

A NEW METHODOLOGY FOR QUANTIFYING THE IMPACT OF NON-

FUNCTIONAL REQUIREMENTS ON SOFTWARE EFFORT ESTIMATION

Rolan Abdukalykov

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Software Engineering)

at Concordia University

Montréal, Québec, Canada

August 2011

 Rolan Abdukalykov, 2011

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Rolan Abdukalykov

Entitled: A New Methodology for Quantifying the Impact of Non-Functional

Requirements on Software Effort Estimation

and submitted in partial fulfillment of the requirements for the degree of

 Master of Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 ______________________________________ Chair

 Dr. Gregory Butler

 ______________________________________ Examiner

 Dr. Ching Y. Suen

 ______________________________________ Examiner

 Dr. René Witte

 ______________________________________ Supervisor

 Dr. Olga Ormandjieva

 ______________________________________ Supervisor

 Dr. Mohamad Kassab

Approved by __

 Chair of Department or Graduate Program Director

__

 Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Date __

 iii

Abstract

A New Methodology for Quantifying the Impact of Non-Functional Requirements on

Software Effort Estimation

Rolan Abdukalykov

The effort estimation techniques used in the software industry often tend to ignore the

impact of Non-functional Requirements (NFR) on effort and reuse standard effort

estimation models without local calibration. Moreover, the effort estimation models are

calibrated using data of previous projects that may belong to problem domains different

from the project which is being estimated. The approach described in this thesis suggests

a novel effort estimation methodology that can be used in the early stages of software

development projects. The proposed methodology initially clusters the historical data

from the previous projects into different problem domains and generates domain specific

effort estimation models, each incorporating the impact of NFRs on effort by sets of

objectively measured nominal features. The complexity of these models is reduced using

a feature subset selection algorithm. In this thesis, our approach is discussed in detail, and

the results of our experiments using different supervised machine learning algorithms are

presented. The results show that our approach performs well by increasing the correlation

coefficient and decreasing the error rate of the generated effort estimation models and

achieving more accurate effort estimates for the new projects.

 iv

Acknowledgments

I would like to thank my two supervisors for their excellent supervision, support,

mentoring, encouragement and help: Dr. Olga Ormandjieva and Dr. Mohamad Kassab

from the department of Computer Science and Software Engineering at Concordia

University in Montreal.

Also, I would like to thank Ishrar Hussain and members of READ group for their help,

useful feedback and support during the execution of our graduate projects at the

department of Computer Science and Software Engineering as part of READ group.

In addition, I would like to thank SAP and its former and current employees including but

not limited to: Dr. N. Mahe, Dr. J. Hendricks, R. Senoune, Dr. Y. Belala, M. Kostal, M.

Codipietro, A. Gauthier, A. Sciortino, B. How-Choong, C. Nikolakakis, D. Hebert, F.

Nguyen, H. S. Chandre, H. Braune, I. Thore, J. N. Robitaille, J. Vichhi, J. Laplante, K.

Komitski, K. K. Avadhanula, M. Parent, M. Seccafien, N. Lipari, P. Nguyen, S.

Falardeau, T. Gast, W. Wang, X. Liang, Y. Grenier, and Y. Zhao for their feedback,

collaboration, and in kind support.

In addition, I would like to thank my examiners, Dr. C. Y. Suen and Dr. R. Witte, for

their precious time to review my thesis and give me helpful advice.

Furthermore, I would like to thank Dr. A. Sen and Dr. N. Bouguila from Concordia

University in Montreal and Dr. M. A. Hall from the University of Waikato in Hamilton,

New Zealand for their valuable feedback.

Finally, I would like to thank my parents, grand-parents and brother for their

encouragement and support while I was doing my masters degree.

http://www.cse.concordia.ca/people/faculty/full-time/witterene.php

 v

Table of Contents

List of Figures ... vii

List of Tables ... viii

Chapter 1: Introduction ... 1

1.1. Problem Statement and motivation ... 1

1.2. Research objectives ... 2

1.3. Major Contributions .. 2

1.4. Research Methodology ... 3

1.4.1. Inception ... 5

1.4.2. Method Selection .. 5

1.4.3. Design and Documentation of the Methodology .. 5

1.4.4. Design and Documentation of the Questionnaire 5

1.4.5. Implementation of the Methodology .. 6

1.4.6. Design of Experiment ... 6

1.4.7. Experiment Execution and Results Analysis .. 6

1.5. Thesis Outline ... 6

Chapter 2: Background ... 8

2.1. Feature Selection ... 8

2.1.1. Filter .. 10

2.1.2. Wrapper... 11

2.1.3. WEKA... 12

2.2. Software Size Measurement ... 12

2.2.1. Length ... 12

2.2.2. Complexity .. 13

2.2.3. Functional Size.. 13

2.3. Effort Estimation ... 16

2.4. NFR ... 17

2.4.1. NFR Ontology ... 18

2.4.2. Performance .. 19

2.4.3. Usability .. 19

2.4.4. Maintainability .. 19

2.4.5. Security ... 19

Chapter 3: Related Work and Open Problems .. 20

3.1. Related Work .. 21

3.1.1. Effort Estimation Methodology .. 21

3.1.2. NFR Impact on Effort ... 40

3.2. Open Problems .. 43

Chapter 4: Effort Estimation Methodology .. 45

4.1. Generate Effort Estimation Model from Historical Data 48

4.1.1. Cluster Projects by Problem Domains .. 48

4.1.2. Gather historical data .. 49

4.1.3. Split the feature subset .. 50

4.1.4. Feature subset reduction ... 50

4.1.5. Generate effort estimation model.. 51

4.2. Apply generated Effort Estimation Models on new projects 53

 vi

4.2.1. Identify the new project’s problem domain .. 53

4.2.2. Gather the new project’s objectively measurable features 53

4.2.3. Estimate the new project’s subjective features ... 54

4.2.4. Estimate new project’s effort .. 54

4.3. Questionnaire .. 55

Chapter 5: Implementation of the Effort Estimation Methodology 59

5.1. Architecture... 59

5.2. Detailed Design ... 60

5.2.1. UI Layer .. 60

5.2.2. BO Layer ... 61

5.2.3. TS Layer.. 63

Chapter 6: Experimental Work ... 65

6.1. Design ... 65

6.2. Discussion ... 73

Chapter 7: Conclusions and Future Work ... 82

Bibliography ... 87

Appendix A ... 99

Appendix B ... 102

 vii

List of Figures

Figure 1-1: Summary of Research methodology .. 4

Figure 2-1: Functional Size measurement using COSMIC method [COS09] 14

Figure 2-2: Generic Flow of Data Attributes through Software from a Functional

Perspective [ADOSS03] ... 15

Figure 4-1: Effort Estimation Methodology Steps.. 46

Figure 4-2: Generation of EEM using the Method EEM1 .. 52

Figure 5-1: Architecture of the effort estimation methodology prototype implementation

... 60

Figure 5-2: UI layer elements ... 61

Figure 5-3: The implementation of the prototype – Estimate New Project mode 61

Figure 5-4: UI and BO layer elements .. 63

Figure 5-5: BO and TS layer elements ... 64

Figure 6-1: Best 4 Linear Regression models generated in Case Study 1 76

Figure 6-2: Best 4 ANN models generated in Case Study 1... 76

Figure 6-3: Case Study 1 Results (effort estimation for new project) 79

Figure 6-4: Case Study 2 Results (effort estimation for new project) 80

 viii

List of Tables

Table 3-1: Features Affecting Productivity by L. Angelis [ASM01, AHKO11]. 40

Table 3-2: Features Affecting Productivity by Pekka Forselius (adapted from [MF00,

AHKO11]). ... 41

Table 3-3: Factors Affecting Productivity by Martin Shepperd [LS05, AHKO11]. 42

Table 3-4: Factors Affecting Phase Distribution for Software Development Effort

[AHKO11, YHLWB08] .. 43

Table 3-5: Linking Open Problems to their corresponding sections in the related work . 43

Table 6-1: Data sets used in the validation of the methodology 65

Table 6-2: Design of Experiment of case study 1 ... 67

Table 6-3: Outline of Case Study 2... 69

Table 6-4: Outline of scenarios involving problem domains during estimation of effort 71

Table 6-5: The best performing algorithms in Effort Estimation Model (Method EEM1)

for case study 1 ... 74

Table 6-6: Results of both case studies ... 78

Table 7-1: Summary of effort estimation methodologies using parametric models 83

Table 7-2: Linking Open Problems to their corresponding solutions 84

Table A-1: Definition of important terms including NFRs used in the questionnaire.

[Kas09b] .. 102

 1

Chapter 1: Introduction

1.1. Problem Statement and motivation

The success of planning and management of software project largely depends on the

estimation of size and effort. A good estimation of these variables available right from

the start in a project gives the project manager confidence about any future course of

action, since many of the decisions made during development depend on, or are

influenced by, the initial estimations. Hence, effort estimation is one of the most crucial

steps of planning and management of a software project.

The work presented in [HKO08] showed that the functional requirements (FRs) and

NFRs can automatically and effectively be extracted from software requirements

document using natural language processing techniques, and a recent work [HKO10,

HOK09] have shown that the functional size of the software can be computed objectively

from any form of unrestricted textual representation of FRs. The work described in this

thesis uses the previous work as foundation and builds on it a comprehensive

methodology to estimate software development effort during the early phases of

requirements development using the functional size of the software as primary variable.

Although, effort estimation in practice is largely performed by subjective evaluations,

there has been numerous works in this field attempting to build parametric models for

estimating effort. All these models are calibrated with historical data from past projects,

so that the effort of the new software projects can be estimated. However, while some

tend to ignore the impacts of different NFRs [Put81], others [Boe81] include them

partially requiring subjective judgment by human experts.

 2

Ignoring NFRs and introducing subjective evaluations can often result in a large

magnitude of error in effort estimation [AHKO11]. In contrast, the work described in the

thesis proposes a methodology that can objectively quantify the impact of NFRs on effort

estimation. The impact of four high-level classes of NFRs chosen from the NFR

ontology, which is described in [Kas09a], is taken into consideration to encompass all

possible classes of NFRs.

1.2. Research objectives

To resolve the open problems mentioned above, we need to develop a new effort

estimation methodology that

 Reduces the human estimator’s bias.

 Generates effort estimation models based on the historical data of previous

projects with similar problem domains to estimate software development effort

during the requirements specification phase.

 Shows how to assess the impacts of different NFRs and different problem

domains on the estimation of the software development effort.

 Makes effort estimation model robust by dynamically reducing the feature space.

 Assists with data collection process from historical projects.

1.3. Major Contributions

The work completed as part of the thesis has the following contributions:

 3

 It provides a new effort estimation methodology based on the historical data of

previous projects to estimate the software development effort during the

requirements specification phase.

 The methodology shows how to assess the impacts of different NFRs and

different problem domains on the estimation of the software development effort.

 The methodology allows making effort estimation models robust by dynamically

reducing the feature space using both statistical and semantic techniques.

 It proposes a questionnaire that assists in the data collection process from

historical projects.

1.4. Research Methodology

The research methodology used in this thesis consists of the following major phases:

 Inception

 Method Selection

 Design and Documentation of the Methodology

 Design and Documentation of the Questionnaire

 Implementation of the Methodology

 Design of Experiment

 Experiment Execution and Results Analysis

The summary of the research methodology is shown in Figure 1-1.

 4

Figure 1-1: Summary of Research methodology

Recent related work:

Papers, Journal Articles,

and Books

Expert’s opinion

Inception:

Understanding the problem of

effort estimation methods and

quantification of NFRs impact

on effort. Checking proposed

methods and their feasibility

Assessment of current

effort estimation

solutions

Open problems related to

the effort estimation

methods and

consideration of NFRs

Method Selection:

Select relevant effort estimation

techniques in order to solve open

problems

Feature reduction

techniques, parametric

model based effort

estimation models

Design and Documentation of

the Methodology:

Design new effort estimation

methodology that will quantify

the impact of NFRs and problem

domains on effort

NFRs Ontology

Problem Domains

New effort estimation

methodology

Design and Documentation of

the Questionnaire:

Design new questionnaire to

collect data from past and new

projects

List of NFRs

List of important project

attributes

New questionnaire for

data collection

Implementation of the

Methodology:

Implement the new effort

estimation methodology

Java programming

language

WEKA

Design of Experiment:

Design and plan how to validate

the new effort estimation

methodology; collect required

data using the questionnaire

ISBSG data sets

Industry data set

Effort estimation tool

Experimental design for

two case studies

Experiment Execution and

Results Analysis:

Execute case studies to validate

the effort estimation

methodology and analyze

obtained results

Accurate results for

estimated new projects

Effort estimation models

to estimate new projects

Inputs Phases Outcomes

 5

1.4.1. Inception

The goal of this phase is to understand the current problems of the effort estimation

methods and quantification of NFRs impact on effort by surveying the related work and

engaging in discussions, workshops and brain storming sessions with experts in this field.

As a result, we have identified the available effort estimation techniques and their

corresponding open problems.

1.4.2. Method Selection

This phase focuses on the selection of effort estimation methods and techniques that are

suitable for us to design a new effort estimation methodology. For example, as part of

this phase we have identified the feature subset selection techniques and parametric

model based effort estimation models in order to resolve open problems identified earlier

in previous phases.

1.4.3. Design and Documentation of the Methodology

The goal of this phase is to design and to document afterwards the new effort estimation

methodology based on the results of the previous phases. The NFR Ontology developed

by Mohamad Kassab is used to take into consideration the impact of NFRs on effort

[Kas09b]. The effort estimation methodology designed in this phase is used as input for

the subsequent phases.

1.4.4. Design and Documentation of the Questionnaire

In this phase, we have designed a special questionnaire to collect important historical and

new information about projects. The questionnaire is designed taking into account the list

of NFRs that are derived from the NFR Ontology and the list of important project

attributes such as Complexity of the Product and Experience.

 6

1.4.5. Implementation of the Methodology

The goal of this phase is to implement the new effort estimation methodology as a usable

software tool. It will be used to validate the methodology in subsequent phases and to

prove our concept. The implementation is done using the Java programming language

and WEKA tool.

1.4.6. Design of Experiment

The goal of this phase is to design and to plan validation of the new effort estimation

methodology. It also focuses on collection of required data using the previously designed

questionnaire. As part of this phase, several data sets coming from ISBSG and Industry

are considered for the methodology validation. The validation is planned to take place

using 2 case studies. The selection criteria for the best effort estimation method are

selected.

1.4.7. Experiment Execution and Results Analysis

In this phase, we execute case studies to validate the effort estimation methodology and

analyze obtained results. The effort estimation models are obtained as part of validation.

We conclude based on analysis of obtained results that our methodology performs well

and achieves accurate results.

1.5. Thesis Outline

The structure of the thesis is following:

 Chapter 2 provides the necessary background needed to understand the remaining

chapters.

 Chapter 3 surveys the related work and lists the open problems in the chosen area

of research.

 7

 Chapter 4 discusses the methodology proposed in this thesis.

 Chapter 5 describes how the methodology is implemented.

 Chapter 6 illustrates the methodology on case studies.

 Chapter 7 presents the conclusions and the future work.

 8

Chapter 2: Background

In this chapter, we present and explain the important concepts used in the current thesis.

The concepts include feature selection and related techniques, software size measurement

and its different perspectives such as length, complexity, functional size, COSMIC

Method, effort estimation, and NFRs. The feature selection concept described in section

2.1 is used to reduce the complexity of the effort estimation models generated by our

methodology. The WEKA tool described in section 2.1.3 provides the feature subset

reduction algorithm which we use to reduce the set of features in one of the steps of our

methodology. The functional size concept described in section 2.2 is one of the important

input parameters of effort estimation models generated by our methodology. The NFRs

and its subset including performance, security, usability, and maintainability described in

section 2.4 are important concepts used in our methodology. The impacts of these four

NFRs on effort are considered during the generation of the effort estimation models from

the historical data and during the estimation of new project effort by our methodology.

2.1. Feature Selection

In the context of software engineering, a feature is a variable that describes information

about certain projects. For example, Number of Developers is a feature that measures the

number of software developers in a software project. Features can have different types

such as numerical or nominal. Numerical feature is a feature with possible values

containing numerical values. On the other hand, nominal feature (often used

interchangeably with the categorical term) is a feature with possible values containing

 9

qualitative values [Sta01]. For example, Project Complexity can be measured using 3

values: Low, Medium, and High.

