INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with small overiaps.

ProQuest information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

DYNAMIC SIMULATOR OF A FLIGHT MANAGEMENT

SYSTEM FOR COMMERCIAL JETLINER -

DEVELOPMENT, INTEGRATION AND APPLICATION

Ming He Liu

A Thesis
[n
The Department
Of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montreal, Quebec, Canada

October 2002

©Ming He Liu, 2002

i+l

National Lib i tional
N rary S&:bothéque na e
Acquisitions and Acquisitions et
Bibiiographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Otawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Youw fils Votre rédirence
Our e Nove réldeance
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77701-4

ABSTRACT

Dynamic Simulator of a Flight Management System
for Commercial Jetliner —

Development, Integration and Application

Ming He Liu

Flight management of modern civil aircraft is realized by a system of sophisticated
computerized devices and commands, which provides the pilot with navigation. aircraft
status and other dynamic flight information enabling him to perform his task correctly.
However, rigorous testing of the flight management system (FMS) is needed to discover
and remedy any flaw in the hardware or software components so as to ensure proper
running of the system, as well as to reveal potential for further improvement. A joint
project between the CMC Electronics Canada Inc., world leader in civil aircraft FMS, and
the Concordia University was initiated to develop a dynamic test bed (DTB) for
achieving this aim. culminating in an application-level testing tool that could meet
specified requirements yet remain within affordable range. This paper describes
achievements gained in phase 1 and 2 of the project, focussing on the A429-PC hardware
setup and fabrication of a breakout box with its circuit board on the hardware side, as
well as the real-time architecture design, an executive program, a device driver for A429
and a client-server Ethernet network on the software side. Accessory tools created such

as an ARINC switch graphic user interface (GUI), ARINC label GUI and discrete signal

iii

GUI are also described. Also given is a rather comprehensive overview of the principles

relevant to the project together with suggestions for future improvement of the DTB.

v

ACKNOWLEDGEMENTS

The author wishes to pay special tribute to his supervisors Dr. H. Hong and Dr. J.
V. Svoboda, for their guidance in completing this thesis.

To Mr. Gilles Huard the author is greatly appreciative for his assistance
concerning the custom electronic hardware.

The author is especially indebted to his father and wife for providing the help and

encouragement to undertake this interesting task.

TABLE OF CONTENTS

LIST OF FIGURES IX
LIST OF TABLES XII
NOMENCLATURE XIII
CHAPTER 1 1
1.1 BACKGROUND OF NAVIGATION TECHNOLOGYooiemreemrienreereeeereeeeceeeeenreeesreesnenns 1
1.1.1 FLight INSIIUMENLScooerieece et eee e 3
1.1.2 Navigation SYSEIMS.........coceriertreeerteertenereeceteseteseraessasesseeeseesseestesseeseaenesasesens 3
[.1.2.1 Airborne Navigation SYSIEMScceeeeeeeeeceereeeeiceeereeeeeseseeessesseeseeneas 3
1.1.2.2 Ground-based Navigation SYStemMSccceeceververeoiereeseeseeaeniescereeesennenens 5

1.2 FLIGHT MANAGEMENT SYSTEM ...uevvviiieeeeeieeceeeeeeesveeeneseesseeessnneeesnseseeeseseesnsens 10
1.3 TESTBED REVIEW ...ttt eteeeeeteesesese e nnssnsssennnsnnnsssesennes 13
1.4 THESIS OBJECTIVES ..euueieieeeeeecerreeeeeeeeeeeeeeeesesseesaesnnnsassesssessessssssssssesssessnnnssssnes 14
CHAPTER 2 16
2.1 PURPOSE OF THE DYNAMIC TEST BED ...oeeineiceteeeeeeeeeeceeeteeevee et 16
2.2 HARDWARE COMPONENTS......oeoueeeeeeereeeeeerreeeeseeesaeeesaessessessesnsesessessssessssnsenssennen 17
2.3 SOFTWARE ARCHITECTURE ...verueieeeeeteeeeeeceeeeseeecseeeeseessessesesssneessssessessssenssnennees 19
2.3.1 SImMulation SOFtWATE........c.oooveiiiieeieeeeeeeeeeeeeeeeeee et e s e aeeee s 19
2.3.2 INterface PC SOFIWATEooeeieeeeeeeeeeeeeeee ettt ae s e e e e e sae e e 21
2.3.2.1 Synchronization MechaniSmccoceeieiieeesineiieee e 21
2.3.2.2 DTBExecutive WOTKSPACEcoeeeieeieerreeeeceeeseeeteeereeeeseeeaeseeesssseanennens 22

2.3.3 CommuniCation TOOLoceviieiiiieeeieeeeeeee e e s s e sssee e enas 24
2.3.4 Graphic User Interface (GUI)cooomeiimioieeeeeeeeee e 25
CHAPTER 3 27
3.1 ARINC 429-PC16 INTERFACEccueeereieeereeenieeceeeeeeeeeeteeeseesseesseesseeeesesenaesseeneenees 27
3.1.1 ARINC Standards......cc..ccceeeeieeeeeiiiieieeeeeceeeee e ereeeeesesee e eesseeesssnnseesnnseses 27
3.1.2 A429-PCL6 Design REVIEWeeeieeeeeeeieeeeeeeeeevecteteeeee e enneenne e 29
3.1.3 ARINC 429 Physical ASPECESceeeveereeeieieeeeeecereeecieeere e e e et eeeeeeseenens 30
3.1.3.1 TransmisSion Meiac...ooiiiemmmeiiiiiiiiieeeeeeee et e eeee s raee e eeens 30
3.1.3.2 WIiring TOPOIOZY ..eeeeennrieeeieeee ettt es e e 31

3.1.4 ARINC 429 Architecture OVEIVIEW.......ccc.ooiueieceeeeeeeeeeeeeieeeeseseeesessesaeeeseens 32
3.1.5 AdAreSS MAp ...ttt e eneenaen 33
3.1.6 Transmit ManagemeNnLt............ccccoveumeueeeriereeenneeieeerteseeeenseesessessseseseesensseseses 36
3.1.6.1 Transmit Control BIock Structurecoooeeeeeereecieeeeeeeeeeeee e 36
3.1.6.2 Transmit Command Block Structure...........ccoeeeeimiieeececereee s 39

3.1.7 Receive Managementcccocvveemvevmiiiieicveeerecteeenreesee e seseesee s ssesereenes 45
3.1.7.1 Receive Control Block Structure...........cc.oooomeeeeceeeeeee e 45
3.1.7.2 Receive Firmware Operation...............cccoeveeueemmeererereceeceeeeeeeeeeeesceeeneesennas 50

vi

3.1.8 TranSMItter SE-UP....ccecceeirieuerrmrriiienecreatesereneneceeessesseseen st essermesneesnnnens 50
3.1.9 ARINC Word & CONVETSIONSooiieieciieeeemeeeeeeeeeteeiee e eeeen e eeeaaeenas 55
3UE9.1 LaBCL ettt e e n 56

3 1.9.2 SDH ettt e et e et ene e eeeeenn 56
3.1.9.3 DaAta ATCA......cneeeeiecrcececceeeeetenee e et et aa e ae e mse e e st aesas e nn e e s eeaeen 57
3.1.9.4 Sign/Status MAtriXcooceermrrreeeieeteieecetetie e ceeeecetes e teneseeneeneeesnessensees 62
3.1.9.5 Parity FIeld c..ooee ettt v 62
3.1.10 ARINC I/O Driver Derivedc.cco oot ee e 62
3.1.10.1Installing the ARINC429 IO Card.........ccoeueememieeeeiereeeteeeieeeeeeeeeeeens 63
3.1.10.2Installing the SOfTWATEc.commmiiieecceeeee e 63
3.1.10.3Installing the SBS Driver Library............coooemmmvemioeeeeeeeeeeee 63
3.1.10.4Configuration Files ..ot 67

3.2 PCI-6025E INTERFACE.....couiomiiimiieteteeecneaecet e s e se e estemeeea s s s sas s e esemeen 67
3.2.1 ANAlog INPUL.....c.eneie ettt ettt e e s eeeee 68
3211 OVEIVIEW ..ooeeeeeeeeeiece e ceeteaeer e e eete e etese e neem s e st e sess s s s eessennaseseesees 68
3.2.1.2 RSE CONfIGUIAtION «..ccueeeireeccenieiieieeieeieetesetee e e eseesesa e eneaesesesennnnns 70
3.2.2 ANALOZ OULPULeeeeieieeieitiicce ettt saa e et et es e ss e s e sme e e ae 72
3.2.3 DISCIELE [/O ..ottt e et easen s e ene 72
3.2.4 Discrete [/O POWEr-Up SEate.....cccoeeieereireeeceieeieeeeieeceenteseaeeesereeeeeseessenns 75
3.3 CMAGCG00. ..ot reeteenee ettt ettt s ettt eae s s ae e sa e sesnens 76
33,1 FEALUIES ..ottt ns s e e mnens 78
3.3.2 Waypoint Navigationc.cecceceeeeeeneenieiereeiceieeeenereeveeeseesesesesesessesseseessensenes 78
3.3.3 DEPAITUIESceeeeeeeeeeeeeeieeeeeee e e ete s steesese e eeneeessessessese s esssese e snseennnane 80
3.3.4 GPS NaVIgation......cccocteeuiieieteeeieeecee st esesecese s e s se e sess s e s e ee e ne e 81
3.3.5 GPS Instrument APProaches............coeeceieeeiericeee ettt eneenes 82
3.3.6 Required Navigation Performance.........c.cccooveeemeieeeiieccecnnecieie e 85
3.4 CONTROL DISPLAY UNIT (CDU).ceoiiiieiceeeeeeeteeeeeeeeeeee et nees 86
3.5 BREAKOUT BOX DESIGNccuoomimieimieiiee ettt ettt ees e s e eaeenes 38
3.5.1 Dimension DeSI@N....ccccovueeirceriereneiteiee ettt aesseteese s e seennens 88
3.5.2 Breakout-boxX COMPONENLS........cccciieiemuieieinceiereeceneerecesenteestemenese e e e e eeseees 91
3.5.2.1 POWEL SUPPLY ..eeeeememieeicee ettt ettt e st e 91
3.5.2.2 LED Display CIFCUIt......c.ooeeriiiieirceeieeeceeee e e ceeeees s e e 91
3.5.2.3 Discrete Input SWItChEScooeeriiicieee et 92
3.5.2.4 Internal Circuit BOard...........ccoeiiiniieeeeeeee et 93
3.5.2.5 COMMECIOTSouneceeicnrieiriieencicceneeenee et e ete st aeseeese e sesseesetese s ese s e ssersanne 96
3.5.2.6 CaBIES ettt ne e 97
CHAPTER 4 98
4.1 SOFTWARE REQUIREMENTS ...ueumiiieeeiretiectceeeeeeeeeeeeeseeessessesseseeneeesssnsseasenanasaeases 98
4.2 DTB REALIZATION..c.uo ittt eoecmentene e e e seae st sttt s s s s e neen 99
4.2.1 DeVICe DIIVEL LaYer....uceeieeieeeietrieeeeceetetete et 101
4.2.2 Dynamical Link Library Layerc..ccoooioiimeiomieeeeeeeeeeee e 101
4.2.3 Application Layer.......cceeceereerereeeieeeeeeeceee et e nean 102
4.2.3.1 Signal Process ModUIEoomiieiiciieeeeeeeceeeeee e 102
4.2.3.2 GUIMOQUIE.......ooieeneeceeeeee ettt ee e enae e eaenaas 102
4.2.3.3 Simulation Algorithm Module..............c.o.cociiiiiiiiiiieeeeee. 103

4.3 SOFTWARE DEVELOPMENT EXAMPLESccooiiuimiiiiiieietececeee e 103

vii

CHAPTERSS5

CHAPTER 6

REFERENCES
APPENDIX

4.3.1 ARINC Channel Switch GUI......ccoo e
4.3.1.1 INTOAUCHIONceeeeeeeceeceeeceeeeeeeeeeeecereeseee e e e e eesas e emseseemseenescanaees
4.3.1.2 Software ArchiteCture.............eoceeeeoceeeneeceeeeecte e ee e e seaes
4.3.1.3 Software COMPONENLS........cocomrecrmirtieiteceneneeeeeeneeeeeseeseeseesnneeeeseeesees

4.3.2 ARINC /O Configuration Management.............ccceoeeeeeereeeeemeeeemeenenesenenees
4.3.2.1 Class Arinc429Channelooeeeeereieeeeeeeeieeeeeeeeeeeeee e eeeneas
4.3.2.2 Class ArNCA2IDEVICEuueeeeeecerreeeeeeeeeeeeeeeeeeeeeeeeesee e eeeeeeeeeeeeeeenaaeaeeen
4.3.2.3 Class AriNCA29TCBi......ooueeeeeeeeeeee et s e e e
4.3.2.4 Class ArinC429RCBo.eeeeeeeecceeeeeeee et enee s
4.3.2.5 Class DTBPIOPEIIEScccceeeeemmemeeimeeeeeceeente et cecese e e neene
4.3.2.6 Class DTBArNCIOThread........ccceeeeoeemieeeeeeeeeeeeeeee e

5.1 FIRST STAGE: LOOP-BACK TEST ..uuueeceeeeeeeeieeteeeeaceeeeeessssseesssssesassseesesssssssnnnnns
5.2 SECOND STAGE: LNAYV TEST weeneeeiieeceeeeeeeteetoteeeeeeee e esesasesasseessnnnesamnnes
5.3 THIRD STAGE: VIN AV TEST et eeeeeeeeeeeeeeeetescteeereeeeeesesassessssesesssssessssnsnnsnnns

6.1 BACKGROUND REVIEWcooueeiiiieeeenineeenmeeeeeeeeeeeeeeeeeeeeeesssseeeeesemeeeessneseeseaaennne
6.2 HARDWARE SUMMARY & DISCUSSION.....ceeereimereeemeeereeririeeeeeeeemeaeesseseseeneeeens
6.3 SOFTWARE SUMMARY & DISCUSSIONceeeeereereeeereeeeerreeseeeeeeesseenseesnesseenrenes
6.4 FUTURE WORK ..c.cooettieeteeeeeeeeeeeeeeeeeeeeeseneaeaessesnssessssssseseessmesesannmemasaeeeaneneeaeeens
6.4.1 Breakout bOX MOIfICAtION ...oooeeeeeneeeeeeeeeeeeeceeee et eeeeeeeeeeeeeeeaeene
6.4.2 Software Development............c.oeeeeeereccrnnencineee et
6.4.3 TeSUNZ ASPECES ..oeueeieieiecereeeerieeeseeente e et teaeesessessssesessesseesseseeabeeseeseeneesses
6.5 CONCLUDING REMARKSooteeeeeenreeeennrerreeeeeeeemeeeeneeesseestesseesnesseeoeseseeseeeseeeeesen

