INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

@

UMI

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The
manuscript was microfilmed as received.

46

This reproduction is the best copy available.

ENHANCED WEB BASED CINDI SYSTEM

YUHUI WANG

A MAIJOR REPORT
IN

DEPARTMENT OF COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

AUGUST 2002

© YUHUI WANG, 2002

i+l

l:fauonal Library e nal
isitions and isitions et
gﬁ‘;gmphc Services ::qtv:es bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ozawe ON K1A ON4
Canada Canade Your file Vowe réddrence
Our s Nose riddvence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni 1a thése mi des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-72947-8

Canadi

Abstract

Enhanced Web Based CINDI System

Yuhui Wang

The web-based CINDI (Concordia [INdexing and DIscovery) System attempts to solve
the common problem of the current search engines, such as lack of a standard indexing
and an information query interface. It proposes Semantic Header as the standard index
scheme, and stores the index entry into MySQL database management system. By
invoking a set of graphic user interface, the CINDI system allows the resource
contributor to catalog his own resource and enables the user to search for hypermedia

documents based on the title, author(s), keyword(s) and subject search criteria.

This report describes the redesign and implementation of the Semantic Header
database, and the design and implementation of the graphic user interface for the resource
registration subsystem and resource search subsystem. The user-friendly interface has
been implemented with PHP script language on the Linux platform. The three-tier
client/server architecture is used in the web-based CINDI system, with Apache web
server exchanging information between the web Browser (the client) and the backend

MySQL database.

Acknowledgements

I express deep gratitude to my supervisor, Professor Bipin C. DESAI, for his
encouragement and invaluable discussion. Like many others, I consider myself blessed
to be under his supervision. He was always gracious in giving me the time even amidst

tight schedule.

I am thankful to Prof. Dhrubajyoti Goswami for his guidance and help.

Furthermore, I would also like to thank Zhan Zhang, one member of the CINDI

project, help me integrate ASHG with the whole system.

Last but not the least, I express deep veneration for my dearest parents for teaching me

the importance of good education, from which everything else springs.

iv

Contents

1 Introduction 1
1.1 Existing Problem of Search ENGineoovvveieeeeemeeeeeeeeeeeeeeeeeeeeeeeeeoeeeooeoo |
L2 CINDI SYSIEM.....ooeoeovecorceeecescisaeeeesies sttt eeeeee e ee s s ees e e s e 3
1.3 Organization of the REPOIL...........ecoruemuiuieemeieeeeeeceeeeee e 6

2 Architecture of the CINDI System 7
2.1 Client/Server ATCRItECIUTE «........c.ouivereeeeieeeeceeceee e 7

2.1.1 Two Tier CHeNt/Server ArChItectureuvuvvveveeeeeeeeeeeeee oo eee oo 7
212 Three Tier Client/Server ACRIMECIUTEeveeeeeeeeeeeeees oo 8
213 CINDI SyStem AFCRILECIUIEcueeiueerienienireeesseseeeeeaeeeeseeeseeeeseee s eee e 10
2.2 MYSQL Databaseoccouueruiveremeinteeeeeeeieieeee e eteeeees oo 12
22.1 INITOAUCHION ..ottt e e 12
222 MYSQL FEALUIES............ooeeiece sttt s e e s e eee e 13
223 INAODB TaIES..............ceeee e e e 15
2.3 Sub-SyStem DESIgNcvumruemmemeerrieeeeeteeeee e eeeee e eee e 16

3 Semantic Header Database System 19
3.1 Semantic Header SIUCIUTE............c...uevevveemeeeeeceeeeeeeeeeeeeee e 19
3.2 Entity-Relationship Data MOdeL..........c.cueuerueeuecueeieeeeeeeoeeeeeeeeesee oo 21
3.3 Database Table DESCIPUONc..ovuevvrvemreeeeeeeeeeeceeeeeeee e eee oo 23

3.3.1 RESOUICE TADIE ... e 23
33.2 SUBJECE TABIE ... e s eee e 25
333 ReSOURCe_SUBJECE TabIecveeecureneceeeeeeceeee e 25
334 AUINOT TaBIE......ooeeee et e 26
335 Resource_author Tablecceueeciemneieieecece e 27
3.3.6 USEIS TaDIE ..ot 27
337 ANNOEALON TADIE ...t 28
3.3.8 CONTIBULOT TADIE ...ttt et e e 28
339 Language Table «...............co..omiiceenee et 29
3.3.10 COVErage Table...............cuviueeenerineieeees et eee e ee e eee oo oo 29
3301 SyStem_req Tableccemuereeeeeeeeeeeee et 30
3312 Ientifier TADIEcourueeeeeeerericee ettt e oo e oo ee e 31
3313 Classification Tableoueueeeeeeeiueieieeeceeeeeeeeeeeeee oo 31
3.4 Primary and FOreign Keysccouveuuerurueeueeeeeeeeeeeeeeeee oo 32
3.5 Intermediate Tables Of ASHG SUDSYSIEIMvumeeeeeeemeeeoeoeooeoeoeoeoeoeoeeeoooo 33
3.6 Tuning PerfOrMAnCe..........c.oooueueeeimiucteicteeeeceeeeeee et 37
3.6.1 USING INAEXES ..ottt eees s e oo 37
36.2 Streamline SQL STAEMENLc.vuuvmverereeeeeeeeceneeeeee oo oo 38
36.3 Using Persistent COMNECHON..........covcuerurreeerrieeesereeteeeeeeeseeseeseseee s oo 39
3.64 MiniMizZe TIANSACHOMc.veeeeeeeeeineee e e eee e s e e e oo 39

4 Security Control Sub-system 43

4.1 APACRE SSL SEIVET ..ottt e 43

4.2 User/Contributor REGISration............ccccueeeeeirercercueerireneereessesessesesnsassess e sesssesssnnns
B3 LOZIM ettt ettt e e be bbb et a s s e ns e senonn
4.4 Session Handling..........c.ooomieiieiee ettt s

5 Resource Registration Sub-system

5.1 Manual Resource REZiStrationccceceueerueurrerrineeeinnreneeeeieeeee s sss e s
5.2 Automatic Resource REIStTatioN..........c.cuvveeeiemereneueeeeeiere e revesenes e e eeeenas
5.3 AUthOr ReGISITAtiON.......c.ooviveecieeceeeccetreee ettt sttt et e s eese e

6 Search and Annotation Sub-systems

6.1 Search QUETY SIIUCIUTEooouerirerrerercrcriecree ettt ssens
6.2 SIMPIE SEAICh..........enei ettt e
6.3 Intermediate SEarch..............cooociuiieeimiiirieiereeee ettt e
6.4 Advanced Search..............ocoioiccirinicceeeeenteee ettt e
6.5 Annotation SUD-SYSIEM.........c.eccuruieietrecieieiee et v st se b sas e e ee e ssenes
6.6 Error Handling for Search Sub-systemc.c.ccovueveivereniueererereceeeeeeeeeee e,

7 Conclusion and Future Work

Tol CONCIUSION ...ttt s et e st et et s et et s e eane e eeaeeness e srens
7.2 Contribution of this REPOTTcccecueueiieieceneirtiesee sttt
7.3 FUUTE WOTK c.ovnreieieeeeeete ettt ettt e esesaeeassssse s asesesssssesesena

References

vi

List of Figures

Figure 2.1.1: Two tier client/server architecture design..............ccoueveveeeeeoeveeeereeeererenn. 7
Figure 2.1.2: Three tier distributed client/server architecture designoocoovuen...... 9
Figure 2.1.3: Three tier CINDI system architecture.................ocooooveemeomeeeeeererennnn. 11
Figure 3.2: ER diagram of the Semantic Header Database.................cocooveevmerveeerernnnn. 22
Figure 4.2.1: User registration interface............o.ovuevueurueeeimeenieereeeeceeeeeeeseeesessesseesseses e 45
Figure 4.2.2: Error handling of the user registration................ooceveveveevueeeeoeoeeeenn 46
Figure 4.3: User 1ogin interface..........co.eveiuereereveeeececeeeeet oo 47
Figure 4.4: Warning page for illegal USEro.cvveuemeuemeeeeeeeeeeeeeeeese oo 49
Figure 5: Resource registration sub-syStem interfaceooeeeveeeeormevsresrererernnnn 50
Figure 5.1: Manual resource registration interface (Part 1)ooceevveemroveeveeerrernnn. 52
Figure 5.1: Manual resource registration interface (Part 2)o.oveveememoeeeomoeoons 53
Figure 5.2.1: Automatic Resource Registration Interface (Part 1)...........o.ovevevovveeevnn. 55
Figure 5.2.1: Automatic Resource Registration Interface (Part 2)............oocovvvevevvervnnn.. 56
Figure 5.2.2: Automatic subject registration Interface................cooveveeeeeereemeereereernnn. 59
Figure 5.2.3: Automatic subject registration Interface..............ooeeeeeoeeeeemveeeeeooeee, 60
Figure 5.3: Resource author registration interface..............c.c.euveevevecoeemeeeeeseeeeeeeonn 61
Figure 6: Search sub-system iNterfaceoeeueveveeiececeieeeeeeeereeeees oo 62
Figure 6.2: Simple resource search interfaceceeemeeeeeeemeeeeeeeereseeeeeeeeeeereronn 65
Figure 6.3: Intermediate resource search interfacec.eeeeeeeeecemrereeeererereresnnnn. 67
Figure 6.4.1: Advanced resource search interfaceoueeeeeveveeeeeeeeeeneoseeerereseoeseeons 69
Figure 6.4.2: Resource Search results..............oeveveeeceeevreneecceneeeeeeeseseeeseseeses e 70
Figure 6.5: Annotation subsystem interface..............oeuevevincmeeceeeieeeeeeesee e sesses e 71
Figure 6.6.1: No search Criteria €ITorc.ouoeveeveieeeeeeeeee e 72
Figure 6.6.2: Query Boolean condition €ITorcuvevecueeceeeereeeeeeeeeeee e 72

vii

List of Tables

Table 1: Sample Search Statistics for searching on Bipin (AND) Desai............................. 2
Table 2: Comparison: Reading 2,000,000 rows by index.............c.ccceeuereeveereevereecenrnnennnns 14
Table 3: Comparison: Inserting (350,768) TOWSccceeurerrerereerereemreeeeceeecsenenessessnnees 14
Table 4: Primary key and foreign key for each table.................cocooveeinevvrerecieeene.. 33

viii

Chapter 1

Introduction

1.1 Existing Problem of Search Engine

In recent years, an increasing number of people are publishing their articles. reports
and other information resources on the Internet using the World Wide Web, which has
permitted Internet to become a popular repository of information. There needs an
efficient way to support local as well as the remote search and retrieval of information
stored on the web site. Virtual library (or digital library) is built to collect texts, books,
Journals, newspapers, national directories of various types, sound, images, scientific data
etc. in electronic form. By invoking the web, users can access this distributed
information system from anywhere in the world. In practice, the digital library consists
of several components: a method of collecting information from various format files,
creating catalog and indices about these resources, a database for storing these
information and a method to search and manipulate the database effectively, a graphical

interface to interact with users.

In order to make effective use of the wealth of information on the Internet, many
search engines such as AltaVista, Yahoo, Google, HotBot and Lycos, have been
developed and some of them have become very popular. Google catalogs the collected

information by its own indexing system, which generates index manually or by robots. In

spite of the fact that the same cataloging system is used, the same item may be differently
catalogued or classified in two different libraries [1]. Since many of these systems
attempt to match the specified search terms (or keywords) without regard for the context
in which the words appear in the target information resource, it can cause miss-hits and
missed items. For example, a test was conducted in February 2001 on the existing search
systems by using keywords Bipin (AND) Desai. There were totally 329 URL (Universal
Resource Locator) containing test terms on the WWW at that time. The test results (see
Table 1) show that none of these systems is always successful in retrieving the documents
sought [2]. The terminology used in Table 1 is as follows:

® Number of Hits: The number of document found containing Bipin (AND) Desai.