According to [Ste46], there are 4 different scale types: nominal, ordinal, interval and

ratio/absolute. The nominal scale is used to describe attributes based on the class label

such as Male and Female. The ordinal scale is used to describe attributes using nominal

scale and subjective information about ordering the entities in terms of the attribute being

measured, such as maintainability or usability [IAK02, Ste46]. The interval scale allows

describing attributes using nominal and ordinal scales with extra information about

assigned measurement units such as Celsius or Fahrenheit degrees which do not have the

notion of an absolute zero (that is, a zero representing a lack of the attribute). The ratio of

the interval differences such as [(20C – 10C)/(5C-0C)] is meaningful [Sch10, Ste46]. The

ratio or absolute scale types allow quantifying the well-understood attributes in terms of

units of measurement for which there exists an absolute zero, such as measuring the

length of code in LOC (lines of code). The ratio of the measurement values on the ratio

and absolute scale types is meaningful [Sch10, Ste46].

Nominal features are mostly measured on the nominal or ordinal scale [IAK02]. On the

other hand, numerical features are mostly measured on the ratio or absolute scale

[IAK02].

The number of features collected from previously completed projects can be quite high.

Therefore, it is necessary to reduce the complexity of the feature space by using feature

selection. The feature subset selection helps to reduce the redundancy in the feature

subset [Hal00]. It is widely used in statistics and pattern recognition [Hal00]. There are

 10

various ways to perform feature subset selection. For example, Filter and Wrapper

methods are one of common feature reduction techniques [Hal00].

2.1.1. Filter

Filter methods reduce a feature set with the help of heuristics such as correlation,

standard deviation, and entropy. The entropy is a measure of uncertainty in the system.

Filter methods are not based on an induction algorithm. The induction algorithm is a

learning algorithm that builds knowledge by analyzing the data and represents it in a

special form such as decision tree or probabilistic summary [Hal00]. The examples of the

induction algorithms are C4.5, naïve Bayes, and IB1. Filter methods perform usually

faster than Wrapper methods [Hal00]. The examples of Wrapper methods based

algorithms are forward and backward selection and Hill climbing [ANC08].

The correlation based feature selection (CFS) is a filter method that uses correlation as a

heuristic criterion to evaluate the merit of a feature subset [Hal00]. The method evaluates

each subset of features for its merit and selects the best feature subset. It evaluates the

correlation among each pair of features and the correlation between the features and the

class (e.g. effort estimate). The higher the correlation between the features and the class

attribute and the lower the correlation among each pair of features, the higher the merit of

the subset. The following formula is used to calculate the merit of the feature subset

[Hal00]:

ff

cf

rnnn

rn
Ms

)1(

*




Ms describes the “merit” of the feature subset that has n number of features.

cfr represents the mean of the correlation between features and the class and ffr is the

 11

mean of the correlation among each pair of features. The correlation between features and

the class and the correlation among each pair of features can be calculated using three

different feature selector methods such as relief, minimum description length (MDL), and

symmetric uncertainty [Hal00]. In the symmetric uncertainty feature selector, the

information gain [Qui86] is used to evaluate the degree to which each feature contributes

when it is added to the feature subset. The Relief feature selector uses feature weighting

algorithm to measure feature interactions [KR92]. The MDL feature selector tries to reduce

the complexity of the feature subset to make sure it is predictive of the data and contains a

minimal number of features [Hal00].

2.1.2. Wrapper

Wrapper methods are based on a machine learning algorithm that reduces the feature

space by evaluating each subset of features for its merit every time a new feature is added

[ANC08, Hal00]. The initial feature subset is an empty set. The stopping condition of the

method is all features have been considered or there is no more improvement after adding

features to the subset [ANC08].

Wrapper methods often provide better results, because they are adjusted to the interaction

of the induction algorithm and the corresponding training data [Hal00]. On the other

hand, the performance of Wrapper methods often degrades on large data sets due to

multiple calls to the induction algorithm and re-initialization when a new induction

algorithm is applied [Hal00]. Also, the results of cross-validation of a small data set often

vary [Hal00].

 12

2.1.3. WEKA

There are many statistical software tools in the market that can help one to perform

feature selection or regression analysis. For example, we have used Waikato

Environment for Knowledge Analysis (WEKA) tool in our experiments. WEKA is one of

the well-known powerful tools containing multiple learning algorithms designed for

feature reduction, statistical analysis and data mining [HFH09]. It is developed using the

Java programming language by the research group at the University of Waikato in New

Zealand. It has received multiple contributions from around the world in terms of

algorithms from researchers working in this area.

2.2. Software Size Measurement

Software size is an attribute that describes a particular view on a software product such as

length, complexity and functionality without executing the actual system, which may not

even exist in the beginning of a project [FP97, Kas09b]. It is not easy to perform software

size measurement [FP97]. The obtained measure needs to be used for the purpose it was

measured. For example, if we measured the size while being interested in the length of

code, then it would not make sense to use it to analyze the complexity.

2.2.1. Length

The length can provide physical size measurement of the software code, specification or

design document [FP97]. The length of code is measured using line of code (LOC) or

SLOC measure. There are different guidelines available on measuring the length of code

[Kas09b].

 13

2.2.2. Complexity

The software size measured with a perspective of complexity can refer to the

computational complexity or algorithmic complexity [FP97]. The computational

complexity categorizes the problem based on its inherent difficulty [FP97]. It is modelled

using mathematical models with decision problems representing the computational tasks

[Kas09b]. The algorithmic complexity measures the complexity of the algorithm

proposed to solve the problem [FP97]. It is used to analyze the resources required for a

particular solution to the problem. The algorithmic complexity is measured using big-Oh

notation, a mathematical measure which identifies the highest order of the function f(n)

where n is the input of the function [FP97]. In other words, the efficiency of an algorithm

with function f(n) is measured as O(f(n)) [FP97]. For instance, O(f(n)) = n*log(n).

2.2.3. Functional Size

Functional size is one of the important attributes of functional user requirements by

[ISO1414307]. We refer to it as Size in this thesis. The size is often used during the

project planning process to estimate various attributes of a project, such as the effort to

build a software product [Kas09b].

The functional size measurement focuses on the functional aspect of the final software

product instead of technical or implementation details, such as programming languages

and development platforms used to develop the product [Kas09b].

The functional size measurement can be done using multiple methods, including

Functional Point Analysis, IFPUG, NESMA and COSMIC.

Allan Albrecht has originally proposed functional size measurement in 1979 in his

“Function Point Analysis” (FPA) method which later inspired the creation of the IFPUG

 14

method [COS09]. The NESMA method was inspired from the IFPUG and can be

considered as a simplified version of the IFPUG [COS09].

2.2.3.1. COSMIC Method

COSMIC is a functional size measurement method used to objectively measure Size

[COS09]. The method follows all requirements of the ISO 14143 related to the functional

size measurement [Kas09b]. It has become an International Standard ISO/IEC

19761:2003 and has been used widely in the academia and industry [COS09].

The COSMIC method measures functional size from the perspective of an end-user

looking from the outside of the system or a component [COS09]. In order to measure the

functional size, the method models the functional user requirements as “COSMIC

Generic Software Model” (see Figure 2-1).

Figure 2-1: Functional Size measurement using COSMIC method [COS09]

The functional process is an elementary unit of a set of FRs invoked by a single or

multiple events. The event can be started directly or indirectly by a user often called as an

actor in the COSMIC method [ADOSS03]. The functional processes contain sub-

processes which are data movements [COS09]. The data movement describes process of

a transfer of attributes belonging to a single data group. It is measured using 1 COSMIC

 15

Function Point (CFP). Entry, Exit, Write and Read are types of data movements. The

functional processes start with a data movement Entry (Figure 2-2) which describes

movement of data group from the user to the functional process [ADOSS03].

Figure 2-2: Generic Flow of Data Attributes through Software from a Functional

Perspective [ADOSS03]

The Exit data movement transfers data group from the functional process to the user

located outside of the software boundary. The Write data movement transfers the data

group from the functional process to the persistent storage (e.g. database). The Read data

movement transfers the data group from the persistent storage to the functional process.

The functional size is calculated by summation of all data movements taking place in

each functional process for each data group [COS09].

 16

The minimum functional size of software measured using COSMIC can be 2 CFPs (1

Entry data movement and 1 Exit data movement) and the maximum functional size is not

limited [COS09].

2.3. Effort Estimation

The effort is a measure of how many units it will take to complete a certain task or

activity, such as developing a software application, module or method. Units can be

person days, person hours, person months, story points, or use case points [Mcc06]. The

cost is not the same as effort. The cost refers to the expenses associated with completing

the required task or activity. For example, it might take 100 person days to build a

software application and 100,000 Canadian dollars will be the associated cost of this

activity, provided that each day we spend 1000 Canadian dollars to build the software

application.

There are many different ways to estimate effort and cost [BC00, Mcc06]. The

complexity and accuracy of these methods vary accordingly [BC00, Mcc06]. Functional

size is often used as one of the main attributes to estimate effort [FP97, GHL09, PWL05].

The effort estimation techniques are usually grouped into several major groups: expert

based, model based/algorithmic, regression-based, and learning oriented (neural and case

based) [BC00]. We discuss expert based techniques in section 3.1.1.1. The model

based/algorithmic and regression-based techniques are discussed in section 3.1.1.2. The

section 3.1.1.3 describes learning oriented (neural and case based) techniques.

 17

2.4. NFR

The NFR has many different definitions in the literature and the industry. Some of the

international organizations did not agree yet on an official definition. For example, in the

IEEE 830-1998 standard, the term is not defined and the list of categories of the NFR is

given (e.g. functionality, external interfaces, performance) [IEEE83098]. [Kas09b]

defines it as “Umbrella term to cover all those requirements which are not explicitly

defined as functional”. NFRs can be classified either using intramodel dependency view

or intermodal dependency view.

In the intramodel dependency view, NFRs are refined into a hierarchy consisting of a root

NFR category and multiple children refinements such as decomposition and

operationalization [Kas09b]. The decomposition is a special procedure where a NFR is

described using children sub-NFRs [Kas09b]. For instance, the security NFR can be

decomposed into smaller sub-NFRs in order to better address it. The operationalization is

a special procedure where an NFR is refined into operations, functions, data

representations and architecture design decisions that are necessary to address the NFR

adequately.

The NFR type is a type of refinement where the NFR can be categorized into one of 5

major sub-classes: Design Implementation Constraint, Economic Constraint, Operating

Constraint, Political Cultural Constraint, and Quality Requirement. The Design

Implementation Constraints are restrictions that must be met in order to satisfy certain

commitments (e.g. technical, business) [LW03] and cover Hardware Design

Implementation, Physical, Regulations, and Environmental areas [Kas09b]. The

Economic Constraints are restrictions impacting the development cost of the software

 18

development project. The Operating Constraints describe various restrictions applicable

to the operation of the software development and software being developed. For example,

resource availability, systems accessibility during the maintenance, and level of the skill

set are operating constraints. The Political Cultural Constraints cover legal and policy

related aspects of the software development. The Quality Requirements are a set of

requirements related to the Quality aspect of the software [Kas09b]. The Quality attribute

is a set of characteristics demonstrating how well the requirement meets the user needs.

The quality requirements include NFR requirements such as performance, usability,

maintainability, security, accessibility, and reliability. We consider a subset of NFRs

during case studies shown in the thesis. The subset includes performance, usability,

maintainability, and security.

In [Kas09b] the NFR is viewed as an interdependent entity linked with other types of

attributes of the project and software such as FRs, Product, and Process.

2.4.1. NFR Ontology

Ontology is a concept which helps to specify and describe various objects and concepts in

a formal way. It is often viewed as a domain containing terms and associations among

them [Kas09b]. Mohamad Kassab developed a comprehensive ontology to describe and

model NFR formally [Kas09b]. There is a variety of ontology languages to create

ontologies. For example, OWL is a popular web ontology language based on description

logics [BHS03, Kas09b].

Performance, usability, maintainability, and security are of the major classes of the NFR

Ontology developed by Kassab [Kas09b].

 19

2.4.2. Performance

Performance is a NFR that describes the response time required by a system to perform a

certain task during a certain period of time [TEMPLATE09, Kas09b]. For example, “The

system shall provide user with a list of cancelled flights within 1 second after the initial

request” is a performance NFR.

2.4.3. Usability

Usability is a NFR that describes how easy it is for users to learn, use, and interact with

the system to achieve their goals [ISO912601, Kas09b]. For example, “The UI of the

system shall be attractive to an end-user. It shall allow an end-user to decrease the

learning time” is a set of usability NFRs.

2.4.4. Maintainability

Maintainability is a NFR that describes how easy it is to maintain, adapt, understand the

implementation of the system to correct issues and to introduce new changes including

both functional and technological [ISO912601, Kas09b]. For example, “The software

developer maintaining the software application code shall be able to understand the code

easily using sufficient number of comments” is a maintainability NFR.

2.4.5. Security

Security is a NFR that measures how well it can protect itself against unauthorized

attacks, usage and continuity [ISO912601, Fir03, and Kas09b]. For example, “The

system should provide its functionalities with high confidentiality when it is required” is

a security NFR [Kas09b].

In the next chapter we survey the related work and list the open problems in the chosen

area of research.

 20

Chapter 3: Related Work and Open

Problems

The success of a software project depends on many factors, including accurate software

effort estimation [AHKO11]. In the recent years, there have been different approaches,

techniques and models developed to estimate effort [AHKO11]. The majority of software

estimation models include functional size due to strong relationship between functional

size and effort [FP97, GHL09, PWL05]. Hence, accurate functional size measurement is

very important and helps to reduce the uncertainty of software effort estimation

[AHKO11]. However, there are additional features such as environmental factors,

technical factors and operating constraints that affect the relationship between effort and

functional size [AHKO11, GHL09].

There have been various studies done in the field of software effort estimation attempting

to build parametric models for estimating effort. All these models are calibrated with

historical data from past projects, so that the effort of the new software projects can be

estimated. Multiple studies were done to identify a set of NFRs that influence the

relationship between effort and functional size [AHKO11]. Some effort estimation

models tend to ignore the impacts of different NFRs [Put81]. On the other hand, others

[Boe81] include them partially, requiring subjective judgment by human experts. A large

magnitude of error in effort estimation can be introduced due to improper consideration

of NFRs and introduction of subjective evaluations [AHKO11].

 21

In [BC00], Chulani et al. classify effort estimation techniques and methodologies into 6

different categories such as expert based, model based/algorithmic, regression-based, and

learning oriented (neural and case based).

In this chapter, we discuss related work, effort estimation models and functional size

estimation methods which consider NFRs and open problems in this area.

3.1. Related Work

3.1.1. Effort Estimation Methodology

Pfleeger et al. have emphasized the importance of the identification of uncertainty and its

impact on the quality of estimation. The authors provide a checklist for selecting

appropriate size estimation technique taking into account various associated risks

[PWL05].

The bottom-up and top-down approaches should be used when sufficient information

about project and its staff is available [PWL05]. Pfleeger et al. recommend using them

after more information about architecture and design is available. The top-down approach

is considered to be faster to produce effort estimate in comparison to other methods. The

main source of uncertainty associated with effort estimation models include: system

definition, system development and estimation process [PWL05].

3.1.1.1. Expert based

Pfleeger et al. consider the expert judgment as a complementary effort estimation model

in addition to other models, due to its high level of uncertainty [PWL05]. An expert

based estimation can generate results quite fast, but relies on the experience, judgment

and expertise of a human estimator. In other words, this method often is prone to

subjectivity and errors [AS00].

 22

McConnell [Mcc06] recommends always finding some attributes of a project to count,

compute if counting is not possible, and use judgment as a last resort. According to him,

the judgment often tends to have certain degree of bias, intentionally or unintentionally,

which could potentially skew the effort estimation. In addition, it is recommended to use

current project data, historical data from similar projects performed at the current

organization, or data coming from projects executed at outside organizations to calibrate

effort estimates. However, industry data should be used when it is impossible to obtain

historical or current project data as it may not be quite relevant for the current

organization or project. The approach suggested by McConnell is similar to estimation by

analogy where one could try to estimate software effort by using similar projects.

According to the author, linear models could be sufficient to model effort estimation of

the project if the variance of collected data is small [Mcc06].

Jorgensen has suggested the usage of regression models as a complement to human based

effort estimation, because according to him the regression models currently cannot fully

replace the human judgment to identify uncertainty in estimation. The author mentions 4

different approaches to identify estimation accuracy: usage of effort prediction intervals,

usage of previously estimated task’s effort estimation accuracy, usage of regression-

analysis model of estimation accuracy (studied by Jorgensen), and usage of human

judgment to identify effort prediction intervals. The study was conducted on a data set

collected from a single middle-size development company in Norway. It was found that

the estimation by software developers instead of project managers, estimation of

somebody else’s work, and time-to-delivery priority instead of cost or quality priority

were main factors of inaccurate effort estimation. Also, Jorgensen noticed project

 23

managers tend to underestimate especially when they believed their previous task’s effort

was inaccurate. However, project managers had overall more accurate estimates than

developers. The author suggested more detailed study needed to understand how various

factors affect the effort estimation accuracy [Jor04].