A, FSBS_DEV.CFG” FILE cutiiieeieietieeeee e e rcteiee et sesesesssene st s s e e e e e eaeeneenns
B FSBSAG29.INI” FILE..uouoeiiieeceeeeecetreee e veee e e te et e e e e e s oo s eesen e s e seseaennee
C. ARINC LABEL PROPERTY FILE .ot e e aeeeeenee et seeeeeee
D. BREAKOUT BOX WIRING TABLEucoeteiiiiiieeecteeeeteeeeeeeeeeent et e meeeeeeeaeee oo e enmeanes
E. ARINC OUTPUT WORDSeuttienteieeeceeeeeeeerneeeeersresesessssssseeseeessessseseneeeesaenesanesees
F. DETAILED ARINC WORD (LABEL 001) DESCRIPTIONcoceueueurrrrrimenrenrerinreneeneenns
G. GPS WITH RAIM ...ceeeeeeeeeeeeeeeee e eeeeeee e ee s e e e s etesseeseeseee st eseeeesane
H. NAVIGATION TERMINOLOGY DEFINITIONS ...eeeeereeerreemreeneiirteeseseeeeneesseseseasaneeeas
[. PCI- 6025E BLOCK DIAGRAM.......oomeeeirereeeeimeeecteete e et et ee e see e s e nenne s

viil

FIGURE 23:

FIGURE 24:

FIGURE 25:

FIGURE 26:

FIGURE 27:

FIGURE 28:

FIGURE 29:

FIGURE 30:

FIGURE31:

FIGURE 32:

FIGURE 33:

FIGURE 34:

FIGURE 35:

FIGURE 36:

FIGURE 37:

FIGURE 38:

FIGURE 39:

FIGURE 40:

FIGURE41:

FIGURE 42:

FIGURE 43:

FIGURE 44:

FIGURE 45:

ANALOG OUTPUT CONNECTORS -...ooiictreinreeennrmerieesesteseeceesasesaeenssasnecsses 72
DISCRETE I/O CONNECTIONS BLOCK DIAGRAMoomiiiiiiciiiieeeeceeeeneee 74
DIO LiNE CONFIGURED FOR HIGH DIO POWER-UP STATE......ccceeeeeecrccenens 75
NAVIGATION RELATIONSHIPSconoieeeeeeerrenncnimieieeceseeteseeseesenseesseesoecennes 79
GPS APPROACHeeeeeeieeeceeeeeeeeeeeaceeecessssesmee e s e s sesaeseessasstesesenesansesnes 84
CDU FRONT PANEL .oeeeeeeeeeeeeeeccceree st et es et essne e ennes 87
BREAKOUT-BOX OVERVIEW.....o..uniinnrieeencmccenneiesetetieeetseesceee e seeessesenennsanes 89
LED DISPLAY CIRCUIT «eveeeeeererieeieeenreeecescseessmesnssssesesesesnesmeeseesseesseessesseness 92
DISCRETE INPUT SWITCH -.eouininteiceeecetceceeeessesse e seese e csescenensensens 93
LOGIC CONVERSION (5 V TO28 V).t s 93
SIMPLIFIED LOGIC CONVERSION CIRCUIT «cceenmmiinneiinreiiircecseeneeeesenneeseasenes 94
LOGIC CONVERSION (28V TO SV) ..ttt e ea s 95
VOLTAGE REGULATORoeiiiiniereceieececessetee ettt sses oo enn e es 96
BLOCK DIAGRAM OF DTB SOFTWARE INTEGRATIONccovrmiiniiiniiniinneenees 100
Layout oF THE ARINC CHANNEL BUS SWITCH GUI........cocoocociiiinnnnen. 105
LIST BOX CONTROL BLOCK DIAGRAM....covmmiiieeieieie e 105
FLOW CHART OF CHANNEL SWITCH..c..evericiriieinrneniieniennisieteenacensessseeeanes 106
LNAYV TEST BLOCK DIAGRAMoiiieciiiiiieteeieenteeceeceercre e 115
FLIGHT PLAN ALONG LEGS (WAYPOINTS) «eeeeetieennerrireereeeetnrneeseeseeeeeeeeas 116
LNAV OFF STATUS ..ottt eeseeer e ensst st eesnt e e e enee e 117
LNAV ON STATUS netiiieieetceteeeceeeeeeesene st e s sesessssassnesens 118
LNAV COMPLETED ...oouuieienininiecteeeeeeesseeceesesseestesteseeseeesesesesnenessemeensennanacs 119
COMPONENTS OF APPROACH/L.ANDING PHASE (SIDE VIEW)....cccooeteueucrencnne 120

LIST OF FIGURES

FIGURE 1: BLOCK DIAGRAM OF VOR RECEIVER.......cooirirencecceeenereecteeeeeseceeneanes 6
FIGURE 2: DME OPERATION ..eueneiieicennieiiee e teneseeceescenaceesseese caseesms e s senssensnesst e saeanneanans 7
FIGURE 3: FLIGHT MANAGEMENT SYSTEM ...coiiiiiiiiicetaneeeceneeesaesessesacee e aesnensensnmessnrenns 11
FIGURE 4: CONTROL DISPLAY UNIT (CDU) oot 12
FIGURE 5: HARDWARE COMPONENTS OF DTB ...conniiee e, 17
FIGURE 6: HARDWARE BLOCK DIAGRAM OF DTB ..ot 18
FIGURE 7: SIMULATOR REAL TIME SOFTWARE OVERVIEWcccoiiiiiiiiaiircinecnnceseceeneenen 19
FIGURE 8: DTBEXECUTIVE COMPONENTS....cccunteteetereaerereeeeseeeestoneceeesseessecssnnessessssnnessnse 22
FIGURE 9: SIMULATION CONTROL GUT ..ot 26
FIGURE 10: A429-PC BLOCK DIAGRAM ...coimiieniiiicieieeteeceete e se e e eeanen 29
FIGURE 11: STAR TOPOLOGY FOR LRU WIRING.....ooriteiicreeieceireenenmecic e 31
FIGURE 12: BuS DROP TOPOLOGY FOR LRU WIRING.....cccuteeireeeciereieccecreeeeencceeeecenen. 31
FIGURE 13: A429-PC16 MEMORY MAP (DEVICE 1) ...uuoneiiiiieecetecree e 34
FIGURE 14: SOFTWARE CONTROL REGISTERS.....coccteetrnieeeceecenncententeresesmnessesnenecevvennes 35
FIGURE 15: TRANSMIT CONTROL BLOCK STRUCTUREueeeriiriieieennenrenereeeereeecne e 36
FIGURE 16: TRANSMIT COMMAND BLOCK DATA STRUCTURE......cccceeutmrereminieinienccnnennes 41
FIGURE 17: RECEIVE CONTROL BLOCK STRUCTURE......cicruieeeeieererereenencneneeeeeseneeennneeeneans 46
FIGURE 18: PARAMETERS RELATIONSHIP OF A TRANSMITTERuueotrueereccncvennenninicecneeene 52
FIGURE 19: 32-BIT ARINC WORD.....cotiioeieiiieecneeecteecteneeeecesces s e s ssaneeesanens 35
FIGURE 20: BASE I/0O ADDRESS 390H, TOP VIEW OF PC16 AS INSTALLEDccoereveuennnen. 63
FIGURE 21: [/O CONNECTOR PIN ASSIGNMENT FOR THE PCI-6025E...........ccoiiiiis, 69
FIGURE 22: PGIA wiTH RSE CONFIGURATION FOR FLOATING SIGNAL SOURCE................ 71

ix

FIGURE 46: GPS WITH RAIM ...t eeeeeeeeeeeeeeeeeseeeee s eneaaneaen 122

FIGURE 47: ENTERING GPS APPROACH ZONE ... eeeevsesensseesessans 123

LIST OF TABLES

TABLE 12 TYPE CODES......otmieeieecececeienntee et eeesereesseesssseeseeeesesesnesessesssesssss s sensennseneen 42
TABLE 2: DATA STORAGE STRUCTUREcueteeeteeecerenieeneeeieeeeeseeseereessesssssessseseeensenenenses 45
TABLE 3: DEFINITION OF TRANSMITTER PARAMETERSocvomitieieceeeeeeeeneeeeeseeneeeseeeneenens 53
TABLE 4: LABEL CONVERSION ...cueitiieirieeceece e ceneeteecenteeetsese s senesseseeseesnsnsesmnessseneenseses 56
TABLE 5: GENERALIZED BNR WORD FORMAT .. 61
TABLE 6: CONVERTING AN ENGINEERING VALUE TO ARINC WORD (BNR FORMAT)...... 61
TABLE 7: GENERALIZED BCD WORD FORMAT ..coecmiiiieieeeececreeeeeeeeee e eeeeenee e 61
TABLE 8: CONVERTING AN ENGINEERING VALUE TO ARINC WORD (BCD FORMAT)...... 61
TABLE 9: REQUIRED .CPP FILES ...uuciiiitiiieeeceeceee ettt s se e neensennenee 64
TABLE 10: REQUIRED .H FILES ..ottt ee e 64
TABLE 11: REQUIRED FUNCTIONS FOR INITIALIZINGuvveiieiieeeeceeeeeeeeeeeeeeeeeeeeeesseneenenes 65
TABLE 12: PCI-6025E ANALOG INPUT MODESeueeuiemieiiieieteieceeee e eeeeneeeeseennennenes 68
TABLE 13: PCI-6025E MEASUREMENT PRECISION ...oocooiiniiiiiiieneeeneecerveeeeeeeeeeve e e enees 70
TABLE 14: REQUIRED NAVIGATION PERFORMANCEcoooimmtieeneieeeeeeeeeeeeeeeeeeeeeeeeeeeeanas 86
TABLE 15: FUNCTIONS IN CLASS GUIIDLG ..eeeiiiiiieeeeeeeeceeeee e 107
TABLE 16: FUNCTIONS OF CLASS ARINC429CHANNEL.....ccuetemirerreteeeeeceeeveeeeeneaeesenesenns 109
TABLE 17: FUNCTIONS OF CLASS ARINC429DEVICEucvoieteinererecieveeneeeeesasessasnnnens 110
TABLE 18: FUNCTIONS OF CLASS ARINC429TCBi.....ooieeeeeeeceeree e 111
TABLE 19: FUNCTIONS OF CLASS ARINC429RCBccooiiiiitiiieecteee e eseeeeene 111
TABLE 20: FUNCTIONS OF CLASS DTBPROPERTIESccouerietrmirticteceieeeeeeeeeevesesenenaenns 112
TABLE 21: FUNCTIONS OF CLASS DTBARINCIOTHREADcooviicieneeeeceeeeeeeeae 113

x1i

AGL

AEEC

AHRS

AIGND

AISENSE

ANP

ARINC

ATC

AT™M

CDU

CIC

CMA

CMC

CRS

DA

DIO

DLL

DME

NOMENCLATURE

Approach/Terminal Control

Air Data Computer

Automatic Direction Finder

Above Ground Level

Airlines Electronic Engineering Committee
Attitude Horizon Reference System
Analog Input Ground

Analog Input Sense

Actual Navigation Performance
Aeronautical Radio Incorporation

Air Traffic Control

Air Traffic Management

Control Display Unit

Center for Industrial Control of Concordia University
Canadian Marconi Avionics

CMC Electronics Canada Inc.

Course to Waypoint

Drift Angle

Discrete [nput / Output

Dynamic Link Library

Distance-measuring Equipment

Xili

D/R - Dead Reckoning

DSP - Digital Signal Processor

DTB - Dynamic Test Bed

DTG - Distance to Go

EPU - Estimate of Position Uncertainty
ETA - Estimated Time of Arrival

FAF - Final Approach Fix

FLSIM - Flight Simulator

FMC - Flight Management Computer
FMS - Flight Management System
FMU - Flight Management Unit

FOM - Figure of Merit

GIAL - GPS Integrity Alarm Limit

GPS - Global Positioning System

GS - Ground Speed

GUI - Graphic User Interface

HDG - Heading

HDOP - Horizontal Dilution of Precision
HIL - Horizontal Integrity Limit

HOL - Higher Order Language

HSI - Horizontal Situation Indicator
IAS - Indicated Air Speed

ICAO - [nternational Civil Aviation Organization

Xiv

ILS

INS

IRS

LNAV

LRU

MCP

MFC

NM /nm

NRSE

OOP

OS

PGIA

PPI

RAIM

RSE

RTA

SDI

SID

SPDT

SSM

STAR

Instrument Landing System

Inertial Navigation System

[nertial Reference Sensor

Lateral Navigation

Line Replace Unit

Missed Approach Point

Mode Control Panel

Microsoft Foundation Classes

Nautical Mile, 1 nm = 1.853 km
Non-referenced Single-ended
Object-oriented Programming Language
Operating System

Programmable Gain Instrumentation Amplifier
Programmable Peripheral Interface
Receiver Autonomous Integrity Monitoring
Required Navigation Performance
Referenced Single-ended

Required Time of Arrival

Source / Destination Identifier

Standard Instrument Departure
Single-pole Single-throw

Sign / Status Matrix

Standard Terminal Arrival Routes

XV

TAS

TCP/TP

TK

TOGA

VNAV

VOR

VPI

WS

XTK

ZIF

True Air Speed

Transmission Control Protocol / Internet Protocol
Ground Track Angle

Track Angle Error

Take off Go Around

Very High Frequency

Vertical Navigation

VHF Omni-directional Range System
Virtual Prototypes Incorporation
Wind Direction

Wind Speed

Cross-track Distance

Zero Insertion Force

xXvi

CHAPTER 1

INTRODUCTION
1.1 Background of Navigation Technology

Navigation is the determination of following a predetermined path of a moving
vehicle. The three components of position and the three components of velocity make up
a six-component state vector that fully describes the translational motion of the vehicle.
Navigation data are usually sent to other onboard sub-systems. for example, to the flight
control, flight management. engine control, communication control and crews displays
computers. Navigation sensors may be located in the vehicle, in another vehicle. on the
ground, or in air space. When the state vector is measured and calculated onboard of a
moving vehicle, the process is called navigation process.