® Number of Duplicates: The number of times the same document was in the search

result, i.e. the same document being retrieved from more than one site.
® Number of Miss-hits: The number of irrelevant documents found.

¢ Number of Items missed: The number of documents not found even though they

existed on the WWW,

Search Number of | Numberof | Number of Number of
Sytem Hits Duplicates Miss-hits Items missed
AltaVista 99 24 67 230
Google 155 10 403 174
HotBot 62 21 121 267
Lycos 239 37 711 90

Table 1: Sample Search Statistics for searching on Bipin (AND) Desai

In summary, we list several drawbacks of the existing search systems:

® Lack of standard: the same item may be differently catalogued or classified by two

different search engines.

o

® Resources are usually referenced by words or phrases instead of by context such as
title, author, subject etc. The majority of searches begin with a title, name of one of
the authors (70%), subject and sub-subject (50%) [1].

® Many systems do not provide abstract or annotation about a document or file.
Usually the user has to read the actual resource to decide whether it meets the
needs.

¢ Indexing systems are commonly used to find relevant information, but most of them
increase the traffic on the network, and do not coordinate and share gathered

information among each other.

1.2 CINDI System

The above problems could be avoided by starting with a standard index structure and
building a bibliographic system using standardized control definitions. Since the purpose
of index and bibliography is to allow easy access to the original materials, it has to be
accurate, easy to use (usage via title, author, subject etc.), properly classified, up-to-date
and complete for its area of coverage. In the Internet distributed system, a semi-
automatic mechanism can be used to scan the published works and assign each work to
appropriate subjects, then the providers of the resources will validate or update the result.
Whereas an alternate scheme let the provider prepare and enter the bibliographic

information about each resource using the standardized index scheme.

The objective of CINDI (Concordia INdexing and DIscovery) System, which is
proposed by Desai et al [3], is to build a system that enables any resource contributor to

catalog his own resource and any user to subsequently search for them using a typical

search item such as Author, Title, Subject, etc. The system will offer a bibliographic
database that provides information about documents available on the Internet. We can
divide the CINDI system into four main sub-systems:
* A distributed and replicated database system to store the simple index structure that
describes each information resource.
® A registering system is required to facilitate the provider (author/creator) of a
resource to register the bibliographic information about the resource.
¢ A search system allows users to enter a query based on multiple fields.
® An annotation system to collect the readers’ comments on the resource.
Web-based CINDI system provides a set of graphic user interfaces: a user can
register/update an index entry, make annotations to any index entry, and execute query

for information discovery using a Web Browser.

A standardized index scheme, i.e. Semantic Header [4], is designed to ensure
homogeneity of the syntax and semantics of such an index. It is the heart of the system
that records the characteristics of the source data and provides the succinct information
about the source data. The intent of the semantic header is to include those items that are
most often used in the search of the information resource, for instance, the title, author,
subject and sub-subject field. The abstract field of the semantic header allows users to
make better decisions regarding the relevance of the source resource. Since the provider
of the resource is responsible for preparing the index information, such index entry has
high reliability. These index entries are stored in a distributed database system called the
Semantic Header Distributed Database System (SHDDB). The distribution is based on

subject areas, and the database can be horizontally partitioned. The replicated nature of

the database ensures distribution of load and continued access to the bibliography when

one or more sites are temporarily nonfunctional.

Once the user has entered a search request, the server side process will communicate
with the nearest SHDDB catalogue to determine the appropriate site of the SHDDB
database. Then, the server process connects with this database and retrieves one or more
semantic headers. Finally, the result of the query will be collected and sent to the user,
he/she may select one of the entries from the search results to view the complete meta-
data (i.e. semantic header). The system will increase the meta-data access counter by
one. The user can also read the pertinent source resource by using a web browser. One
of the major future tasks is to design and implement a distributed database. However, in

this report, we just built a centralized database.

The index registering sub-system interface allows the provider to enter the information
with the help of the knowledge-based expert system. After the information is correctly
entered, the author can decide to register the semantic header entry to the SHDDB
database. When the header information is accepted by the database, the author/creator
will be notified. The proposed system also provides a semi-automatic mechanism,
Automatic Semantic Header Generator (ASHG), a program package to generate a draft
version of the semantic header. ASHG subsystem can extract the semantic header
information (such as title, author, subject, keywords, abstract, annotation) from many

different file formats like HTML, TEXT, LATEX and RTF.

1.3 Organization of the Report

This report describes the architecture of the CINDI system, the redesign and
implementation of the database system and the interface between the CINDI database

system and the Web Browser.

Chapter 2 presents the details of the three-tier client/server architecture of the CINDI
system in the first section. MySQL database is covered in section 2.2, and InnoDB table
is introduced to support the foreign key constraint and handle the transaction. Section 2.3

gives a brief overview of each subsystem and their relationship.

The details of the design and implementation of the Semantic Header database is
described in Chapter 3. Section 3.1 shows the structure of the Semantic Header. Each
table and its corresponding primary/foreign key are discussed in section 3.3 and section
3.4. Section 3.5 describes the intermediate tables that are used to integrate with the

Automatic Semantic Header Generator subsystem.

The following chapters describe the graphical user interface of the web application.
Chapter 4 shows the security control sub-system such as login and session handling.
Manual and automatic resource registration are presented in Chapter 5. Chapter 6
discusses the search sub-system and the annotation sub-system. Finally in Chapter 7, the

conclusion is drawn and suggestions are provided for future work.

Chapter 2

Architecture of the CINDI System

2.1 Client/Server Architecture

2.1.1 Two Tier Client/Server Architecture

Two tier client/server architecture consists of three components distributed in two
layers: client (requester of services) and server (provider of services). It was developed
in the 1980s from the file sharing architecture design. The three components are:

® User System Interface (such as session, text input, dialog, and display

management services)

® Processing Management (such as process development, process enactment,

process monitoring, and process resource services)

e Database Management (such as data and file services)

Two Tiers

User System Interface
+ some Processing Management

Database management
+ some Processing Management

Figure 2.1.1: Two tier client/server architecture design

Figure 2.1.1 depicts the two-tier client/server architecture, which allocates the user
system interface exclusively to the client, places database management on the server and

splits the processing management between client and server, creating two layers.

In general, the user system interface client invokes services from the database
management server. In many two-tier designs, most of the application portion of
processing is in the client environment. The database management server usually
provides the portion of the processing related to accessing data (often implemented in
store procedures). Clients commonly communicate with the server through SQL

statements or a call-level interface.

The two-tier client/server architecture is a good solution for distributed computing
when work groups are defined as a dozen to 100 people interacting on a LAN
simultaneously. But when the number of users exceeds 100, performance begins to
deteriorate. The reason is that the server maintains a connection via "keep-alive”
messages with each client, even when no work is being done. A second limitation of the
two-tier architecture is that implementation of processing management services using
vendor proprietary database procedures restricts flexibility and choice of DBMS for

applications.

2.1.2 Three Tier Client/Server Architecture

The three tier architecture (also referred to as the multi-tier architecture) emerged in
1990s to overcome the limitations of the two tier architecture. In the three-tier

architecture, a middle tier was added between the user system interface client

environment and the database management server environment. This middle tier
provides process management where business logic and rules are executed and can
accommodate hundreds of users (as compared to only 100 users with the two-tier
architecture) by providing functions such as queuing, application execution, and database

staging.

A three tier distributed client/server architecture (as shown in Figure 2.1.2) includes a
user system interface at the top tier in which user services reside. The third tier provides
database management functionality and is dedicated to data and file services that can be
optimized without using any database management system languages. The data
management component ensures that the data is consistent throughout the distributed
environment through the use of features such as data locking, consistency, and

replication.

Three Tiers

User System Interface

Processing Management

-

Database management

N——’

Figure 2.1.2: Three tier distributed client/server architecture design

The middle tier provides process management services (such as process development,
process enactment, process monitoring, and process resourcing) that are shared by

multiple applications. There are a variety of ways of implementing this middle tier, such

as transaction processing monitors, message servers, or application servers. The middle
tier can perform queuing, application execution, and database staging. For example, if
the middle tier provides queuing, the client can deliver its request to the middle layer and

disengage because the middle tier will access the data and return the answer to the client.

The three tier architecture is used when an effective distributed client/server design is
needed that provides increased performance, flexibility, maintainability, reusability, and
scalability, while hiding the complexity of distributed processing from the user. These
characteristics have made three layer architectures a popular choice for Internet

applications [7].

Sometimes, the middle tier is divided in two or more unit with different functions, in
these cases the architecture is often referred as multi layer. For example, some Internet
applications typically have light clients written in HTML and application servers written
in C++ or Java, the gap between these two layers is too big to link them together.
Instead, there is an intermediate layer (web server) implemented in a scripting language.
This layer receives requests from the Internet clients and generates html using the
services provided by the business layer. This additional layer provides further isolation

between the application layout and the application logic.

2.1.3 CINDI System Architecture

The web-based CINDI system is a three-tier Internet application (as shown in Figure

2.1.3), which supports the multi-user, multi-threaded environment. Clients access the

10

web site by specifying the web address in a web browser and the web browser
communicates with the web server through the HTTP protocol. The Apache web server
runs PHP scripts and returns a dynamic web page to the web browser based on the user
requirements. [f the request needs data from the database, the web based middleware will
be employed to interact with the backend MySQL database management system. PHP
scripts play the same roles as any other CGI programs, such as collecting form data,
generating dynamic page content, maintaining the session, or sending/receiving cookie.
One significant feature of PHP is its support for a wide range of databases such as
MySQL, Oracle, dBase, PostgreSQL, Sybase, IBM DB2, Informix etc [8], which make

writing a database-enabled web page easy.

User Interface HTML Page
(Presentation Logic)

Web Client
Web Server Apache
(Application Logic) Web _Server
PHP
Database Manager MySQL Database

Figure 2.1.3: Three tier CINDI system architecture

2.2 MYSQL Database

2.2.1 Introduction

A database is a structured collection of data. To add, access, and process data stored
in a computer database, a database management system is necessary. Since computers
are very efficient at handling large amounts of data, database management plays a central
role in computing, as stand-alone utilities, or as parts of other applications. MySQL is
the most popular, free, open-source relational database management system (RDBMS)

for the Unix/Linux platform. It is developed and provided by MySQL AB company [5].

MySQL was originally developed to handle very large databases, much faster than
existing solutions and has been successfully used in highly demanding production
environments for several years [S]. Through under constant development, today MySQL
offers a rich and very useful set of functions. The connectivity, speed, and security make
MySQL highly suited for accessing databases on the Internet. MySQL Version 3.22
table has a maximum size of about 4G. MySQL Server with some databases can contain

50,000,000 records, with 60,000 tables and about 5,000,000,000 rows.

MySQL follows ANSI SQL92 standard and includes some extension. It is aiming
toward supporting the full ANSI SQL99 standard without sacrificing speed. The SQL
stands for "Structured Query Language"”, the most common standardized language used

to access databases.

2.2.2 MySQL Features

MySQL is fully multi-threaded using kernel threads, which means it can easily use
multiple CPUs if available. It is developed not only to support multiple platforms such as
Linux, Windows, FreeBSD, Solaris, HP-Unix etc., but also to provide multiple APIs
support for C, C++, Java, Perl, PHP and Python. MySQL server controls access to the
data to ensure that multiple users can work with it concurrently, to provide fast access to
it, and to guarantee that only authorized users can obtain access. Its privilege and
password system is very flexible and secure, and allows host-based verification.
Passwords are secure because all password traffic is encrypted when connected with a

SCrver.

MySQL is very fast, reliable, and easy to use. In order to improve system
performance, SQL functions are implemented through a highly optimized class library
and should be as fast as possible. Usually there is no memory allocation at all after query
initialization. MySQL also provides fast join operations using an optimized one-sweep
multi-join, very fast B-tree disk tables with index compression and in-memory hash
tables that are used as temporary tables. It has been tested with Purify, a commercial

memory leakage detector, to eliminate memory leaks [5].