It is known that the software industry has problems with estimating effort accurately and

there have been multiple surveys done by researchers, commercial companies and other

individuals regarding software cost estimation and software development project budget

overruns. It was reported many of these studies tend to emphasize more failed attempts of

software estimation in software industry [MJ03]. Molkken et al. studied dozen of reviews

in order to identify reasons and extent to which software projects deviate in terms of cost

and effort from the original estimate, effort estimation techniques used by software

industry and their accuracy, and acceptable level of effort estimation accuracy. The

authors have estimated effort and cost overrun to be between 30% and 40% for surveyed

projects instead of 89% as reported by Standish group report. In addition, it was noticed

that majority of surveyed companies (85%) used expert-based judgment and analogy

based estimation techniques [MJ03]. Model based effort estimation models provided less

accurate results which could be due to lower percentage of projects among surveyed

companies using the model based effort estimation models and different nature of

projects in comparison to projects using expert based judgment technique. Model based

models included COCOMO, Use-Case-based estimation, and Functions Points Analysis

(FPA). Surveyed companies considered acceptable level of effort estimation accuracy to

be +/- 20% of original estimated effort. Moreover, respondent companies were aware of

effort estimation as a major issue. Authors could not find indication among surveyed

 24

companies regarding their intention to improve used effort estimation models and

techniques. The reasons behind inaccuracy in effort estimation among surveyed

companies could have been related to over-optimistic effort estimations, which could

have been caused by pressure from the project management or customers to reduce

accurate effort estimates and requirements changes. However, the reasons for cost and

effort overrun could be linked to more than several reasons and be complex in nature

[MJ03].

3.1.1.2. Effort estimation methodologies using parametric models

Algorithmic estimation methods can produce more precise effort estimation than other

techniques [AS00], but they are recommended to be recalibrated and derived again for

the organization based on the past project historical data of the organization where it is

planned to be used [PWL05]. However, the process of the data collection from the past

project historical data is not explicitly discussed in [PWL05].

In addition, algorithmic methods should not be used if they were derived using projects

whose size significantly differs in several orders of magnitude from the current project.

These methods should consider the uncertainty coming from the size attribute, one of its

largest input parameters [PWL05].

3.1.1.2.1. Feature reduction

The software requirements specification (SRS) often contains irrelevant information

about software product to be built. Grimstad et al. have studied whether irrelevant

information could impact software effort estimate. They have conducted two experiments

and have found that irrelevant information in both experiments have increased the

software estimate performed by humans. It was also noticed by the authors in one of the

experiments that the confidence level of the estimator has increased when irrelevant

 25

information was introduced, but the accuracy and reliability of the effort estimate has

decreased [GJ07]. However, they were not able to identify how and to what degree

irrelevant information could impact software estimate. The main challenge is also to

identify which specific information in SRS could be classified as irrelevant to software

estimation as this could be subjective in nature as well [GJ07]. The irrelevant or

redundant information can become an input feature to the effort estimation model. The

recent study has confirmed the need to perform feature reduction (or so called column

pruning) before performing effort estimation in order to increase the quality of the effort

estimation process [Men10].

Mark A. Hall has performed a study in the area of correlation based feature selection

(CFS) algorithm, where he discovered that CFS, a Filters based approach, performs well

in reduction of the feature subset [Hal00]. The CFS algorithm relies on the analysis of

feature-to-feature interaction and feature-to-class interaction. It was shown that CFS

reduced the feature subset and removed redundant features. The performance of the CFS

was as good as Wrapper methods [Hal00].

3.1.1.2.2. Putnam’s SLIM Method

Putnam’s Software Life-cycle Model (SLIM) was inspired from Rayleigh’s Model in

1970s [BC00]. The model estimates effort using productivity and software size. The

productivity is calibrated using the past projects, but the data collection process from the

past projects is not defined by SLIM method. The software size is based on Source Lines

of Code (SLOC), which means the user needs to have either implementation of the

software code or measure software size using Function Points and perform the conversion

to SLOC. The model does not consider the impact of NFRs on effort and problem domain

 26

of the past projects during the calibration [BC00]. The feature reduction is not available

in this model.

3.1.1.2.3. Albrecht and Gaffney Method

Albrecht and Gaffney suggest estimation of function points of a software system to be

developed in its early stage. Using this estimation they propose to derive source lines of

code from the function points, which will be used later to estimate the required effort for

the development of the software system. The work was done in 1983 when there was not

enough data and advancement in the area of correlation of function points with total

effort [AG83]. It is one of first attempts to quantify the size and to derive effort more

objectively. However, the conversion of the SLOC to FPs is often criticised due to the

mix of implementation details (SLOC) with the FRs size (FPs) and increased rate of error

[GHL09]. The model does not consider the problem domain and the impact of NFRs on

effort [AG83]. The feature reduction is not available in this model.

3.1.1.2.4. COCOMO II Method

In [Boe00] Boehm indicates how projects could estimate effort based on the typical cost

and productivity attributes of the previous projects or history-based software cost analysis

methods using COCOMO II. The model was an improved successor version of the

COCOMO model developed in the 1980s [BAB+00]. The main input parameter of the

COCOMO II model is the measure of size expressed in source lines of code (SLOC),

function points (FPs) or application points (APs). The exponent of the size attribute in the

model contains only project level cost drivers [BAB+00]. The author shows, using an

example of a project, how a project manager could analyze different cost trade offs in

total effort and cost of the project by working with various factors such as staffing,

platform, and language. The analysis is done using effort multipliers, which are used to

 27

adjust the total available effort of a project based on the historical data on the previous

projects and the size of the current project [Boe00]. The COCOMO II model has three

different versions of its model depending on the development phase in which it is

applied. The model has more cost drivers in comparison to the initial COCOMO model.

Chulani et al. show that COCOMO II provided effort estimation within 30% accuracy

52% of the time which is still large error [CBS99]. A study done in [LPH02] on a small

set of 19 projects has achieved 31 % MRE.

According to the author, COCOMO II can be used, provided the organization where a

project is being developed has collected accurately the data needed for the COCOMO II

model. Otherwise, the model could be used only to provide relative guidance and cannot

be used as a precise model for effort estimation [Boe00]. The COCOMO II model does

not directly take into account the impact of NFRs on effort, but the model includes

impact of NFR on effort only partially requiring subjective judgement from human

experts [Boe81].

3.1.1.2.5. SEER-SEM

There is a range of commercial tools available on the market that perform automated

effort estimation based on size and other project attributes such as project staff,

experience and development environment. SEER for Software Estimation is one of such

tools developed by Galorath. The software has functionality to track project effort and

estimate its effort and cost. The size is measured using the IFPUG method. The tool also

uses historical data, ISBSG benchmark data and project attributes to perform effort

estimation and compare it to the historical data [Gal08]. SEER-SEM supports estimation

at various phases of the project like COCOMO II. It is partially based on the model of R.

Jensen developed in 1979. The effective size is measured in the following way taking

 28

into account not only the new size of the software to be developed, but also the existing

software size, redesigned size, reimplementation size and retested size:

Se = NewSize + ExistingSize x (0.4 x Redesign + 0.25 x Reimpl + 0.35 x Retest)

Next, the effort is calculated using the formula similar to other parametric models:

K = D
0.4

(Se/Cte)
1.2

D = staffing complexity (rate at which staff added)

Cte = effective development technology constant taking into account efficiency or

productivity of development, people, process, and product parameters [FMG05].

The SEER-SEM is a proprietary tool that requires license purchase and it does not

consider NFR impact on effort during the effort estimation process. SEER-SEM is

reported to be using the Jensen model partially, but actual mathematical models used in

the effort estimation are not shown as they are considered intellectual property of

Galorath [Gal08]. However, a user can simulate and analyze trade offs between project

effort, cost, schedule and staffing by using input parameters of the tool. Users can also

enter the data from past projects to allow the tool to perform analogy based size and

effort estimation [Gal08]. However, it is not clear whether the SEER-SEM model allows

performing feature reduction in order to reduce the complexity of the effort estimation

model.

3.1.1.2.6. Select Estimator

The Select Estimator effort estimation software tool is based on ObjectMetrix Model

developed in 1998. It is recommended to be used for distributed large scale development

and incremental life-cycle projects. The estimation is performed by splitting a project into

project elements (objects and/or components), which are assigned a predefined activity

profile with a predefined effort estimate. Next, a set of qualifiers is applied on the effort

 29

estimate to adjust the effort based on the project scope, technology and staff parameters

[BC00]. The problem with this approach is that these parameters are not calibrated to be

relevant for the current problem domain or organization. The NFRs such as usability,

performance and security are not considered in the effort estimation process. However,

there is a parameter designed to consider software reuse [BC00].

3.1.1.2.7. Checkpoint

Checkpoint is a commercial tool that uses primarily software size, measured using

Function Points (IFPUG), to determine the effort. It allows the effort estimation to be

done at task level, activity level, phase level, or project level. It does not take into account

the problem domain and impact of NFRs on effort [BC00]. It is not known whether it

performs feature reduction before performing effort estimation.

3.1.1.2.8. PRICE-S

PRICE-S is a commercial tool originally developed for the US Department of Defence

and NASA. The estimation algorithms used in the model are not known very well, but

Park has discussed some of the algorithms used in the model [BC00]. The model consists

of three submodels, among which the Sizing submodel measures the software size using

Function Points, SLOC or Predictive Object Points (POP). The PRICE-S considers also

the development process, programming language and organizational productivity during

the effort estimation [Pri11]. It does not take into account the impact of NFRs on effort,

but it looks like the problem domain is considered [Pri11].

3.1.1.2.9. ESTIMACS

The ESTIMACS was developed by Howard Rubin in the 1970s and became part of a

commercial product later on [BC00]. The model considers various parameters, such as

the function size measured using function points, customer complexity, target system

complexity, and developer knowledge. The estimation is performed after the estimator

 30

answers a set of predefined questions [BC00]. The model allows estimators to perform

staffing and cost estimations. The impacts of NFR and problem domain are not taken into

account. Also, the feature reduction is not performed [BC00].

3.1.1.2.10. Parthasarathy Method

Parthasarathy recommended to calculate effort by using the following formula: Effort =

Application Size * Productivity + Project Management Effort + Configuration

Management Effort [Par07]. Project Management Effort and Configuration Management

Effort are optional according to him and added as needed by the estimator. The

Application Size would be measured by IFPUG FPs, Object Points, SLOC, or UCP.

Productivity would be derived based on the technology platform and development

environment calibrated by the organization’s historical data. He also suggests revising

effort estimates during the project execution as project scope, software design, skill level

of the team, and productivity change. In addition, it is useful for the team to improve the

effort estimation model by increasing its usage in the development, evaluating and

increasing its accuracy, and defining a clear process definition for the estimation. The

author classifies the effort estimation models into heuristic and parametric models. The

examples of heuristic models include expertise-based, analogy-based, bottom-up, top-

down and algorithmic (based on regression or observed data-pattern). Whereas,

parametric models include SLIM, SEER-SEM by Galorath based on Jensen Model,

SELECT Estimator based on ObjectMetrix Model, COCOMO II, COSMIC-FFP, FP –

Albrecht, etc. [Par07].

 31

3.1.1.2.11. Formal and Quantitative Methodology to Measure Effort

[Kas09b]

In [Kas09b], the impact of NFR is assessed using a formal and quantitative methodology.

Also, NFRs Ontology is developed to model and organize NFRs. Kassab also developed

effort estimation technique that allows adjusting effort estimate taking into account the

impact of NFR on effort. In his technique, the linear regression model is generated to

estimate effort and includes functional size measured using COSMIC CFPs. The

technique uses the value of the impact of NFR to increase the effort value of a relevant

requirement or to decrease the effort value of a relevant requirement or leave it

unchanged. The adjusted effort per each requirement is then summed to get the overall

effort estimate. However, the main assumption is that the estimator using the

methodology uses the personal experience in implementing certain NFR in order to

evaluate the impact of NFR on effort [Kas09b].

3.1.1.2.12. Mendes Method

It has been shown by Mendes et al. that the data from a single company could be useful

to obtain more accurate results than data collected from different companies. Often

companies tend to use data gathered from multiple companies due to absence of data

from its own past projects. Forward stepwise regression (SWR) and case-based reasoning

(CBR) were used to estimate effort using collected data. If a Web development company

does not have data from its own past projects, then it was suggested mean or median-

based estimation could be used to estimate effort of its new project [MMFG07]. The

authors noticed the size and effort of cross-company projects were smaller than for

single-company projects. However, they found the differences in sizes of cross-company

and single-company project data did not affect results of their study [MMFG07]. The

authors of the study did not consider an important factor of problem domain of the

 32

company projects, because there could be different problem domains addressed by

projects of a single company. Also, the impact of NFR on effort was not taken into

account during the effort estimation using this model.

3.1.1.2.13. Kultur Method

In [KKB09], the effort estimation is done by considering the application domain of

projects and the distribution of effort. The application domain is considered to be an

important factor that improved the effort estimation accuracy using this method.

However, the projects are not grouped according to the problem domain. The functional

size measured using Function Points is another important attribute of the model generated

using this method [KKB09]. COSMIC and IFPUG are one of the several methodologies

used to count Function Points. The model is built using the regression analysis, but the

authors plan to try out machine learning algorithms as well. Feature reduction is not

performed in this method. In addition, the impact of NFRs on effort is not considered in

the estimation of the effort.

3.1.1.2.14. Martin Method

In [MPYT05], Martin et al. use fuzzy logic to perform effort estimation and compare it to

the regression based effort estimation. The fuzzy rules involve McCabe’s cyclomatic

complexity, SLOC, and Dhama coupling measures. The effort estimation model

generation involves these features. The model cannot be used in the early stages of

software development, because it needs prediction of the SLOC. Also, the impact of NFR

on the effort and problem domain of the software projects is not considered. In addition,

the feature reduction is not used in the effort estimation model.

 33

3.1.1.3. Effort estimation methodologies using learning based models

(Analogy, Neural Networks)

In [SSK96], the authors promote effort estimation by analogy using a software tool called

ANGEL. The higher computational cost of effort estimation by analogy is considered to

be one of the main disadvantages. Also, the authors have used brute force feature

reduction technique which slows down the effort estimation process.

Angelis and Stamelos considered ways of calibrating the estimation method for the

organizations planning to use estimation model based on analogy and proposed

approaches to produce estimates within a certain interval range. Analogy based

estimation model is one of the estimation techniques where the effort of a new project is

estimated by using historical data from the previous projects [AS00].

The analogy based effort estimation model is not recommended when estimation analysts

lack experience or sufficient past project data or there is no past project similar to the

current one [PWL05].

The previous completed projects often differ from the new project being estimated. The

difference between these projects can be analyzed using several important attributes, such

as a “distance” metric between projects. The distance metric, Euclidian distance, is

calculated using the values of certain common attributes of the new and old projects. The

shorter the distance, the closer the projects are. The effort of the new project is calculated

as the mean of the efforts of the close projects [AS00]. The analogy based effort

estimation techniques rely on historical data set to estimate the new project’s effort.

However, the generation of the effort estimate is based mostly on the distance between

the new project and old projects [AS00]. The problem domain is not considered directly

in determining which projects from the historical database are relevant for the effort

 34

estimation. Moreover, the authors have acknowledged that estimation of the distance

between nominal features is not clarified yet and needs to be studied further [AS00].

Azzeh et al. propose ways of improving analogy software effort estimation using a fuzzy

feature subset selection algorithm and comparing it to other existing analogy software

effort estimation methods. Some of the benefits of using the subset of features available

in the project include an increase of accuracy and performance of the effort estimation

model and a reduction of training time for the model [ANC08]. The full list of features

may contain certain redundancy or irrelevant features, which may lead to inaccurate

results. There are two main approaches to find the feature subset: exhaustive searching

algorithms (e.g. Wrapper) or statistical approach (Filter). Azzeh et al. propose an

exhaustive search algorithm that uses fuzzy c-means clustering and fuzzy logic to identify

the best feature subset. The Fuzzy feature subset selection (FFSS) algorithm proposed by

authors performed better than exhaustive search and forward selection. Authors

recommended using FFSS, Forward and Backward selection algorithms when better

computation time is needed. On the other hand, FFSS would not be the best choice to use

if the data set is large, because it is an exhaustive algorithm [ANC08]. It has been noted

that further research is necessary to identify whether fuzzy logic is a reliable method of

feature reduction when using analogy software effort estimation (ASEE).

Braga et al. have studied an application of genetic algorithm (GA) on feature selection

and parameters optimization for support vector regression (SVR) used for the effort

estimation. The GA method in the software domain is a concept where the best features

that contribute towards optimal arrival at solution (i.e. effort) are kept and others are

removed. A data set from NASA and another data set, Desharnais, were used to validate

the approach. The authors showed positive results in the application of their GA-based

 35

approach on the effort estimation in both data sets. MMRE was lower and PRED(25) was

higher for GA-based approach for both data sets. The training was done in Desharnais

data set, but the considerable difference was identified in NASA data set, which was used

for testing only [BOM08]. The authors did not consider the impact of NFRs on effort in

the process of effort estimation and calibration of the effort estimation models using the

historical data set.