Essentially, aircraft instruments are extensions of a pilot’s senses, refinements of
his/her vision and other sensory perceptions that supply the information he or she needs
to feel at home in the sky at all times. Avionics (shorthand for aviation electronics) and
instrumentation are commonly used terms describing those systems, equipment, and
instruments that enable the pilot to control and monitor the performance of the aircraft
and that provide vital information to the ground-based air traffic control system. Today’s
advancing technology, with its increase in automation and function integration, suggests
that these terms might have become obsolete. Further, future aircraft development.
directed toward even greater integration of the aircraft’s systems, will fundamentally

change the role of the pilot within this environment [1].

In the past, much emphasis was placed on acquiring and displaying to the pilot an
ever-increasing amount of information required during a flight. For example, during
takeoff and landing, the pilot reviews his checklist, constantly scans his instruments,
especially noting the attitude of the aircraft, rate of climb (rate of descent when landing),
airspeed, and engine functions, maintains direction, looks outside to avoid collisions,
maintains communication with the Approach/Terminal Control {ACT) when necessary,
and monitors a host of other parameters. All these necessary actions result in increased
workload by forcing the pilot to evaluate highly complex sets of input data, decide upon
courses of action, and then implement these actions in minimal times. Such situations are
seen as undesirable since they increase the pilot’s chances of making errors, consequently
reducing the intelligent, computer-aided decision-making system of the modern aircraft,
which works cooperatively with the pilot in order to ensure the safety of the aircraft and
its crew and passengers.

The role of the pilot may now and in the future be viewed as that of a flight
manager, one who monitors the aircraft’s performance but maintains override control of
all automated and/or integrated functions associated with the aircraft. A more
appropriate and perhaps more descriptive term for this broad area of concern is “flight
management.”

A flight management system, in the context of this definition, comprises the
sensors. displays, and associated subsystems used to process and record flight
information. The flight information includes data for status. control, communications.
navigation, propulsion. landing, alerting, self-protection, armament support systems (in

military aircraft), and other flight parameters involved in the air and on the ground. The

flight management system, working as a synergistic unit, processes and records the data

as well as integrates them, working in consonance with the pilot’s knowledge.

experience, and judgment.

1.1.1 Flight Instruments

By the early 1930s, the developing aviation community considered as being
essential three general groups of: 1) flight instruments (such as the pitot-static tube) to
indicate the aircraft’s attitude, 2) navigation instruments (such as compass and autopilot)
to inform the pilot of his position in air space, and 3) engine and airframe instruments
(such as fuel flow meter and tachometer) to indicate how the aircraft is operating.

Even though some systems are no longer representative of modern technology, a
brief description of the systems will be presented here due to two reasons. First. a belief
that by knowing the line of development from past to present, it would be far easier to
comprehend that from present to future. Second, airport systems are built to extremely
high standards and are consequently very expensive. Some old equipment is still in

operation, meeting the original specifications and still performing an excellent job.

1.1.2 Navigation Systems

Navigation systems can be grouped into three branches termed airborne
navigation system, ground-based navigation system and space-based navigation system.

1.1.2.1 Airborne Navigation Systems [27]
A typical application of the airborne navigation system is the Inertial Navigation

System (INS). The early INS generally included a computer and a stable platform

composed of gyroscopes and accelerometers suspended in a gimbal arrangement. The
gyros, together with the computer, generated signals to maintain the platform’s
accelerometers in a level position with relation to the earth’s surface. In this way, they
accurately measured aircraft accelerations, which were then converted to velocities.
These velocities, when modified by the computer with appropriate corrections. provided
extremely accurate navigational information. In addition, the inertial platform provided
attitude outputs of roll, pitch, and platform heading as analog signals, which could be
used by other systems in the aircraft.

The conventional inertial navigation system, after an injection of initial position
information, is now capable of continuously and accurately updating displays of position.
ground speed, attitude, and heading. In addition, it provides guidance or steering data for
the autopilot and other flight instruments. However, the accuracy of the inertial
navigation system will degrade over a period of time in flight, and therefore the system
must be periodically updated.

The accelerometer is the basic measuring instrument of the inertial navigation
system. Accelerometers mounted at right angles to one another within the gimbal system
of a vertical gyro can measure the acceleration of the aircraft horizontally and vertically.
While acceleration by itself is of little importance, its integration with time results in a
measure of aircraft velocity. A second integration provides distance form the aircraft’s
take-off point. The accelerometer is basically a pendulum device that swings from its
null position when the aircraft accelerates. A signal-pickoff device determines how far
the pendulum has moved. and the resultant signal is sent to an amplifier. The signal from

the amplifier activates a torquer in the accelerometer that restores the pendulum to the

null position. The amount of signal (electrical current) sent to the torquer is a function of

the aircraft’s acceleration.
1.1.2.2 Ground-based Navigation Systems [28]

Typical applications of ground-based navigation systems are the VHF Omni-
directional Range System (VOR) and Distance-measuring Equipment (DME).

VOR is the currently International Civil Aviation Organization (ICAO)-approved
short-distance navigation system. It may be visualized as a huge wheel, the spokes of
which are courses extending from the hub out to line-of-sight distance around the station.
Ideally, an infinite number of these spokes are available to the pilot for his selection [2].
The courses are perfectly straight and pass through a central point at the hub, with each
course in the form of a vertical plane.

Operation of the VOR is based on comparing the phase difference between two 30
Hz signals transmitted from a ground station in the 112-118 MHz frequency band and
received on a VHF receiver in the aircraft. One transmitted signal R (the reference-phase
signal) has a constant phase regardless of the position of the aircraft. The phase of the
second transmitted signal V (the variable-phase signal) is a function of the bearing of the
aircraft from the transmitting station. The two signals are in phase when the receiving
position is due north (magnetic) from the facility. For any other bearing, the phase
difference between the two signals is equal to the bearing of the aircraft from the ground
station.

Basically, the VOR ground transmitter facility has two antenna systems. One. the
“carrier antenna,” radiates a radio-frequency signal with an omni-directional pattern (in
the horizontal plane), amplitude-modulated (AM) with a 9,960 Hz subcarrier, which is in

turn frequency-modulated (FM) at 30 Hz (the reference-phase signal). This carrier is also

5

simultaneously modulated, either with the tone identification from the facility. or by
voice for communication purposes. The second antenna system, the “sideband antenna,’
when combined with the first, produces a space modulation rotation at 30 Hz, the
variable-phase signal. A monitoring system checks the station output continuously and
automatically and, in the event of transmitter trouble, actuates warning alarms.

[n the aircraft, the composite signal is received on a conventional VHF receiver.
After demodulation, the two audio signals are separated by suitable filters (30 Hz and
9,960 Hz), and the 9,960 Hz subcarrier is passed through a discriminator to recover the
30 Hz reference signal. The phase difference between the two 30 Hz signals is then
measured to determine the bearing of the receiving point from the facility. The principle

of VOR receiver can also be represented in Figure 1.

VOR signal input

RECEIVER R 9960 Hz FREQUENCY
—» —— LIMITER [——P
112-118 MHz FILTER DISCRIMINATOR
AM \% 30 Hz PHASE 30 Hz
—— -
DETECTOR FILTER COMPARATOR FILTER

BEARING

INDICATOR

Figure 1: Block Diagram of VOR Receiver

Distance-measuring Equipment (DME) [5] is a system combining ground-based
and airborne equipment to measure the distance of the aircraft from the ground facility.
DME is used primarily for fixing an aircraft’s position, approaching an airport, avoiding
protected air or ground space, holding at a given position, or figuring ground speed. The
DME ground station is usually co-located with other navigation or distance-measuring

systems. DME operating principle is shown in Figure 2.

Ranging Distance
circuit [reading

A

Airborne

interrogator -

Transmitter Receiver
a
» > Aircraft skin
Antenna
Antenna Pulse pairs
| < Ground
l station
Transmitter Receiver

T

Figure 2: DME Operation

The airborne DME consists of a transmitter-receiver, a control unit, a distance
indicator, and an antenna. The ground-based portion of the DME system consists of a
transmitter-receiver and an antenna, but operates only on a single frequency.

The transmitter section of the airborne equipment contains the circuits to generate.
amplify, and transmit interrogating pulse pairs. The receiver section contains the circuits
required to receive, amplify, and decode the received reply pulses. Computation circuits
then determine the validity of the reply pulses and calculate the distance by comparing
the elapsed time between transmission and reception.

1.1.2.2.1 Space-based Navigation Systems [29]

Global Positioning System (GPS) has been a worldwide navigational aid with an
accuracy of a few meters. The basic principle is that a number of satellites in orbit each
radiate a series of precisely timed radio signals. The user notes the time at which the
signals are received and from the delay of each due to transmit time and knowledge of the
position of the satellite at the moment of transmission, calculates the distance from each
and thus the position.

GPS can achieve position accuracy of 16 meters in three dimensions, the correct
time within one-millionth of a second, and the user’s velocity to the nearest one-tenth of a
meter per second. GPS employs a network of 21 satellites (plus 3 operational spares) in
six orbital planes, each broadcasting precise time and location information. The satellites
operated in circular 20,200 km orbits at an inclination angle of 55 degrees. and with a 12
hour period. They are precisely arranged so that a minimum of 3 satellitcs is in view at
all times at any single location in the world.

GPS consists of three segments: the Space Segment, a constellation of satellites

circling the earth; the Control Segment, a series of ground stations that monitor the

8

satellites and transmit corrected position and time data to the satellites; and the User
Segment, all sea, land, and air equipment that receive the satellite signals and calculate
user position, time, and velocity. Each satellite transmits two I-band signals (1,575.42
and 1,227.6 MHz). Both signals contain data that include satellite locations: thus, the
range to the satellite can be determined with the user’s receiver by comparing the time
delay between satellites. The precise latitude, longitude, altitude, velocity. and time can
therefore be determined for an unlimited number of users.

When the GPS is turned on, the pilot enters an estimate of his present position,
velocity, and time. The GPS equipment then begins to search for and track satellites.
The data from the satellite signals identifies the satellite number, locates the satellite in
space, and establishes system time. The GPS receiver then calculates the range to the
satellite by measuring the time of receipt of the signal and multiplying that time by the
speed of propagation of a radio signal. This calculation locates the user on a sphere of
radius R1, whose center is the transmitting satellite. With the range of one satellite
known, a range measurement is made to a second satellite to define a second sphere of
range R2. In a like manner, R3 is then determined by measuring the range to a third
satellite. Using the three range measurements and elementary geometry, the GPS
receiver determines the user’s precise position in terms of latitude, longitude. and
altitude. Range to a fourth satellite is required to determine the time-offset from the
user’s crystal clock with respect to the GPS atomic time standard. The velocity

measurement is determined by counting the Doppler shift from the GPS center frequency.

The effects of GPS on future generations of air traffic management systems and
on civil and military users of airspace, both domestic and international, will undoubtedly

be quite substantial.

1.2 Flight Management System

Flight management system (FMS) has three specific capabilities relevant to Air
Traffic Management (ATM) [3]. It can guide the aircraft accurately along a
predetermined path defined by a sequence of two-dimensional (latitude and longitude) or
three-dimensional (adding altitude) waypoints. The FMS also can minimize the cost of
the flight by selecting optimum speeds and/or altitudes along the predetermined path.
The optimization is based on a pilot-selected cost index that weighs fuel cost relative to
flight time cost. When the cost of flight time is weighted heavily, the FMS will complete
the trip more quickly, burning more fuel in the process. Finally, the FMS has a required
time of arrival (or 4D navigation) capability that assures the aircraft will arrive at selected
waypoints within small time windows (e.g., within ten seconds of the prescribed times).

Extensive data bases are resident in the FMS, as well as the current flight plan and
the wind velocities and air temperatures expected along the route of flight. The FMS
provides pitch, steering, and autothrottle commands to the aircraft guidance systems, as
well as essential flight data, including estimated times of arrival at waypoints, fuel
remaining and fuel flow, current position and speed, and current winds. The FMS
integrates the various avionic subsystems, including the navigation sensors (Figure 3). It
will automatically tune VOR/DME receivers according to the position of the aircraft and

the navigation aid frequencies stored in the database.

10

Flight control and Nav
Thrust management Map
computer Display
Data storage unit Control Sensors
— A/C performance model display — GPS
— Navaids unit — DME
— Airways —~ VOR
— Airports and runways — INS

— Routes, SIDs, STARs ‘ FMS — ILS

— Procedures

— Flight plans

— Route winds

Fuel management Air Data Avionics
system Computer network

Figure 3: Flight management system [3]

Modern civil transport airplanes are often equipped with a Flight Management
Computer (FMC), typically part of the Flight Management System (FMS). which
optimizes the performance and/or flight path of the aircraft in terms of some parameter
such as flight time or the plane fuel cost. The most common interface between the crew
and the FMC is a Control Display Unit (CDU) shown in Figure 4. In addition to the
alphanumeric keyboard, there are special-purpose keys that support the flight-planning
and management processes. There are typically three CDUs in the aisle stand of the
cockpit, one each for the captain and first officer in the front of the aisle stand, and one at
the rear of the aisle stand intended primarily for use by maintenance personnel to operate

the on-board maintenance system. The third CDU also is a backup for the other two.

11

A AEANER I FOET R Pl T TUE
cMC suTPs MAYZ5-JUNZ1./85 —— .
S LUINT
MO HOROR R OR R OROR K — RO R OK O
N I N S b Ty NI
6Hl1414/7-00b6-01

<IMIT FPEF

L el e A e bttt A A NTLZ, L . i A R o
T
IV
rdhy
PR
-

(G

Figure 4: Control display unit (CDU) [30]

12

1.3 Test Bed Review

Over the last 10 years, hundreds of hours of flight simulation have been expended
in the US, Canada and Europe in efforts to revise the handling quality requirements for
flight management systems. I[n the same time. very few flight simulation experiments
addressing handling qualities at FMS dynamic interface have been reported. There has
been no significant use of flight simulation of the dynamic interface in test and evaluation
programs [21]. A NASA Dryden Flight Research Center program explored a practical
application of real-time adaptive configuration optimization for enhanced transport
performance on an L-1011 (Lockheed Corporation, Burbank, California) aircraft in 1998.
This adaptive configuration optimization system is better than benefits available with a
preprogrammed flight management system [31]. However, the testing was very expensive
since they were all performed in actual aircraft.

Most of dynamic interfaces are software-based. As an example, the mobile
spaceplane simulation facility being developed for Phillips Laboratory by Boeing
provides a test bed for assessing operations before prototype vehicles and their support
systems are built [22]. Also, Boeing reported the project “Open Control Platform for
Uninhabited Air Vehicles” in 2001. The Open Control Platform (OCP) will be integrated
with popular and useful hybrid system control design tools such as Matlab/Simulink. and
Ptolemy II to enable the rapid design, simulation, and the test of reliable embedded
software for unmanned air vehicles [32]. This will lower cost and reduce effort as
operations-related problems are uncovered and resolved through simulation before
hardware prototypes are built. However, this design process is not an “end-to-end™

process since there is no integration of the avionics hardware.

