chained way of connecting some of its distributed nodes fol-
lowing the pattern recognition pipeline stages, thereby mak-
ing it look synchronous. While there is a synchrony within
the pipeline, it is formed for the current subject/sample eval-
uation, and the pipeline connection path may be different
for each new subject or sample. DMARF by itself does not
exhibit the demand-driven model of computation (though
can be adjusted to use one as such) and allows applica-
tions connecting directly to some of the nodes avoiding the
pipeline if they just require the services of those particular

nodes.

Java. Both systems are written in the Java language and
share some common utility base. They also overlap in the
use of the available Java communication technologies, such
as the RMI. DMARF has Web Services and CORBA imple-
mentation, while GIPSY has Jini and JMS.

Author. The author of this paper actively participates in
the design and development of both systems along with his
colleagues and as such has an in-depth knowledge of the
two systems to search for a viable common add-on solution
of the security layer and defining its properties.

1.4. Java Data Security Framework

JDSF [23, 24] is one of the proposed frameworks to al-
low security researches working with several types of data
storage or databases in Java to evaluate different security
algorithms and methodologies in a consistent environment.
The JDSF design aims at the following aspects of data se-
curity: confidentiality (data is private), integrity (data is
not altered in transit), origin authentication (data coming
from a trusted source), and SQL randomization (for rela-
tional databases only). An abstraction of the common es-
sential cryptographic primitives are also provided. The ab-
stractions expose a common API proxied to the common
Java open-source implementations of the cryptographic al-
gorithms for encryption, hashing, digital signatures, etc.
The higher-level JDSF design summary is illustrated in sev-
eral UML specification diagrams: Figure 4 illustrates main
subpackages of JDSF and its configuration, Figure 5 il-
lustrates the design of security-enhanced storage, Figure 6
illustrates the design of the authentication subframework,
Figure 7 illustrates the design of the privacy subframework,
Figure 8 illustrates the design of the integrity subframe-
work, and Figure 9 illustrates the design of the abstraction
API over concrete cryptographic primitives. The JDSF is
naturally convenient to use in the scope of the research in
the article as it is, like the GIPSY and DMARF, is imple-
mented in Java, open-source, and evolved in some relation-
ship with MARF and is within its CVS repository. The main
disadvantage of JDSF as it focuses on the data storage only
and can’t address all of our concerns here, in particular it
can’t deal with DDoS, and at present has no provision for
malicious code detection, or any type of network protocol
security other than secure serialization to a networked stor-
age.



Figure 4. marf.security Package.

Figure 5. marf.security.Storage Package
and Classes.

Figure 6. marf.security.authentication
Package and Classes.

2. Threat Model, Security Requirements, and
Proposed Solutions

The threat model has to do with the management and
computation information’s confidentiality, integrity, avail-

Figure 7. marf.security.confidentiality
Package and Classes.

Figure 8. marf.security.integrity Pack-
age and Classes.

Figure 9. marf.security.algorithms
Package and Classes.



ability, and authentication based on some of the problems
outlined earlier in the description of the two systems. The
aspects of high-availability, malicious code detection and
certified compilation among others are treated as subtopics
of the one of the primary four aspects as appropriate. Au-
thorization and access control are not covered in this work
because they are handled by the host operating system soft-
ware and system tools outside of the scope of the studied
systems. Importance and relevance of every computing as-
pect in each studied systems is highlighted.

2.1. Confidentiality

In general, the confidentiality aspect is of lesser concern
in both systems as they care more about correctness and
accuracy of the computation and stored results and their
availability. There may, however, be a valid need to con-
ceal the data in the system performing the computation for
some applications that have the requirement (e.g. identities
of speakers in a speaker identification application or details
of a distributed cyberforensic investigation [13, 26]); thus,
the confidentiality aspect is more pertinent to the applica-
tion side that may run on top of the systems. In GIPSY,
the confidentiality requirement is generally less applicable
than in DMARF except the aforementioned cyberforensic
case. In DMARF, depending on the application front-end,
confidentiality, and more specifically privacy may be more
desired when some subject’s identity data is not required to
produce results such as accuracy or performance statistics.
An example of such an application is one of the statistics
gathered by the SpeakerIdentApp in order to measure
the accuracy of a given combination and configuration of
algorithms used in the pipeline. Application of the JDSF’s
confidentiality subframework would resolve the confiden-
tiality concerns in the two systems. Its integration into the
security layer would be minimal because all the systems
share the common implementing language, Java. JDSF will
be “injected” on the computing and generating nodes and
will be invoked before the data leaves the system or when
it arrives the system. The configuration assumes the key set
up and exchange has already happened. The “injection” of
the JDSF can be source code-based or proxy-based. The
source code-based solution will enable better integration of
the system with the security layer, more security as the the
information leakage between the inner layers and the secu-
rity layers minimized or entirely eliminated. However, it
is a more tedious and work-intensive integration that also
introduces a dependency on JDSF. Proxy-based integration
implies certified proxies act like transport agents and im-
plement at the same time agent’s API in both GIPSY or
DMARF, encrypt/anonymize (or do the inverse on the re-
ceiving end) data, and pass it on. The improves flexibility,
key management through SNMPv3, removes dependency

