Designing an Interactive OpenGL Slide-Based
Presentation of the Softbody Simulation System for
Teaching and Learning of Computer Graphics Techniques

Miao Song
Computer Science and
Software Engineering
Concordia University
Montréal, Québec, Canada

Serguei A. Mokhov
Computer Science and
Software Engineering
Concordia University
Montréal, Québec, Canada

Peter Grogono
Computer Science and
Software Engineering
Concordia University
Montréal, Québec, Canada

m_song@cse.concordia.ca mokhov@cse.concordia.ca grogono@cse.concordia.ca

ABSTRACT

3D graphics power-point-like slides in OpenGL is a way to
present a demo or a teaching item. We focus on how the
softbody objects are modeled and rendered with the intent
to make a base for teaching, learning, and education of/for
computer graphics and integration with the softbody frame-
work. This is work-in-progress on the implementation and
publication of this integration and demonstration work.

Categories and Subject Descriptors

1.3.7 [Three-Dimensional Graphics and Realism]: An-
imation

General Terms

Design, Human Factors

Keywords

softbody, real-time, frameworks, OpenGL, physical-based
modeling, education, presentation

1. INTRODUCTION

It is useful for the teaching and learning to be able to
present some computer graphics (CG) techniques, such as
advanced rendering and physical-based real-time animation
of softbody objects with and without GPU support [17, 3,
16] and release the resources at the same time. Teaching may
be less effective if the examples are not visuallized in class
for the students. At the same time it is a burden for the in-
structor presenting the concepts and switching between the
presentation power-point-like slides and the demo program.
We argue that it would be more effective and efficient to
combine the OpenGL CG programs with OpenGL presen-
tation slides in one, where the traditional power-points and
various techniques can be exemplified at run time and the
source code can be released to the students later to follow
the examples through all angles. For this purpose we are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

C3S2E-09, 2009, May 19-21, Montreal [QC, CANADA]

Copyright 2009 ACM 978-1-60558-401-0/09/05 ...$5.00.

in the process of integration of the physical-based softbody
simulation system [11, 12, 13] with the the OpenGL slide
presentation system [6, 7].

2. RELATED WORK

The bulk of the related work in this paper is concerned
with the two separate frameworks and systems being inte-
grated together to eventually form one CG teaching mod-
ule, with the physical-based modeling and presentation in-
tegrated together.

2.1 Softbody Simulation Framework and Sys-
tem

In our real physical world there exist not only rigid bodies
but also soft bodies, such as human and animal’s soft parts
and tissue, and other non-living soft objects, such as cloth,
gel, liquid, and gas. Softbody simulation is a vast research
topic and has a long history in computer graphics.

The softbody system has gone through a number of itera-
tions in its design and development. Initially it had limited
user interface [11, 12].

Then the fine-grained to high-level level-of-detail (LOD)
GLUI-based [9] user interface has been added [13], GPU
shading support was added [14] using the OpenGL Shading
Language [10], a curve-based animation was integrated, and
software engineering re-design has happened.

The example of the common visual design of the LOD in-
teractivity interface is summarized in Figure 1. The LOD
components are on the right-hand-side (in their initial state,
not expanded), and the main simulation window is on the
left (interactivity with that window constitutes for now just
the mouse drag and functional keys). Following the top-
down approach configuration parameters, that assume some
defaults, were reflected in the GUI.

2.1.1 Softbody Framework’s Design and Implemen-
tation Overview

The framework’s design has centered around common di-
mensionality (1D, 2D, and 3D) of graphical objects for sim-
ulation purposes, physic’s based integrators, and the user
interactive component. At present, the Integrator API of
the framework as of this writing is implemented by the
well-known Explicit Euler, Midpoint, Feynman, and Runge-
Kutta 4 (RK4)-based integrators for their mutual compar-
ison of the run-time and accuracy. The system is imple-
mented using OpenGL [8, 19] and the C++ programming
language with object oriented programming paradigm.

This elastic object simulation system has been designed
and implemented according to the well known architectural
pattern, the Model-View-Controller [18]. This pattern is

E3A Softbody Simulation

_oix

Soft Body Simulation User Interface

- Chject Panel
rObject Type

v 1D

E_Object Properties + [J

¥ 2D

L Ohject PrUEerﬁes aF IJ

¥ 3D

L _Object Properties + IJ

rIntegrator Panel
Integrator Type
{+ Euler
" Midpoint
" Feynman
" RE4

[Time & Step

DT:IU.DEI45 =

Reset
Suit

Figure 1: Three Types of Softbody Objects Dragged by Mouse

ideal for real time simulation because it simplifies the dy-
namic tasks handling by separating data (Model) from user
interface (View). Thus, the user’s interaction with the soft-
ware does not impact the data handling; the data can be
reorganized without changing the user interface. The com-
munication between the Model and the View is done through
another component: Controller. This also closely correlates
to the OpenGL state machine, that we use as a core li-
brary for our implementation. In our current simulation
system, the application has been split into these three sep-
arated components [12].