13

CMC Electronics Canada Incorporation, as the world leader of FMS design, was
promoting a project of dynamic test bed (DTB) to reach new stage in order to get more
credibility and replicate the real world. This DTB will have the capability to interface
and communicate between the high-fidelity six-degree-of-freedom flight simulator and
the CMA-900 flight management system of real time. DTB as one of the important steps
in FMS development is its testing in the dynamic environment of the specific aircraft
type. While such testing is mostly performed in the actual aircraft. a more economical
approach would be carry out the bulk of the testing using a laboratory-based simulated
environment or test bed, for which the basis is a reconfigurable, real-time flight dynamic
model. This distributed approach to the development of FMS is based on a modular
concept; simulator modules are allocated to individuals PCs, which communicate via
Ethernet packets transmitted at a certain rate. Similar approach is reported by a few
research organizations throughout the world including the engineering simulator in

Cranfield University, College of Aeronautics, UK [33].

1.4 Thesis Objectives

This thesis is written for the navigation engineer, whether user or designer, who is
concerned with the practical application of newly developed FMS. It is also the intention
of the author to provide enough information for future students to carry on similar task in
this field.

This thesis will focus on the author’s contribution to the joint project sponsored
by the CMC Electronics Canada Inc.(CMC) and the Center for Industrial Control (CIC)

of Concordia University — Dynamic Test Bed for Flight Management System. including

14

the description of the real-time software architecture design. system software
implementation and breakout box design. The author will describe not only procedures
followed in carrying out the project, but also provide salient insight for each component
of the test bench, particularly from the hardware point of view.

The first chapter presents a historical overview of navigation technology relative
to the DTB and its mission for civil and military aircraft. Chapter 2 gives the whole
picture for the DTB by means of purpose of DTB, hardware components and software
architecture for the system. Chapter 3 continues to explore the detailed explanation of
the hardware components by means of ARINC 429-PC16 card interfacing, PCI-6025E
card interfacing, breakout box design, and the general principles and application of the
FMS. Chapter 4 discusses some software assistant tools to monitor flight simulation
parameters in real run time performance. Chapter 5 covers all stages for verifying the
system by means of loop-back, Lateral Navigation (LNAV) and Vertical Navigation
(VNAV). The last chapter summarizes all work along the DTB and provides some

recommendation for the future work of the coming phase.

CHAPTER 2

DYNAMIC TEST BED OVERVIEW

2.1 Purpose of the Dynamic Test Bed
The primary function of DTB is to evaluate and test the dynamic performance of
the CMA-900 Flight Management System (FMS). The DTB has as core software (VPI
FLSIM version 7) of a flight simulator (B737-200) model to simulate with all interfaces
of the FMS, including a flight model, environment model, Air Data Computers (ADC)
model, GPS model, etc. DTB is in effect a simplified aircraft simulator, which recreates
the flight simulation signals for FMS. The FMS will act as if it is in an aircraft.
“Dynamic” means all signals changing simultaneously as they do in a real aircraft.
Therefore, DTB gives testing of the FMS in a real-time environment and provides a
useful tool to develop the new VNAV capabilities on CMA-900 FMS for CMC.
In order to complete the tasks, DTB provides the following functions:
a) Evaluation of the CMA-900 Lateral (LNAV) and Vertical Navigation (VNAYV)
accuracy requirements.
b) Closed loop testing of the FMS for the development, verification and demonstration
of LNAV and VNAY requirements.
c) Crew interface evaluation in a dynamic simulation mode.

d) Gradual introduction of DTB as a certificate tool for Transport Canada requirements.

16

2.2 Hardware Components

The DTB consists of two PC computers: the Simulation PC and the Interface PC.
The Simulation PC holds the simulation software (FLSIM 7.0) which is provided by
Visual Prototypes Inc. (VPI). The Interface PC holds the two interface cards A429-PC16
and PCI-6025E, that takes the flight information generated by the simulation PC and
sends it to the FMS in the ARINC and discrete protocol. respectively. The general layout

of hardware components is shown in Figure 5.

CcDU
FMU1 FMUZ FMU
202 202 402

A429, discrete
interface

Simulation ¢ Ethernet Interface
PC Link I PC

1 1 . |

Figure 5: Hardware components of DTB

Figure 5 shows that the DTB has the flexibility for interfacing two kinds of CMA-

900 FMS. Model 202, which was originally donated by CMC. has no VNAV

17

functionality and is used for initial testing at the Concordia Aerospace lab; model 402,
still under VNAV development but presently possesses Glide Slope functionality mode.
Hardware block diagram is shown in Figure 6. which offers more detailed
information about the hardware set-up. The DTB hardware includes two computers, one
A429-PC16 card, one PCI6025-E card, one breakout box and the cables to connect these
to each other and the FMS being simulated. The Simulation PC, with a network card
installed, performs most of the simulation and display tasks during execution of the
simulation. The Interface PC also has a network card to communicate with the
Simulation PC during the simulation, and it holds one ARINC429 card and one discrete

[/O card. The interface PC runs all interface software.

Simulation PC
Network card >
Interface PC Ja
Network card | Breakout | J5
Box
RZFCE et o 71| G

Figure 6: Hardware block diagram of DTB

18

J1, J2, J4, J5, J6 and J7 are connectors providing the interconnect points for all
wiring between the FMS and the DTB. The wiring within is semi-permanent, thus
making changes possible. Another connector J3 inside the breakout box simply provides

common joint (node) for all avionics.

2.3 Software Architecture
2.3.1 Simulation Software

The simulation software includes real time software, the operating system being
Windows NT 4 (work station) and the compiler is Microsoft Visual C++ (version 6.0).

The simulator software overview is shown in Figure 7.

Real time software , ,-Labels from interface PC
Command feedback

VPI FLSIM 7.0 l Custom autopilot "E !
(Real time model W—. interface model] FMU roll command

H 14
5 e Flight model | E
i {e Autopilot : - '
E model __[GPS model] : GPS interface labels !
i |* Environment Co :
; model o)
[+ Network i + [AHRS interface | !
; software _(AHRS model I L p > ol i
3 []
: k J o :
i b ' i
! _(ADC model] ' i ADC interface labels ;

' - ——— v ———— ———— ————

Figure 7: Simulator real time software overview

19

The real time software contains the core simulation software (VPI FLSIM model)

which includes the flight model, autopilot model. environment model and network

software. The network software bundles all interface labels, which contain all flight

performance information such as Heading and True Air Speed in ARINC words format.

and transfers them to and from the interface computer. The ARINC words format will be

presented in Section 3.1.8 in this thesis.

The custom autopilot interface model will act on commands from a Mode Control

Panel (MCP). Unlike an autopilot in a real aircraft. DTB has the following custom

autopilot modes:

Speed hold mode (selectable speed)

Heading hold mode (selectable heading)
Altitude hold (selectable altitude)

Vertical speed mode (selectable vertical speed)
LNAYV mode (roll command from a FMU)

VNAYV mode (vertical deviation from a FMU)

The GPS model takes basic aircraft position information and maps it into A429

words that are transmitted by the GPS.

The AHRS model receives information from the flight model and sends the True

Heading and Magnetic Heading to the FMU via A429 words.

The ADC model takes information from the flight model, the environment model

and the altimeter barometric settings and transmits A429 words in standard ADC format.

2.3.2 Interface PC Software
2.3.2.1 Synchronization Mechanism

For the system to implement synchronization, the basic concept of multithreaded
programming is introduced. A process is a running program that has its own memory,
file handles, and other system resources while a thread is an individual process that
contains independent execution paths. Threads are execution streams and form the basis
of multitasking [10]. That is to say, each program that runs in Windows has its own main
thread to launch the program, and which may also start additional threads. Each new
thread has its own procedures and executes the code in that procedures at the same time
that other threads are working. Threads are managed by the operating system, each
thread having its own stack. I[n other word, many threads can access the same global
variables, even a single function.

There are two kinds of threads in Windows, user interface threads and worker
threads. A user interface thread has windows and its own message loop which sends and
receives messages for user’s application. A worker thread has no windows, and therefore
it is relatively easier to achieve the synchronization between the FMS performance and
flight simulator reaction in DTB since all worker threads have the same characteristics.

In the system referred to in Figure 8, the main function defines an instance of the
DTBExecutiveThread first, all other working threads beginning in the order
DTBVPIIOThread, DTBArinclOThread, DTBVADIOThread and passing data to the
double buffered container. After performing their functions. they will stop until being
woken up at every 30 Hz period which is predefined from the flight simulator. At the

beginning of each cycle, the DTBExecutiveThread first copies everything from the

writable layer into the readable layer of the double buffered container, then it will wake
up the threads in a fixed order. The flags (logic TRUE or FALSE) in each thread are
used to synchronize all of the working threads in the double buffered container when

updated by the DTBExecutiveThread.

2.3.2.2 DTBExecutive Workspace

The Interface PC software takes all flight simulation information from the
Simulation PC via a network packet and transfers it to the interface cards smoothly in
real-time. This module controls the ARINC-429 and discrete information, the software
being put under the workspace of “DTBExecutive”. The design is described at the
Class/Object level and the architecture is Object Oriented. The software architecture
consists the executive workspace which runs on the Interface PC housing the [O cards,
and the VPI link & interface running on the Simulation PC along with the VPI flight
simulator. The “DTBExecutive” software structure can be seen in Figure 8. The solid

line format represents control signals; the dash line format is used to show data signals.

(DTBExecutive
L Thread)
[ARINCIO)
v Process
e 4 - J
v - ¢

DoubleBuffered | DIO IOThread
Container Process J Process

h N
~
.
~ ™~

VPIO
Process)

Figure 8: DTBExecutive Components

22

The main DTBEXxecutiveThread object is used to execute the rest of the objects in
the workspace of “DTBExecutive”. It runs periodically (at 30 Hz), and in each cycle of
execution, it invokes operations in the other objects of this component.

The [OThreadProcess object is a generalized interface that encapsulates the
general functionality that must be provided by every one of the [O card processes
including performing the IO, waiting to be awaken by the executive thread. and updating
the double buffered container data.

The ARINCIOProcess object implements all the operations needed to control.
transmit, and receive data to and from the ARINC 429 cards. The thread associated with
this object is triggered periodically to continue its execution by the Executive Thread
object. When it is triggered, the ARINCIOPProcess object performs the necessary
checking for available data in the ARINC buffers to be read, reads available data into the
double buffered container, and transmits data from the double buffered container to the
FMS via the ARINC channels.

The DIOProcess object implements all the operations needed to control. read. and
write digital and analog data from/to the National Instruments [O card. The thread
associated with this object is triggered periodically to continue its execution by the
Executive Thread object. On being triggered, the DIOProcess object performs
digital/analog read/write operations with the National Instrument card and updates the
corresponding fields in the double buffered container.

The VPIOProcess object is a TCP/IP client-server for communication with the
other component running on the VPI Simulation PC. The thread associated with this

object is triggered periodically to continue its execution by the Executive Thread object.

When it is triggered, the VPIOProcess object sends data from the double buffered
container to the VPI simulator and receives the data sent by the VPI simulator into the
double buffered container.

The DoubleBufferedContainer object implements a double-buffered system bus.
Double buffering enables access synchronization between the various threads in the
software architecture. The first buffering layer in this container is available at any time
for any thread to read data from while the second buffering layer is available for the other
threads to perform synchronized write operations into it [11]. The Executive Thread
periodically locks the two buffering layers and copies the second one into the first before
releasing the mutual exclusion lock. The purpose of double buffering is to cancel the
effect of the sequence of execution of the threads on the performance of the whole system
and to provide a standard synchronization mechanism according to a validated real-time

software design pattern.

23.3 Communication Tool

Visual C++ Transmission Control Protocol / Internet Protocol (TCP/IP) client-
server two—way communication module was designed for transferring data between the
Simulation PC and the interface PC. This is a 32-bit synchronous Winsock application
and thus supports multithreaded programming.

There are three classes in this module- the main class CblockingSocket. two
helper classes CsockAddr and ChlockingSocketException. The CblockingSocket was
designed for synchronous use in a worker thread, and embodies the major functionality of

the module. The CsockAddr achieves conversion between network byte order (big

endian) and host byte order (little endian). The CblockingSocketException handles the
exceptions on errors that occur and time-outs thrown by the CblockingSocket when

sending or receiving data [9] [46].

2.3.4 Graphic User Interface (GUI)

There are four major GUIs developed in the DTB, namely Simulation control,
ARINC labels, DIO and Channel Switch. The Simulation control GUI contains all
simulation control features such as reposition. freeze, recording and graphing, aircraft
flight controls settings and Automatic Flight Control systems. The feature of the MCP
GUI is presented in Figure 9. ARINC labels GUI is used to trace down the real time
performance of the simulation parameters in standard ARINC format and their
engineering values. DIO GUI is used to check up the status of the simulation discrete
signals. Channel Switch GUI is used to provide the flexibility of changing different
channel setting for the existing ARINC property file in the specific A429-PC 16 card.

The author has contributed to the development of the last three GUIs in the DTB

and the detailed description will be given in Chapter 4.

o
w

i

MCP REPOSITION/FREEZE
TagetAispeed| Taget Thust | TagaVss | i-""*m’g' i-“"‘g‘““m”’ Reposiion |
- 4547 1315 '
[250Knots [100% {1000 f/min | e Specd Kot Fesze |
TagtMach | Tagstathce | TagsHesdng| | [SO00T [250 Knots [T
| HesdngDeg) Wagpoint |
[04 [1000 ft [00Deg | . o CRL T see] e
| | [45.00 Deg. - | Dete] -
€ SpdMach ﬂ_l [0.0 Deg.
AT DATAACQUISITION
. . RECORD
| € SomceSeect _AuoTakeOF | . Duton(sec) Frequency (H2]
B v 1 | Recod | SwpRecond |

atidetiod | [vicns wav | 1] | savewpan |

3
—— AUTOPILOT 10

]15.0 Deg.

vs__ | way_ | [Headng 11 Deselect Seecteditems
| ¢ =

SURFACECONTROL———————| ' ~ &
. _PpseEN) | GewSetwel | Spokerse | | i~ FEme
‘ i
" fo. | [DOWN | e [P
: | FiePath andName |

ENVIRONMENT —
MSLTemp [lel Wind Speed (Knot] Aliude
VNAV SUBMODE STATUS

| | | —HLaeTa—

WP | ke s |] s |

I VDEV (Arspeed) [VDEV Mach)

I AispdHold (Theust] 1™ Mach Hold (Thust}
T VIS (Auspeed) [V/S Mach)
. T~ ArHold {Aispeed] [~ AR Hold [Mach)

. [osPa | rear | ||
VNAV SUBMODE SELECTION ———————| —— PLAY BACK—
i | snewod | wstipd | sree= || PayBack |
st | Mt | vmves | swois | Stop Play Back |

TAS [Knots) MachNumber Atude (It}
|2.7'| |0.-‘.17 [1004
V/S (ft/min] T. Hdg (Deg)

[T [02 r_ |

Figure 9: Simulation Control GUI

CHAPTER 3

HARDWARE INTEGRATION

The technologies that dominate systems design shift with hardware
miniaturization and concomitant architectural integration strategies. Years ago, systems
engineers relied upon functional encapsulation in dedicated hardware units (subsystems)
and standard communication channels, especially ARINC 429. Specialized computer
hardware teams designed subsystems and software engineers often formulated
requirements after hardware design. Now and in the future, highly integrated systems
designs blur the distinction between system and subsystem. Therefore. the systems
engineer should have background not only in software technology area, but also in data

buses and processors.