Burgess et al. compare various machine learning (ML) based effort estimation models,

artificial neural network (ANN) models, case based reasoning (CBR) model, and genetic

programming (GP) based effort estimation model. The authors intend to prove that GP

can produce better result in the effort estimation than other techniques. The comparison

of these techniques is based on accuracy, explanatory value and ease of configuration

criteria. The authors consider accuracy by itself is not a sufficient criterion for the

selection of the best suitable technique. The study used the Desharnais data set as well,

but the authors did not exclude any outliers like some other studies did. The results of the

study showed there is a need for an additional study of the GP and different measures

such as MMRE, AMSE, and Pred(25) used to evaluate the effort estimation models. The

authors have noticed that GP has performed well only in Correlation and MMRE

measures, but it was not the best among other measures such as AMSE, Pred (25), a

BMMRE. On the other hand, in GP one could see easier how an effort estimate is derived

by using the algebraic expression generated by the use of the model. However, authors

found that CBR could be useful for the software project manager in better understanding

of the effort estimate. In terms of ease of configuration, GP and ANN require certain

level of knowledge and expertise in order to set it up with different parameters, which

 36

increase the complexity of the effort estimation model [BL01]. One of the main

disadvantages of GA is the configuration of GA’s free parameters and absence of

guarantee that the found solution is the most optimal one [CCT01]. In contrast, linear

regression models require less effort for setup and configuration. The accuracy and ease

of configuration of the GP and ANN tend to be inverse proportional [BL01].

Shan et al. have studied Grammar Guided Genetic Programming (GGGP) in comparison

with linear regression models. GGGP is an evolutionary method calibrated by the data

from past projects in order to obtain the effort estimate for the current project. The

method used by authors does not require closure requirement associated with GP. Also,

GGGP reduces the search space due to the usage of grammars that supply background

information and evolve during the GP search process. The training and validation were

done on the ISBSG data set. The obtained results showed that all compared methods had

high MMRE, but GP had relatively better values for other error measures in comparison

to other models. However, the authors did not focus on the impact of non-numerical

values (e.g. usage of 4 GLs) on the final effort estimate and considered to study them in

their future work. They also did not consider the impact of NFRs on effort. Moreover,

they plan to provide more background knowledge in their developed grammars and

handle missing values of project attributes as part of their follow-up study [SMLE02].

Park et al. have studied neural network models for effort estimation, taking into account

different software development attributes. The authors have identified that the neural

network they built using 6 input variables, such as Function Point Size and Staff

Experience, had better MRE compared to expert-based and regression effort estimation

models including only Function Point Size. The training and validation set consisted of

 37

174 projects from a Korean IT company [PB05]. This study did not include the impact of

NFRs on effort, but at least it attempted to show there could be additional features

impacting effort in addition to Functional Size [PB05].

Shukla states that certain parametric/algorithmic models (CARTX, back-propagation-

trained neural network (BPNN), quick-propagation trained neural network (QPNN)) can

not capture the complex relationship between project attributes and effort estimate.

Shukla studied neuro-genetic models of software development effort, calibrated using

historical data. The training of this neuro-genetic model is performed using a genetic

algorithm (GA), and two data sets from COCOMO and Kemerer were used for both

validation and training. It was found that the genetic algorithm neural network (GANN)

had better accuracy than CARTX and QPNN. The author mentioned at the same time that

lack of historical data often leads to improperly calibrated effort models used in effort

estimation [Shu00].

There have also been attempts to better understand how software development cost is

calculated using Neural Networks by mapping the neural network to a fuzzy rule-based

system as attempted by Idri et al. The Neural Networks used in the cost estimation have

often been considered hard to understand, because they often do not show how the effort

estimation model is derived [IKA02]. The authors use the method of Benitez et al. to

map if-then rules from the ANN to fuzzy rules. The accuracy was not the main concern

of their study. The ANN used in the study was Backpropagation three-layer Perceptron

with sigmoid function. The training and testing of the approach were both done on the

COCOMO’81 set. In the study, mapped fuzzy rules correspond to the COCOMO’81 cost

drivers. As a result of the study, the authors identified fuzzy rules from ANN and were

 38

able to describe, based on several examples, how certain fuzzy rules could affect the

obtained effort estimate. Nevertheless, there were certain problems with obtained fuzzy

rules’ consequence part, which sometimes could contain values invalid for a given cost

driver. This makes it hard for the user to interpret the impact of a fuzzy rule on the effort

estimation. Hence, authors concluded they need to conduct more research into finding

other approaches to obtain more understandable fuzzy rules from the ANN [IKA02].

Stamelos et al. recommended Bayesian Belief Networks (BBN) as a supplemental

method in addition to expert judgment based methods in order to take uncertainty into

account. The authors studied how BBN can be used to estimate productivity at the early

stage of a software project. As a result, they have discovered it is necessary to create

different BBNs tailored for a problem domain and development environment. Moreover,

it was suggested that BBN can be useful to companies which lack historical data

[SADS03].

The Bayesian probabilistic effort estimation model can be used to produce an effort

estimate containing a probability range, which allows being aware what is the uncertainty

associated with the estimate. Pendharkar et al. compare the Bayesian probabilistic effort

estimation model with nonparametric neural network based and regression tree based

effort estimation models. According to their study, the Bayesian effort estimation model

can change the outputted probability of the effort estimation model as more information

is given as input. Also, they have suggested that Bayesian effort estimation model could

allow input of additional information not part of the Bayesian model [PSR05].

Huang et al. designed a neuro-fuzzy tool to simulate thinking of software estimators

performing software estimation [HHRC04]. The authors have validated the tool using

 39

data from COCOMO and industry projects. The fuzzy rules are specified by the human

software estimators for the tool, which uses them to perform the actual estimation.

However, the examples of fuzzy rules are not specified in the given study and there could

be subjectivity introduced by the human estimator. A neuro-fuzzy bank is used to

calibrate parameters of contributing factors, but it is not clear whether the calibration is

done by taking into account the problem domain [HHRC04].

Bayesian Network models were compared with simple effort estimation models (mean

and median-based), Manual Stepwise Regression (MSWR), and CBR in the study done

by Mendes et al [MM08]. The study has shown that the MSWR method was the best

effort estimation model for web based projects among compared techniques, while simple

effort estimation models can provide better estimation results than more complex models

like BNs [MM08]. It is known that BNs support the inclusion of uncertainty in effort

estimation. The study used data from the Tukutuku Benchmarking project, which

contains data from 195 Web based projects. The authors recommended considering

simple effort estimation models as an additional estimation model of Web based projects.

In addition, they have mentioned usage of two training and/or validation sets’

combinations give more precise ground for comparison of effort estimation models. Also,

it was suggested that more detailed comparison of various BNs is needed in future to

benchmark them better in comparison with other effort estimation models. Moreover, the

study has shown the increase in total number of web pages leads to increase of total effort

of web application development [MM08].

 40

3.1.2. NFR Impact on Effort

In [ASM01], authors attempt to generate effort estimation models using categorical

features by converting the categorical values to numerical ones using the CATREG tool

and by building an effort estimation model using statistical regression. It was determined

there are several important project and environment features, such as Development Type,

Language Type, and Development Platform that affect the relationship between effort

and functional size (Table 3-1) [ASM01]. The work was done using the ISBSG data set.

The authors suggested using the generated effort estimation model for organizations

without previous historical database [ASM01]. However, this may pose a problem if the

problem domain of the new project to be estimated differs from the problem domain of

projects from which the effort estimation model was generated.

Table 3-1: Features Affecting Productivity by L. Angelis [ASM01, AHKO11].

Data set ISBSG release 6

Features 1. Development Type

2. Development Platform

3. Language Type

4. Used Methodology

5. Organization Type

6. Business Area Type

7. Application Type

Base of Size Measurement IFPUG Function Point

In [FTAS08], the authors recommend the collection of Psychometrics to improve

empirical studies. Angelis et al. consider human factors as additional crucial factors that

may affect the relationship between effort and functional size [ASM01, AHKO11].

 41

Linguistic values, such as low, high, very low, are often used as values for various project

and cost attributes. These values present a certain problem during effort estimation by

analogy. Idri et al. attempt to resolve this problem by using Fuzzy Analogy, consisting of

the following steps: identification of cases, retrieval of similar cases, and cases

identification. The study conducted by the authors identified Fuzzy Analogy to be more

accurate in terms of accuracy in comparison with Fuzzy intermediate COCOMO’81,

Classical intermediate COCOMO’81, and Classical analogy. However, the Fuzzy

Analogy approach did not satisfy learning and uncertainty criteria specified by Soft

Computing mentioned by Zadeh [IAK02]. In addition, the work done by Idri et al. did not

consider the feature reduction of the feature subset in order to reduce the complexity and

improve performance of the effort estimation model.

In [MF00], Maxwell et al. study a data set collected from Finland based companies in

order to better understand features affecting productivity and effort estimation

[AHKO11]. Authors have reported that Efficiency Requirement and User Interface are

some of the features that impact productivity (Table 3-2). On the other hand, it was found

that the DBMS Architecture does not affect productivity [AHKO11].

Table 3-2: Features Affecting Productivity by Pekka Forselius (adapted from [MF00,

AHKO11]).

Data set Experience Database (206 business software projects

collected from 26 companies).

Variables

considered in

Database

Productivity

Analysis

Application Programming Language, Application Type

(MIS etc), Hardware Platform, User Interface,

Development Model, DBMS Architecture, DB

Centralization, Software Centralization, DBMS Tools,

Case Cools, Operating System, Company where project

was developed, Business Sector (Banking, Insurance

etc), Customer Participation, Staff Availability,

Standard Use, Method Use, Tool Use, Software Logical

Complexity, Requirement Volatility, Quality

 42

Requirement, Efficiency Requirement, Installation

Requirement, Staff’s Analysis Skills, Staff’s Tools

Skills, Staff’s Team Skills, Staff’s Application

Knowledge

Base of Size

Measurement

Experience 2.0 Function Point Method

Liebchen and his colleague study factors affecting productivity [LS05]. They have found

that the Degree of Technical Innovation, Team Complexity, and Project Management

experience are some of the important factors for software productivity (Table 3-3). Also,

the authors suggest that software productivity varies based on the industry sector.

Table 3-3: Factors Affecting Productivity by Martin Shepperd [LS05, AHKO11].

Data Set 25,000 closed projects of a large multinational company

Attributes

Influencing

Software

Productivity

1. The Degree of Technical Innovation, Business Innovation,

Application Innovation,

2. Team Complexity

3. Client Complexity

4. Degree of Concurrency

5. Development Team Degree of Experience With Tools,

Information Technology, Hardware, or With Adopted

Methodology

6. The Project Management Experience

Base of Size

Measurement

Function Point

In [MP08], the authors report effort estimation being impacted by the requirement

changes and ambiguity, unavailability of templates and problems with coordination

between the software project and product development [AHKO11].

In [LWHS01], Lokan et al. determined that the productivity of projects collected in the

ISBSG data set is influenced by the Programming Language used for the development of

the product, the development Team Size, the Type of Organization and Application Type

[AHKO11].

 43

The study of the China Software Benchmarking Standard Group by Yang et al. has found

that the Software Development Effort (Tale 3-4) is influenced by the Development Size,

Software Size, Team Size and Development Life Cycle [AHKO11, YHLWB08].

However, the software size measurement is done using LOC instead of Function Points of

CFPs.

Table 3-4: Factors Affecting Phase Distribution for Software Development Effort

[AHKO11, YHLWB08]

Data Set China Software Benchmarking Standard Group

Factors 1. Development Life Cycle

2. Development Size

3. Software Size

4. Team Size

Base for Size

Measurement

LOC

Based on the recent work done in this area, it can be observed that the factors and features

reported previously match concepts of the main NonFunctionalRequirement concept in the

NFRs Ontology [AHKO11, Kas09b].

3.2. Open Problems

After reviewing the related work as shown previously, we can summarize the open

problems as shown in Table 3-5.

Table 3-5: Linking Open Problems to their corresponding sections in the related work

Open Problem Link to the Related Work

[OP1] The estimation of effort have

tendency to include human estimator’s

subjectivity leading often biased results.

Section 3.1.1.1

[OP2] The impact of NFR on effort is often

not considered in the effort estimation.

Sections 3.1.1.2, 3.1.1.2.3, 3.1.1.2.4,

3.1.1.2.7, 3.1.1.2.8, and 3.1.1.2.9

[OP3] The quantification of the impact of Sections 3.1.1.2, 3.1.1.2.4, and 3.1.2

 44

NFR on effort is not performed objectively.

[OP4] The effort estimation techniques

using historical database do not clearly

distinguish clustering of projects by

problem domain to achieve better

precision.

Sections 3.1.1.2, 3.1.1.2.6, 3.1.1.2.7, and

3.1.1.2.9

[OP5] The effort estimation methodologies

do not always allow the user to perform

feature reduction techniques.

Sections 3.1.1.2, 3.1.1.2.1, 3.1.1.2.2,

3.1.1.2.3, and 3.1.1.2.9

[OP6] Data collection from historical

projects is not clearly defined.

Section 3.1.1.2

 The above open problems are addressed by the work described in this thesis. The next

chapter presents the effort estimation methodology that describes the proposed solution

for the above mentioned problems.

 45

Chapter 4: Effort Estimation

Methodology

Our effort estimation methodology takes into account the problem domain of the software

project to be estimated, by generating effort estimation models specific to a certain

problem domain. Also, it incorporates nominal features, such as the impact of the NFRs

on effort. The complexity of the models is reduced using a feature subset selection

algorithm. The effectiveness of the methodology is validated using case studies presented

in the experimental work chapter.

The methodology has two parts: i) generation of an effort estimation model from

historical data; and ii) application of the model on the new project(s) (Figure 4-1). The

separation of the methodology into these parts allows organizations to easily apply them

together or separately, based on the required purpose. In the first part, we cluster projects

by problem domain, gather historical data, split the feature subset into nominal and

numerical feature groups, reduce the nominal feature subset using either a statistical or

semantic method, generate the effort estimation model from the feature subset, consisting

of the reduced nominal feature subset and the original numerical subset. In the second

part, we identify the new project’s problem domain, gather its objectively measurable

features, estimate the new project’s subjective features, and estimate the new project’s

effort using the generated effort estimation model. The number of steps in each part of

the methodology is designed to be as minimal as possible in order to facilitate the

learning process for organizations and users that would like to adopt our methodology.

 46

Cluster projects by problem domain

Gather historical data

/ Statistical Method

Statistical nominal

feature Reduction

Semantic nominal

feature reduction

/ Semantic Method

Generate Effort Estimation Model using

 reduced nominal feature subset +

numerical feature subset

/ No / Yes

Generate combinations of

reduced nominal

feature subset values

Generate Effort Estimation Model

with numerical feature subset

for each nominal feature

subset value combination

Identify new project’s

 problem domain

Gather new project’s

objectively measurable features

Estimate new projects

subjective features

Historical projects with all nominal value

combinations present

Method EEM2Method EEM1

Estimate new projects

effort using the model from EEM1

/ EEM1 / EEM2

Estimate new projects

effort using the model from EEM2

Feature Reduction Method

Model to estimate new project effort

Split nominal and numeric features

 into separate groups

Part 1

Part 2

Figure 4-1: Effort Estimation Methodology Steps

 47

The nominal feature reduction step of the methodology proposed here can be considered

as a point of extension where the estimator can decide to plug-in the desired method to

reduce the number of nominal features (e.g. impact of NFR on effort, the type of

architecture style used in the project, project difficulty). In this work, we use the feature

subset reduction algorithm CFS of WEKA developed previously by Mark A. Hall in

order to reduce the set of nominal features. However, one can use the wrappers method or

another filter method to reduce the feature subset.

Also, it was observed that effort estimation models perform better when the nominal

feature values are converted into numerical ones. For example, the impact of performance

on effort values can be mapped as following {-2=Very Low, -1=Low, 0=Nominal,

1=High, 2=Very High} where Very Low means the performance requirements reduce the

effort significantly, Low means the performance requirements reduce the effort slightly,

Nominal means the performance requirements do not have any impact on the effort, High

means the performance requirements increase the effort slightly, Very High means the

performance requirements increase the effort significantly.

Furthermore, we have found that separation of original features into nominal and

numerical groups, reducing separately the subset of nominal features and then combining

the reduced subset with the original numerical subset produces better result with the

linear effort estimation model.

We have designed a special questionnaire to collect important historical information

about projects. The questionnaire can also be used for the new project to be estimated. It

makes it easy and efficient to gather the impact of NFR on effort, project complexity, and

the average experience of the project team members.