2.1.2 Example Softbody Animation

In this section, the two-dimensional and three-dimensional
objects are illustrated at different animation sequences, with
different simulation parameters, and by simulation with dif-

ferent numerical integration methods. The screenshots present

the animation sequence of the two-dimensional, and three-
dimensional objects when they are at the initial state, col-
liding with floor, bouncing back from the floor, responding
to user’s external dragging, and at the resting state.

2D. Figures 2(a) through 2(f) show how a two-dimensional
object moves in a 3D environment. This two-layer object
consists of 10 particles and 10 structural springs on both
inner and outer circles. Moreover, it contains 10 radius
springs, 10 shear left springs, and 10 shear right springs

between the inner and outer layers. If a 2D object with
only one layer, or the object has no pressure force within,
the spring’s stiffness has to be a larger value than without,
then the object will not collapse. However, as shown in Fig-
ure 2(b), if the spring stiffness is small enough, the object
does not collapse, neither overlap with the layers because of
the stability of the two-layer structure [12].

3D. The simulation as shown in Figures 3(a) through 3(f) is
how a 3D uniform facet object moves in a three-dimensional
environment. This two-layer object, which is generated by
subdividing an octahedron once, consists of 12 particles, 36
structural springs, and 32 faces, on both inner and outer
spheres. Moreover, the object also contains 36 radius springs,
36 shear left springs, and 36 shear right springs between the
inner and outer layers. Just like in two dimensions, the two-
layer structure gives the 3D sphere more stability [12].

void Idle() {
object1D.Update (DT, mousedown!=0, xMouse, yMouse);
object2D.Update (DT, mousedown!=0, xMouse, yMouse);
object3D.Update (DT, mousedown!=0, xMouse, yMouse);
glutPostRedisplay();

Figure 4: Idle() Model Updates

(d) Drag the object

(e) Response to compact

(f) The resting state

Figure 2: Animation Sequence of the 2D Elastic Object

void Object::Update(float deltaT, bool drag,
float xDrag, float yDrag) {
if (integrator == NULL) {
switch(integratorType) {
case EULER:
integrator = new EulerIntegrator (*this);
break;
case FEYNMAN:
integrator = new FeynmanIntegrator (*this);
break;
case MIDPOINT:
integrator = new MidpointIntegrator (*this);
break;
case RK4:
integrator = new RungeKutta4Integrator (*this);
break;
default:
assert(false);
return;

integrator->setDimension(dim) ;

}
integrator->integrate(deltaT, drag, xDrag, yDrag);

Figure 5: General Update() Function

In the main simulation, the Idle() function shown in Fig-
ure 4, elastic objects update at every time step DT to tell the
the system how the objects behave and the change for their
velocity and position. There are four parameters for Up-
date() as shown in Figure 5, the time step deltaT, if there
exists user interaction drag=0 by default, the mouse posi-
tion on x and y axes (for dragging upon mouse release) is
at 0 by default. The general algorithm of the Update() pre-
sented, illustrates that the most of the actual modifications

are based on the dynamically selected integrator and the
dimensionality of the simulation object being integrated.

2.1.3 Summary of the Adjustable Simulation Param-
eters

The parameters in the simulation such as mass, spring
stiffness, and friction (damping) can be changed. One can
drag the object mass with a mouse to change its position.
Effects of different simulation parameters are discussed [12].

The parameters that influence the behavior of the simu-
lated environment are summarized below, with their default
values. Most initial and default values were based on the
2D case from [4]; otherwise, the values are empirical and
are partially dependent on the hardware the simulation is
executing on. The values can be changed at real-time with
the GUI interface [13].

¢ KS = 800 where KS is structural spring stiffness con-
stant. The larger this value is, the less elastic the ob-
ject is and it is more resistant to the inner pressure and
deformation. The lesser this value is the more object
is deformable and a subject to break up if the inner
pressure force is high.

¢ KD = 15 where KD is structural spring damping con-
stant, opposite to the spring retraction force. It denotes
how fast the object is to resist its motion.

© RKS = 700 where RKS is radius and shear spring stiff-
ness constant, similar to KS, but for radius and shear
springs as opposed to the structural springs.

¢ RKD = 50 where RKD is radius and shear spring damp-
ing constant, similar to KD, but for radius and shear
springs.