on JDSF, but introduces the problems of getting data se-
curely between the proxies and the actual agents as well
as maintenance of and dependence on the availability of
the proxy services. While the confidentiality of data in
transit between the agent and the proxy is relatively eas-
ily achievable via SSL, the protocol overhead may be more
prohibitive, than implementing the security layer in the code
base by redirecting the storage method calls through JDSF.
Confidentiality of the management and control information
can be achieved by the same means or implementing the
SNMPv3 proxies. GIPSY does not presently have a facility
to work with SQL-based databases; DMARF has an export
API to produce an SQL output. With the untrusted SQL, the
confidentiality of data can be compromised through SQL
injections attacks; that can be prevented by SQL random-
ization, also designed in JDSF.

2.2. Integrity

Integrity is a paramount aspect for both systems as in
no event they should produce incorrect results due to ei-
ther mal-intently malformed packets or data structures that
come from the network, be it demands in GIPSY or sam-
ples and results in DMARF. This is a stringent requirement
as of to produce correct and accurate results of the com-
putation; otherwise, any results from the systems at large
will not be trustworthy and publishable in scientific research
venues. The issue aggravates, when the incorrect results
persist and accumulate, such as in GIPSY’s warehouse or
persistent cache. Some of the integrity is assured by the
Java Virtual Machine upon serialization and class loading
with the byte-code verifier, but it is not sufficient with the
communicating distributed systems. Integrity of the data in
transit is achieved by the JDSF’s integrity subframework for
the similar reasons and mechanisms as in the confidentiality
aspect described in the earlier section. Integrity of the SQL-
based data can also be maintained by randomizing the SQL
statements. Both, JDSF source code or certification proxy
approaches are applicable in the integrity case. In fact, the
proxy certificates (e.g. SSL) are better suited in the integrity
aspect than in confidentiality requirement solution as it is
easier to deploy and maintain the separation as no confiden-
tiality protocol is required when communicating the data
between the agent and the proxy. The integrity of a GIPSY
node can be abused by the presence of the injected mali-
cious code through the embed() call or intentionally writ-
ten malware GIPSY program code with the attacker hoping
the code to propagate through the GIPSY network of work-
ers “infecting” them. There is a number of things that the
attacker can do. The simplest is the DoS of the GIPSY net-
work itself by supplying a procedural demand that contains
an infinite loop and the workers at present are not designed
to timeout and the timeout interval is impossible to uni-



versally define. The more serious incursions may include
DDoS against other hosts, worms, and spread of any known
malware, that may not be easily detectable by the host OS
tools and services (e.g. antiviruses or IDSes) if the arriv-
ing and leaving demand payload is encrypted. These are
difficult issues to address and at present JDSF is nowhere
close to have means to provide some solutions to these. The
solutions here would involve static and dynamic procedu-
ral code analysis, model checking, and certified compila-
tion. The latter would sign the code at the trusted generator
to at least disallow unsigned embedded code execution; it
will not prevent, however, intentionally crafted GIPSY pro-
gram, as it will leave certified from the attackers computer.
This is where the additional model checking will have to
take place, and internal intrusion detection engine has to be
made. In the short run, we can apply a restriction and filter-
ing of non-local embed() calls and implementation of the
proxied embed() with certification support and timeouts.

2.3. Authentication

The data origin authentication aspect is crucial in both
systems as well. It relates to the integrity described above
and correctness of a scientific computation as if the data
coming from an untrusted source may seem not to have vi-
olated integrity checks, but may still be intentionally incor-
rect thereby poisoning cached results in the data store in
either system and accumulating error over time. Authen-
tication also has to do with code signing in the procedural
demands that deliver code payload to assure it comes from
a trusted source and either signed by one of our node’s com-
pilers or external authority. This in part relates to the follow
up section on availability. The JDSF’s authentication sub-
framework can be used here in part similarly in the way it
is done for the confidentiality and and the integrity aspects
described above. The authentication can be achieved sim-
ilarly to the DNSsec methodology and can be hierarchical.
We do not consider the authentication of the users here to
prove their identities to the systems as there are no users and
user management in the studied systems.