The performance comparison with other database systems, was carried out on the same
NT 4.0 machine with MySQL benchmark suite [6]. Since the benchmark is single
threaded, it can measure the minimum time for the operations. Table 2 and 3 show that

MySQL is much faster.

13

Database Seconds
Mysql 367
Mysql_odbc 464
Db2_odbc 1206
Informix_odbc 121126
Ms-sql_odbc 1634
Oracle_odbc 20800
Solid_odbc 877
Sybase_odbc 17614

Table 2: Comparison: Reading 2,000,000 rows by index

Database Seconds
Mysql 381
Mysql_odbc 619
Db2_odbc 3460
Informix_odbc 2692
Ms_sql_odbc 4012
Oracle_odbc 11291
Solid_odbc 1801
Sybase_odbc 4802

Table 3: Comparison: Inserting (350,768) rows

Compared with other commercial databases such as Oracle and DB2, MySQL does
not support view, cursor, trigger and stored procedure. However, most of these
limitations are not considered to be very important, because MySQL Server is mostly
used in applications and on web systems where the application programmer has full

control on the database usage.

Current MySQL Version provides three basic table formats (ISAM, HEAP and
MyISAM) and two additional table types (InnoDB, or BDB), depending on how you
compile it. When you create a new table, you can tell MySQL which table type it should

use for the table. In order to check referential integrity (foreign key constraints), we

14

choose InnoDB table as our database table type. Moreover, the InnoDB transactional
table handler also offers ACID support, row-level locking, crash recovery, and
multiversioning. A transaction defines a sequence of server operations that is guaranteed
by the server to be atomic in the presence of multiple clients and server crashes. The
acronym ACID is used to refer to the following four important properties of transactions:
e Atomicity: a transaction either completes successfully, and the effects of all its
operations are recorded in the objects, or (if it fails or is deliberately abort) it has no
effect at all.
e Consistency: a transaction takes the system from one consistent state to another
consistent state.
¢ Isolation: each transaction must be performed without interference from other
transaction: in other words, the intermediate effects of a transaction must not be
visible to other transactions.
® Durability: after a transaction has completed successfully, all its effects are saved in

permanent storage [9].

2.2.3 InnoDB Tables

Technically, InnoDB is a complete database backend placed under MySQL. InnoDB
has its own buffer pool for caching data and indexes in main memory. It stores its tables
and indexes in a tablespace, which may consist of several files. This is different from

MyISAM tables where each table is stored as a separate file.

InnoDB provides MySQL with a transaction-safe (ACID compliant) table handler

with commit, rollback, and crash recovery capabilities [5]. To increase multi-user

]

concurrency and performance, InnoDB transaction model has been attempting to
combine the best properties of a multiversioning database with the traditional two-phase
locking. InnoDB does locking on row level and provides an Oracle-style consistent non-
locking read in SELECTs. The lock table in InnoDB is stored so space-efficiently that
lock escalation is not needed: typically several users are allowed to lock every row in the
database, or any random subset of the rows, without running out of memory. InnoDB

tables support FOREIGN KEY constraints as the first table type in MySQL.

In InnoDB all user activity happens inside transactions. If the auto-commit mode is
used, each SQL statement will form a single transaction. If the auto-commit mode is
switched off, then a user always has a transaction open. After the SQL COMMIT or
ROLLBACK statement, the current transaction ends and a new one starts. Both
statements will release all InnoDB locks that were set during the current transaction. A
COMMIT means that the changes made in the current transaction are made permanent
and become visible to other users. A ROLLBACK on the other hand cancels all

modifications made by the current transaction.

2.3 Sub-System Design

A sub-system is usually identified by the services it provides. A service is a group of
related functions that share some common purpose. So a sub-system is a package of
interrelated functions, operations, events and constraints, with well-defined interface to
interact with other sub-systems. The system architecture design captures the high-level

bird’s eye view of the system, divides it into fairly independent subsystems, and specifies

16

the organization topology of these subsystems. Following a top-down approach, the web-

based CINDI system can be separated into the following six sub-systems:

Semantic Header Database sub-system (SHDB): To store all information such as

Semantic Header, authors and users information, annotation etc.

Security Control sub-system (SC): To register contributors’ and users’ personal
information, and to check the access authorization so that only registered

contributors/users can enter the CINDI system.

Resource Registration sub-system (RR): Authors/providers can create, modify and
register the resource semantic headers into the SHDB system. It also contains the ASHG

sub-system, which can automatically generate the draft version metadata.

Automatic Semantic Header Generator sub-system (ASHG): To generate Semantic
Header for HTML, Latex, Text and RTF documents. It can be considered as part of the

Resource Registration (RR) sub-system.

Search sub-system (SR): To interact with the SHDB system by entering a search query

and retrieving the search results through the graphical user interface.

Annotation sub-system (AT): To display the existing annotations of the resource and

allow the registered user to make new comments.

After successfully registering his personal information through the Security Control
sub-system (SC), each registrant will get his account and password by e-mail. Resource

Registration sub-system (RR) can accept semantic header metadata manually or

17

automatically. Resource contributor enters the semantic header fields such as title, alt-
title, author information, keywords, subject, abstract, annotation etc. by hand. To make
sure that the entered fields are acceptable, RR will check the metadata according to the
rules of the semantic header before storing it into Semantic Header database (SHDB).
On the other hand, the ASHG sub-system may be used to automatically generate a draft
semantic header metadata for the document and asks the resource contributor to validate
it. A search query is entered through the user interface of the Search sub-system (SR),
which is responsible for finding the requested materials and displaying the metadata and
actual resource to the user. Reviewer’s comments on a specific resource can be made

through the Annotation sub-system (AT)

18

Chapter 3

Semantic Header Database System

3.1 Semantic Header Structure

A standardized index structure was proposed by Desai [3] and is called Semantic
Header. It contains those elements that are most often used in the search for an
information resource such as the title, author(s), keywords, subject and sub-subject field.
The structure of the Semantic Header follows extended BNF rules: tags are given in
quotes, optional items are bracketed by square brackets “[* and “]”, alternative items are
separated by a bar “|”, and the superscript plus sign “+” means that items may be repeated

one or more times. The grammar of the Semantic Header is:

semantic_header := “<semantichdr>” contents *“ </semantichdr>*

title al-title authors publisher keywords version

contents
source language subjects identifier coverage
classification system_requirement genre dates

abstract annotation

titcle = "“<title>" ..“</title>"
alt-title = “"<alttitle>"[..]"</alttitle>"
authors = "“<author>"author_info</author>"

author_info role name organization address phone email

role ="<role>" Author|Co_author|Editor|Artist|Designer|
Programmer“</role>"
name = “<name>" [..] *</name>"”

19

organization
address
phone

email
keywords
version
source

language

subjects
subject_group
general
sub_subject
sub_sub_subject
coverage
coverage_group

coverage_type

coverage_value
identifier
identifier_group

identifier_type

Identifier_ value

classification

classification_group

classification_type

classification_value:

system_req
system_req _group

system_req type

System_req_value
genre

file_format

“<organization>*“[..] “</organization>"
“*<address>"[..] “</address>"
“<phone>"[..] “</phone>"
“<email>"[..]“</email>"
“<keywords>" [..] “*</keywords>"
“<version>"[..] “</version>"
“<source>"[..] “</source>"
“<language>" [Arabic|Chinese|English|French|
German..] *</language>"”
“<subject>" subject_group® “</subject>”
general sub_subject sub_sub_subject
“<general>" “</general>"”
“<sub_subject>"[..] “*</sub_subject>"
“<sub_sub_subject>"[..] “</sub_sub_subject>"
“<coverage>"coverage_group“</coverage>"
coverage_type coverage_value
"<coverage_type>"Geographical |Spartial | Temporal |
Epoch“</coverage_type>"
“<coverage_value>“{..] “</coverage_value>"
“<identifier>"identifier_group“</identifier>"
identifier_type identifier_value
“<identifier_type>"FTP|ISBN|ISSN|Gopher|
HTTP|URN|SHN|Call No."“</identifier_ type>”
“<identifier_value>”(..]“</identifier_value>"
“<classification>" classification_group
“</classification>"
:= classification_type classification_value
:= “<classification_type>“Legal |
Security Level“</classification_type>"
= “<classification_value>"[..]
*</classification_value>”
“<system_reqg>“"system_req_group"“</system_reg>"
system_req_type system_req value
“<system_req _type>"Network|Software|Hardware
“</system_requ_type>"
“<system_req value>”[..]“</system_req value>"
“<genre>"file_format file_size“</genre>"

*<file_format> .. “</file_format>"

file_size := *<file_size>" .. *</file_size>"

dates := "<dates>"create_date expiry_date upload_date
*</dates>"

create_date := “<create_date>"[.. J“</create_date>"

expliry_date := “<expiry_date>"[.. |“"</expiry_date>"

upload_date := “<upload_date>" .. “</upload_date>"

abstract := “<abstract>" .. “</abstract>"

annotation := “<annotation>” [..] “</annotation>”

3.2 Entity-Relationship Data Model

The entity-relationship (ER) data model is based on a perception of a real world that
consist of a set of basic objects called entities, and of relationships among these objects.
It is intended primarily to facilitate database design by allowing the specification of an
enterprise schema. An important task in database modeling is to specify how entities and
relationships are distinguished. The ER diagram shows the entities within the database,
the associations (or relationships) among the entities, and the attributes or properties of

the entities and their relationships.

Figure 3.2 shows the ER diagram of Semantic Header database. According to the
structure of the Semantic Header, we can identify ten entities: resource, coverage,
identifier, system_req, classification, language, subject, author, users and contributor. In
the CINDI system, one resource can have more than one coverage information, but one
coverage information can only be mapped to one particular resource, therefore there is a
many-to-one relationship between the coverage entity and the resource entity. The same
relationship exists between the identifier entity and the resource entity, between the
system_req entity and the resource entity, between the classification entity and the

resource entity.

There is a many-to-many relationship between the subject entity and the resource
entity, because one resource may belong to many different subjects, meanwhile, one
subject may belong to many different resources. One resource may have many authors,
co-authors, users can access the resources and make annotations, so the many-to-many
relationship can be found between the author entity and the resource entity, between the
users entity and the resource entity. If one resource has different language versions, it
will have different semantic headers and be considered as different resources. Hence,

there is a one-to-many relationship between language entity and the resource entity.

coverage identifier system_req classification language
m w w w .
] 1] 1 1 1 m
resource
m m
n n
subject author users contributor

Figure 3.2: ER diagram of the Semantic Header Database

(89
(18]

3.3 Database Table Description

The ER model is convenient for representing an initial, high-level database design. To
translate an ER diagram into a collection of tables with associated constraints, i.e. a
relational database schema, entity sets are mapped to relations (each attribute of the entity
set becomes an attribute of the table). Relationship sets are also mapped to relations with
considering the key constraints and participation constraints [10]. The goal is to make
the relation schema satisfy the DK/NF normal form, which will enforce all general
constraints from knowledge of the domains of the attributes and the key constraints [9].

The following sections will briefly describe the 13 tables used in the CINDI system.

3.3.1 Resource Table

The following SQL statement defines a resource table that captures the main semantic

header information:

create table resource {
int(10) unsigned NOT NULL AUTO_INCREMENT,
varchar (255) NOT NULL,

resource_id

title

alec_title
language_id
keyword
publisher
created_date
upload_date
expiry_date
last_update
version
source

size
resource_format
abstract

filename

varchar (255),
int(10) unsigned,
varchar (255),
varchar (255),
date NOT NULL,
date NOT NULL,
date,

date,
varchar(50),
varchar (255),
int(50) unsigned,
varchar(128),

text NOT NULL,

varchar (255) NOT NULL,

hit_number int(10) unsigned NOT NULL DEFAULT O,

cost int(10) unsigned DEFAULT O,

INDEX language_ind (language_id),

primary key(resource_id),

FOREIGN KEY (language_id) REFERENCES language(language_id))
TYPE=INNODB;

Resource_id: primary key, it distinguishes the different resources.