3.1 ARINC 429-PC16 Interface
3.1.1 ARINC Standards

Advances in microelectronics, information processing, and displays, and the
integration of those technologies into the modern flight management system. are reaching
the stage when almost any operational demand can be met. While technically and
economically beneficial, the integration philosophy can also make life difficult for some
airline buyers who may want to make their own choice of equipment. for example, to
maintain commonality with systems already in use or to protect their national industry.
National and international standards, such as those recommended by Aeronautical Radio.

Inc.(ARINC) and other organizations, all contribute to interface definitions. interference

27

management, safety, materials use, tests, and other fields and define the operational,
dimensional and signal interface characteristics to ensure interchangeability between
equipment of different manufacturers and compatibility with other equipment [4].

The ARINC organization is the technical, publishing and administrative support
arm for the Airlines Electronic Engineering Committee (AEEC) group. The purpose of
the standards published by this organization is to meet the operational and technical
requirements of individual airline users, while establishing the most general solution so
that a market force may develop. ARINC standards are currently used in military
avionics primarily for special mission and transport category military aircraft. However.
as ARINC standards begin to address integrated avionics. they are likely to have impact
on fighter / attack avionics. This relationship is also dual track, as military hardware and
software technologies find their way into transport avionics [8]. ARINC Specification
429 is a serial data bus used for point to point communication. Multicast operation is
also possible with a line for each receiver, but two-way communications (full duplex) is
not possible in this manner. In other words, transmission of information occurs from a
port on the Line Replace Unit (LRU) that is designated for transmission only. Similarly,
receive ports are used for receive only, and information cannot flow into a port
designated for transmission. This is the basic definition of a simplex bus.

Data transfers are clocked at either 100,000 bits per second or 12,000-14.500 bits
per second with a tolerance of 1%. This data bus functions most commonly for
transmitting navigation information. An attachment to ARINC 429 contains a digital
interface standard that provides data word formats for radio navigation information such

as frequencies for Very High Frequency Omni-Range (VOR), Instrument Landing

28

System (ILS), Automatic Direction Finder (ADF), and transponder. as well as Distance

Measuring Equipment (DME).

3.1.2 A429-PC16 Design Review

The design of the A429 incorporates an open systems philosophy. The A429 is a
generic processing engine that can be configured through various application programs.
Processing for each of sixteen channels is performed independently through host-defined
Transmit, Receive, and Monitoring data structures.

The A429-PC16 appears as two independent 8-channel devices. namely Device 1
and Device 2. Device 1 contains Channel 1 through 8; Device 2 contains Channel 9
through 16. Each channel can be configured either as transmitter or receiver, and all the
receiver channels being always assigned to the lower channel numbers. Each device has

256K of internal RAM. Figure 10 shows the basic block diagram of the A429 module.

a) PC Interface

v

b) Memory Mediator and Main Memory

v I v

c¢) /O Data Port d) I/0 Control Registers e) DSP Processor

< i f) Local I/O Bus i I >

g) A4291/0 h) Triggers

v v

DB44 Connector
Figure 10: A429-PC Block Diagram

29

From top to bottom, block (a) shows the host interface where the circuit block
contains the 16 data slave interface and the interrupt logic. Block (b) provides a main
device memory of 256k byte SRAM and a high-speed bus mediator for memory access
between the device and the host. Block (c) provides the organism with access to the
device RAM. Block (d) gives the elementary control functions of the A429-PC, which
includes firmware start/stop, PC interrupt control, memory base address, memory
window control, and memory access control. Block (e) is a general-purpose digital signal
processor that executes the firmware code to afford the low level ARINC functionality
running under Windows NT operating system. Block (f) is a general local bus, which
offers the correspondence for A429 channels, hardware clock, and LED logic. Block (g)
provides the transmitter or receiver function for the actual A429 buses. Block (h)
provides a coupled latching 48-bit, and a 1-psec timer, the latching of a 48-bit time stamp
being controlled by the Digital Signal Processor (DSP) through discrete logic and

ensuring accurate and consistent time marks for each ARINC 429 message.

3.1.3 ARINC 429 Physical Aspects

It is often easier to understand the system if the physical aspects of ARINC 429
are described first. These include transmission media, wiring topology and transmission

characteristics.
3.1.3.1 Transmission Media

The transmission media for the ARINC bus is a 78 Q twisted-shielded pair. Each
bus has only one source, but a maximum number of 20 sinks can be connected. A source

can handle a maximum load of 400 Q. A receiver sink must have minimum effective

30

input impedance of 8 kQ. The bus length in the most applications is designed for less

than 175 feet.

~

3.1.3.2 Wiring Topology

There are two topologies - Star and Bus Drop, which are shown in Figure 11 and

Figure 12 respectively.

Transmitter

LRU LRU LRU
Receiver Receiver Receiver

Figure 11: Star Topology for LRU Wiring

Transmitter
LRU
LRU | —p| LRU
Receiver Receiver
LRU
Receiver

Figure 12: Bus Drop Topology for LRU Wiring

The choice of wiring topology depends on the distance of the sinks to the source.

Safety is the advantage of Star topology since each LRU has its own connection to the

source, and any break along bus length results in loss of only one listener. However, the
Star topology requires much more wire, thus adding more weight. On the other hand,
although the Bus Drop topology uses the same number of connections, there is significant
reduction in weight.

3.1.3.2.1 Transmission Characteristics

ARINC 429 has two speeds of operation — 12.5 kHz and 100 kHz. Transmission
of sequential words is separated by at least 4 bit times of NULL (zero voltage). This
eliminates the need for a separate clock signal wire. That’s why this signal is known as a
self-clocking signal. Most ARINC 429 transmitters are designed using RC circuit to
control the rise time and this implementation is preferred in order to minimize overshoot

ringing.

3.1.4 ARINC 429 Architecture Overview

The multi-channel ARINC 429 card (A429) provides simultaneous interface of
multiple transmit channels, receive channels, bus monitoring, advanced interrupt
services, and high speed host operations. The A429 architecture uses a DSP processor to
transmit or receive A429 messages and store them on the monitoring data buses. Low—
level processes control all A429 messages within the monitoring buses for protocol
verification. High-level processing is responsible for moving A429 packets in real-time
to and from the defined data buffers. The general A429 architecture can be specified as
Control Registers, Device Management, Transmit Management, Receive Management

and Bus Monitoring.

The Control Registers allow the host application program to control hardware and
data structures for A429 processing. They include the host command set syntax and key
software control registers for managing A429 processing and the hardware registers that
are directly accessible from the PC. Device Management includes the processes for
setting up and general operation of A429 transmitters and receivers. Transmit
Management includes the data structures associated with all A429 messages. Receive
Management provides a sophisticated data structure for real-time bus monitoring of A429
traffic. Bus Monitoring gives information on how to receive. and it is useful when the
host system has tight processing constraints (relative to ARINC 429 traffic), but must still
receive every ARINC 429 message word.

Since the DTB is mainly involved in transmitting and receiving firmware, those

two architectures will be described in detail in the following sections.

3.1.5 Address Map

Before going into the detailed description on transmit/receive management. the
memory address map is described for the A429 memory RAM. As mentioned
previously, each device has 256k bytes RAM. The detailed address map is shown on
Figure 13. It is noted that the internal addresses between 00000h and 007FFh and
10000h and 107FFh are reserved and should not be accessed. There are 128k word
addresses between 00000h and 1FFFFh, and each 16-bit word has two bytes. Hence. the

memory size for each A429 device is 256k bytes.

(%)
W

Word Address:

00000h
RESERVED
007FFh
00800h
Pointer Table and BIT status area
00AFFh
00B0Oh

Transmit, Receive, Trigger structures and

[nterrupt Queues

OFFFFh
10000h
RESERVED
107FFh
10800h
Sequential Monitor Buffers
IFFFFh

Figure 13: A429-PC16 Memory Map (Device 1)

The bit 0 of the 16-bit I/O Control/Status Register (CSR) selects the lower or
upper 128k bytes. In the PC16, CSRI (word address 0000h) bit O can be used to access
the full 256k bytes of Device 1 memory and CSR2 (word address 0004h) bit 0 can be
used to access the full 256k bytes of Device 2. Software control registers are compound
with General Control Registers, System Clock Registers. Interrupt Registers, Trigger
Registers, Sequential Monitor Registers, Transmit/Receive Operation Registers and
Command Block Pointer Registers. The detailed software control registers address map

is shown on Figure 14.

Address Name

880h — 886h General Control Registers

896h — 89%h System Clock Registers

89Bh — 8A0h Interrupt Registers

8A3h - 8A6h Trigger Registers

8A9%h — 8ADK Sequential Monitor Registers

900h — AOOh Transmit/Receive Operation Registers
0BOOh - FFFFh Command Block Pointer Registers

Figure 14: Software Control Registers

It is noted that the address range (900h — AQOh) applies for both transmit and
receive operation. Each channel control table has a length of 1Fh, in other words, there
are 32 words for each channel transmit/receive control block. And those location used
for transmitter or receiver is determined by the first word from control block structure —
Channel Type. Also, it should be clear that the locations which are not included in Figure
14 are reserved as A429 internal use. Accessing these locations will produce

unpredictable results.

3.1.6 Transmit Management

This section explains the definition and management of transmit command blocks
and their associated data buffers. Command blocks are linked to allow for flexible and

accurate A429 messages transmission.

3.1.6.1 Transmit Control Block Structure

A control block of each transmitter contains 32 words that govern command block
processing. Note that, the “words™ here have different bit number definitions with
standard ARINC format that will be described in section 3.1.9. Figure 15 illustrates the

major data structure for a control block. Each cell represents a word.

00h | Channel Type

Command Block Control Word
Command Block Initial Pointer
Command Block Current Pointer
Command Block Last Pointer
Major Frame Count []
Major Count Bit [7] 6] 5] 4] 3] 2] 1] 0]
Minor Frame Count
Minor Count

High Frame

Middle Frame

Low Frame

Bus Traffic Word Count
CHLED

Reserved

32
words

_ IFh

Figure 15: Transmit Control Block Structure

36

Channel Type This 16-bit word defines the type of channel, it contains FFFFh if

it has been predetermined as a transmit-channel and 0000h if it has been designated as a

recetve-channel.

Command Block Control Word This word governs transmit and command block

operations for the channel through the following bits:

Bit O is the Halt bit, which is used to halt processing for the associated
command structure when it is set to “1”. The firmware completes processing
the current command block, halts processing, and then clears this bit.

Bit 1 is used to present the transmit-speed. For fast transmission (100 kHz).
this bit is set to “1”; for slow transmission (12.5 kHz), this bit is set to “0”".

Bit 3 is Channel Wrap bit. The purpose of the channel wrap feature is to
allow an operator to receive data on a channel and immediately transmit the
same data out on a selected transmit channel. To enable Channel Wrap
processing, this bit is set to “1”; for normal operation, as in the case of the
DTB, it is set to “0”.

Bit 4 is used to enable or disable Channel Wrap Error Injection globally with
“1” or “0” respectively. When masking data, the possible errors come from

the word parity, adding a bit and subtracting a bit.

Command Block Initial Pointer (CBIPTR) This pointer location is constantly

monitored by the A429s firmware. When CBIPTR is at non-zero, the firmware sets this

pointer to zero and executes a chain of command blocks beginning at the offset defined in

37

CBIPTR. The interface between this pointer and the command block will be described in
the next sub-section 3.1.6.2.

Command Block Current Pointer This pointer points to the current location in the
command block structure. This pointer is at zero until processing of a command block
structure starts. The interface between this pointer and the command block will be
described in the next sub-section 3.1.6.2 as well.

Command Block Last Pointer This location is updated when a halt occurs., and
indicates the last command block that was executed before the halt occurred.

Major Frame Count This value determines the number of major frames to
execute before halting command block processing. For continuous operation, in the case
of the DTB, it is set to “0”. In time-division multiplexing, a frame is defined as one
complete commutator revolution that includes a single synchronizing signal or code.
Major Frame is the time period, during which all data of a multiplex are sampled at least
once, including one or more Minor Frames. Major frame length is determined as (N)(Z)
words, where N is the number of words and Z is the number of words in the longest sub-
multiple frame. For more detail about the relationship between major frame and minor
frame, see section 3.1.8 with actual example.

Major Count This value indicates the current major frame being processed, and it
is updated by the A429 firmware.

Minor Frame Count This value determines the number of minor frames to
execute for each major frame.

Minor Count This value indicates the current minor frame being processed. and it

is updated by the A429 firmware.

High Frame This register contains the most significant 16 bits of the 48-bit time
at which the last minor frame type command was processed, this value being used by the
A429 firmware to keep track of minor frame times.

Middle Frame This register contains the middle 16 bits of the 48-bit time at
which the last minor frame type command was processed, this value being used by the
A429 firmware to keep track of minor frame times.

Low Frame This register contains the least significant 16 bits of the 48-bit time at
which the last minor frame type command was processed, this value being used by the
A429 firmware to keep track of minor frame times.

Bus Traffic Word Count In this value is the increment for each word transmitted.
A word count is provided for each channel.

CHLED, Channel Activity Indicator This value is used by A429 firmware to
indicate bus activity. It contains 0000h if there is no bus activity, 00FFh if the channel is
active, and FFOOh if the channel is transmitting errors.