2.4. Availability

Generally, any reliable distributed system has to pro-
vide some redundancy in order to achieve constant high-
availability of its services. In the studied systems the avail-
ability can be disrupted by the regular network problems
connecting the participating nodes and the malicious code
compromising the integrity of the nodes (we do not con-
sider human administrators killing processes at the com-
puting nodes related to our system as we can’t deal with
it easily). As described slightly earlier, malicious code de-
tection for GIPSY is paramount to ensure availability of all

the GIPSY services as avoid becoming a DDoS source to it-
self and others as well as a malware spreading mechanism.
Availability has also to do with non-mal-intended code hav-
ing infinite loops that have to be either aborted or disallowed
as far as static code analysis allows. Availability is generally
very difficult to guarantee in a distributed environment, and
JDSF has no provisions for that as well. The ways to deal
with the malicious code are also described earlier in the pre-
vious sections, and will require much further research and
elaboration in the future work.

3. Conclusion

Security aspects, such as data origin authentication, data
integrity, malicious code detection are important aspects
even for scientific research and experimental distributed
systems that are designed to run potentially over the uncon-
trolled public networks, such as the Internet to reduce the
risks of cache poisoning of the data warehouses and stored
data or incorrect results as well as DDoS. Thus, it is imper-
ative the systems should allow for the security mechanisms
to be easily added; it is also imperative that the mandatory
security layer is not required, as to for performance reasons
of a large scale scientific computation on a local controlled
network or cluster it is an unnecessary overhead. The pro-
posed solution of JDSF does cover a wide array of these
aspects, but cannot be a all-in-one solution, and the avail-
ability aspect along the lines with the malicious code detec-
tion is the most difficult to tackle; thus, suggesting to look
at other similar frameworks and enhance the secure coding
practices engineered back into the studied systems.

Future Work. The future work will focus on the comple-
tion of the implementation of the security layer framework
for both systems to make it possible to turn on the secu-
rity layer with configuration parameters in both GIPSY and
DMARF. The author of this paper is involved with the both
projects as well as JDSF and is able to contribute the dis-
tributed security framework layer for both systems. A part
of the related research, is the measuring of the overhead in-
duced by the security layer as well as its ease and generality
of adaptation to existing systems that had no security goals
in mind when they were designed. A particular care will be
given to the design and implementation of efficient model
checkers and certified compilation aspects for the studied
systems.

Acknowledgments. We would like to acknowledge the
people presently and currently involved with the GIPSY
and MARF projects, as well as JDSF. Namely, Joey Pa-
quet, Emil Vassev, Amir Pourteymour, Xin Tong, Stephen
Sinclair, Ian Clement, Dimitrious Nicolacopoulos, Linguy



Wang, Mourad Debbabi, Chadi Assi, Lee Wei Huynh, Jian
Li, Farid Rassai. This research work was funded by the
Faculty of Engineering and Computer Science of Concor-
dia University, Montreal, Canada.

References

[1] E. A. Ashcroft and W. W. Wadge. Lucid - A Formal Sys-
tem for Writing and Proving Programs. volume 5. SIAM J.
Comput. no. 3, 1976.

[2] E. A. Ashcroft and W. W. Wadge. Erratum: Lucid - A
Formal System for Writing and Proving Programs. volume
6(1):200. SIAM J. Comput., 1977.

[3] E. A. Ashcroft and W. W. Wadge. Lucid, a nonprocedu-
ral language with iteration. Communication of the ACM,
20(7):519–526, July 1977.

[4] P. Grogono, S. Mokhov, and J. Paquet. Towards JLucid, Lu-
cid with embedded Java functions in the GIPSY. In Proceed-
ings of the 2005 International Conference on Programming
Languages and Compilers (PLC 2005), Las Vegas, USA,
pages 15–21. CSREA Press, June 2005.

[5] D. Harrington, R. Presuhn, and B. Wijnen. RFC 2571:
An Architecture for Describing SNMP Management Frame-
works. www.ietf.org, Apr. 1999. http://www.ietf.
org/rfc/rfc2571.txt, viewed in January 2008.

[6] I. A. N. A. (IANA). PRIVATE ENTERPRISE NUM-
BERS: SMI Network Management Private Enterprise
Codes. iana.org, Mar. 2007. http://www.iana.org/
assignments/enterprise-numbers.