Title: a required field. it is a name given to the resource by its creator or a short
description of the resource.

Ale_title: an option field, it is an secondary title or a alternate short description of the
resource.

Keyword: the field is used for keyword resources searching. Keywords are separated
by comma.

Language_id: an option field, the language of the resource.

Publisher: an option field, it is the name who publisk the resource.

Create_date, Expiry_date, Upload_date, Last_update: the create_date and the
upload_date are required fields. The expiry_date and the last_update are optional
fields. The upload_date and the last_update are generated by system.

Version: an option field, the version number.

Source: an option field, it contains the relationships, domains and identifiers of the

related resources.

Size: an option field, it measures the size of the resource by byte.

Resource_format: an optional field, it describes the physical or electronic format

of the resource such as TEXT, PDF, Postscript, GIF.

Abstract: a required text field, it is used for keyword resource searching.

Filename: a required field, it is the file name of the real resource.

Hit_number: a required field, it indicates how many times the resource is visited.

Cost: the fee of accessing the resource is given.

Here we remove the annotation field from the original version, because it is the attribute

of the relationship between users entity and resource entity.

3.3.2 Subject Table

The subject table can be defined with subject ID and subject name. The subject_name

field is the words or phrases indicative of the information content.

create table subject (
subject_id int (10) unsigned NOT NULL,
subject_name varchar(100) NOT NULL,
primary key(subject_id)) TYPE=INNODB;

3.3.3 Resource_subject Table

The subject of one resource consists of three sublevels: subject, sub-subject, sub-sub-
subject. For example, one resource may belong to Computer Science, Information
storage and retrieval, Web-based online information services. It may also belong to
Computer Science, Information storage and retrieval, Online information services. The
resource_id is the foreign key referencing the resource table; subject, sub_subject,
sub_sub_subject are foreign keys referencing the subject table. The resource_subject

table can be defined using the following SQL statement:

create table resource_subject (

resource_id int(10) unsigned NOT NULL,
subject int(10) unsigned NOT NULL,
sub_subject int(10) unsigned NOT NULL,

sub_sub_subject int(10) unsigned NOT NULL,

INDEX i_reource_subject_rid (resource_id),

INDEX 1i_reource_subject_sid (subject),

INDEX 1i_reource_subject_sub (sub_subject),

INDEX 1i_reource_subject_sub_sub (sub_sub_subject),

primary key(resource_id, subject, sub_subject, sub_sub_subject),
FOREIGN KEY (subject) REFERENCES subject (subject_id),
FOREIGN KEY (sub_subject) REFERENCES subject(subject_id),
FOREIGN KEY (sub_sub_subject) REFERENCES subject(subject_id),
FOREIGN KEY (resource_id) REFERENCES resource(resource_id))
TYPE=INNODB;

3.3.4 Author Table

The SQL statement creates all the information about the author(s) of the resources.
Author table includes name, organization, address, phone number and e-mail address
fields. Here we remove the role field from the author table to the resource_author table,
because it is the attribute of the relationship between author entity and resource entity.
The part of the name field is used to create the column index, which will significantly

improve the resource searching performance.

create table author (

author_id int (10) unsigned NOT NULL AUTO_INCREMENT,
name varchar (100} NOT NULL,
organization varchar(255),

address varchar (255),

phone varchar(50),

e_mail varchar(50),

apt_no varchar (20),

city varchar (30),

province varchar (30),

country varchar (30},

p_code varchar(20),

primary key(author_id)) TYPE=INNODB:;

Create index i_author_name on author (name(15)});

3.3.5 Resource_author Table

We can map the many-to-many relationship between the resource entity and the
author entity into a resource_author table. Typical values for the role field could be
author, co-author, designer, editor, programmer, creator, artist, publisher, etc. Assume
that one author can only play one role in the same resource, we define its primary key as
the combination of resource_id and author_id, both of them are also the foreign keys

referencing the resource table and author table to maintain the integrity constraint.

create table resource_author

resource_id int (10) unsigned NOT NULL.,
author_id int(10) unsigned NOT NULL,
role varchar(20),

INDEX 1i_resource_author_rid (resource_id),

INDEX 1i_resource_author_aid (author_id),

primary key (resource_id, author_id),

FOREIGN KEY (resource_id) REFERENCES resource (resource_id),
FOREIGN KEY (author_id) REFERENCES author(author_id))
TYPE=INNODB;

3.3.6 Users Table

The users table is used to authenticate the access privilege and collect the personal
information such as first name, last name, address, phone number and e-mail address.
The security control sub-system will check the username and password to make sure that
only registered user can access the resource searching system. The user also can make

annotations for a set of resources.

create table users (

user_id varchar(20) NOT NULL,

passwd varchar (20) NOT NULL,
fname varchar (50) NOT NULL,
lname varchar (50) NOT NULL,
address varchar (50),
apt_no varchar (50),
city varchar (30),
province varchar (30),
country varchar (30},
p_code varchar (20),
e_mail varchar {50},

primary key(user_id)) TYPE=INNODB;

3.3.7 Annotation Table

The following SQL statement defines the annotation table, which is corresponding to
the many-to-many relationship between the resource entity and the users entity. Once a
user inputs an annotation, he cannot modify it, but he/she can make any number of
comments on the same resource. Both the resource_id and user_id are the foreign keys

referencing the resource table and users table.

create table annotation {

resource_id int(10) unsigned NOT NULL,
user_id varchar(20) NOT NULL,
annotation text,

INDEX i_annotation_rid (resource_id),

INDEX i_annotation_uid (user_id),

FOREIGN KEY (resource_id)} REFERENCES resource(resource_id),
FOREIGN KEY (user_id) REFERENCES users(user_id))
TYPE=INNODB;

3.3.8 Contributor Table
Similar to the users table, the contributor table contains the first name, last name,

organization name, detailed address information, e-mail etc. Only registered contributor

can upload the resources and provide the semantic header metadata manually or
automatically through the resource registration sub-system. All the available information

about the contributor table is captured by the following SQL definition:

create table contributor (

contributor_id varchar(20) NOT NULL,
passwd varchar(20) NOT NULL,
fname varchar(50) NOT NULL,
lname varchar(50) NOT NULL,
organization varchar (100},
department varchar(50),

address varchar(50),

apt_no varchar(50),

city varchar(30),

province varchar(30),

country varchar(30),

p_code varchar(20),

e_mail varchar(50),

primary key(contributor_id)) TYPE=INNODB;

3.3.9 Language Table
The language_id is stored in the resource table instead of the particular language name
such as English, French. It provides a more flexible way to manipulate (sort, add, delete)

the language. The SQL definition for the language table is given below.

create table language (
language_id int (10) unsigned NOT NULL AUTO_INCREMENT,
language_name varchar(20),

primary key(language_id)) TYPE=INNODB;

3.3.10 Coverage Table

The following SQL statement defines the coverage table, which includes two fields: a
domain (target audience, coverage in a spatial and/or temporal sense, etc) and the
corresponding value. For example, one resource may have coverage both in a spatial and
also a temporal sense. The one-to-many relationship between the resource entity and the

coverage entity can be mapped into the coverage table with the resource_id as the forei gn

key.

Create table coverage (
resource_id int (10) unsigned NOT NULL.
coverage_domain varchar(50),
coverage_value varchar(200),

INDEX i_coverage_rid (resource_id},

UNIQUE (resource_id, coverage_domain, coverage_value),
FOREIGN KEY (resource_id) REFERENCES resource(resource_id))
TYPE=INNODB;

3.3.11 System_req Table

The system requirement table contains a domain of the system requirements (possible
value are: hardware, software, network, protocol, etc.) and the corresponding value. One
resource may have hardware and software requirements as well as network requirements.
The following SQL statement captures the one-to-many relationship between the resource

entity and the system requirement entity with the resource_id as the forei gn key.

Create table system_req (
resource_id int(10) unsigned NOT NULL,
system_req domain varchar(50),
system_req value varchar(200),
INDEX i_system_req_rid (resource_id},
UNIQUE (resource_id, system_req domain, system_req value),
FOREIGN KEY (resource_id) REFERENCES resource(resource_id))
TYPE=INNODB;

30

3.3.12 Identifier Table

The identifier table is defined with two fields: the domain and the corresponding
value. The possible domain values are: ISBN, URL, ISSN, etc. One resource may have
more than one identifier information, for example, one resource may be identified by a
URL and a ISBN. But one identifier information can only be mapped to one particular
resource. The one-to-many relationship between the resource entity and the identifier

entity can be mapped into the identifier table with the resource_id as the foreign key.

create table identifier (
resource_id int (10) unsigned NOT NULL,
identifier_domain varchar(50),
identifier_value varchar(200),
INDEX i_identifier_rid (resource_id},
UNIQUE (resource_id, identifier_domain, identifier_value),
FOREIGN KEY (resource_id) REFERENCES resource{resource _id))
TYPE=INNODB;

3.3.13 Classification Table

The classification table consists of two fields: the domain and the corresponding
value. The possible domain values are: legal, security level, etc. One resource may have
more than one classification information, for example, one resource may have security
restriction and copyright status. The following SQL statement maps the one-to-many
relationship between the resource entity and the classification entity into the classification

table, with the foreign key resource_id.

create table classification ({

resource_id int(10) unsigned NOT NULL,
clasf_domain varchar(50),
clasf_value varchar (200},

31

INDEX i_classification_rid (resource_id),

UNIQUE (resource_id, clasf_domain, clasf_value),

FOREIGN KEY (resource_id) REFERENCES resource(resource_id))
TYPE=INNODB;

3.4 Primary and Foreign Keys

A primary key is the combination of the values of one or more attributes that
collectively and uniquely identify an entity. To ensure entity integrity, each component
of a primary key cannot accept a null value. A foreign key is the primary key of another
table. To ensure referential integrity and keep data consistent, the foreign key in the

referencing table must match the primary key of the referenced table.

For the resource table, primary key resource_id is added to distinguish each resource,
the MySQL function auto_increment will generate a sequence number for each record.
For the author table, author_id is chosen as the primary key to distinguish the same
author name. If the personal information such as name, organization, address, phone
number and e-mail address, etc. of two authors are exactly same, they will be treated as
one author (the same author_id). Each contributor has his own personal information. The
contributor_id and user_id are the primary keys of contributor table and users table
separately. For the subject table, the number field subject_id is defined as the primary

key to speed up the searching performance.

As shown in Table 3, the foreign keys of the resource_author table are: author_id and
resource_id, which represent the relation between the author and the resource. All the

authors’ information of a particular resource can be obtained through resource_author

table. Through the two foreign keys subject_id and resource_id of the resource_subject
table, all related subjects of one particular resource can be retrieved. In the annotation
table, the same user (foreign key user_id) can make many different annotations on the
same resource (foreign key resource_id). For the identifier table, coverage table,

system_req table and classification table, the foreign key resource_id is used to link with

the resource table.

Table Name Primary Key Foreign Key
resource resource_id language_id
subject subject_id

resource_subject

resource_id, subject_id

resource_id, subject_id

author

author_id

resource_author

resource_id, author_id

resource_id, author_id

users user_id

annotation all attributes resource_id, user_id
contributor contributor_id

language language_id

coverage all attributes resource_id
system_req all attributes resource_id
identifier all attributes resource_id
classification all attributes resource_id

Table 4: Primary key and foreign key for each table

3.5 Intermediate Tables of ASHG Subsystem

When a contributor uploads a new resource to the CINDI system, Automatic Semantic
Header Generator (ASHG) can generate the draft Semantic Header fields such as title,

author, keywords, subjects, author’s information, annotation, coverage, system

33

requirement, identifier and classification from the document. Since the Semantic Header
information generated by the ASHG may not be accurate, the contributor is required to
view it and modify it. After validated by the contributor, the meta-data will be stored into
the Semantic Header database. This makes the index entry in the database more accurate,

more useful.