The rest of the total 32 words are reserved and used for further application under
ARINC development.

3.1.6.2 Transmit Command Block Structure

After setting up the control block, A429 transmission commands have to be
specified in a series of linked-list command blocks. The length of the command block
linked-list is limited only by the available internal 256k bytes of A429 device memory
(SRAM). Each byte here has 8 bits according to the internal A429 address range
(00000h-1FFFFh). Separate control areas for each of the eight channels allow the A429
device to perform each channel simultaneously. The transmit-register for a channel is

pointed at offsets from the base address of that channel’s control table. Channel control

39

tables begin at 00900h and have a length of 1Fh. Hence, the control table for channel 1
occupies 00900h to 0091Fh, the control table for channel 2 occupies 00920h to 0093Fh,
and so forth.

Figure 16 illustrates the data structure for one command block linked-list chain.
Each transmit-channel has one Chain [D Number, and there could be many command
blocks linked to this Chain. Separating different command block depends on the label
characteristics, and labels having the same transmitting speed should be grouped into the
same command block. To program transmit operations on the A429, a linked-list data
structure of command blocks has to be constructed and loaded into A429 memory first.
then the 16-bit Command Block Initial Pointer (CBIPTR) has to be programmed with the
address of the first word the first command block. When the firmware detects a nonzero
value in CBIPTR, it uses this value as a pointer to the first command block of the linked

list. It then sets CBIPTR to “0” and begins processing the command block.

40

29089 puewwo)

It

2UNPNNS TR HI0[F PUBWO)) JWISURA], 19| dInS1y

siiq 91 Jaddn u v1vyq

siiq 9| Jamoq U v¥1va

U [0JJUOD) PIOAA JWSUBS |

siiq 91 Jeddn g viva

Siig 9} Jamo1] Z Yiva

Z 10JJU0D pIOAA NWSues |

siid 94 Jaddn | viva

Siq g4 1amo7 | Yiva

| 10u0Q p1om Nwsues) |g— |

1a)yng ereq

18julod yuy

junog uoneday
ajey uonaday

swei4 ueig

JUNoY pIop

J8)ujod Jayng ejeq Nwsuesy

1UNoY Jayng Jwsues |

awyj Mo sjnpayss

ew|] yBiH snpayosg

adA) wwsues|

!

laluiog Jusung
¥0|g puBWIWO)

1910 BuI

panasey

awi| Mo sles Joupy

ewi] Y6y swei4 toulpy

adA) awes4 jouly

{ ¥90|g puewuwio)

Jajulod |eniy)
%20|g pueWWO)

L# Gl NIVHO

Minor Frame Type/Transmit Type This place defines a code for the type of

operation and the way of performance. The accessible codes are shown in Table 1.

Table 1: Type Codes
Operation | Control Control Transmit Control | Type Code
(Bit 15) (Bit 14) Block (Bit 13) | (Bit12) (Bit 0)
Minor Frame | NO-OP | Interrupt at end N/A N/A 0
of command
Transmit NO-OP | Interrupt at end 1 = Single N/A 1
of command 0 = Block

e Bit 15 is set to “1” to skip the command or is set to “0” to process the
command.

e Bit 14 is set to “1” to make an interrupt when the command is ended or is set
to 0™ to produce no interrupts upon end of the command.

e Bit 13 is set to *1” to transmit a single word each time the command block is
processed when the next data word in the transmit-buffer is sent. To transmit
the whole data buffer each time the command block is processed. set this bit
to “0”.

e Bits 1 - 11 are reserved as A429 device internal use.

Minor Frame High Time This register is associated with the minor frame type
command and contains the upper 16 bits of the time, in microseconds. allotted for a

minor frame.
Minor Frame Low Time This register is associated with the minor frame type

command and contains the lower 16 bits of the time, in microseconds, allotted for a

42

minor frame. When the firmware encounters another minor frame, it checks both minor
frame high and low times to determine when to start processing the next minor frame.

Schedule High Time This register is associated with the transmit type command
and contains the lower 16 bits of the time, in microseconds, that must expire before the
transmit command block is processed. The time is referenced from the last minor frame
type command.

Schedule Low Time This register is associated with the transmit type command
and contains the upper 16 bits of the time, in microseconds, that must expire before the
transmit command block is processed. The time is also referenced from the last minor
frame type command.

Transmit Buffer Count (TBCNT) This register is associated with the transmit
type command and indicates the number of data words to transmit for the associated
command block. Each value to be transmitted requires three 16-bit words in Hex. The
first word is the control word, followed by the lower 16 bits of the ARINC data word,
then by upper 16 bits of the ARINC data word, i.e., the Transmit Buffer Length is equal
to 3 times that of TBCNT.

Transmit Data Buffer Pointer This value is associated with the transmit type
command and points to the base of the transmit buffer for the associated command block.

Word Count This register is associated with the transmit type command and
points to the current location in the transmit data buffer.

Start Frame This register is associated with the transmit type command and

indicates which minor frame a transmit type command block will begin executing.

43

Repetition Rate (REPRTE) This register is associated with the transmit type
command and indicates how often to process a transmit type command block after the
START condition is met. [f the REPRTE is equal to 2, processing of the command block
will occur every other time that the associated command block is accessed.

Repetition Count The A429 firmware uses this value to control the Repetition
Rate word transmission.

Link Pointer This value points to the next command block in the chain.

Transmit Word Control This is the first word of a three-word block which defines
a transmit word.

3.1.6.2.1 Transmit Firmware Operation

During transmit operations, the firmware decodes each block of the linked-list
program and takes the suitable action. If a minor frame type is used, the minor frame
times are checked and the structure is set up for minor frame operation. If a transmit-type
is indicated and schedule times, start, and repetition rates are met. the transmit-buffer is
transmitted. The command block structure is continued until a halt condition happens
which can be generated in one of these three ways:

e By setting bit 0 of Command Block Control Word in the control block

structure to “1”.
e By setting the Link Pointer of the command block data structure to 0.

e By completing the specified number of major frames.

44

3.1.7 Receive Management
In order to access the receiver operation from all sixteen channels of the board,
the parameters and data storage structures must be defined first. Table 2 defines the data

storage structure required for A429 PC16.

Table 2: Data Storage Structure

Data Storage Structures Description

Current Value Buffer Contains the latest received data words for a specific
channel. They are arranged by label or both SDI and
label.

Current Time Buffer A time stamp buffer can be set up to provide a current

time stamp for each received word.

Channel Sequential Monitor | Stores data received on a specific channel.

Global Sequential Monitor | Stores data from all receive-channels.

It should be noted that either the Channel or Global Sequential could be selected.
Even though the DTB deals with Current Value Buffer and Channel Sequential Monitor
only, it would still be a good idea to go briefly through all components starting with the
receive data structure.

3.1.7.1 Receive Control Block Structure

The receive control block structure is comprised of 32 words. They are mainly
the channel type word, the receive control word, the current value buffer pointer. the
current time buffer pointers, the filter pointers, bus traffic word count, and channel

activity indicator. Figure 17 illustrates the receive control block structure.

45

oF

UNPNAS HIO0[G [043U0D) IAINIIY L] danTyy]

PaAIISY

dd1HO

uno) pIop duyjely sng

1Un0)) 13jJng IONUOA [uuey)

awit], ANy

12)U10{ 1SB"T J0YUOJA] [duuey))

1)U10 JUALIND 10U [duuey)

Rjjnyg

1UI0J [eNIU] JONUOA [duuey))

oo 191, [puuey)

1104 1)1 [290]D

anjeA waun)

SI9UI0] 19]jng W] WUILIND)

SIAUIOJ JaJjng AN[BA UALN))

Jajjng

PIOA\ [ONUOD) 9AI03Y

Ut

wlilzlelvIsiofe]sTevIaplalald]

adA 1, [puuey)

400

Channel Type This word specifies the type of channel. The word contains FFFFh

if the channel has been designated as a transmit channel and 0000h if designated as a

receiver channel.

Receiver Control Word This word controls receiver operations through the

following nine bits:

Bit O is the Run/Halt bit. To start receive operations for the specified receiver,
set this bit to “1”. To halt receive operations, set this bit to “0”.

Bit 1 is Receiver Speed bit. To process 100 kHz ARINC data, set this bit to
“1”. To process 12.5 kHz ARINC data, set this bit to *“0”.

Bit 2 is Interrupt on Error bit. To generate a host interrupt when a received
data word contains an error, set this bit to <1,

Bit 3 is SDI/Data bit. To sort received data by Source/Destination (SDI) bits
and label (bits 0-9 of ARINC word), set this bit to “1” and to sort received
data by label only (bits 0-7 of ARINC word), set this bit to “0”. Detailed
description of ARINC word will be presented in section 3.1.9.

Bit 4 is Channel Monitor Halt bit which is set to “1” when halting the receiver
data buffer. When the channel monitor is needed, the firmware resets this bit
to “0”.

Bit 5 (Restart Channel Monitor bit) is set to “1” in order to restart the channel
monitor after a halt has set.

Bit 6 (Force Monitor Swap bit) is set to “1” for forcing a monitor buffer swap.
Bit 7 (Interrupt on Swap bit) is set to “1” for producing an interrupt to the host

when a monitor swap occurs.

47

e Bit 8 is Service Current Value Buffers bit. To cause the current value and
time pointers to swap, set this bit to 1. The swap allows the current value
and time buffers pointed out by their respective pointers to be read.

Current Value Buffer Pointers These 16-bit words point to the base offset of the
current value buffers. Since per ARINC specifications, the label (least significant 8 bits)
has a reversed bit order, labels are bit swapped prior to being stored in the current value
buffer. Hence, for the 32-bit ARINC words arranged by label (least significant 8 bits)
only, the word will be stored at offset times 2 for lower and upper 16 bits of ARINC data.
In other words. the current value buffer size is a 512 ARINC word buffer (i.e.. 2x2%).
Considering the words arranged by both SDI (bit 9 and 10 in ARINC word) and label
number, the current value buffer size now becomes a 2048 ARINC word buffer (i.e..
4x2x2%). After the pointer is activated, the current values in the buffer can be read in
ascending order from low data to high data. It should be clear that the current value
buffers must be in device memory between BOOh and FFFFh.

Current Time Buffer Pointers These words point to the base offset of the current
time buffers. When a word is received, a 48-bit time stamp is stored in the active current
time buffer. The time stamp consists of three 16-bit words, namely, low time. middle
time and high time. The current time value buffers must be in device memory between
B0Oh and FFFFh as well.

Global Filter Pointer This register contains an offset to a table of 128- or 512-
ARINC words arranged by label. or both SDI and label. Entries in this table govern
interrupts and sequential monitoring for each possible receive label, or both SDI and

label. Entries are placed on 8-bit boundaries, even labels occupying the eight least

48

significant bits and odd labels occupying the eight most significant bits. It is noted that
the global filter pointer is 16-bit represented, in order to convert to standard 32-bit
ARINC word, 0.5 factor is taking into account for the buffer size (i.e. 0.5x28 = 128 or
0.5x2'%=512).

Channel Filter Pointer This register contains an offset to a table of 128- or 512-
ARINC words arranged by label or both SDI and label. Entries in this table govern
sequential monitoring on a channel level for each possible receive label or both SDI and
label. Entries are placed on 8-bit boundaries. even labels occupying the eight least
significant bits and odd labels occupying the eight most significant bits.

Channel Monitor Initial Pointer This register contains a pointer to the base of the
channel monitor.

Channel Monitor Current Pointer This register contains a pointer to the currently
active channel monitor buffer which stores received data.

Channel Monitor Last Pointer This register contains a pointer to the last monitor
buffer which was filled. Data is this buffer is safe to read.

Channel Monitor Buffer Counter This register contains a value that indicates the
monitor swap count, the value increasing incrementally each time a channel monitor
swap occurs. [t can initialize to any value.

Bus Traffic Word Count This value increase incrementally for each word
received and can be used as a measure for bus loading.

CHLED This value is used by the A429 firmware to indicate bus activity. For

example, the value is set to 0000 if there is no receiving bus activity; the value is set to

49

OOFF if the receiving channel is active; value FF0O indicates that the channel is receiving

€ITOrIS.

3.1.7.2 Receive Firmware Operation

During receive operations, the firmware polls an [/O Control/Status Register (at
0000h address) to determine if new data has been received, or if a bus error has occurred
on a specific receive channel. If data has been received or an error has occurred, the
firmware reads the I/O receive buffer. It processes the data. fetches a time stamp, and
stores the data in the current value buffer (if initialized). The firmware then stores the
data in the sequential monitors. If an error occurs when receiving the data, the data and a
time stamp are stored in the sequential monitor regardless of the bits set in the filter table.

The current value buffer is not updated.

3.1.8 Transmitter Set-up

Transmitter set-up is a key application of DTB using A429 standard interface
libraries. Even though all calling functions exist in the “tx_mgmt.c’ file, every parameter
inside each function should be set up very precisely according to the firmware
arrangement (see section 3.1.6). This section is helpful for setting up ARINC label
“property file” which will be discussed in chapter 4 as well.

[n order to achieve this goal, it is best to clarify the concepts by showing a simple
example as the following. This example shows how to transmit two ARINC messages at
two different transmitting speeds, say 100ms (10 messages per major frame) and 50ms
(20 messages per major frame) in channel 5 of device 1. Figure 18 shows the

relationship among the property parameters in a transmitting control block. First, the

minor frame time is defined as the Greatest Common Divider (GCD) of the different
speeds in the same transmitting channel. In this example, it is equal to 50ms. Secondly,
a transmit command control block is decided by the minimum speed for both messages.
In this example, it is equal to 100ms. Finally, It is clear that there are 10 message 1 in the
transmitting command block and each message 1 writes every other minor frame. Also
there are 20 message 2 in the transmitting command block and each message 2 writes
every minor frame.

There are three major functions that need to be called up, namely

‘A429 create_tx_cb’, ‘a429_add mf cmd blk’ and ‘a429 add tx_cmd blk’. Those
functions are defined in ‘a429 incl.h’ of the libraries. The descriptions are given below,
and Table 3 shows all parameters definition inside the functions.

e °“A429 create_tx _cb’ creates a control block for a specified transmit-channel.
It sets the transmitter speed, minor frame count, major frame count, and the
inter-word gap time.

o ‘a429 add mf cmd blk’ adds a minor frame to an existing chain of minor
frame and transmit command blocks. It sets the minor frame time in
microsecond, loop flag and command type.

o a+29 add tx_cmd blk’ adds a transmit command block to an existing chain
of minor frame and transmit command. [t sets the transmitting ARINC word

count, frame start and repeat rate.