 48

4.1. Generate Effort Estimation Model from Historical Data

4.1.1. Cluster Projects by Problem Domains

Problem domains dictate the use of different architectural design patterns and, thus, play

a significant role in predicting the complexity of the software to be developed. Our work

identifies how this variation in the problem domains translates into changes in

development effort, by first clustering the historical dataset into problem domain

categories before calibrating our effort estimation model. This step addresses open

problem [OP4] mentioned in section 3.2.

Software development industries categorize the problem domains for organization of

their product inventories. Thus, the classification of problem domains varies from

organization to organization based on their internal needs. For example, Microsoft

Corporation [Mic11] prescribes 40 different classes of problem domains for software

products. We, therefore, allow the decomposition of problem domains into open

categories that can be customized to have an organization-specific classification. We set

the following attributes to describe a problem domain class:

id: INT

name: STRING

application_type: {“desktop”, “web”, “plug-in”, “real-time”,

“developer”, “publisher”, “embedded”, “business”,

“utility”, “game”, “academic”, “communication”,

“system”, “portable”, “graphics”, “multimedia”,

“driver”, “framework”, “research”, “prototype”,

“component”, “other”}

deployment_type: {“private”, “public-open”, “public-closed”}

where id allows us identify each problem domain uniquely, and application_type and

deployment_type allows a higher level classification of the problem domain to provide

additional nominal features during model calibration [AHKO11].

 49

Each instance in our historical dataset that represents a software project is tagged with a

problem domain id, indicating the problem domain that the software belongs to. Thus,

when calibrating our effort estimation model, we first choose a target problem domain

based on the software project that is to be estimated. Our system then automatically

selects from the historical database the instances that belong to the chosen problem

domain and calibrates the effort estimation model based on those instances only.

4.1.2. Gather historical data

In this step, we gather past projects’ data, which includes effort and other important

variables such as Size, NFR Impact, etc. We classify projects into the corresponding

problem domain classes. We use objective guidelines on assigning different NFRs

nominal values (e.g. analyze how much LOC, effort spent per nominal NFR value).

Size can be measured in function points, COSMIC CFPs, or any other accepted unit of

measure, as long as historical projects and the project to be estimated are consistent in the

method of Size counting. Our approach is to use COSMIC CFPs in the methodology

validation.

The impact of NFR on effort, average experience of project members, and project

complexity are some of important features that can be gathered effectively using the

questionnaire we have designed. Therefore, the open problems [OP1] and [OP2]

mentioned in section 3.2 are being addressed accordingly. The main prerequisite is that

the questionnaire needs to be filled in by a team member of the project or a person who

has access to the historical data.

 50

If there are missing values, then a placeholder mark (e.g. question mark - ?) can be used

that is understandable by project members and software tool to be used for regression

analysis.

4.1.3. Split the feature subset

Split the feature subset of historical projects into 2 groups: nominal and numerical.

Nominal features could include variables with categorical values such as Low, Nominal,

and Very High. For example, the impact of NFR on effort and the project complexity are

one of the types of nominal features. Numerical features include variables with numerical

values. For example, Size and Number of Developers are numerical features.

4.1.4. Feature subset reduction

For each domain class, in order to reduce complexity and increase precision of effort

estimation models, perform one of the below mentioned techniques. The goal here is to

eliminate NFRs and nominal features that do not affect the effort variable or is found to

be redundant.

The feature subset reduction can be done either using a statistical method or semantic

method. The statistical method relies on statistical principles to find redundant features.

On the other hand, the semantic method is based on the analysis of the semantic meaning

of each feature and its contribution towards the class feature (e.g. effort).

If the projects in the historical database have no nominal features, then this step can be

skipped and we can proceed to the next step.

4.1.4.1. Statistical feature reduction

The statistical feature reduction uses either the Filter or Wrappers method to reduce the

number of features in the feature subset.

 51

1. Assign each nominal feature a numerical value, such as Low = -1, Medium = 0, High =

1, if possible.

2. Run the feature subset selection analysis to find out what nominal features have more

impact on Effort. The Filters or Wrappers method can be used for this step. For example,

WEKA provides the Correlation-based Feature Subset Selection algorithm for feature

selection using CFS Filter approach.

3. Select the best feature subset of nominal features and proceed to the next step, where

the best feature subset replaces the original set of nominal features.

4.1.4.2. Semantic feature reduction

The semantic feature reduction method uses previous knowledge about features to

identify redundancy among them. For example, one can use an available study such as

[SX07] and to analyze which combination of NFRs is redundant and eliminate the

redundant features. We can expand our semantic feature reduction technique further as

more studies will be done in this area,

4.1.5. Generate effort estimation model

The effort estimation model can be generated in two different ways, which can be

practical for organizations that would like to use our methodology. If there are enough

historical projects to cover all combinations of nominal features, then the method EEM2

can be used (see section 4.1.5.2). Otherwise, the method EEM1 can be used (see section

4.1.5.1).

4.1.5.1. Method EEM1

The result of the reduced nominal feature subset is combined with numerical features

(Figure 4-2). For example, let us consider the data set that originally contains nominal

features, such as ProjectComplexity, PerformanceImpact, UsabilityImpact,

 52

SecurityImpact, MaintainabilityImpact, and numerical features, such as

NumberOfDevelopers, AverageExperience, Size, and Effort. The reduced nominal

feature subset contains PerformanceImpact and SecurityImpact after the feature subset

reduction step performed previously in our methodology (Section 4.1.4). As a result, the

combined numerical and nominal feature set contains now: NumberOfDevelopers,

AverageExperience, Size, Effort, PerformanceImpact, and SecurityImpact. The effort

estimation model is generated from this combined subset. The generation of the model

can be done using available tools such as WEKA.

Generate EEM using

Method EEM1

Original Numeric Feature Subset

Reduced Nominal Feature Subset

Combine feature sets Combined Feature Subset

Figure 4-2: Generation of EEM using the Method EEM1

4.1.5.2. Method EEM2

The method EEM2 generates a separate effort estimation model for each combination of

nominal feature values based on the historical projects data.

For example, let us have N nominal features and M numerical features.

Nominal_Feature1 has 3 values {Low, Medium, High}.

Nominal_Feature2 has 5 values {Very Low, Low, Nominal, High, Very High}.

…

Nominal_FeatureN has 5 values {Very Low, Low, Nominal, High, Very High}.

Model # Nominal_Feature1 Nominal_Feature2 … Nominal_FeatureN

1 Low Very Low … Very Low

2 Medium Very Low … Very Low

3 High Very Low … Very Low

4 Low Low … Very Low

 53

5 Medium Low … Very Low

… … … … …

Each generated effort estimation model contains only numerical features. Therefore, a

new project to be estimated will be mapped into the corresponding effort estimation

model by finding out to which combination it matches. For example, if a new project has

Nominal_Feature1 = Low, Nominal_Feature2 = Very Low, Nominal_FeatureN = Very

Low, then the model #1 will be used to estimate the effort of the new project.

4.2. Apply generated Effort Estimation Models on new projects

4.2.1. Identify the new project’s problem domain

Find out to what problem domain the new project belongs to. The schema described

earlier in section 2.1.1 for the classification of the project problem domain can be reused

for this purpose as well. This step addresses open problem [OP5] mentioned in section

3.2.

4.2.2. Gather the new project’s objectively measurable features

Gather objectively measurable features of a new project. For example, Size, Number of

Developers, Average Experience can be objectively measured and quantified for the new

project.

If a new project has more features than the historical data set, then omit the extra features.

These features can be added later on when the new project becomes part of the historical

data set and the effort estimation models will be recalibrated.

If the new project has fewer features than the historical data set, then the missing feature

values can be marked using a special mark understandable by estimator and the software

to be used for regression analysis (e.g. question mark - ?).

 54

4.2.3. Estimate the new project’s subjective features

Estimate features that can not be predicted or measured objectively (e.g. impact of NFR

on effort) using the methodology based on historical projects’ data and objective features

of a new project such as Size, Problem Domain, Average Experience.

The subjective features can be estimated by extracting a model from the objectively

measured features of historical projects, while keeping out the other nominal features.

The generated model is then used with new project’s objectively measured features as

input to estimate the subjective features such as nominal features.

The estimation model can be generated using available tools in the following way:

 Use WEKA tool’s regression algorithms directly.

 Use WEKA tool’s CFS algorithm to reduce the feature subset and then apply the

WEKA regression algorithm (e.g. Linear Regression) on the reduced feature subset.

 Use another algorithm of choice of a statistical software tool such as MATLAB

[Mat11] or SAS Analytics [Sas11].

We have found that estimation model tend to achieve higher accuracy when the nominal

feature values are converted first to numerical ones before using CFS or regression

algorithms. The estimation model can be specified to generate values in a range to give

more flexibility for the estimator. The step of this methodology helps to reduce the

subjectivity of the estimation of nominal features, which can be incorrectly assessed by

human estimators. Therefore, the open problems [OP1], [OP2] and [OP3] mentioned in

section 3.2 are being addressed accordingly.

4.2.4. Estimate new project’s effort

The effort of a new project can be estimated using effort estimation models generated

with the help of Method EEM1 or Method EEM2.

 55

If the Method EEM1 is used, then it is necessary to plug in values of objectively

measured features and values of subjective features into the generated effort estimation

model. If the method EEM2 is used, then:

1. Map nominal feature values into the corresponding effort estimation model of the

particular problem domain generated previously, in order to identify the correct effort

estimation model.

2. Plug values of numerical features of the current project into the effort estimation model

to estimate the effort of the new project.

The effort estimation model derived using Method EEM1 and Method EEM2 can be

specified to generate values in a range to give more flexibility for the estimator. For

example, the effort of a new project can be between 100 and 120 person days.

4.3. Questionnaire

The questionnaire designed in this thesis allows collecting important information about

new and historical projects. It simplifies and helps the process of gathering information

about the impacts of NFRs on effort, project complexity, and average experience of

project member. The questionnaire addresses the open problem [OP6] mentioned in

section 3.2. The questionnaire template is given in Appendix A.

The background section of the questionnaire contains a sample text to explain the

purpose of the questionnaire for respondents. It could be replaced by organization

specific background information. The intended audience section describes who should be

filling in the questionnaire. The questionnaire can be filled in by the project manager or

scrum master who has good knowledge and overview of the project, because certain

 56

studies have found project managers/scrum masters have provided overall better

estimations [Jor04].

Questions are split into 2 groups: general questions and NFRs questions. The goal of the

general questions is to find out the average experience of the development team with the

development environment and development languages, number of development locations,

and the impact of complexity of the product, risk management strategy, and delivery

deadline on the effort. The general questions section contains 7 questions.

Question 1: How many years of experience the development team have with the

development environment and languages (e.g. Java, Eclipse SDK, or any other

relevant technology for the problem domain or organization) at the time of

execution of the project? The purpose of question 1 is to understand the skill set level of

the development team, by finding out information about the experience of a project

member with the development environment and languages. Also, the questions about

experience can be extended to include questions about other topics related to experience

such as experience in a specific business area.

Question 2: How many development locations (geographical) were involved in the

development of the project? (e. g. 1, 2, 3, etc.) The purpose of question 2 is to

understand how distributed the development project was. Often, the increased number of

development locations can create more complexity in the project management due to the

delay of information propagation and decision implementation at all development

locations.

Question 3: Rate the impact on the project effort of the following factor: complexity

of the product (related to Functional Requirements). The purpose of question 3 is to

 57

understand how complex the product and project are in terms of the difficulty to

implement FRs.

Question 4: Rate the impact on the project effort of the following factor: the

delivery deadline (schedule) (e.g., delivery of the project in accelerated format [more

effort spent in the beginning of the project] or in stretched-out format [effort is

stretched over the long period of time]). The purpose of question 4 is to understand the

pace of delivery of the project by finding out how effort is distributed over the course of

the project. The question is inspired from a cost multiplier in the COCOMO II method

[Boe00].

Question 5: Rate the impact on the project effort of the following factor: the risk

management done as part of your project. The purpose of question 5 is to learn how

well the risk management is done during the project execution. The efficient risk

analysis, mitigation and management help to quickly find out and resolve upcoming risks,

minimizing the impact on project budget, schedule or product quality.

Question 6: Rate the impact on the project effort of the following factor: the team

cohesion for the project you were part of (e. g. difficulty in synchronizing project

stakeholders (users, customers, developers, others) due to differences of their

objectives). The purpose of question 6 is to find out how well the communication worked

among project members and stakeholders and how well the team worked together to

complete the project. For example, there could be conflicts between team members or

difficulty to synchronize with stakeholders regarding the project status and decisions.

Question 7: If you have any additional comments regarding your answers to general

questions mentioned above, please provide it here. The purpose of question 7 is to

 58

gather any additional feedback in a free text format to allow respondents to convey

additional information.

The NFR questions section of the questionnaire contains questions regarding the impact

of various NFRs on the effort on a scale of 5 (increases effort significantly, increases

effort, no impact on effort, decreases effort, decreases effort significantly) as

recommended in [Kas09b]. If the NFR does not apply to the project or product, then there

is a Not Applicable (N/A) option which could be selected by the respondent. The

definition of each NFR is given in the appendix section.

Questions 8 to 19. The questions 8 to 19 focus on assessing the degree of impact of each

NFR on effort using the scale of 5.

Question 20: If you have any additional comments regarding your answers to

questions related to non-functional requirements mentioned above, please provide it

here. The purpose of question 20 is to gather any additional feedback in a free text

format to allow respondents to convey additional information regarding NFRs.

The next chapter describes the implementation details of the methodology presented in

this thesis.

 59

Chapter 5: Implementation of the Effort

Estimation Methodology

The prototype implementation of the effort estimation methodology proposed in this

thesis is done using the Java programming language and WEKA tool. However, an

organization may choose to use another preferred programming language or statistical

tool to implement our methodology. This chapter discusses the prototype implementation

of our methodology and possible extension points.

5.1. Architecture

The architecture of the methodology prototype implementation follows a layered

architecture style with 3 layers: User Interface (UI), Business Object (BO), and Technical

Services (TS). The UI layer is responsible for gathering and visualization of information

from and to the end user, respectively. The BO layer is responsible for the actual effort

estimation model generation and estimation of effort for new projects. The TS layer is

responsible for performing operations related to reading and writing the results of the

effort estimation to the database (DB) or file system (Figure 5-1).

The current prototype implementation architecture is not yet web-based, but in the future

we plan to integrate the effort estimation methodology into the LASR system developed

by Ishrar Hussain in the READ research group at Concordia University [Hus11]. We will

preserve the same 3 layered architecture style.

 60

TS

BO

UI

Figure 5-1: Architecture of the effort estimation methodology prototype implementation

5.2. Detailed Design

The section discusses detailed design of the effort estimation methodology

implementation. We describe in detail the UI, BO, and TS layers of our implementation.

5.2.1. UI Layer

The UI layer contains 4 main entities: MainEEMUI, NewProjectEffortEstimatorUI,

ProblemDomainManagerUI and EffortEstimationModelGeneratorUI. The MainEEMUI

is responsible for presenting the end user with choices. The

EffortEstimationModelGeneratorUI allows users to generate the effort estimation model

from the historical projects. The NewProjectEffortEstimatorUI is responsible for

performing estimation of effort for new projects (Figure 5-2). The

ProblemDomainManagerUI allows users to manage problem domains.

 61

NewProjectEffortEstimatorUI EffortEstimationModelGeneratorUI

MainEEMUI

ProblemDomainManagerUI

Figure 5-2: UI layer elements

The user interface implementation of the prototype is presented in Figure 5-3.

Figure 5-3: The implementation of the prototype – Estimate New Project mode

5.2.2. BO Layer

The BO layer contains 5 main interfaces with corresponding implementations:

INewProjectEffortEstimatorBO, IEffortEstimationModelGeneratorBO,

 62

IProblemDomainManagerBO, IEstimationModelGeneratorBO,

IApplicationTypeManagerBO, IDeploymentTypeManagerBO (Figure 5-4).

The INewProjectEffortEstimatorBO allows performing effort estimation of new projects

using the generated effort estimation model. The IEffortEstimationModelGeneratorBO is

responsible for generating effort estimation models and feature subset selection, which

can be considered as a point of extension where the customer can plugin the desired

method for semantic feature selection or connect to the desired statistical feature selection

tool. The IEstimationModelGeneratorBO provides generic services, such as performing

linear regression or performing least median square regression used during the estimation

of new projects or generation of effort estimations models. The

IProblemDomainManagerBO is responsible for the management of problems domains to

support their creation, deletion and editing. The IApplicationTypeManagerBO allows

managing application types. The IDeploymentTypeManagerBO is responsible for

managing deployment types. The customers can provide their own implementation of the

above mentioned interfaces in order to extend or modify the behaviour of the effort

estimation tool.