In order to display and check the Semantic Header that is automatically generated by
ASHG, several intermediate tables are implemented to temporarily store this information.
For example, the title, keywords, created_date, abstract, annotation are put into the sh
table. The author’s information of the resource is stored in the sh_author table. To allow
more than three subjects for each resource, the subject information is put into the
sh_subject table. The other information such as coverage, identifier, system requirements
and classification is separately stored into the sh_covearage table, the sh_indentifier

table, the sh_system_req table and the sh_classification table.

After the contributor uploads a resource, the database system will generate a unique
ID for it; this is important for a concurrent multi-user. Once ASHG stores the draft
Semantic Header of the resource into the intermediate tables, this ID plus the filename
will be used to identify the corresponding information for the resource. The following
SQL statements implement these intermediate tables in MySQL database. Their structure
is very similar to the structure of resource, author, coverage, system_req, identifier and
classification tables. In the sh table, we add the annotation field, the reason is that ASHG

can only generate one annotation for each uploaded document.

create table sh (

34

resource_id

int(10) unsigned NOT NULL AUTO_INCREMENT,

title varchar(255) NOT NULL,
alt_title varchar(255),
language varchar (30},
keyword varchar(255),
publisher varchar (255),
created_date date,

expiry_date date,

version varchar(50),
source varchar (255},
annotation text,

size int(50) unsigned,

resource_format varchar(128),

abstract text NOT NULL,
filename varchar(255) NOT NULL,
cost int (10) unsigned DEFAULT O,

primary key{resource_id)) TYPE=INNODB;

create table sh_author (

resource_id int(10) unsigned NOT NULL,
name varchar (100) NOT NULL,
organization varchar(255),

address varchar(255),

phone varchar(50),

e_mail varchar(50),

apt_no varchar(20),

city varchar (30},

province varchar(30),

country varchar(30),

p_code varchar(20),

role varchar(20) NOT NULL,

INDEX i_sh_author_rid

(resource_id),

FOREIGN KEY (resource_id) REFERENCES sh(resource_id))

TYPE=INNODB;

create table sh_subject (

resource_id int(10) wunsigned NOT NULL,

35

subject varchar (100) NOT NULL,

sub_subject varchar (100) NOT NULL,

sub_sub_subject varchar(100) NOT NULL,

INDEX i_sh_subject_rid (resource_id),

primary key(resource_id, subject, sub_subject,
sub_sub_subject),

FOREIGN KEY (resource_id) REFERENCES sh(resource_id))

TYPE=INNODB;

create table sh_coverage (
resource_id int(10) unsigned NOT NULL,
coverage_domain varchar (50),
coverage_value varchar(200),
INDEX sh_coverage_rid (resource_id),
UNIQUE (resource_id, coverage_domain, coverage_value),
FOREIGN KEY (resource_id) REFERENCES sh(resource_id))
TYPE=INNODB;

create table sh_system_reqg (
resource_id int(10) unsigned NOT NULL,
system_req domain varchar(50),
system_req _value varchar(200),
INDEX sh_system_req rid (resource_id),
UNIQUE (resource_id, system_req domain, system_req value),
FOREIGN KEY (resource_id) REFERENCES sh{resource_id))
TYPE=INNODB;

create table sh_identifier (
resource_id int(10) unsigned NOT NULL,
identifier domain varchar(50),
identifier wvalue varchar{(200),
INDEX sh_identifier_rid (resource_id),
UNIQUE (resource_id, identifier_domain, identifier_wvalue),

FOREIGN KEY (resource_id) REFERENCES sh(resource_id))
TYPE=INNODB;

create table sh_classification (
resource_id int(10) unsigned NOT NULL,

36

clasf_domain varchar(50),

clasf_value varchar(200),

INDEX sh_classification_rid (resource_id),

UNIQUE (resource_id, clasf_domain, clasf_value),
FOREIGN KEY (resource_id) REFERENCES sh{resource_id))
TYPE=INNODB;

3.6 Tuning Performance

To retrieve accurate data in as little time as possible is the goal of the CINDI system.
Several factors should be considered to improve the database performance, for example,

indexing of tables, streamlining SQL statements, and concurrent user transactions.

3.6.1 Using Indexes

Data can be retrieved from a database using two methods. The first method, often
called Sequential Access Method, requires SQL to go through each record looking for a
match. This search method is inefficient, but it is the only way for SQL to locate the
correct record. Adding indexes to the database enables SQL to use the Direct Access
Method, it can quickly find the right position of the data file without having to check
every data record. Indexes can improve the speed of data retrieval, but they will slow
data updates and take up space within the database. In order to increase the speed of join
in resource searching, we always index on fields that are used in joins between tables
such as resource_id, author_id, subject_id, user_id, language_id. We also build an index
on the part of the name field in the author table, to facilitate the query based on author
name criteria. Because most names usually differ in the first 15 characters, it almost

achieves the same performance as indexing the whole name field [5). Also, using partial

37

columns for indexes can make the index file much smaller, which could save a lot of disk

space.

3.6.2 Streamline SQL Statement

Streamlining SQL is the process of finding the optimal arrangement of the elements
within a query, particular in the WHERE clause. The arrangement of conditions depends
on the columns that are indexed, as well as on which condition will receive the fewest
records. The objective is to narrow down the results of the SQL statement by using an
indexed column that returns the fewest number of rows. The condition that returns the

fewest records in a table is said to be the most restrictive condition.

When the query optimizer reads the most restrictive condition first, it is able to narrow
down the first set of results before proceeding to the next condition. The next condition,
instead of looking the whole table, should look at the subset that was selected by the most
selective condition. Ultimately, data is retrieved faster. In MySQL, we should place the
most restrictive condition last in the WHERE clause, but it depends on the order of the
processing steps in a specific implementation. For example, Oracles’s query optimizer
reads a WHERE clause from the bottom up, so in a sense, we should place the restrictive

condition first.

In the CINDI system, for the worst case, five tables: resource, subject,
resource_subject, author, resource_author, are needed to join together to perform a
resource search query on Semantic Header database. MySQL resolves all joins using a

single-sweep multi-join method. This means that MySQL reads a row from the first

38

table, then finds a matching row in the second table, then in the third table and so on.
When all tables are processed, it outputs the selected columns and backtracks through the
table list until a table is found for which there are more matching rows. The next row is
read from this table and the process continues with the next table. If the large tables are
joined first, the size of the tables will increase significantly and negatively impact on the
successive joins. To achieve better performance, we arrange the join order as author,

resource_author, subject, resource_subject and resource (see section 6.2 for details).

3.6.3 Using Persistent Connection

Each time, a connection between the web server and the MySQL database must be
established in order to store or retrieve data. There is a way to reduce the connection
overhead, i.e. we can use the PHP function mysql_pconnect () to setup a persistent
connection with the MySQL server. When a persistent connection is requested, the
system will check whether or not there’s already an identical persistent connection (a
connection that was opened to the same host before, with the same username and the
same password, without calling the mysql_close ($db) function). If the connection
exists, PHP will use it instead of creating a new one. It is more efficient than non-

persistent connection and achieves better performance [8).

3.6.4 Minimize Transaction

either wholly succeed or has no effect on the database state. Transactions are usually

controlled by the database management system that must adhere to the ACID properties,

39

which also ensure that unfinished updates or corrupting activities are not committed to
the database. The transactional paradigm has its benefits and its drawbacks. Many users
and application developers depend on the ease with which they can code around
problems where an abort appears to be, or is necessary. We can combine many
statements and accept these all in one go with the COMMIT command. If an update
fails, all the changes will be restored (before the COMMIT, all changes that have taken
place are not permanent). However, it also introduces lots of overhead, takes more disk
space and memory to do updates. Non-transactional tables can offer on the order of three

to five times the speed of the fastest and most optimally tuned transactional tables.

In the web-based CINDI system, many contributors may concurrently insert their
semantic header meta-data into the database (see details in section 5.2). A transaction
must be performed to make sure they are atomic operations and do not interfere with each
other. The following PHP/MySQL code shows this transaction, which consists of eight

insert statements:

BEGIN;

Sresult = mysql_query("insert into resource values(..)");
Sresult0 = mysql_guery("insert into annotation values (..} ");
$resultl = mysql_query("insert into identifier values (..} ")} ;
$result2 = mysql_query("insert into coverage values(..)");
$result3d = mysql_query("insert into system_req values(..)");
$resultd4 = mysql_query("insert into classification values{(..)");
$result5 = mysqgl_query("insert into resource_subject values(..)"):
$result6é = mysql_query("insert into resource_author values(..)");
COMMIT;

In order to optimize the performance and reduce the transaction overhead, we will try to
minimize the transaction process. For example, the following revised PHP/MySQL code

only uses two SQL statements to substitute the above insert transaction.

40

BEGIN;

//insert record into table resource

$result = mysql_query("insert into resource values
(null, 'title’, null, 3, null, null, ’0000-01-01‘,°'0000-01-01",
‘0000-01-01’,0000-01-01', null, null, 10, null, ‘abstract’,
‘filename’, 0, 0)");

$Spaperid = mysql_insert_id($db);
COMMIT;

$resultll = mysql_query("UPDATE resource SET title=‘Stitle’,
alt_title=‘Salt_title’, language_id=$language,
keyword='sSkeyword’, publisher='$publisher’,
created_date='S$publish_date’,upload_date='$date’,
expiry_date=’'Sexpiry_date’, last_update=‘S$date’,
version='Sversion’, source='’S$source’,size=$size,
resource_format='$type’, abstract='S$Sabstract’,
filename='S$f_name’ WHERE resource_id=$paperid");

// insert record into table annottaion
if ($annotation != "")
Sresult0 = mysql_query("insert into annotation values
(Spaperid, 'xm’, ’'Sannotation’) ") ;

// insert record into table identifier
if ($Sidentifier != ")
$resultl = mysql_query("insert into identifier values
(S$paperid, ‘Sidentifier_type‘, ‘Sidentifier’)");

// insert record into table converage
if (Scoverage !'= "")
Sresult2 = mysql_query("insert into coverage values
($paperid, '$coverage_type’, 'Scoverage’)");

// insert record into table system_req
1f ($sysrequirement != ")
$result3 = mysql_query("insert into system_req values
($paperid, '$sysrequirement_type’, '$sysrequirement’)"};

// insert record into table classification
if ($classification != "")
Sresult4 = mysql_qguery("insert into classification values
{($paperid, ‘Sclassification_type’, ‘$classification’)");

// insert record into table resource_subject
if ($subjectl != 0)
$result5 = mysql_query("insert into resource_subject values
(Spaperid, $subjectl, $sub_subjectl, $sub_sub_subjectl)"};

if (S$subject2 != 0)
$result6 = mysql_query("insert into resource_subject values
(Spaperid,$subject2,$sub_subject2,$sub_sub_subject2)");

if ($subject3 = 0)

$result7 = mysql_query("insert into resource_subject values
($paperid,$subject3,$sub_subject3,$sub_sub_subject3)");

41

// if all above operations are successful, insert into resource_author
$result = mysql_query("insert into resource_author values
(’'Spaperid’, ’Speople_id’, ‘'S$role’)");

Here we successfully manage the unique identifier resource_id to ensure concurrent
usage of the system safe by defining it as an AUTO_INCREMENT column and calling
either the SQL function LAST_INSERT_ID() or the C API function mysql_insert_id(),
because the last generated resource_id is maintained in the server on a per-connection
basis, it will not be changed by another client. Based on the foreign key resource_id, the
corresponding resource information can be stored into the resource_subject,
resource_author, annotation, identifier, coverage, classification, system_req tables. If
there is a failure in the middle of these insertions, no record will be inserted into the
resource_author table for this resource. As a result, the resource search sub-system will

consider it as an incomplete resource and will delete it from the database later.