51

—>

minor frame time
50ms

Minor frame count #1
Minor frame count #2
Minor frame count #3
Minor frame count #4
Minor frame count #5
Minor frame count #6
Minor frame count #7
Minor frame count #8
Minor frame count #9
Minor frame count #10
Minor frame count #11
Minor frame count #12
Minor frame count #13
Minor frame count #14
Minor frame count #15
Minor frame count #16
Minor frame count #17
Minor frame count #18
Minor frame count #19
Minor frame count #20

message 1|message 2

message 2

message 1|message 2

message 1|message 2

message 2

message 1|message 2

message 2

message 1|message 2

message 2

message 1|message 2

message 1|message 2

message 2

message 1|message 2

message 2

message 1|message 2

message 2

message 1|message 2

Figure 18: Parameters Relationship of a Transmitter

1943
9]

Table 3: Definition of Transmitter Parameters

Parameter

Description

device_number

The device on which to add the transmit command block.

Channel_number

The channel on the ARINC device.

Speed The frequency of the transmitter. SLOW means 12.5 kHz.
FAST means 100 kHz.
Minor frame time The Greatest Common Divider (GCD) of the different

speeds in the same transmitting channel. In this example.
it is equal to 50ms.

minor_frame_count

The number of minor frames to execute for each major
frame. Here it is 20.

Major frame time

20 *50ms =1 sec

major_frame_count

The number of major frames to execute before halting
command block processing. For continuous operation. set
tO "-09?.

gap_time The inter-word gap time in ps. Note that even if set to 0",
the minimum inter-word gap time at which ARINC 429
words can be transmitted is four bit times.

chain_id The number of chain to create.

loop_flag Set it to TRUE to loop through the chain for continuous

transmission.

command_type

Minor Frame Command type. It is set to match the
firmware. See details in Table 1.

scheduled time

The time in ps that must expire before the transmit
command block is processed.

The number of data words to transmit for the associated

Xmit_count
command block.

start_frame Which frame the transmit command block will begin
executing.

repeat_rate How often to process a transmit command block after the
start_frame is met. It is also a relative frequency to a
Major Frame.

transmit_type A transmit type command block to match the firmware.
See details in Table 1.

*pData A pointer to the associated data buffer for the transmit

command block.

Finally, the solution to the problem in this example is as follows:
Set up:
a429 create_tx_cb (1, 5, A429_SLOW,20,0.0)
/* (device_number, channel number. speed,
minor_frame_count, major_frame_count. gap_time) */
a429 add mf cmd_blk (1, 1, 50000, TRUE, 0x0000)
/* (device_number, chain_id, minor_frame_time.
loop_flag, command _type) */
for message 1:
a429 add_tx_cmd_blk (1, 1, 0, 2, 1, 1, TRUE, 0x0001, buffer)
/* (device_number, chain_id. scheduled_time, xmit_wordcount,
start_frame,
repeat_rate, loop_flag, transmit_type, *pData) */
for message 2:
a429 add_tx_cmd_blk (1, 1. 0, 2, 1, 2. TRUE, 0x0001, buffer)
/* (device_number, chain_id, scheduled time, xmit_wordcount,

start_frame, repeat_rate, loop_flag, transmit_type. *pData) */

It is noted that the “repeat_rate” is assigned different values for synchronization
purposes, according to Figure 18. Since there are 20 message 2 and 10 message | in a
same major frame, the relative frequency between message 2 and message 1 is 2. Also.
to distinguish message 1 from message 2 as shown in the above shown example. two

transmit command blocks have to be assigned to channel 5 of device 1. First. message |

is configured by Transmit Command Block 1 (TCB1), then message 2 is configured by
Transmit Command Block 2 (TCB2).

The DTB involves many similar function set-ups, where the transmitter set-up is
one of the typical applications. It is necessary to point out that function set-ups are
extremely important since even a single wrong parameter set-up could fail the whole

device [/O functionality or cause run time errors.

3.1.9 ARINC Word & Conversions

[t is important to note that each A429 word consists of 32 bits with the first 8 bits
(label) octally encoded to represent the type of information contained within the 32 bit
word. Figure 19 shows the organization of the 32 Bit ARINC 429 word, a typical 32-bit
word having five parts:

e 8-bit label

e Source / Destination [dentifier (SDI)

e Dataarea

e Sign/ Status Matrix (SSM)

e 0dd parity bit

P | SSM Most Significant Data DATA - 19 bits Least Significant Data SDI 8 OCTAL LABEL
32131130(29128127]26125]124(23|22(21(20119(18 |t7J16 |15 14|13(12f11|10{9 |87 |65 |4}3]|2]1
MSB 32 Bit ARINC 429 Word LSB

Figure 19: 32-bit ARINC Word

The least significant bit of each byte except the label is transmitted first. and the
label is transmitted ahead of the data in each case. The order of the bits transmitted on
the ARINC bus is as follows: 8.7,6,5,4,3,2,1,9,10, 11, 12,13 ... 32.

When a 32-bit ARINC word is transmitted on the bus. in the case of the label, the
most significant bit is transmitted first. This reverse order is in contrast to the

transmission order of the other bits in the ARINC word.

3.1.9.1 Label

It is necessary to point out that the label has a reversed bit order. The most
significant bit of the octal word is located in the least significant ARINC 429 bit and is
transmitted first out onto the bus. Since the LSB of the ARINC word is transmitted first.
this effect causes the label to be transmitted onto the bus in reverse bit position order.
For example, octal label 116 is transmitted as 72h. Details are shown in Table 4.

Appendix E also shows some sample ARINC label information.

Table 4: Label Conversion

7 2 Hex.
8 4 2 1 8 4 2 1
8 7 6 5 4 3 2 1 Bit
0 1 1 1 0 0 1 0 Value
l 2 4 1 2 4 1 2
6 1 1 Octal
3.1.9.2 SDI

The Source / Destination Identifier (SDI) is optional and when selected. occupies
bits 9 and 10 of the ARINC word. When used, the SDI is considered as adding an

56

extension onto the ARINC word’s Label, and ARINC firmware is expected to decode the
Label / SDI combination as a different label from an ARINC word with the same Label
but no SDI implementation. There are two functions for SDI - to identify which source
(FMU) of a multi-system installation (FMUs) is transmitting the data contained; or
identify which destination (FMU) on a multi-system installation (FMUs) should
distinguish the data contained within the ARINC word. For example, SDI (00) represents
to FMU; SDI (01) represents to FMUI; SDI (10) represents to FMU2; SDI (11)
represents to FMU3. In the CMC project, SDI for different FMU is preset by configuring
certain discrete SDI port lines from the FMU connectors.

In actual use, the basic structure of the ARINC 429 word is very flexible. The
only two parts of the word needing to stay intact are the label and the parity bit. For
example, some data like label 076 (GNSS Altitude) is out of the range if using 19-bit
representation. Hence. bit 10 of ARINC word (SDI bit) is used as extension data area for
special 20-bit data presentation.

3.1.9.3 Data Area

The data element can be categorized into many application groups. In the DTB
application, it involves two kinds of data, namely, binary code (BNR) data and binary

coded decimal (BCD) data.

In the DTB application, all conversion between Engineering Value and standard
ARINC 429 word has to be done before transmitting data from the Simulation PC to the
Interface PC, and vise versa. The principle of the conversion can be explained through

simple examples, and which applies to the coding as well.

57

BNR Data Encoding

BNR or “binary” encoding is a very common ARINC data format. This type of
encoding simply stores the data as a binary number, much in the same format that is used
on virtually every modern-day computer. Table 5 shows the general BNR format. Bit 29

is the sign bit and bit 28 is the most significant bit of the data field.

Example: Converting the FLSIM output values to 32-bit ARINC word
Label =116
Format = BNR
Cross Track Distance = 73.2 NM
Maximum Value = 128 NM

Minimum Value = -128 NM

N bits =15
LSB =14
Solution:

Step 1: Calculate the Scaled Value with following formula.

X —min X 2/:

max— min
Where X is the sending engineering value, n is number of binary digits available

for the representation. Hence,

73.2-(-128) g

Scaled Value =
128 - (—128)

2'5 =25753 (fraction ignored)

Step 2: Convert the Scaled Value into binary format.

(25753)¢=(110010010011001)2

58

Step 3: Shift left (LSB-1) bits so that the DATA starts the Least Significant Bit (LSB)
and ends at the Most Significant Bit (MSB).
Step 4: Add 8-bit label.

Table 6 illustrates the conversion procedure.

BCD Data Encoding

BCD, or binary-coded decimal, is also a common data format in ARINC 429 and
many other engineering applications. In this format, four bits are allocated to each
decimal digit. A generalized BCD message is shown in Table 7. Its data fields contain
up to five sub-fields. The most significant sub-field contains only three bits. so that its
maximum decimal value can be 7. If the maximum decimal value is greater than 7. bits
29 through 27 are padded with zeros and the second sub-field becomes the most
significant. Again, Bit 29 is a sign bit.

Example: Converting the FLSIM output values to 32-bit ARINC word

Label =001

Format = BCD

Distance to way point = 1234.5 NM

Maximum Value = 3999.9 NM

Minimum Value = 0.0 NM

N bits =18
LSB=11
Solution:

The procedure is almost the same as that of the BNR format except for the method used
to calculate the Scaled Value. Table 8 illustrates the conversion procedure.
Here, Scaled Value = 5x 16’ +4x16' +3x 167+ 2x 16’ + 1 x 16* = 74565

It is noted that each ARINC label has its own detailed word description. In order
to distinguish the maximum value and minimum value with decimal point, the detailed

bit arrangement is shown on Appendix F.

60

19

XeHO8yldsv=8nieAleuldlo 0 0 0 0 0 0 L 0 0 L 0 L 0 0 0 L 0 L L O0OO0OOLOOLOOGOT OO
lS9eippyl0 0 0 0 0 0 0 |
SWqOLYSIYMSI0 0 0 0 0 0 0 0 0O O L O L O OO L OLLOOOLOOTLOOTO OGO OO
9%8QgG9sy.=°SnfeApseosiL 0 L 0 0 0 L 0O L L 0 0 0L 00O L 0OO0OO0OO0OO0OO0OO0OO0OOOGOGOGO OGO OO
189jl ¢ € ¥ S 9 . 8 6 0L LL2LelvlSlLolLl8l6lLozlzaeees g SZ oz LZ 82 62 OE LE C€
(reurioy @O4) P10 DNV 0 dnjeA SurvomBuy ue Sunsdauo)) :g aqe,
12qe] 1as SAVHO v 4VHO € ¥VHD CAVHI [¥VHO NSS | d
1l el el vl sT ol ¢l 8T ool nnTar et wi [siot]erT8i]e|oz]1z] ez ez] tc] scoe] iz 8z] 6z 06 te]ce
Jeurioy pIopA (1DM PIZIeIUIN) :/ Jlqe],
XJHc/oce6D=oneAleuldlo L 0 0 L L L 0 0 0 0 0 0 L 0 0 L L 00} 00 L 004+ L 0O0O0O
°qeippyio L 0 0 L L L 0
SUGELMOIUYSIO 0 0 0 0 0 0 0 0 0 0 0 Q L 0 O L L OO L 0 0L OO L L 0000
€G/GZ=9neApaeds]L 0 0 L L 0 0 L 0 0 L 0 0 L L 0 0 0 00 000000000000
8il ¢ € v 6 9 / 8 6 OLLLZLeELvlGlol/llgleloglggzezvsss ozl 8s ez 0e LE 2
(yeurroy YNG) PO DNV 03 InjeA SuLrddomBuy ue Sunsaauc)) 19 qe .
1qwy 1as) Wss | d
lelelvlsTolels]l eJolulalalw [cilorlalsilolorliz]ecleclvelsz]orlzloclorloel il

Jeurio 4 pAoA\ UNY PIZI[IIUIN :G dqe |,

3.1.94 Sign/Status Matrix

The Sign/Status Matrix (SSM) field is used to report hardware equipment
condition or the signs. For BNR data, the Sign function can be described by bit 29, *0”
will stand for Plus / North / East / Right / To / Above while a 1" will indicate Minus /
South / West / Left / From / Below. Bits 30 and 31 are typically assigned to the SSM for
the status function only, “11” is used to indicate the Failure Warning, “01” is encoded for
No Computed Data, “10” is set to Functional Test Indicator while “00” represents
Normal Operation. For BCD data, The Sign function can be achieved by using bits 30
and 31. A “00” will stand for Plus / North / East / Right / To / Above while a “11” is
indicating indicate Minus / South / West / Left / From / Below. The SSM bits can also be
used to report the status function, “01” indicates No Computed Data while “10™ indicates
the Functional Test Indicator.

3.1.9.5 Parity Field

It should be noted that ARINC has a specific odd parity convention rule: if the
number of 1’s in the final ARINC word (without counting the parity bit 32) is even, the

parity bit has to be assigned 1, then the final count would be odd.

3.1.10 ARINC /O Driver Derived

DTB uses Integrated Avionics Programming Library (sbs_ver6.10) and runs
Firmware “F030H.DAT'. One ARINC429-PC16 card has been installed in the Interface
PC and it is the main media to communicate with the FMU’s. The driver for each ARINC
bus (transmit or receive) was set up with a Microsoft NT 4.0 (workstation) operating

system and Microsoft Visual C++ (6.0) compiler.

62

3.1.10.1 Installing the ARINC429 IO Card

The base /O address was set to 390h as shown in Figure 20:

v SWI 2
(RSN A
IR B W N
) —
< t

H H
1 RO
’

4
D = tozhe pareton

Figure 20: Base I/0 Address 390h, Top View of PC16 as installed [12]

3.1.10.2 Installing the software

The support software from SBS Technologies Inc. (SBS) includes the Integrated
Avionics Library (sbs_ver6.10) and Firmware (FO30H.DAT). The library contains the C
library source files, sample applications and Unit Test executable; The firmware contains
the file that must be downloaded to the A429 PC16 card upon initialization [12].
3.1.10.3 Installing the SBS Driver Library
3.1.10.3.1 ‘sbs_dev.cfg’ and ‘sbsa429.ini’

Two library files have been modified in order to start the devices. One is
‘sbs_dev.cfg’; the second that is essential is ‘sbsa+429.ini’. The details are presented on
Appendix A and Appendix B respectively.
3.1.10.3.2 Required files of the device driver
Step 1: In order to achieve transmitting and receiving functions, a list of source files and
header files have to be added to the application project [13] as Table 9 and Table 10 show

respectively.