 63

BO

UI

EstimationModelGeneratorBO

NewProjectEffortEstimatorUI
GeneratedEffortEstimationModelUI

«interface»

INewProjectEffortEstimatorBO

NewProjectEffortEstimatorBO

«interface»

IEstimationModelGeneratorBO

«interface»

IEffortEstimationModelGeneratorBO

EffortEstimationModelGeneratorBO

ProblemDomainManagerUI

«interface»

IProblemDomainManagerBO

ProblemDomainManagerBO

«interface»

IApplicationTypeManagerBO

ApplicationTypeManagerBO

«interface»

IDeploymentTypeManagerBO

DeploymentTypeManagerBO

Figure 5-4: UI and BO layer elements

5.2.3. TS Layer

The TS layer has IEffortEstimationTS with its corresponding implementation responsible

for reading data sets containing new project data and historical projects. The

IEffortEstimationTS is also responsible for saving any intermediate data sets or models

containing effort estimation, which is necessary during the effort estimation process. The

current prototype implementation uses a OS level file system, but in future we plan to use

a database management system (DBMS) with the LASR system (Figure 5-5).

 64

TS

BO

NewProjectEffortEstimatorBO EffortEstimationModelGeneratorBO ProblemDomainManagerBO

ApplicationTypeManagerBO

DeploymentTypeManagerBO

«interface»

IEffortEstimationTS

IEffortEstimationTS

Figure 5-5: BO and TS layer elements

The next chapter presents the design of the case studies illustrating the methodology and

discusses the results of the experimental work.

 65

Chapter 6: Experimental Work

6.1. Design

The validation of the methodology is done using two case studies. In the first case study,

the data set DS1 consisting of industrial projects completed at a large international

software development company is used. In the second case study, the data set DS2 from

ISBSG is used. The data set is split into 3 groups according to the problem domain.

The data sets use COSMIC as a method of measurement for software size. The

automation of certain steps in the methodology is achieved using the WEKA tool.

However, an alternative statistical tool can be used by the estimator to execute the steps

of the methodology. The details of the data sets are presented in Table 6-1.

Table 6-1: Data sets used in the validation of the methodology

Data Set Source Number of

Projects

Problem

Domain

Used in Case

Study

DS1 Industry 20 PD1 1, 2

DS2 ISBSG 151 PD2 2

DS2 ISBSG 18 PD3 2

DS2 ISBSG 64 PD4 2

In the first case study, different experiments are performed to compare the approach of

our methodology against a traditional approach where the effort estimation methodology

is generated directly out of the data set.

In this case study, 16 projects are used to generate the effort estimation model and the

effort of 4 new projects is estimated by human experts and by our methodology. The

dataset of the first case study represents projects from the same problem domain PD1.

The PD1 problem domain refers to application type = web and deployment type =

 66

private. The private deployment type means the applications are only accessible within an

organization only and not usable by users outside of the organization. In trial 1, the

human expert is asked to estimate the new project’s effort based on personal experience

and knowledge. In the trial 2, we build a regular linear regression model out of the

projects of the DS1 data set coming from the software industry as private projects

completed at a large software company. The best model among all trials, excluding trials

1 and 2, is selected to estimate the effort of new projects. The result of this estimation is

compared to the trials 1 and 2 results. The goal of trials [3-7] is to gradually observe the

improvements in the generated effort estimation model by comparing the correlation

coefficient and error rates. In the trials [3-7], we use WEKA based algorithms, which

include ANN based algorithms and model based algorithms (e.g. linear regression) to

derive the effort estimation model. The comparison of the trials’ effort estimation model

generation parts is based on the best performing algorithm of the trial. The best

performing algorithm is selected based on the correlation coefficient, relative absolute

error and relative squared error. Also, in trials [3-8], we perform 10-fold cross-validation

during the generation phase.

In trial 3, we perform the feature subset selection on all features, including nominal and

numerical ones. Next, we run the regression analysis on the reduced feature subset to

derive the effort estimation model from the historical dataset. The generated effort

estimation model is afterwards used to estimate new project’s effort, but the subjective

features of the new project, such as the impact of NFR on effort, are estimated by human

experts. In trial 4, we perform similar activities as in the trial 3, but we also convert the

nominal feature values into numerical ones (Table 6-2).

 67

Table 6-2: Design of Experiment of case study 1

Step

Trial

1 2 3 4 5 6 7 8

Separate nominal and numerical features X X

Convert nominal feature values to numerical values X X X

Perform Feature Subset Selection on nominal features X X

Perform Feature Subset Selection on all features

(numerical and nominal) X X

Run regression on the selected feature subset X X X X

Run regression on all features in the set X X

Run regression on all features in the set using

LinearRegression X

Estimate new projects’ subjective features using expert

knowledge X X X X

Estimate new project’s subjective features using our

approach X X

Estimate new project’s effort using human expert only X

In trial 5, we directly run the regression analysis using all features in the set to generate

the effort estimation model from the historical dataset. The generated model is used

afterwards to estimate the new project’s effort, but the subjective features of the new

project, such as the impact of NFR on effort, are estimated by human experts. In trial 6,

we perform similar activities as in trial 5, but we also convert the nominal feature values

into numerical ones.

In trial 7, we separate the nominal and numerical features into two separate groups. Next,

we perform the feature subset selection on nominal features only to reduce the feature set

complexity. Afterwards, we take the reduced nominal features set and combine it with the

numerical features to generate the effort estimation model from the historical dataset. The

generated effort estimation model is used to estimate the new project’s effort. However,

the subjective features of the new project, such as the impact of NFR on effort, are

estimated using our approach. In trial 8, we perform similar activities as in trial 7, but we

 68

also convert the nominal feature values into numerical ones. When we arrive to trial 8, it

represents our approach and its results are compared to the results of trials [3 – 7] to

select the best performing trial.

In the second case study, the DS1 and DS2 data sets are used to compare our

methodology to a regular approach using four trials. The DS2 data set comes from the

ISBSG organization. The goal of this case study is to show that our approach performs

better than a regular approach that does not take into account the impacts of different

NFRs and different problem domains on the estimation of software development effort

and does not reduce the feature space. The main difference between case studies 1 and 2

is that in the second case study, we have four problem domains as part of the

experimental work and we perform more comparisons of the experimental work based on

these problem domains.

The DS2 data set is ISBSG COSMIC Industry Data Release 1 of the International

Software Benchmarking Standards Group (ISBSG). The ISBSG collects and distributes

international datasets in the field of IT to improve management of the projects [ISB11].

The original data set contains 354 projects estimated using COSMIC method. The

original companies or organizations that completed these projects are not disclosed by

ISBSG due to privacy reasons, but they are coming from around the world. The projects

are rated using the special quality mechanism of the ISBSG, which rates projects based

on the four level quality rank containing rating A, B, C and D. We have selected only

projects of the highest quality ratings (i.e. A and B), which correspond to projects that

were assessed to have sound data and no factors (rating A) or some minor (rating B)

factors that might impact the data integrity. We have selected 233 projects out of the

 69

original ISBSG data set to perform our case study. The selection mechanism was based

on the quality rating, problem domains and availability of sufficient number of features to

perform our empirical evaluation.

In the first trial of case study 2, we estimate the projects of problem domain PD2 using

our methodology as indicated using keyword “Yes” in the Table 6-3. The problem

domain PD2 refers to application type = business and deployment type = public closed.

Table 6-3: Outline of Case Study 2

New Projects’

Problem Domain

Problem Domain

of the Historical

Data Set used for

Effort Estimation

Model

Generation

Trial in the Case

Study 2

Our

Methodology

PD2 PD2 1 Yes

PD1 PD1, PD2, PD3,

PD4

2 No

PD2 PD1, PD2, PD3,

PD4

2 No

PD1 PD2 3 No

PD1 PD3 3 No

PD2 PD1 3 No

PD2 PD3 3 No

PD2 PD1, PD2, PD3,

PD4

4 Yes

In the second trial, we estimate the effort of new projects of the problem domain PD1 and

PD2 without using our approach as indicated using keyword “No” in the Table 6-3. In

fact, the new projects are estimated using the linear regression based effort estimation

model generated directly from the data set containing projects of problem domains PD1,

PD2, PD3, and PD4, where PD3 problem domain refers to application type = utility and

deployment type = public open and PD4 problem domain refers to application type =

other and deployment type = public open. In the third trial, we estimate new projects of

 70

problem domains PD1 and PD2 without using our approach as indicated using keyword

“No” in the Table 6-3, but this time new projects from problem domain PD1 are

estimated using an effort estimation model generated from the problem domains PD2 and

PD3 and new projects from the problem domain PD2 are estimated using effort

estimation model generated from the problem domains PD1 and PD3. In the fourth trial,

we estimate the projects of problem domain PD2 using our methodology as indicated

using keyword “Yes” in the Table 6-3. However, the effort estimation model is generated

using our methodology from the data set containing projects of problem domains PD1,

PD2, PD3, and PD4. The goal of this trial is to validate how the problem domain affects

the accuracy of the effort estimation performed using our methodology.

There are other possible scenarios of experiments that can be executed to validate

additional cases as summarized in the Table 6-4. We only validate those scenarios that

are most likely to occur in real life situation. For example, when our methodology is not

used an estimator will most likely use the whole problem domain set consisting of all

problems domains to generate regular linear regression estimation model instead of

picking two or three problem domains. In order to observe how the impact of problem

domain affects the estimation accuracy, in case study 2 we validate several scenarios

when our methodology is not used and the historical data set problem domain is not the

same as the new project’s problem domain. One of the main steps of our methodology is

to use the estimation model generated from the historical data set that matches the

problem domain of the new project. Nevertheless, we validate a scenario when our

methodology is used and the new project problem domain is not the same as the problem

domain of the generated estimation model. In future, we would like to continue

 71

experiments with our methodology to validate additional scenarios indicated in the Table

6-4.

Table 6-4: Outline of scenarios involving problem domains during estimation of effort

New Projects’

Problem Domain

Problem Domain

of the Historical

Data Set used for

Effort Estimation

Model

Generation

Related

Experiment

Our

Methodology

PD2 PD2 Case Study 2 Yes

PD1 PD1, PD2, PD3,

PD4

Case Study 2 No

PD2 PD1, PD2, PD3,

PD4

Case Study 2 No

PD1 PD2 Case Study 2 No

PD1 PD3 Case Study 2 No

PD2 PD1 Case Study 2 No

PD2 PD3 Case Study 2 No

PD2 PD2 Not Covered No

PD1 PD1, PD2, PD3,

PD4

Not Covered Yes

PD2 PD1, PD2, PD3,

PD4

Case Study 2 Yes

PD1 PD2 Not Covered Yes

PD1 PD3 Not Covered Yes

PD2 PD1 Not Covered Yes

PD2 PD3 Not Covered Yes

PD1 PD1, PD2, PD3 Not Covered No

PD2 PD1, PD2, PD3 Not Covered No

PD1 PD1, PD2, PD4 Not Covered No

PD2 PD1, PD2, PD4 Not Covered No

The error rates used for the comparison of the generated effort estimation models are

relative absolute error and root relative squared error. Relative absolute error is calculated

as following [Gep11a]:

 72












n

1i

AV
i

AV

n

1i
i

AV
i

PV

luteErrorlativeAbsoRe

Where n is the number of projects in the historical data set, iPV is the predicted effort

value of a project i, iAV is the actual effort value of a project i, and AV is the mean of all

actual effort values calculated as follows:





n

1i
i

AV*
n

1
AV

The root relative squared error is calculated as follows [Gep11b]:

 

 










n

1i

2
AV

i
AV

n

1i

2
i

AV
i

PV

redErrorlativeSquaReRoot

The error rates used for the comparison of the effort for the new project are Mean of the

Magnitude of Relative Error (MMRE) and Median of the Magnitude of Relative Error

(MdMRE).

The MRE is calculated as follows:

%100*
rtActualEffo

rtActualEffoffortEstimatedE
MRE




Where EstimatedEffort is the effort estimated by an effort estimation technique, such as

human expert based or our effort estimation methodology, and ActualEffort is the real

effort value of the project for which the effort is being estimated. Next, MMRE is

calculated by using the following formula:

 73

n

MRE

MMRE

n

1i

i


Where MREi is the MRE of a single project’s effort estimation and n is the number of

new projects being estimated.

MdMRE is calculated by finding the median MRE of an effort estimation value among

the projects being estimated.

6.2. Discussion

Table 6-5 presents the results of the generation of the effort estimation model using the

Method EEM1 of the methodology using the best performing regression algorithms for

case study 1. The algorithms are available in WEKA tool. The MultilayerPerceptron

algorithm is artificial neural network based algorithm. It has been found that

LinearRegression algorithm has performed the best in terms of the correlation coefficient,

relative absolute error, and root relative squared error in Trial 8. The result of trial 2

where we have performed regular linear regression was not good. The correlation

coefficient was negative and error rates were high.

In trial 3, the results were improved after running feature subset selection on all features

and performing the regression analysis on the reduced feature subset to derive the effort

estimation model from the historical dataset. The Linear Regression has achieved the

correlation coefficient of 0.9439 and error rates have dropped. It has performed better

than the ANN based algorithm, MultilayerPerceptron. On the other hand, the Least

Median Square algorithm was worse than MultilayerPerceptron algorithm in terms of the

correlation coefficient and error rates.

 74

In the trial 4, we can observe that results have improved after converting the nominal

feature values into numerical ones. However, the Least Median Square performed better

than other algorithms in this trial by achieving the correlation coefficient of 0.9697,

relative absolute error of 38.8387% and root relative squared error of 38.784%. The

Linear Regression algorithm in this trial has achieved a correlation coefficient of 0.9571,

but its relative absolute error was slightly better than that of the Least Median Square.

In trial 5, the results have degraded and the correlation coefficient and error rates have

dropped. For example, the MultilayerPerceptron algorithm has performed worse than

MultilayerPerceptron algorithm in the trials 3 and 4. A similar situation arises with the

Least Median Square algorithm.

Table 6-5: The best performing algorithms in Effort Estimation Model (Method EEM1)

for case study 1

Trial

Algorithm

Correlation

Coefficient

Relative

Absolute

Error

(%)

Root

relative

squared

error

(%)

8 LinearRegression 0.9775 31.2926 35.4589

4 LeastMedSq 0.9697 38.8387 38.784

4 LinearRegression 0.9571 37.9866 44.0302

3 LinearRegression 0.9439 40.2121 54.4069

8 MultilayerPerceptron 0.9285 36.7743 42.3345

8 LeastMedSq 0.8248 49.6174 54.6742

3 MultilayerPerceptron 0.8183 53.4167 55.9571

4 MultilayerPerceptron 0.7624 51.6075 61.602

7 LeastMedSq 0.7489 57.4825 69.5129

6 LinearRegression 0.7444 72.6686 101.1395

3 LeastMedSq 0.7117 61.8939 70.1565

6 MultilayerPerceptron 0.6878 67.419 69.7698

5 MultilayerPerceptron 0.6843 62.58 69.6723

7 MultilayerPerceptron 0.6484 68.2768 72.2187

5 LeastMedSq 0.5631 71.9888 83.4221

6 LeastMedSq 0.093 104.7056 121.5743

2 LinearRegression -0.6429 100% 100%

 75

In trial 6, the results have improved after converting the nominal feature values into

numerical ones. In addition, we performed similar activities as in the trial 5. For instance,

the Linear Regression algorithm has achieved a correlation coefficient of 0.7444 and a

relative absolute error of 72.6686. On the other side, its root relative squared error was

still high: 101.1395%. The MultilayerPerceptron algorithm has achieved a better

correlation coefficient of 0.6878 compared to the MultilayerPerceptron algorithm in trial

5, but its error rates did not improve much.

In trial 7, the results were better than in trials 5 and 6. However, the results of trials 3 and

4 for the algorithms LinearRegression and Least Median Square were better than those

for the trial 7. In trial 8, we have applied our approach completely to all steps of the effort

estimation. It can be observed that the Linear Regression based effort estimation model

was the best in trial 8 in terms error rates (Figure 6-1). The trial 4 had the second best

Linear Regression based effort estimation model.

 76

Case Study 1 Results

(Effort Estimation Model Generation -

best 4 Linear Regression models)

0

20

40

60

80

100

120

8 4 3 6

Trial

E
rr

o
r

R
a

te
 (

%
)

Relative

Absolute

Error

Root relative

squared error

Figure 6-1: Best 4 Linear Regression models generated in Case Study 1

Trial 8 had also the best ANN based effort estimation model among all trials in terms of

the error rate (Figure 6-2). However, the second best ANN based effort estimation model

was in trial 3.