Chapter 4

Security Control Sub-system

4.1 Apache SSL Server

Apache-SSL is a secure Web server, based on Apache and SSLeay/OpenSSL [11].
The Secure sockets Layer (SSL) protocol was designed to facilitate secure
communication between web server and browser. SSL can be adapted as an add-on
module, so we can just add the SSL module to the Apache server to improve the security
without changing one single line of code. SSL not only encrypts the data flowing over
the Internet, but also provides the means for both parties to authenticate each other.
Authentication is the process of verifying identity so that one entity can be sure that

another entity is who it claims to be.

SSL uses an encryption technique called RSA public key cryptography [12]. Public
key encryption technique uses a pair of asymmetric keys for encryption and decryption.
Each pair of keys consists of a public key and a private key. The public key is made
public by distributing it widely. The private key is never distributed; it is always kept
secret. Data that is encrypted with the public key can be decrypted only with the private
key. Conversely, data encrypted with the private key can be decrypted only with the
public key. The server side of the connection sends the client its public key for

encrypting information; only the server can decrypt the information with the private key

43

it holds. The client side uses the public key to encrypt and send the server its own key,
identifying it uniquely to the server and preventing onlookers at points between the two

systems from mimicking either server or client.

The SSL layer exists between the transport layer and the application layer. It encrypts
the data from HTTP application before passing it down to the TCP layer. When data
from HTTP application are sent over the SSL layer, they are broken into several
manageable packets. Each packet is compressed, and attached a message authentication
code calculated using a hashing algorithm, after being encrypted, the data are combined

with the header information and sent to the network.

Having a secure web server is a vital necessity if you are exchanging sensitive
information such as credit card number or personal information on-line. In the CINDI
system, there are a couple of modules that need high security such as the user/contributor
registration module and login module, in which the user inputs private information and

stores it into the database.

4.2 User/Contributor Registration

The CINDI system supports two kinds of users: the normal users can query the
Semantic Header database to find the useful information and make annotation: the
contributors can submit the semantic header information and upload the resource into the

database.

Figure 4.2.1 shows the user registration graphic interface. It asks the users to enter

the personal information to register themselves. The username, first name, last name,

and email address are required fields. After the user has filled in the required
information, the PHP program will connect with the backend MySQL database to check
the username. If the same username already exists in our database, the system will
display the error message: “User ID already exists. Please choose another one”. If the
user forgets to input the required fields, the system will respond with the corresponding
error messages (as shown in Figure 4.2.2). Moreover, the PHP script also checks the

email address to make sure its format is correct.

Fbips by oncordac s ondigu user reg.php Microsoft Internet Explorer
e Edt Yew FgvorRes Jods Heb
eback - = - Q[4}| Dsewch [GFevorkes PMeda 3[55- FAFQ

Ad&m ’__] https /Ibp concordia. cajondiguijuser_req. php

= by R w{»"d
A *:;: R

Figure 4.2.1: User registration interface

When the username and other required information are validated, the user’s personal

information will be inserted into the database, the system will generate an eight

45

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The
manuscript was microfilmed as received.

46

This reproduction is the best copy available.

and password, clicks the submit button, the PHP script will establish a connection with
the MySQL database, perform a query on the users (or contributor) table to validate the
user_id (or contributor_id) and password. If the matched user_id (or contributor_id) and
password are found, a non-zero number is returned and the web server will redirect the
user (or contributor) to the corresponding page (for example, the search interface for
users as shown in Figure 6). Otherwise, the returned zero value means that there is a
mismatch for the user_id (or contributor_id) or password, the browser will display an

error message: “Invalid Login. Please check your user name and password”.

;I INDESYSTEM Microsolt Internet Explores

He CR Yow Favortes Joos b

Figure 4.3: User login interface

47

4.4 Session Handling

There is a common security problem for web application, i.e. if a visitor knows which
page he want to go, for example “register.php”, he can just type the URL address of the
page such as “https://bp.concordia.ca/cindigui/register.php” in the browser, and get in
that page without usemame and password. In this way, the user/contributor registration
system seems useless. The CINDI system invokes the idea of session to solve this
problem. The concept is as follows: once you register global variables with the session
handler, the values of these variables are saved in files on the server. When the user
requests another page, these variables are restored to the global scope. The session
identifier is a long series of numbers and letters and is sent to the user as a cookie. So we
can have information to associate with each user, and pass them from page to page. Each
visitor accessing our system will register a unique variable (such as user_id or
contributor_id) when he first logs in. The PHP program will check the unique registered
variable at the beginning of each page. If this variable is found unmatched, the server
will not display the correct page content (for example, Figure 6). Instead, it will show a
waming message, and ask the user to login (as shown in Figure 4.4). After the user

logout the system, all the registered variables will be erased.

48

boconcordiaca andigun register php Microsoft Internet Explorer

Ele Gt Vew Fgvortes Jods Hsb

Pk - = - Q[A| Qiowch [iFevaries Piede | D D = B D

| Address [] htps: b, concorda.calndiguiegster.oho

s B,

E G S

wp¥z

Figure 4.4: Warning page for illegal user

AR ¢R

B

-

P ekt Pt

Chapter 5

Resource Registration Sub-system

The CINDI system provides the contributor two different ways to register resources:
automatically generate a draft semantic header or manually input the semantic header.
The Automatic Semantic Header Generator (ASHG) can accept HTML, TEXT, RTF, and
LATEX format files: for the other formats, the contributor has to invoke the manual
uploading. Once the contributor logs into the system successfully, the graphical interface

for resource registration (show in Figure 5) is presented, which divides the resource

Phttos b concordia ca andigui suthor.php Microsoft Internet Explorer

He E& Yew Fpvortes Joos Heb

st =
AlEseman
P e o

SRS gl
YOU'Y '.|J¢ .
=z oy

; A

22

AP s T

130

Internet 4

Figure 5: Resource registration sub-system interface

50

registration sub-system into two parts: manual resource registration, and automatic

resource registration.

5.1 Manual Resource Registration

If the contributor clicks on “Manual Upload” link in Figure 5, the manual uploading
method will be used to register the semantic header. ~As shown in Figure 5.1, the
semantic header includes title, alt-title, Author, publisher, keyword, version, source,
language, subject, identifier, coverage, classification, system requirement, date, abstract,
annotation and filename, which are described in section 3.3. The title, author, subject,

abstract and the filename are required fields (they are marked with asterisk in Figure 5.1).

After the contributor fills in the HTML form, all the information will be delivered to
the web server, where the PHP program will connect with the database and insert the data
into separate tables such as resource, annotation, identifier, coverage, classification,
system_req, resource_subject, and resource_author. As mentioned in section 3.6.4, the
whole transaction can be handled much more efficiently by defining the resource_id as an
AUTO_INCREMENT column and using the SQL function LAST_INSERT_ID() or the C API
function mysql_insert_id(). The AUTO_INCREMENT attribute can generate a unique
resource_id for each new resource, which is maintained in the server on a per-connection
basis and will not be changed by another client. Then the function LAST_INSERT_ID() or
mysql_insert_id() can be used to retrieve the last automatically generated value resource_id
to ensure concurrent usage of the system safe. Based on the foreign key resource_id, the
corresponding resource information can be stored into the resource_subject,

resource_author, identifier, coverage, classification, system_req tables.

51

QPherps
Hs (R Yew Fgotes Joos Heb

ek v % - QA 23| Qsewh GlPovares Prede P|3- D I D

Address | a] htps: fbp. concorda.cajondgajman upkoad shorsubiectChace = 18sub_subiectChoce = 10278cptkiem A% 2INatLr %201,
o X A

. e —— % YL,

4,

N

Kl

e v -

|A Natural Language Processar for CINDI

Ty g el e Sl LR N
= [Bipin C Desar. L Kassem, N Stratica

T A Al AL TITTT P TR o AT R

t;i

2ICind1. Sementic Header. Natutal Language Pracessim

R T R R S O PN

IURL '"www cs concovd:c;ﬁe

L A A R TR NP

I
)]

ol AR T ol "

e AL A I R IR L i

. Ti=e
_ 3E:_lJuly.) B _vj_:g,ﬁ &

- e

lect day_']fngelect Month_']’SeledYear 'IE% €7

Figure 5.1: Manual resource registration interface (Part 1)

Rrttoe bp oot codigue mana upload.php? subject hosce 1 *l&unb‘mbml(ho«el:lolw-wmA
He f& Vew Fgwortes Joos Heb
woak - % - QD F| Qiewch Girowtss Fete JB-FHAED
Adress | 8] hetps: /bo. concordia.calandiuinenu upkiad.phoYsubrectChace | = 8sub_sublectChoxel =1

|

-~ - t— -

By it ¥ 74 | Setectday =] [Select Manth =} §Select Year R g
s S s maia - - At el 1) B ,5:&2
»jIn thls paper, ve present our work 1in querying & Virtual Library
database using natural language (NL) questions racher than queries
{|formulated in a formal language. Recent advances 1n question-

- ansvering (QA) (ex. [TREC-X]) have made it possible to ansver a
s{question formulated in natural language and locate the ansver i1n a

- Jdocument collect:ion. However, the performance of these systems i1s not
currencly high enough to be useful in every-day systems. By using QA
i"ftechniques ta analyse questions, but leaving out the document
‘lanalysis, ve believe that the performance of such a system would be
high enough to be used on a daily-basis. The system we are currently
developing initially analyses incoming questions formulated in NL.
tlQuestions are tagged, lemmatised, parsed and are finally represented
by & J-tuple: a question-word {ex. "vhao"), a focus verb (ex: "wrote”)
‘-."land a discriminant (ex: "the Old Man and the Sea”). Then, using

?), general lexical and semantic relacions such as those found in VordNet

e e bt e gioi i evim s rmeans e mim o pomn - ae g pmene - o

AT R Y

G \majarnip pat

& Rt -

- AR -
e e O S MR L

Figure 5.1: Manual resource registration interface (Part 2)

5.2 Automatic Resource Registration

Automatic Semantic Header Generator (ASHG) can generate a draft version of the
semantic header for HTML, Latex, Text and RTF documents. It is developed specifically
for the automatic resource registration by providing the contributor the initial semantic
header meta-information, such as the document’s title, abstract, keywords, subjects,

dates, author’s information, when he uploads a new document to the CINDI system.

53

The main procedure for automatic resource registration is described below:

1.

2.

Upload the selected file as indicated in the form shown in Figure 5.

Identify the document’s format: HTML, Latex, Text and RTF.

Call the corresponding ASHG extractor and classify the meta-information by
using frequency occurrence and positional schemes, ASHG measures the
significance of the words found in the previously mentioned list.

Store the draft semantic header: the generated meta-information is stored into the
intermediate tables such as sh, sh_author, sh_subject, sh_identifier, sh_coverage,
sh_classification, sh_system_req (refer to section 3.4 for the table details).
Display the draft semantic header: Figure 5.2.1 shows the corresponding semantic
header information by querying the intermediate tables.

Validate the meta-data: the contributor can verify and modify the draft semantic
header generated by ASHG to guarantee its accuracy.