[7] R. Jagannathan and C. Dodd. GLU programmer’s guide.
Technical report, SRI International, Menlo Park, California,
1996.

[8] R. Jagannathan, C. Dodd, and I. Agi. GLU: A high-level
system for granular data-parallel programming. In Concur-
rency: Practice and Experience, volume 1, pages 63–83,
1997.

[9] Jini Community. Jini Network Technology. Sun Mi-
crosystems, Inc., Sept. 2007. http://java.sun.com/
developer/products/jini/index.jsp.

[10] B. Lu, P. Grogono, and J. Paquet. Distributed execution of
multidimensional programming languages. In Proceedings
15th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS 2003), volume 1,
pages 284–289. International Association of Science and
Technology for Development, Nov. 2003.

[11] Q. H. Mamoud. Getting Started With JavaSpaces
Technology: Beyond Conventional Distributed Pro-
gramming Paradigms. Sun Microsystems, Inc., July
2005. http://java.sun.com/developer/
technicalArticles/tools/JavaSpaces/.

[12] S. Mokhov. On design and implementation of distributed
modular audio recognition framework: Requirements and
specification design document. Department of Computer
Science and Software Engineering, Concordia University,
Montreal, Canada, Aug. 2006. Project Report. A copy is
found: http://marf.sf.net, last viewed April 2008.

[13] S. Mokhov. Intensional Forensics – the Use of Intensional
Logic in Cyberforensics. Technical report, Concordia Insti-
tute for Information Systems Engineering, Concordia Uni-
versity, Montreal, Canada, Jan. 2007. ENGR6991 Technical
Report.

[14] S. Mokhov and J. Paquet. General imperative compiler
framework within the GIPSY. In Proceedings of the 2005
International Conference on Programming Languages and
Compilers (PLC 2005), Las Vegas, USA, pages 36–42.
CSREA Press, June 2005.

[15] S. Mokhov and J. Paquet. Objective Lucid – first step in
object-oriented intensional programming in the GIPSY. In
Proceedings of the 2005 International Conference on Pro-
gramming Languages and Compilers (PLC 2005), Las Ve-
gas, USA, pages 22–28. CSREA Press, June 2005.

[16] S. A. Mokhov. Towards hybrid intensional programming
with JLucid, Objective Lucid, and General Imperative Com-
piler Framework in the GIPSY. Master’s thesis, Depart-
ment of Computer Science and Software Engineering, Con-
cordia University, Montreal, Canada, Oct. 2005. ISBN
0494102934.

[17] S. A. Mokhov. Introducing MARF: a modular audio recog-
nition framework and its applications for scientific and soft-
ware engineering research. In Proceedings of the IEEE En-
gineering/Computing and Systems Research E-Conference
(SCSS07/CISSE 2007), University of Bridgeport, U.S.A.,
Dec. 2007. Springer. To appear, http://cisse2007.
org.

[18] S. A. Mokhov. Choosing best algorithm combinations for
speech processing tasks in machine learning using MARF.
In S. Bergler, editor, Proceedings of the 21st Canadian
AI’08, pages 216–221, Windsor, Ontario, Canada, May
2008. Springer-Verlag, Berlin Heidelberg. LNAI 5032.

[19] S. A. Mokhov. Experimental results and statistics in the im-
plementation of the modular audio recognition framework’s
API for text-independent speaker identification. In C. D.
Zinn, H.-W. Chu, M. Savoie, J. Ferrer, and A. Munitic,
editors, Proceedings of the 6th International Conference
on Computing, Communications and Control Technologies
(CCCT’08), volume II, pages 267–272, Orlando, Florida,
USA, June 2008. IIIS.

[20] S. A. Mokhov. Study of best algorithm combinations for
speech processing tasks in machine learning using median
vs. mean clusters in MARF. In B. C. Desai, editor, Proceed-
ings of C3S2E’08, pages 29–43, Montreal, Quebec, Canada,
May 2008. ACM and BytePress. ISBN 978-1-60558-101-9.

[21] S. A. Mokhov. Towards syntax and semantics of hierar-
chical contexts in multimedia processing applications using
MARFL. In Proceedings of the 32nd Annual IEEE Inter-
national Computer Software and Applications Conference
(COMPSAC), pages 1288–1294, Turku, Finland, July 2008.
IEEE Computer Society.