Case Study 1 Results

(Effort Estimation Model Generation -

best 4 ANN models)

0

10

20

30

40

50

60

70

80

8 3 4 6

Trial

E
rr

o
r

R
a

te
 (

%
) Relative

Absolute

Error

Root relative

squared error

Figure 6-2: Best 4 ANN models generated in Case Study 1

 77

We can observe the following for the effort estimation model generation phase based on

the results:

 Running the regression analysis on all features in the set degraded the quality of

the generated effort estimation model for trial 5 in comparison to trial 3.

 Running the regression analysis on the selected feature subset has improved the

results for trials 3, 4, 7, and 8 in comparison to running the regression analysis on

all features in the set for trials 5 and 6.

 Conversion of the nominal feature values to numerical values has improved

results for trial 4 compared to trial 3, for trial 6 compared to trial 5, and for trial 8

compared to trial 7.

 Performing Feature Subset Selection on nominal features only, instead of

performing Feature Subset Selection on all features (numerical and nominal), has

improved the correlation coefficient and error rates for trial 8 when it was used in

combination with other techniques of our approach.

Using the effort estimation model of trial 8, which was the best among trials [3-8], we

performed effort estimation for the new projects. The subjective features of the new

project were estimated using our approach. The results prove that our approach performs

well during the generation of the effort estimation model. However, the number of

projects used to generate the effort estimation model was not very high. The effort

estimation model generated using trial 8 had the following form:

6765.33pactImePerformanc*1228.98

exityojectComplPr*2604.101velopersNumberOfDe*8054.22Effort





We can see that the model includes the impact of performance (NFR) on effort, the

project complexity, and number of developers. One can notice that Size was not part of

 78

the effort estimation model. This could be explained by the fact that Size and other

features, such as impact of NFRs on effort, were found to be correlated and the feature

reduction algorithm has excluded them as being redundant for our data set.

Effort estimation for new projects using our approach performed quite well (Table 6-6).

The correlation coefficient for the LinearRegression model was 0.7481, while the MMRE

was 21%. On the other hand, the human expert estimates were prone to have higher

MRE. The similar situation was for the regular linear regression done in trial 2 (Figure 6-

3).

Table 6-6: Results of both case studies

Trial

Case

Study

New

Project

Problem

Domain

Historical Data Set

Problem Domain

MMRE

(%)

MdMRE

(%)

Correlation

Coefficient

1 1 PD1 PD1 54 61 N/A

2 1 PD1 PD1 41 40 0

8 1 PD1 PD1 21 19 0.75

1 2 PD2 PD2 23 17 0.94

2 2 PD1 PD1+PD2+PD3+PD4 3776 3336 0.9121

2 2 PD2 PD1+PD2+PD3+PD4 35 31 0.9141

3 2 PD1 PD2 453 515 0.91

3 2 PD1 PD3 5168 4403 0

3 2 PD2 PD1 96 96 0

3 2 PD2 PD3 182 170 0

4 2 PD2 PD1+PD2+PD3+PD4 31 24 0.9177

 79

Case Study 1 Results

0

10

20

30

40

50

60

70

1 2 8

Trial

E
rr

o
r

ra
te

 (
%

)

MMRE

MdMRE

Figure 6-3: Case Study 1 Results (effort estimation for new project)

We can also observe in Case Study 2 that in trials 2 and 3 the estimation of the effort for

new projects did not perform well when our approach was not used. In fact, the MMRE

and MdMRE have deteriorated significantly in some cases (Figure 6-4). For instance, in

trial 2, the effort estimation for new projects of problem domain PD1 using the historical

dataset containing projects of four problem domains deteriorated results with MMRE

reaching almost 3776%. The effort estimation for new projects of problem domain PD2

using the historical dataset containing projects of four problem domains deteriorated

results less than for the similar experiment in trial 2 for the new projects of problem

domain PD1. However, the effort estimation MMRE of new projects of problem domain

PD2 was 35% which is still higher than that for trial 1 of case study 2.

 80

Case Study 2 Results

0

1000

2000

3000

4000

5000

6000

1 2 2 3 3 3 3 4

Trial

E
rr

o
r

ra
te

 (
%

)

MMRE

MdMRE

Figure 6-4: Case Study 2 Results (effort estimation for new project)

In trial 3, effort estimation of the new project of problem domain PD1 using the historical

dataset containing projects of another problem domain, such as PD2 or PD3 deteriorated

results, with MMRE increasing significantly to 453% or 5168% in comparison to the

results of effort estimation performed in trial 8 of case study 1. Also, the effort estimation

of the new project of problem domain PD2 using a historical dataset containing projects

of another problem domain, such as PD1 or PD3, deteriorated results, with MMRE

increasing significantly to 96% or 182% in comparison to the results of effort estimation

performed in trial 1 of case study 2. When our approach was used in trial 1 of case study

2, the estimation of the effort for the new projects of problem domain PD2 was done well

with MMRE of 23% and MdMRE of 17%. On the other hand, when our approach was

used in trial 4 of case study 2 without taking into account the impact of problem domain,

the MMRE and MdMRE improved compared to trial 2 results. However, trial 4 result

 81

was still slightly worse than trial 1 result where our methodology was used and the

problem domain was taken into account. We can observe based on the results of case

study 2 that our approach performed better than the regular approach, which used all

projects from all problem domains. In comparison, the study done by [LPH02] on a small

set of 19 project has shown that COCOMO II achieved an MMRE of 31% (section

3.1.1.2.4) and SEER-SEM achieved an MMRE of 35%. Also, we have noticed that not

using our methodology and using projects with problem domains different from the

problem domain of new projects have significantly degraded the accuracy of effort

estimates in both case studies.

The generated effort estimation model used to estimate the effort of new projects of

problem domain PD2 in trial 1 has the following form:

2267.1001PLIageogramLanguPrimaryPr*7283.9882

PLI,cVisualBasi,FOCUS,COBOL,ASPNet,Java

,#C,C,NetageogramLanguPrimaryPr*4235.3099Size*9767.14Effort







We can see that the model includes Size and the primary programming language feature.

Other features such as project complexity, problem duration, and development platform

are not included, because the feature reduction algorithm has identified them to be

correlated among each other and excluded them as being redundant for this data set.

The next chapter presents the conclusions and the future work.

 82

Chapter 7: Conclusions and Future Work

In this thesis, we have presented a novel effort estimation methodology that can be

applied in the early stages of software development projects to estimate the effort of new

projects. The effort estimated by our methodology includes overall effort needed to

design, implement, and test the software product and to manage corresponding

development project in which it is being developed. The results show that our approach

performs well by increasing the correlation coefficient and decreasing the error rate of the

generated effort estimation models and achieving more accurate effort estimates for new

projects. We have developed an effort estimation model based on the historical data of

previous projects to estimate software development effort during the requirements

specification phase. Also, we have objectively assessed the impacts of different NFRs

and different problem domains on the estimation of software development effort.

Moreover, we made the effort estimation model robust by dynamically reducing the

feature space using both statistical and semantic techniques. Furthermore, the

questionnaire has been designed to collect important information about new and past

historical projects. Finally, we have implemented the effort estimation tool based on the

methodology described in the thesis to prove our concept.

In Table 7-1, we present a summary of effort estimation methodologies using parametric

models to compare them with our methodology based on six different factors, such as

functional size method and consideration of Impact of NFR on effort. We can observe

that only half of the surveyed methods support functional size measurement and early

effort estimation. There are only few methods that support COSMIC method to measure

 83

functional size. Also, very few methods take into account impacts of NFRs, problem

domains and support feature reduction.

Table 7-1: Summary of effort estimation methodologies using parametric models
Criterion Functional

Size

Early

effort

estimation

Problem

domain

specific

Accuracy Impact

of NFR

on

effort

Feature

reduction

Proprietary

Methodology

Our

methodology

Yes (CFP) Yes Yes Yes Yes Yes No

COCOMO II

[BAB+00]

Yes (FP,

SLOC, AP)

Partially No No No No No

Method

[Kas09b]

Yes (CFP) Yes No Yes Yes No No

SEER-SEM

[Gal08]

Yes (FP) Yes Unknown Unknown No Unknown Yes

Kultur

Method

[KKB09]

Yes (CFP,

FP)

Yes No Yes No No No

Mendes

Method

[MMFG07]

No No No Yes No No No

Martin

Method

[MPYT05]

No (SLOC) No No Yes No No No

Select

Estimator

[BC00]

Yes (by

counting

elements)

Yes No Unknown No No Yes

Putnam’s

SLIM [BC00]

No (SLOC) No No No No No No

Albrecht and

Gaffney

Method

[AG83]

No (FP to

SLOC

conversion)

Yes No No No No No

Checkpoint

[BC00]

Yes (FP) Yes No Unknown No Unknown Yes

ESTIMACS

[BC00]

Yes (FP) No No Unknown No No Yes

PRICE-S

[Pri11]

Yes (FP,

SLOC)

Yes Yes Unknown No Unknown Yes

Parthasarathy

Method

[Par07]

Yes (FP,

etc.)

Yes No Unknown No No No

The list of open problems is restated in Table 7-2 with the corresponding sections that

address them in this thesis.

 84

Table 7-2: Linking Open Problems to their corresponding solutions

Open Problem Link to the Answer

[OP1] The estimation of effort has the

tendency to include human estimator’s

subjectivity leading often biased results.

Sections 4.1.2 and 4.2.3

[OP2] The impact of NFR on effort is often

not considered in the effort estimation.

Sections 4.1.2 and 4.2.3

[OP3] The quantification of the impact of

NFR on effort is not performed objectively.

Section 4.2.3

[OP4] The effort estimation techniques

using historical database do not clearly

distinguish clustering of projects by

problem domain to achieve a better

precision.

Sections 4.1.1 and 4.2.1

[OP5] The effort estimation methodologies

do not always allow the user to perform

feature reduction techniques.

Section 4.1.4

[OP6] Data collection from historical

projects is not clearly defined.

Section 4.3

Our proposed methodology is practical and easy to learn as described in chapter 4 and

section 4.1.5. It can be applied in the context of industry based organizations that require

fast and early effort estimation for new projects. Organizations that already collect NFRs

and results of past projects will be able to easily start using this methodology. On the

other hand, organizations without current practice of NFR and past projects data

collection will be able to start building their historical database and move towards more

scientific, systematic and reproducible effort estimation practices. Our methodology will

help companies to improve the accuracy of project planning and effort estimation, which

in turn can aid them in successful execution of their projects.

The previous work presented in [HKO08] showed that the FRs and NFRs can

automatically and effectively be extracted from software requirements document using

natural language processing techniques, and the recent work [HKO10, HOK09] has

shown that the functional size of the software can be computed objectively from any form

 85

of unrestricted textual representation of FRs. In the future, we plan to fully automate our

methodology and to integrate it with the work presented in [HKO10] in order to obtain

the Size measurements automatically in the early stages of software development

projects.

Also, we would like to research the interrelation between the NFRs in order to identify

how the interaction of a group of NFRs contributes towards the overall effort of software

development project. For example, one area of study could be to identify how conflicting

NFRs such as Performance and Security interact with each other and impact overall effort

to develop software product.

In addition, we are looking forward to study the impact of the choice of architectural

decisions on the effort estimation value. In particular, we are working on an approach that

relies on a quantitative assessment of the impact of architectural tactics on quality

requirements on the one hand, and the impact of incorporating these tactics in

architectural patterns on the other hand. We will then incorporate this approach into the

study discussed within this thesis to generate a range of effort estimation values against a

set of architectural patterns. Also, we plan to research how to take into account the

impact of the development methodologies such as Test Driven Development and Agile

Software Development (ASD) on the effort estimation. Moreover, we would like to study

what optimal level of detail SRS needs in order for a project to have more precise effort

and size estimations. This will allow projects and processes based on ASD to improve

further the way requirements are specified and detailed and to optimize software

estimation results. Finally, we plan to collaborate with industry leaders such as SAP in

 86

order to use more actively our methodology in the future as part of industry based

projects.

 87

Bibliography

[ADOSS03] Abran, A., Desharnais, J. M., Oligny, S., St-Pierre, D., & Symons, C.

(2003). COSMIC FFP – Measurement Manual (COSMIC implementation

guide to ISO/IEC 19761:2003), École de technologie supérieure –

Université du Québec, Montréal, Canada.

[AG83] Albrecht, A. J., & Gaffney, J. E. (1983). Software function, source lines of

code, and development effort prediction: A software science validation.

IEEE Transactions on Software Engineering, 9, 639-648.

[AHKO11] Abdukalykov, R., Hussain, I., Kassab, M., & Ormandjieva, O. (2011).

Quantifying the Impact of Different Non-Functional Requirements and

Problem Domains on Software Effort Estimation. Accepted at the 9th

International Conference on Software Engineering Research, Management

and Applications (SERA’11) and will be published in the proceedings of

the conference, August 10-12, 2011, Baltimore, MD, USA.

[ANC08] Azzeh, M., Neagu, D., & Cowling, P. (2008). Improving Analogy

Software Effort Estimation using Fuzzy Feature Subset Selection

Algorithm. Proceedings of the 4th International Workshop on Predictor

Models in Software Engineering (pp. 71-78). Leipzig, Germany: ACM.

 88

[AS00] Angelis, L., & Stamelos, I. (2000). A Simulation Tool for Efficient

Analogy Based Cost Estimation. Empirical Software Engineering, 5, 35-

68.

[ASM01] Angelis, L., Stamelos, I., & Morisio, M. (2001). Building a software cost

estimation model based on categorical data. Software Metrics Symposium.

METRICS 2001. Proceedings. Seventh International, vol., no., pp.4-15.

[BAB+00] Boehm, B., Abts, C., Brown, A. W., Chulami, S., Clark, B. K., &

Horowitz, E. (2000). Software Cost Estimation with COCOMO II (with

CD-ROM). Englewood Cliffs, NJ: Prentice-Hall.

[BC00] Boehm, B., & Chulani, S. (2000). Software development cost estimation

approaches – a survey. Technical Report. University of Southern

California and IBM Research, Los Angeles, USA.

[BHS03] Baader, F., Horrocks, I., & Sattler, U. (2003). Description logics as

ontology languages for the semantic web, in Lecture Notes in Artificial

Intelligence, Springer. Retrieved from

http://www.cs.man.ac.uk/~horrocks/Publications/download/2003/BaHS03.

pdf/

[Boe00] Boehm, B. (2000) Safe and Simple Software Cost Analysis. IEEE

Software, 17 (5), 14-17.

[Boe81] Boehm, B. (1981). Software engineering economics. Englewood Cliffs,

NJ: Prentice-Hall.

 89

[BL01] Burgess, C.J., & Lefley, M. (2001). Can genetic programming improve

software effort estimation? A comparative evaluation. Information and

Software Technology, 43, 863-873.

[BOM08] Braga, P. L., Oliveira, A. L., & Meira, S.R. (2008). A GA-based feature

selection and parameters optimization for support vector regression

applied to software effort estimation. Proceedings of the 2008 ACM

symposium on Applied computing. Fortaleza, Ceara, Brazil.

[CBS99] Chulani, S., Boehm, B., & Steece, B. (1999). “Calibrating Software

Cost Models Using Bayesian Analysis,” Proceedings 1999 ISPA/SCEA

Conference.

[CCT01] Chang, C. K., Christensen, M. J., & Tao, Z. (2001). Genetic algorithms for

project management. Analysis of Software Engineering, 11, 107-139.

[COS09] COSMICON. (2009). The COSMIC Functional Size Measurement

Method. Retrieved May 14, 2011 from

http://www.cosmicon.com/methodV3.asp

[Fir03] Firesmith, D. G. (2003). Common concepts underlying safety, security,

and survivability engineering, Technical Note CMU/SEI-2003-TN-033,

Carnegie Mellon Software Engineering Institute.

[FMG05] Fischman, L., McRitchie, K., & Galorath, D. D. (2005). Inside SEER-

SEM. CrossTalk, 18. Retrieved May 13, 2010 from

http://www.crosstalkonline.org/storage/issue-

archives/2005/200504/200504-Fischman.pdf

http://www.cosmicon.com/methodV3.asp

 90

[FP97] Fenton, N. E., & Pfleeger, S.L. (1997). Software Metrics: A rigorous and

Practical Approach, International Thomson Computer Press.

[FTAS08] Feldt, R., Torkar, R., Angelis, L., & Samuelsson, M. (2008). Towards

individualized software engineering: empirical studies should collect

psychometrics, In Proceedings of the 2008 international Workshop on

Cooperative and Human Aspects of Software Engineering (Leipzig,

Germany, May 13 - 13, 2008), CHASE '08, ACM, New York, NY, (pp.

49-52).