=34 Simulation Ball - Miao Song

(d) Drag the object

(e) Response to compact

(f) The resting state

Figure 3: Animation Sequence of the 3D Elastic Object

¢ MKS = 150 where MKS is the spring stiffness constant
of the spring connected with the mouse and the ap-
proximate nearest particle on the object. This consti-
tutes the elasticity of the “drag” spring connected to the
mouse: the lesser the value is, the more elastic it is, and
the harder it is to drag the object as a result.

¢ MKD = 25 where MKD is the damping constant of the
spring connect with the mouse and the approximate
nearest point on the object.

¢ PRESSURE = 20 where PRESSURE is gas constant used
in the ideal gas equation mentioned earlier to determine
the pressure force inside the enclosed object. If this con-
stant is too high, and the combined spring stiffness for
all the spring types is low enough, the object can “blow
up”.

o MASS = 1 where MASS is the mass for each particle.
The object can be made heavier or lighter if this value
is larger or smaller respectively, in order to experiment
with the gravity effects. Naturally, the heavier objects
will be more difficult to drag upwards in the simulation
environment. Conversely, the smaller-mass object can
be dragged around with less effort given the rest of the
parameters remain constant.

2.2 OpenGL Slides Framework

OGLSF presents a way of making slides, transiting be-
tween them using controls, allow for common bulleted tex-
tual widgets — the tidgets, and allowing overriding the con-
trol handling from the main idle loop down to each individ-
ual slide in OpenGL. All slides together build up a Presen-
tation, which is a collection of slides that uses the Builder

pattern to sequence the slides. Each slide is a derivative
of the Slide class and represents essentially a scene outfit-
ted with the default keyboard controls for the tidgets and
navigation.

Each scene on the slide is modeled using traditional proce-
dural modeling techniques and is set as a developer or artist
desires. It can include models and rendering of any primi-
tives, complex scenes, texturing, lighting, GPU-based shad-
ing, and others, as needed and is fit by the presenter [6, 7].

The main program must delegate its handling of the call-
back controls for keyboard, mouse, and idle down to the
presentation that does it down to each current slide in ad-
dition to whatever handling it itself requires.

An example of slides made for a project [5] using the
OpenGL-based slides is illusrated in Figures 6, 7, 8, and 9.
It is imperative that the tigets can be enabled and disabled
to allow the main animation to run unobstructed.

3. METHODOLOGY

The methodology consists of the adjustments required for
the integration and then following by making the actual pre-
sentation with slides. The source code of the presentation is
a part of the learning material along the actual content of
the material presented.

Initially, both frameworks and implementing systems de-
fine the main() function, which cannot be included into any
of the libraries (both can be compiled into the library files
to be linked into other projects) as there will be linker errors
when the object code from the two or more system is com-
bined into a single executable. We have to start a new appli-
cation with a new main(), the SoftBodyPresentation.cpp.

Figure 6: OpenGL Slide Example 1

EHair Animation Presentation - EEge———. - Sine Wave Deformation

Sine Wave Deformation

Patches: 1

Figure 8: OpenGL Slide Example 3

eshes may not be of the same size...

Figure 7: OpenGL Slide Example 2

Additionally, both frameworks have to declare their own
namespaces, which both have not done in the past, similarly
like CUGL [2] does because there are some common names
of variables, classes, or functions that clash. This will be an
overall improvement not only for this work, but also for any
similar type of integration with other projects.

Most of the main code from SoftbodySimulation.cpp ap-
plication becomes encapsulated into a generic SoftbodySim-
ulationSlide class that includes the default configuration

EHair Animation Present:

Grass ammation under wind will-also dal..
Patches: 100

“ENTER"

Figure 9: OpenGL Slide Example 4

of the parameters presented in the earlier section.

Furthermore, concrete slides that inherit from SoftbodySim-
ulationSlide are broken down into some preset distinct
configuration defaults and accompanying tidgets. They over-
ride the idle () function as well as the state LOD parameters
per an example slide. These currently include:

¢ TitleSlide — the common title slide with the lecture
title and the presenter information.

o TOCSlide — table of contents of the presentation.

¢ IntroductionSlide — introduction of the material.

¢ SoftbodySimulationSlidelD — a slide featuring a 1D

<
<

spring object by default encased in the ViewBox.

SoftbodySimulationSlide2D — a slide featuring a 2D
softbody object by default.

SoftbodySimulationSlide3D — a slide featuring a 3D
softbody object by default.
SoftbodySimulationS1ideAllD — a slide featuring all

types of softbody objects by default, similarly to the
Figure 1, except encased into a slide environment.

SoftbodySimulationSlideAllEuler — all three objects
configured by default to animate under the Explicit Eu-
ler integrator.

SoftbodySimulationSlideAl1Midpoint — all three ob-
jects configured by default to animate under the Mid-
point integrator.

SoftbodySimulationSlideAllFeynman — all three ob-
jects configured by default to animate under the Feyn-
man integrator.