Store the modified semantic header: after clicking the submit button, the final

version of meta-data is stored into the Semantic Header database (SHDB).

bo i orthas s nindsgue autn upioad.php Microsoft Internet Explorer

Jrerps

He G Vew Fgomss Jods teb

ok - 4 - QD A Qrewch Gyloots Prode J|B-IAHD

Adress |) hitps: /b concorda.cafondgujauko_tpload.oho
i T T e

el RS E

r2il g s

*

B 4
RS L SR TR

e Semantc Header and Indexing and Searching 3?%?3 ~

R e - T s

Beablyr ¥ :-'
o

LT3,y

RN Y

Vi
Vi I
Rk

IR g

At

TN P T 38 0s " T

A
for
Internet resources. The semantic header contains the meta-information
for each "publicly” accessible resource on the Internec. It also
X|describes the registering system and the distributed database
vjcepresenting the union catalog of resources on the Internet. Thais
:Jdatabase vould be used in a search system tc facilitate search.

kSl
Lk
i I Cord
I AR,

Figure 5.2.1: Automatic resource registration interface (Part 1)

55

s andigon auto uplosd.php Mecrosoft Internet Explorer
e ER Yew Fportes lodks Uep T
woak > & - Q[| Qseerch (GiFavortes Jymede Gf%v@%@_e
Ades [2] ews: o.concarda cajondgalatoughoad oho

=1
- v - - TN : . A%
.—;\i‘mx: paper describes an indexing system called semantic ader for
73 Internet resources. The semantic header contains the meta-information
_ﬁ%‘f{ for each "publicly” accessible resource on the Internet. It also
FnAly
B

kldescribes the registering system and the distributed database
repc ing the union catalog of resources on the Internec. This
database would be used in a search system to facilitate search.

Figure 5.2.1: Automatic resource registration interface (Part 2)

Now one critical problem has to be solved: in the multi-user, multi-threaded web
environment, how to match the uploaded file with its corresponding semantic header
stored in the intermediate table, and display it again in step 5? Here we cannot Jjust
depend on the file name because two contributors may upload two different files with the
same name simultaneously. Instead, we must invoke one unique identifier such as
resource_id, combine it with the file name. Similar to the manual resource registration,

the database system can automatically generate a unique resource_id with

56

AUTO_INCREMENT attribute for each new uploaded file. The multi-user safe function
mysql_insert_id() can be used to retrieve the last resource_id. The following
PHP/MySQL code shows the process how to generate the unique resource_id on a per-
connection basis, how to find the corresponding semantic header from the intermediate

table, and how to insert data into the SHDB.

// generate the unique resource_id

$result = mysqgl_query("insert into resource values
(null, ‘title’, null, 3, null, null, ’'0000-01-01‘,'0000-01-01",
'0000-01-01",°0000-01-01', null, null, 10, null, ‘abstract’,
‘filename’, 0, 0)");

if(Sresult)
{
$paperid = mysqgl_insert_id($db) ;

$f_name=($paperid+1000000) . "_" . Suserfile_name;
$destination="/home/cindigui/www/papers/$f_name";
$dest="$f_name";

}

if (copy(Suserfile, $destination))
(
exec (" /home/zzhang/www/register $dest");
$filename = S$dest;
}
// select the matched semantic header from the intermediate table
$result = mysql_query("select * from sh
where filename=’'S$filename’", $db);
// insert into the resource table
$resultll = mysqgl_query("UPDATE resource SET title='S$title’,
alt_title='$alt_title’, language_id=$language,
keyword='$keyword‘, publisher=’'$publisher’,
created_date='$publish_date’,upload_date='$date’,
expiry_date='Sexpiry_date’, last_update='S$date’,
version='$version’, source='S$source’,size=$size,
resource_format=’'S$Stype’, abstract=’'S$abstract’,
filename='S$filename’ WHERE resource_id=$paperid");

// insert record into table annotation
if ($annotation != "")
$result0 = mysqgl_query("insert into annotation values
($Spaperid, ‘xm’, ' $Sannotation‘) ") ;

57

// insert record into table identifier
if ($identifier != "")
$resultl = mysql_query("insert into identifier values
($paperid, 'Sidentifier_type’, 'Sidentifier‘)");
// insert record into table converage
i1f (Scoverage != "")
Sresult2 = mysql_query("insert into coverage values
($paperid, 'Scoverage_type’, '$Scoverage’) ") ;
// insert record into table system_reqg
if ($sysrequirement 1= "*)
Sresult3 = mysql_query("insert into system_req values
(spaperid, '$sysrequirement_type’,’'$sysrequirement’)");
// insert record into table classification
if ($classification != "")
Sresultd = mysql_query("insert into classification values
($paperid, '$Sclassification_type’, '$classification’)");
// insert record into table resource_subject
if ($subjectl t= 0)

$result5 = mysql_query("insert into resource_subject values
($paperid, $subjectl, $sub_subjectl, $sub_sub_subjectl)");

The automatic resource registration interface in Figure 5.2.1 is very similar to the
Figure 5.1, except an unlimited number of three-level subjects can be entered. After you
press the “Add one or more subject” button, a new window will pop up and display a set
of subjects generated by ASHG (see Figure 5.2.2). Now you can review all the three-
level subjects and choose “Accept” or “Reject” for each of them, these accepted subjects
will be stored into the SHDB. Figure 5.2.3 allows you to add more new three-level
subject. The three-level hierarchy subject pull-down menu provides a standard
bibliography catalog and a correct hierarchy of subject, sub-subject, and sub-sub-subject,
which can avoid incorrect inputs. We tested one contributor registering several

documents at the same time and found that the system can handle them concurrently.

58

D Add Sutiect Mrosalt Internet Exgrorer

He R Yow Fovortes - [ook Heb

wor - - QR A Qsewch (vt Pnde I D- P A D

Address | &) hitos: fbo. concorda. cajandguisubect.pho

tay - N e
oy A Computer Saence
‘?2’!;4-{‘ ‘_ﬁ'. fr,“.l—.-.ppu. R P e
sdb #2E ! [Herdware i

e - wsr PRI
—

PR

e 2
ETRIETY S (T I
A gk A T

=t 7

o
pjoct 1

R o
e Numencalenalyss

v‘, Ay S et
e g T

P AR AT A A AT X8 -‘ 2
SN R
-~ - 3,

3 lComputer Scence

RENURSTSERrST] Ay

e s ,A IProgrammmglunguages

ob_Shi Subjed: —r—

= m

Computer Science

z|{Sotware

%{Computer programs and sofwar

et B s IR e R e il

Figure 5.2.2: Automatic subject registration interface

59

3 Add Subject Microsolt Internet Explorer
Ele Edt Yew Favortes Toos Help

Poack -+ - Q (A | Qsowch GiFevrtes Prede GI%'QEEQ
Agdress | 4] hetos: pr concordia. cajondigui/subjectadd. phpmb;eacrml-tm subxectChoncel-lUZ?&nsert-O

Figure 5.2.3: Automatic subject registration interface

5.3 Author Registration

After the contributor submits the resource registration form, the semantic header meta-
information will be inserted into the Semantic Header database, and the message “The
resource has been registered successfully!” will be displayed. Based on the input of the
authors’ name field in resource registration interface Figure 5.1 or Figure 5.2.1, the
system will ask the contributor to provide the corresponding personal information (see
Figure 5.3). The author interface shows that the role field is required and all other fields
such as organization, address, phone, Email, are optional. The system first checks the

database to identify whether an author exists or not, if all the corresponding fields are

60

same, then no new record is inserted into the author table, instead, the author ID and the
resource [D are inserted into the resource_author table. Otherwise, a new author ID is
created and his personal information is stored in the author table, moreover, the new
author ID and the resource ID are also inserted into the resource_author table. If there

are many authors, the above procedure will be repeated until all of them are registered.

The author registration interface provides the opportunity to verify the authors’
information for automatic resource registration. After the contributor successfully
registers all the authors’ fields one by one, the PHP program will display the message
"All the authors’ detail of this resource have been registered successfully!”. We also

provide a pull-down menu to help the contributor input the role field.

3htlps. T e
fle C vew Favorkes Joos Help J
woack - = - QB | Qoewch GiFevortes Preks I D DI FH D
Agdress | a] hutps: jbp.concordia.cafcndiguiauto_subme.php

g oA I PSS e TN
- NS ¥ T el T,

X £ o 5 LA 5 WA
A~ s TS S T ——— 3

. :%“?f;%f;‘é dia University

gt ,,.ﬂ,?

piedigles e e o
%@f&,gh 445 De Maisonneuve Bivd 0

it okl ot . e fine 0

3. s |bcdesai@cs concordia ca s

SO NS o —_ . . Sl "

SR A T AR
i e R R

v

Y
P J,Mﬁf s Sy
Vi A AN 54

A

Al

T80

Figure 5.3: Resource author registration interface

61

Chapter 6

Search and Annotation Sub-systems

Resource Search Sub-system facilitates the user to find the useful information from
the Semantic Header database. After the registered user successfully logins into the
system, three different search levels (simple search, intermediate search and advanced
search) are provided in Figure 6. The search query criteria are comprised of the title,

author(s), keyword(s), subject and period of created date. The graphical user interface

DINOISYSTEM Miccosoft Internet Explorer

Gl (& Yow Fgvortes Jook Hep
“Beck > = - Q) A Qsewrch [iiFavortes Preda GIE}QBEQ
Address I] htps:/[bp. concordia.cajandiguiuser .php

-~

Figure 6: Search sub-system interface

(see the following section) allows the user to fill the query field, and pass it to the server
as an SQL query string that will be performed on the backend database. Once the query

is processed, the results will be returned to the client browser.

6.1 Search Query Structure

The following BNF grammar describes the search query structure which consists of
a set of search criteria connected by the logical operator AND/OR. The logical operator

precedence should be consistent with the Boolean expression of the SQL WHERE clause.

In MySQL database, AND has higher priority than OR.

<search>

<operand>

<op>
<title>
<exacttitle>
<substringtitle>

<subject>

<general>
<sub_subject>
<sub_sub_subject>
<author_unit>
<author>
<keyword_unit>
<keyword>

<date>

<from_date>
<to_date>
<string>

<character>

<operand> [<op> <operand> [<op> <operand>
[<op> <operand> [<op> <operand>]]]]

<title> | <subject> | <author_unit> |
<keyword unit> | <date>

<AND> | <OR>

<exacttitle> | <substringtitles>
<string>

<string>

<general> | <general> <AND> <sub_subject> |
<general> <AND> <sub_subject>
<AND> <sub_sub_subject>

<string>

<string>

<string>

<author> | <AND | OR> <author_unit>
<string>

<keyword> | <AND | OR> <keyword_unit>
<string>

<from_date> | <to_date> |
<from_date> AND <to_date>

<day> - <month> - <year>
<day> - <month> - <year>
<character> | <character> <string>

ala|b|Blc|C] .. |x|X[y|Y|z|z|0|1]|2| .. |7|8]9

63

<day> = 1(2]3]4] .. [28]29(30]31
<month> = 01]02(03| .. |10]11]12
<year> = 1990]1991{1992| .. |2008{2009(2010

6.2 Simple Search

Figure 6.2 shows the user interface of the simple resource search. The user can enter
search criteria, such as title, author name, keyword, subject and period of created date.
For a given title, it can be an exact or a substring title. To be simple, only one title or one
author name or one keyword is allowed. All these search criteria fields are connected by
AND operator, the default field is null. For example, Figure 6.2 indicates that the query
is based on the “Minimizing" as substring title, “Naveen Garg“ as author name and
“approximation” as keyword, the created period from *“Jan. 1, 1998” to “Jan. 1, 2000".

The corresponding SQL query clause is the following:

SELECT DISTINCT e.resource_id
FROM author d, resource_author c, resource_subject a, resource e
WHERE a.resource_id=e.resource_id and c.author_id=d.author_id
and c.resource_id=e.resource_id
AND e.title like “$Minimizing%”
AND d.name like “Naveen Garg”
AND(e.abstract like “approximation” OR e.keyword like
“approximation”)

AND e.created_date>"01-01-1998" AND e.created-date<”01-01-2000";

D ornpie Search Muroeolt nternet Explorer

‘e R Yew Fpvortes ods b

Wtk - = - QR A Duech Girevortes Prote | D Dt D

wlgmmmn ordia.cajandigu)

~ '?{'-;{c .