[Gal08] Galorath. (2008). SEER for software development: estimating software

projects. Retrieved May 13, 2010 from

http://galorath.com/index.php/products/software/C5

[Gep11a] Gepsoft Inc. (2011). Relative Absolute Error. Retrieved June 10, 2011

from

http://www.gepsoft.com/gxpt4kb/Chapter10/Section1/SS08.htm

[Gep11b] Gepsoft Inc. (2011). Root Relative Squared Error. Retrieved June 10, 2011

from http://www.gepsoft.com/gxpt4kb/Chapter10/Section1/SS07.htm

[GHL09] Gencel, C., Heldal, R., & Lind, K. (2009). On the Relationship between

Different Size Measures in the Software Life Cycle. Software Engineering

Conference. APSEC '09. Asia-Pacific , vol., no., pp.19-26, 1-3

[GJ07] Grimstad, S., & Jorgensen, M., (2007). The impact of irrelevant

information on estimates of software development effort.

http://galorath.com/index.php/products/software/C5

 91

[Hal00] Hall, M. A. (2000). Correlation based Feature Selection for Machine

Learning. Doctoral dissertation. University of Waikato, Waikato, New-

Zeland.

[HFH09] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten,

I.H. (2009). The WEKA Data Mining Software: An Update; SIGKDD

Explorations, Volume 11, Issue 1

[HHRC04] Huang, X., Ho, D., Ren, J., & Capretz, L. (2004). A neuro-fuzzy tool for

software estimation. Proceedings. 20
th

 IEEE International Conference on

Software Maintenance, (p. 520).

[HKO08] Hussain, I., Kosseim, L., & Ormandjieva, O. (2008). Using Linguistic

Knowledge to Classify Non-functional Requirements in SRS documents.

In LNCS: Natural Language and Information Systems (Vol. 5039/2008,

pp. 287-298). Germany: Springer-Verlag.

[HKO10] Hussain, I., Kosseim, L., & Ormandjieva, O. (2010). Towards

Approximating COSMIC Functional Size from User Requirements in

Agile Development Processes Using Text Mining. In LNCS: Natural

Language Processing and Information Systems (Vol. 6177/2010, pp. 80-

91). Germany: Springer-Verlag.

[HOK09] Hussain, I., Ormandjieva, O., & Kosseim, L. (2009). Mining and

Clustering Textual Requirements to Measure Functional Size of Software

 92

with COSMIC. Proceedings of the International Conference on Software

Engineering Research and Practice (SERP 2009).

[Hus11] Hussain, I. (2011). L.A.S.R. (Live Annotation of Software Requirements).

Retrieved July 14, 2011 from http://users.encs.concordia.ca/~nlp-se/lasr/

[IAK02] Idri, A., Abran, A., & Khoshgoftaar, T. M. (2002). Estimating software

project effort by analogy based on linguistic values. Proceedings of

International Software Metrics Symposium (pp. 21-30). Ottawa. Canada:

IEEE Press.

[IEEE83098] IEEE Std. 830-1998. (1998). IEEE recommended practice for software

requirements specifications, IEEE Transactions on Software Engineering.

[IKA02] Idri, A., Khoshgoftaar, T. M., & Abran, A. (2002). Can neural networks be

easily interpreted in software cost estimation? Proceedings of IEEE

International Conference on Fuzzy Systems, (pp. 1162 – 1167).

[ISB11] International Software Benchmarking Standards Group (ISBSG). (2010).

About ISBSG. Retrieved June 2, 2011 from

http://www.isbsg.org/isbsgnew.nsf/webpages/~GBL~About%20Us

[ISO1414307] International Organization for Standardization. (2007). ISO/IEC IS 14143-

1:2007: Information technology - Software measurement - Functional size

measurement - Part 1: Definition of concepts.

[ISO912601] International Standard ISO/IEC 9126-1. (2001). Software engineering –

Product quality – Part 1: Quality model. ISO/IEC 9126-1:2001, 200.

 93

[Jor04] Jorgensen, M. (2004). Regression Models of Software Development Effort

Estimation Accuracy and Bias. Empirical Software Engineering, 9, 297-

314.

[Kas09a] Kassab, M. (2009). Non-Functional Requirements: Modeling and

Assessment. VDM Verlag.

[Kas09b] Kassab, M. (2009). Formal and Quantitative Approach to Non-Functional

Requirements Modeling and Assessment in Software Engineering.

Doctoral dissertation. Concordia University, Montreal, Canada.

[KR92] Kira, K., & Rendell, L. A. (1992). A practical approach to feature

selection. In Machine Learning: Proceedings of the Ninth International

Conference.

[KKB09] Kultur, Y., Kocaguneli, E., & Bener, A. B. (2009). Domain specific phase

by phase effort estimation in software projects. Computer and Information

Sciences, 2009. ISCIS 2009. 24th International Symposium on, vol., no.,

pp.498-503.

[LPH02] Lum, K., Powell, J., & Hihn, J. (2002). Validation of Spacecraft Software

Cost Estimation Models for Flight and Ground Systems. Price Systems

Inc. Retrieved August 2, 2011 from

http://www.pricesystems.com/white_papers/SW%20Validation%20Paper

%20ISPA%2002.pdf

[LS05] Liebchen, G. A., & Shepperd, M. (2005). Software Productivity Analysis

of a Large Data Set and Issues of Confidentiality and Data Quality, In

http://www.pricesystems.com/white_papers/SW%20Validation%20Paper%20ISPA%2002.pdf
http://www.pricesystems.com/white_papers/SW%20Validation%20Paper%20ISPA%2002.pdf

 94

Proceedings of the 11th IEEE international Software Metrics Symposium

(September 19 - 22, 2005), METRICS, IEEE Computer Society,

Washington, DC, 46.

[LWHS01] Lokan, C., Wright, T., Hill, P. R., & Stringer, M. (2001). Organizational

Benchmarking Using the ISBSG Data Repository, IEEE Software, 18(5),

(pp. 26-32).

[LW03] Leffingwell D., & Widrig, D. (2003). Managing Software Requirements:

A Unified Approach, The Addison-Wesley Object Technology Series.

[Mat11] MathWorks Inc. (2011). The Language of Technical Computing.

Retrieved June 10, 2011 from

http://www.mathworks.com/products/matlab/

[Mcc06] McConnell, S., (2006). Software Estimation – Demystifying the Black

Art. Microsoft Press.

[Men10] Menzies, T. (2010). Selecting Quality Data. Software Engineering

Institute (SEI).

Retrieved May 31, 2010 from

http://www.sei.cmu.edu/measurement/research/upload/Menzies.pdf

[Mic11] Microsoft Corp. (2011). Windows Intune: Software Categories.

Retrieved May 11, 2010 from

http://onlinehelp.microsoft.com/en-us/windowsintune/ff399004.aspx

[MF00] Maxwell, K. D., & Forselius, P. (2000). Benchmarking Software-

Development Productivity, IEEE Software, 17(1), (pp. 80-88).

 95

[MM08] Mendes, E., & Mosley, N. (2008). Bayesian Network Models for Web

Effort Prediction: A Comparative Study. IEEE Transactions on Software

Engineering, 34, 723-737.

[MMFG07] Mendes, E., Martino, S. D., Ferrucci, F., & Gravino, C. (2007). Effort

Estimation: How Valuable is it for a Web Company to Use a Cross-

company Data Set, Compared to Using Its Own Single-company Data

Set? Proceedings of the 16th international conference on World Wide Web

(pp. 963-972). ACM.

[MJ03] Molkken, K., & Jorgensen, M., (2003). A Review of Surveys on Software

Effort Estimation. (p. 223). IEEE Computer Society.

[MP08] Magazinovic, A., & Pernstål, J. (2008). Any other cost estimation

inhibitors? In Proceedings of the Second ACM-IEEE international

Symposium on Empirical Software Engineering and Measurement,

Kaiserslautern, Germany, ESEM '08. ACM, New York, NY, (pp. 233-

242).

[MPYT05] Martin, C. L., Pasquier, J. L., Yanez, C. M., & Tornes, A. G. (2005).

Software development effort estimation using fuzzy logic: a case study.

Computer Science, 2005. ENC 2005. Sixth Mexican International

Conference on, vol., no., pp. 113- 120

 [Par07] Parthasarathy, M. A. (2007). Practical Software Estimation. Infosys.

Addison-Wesley.

 96

[PB05] Park, H., & Baek, S. (2005). An empirical validation of a neural network

model for software effort estimation. Expert Systems with Applications,

35, 929-937.

[Pri11] PRICE Systems. (2011). How to Estimate Software Projects.

Retrieved May 31, 2010 from

http://www.pricesystems.com/products/popup_software.htm

 [PSR05] Pendharkar, P.C., Subramanian, G. H., & Rodger, J. A. (2005). A

Probabilistic Model for Predicting Software Development Effort. IEEE

Transactions on Software Engineering, 31, 615 – 624.

[PWL05] Pfleeger, S. L., Wu, F., & Lewis, R. (2005). Software Cost Estimation and

Sizing Methods, Issues and Guidelines. RAND Corporation.

[Put81] Putnam, L. H. (1981). SLIM: a quantitative tool for software cost and

schedule estimation. Proceedings of NBS/IEEE/ACM Software Tool Fair

(pp. 49-57). McLean, VA: Quantitative Software Management Inc.

[Qui86] Quinlan, R. R. (1986). Induction of decision trees. Machine Learning,

1:81–106.

[SADS03] Stamelos, I., Angelis, L., Dimou, P., & Sakellaris, E. (2003). On the use of

Bayesian belief networks for the prediction of software productivity.

Information and Software Technology, 45, 51-60.

[Sas11] SAS Inc. (2011). Analytics. Retrieved June 10, 2011 from

http://www.sas.com/technologies/analytics/index.html

 97

[Sch10] Schwarz, C. (2010). Scales of Measurement. Retrieved June 2, 2011 from

Simon Fraser University: http://www.stat.sfu.ca/~cschwarz/Stat-

301/Handouts/node5.html

[Shu00] Shukla, K. K., (2000). Neuro-genetic prediction of software development

effort. Information and Software Technology, 42, 701-713.

[SMLE02] Shan, Y., McKay, R. I., Lokan, C. J., & Essam, D. L. (2002). Software

Project Effort Estimation Using Genetic Programming. Proceedings of

International Conference on Communications (pp. 1108-1112). Canberra,

ACT, Australia: IEEE Computer Society.

[SSK96] Shepperd, M., Schofield, C., & Kitchenham, B. (1996). Effort estimation

using analogy. Software Engineering, Proceedings of the 18th

International Conference on, vol., no., pp.170-178.

[Sta01] StatSoft Inc. (2011). Elementary Concepts in Statistic. Retrieved May 14,

2011 from http://www.statsoft.com/textbook/elementary-concepts-in-

statistics/

[Ste46] Stevens, S. S. (1946). “On the Theory of scales and Measurement”.

Science 103, 1946, pp. 677-680.

[SX07] Sadana, V., & Xiaoqing, F., L. (2007). Analysis of Conflicts among Non-

Functional Requirements Using Integrated Analysis of Functional and

Non-Functional Requirements. Computer Software and Applications

Conference, 2007. COMPSAC 2007. 31st Annual International, vol.1, no.,

pp.215-218, 24-27.

http://www.statsoft.com/textbook/elementary-concepts-in-statistics/
http://www.statsoft.com/textbook/elementary-concepts-in-statistics/

 98

[TEMPLATE09] Scenario Plus, Qualities and Constraints, or Non Functional

Requirements Template. (2009). Retrieved from

 http://www.scenarioplus.org.uk/download_nfrs.html

[YHLWB08] Yang, Y., He, M., Li, M., Wang, Q., & Boehm, B. (2008). Phase

distribution of software development effort, In Proceedings of the Second

ACM-IEEE international Symposium on Empirical Software Engineering

and Measurement (Kaiserslautern, Germany, October 09 - 10, 2008),

ESEM '08, ACM, New York, NY, (pp. 61-69).

 99

Appendix A

Questionnaire to collect project information

Background

The present questionnaire is used as part of the effort estimation to identify how various

factors and requirements affect the overall software effort for specific development

projects that we are studying. The results of the questionnaire are strictly confidential and

will be used within this effort estimation task. We are interested only in the aggregated

results of the questionnaire and your personal responses will not be kept.

The relevant terms and concepts mentioned in the questionnaire are explained in details

in Appendix section. Rating based answers should be marked by a symbol of “X”.

Your participation and feedback in this survey are highly appreciated and will be helpful

in correctly identifying the important factors affecting software effort.

Intended Audience

Software project manager, scrum master or member of project who has good knowledge

and overview of the project

Questions

Date of Questionnaire: [Date when the questionnaire is filled in]

General Questions

1. How many years of experience the development team have with the development

environment and languages (e.g. Java, Eclipse SDK, or any other relevant technology

for the problem domain or organization) at the time of execution of the project?

 100

 Number of years of experience using the development environment [NAME]:

 Number of years of experience using the development language [NAME]:

2. How many development locations (geographical) were involved in the development

of the project? (e.g. 1, 2, 3, etc.)

 Number of development locations:

Rate the impact on the project effort of the

following factors:
Very

Low

Low Nominal High Very

High

3. complexity of the product (related to

Functional Requirements)

4. the delivery deadline (schedule) (e.g.,

delivery of the project in accelerated

format [more effort spent in the

beginning of the project] or in

stretched-out format [effort is stretched

over the long period of time])

5. the risk management done as part of

your project

6. the team cohesion for the project you

were part of (e. g. difficulty in

synchronizing project stakeholders

(users, customers, developers, others)

due to differences of their objectives).

7. If you have any additional comments regarding your answers to general questions

mentioned above, please provide it here:

Non-Functional Requirements (see definitions in Appendix)

Rate the impact on

the project effort of

the following non-

functional

requirements:

++

(increases

effort

significantly)

+

(increases

effort

slightly)

0 (no

impact

on

effort)

-

(decreases

effort

slightly)

-- (decreases

effort

significantly)

N/A

8. Reliability

9. Efficiency

 101

10. Quality-In-Use

11. Portability

12. Configurability

13. Maintainability

14. Dependability

15. Security

16. Accessibility

17. Constraint

18. Accuracy

19. Usability

20. If you have any additional comments regarding your answers to questions related to

non-functional requirements mentioned above, please provide it here:

 102

Appendix B

Definition of Terms used in the Questionnaire

The following table contains definitions of terms used in the questionnaire including NFR

definitions developed by Mohamad Kassab in [Kas09b].

Table A-1: Definition of important terms including NFRs used in the questionnaire.

[Kas09b]

Term Description Example

Accessibility “The degree to which a product is

accessible by as many people as

possible.” [Kas09b]

System is capable of voice

input for those who can’t use

regular IO devices.

Accuracy “The capability of the software

product to provide the right or

agreed results or effects with the

needed degree of precision.”

[Kas09b]

The model should accurately

represent the semantics of

the domain as perceived by

the stakeholder(s).

Configurability “In Communications or computer

systems, a configuration is an

arrangement of functional units

according to their nature and

number.” [Kas09b]

Application provides feature

customization.

Dependability “The ability to deliver service that

can justifiably be trusted by users.”

[Kas09b]

Application has different

modules, in case one module

is not functional, this does

not impact on other modules.

Constraint “Constraints are defined in [LW03]

as restrictions on the design of the

system, or the process by which a

system is developed, that do not

affect the external behaviour of the

system but that must be fulfilled to

meet technical, business, or

contractual obligations.” [Kas09b]

Economic Constraint,

Operating Constraint,

Political / Cultural

Constraint, Business Rule,

etc.

Efficiency “The amount of computing resources

and code required by a program to

perform its function.” [Kas09b]

Device Efficiency, Resource

Behaviour, Performance,

Time Behaviour, etc.

Maintainability “The ability to change the system to Changeability, Extensibility,

 103

deal with new technology or to fix

defects.” [Kas09b]

Correct-ability, etc.

N/A Not Applicable

NFR Non-functional requirement

Portability “The ability of the system to run

under different computing

environments.” [Kas09b]

System supports more than

one OS and entire range of

32bit hardware.

Quality-In-Use “The capability of the software

product to enable specified users to

achieve specified goals with

effectiveness, productivity, safety

and satisfaction in specified contexts

of use. / (Quality in use is the user's

view of the quality of an

environment containing software,

and is measured from the results of

using the software in the

environment, rather than properties

of the software itself.)” [Kas09b]

The increase in customer

approval ratings from

surveys, the increase in

revenue from returning

customers needs to be

tracked as a customer

feedback and considered as

customer satisfaction.

Reliability “The ability of a system or

component to perform its required

functions under stated conditions for

a specified period of time.” [Kas09b]

In case of a failure of either

critical or less critical

operations, the system has to

recover as fast as possible,

not more than 1-2 days.

Security “A measure of the system's ability to

resist unauthorized attempts at usage

and denial of service while still

providing its services to legitimate

users.” [Kas09b]

The system should provide

its functionalities with high

confidentiality when it is

required.

Usability “The ease with which a user can

learn to operate, to prepare inputs

for, and to interpret outputs of a

system or component.” [Kas09b]

Software should be able to

make smart gauss, and offer

related tool tips.