[22] S. A. Mokhov, L. W. Huynh, and J. Li. Managing dis-
tributed MARF’s nodes with SNMP. In Proceedings of
PDPTA’2008, Las Vegas, USA, Aug. 2008. CSREA Press.
To appear.

[23] S. A. Mokhov, L. W. Huynh, J. Li, and F. Rassai. A Java
Data Security Framework (JDSF) for MARF and HSQLDB.
Concordia Institute for Information Systems Engineering,



Concordia University, Montreal, Canada, Apr. 2007. Project
Report. Hosted at http://marf.sf.net, last viewed
April 2008.

[24] S. A. Mokhov, L. W. Huynh, J. Li, and F. Rassai. A pri-
vacy framework within the java data security framework
(JDSF): Design refinement, implementation, and statistics.
In N. Callaos, W. Lesso, C. D. Zinn, J. Baralt, J. Bouka-
chour, C. White, T. Marwala, and F. V. Nelwamondo, ed-
itors, Proceedings of the 12th World Multi-Conference on
Systemics, Cybernetics and Informatics (WM-SCI’08), vol-
ume V, pages 131–136, Orlando, Florida, USA, June 2008.
IIIS.

[25] S. A. Mokhov and J. Paquet. Formally specifying and prov-
ing operational aspects of Forensic Lucid in Isabelle. Tech-
nical Report 2008-1-Ait Mohamed, Department of Elec-
trical and Computer Engineering, Concordia University,
Aug. 2008. In Theorem Proving in Higher Order Logics
(TPHOLs2008): Emerging Trends Proceedings.

[26] S. A. Mokhov, J. Paquet, and M. Debbabi. Formally specify-
ing operational semantics and language constructs of Foren-
sic Lucid. In Proceedings of IMF’08, Mannheim, Germany,
Sept. 2008. To appear.

[27] S. A. Mokhov, J. Paquet, and X. Tong. Hybrid intensional-
imperative type system for intensional logic support in
GIPSY. Unpublished, 2008.

[28] J. Paquet. Scientific Intensional Programming. PhD thesis,
Department of Computer Science, Laval University, Sainte-
Foy, Canada, 1999.

[29] J. Paquet. A multi-tier architecture for the distributed educ-
tive execution of hybrid intensional programs. Submitted for
publication at SAC’09, 2008.

[30] J. Paquet and P. Kropf. The GIPSY Architecture. In Pro-
ceedings of Distributed Computing on the Web, Quebec City,
Canada, 2000.

[31] J. Paquet and A. H. Wu. GIPSY – A Platform for the Investi-
gation on Intensional Programming Languages. In Proceed-
ings of the 2005 International Conference on Programming
Languages and Compilers (PLC 2005), Las Vegas, USA,
pages 8–14. CSREA Press, June 2005.

[32] A. H. Pourteymour, E. Vassev, and J. Paquet. Experimental
Investigations in GIPSY Demand Migration Systems. Un-
published, 2007.

[33] Sun Microsystems. Java IDL. Sun Microsystems,
Inc., 2004. http://java.sun.com/j2se/1.5.0/
docs/guide/idl/index.html.

[34] Sun Microsystems. The Java Web Services Tu-
torial (For Java Web Services Developer’s Pack,
v2.0). Sun Microsystems, Inc., Feb. 2006.
http://java.sun.com/webservices/docs/
2.0/tutorial/doc/index.html.

[35] Sun Microsystems. Java Message Service (JMS). Sun Mi-
crosystems, Inc., Sept. 2007. http://java.sun.com/
products/jms/.

[36] The GIPSY Research and Development Group. The General
Intensional Programming System (GIPSY) project. Depart-
ment of Computer Science and Software Engineering, Con-
cordia University, Montreal, Canada, 2002-2008. http://
newton.cs.concordia.ca/˜gipsy/, last viewed
April 2008.

[37] E. Vassev and J. Paquet. A Generic Framework for Migrat-
ing Demands in the GIPSY’s Demand-Driven Execution En-
gine. In Proceedings of the 2005 International Conference
on Programming Languages and Compilers (PLC 2005),
Las Vegas, USA, pages 29–35. CSREA Press, June 2005.

[38] E. I. Vassev. General Architecture for Demand Migration
in the GIPSY Demand-Driven Execution Engine. Master’s
thesis, Department of Computer Science and Software En-
gineering, Concordia University, Montreal, Canada, June
2005. ISBN 0494102969.

[39] A. Wollrath and J. Waldo. Java RMI Tutorial. Sun Mi-
crosystems, Inc., 1995-2005. http://java.sun.com/
docs/books/tutorial/rmi/index.html.