SoftbodySimulationSlideA11RK4 — all three objects con-
figured by default to animate under the RK4 integrator.

ConclusionSlide — preliminaty conclusions slide.

ReferencesSlide — the list of references.

It is reasonable to expect that the above slides to be pre-
sented at the poster session as an example.

4.

CONCLUSIONS AND FUTURE WORK

By designing and integrating a softbody simulation sys-
tem and the OpenGL slides framework together we are com-
ing up with a good CG teaching item that combines the
demonstration of the techniques and presentation into one
unit, that can be released to the students for learnign pur-
poses in the form of the source code.

4.1 Future Work

There are a number of immediate items of the future work:

<
<

(o]

Complete the implementation of the teaching item slides.

Make it source code portable to Linux and MacOS X.
Currently it only compiles properly under Windows.

We plan on releasing our code as open-source implemen-
tation either a part of the Concordia University Graph-
ics Library [2] and/or as part of a Maya [1] plug-in and
as a CGEMS [3] teaching module.

Allow advanced controls of the scenes and slides, e.g.
by using haptics devices [15].

REFERENCES

Autodesk. Maya. [digital], 2008. autodesk. com.

P. Grogono. Concordia University Graphics

Library (CUGL). [online], Dec. 2005. http://users.
encs.concordia.ca/~grogono/Graphics/cugl.html.
J. Jorge, F. Hanisch, F. Figueiredo,

and R. Schauer. CG Educational Materials Source
(CGEMS). [online], 2008. http://cgems.inesc.pt/.
M. Matyja. A pressure model for soft

body simulation. In Svenska Féreningen for Grafisk
Databehandling (SIGRAD2003), November 2003.

S. A. Mokhov. Real-time animation

of hair and thread-like objects via deformation

of layered meshes. Department of Computer Science
and Software Engineering, Concordia University,
Montreal, Canada, 2004. Project and report.

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

S. A. Mokhov and M. Song. An OpenGL-based interface
to 3D PowerPoint-like presentations of OpenGL
projects. In Proceedings of CISSE’08, University of
Bridgeport, CT, USA, Dec. 2008. Springer. To appear.
S. A. Mokhov and M. Song. OpenGL project presen-
tation slides interface and a case study. In Proceedings
of GRAPP’09, Lisboa, Portugal, Feb. 2009. INSTICC.
To appear, grapp.org. Poster position paper.
OpenGL Architecture Review Board. OpenGL.
[online], 1998-2008. http://www.opengl.org.

P. Rademacher. GLUI

- A GLUT-based user interface library. SourceForge,
June 1999. http://glui.sourceforge.net/.

R. J. Rost. OpenGL Shading Language. Pearson
Education, Inc., Feb. 2004. ISBN: 0-321-19789-5.

M. Song. Dynamic deformation of uniform

elastic two-layer objects. Master’s thesis, Department
of Computer Science and Software Engineering,
Concordia University, Montreal, Canada, Aug. 2007.
M. Song and P. Grogono. A framework

for dynamic deformation of uniform elastic two-layer
2D and 3D objects in OpenGL. In Proceedings

of C3S2E’°08, pages 145—158, Montreal, Quebec,
Canada, May 2008. ACM. ISBN 978-1-60558-101-9.
M. Song and P. Grogono. An LOD control

interface for an OpenGL-based softbody simulation
framework. In Proceedings of CISSE’08, University of
Bridgeport, CT, USA, Dec. 2008. Springer. To appear.
M. Song and P. Grogono.

Application of advanced rendering and animation
techniques for 3D games to softbody modeling

and animation. In Proceedings of C3S2E’09, Montreal,
Quebec, Canada, May 2009. ACM. To appear.

M. Song and P. Grogono. Are haptics-enabled inter-
active and tangible cinema, documentaries, 3D games,
and specialist training applications our future? In Pro-
ceedings of GRAPP’09, Lisboa, Portugal, Feb. 2009.
INSTICC. To appear, grapp. org. Short position paper.
J. O. Talton. Teaching

graphics with the OpenGL Shading Language.

ACM SIGCSE Bulletin archive, 39(1), Mar. 2007.

D. Tenneson, A. M. Spalter, J. Kumar,

I. Medvedev, and A. van Dam. The Graphics Teaching
Tool (GTT). [online], Brown University, 2008.
http://graphics.cs.brown.edu/research/gtt/.
Wikipedia. Procedural modeling.

[online], http://en.wikipedia.org/wiki/, 2007.

M. Woo, J. Neider, T. Davis,

D. Shreiner, and OpenGL Architecture Review Board.
OpenGL Programming Guide: The Official Guide

to Learning OpenGL, Version 1.2. Addison-Wesley,

3 edition, Oct. 1999. ISBN 0201604582.