Y TS

SN -

Pgi¥
Ay

o S T T

Erfete i3 o

ST s e TR S D

o AR
AR P
T it qiﬁr L1

Figure 6.2: Simple resource search interface

6.3 Intermediate Search

Intermediate search interface (see Figure 6.3) allows the user to perform the more

complex query. The given title can be an exact or a substring title. More than one author

name can be entered, which are separated by comma and combined by AND or OR, but

the AND/OR operator cannot be mixed. Similarly, many keywords can be separated by

comma and combined by AND or OR, which are treated as substring for query. The user

also can choose a subject at a general level, and/or corresponding sub_subject level

65

and/or corresponding sub_sub_subject level to perform a search. To be more flexible, the
user can choose the AND or OR operator to connect these search criteria. For example,
Figure 6.3 shows that the substring title is “Minimizing“, the author name is “Naveen
Garg, John Hessen”, the keyword is “approximation, caching”, the corresponding SQL

query should be:

SELECT DISTINCT e.resource_id
FROM resource_subject a, resource_authorname d, resource e
WHERE a.resource_id=e.resource_id and d.resource_id=e.resource_id
AND e.title like "$Minimizing%”
OR d.name like "Naveen Garg“ OR d.name like “John Hessen”
AND (e.abstract like "“approximation” OR e.keyword like
“approximation®)
AND (e.abstract like “caching” OR e.keyword like “caching”)
AND e.created_date>"01-01-1998" AND e.created-date<“01-01-2000";

Since Current MySQL version doesn’t support view and set operations such as
INTERSECT, UNION, we have to introduce redundant resource_authorname table to
perform the multi-author search criteria. On the other hand, the redundant table will

speed up the search performance.

Create table resource_authorname (
resource_id int(10) unsigned NOT NULL,
name varchar(255) NOT NULL,
INDEX i_resource_authorname_rid (resource_id),
primary key(resource_id),
FOREIGN KEY (resource_id) REFERENCES resource(resource_id))
TYPE=INNODB;

66

; Inteesiediate Searth Microsolt Internet Explorer

Ce TR Yow Favotes Jods b

b _'Mnmmlzmg

approximaton.caching

N WAl
> &y f
ot

e

; IZUUO l lJnnuary IIOI 'I

A
'.‘ »|
T ‘fr_":

»
<y

Figure 6.3: Intermediate resource search interface

6.4 Advanced Search

Figure 6.4.1 shows the advanced resource search interface, which allows the user to
construct the author names or keywords by using the mixed AND/OR operators. For

example, to enter a more complicated query as the following:

To search for Semantic header for resources written by both “Naveen Garg”

67

and “John Hessen" or written by “Larry Tom”'.
The corresponding steps would be:
1. Enter “Naveen Garg” in the Author field.
2. Click the “Add One or More Author” Button.
3. Select AND operator.
4. Enter “John Hessen” in the Author field.
5. Click the “Add One or More Author” Button.
6. Select OR operator.
7. Enter “Larry Tom” in the Author field.
Similarly, we also can construct more complicated keywords combination by following

the same procedure.

After the user enters the query and presses the “Search” button, the system will
display the search results by page. Each page contains three resource semantic headers,
which include the title, author(s), three-level subject(s), keywords, abstract, document, hit
number and annotation (see Figure 6.4.2). The user can click the page number to enter
the right place. Moreover, the system provides the corresponding link in the document
field for users to either download the resources or browse the resources in detail. If no

matched resource is found, the system also will inform the user.

68

D Aadvan ed search Micrusolt internet txplorer
Ho CR Vew Fgvokes Tooks tieb
e-l-k 2 - QR A Quewar gm@mmcgogggo

Figure 6.4.1: Advanced resource search interface

69

Forarch#ewill Microsalt Internet Explorer

He [yow Fpomes Ios tb
wbak - S - QB 3| Qewch Grovates Franda Gl%'QEQQ

:w-:'. 14 i?é’fi ..‘_-‘t'_'.’
I 155 [A nbornat 4

Figure 6.1.2: Resource search results

6.5 Annotation Sub-system

As shown in Figure 6.4.2, there is an “annotation” link. When the user clicks the link,
an annotation window will pop out (see Figure 6.5). The annotation subsystem interface
allows the user to view the existing annotations or to make comments on this resource.
After the current user enters the annotation and presses the *“submit” button, the system

will store the annotation into the annotation table with his user ID and the resource ID.

70

tmea)
R S S Tt =
-».41 ”(Egr ‘., rf": ’N?'

AP Ty T T
7 r

Figure 6.2: Annotation subsystem interface

6.6 Error Handling for Search Sub-system

The system formulates the search query based on the current value of the fields
entered. To make sure that the final SQL query is correct, additional checking for each
field must be performed. For example, the system must guarantee that at least one of
these fields has been entered. If none of the search criteria is given, error message (see
Figure 6.6.1) will warn the user. For intermediate and advanced search, we also provide
more intelligent check for the logical errors. If both the title and author field are empty,

the user only filled the keyword field and choose AND/OR operator between these fields,

71

error message, as shown in Figure 6.6.2, will inform him that the title or author criteria

are needed.

e ER Yow Fgeortes Ioos teb
etk - = - D ([3| Quewh Girevotes Bede I b F = D

Ao b el Muccnaall ot ernet Faplocer . L I

B e T VST 3
’ art4-NewsS _& o
BT A T T o Y,
PiE ok %’fé‘ﬁﬁ)ﬁ‘i‘
Sy TR e LR

&

. ; ph 1528 3
WSELE] ERTFONTEA
555 N A

gl

e

Doearihw M usall Internet txplorer
Ge £t Yew Fgvorkes Jocls e

bk - b - QD 4| Qiewch Gravortes Prede P D DA FH D
Address | a) hetps:jbp.concorda. cajondou

2 P

l—f—r5ﬂ| ; - 4

el

Figure 6.6.2: Query Boolean condition error

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The web-based CINDI system is developed to enable the user to find the useful
hypermedia docunients through the Internet. It tries to build an efficient and effective
virtual library by using the standard index system, i.e. Semantic Header, a data structure

to record the meta-information of network resources.

The Semantic Header meta-data entry can be provided either by the resource
contributor or by invoking the Automatic Semantic Header Generator (ASHG) program.
The former method would be more accurate whereas the latter is much faster and can
cover a large amount of resources. The presence of the abstract in the Semantic Header
provides a summary of the document, which can help the user make better decision
regarding the relevance of the resource. In order to facilitate the user to enter the
resource Semantic Header information, the graphic resource registration interface has
been designed and implemented, which contains the three-level hierarchy subject and

other domains pull-down menu.

73

Most of the existing search engines (such as Google, AltaVista) retrieve the

information only by keywords. Since the same keyword may have different meaning in

different domains and places, this kind of scheme may cause lots of miss-hits. The

CINDI system solves this problem by providing the user several different search criteria:

title, author name(s), keyword(s), subject and period of created date. The graphical user

interface for resource search subsystem allows the user to find the needed documents

efficiently from the CINDI virtual library.

7.2

Contribution of this Report

The contributions made by this major report to the CINDI system are listed as follows:

Introduce InnoDB table to MySQL database to support the transaction and the
foreign key constraint, then redesign and implement the Semantic Headers
database sub-system.

Design and implement the resource search sub-system, which includes the three
level search strategy, the results display interface and more intelligent error
handling mechanism. By optimizing the query, a better search performance is
achieved.

Redesign and implement of rescurce registration sub-system: manual or automatic
registration. Support multi-user to register the resource semantic header
concurrently by invoking InnoDB transaction model.

Integrate the Automatic Semantic Header Generator sub-system with the resource

registration sub-system.

74

e Allow the user to input unlimited three-level subjects for automatic resource
registration, design and implement the subject entry registration interface.

e Improve the security control sub-system with PHP session.

7.3 Future Work

In order to greatly improve our system’s performance and efficiently retrieve useful

information from the Internet, the following section will provide some suggestions for

future work based on the current web-based CINDI system.

l.

Building the distributed database system

A distributed database is a set of databases stores on different sites connected with
network, but typically appears to applications as a single database. An application
can transparently access or modify the data in the distributed database. Database
replication will copy and maintain database objects in multiple sites that make up a
distributed database system. Most commonly, replication is useful to improve the
performance and protect the availability of applications because alternate data access
option exists; so, if one site failed, we still can retrieve the same data from another

site that contains a replica.

In this project, we have built a centralized database. One of the major future tasks is
to design and implement a Semantic Header Distributed Database System. The
database can be horizontally partitioned on subject areas. For example, we can store
the semantic headers related to Computer Science in one site, and Electrical
Engineering related semantic headers in another site. When the end users register a

resource or perform a search query, the distributed database system will take the

75

responsible for deciding where to store the semantic header or where to find the
required information. This distributed and replicated nature of the Semantic Header

database can provide reliability and scalability.

Oracle offers the implementation of a distributed database. Each oracle database in a
distributed database system is controlled by its local server, which cooperates to
maintain the consistency of the global distributed database. Unfortunately, current

MySQL version does not support this distributed feature.

9

Tune the database structure

Current MySQL version doesn’t support view and set operations such as
INTERSECT, UNION, so we have to invoke the redundant resource_authorname
table to perform the multi-author search. If the new version can support the set
operation, you can delete the resource_authorname table. But the redundant table will

help speed up the search performance.

3. Add auxiliary functions
Both the contributor and user can change their passwords and other personal
information. In case one person forgets his password, the system can send him the
password via the email provided during registration by checking the login ID. From
the point of view of the database administrator, we should provide a set of graphical

interfaces to maintain the Semantic Header database.

4. Add Online help

76

Online help provides an easy way for users to learn how to efficiently use this system.
It should include the detailed description for each sub-system, the user interfaces and
what kind of input is expected for the required fields. Its importance cannot be

ignored for our CINDI system.

77

References

(1]

(2]

(3]

[4]

(5]

(6]

(71

(8]

[9]

Bipin C. Desai, The Semantic Header and Indexing and Searching on the Internet,

http://www cs.concordia.ca/~faculty/bcdesai/cindi-system-1.0.html

Bipin C. Desai, Test: Internet Indexing Systems vs List of Known URLs: Revisited,
http://www cs.concordia.ca/~faculty/bcdesai/web-publ/test-of-index-systems-
revisited.htmi

Bipin C. Desai, Shinghal Rajjan, A System for Seamless Search of Distributed
Information Sources, May 1994. http://www.cs.concordia.ca/~faculty/bcdesai/web-
publ/w3-paper.htmi

Bipin C. Desai, Report of the Metadata Workshop, Dublin. March 1995.
http://www.cs.concordia.ca/~faculty/bcdesai/metadata/metadata-workshop—
report.html

MySQL Documents, http://www.mysql.coin/documentation/

MySQL Bechmarks, http://www.mysql.com/information/benchmarks.html

Client/Server Software Architecture,

http://www sei/cmu.edu/str/description/clientserver_body.html

PHP Documents, http://www.php.net/docs.php

Bipin C. Desai, An Introduction to Database Systems, West St Paul, 1990.

78

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

[18]

Raghu Ramakrishman, Database Management Systems, McGraw Hill, 1998.

Apache secured by SSL, http://www.apache-ssl.org

Larry L. Peicrson and Bruce S. Davie, Computer Networks: a Systems Approach,

Morgan Kaufmann, 2000.

Wen Tian, Web Based CINDI System: Database Design and Implementation,

Department of Computer Science, Concordia University, 2001.

Xiaomei Yang, Web Based CINDI System: Graphical User Interface Design and

Implementation, Department of Computer Science, Concordia University, 2001.

Mohamed Amokrane Mechouet, Web Based CINDI System, Department of

Computer Science, Concordia University, 2002.

Youquan Zhou, CINDI: The Virtual Library Graphical User Interface, Department

of Computer Science, Concordia University, 1997.

Sami Samir Haddad, Automatic Semantic Header Generator, Department of

Computer Science, Concordia University, 1998.

Leon Atkinson, Core PHP programming: using PHP 1o build dvnamic Web sites,
Prentice Hall PTR, 2001.

79