Table 9: Required .cpp Files

File

Description

Il _winnt.cpp

Low-level operating-system-specific file

crt_io.cpp

Display processing

dev_mgmt.cpp

High-level common device management

429 dm.cpp Device management
429 mm.cpp Monitor management
429 rcm.cpp Receive management
429 txm.cpp Transmit management

Table 10: Required .h Files

File Description

low_Ivlh Additional low-level files for NT system

crt_io.h Customized video commands which are based upon the type
compiler or video terminal being used

dev_mgmt.h Declares device exceptions, constants, global variables. and
function prototypes for common device management
functions

sbs_sys.h Defines the operating system type

429 defh Definitions

429 inclh Include files

429 prot.h Function prototypes

429 type.h Type declarations

429 dd.h A429 NT kernel driver include files

dev_cfg.h Device information to be used in lieu of sbs_dev.cfg

HardwareDefs.h SBS Avionics Board Include File used by software intended
for WinNT operating systems

64

Step 2:In order to initialize devices and start [/O, the following functions must be called

in the order shown on Table 11.

Table 11: Required Functions for Initializing

Function Description

sbs_parse_config file() Parses the information in sbs dev.cfg file in
order to initialize the fields of the

SBS_DEVICE_RECORD for each device.

sbs_init_device() Initializes the SBS device for access by the

application program.

a429 create_global_sm_buffers() | Creates global sequential monitor buffers.

a429_create_channel sm_buffers() | Creates the specified number of channel
sequential monitor buffers in upper memory for

each of the receive channels configured on the

card.

sbs_start_io() Enables the device to perform avionics bus
operations.

a429 create_tx_cb() Creates a control block for a specified transmit-
channel.

a429-add tx_cmd_blk() Adds a transmit-command block to an existing

chain of minor frame and transmit command

blocks.

a429-add_mf cmd_blk() Adds a minor frame to an existing chain of
minor frame and transmit command blocks.

a429 load_chain() Loads a chain for execution.

a429 write_type_word() Writes the minor frame/transmit type word of a

command block.

a429 read_type_ word() Reads the minor frame/transmit type word of a

65

command block.

a429_create_rc_cb()

Creates a control block for a specified receive-
channel. It sets the channel speed and sort type.
The sort type can be SDI and label or label only.

[t is set by label in our application program.

a429 set_rc_control()

Sets the receive-control word.

a429 set_filter table()

Writes a value to a global (0) or channel (1) filter

table for a single specified label.

a429 _start rc()

Enables the receiver operations for a specified

receive-channel.

a429 write_tx_cb_data()

Gets the address of the data buffer from the
transmit-control block and then write the data to

a chain link transmit data buffer.

a429 _convert_label()

According to the ARINC specifications, the
label has a reversed bit order. Labels are bit-
swapped prior to being stored in the current
value buffer. This function converts a label to or
from a bit-swapped value and returns the

converted value of the label.

a429 halt_cb()

Halts the control block of an ARINC

transmit/receive channel.

a429 _stop_rc()

Halts the receiver operations for a specified

receive-channel.

sbs_stop_io()

Stops input and output operations.

sbs_close_device()

Closes access to the device. Since only one
logical connection to the device can be active at
a time within the application, we must close the

device before reopening it.

66

3.1.10.4 Configuration Files

Two text files called “4429Configl.prop’ and ‘A429Config2.prop’ have been
created in order to set up all the ARINC words properties such as frame time, scheduled
time and repeat rate into the file without bothering other classes. The details can be
found in Appendix C. The reason why it is set up in this way is for our design to match

the operating firmware (Section 3.1.8 has more explanation).

3.2 PCI-6025E Interface

The National Instrument PCI-6025E card has 16 channels (eight differentials) of
analog input, two channels of analog output, 32 lines of digital /O and a 100-pin
connector [5]. In the DTB application, analog [/O has been used for testing purpose only.
Since at the beginning of the project, there were no FMS available in the CIC lab, in
order to check if the communication between two PCs was working, an analog input from
DC voltage generator had been added to the DTB. While tuning the voltages range, the
reaction from the flight simulator could be seen, and vise versa. For the CMC
requirement. digital [/O plays the software-programmable role in enabling or disabling
discrete signals from certain FMU ports. Once the National Instrument driver library
(NI-DAQ 6.5.1) has been installed properly, the PCI-6025E is ready for insertion into the
5V PCI slot of the Interface PC. The overview of the pin assignment is shown in Figure

21. The block diagram of PCI-6025E is shown in Appendix I.

67

3.2.1 Analog Input
3.2.1.1 Overview

The board has three different input modes: non-referenced single-ended (NRSE)
input, referenced single-ended (RSE) input, and differential (DIFF) input. The single-
ended input configurations provide up to 16 channels, whereas that of the DIFF provides

eight. These three modes are described in Table 12. DTB uses the RSE mode.

Table 12: PCI-6025E Analog Input Modes

Configuration Description

A channel configured in DIFF mode uses two analog input lines. One
DIFF line connects to the positive input of the board’s Programmable Gain
Instrumentation Amplifier (PGIA), and the other connects to the

negative input ground (AIGND).

A channel configured in RSE mode uses one analog input line, which
RSE connects to the positive input of the PGIA. The negative input of the
PGIA is internally tied to analog input ground (AIGND).

A channel configured in NRSE mode uses one analog input line. which
NRSE connects to the positive input of the PGIA. The negative input of the
PGIA connects to analog input sense (AISENSE).

68

AIGND 1] S51|PC7

AIGND| 2| 52|GND

ACHO 3] 53|PCs

ACH8 4] 54|GND

ACH1 5| 55|PCS

ACH9| 6| 56|GND

ACH2 71 57|PC4

ACH10 8| 58|GND

ACH3 9! 59|PC3

ACH11| 10f 60(GND

ACH4| 11| 61|PC2

ACH12| 12| 62|GND

ACH5| 13; 63|PC1

ACH13] 14] 64|GND

ACH6| 15| 65(PCO

ACH14| 16| 66|GND

ACH7| 17| 67|PB7

ACH15| 18] 68{GND

AISENSE| 19| 69|PB6

DACOOUT| 20{ 70{GND

DAC1OUT| 21| 71|PBS

RESERVED| 22| 72|GND

AOGND} 23] 73|PB4

DGND| 24| 74|GND

D100} 25| 75|P83

DIO4} 26; 76|GND

DIO1| 27 77|PB2

DIOS| 28| 78{GND

DIO2| 29 79|PB1

DIO6; 30| 80[GND

DIO3| 31] 81{PBO

DIO7| 32 82|GND

DGND{ 33| 83|PA7

POSITIVE 5V| 34} 84|GND

POSITIVE 5V| 35| 85]PA6

SCANCLK| 36| 86|GND

EXTSTROBE| 37| 87|PA5

PF10/TRIG1| 38| 88|GND

PFI/TRIG2| 39 89|PA4

PF12/CONVERT"| 40| 90|{GND

PF13/GPCTR1-SOURCE| 41| 91|PA3

PF14/GPCTR1-GATE| 42 92|GND

GPCTR1-OUT| 43| 93|PA2

PF15/UPDATE"| 44! 94|GND

PF16/WFTRIG| 45| 95|PA1

PF17/STARTSCAN| 46| 96|/GND

PF18/GPCTRO_SOURCE| 47| 97|PAD

PF19/GPCTRO-GATE] 48| 98|GND
GPCTRO-OUT| 49{ 99|POSITIVE 5V

FREQ-OUT| 50| 100{GND

Figure 21: I/0O Connector Pin Assignment for the PCI-6025E

69

The board has a bipolar input range that changes with the programmed gain.
Each channel may be programmed with a unique gain of 0.5, 1.0, 10.0. or 100.0 to
maximize the 12 bit analog-to-digital converter (ADC) resolution. With proper gain
setting, the full resolution of the ADC can be used to measure the input signal. Table 13

shows the input range and precision with respect to the gain used. DTB uses gain of 1.0.

Table 13: PCI-6025E Measurement Precision

Gain Input Range Precision
0.5 -10to +10 V 4.88 mV
1.0 Sto+5SV 2.44 mV
10.0 -500 to +500 mV 244.14 pv
100.0 -50 to +50 mV 24.41 uv

3.2.1.2 RSE Configuration

A single-ended connection is one in which the board analog input signal is
referenced to a ground that can be shared with other input signals. The input signal is
tied to the positive input of the PGIA, and the ground is tied to the negative input of the
PGIA. Figure 22 shows a diagram of PGIA with RSE configuration for a floating signal
source. A floating signal source is not connected in any way to the building ground
system but, rather, has an isolated ground-reference point. In the DTB, the ground
reference of a floating signal from the negative end of DC power supply output must be

tied to the board’s analog input ground (AIGND) in order to establish a local reference

70

for the signal. Otherwise, the measured input signal varies as the source floats out of the

common-mode input range.

+ ACH vin+

sz [vin° 'vin-]*Gain
4.

Figure 22: PGIA with RSE Configuration for Floating Signal Source

When every channel is configured for single-ended input, up to 16 analog input
channels are available. In NRSE mode, signals connected to ACH<0..15> are routed to
the positive input of the PGIA. The AIGND signal is connected internally to the negative
input of the PGIA when their corresponding channels are selected.

In single-ended configurations, more electrostatic and magnetic noise couples into
the signal connections than in differential configurations. The coupling is the result of
differences in the signal path. Magnetic coupling is proportional to the area between the
two signal conductors. Electrical coupling is a function of how much the electric field

differs between the two conductors.

71

3.2.2 Analog Output

The board provides two channels of analog output voltage at the [/O connector.
The bipolar range is fixed at +/-10 V. Figure 23 shows how to make analog output

connections to the board.

FL DACOOUT /
l 1@ < Channel 0

Load VOUT 0

—E - AOGND
— *—j

Load VOUT |
T + DACIOUT /
\ Channel |
I/0 Connector _'J Analog Output Channels

Figure 23: Analog Output Connectors

3.2.3 Discrete O

The port 0 of PCI-6025E board has 8 lines of discrete /0 (DIO0~DIO7) for
general-purpose use. In this port, all eight lines can be individually software-configured
as either input or output. At system start up and reset, the discrete [/O ports are all at

high impedance.

In addition, the PCI-6025E card uses an 82C55A Programmable Peripheral
Interface (PPI) to provide another 24 lines of discrete I/O, which represent three 8-bit
ports: PA, PB, and PC. The 82C55A has 3 modes of operation: simple [/O (mode 0),
strobed I/O (mode 1), and bi-directional I/O (mode 2). In modes 1 and 2, the three ports
are divided into two groups: group A and group B. Each group has eight data bits, plus
control and status bits from Port C. Modes 1 and 2 use handshaking signals from the
computer to synchronize data transfers. The DTB just uses mode 0. Under this selection,
it should be noted that, among the four ports, only port 0 can be configured with mixed
lines, i.e., some lines can be configured as inputs whereas others as outputs in the same
port. Ports PA, PB, and PC are different. They can be configured as input or output, but
only as a port, which means all the lines in each port can be either inputs or outputs at the
same time. Figure 24 depicts signal connections for three typical discrete /O

applications.

LED /l/'
+5V
DN
d PA<3..0>
@
M TTL Signal - Port B
PB<7..4>
v
Switch k
[/0 Connector GND
DIO Board

Figure 24: Discrete I/0 Connections Block Diagram

In Figure 24, port A of the PPI is configured for discrete output. and port B is
configured for discrete input. Discrete input applications include receiving TTL signals
and sensing external device states such as the state of the switch. Discrete output

applications include sending TTL signals and driving external devices such as the LED.

74

3.2.4 Discrete 'O Power-up State

The PCI-6025E contains bias resistors that control the state of the discrete [/O lines
PA<0..7>, PB<0..7>, PC<0..7> at power-up. Each DIO line is initially pulled to Vcc
(approximately +5 VDC) with a 100kQ resistor. In the case of using low logic as initial
discrete /0 power-up state, a pull-down resistor (Ry) has to be connected between that
line and ground. Figure 25 shows the DIO configuration to pull down the DIO power-up

state from high to low.

]
1
1
]
]
t
1
)
)
]
82C55 : @ Discrete I/O Line
I
]
]
'
]
!
!
]
]

Figure 25: DIO Line Configured for High DIO Power-up State

However, make sure that the resistor’s value is not so large that leakage current
from the DIO line along with the current from the 100 kQ pull-up resistor drives the

voltage at the resistor above a TTL-low level of 0.4 VDC.

75

To pull it low on power-up with an external resistor, follow these steps:

Step 1.Install a load (Ry). Remember that the smaller the resistance, the greater the
current consumption and the lower the voltage.

Step 2. Using the following formula, calculate the largest possible load to
maintain a logic low level of 0.4 V and supply the maximum driving
current:

V =I1* Ry = Ry = V/I, where:

V=04V ; Voltage across Ry

[=46 nA+ 10 pA ; 4.6 V across the 100 kQ pull-up resistor plus 10 pA maximum

leakage current

Therefore:

RL=7.1kQ ;0.4 V/56 uA
This resistor value, 7.1 kQ provides a maximum of 0.4 V on the DIO line at power-

up and achieves the low power-up state. Theoretically, the R; can be replaced with a

small value in order to lower the voltage or to provide a margin for VCC variations and

other factors. However, smaller values will draw more current, leaving less drive current

for other circuitry connected to this line.

3.3 CMA-900
The CMA-900 is the world’s first GPS/FMS certified for GPS primary-means
navigation in oceanic/remote areas. The system incorporates differential GPS navigation

and wide and local area precision approaches. A full complement of analog and digital

76

interfaces is provided for other aircraft subsystems and displays, as well as company
route and worldwide navigation databases [6].

The FMS accepts data from external navigation sensors, in order of priority: GPS,
DME/DME, VOR/DME, INS/IRS. Information from these sensors is combined with
heading and reference air data inputs of true air speed and altitude to determine aircraft
position. This position is then used for navigating along a programmed flight plan
created by selecting waypoints along a desired route from the navigation data base (flight
planning). Comparison will also be made with a previously entered flight plan to indicate
any course corrections necessary, or alternatively the FMS will be interfaced with the
aircraft control systems to achieve this automatically. A comparison of positional
information provided by the different sensors is also available to the pilot.

Distance to the next waypoint of the journey, together with the estimated time of
arrival, will be displayed and, should it be desired to arrive by a given time, the FMS will
indicate the necessary Indicated Air Speed (IAS) or MACH to achieve this. If a hold is
required at the waypoint, the automatic guidance will ensure that is performed in
accordance with published procedures. Typically up to 5.000 waypoints and 300 discrete
routes have been stored within the navigation data bank of the system.

When operating in conjunction with ground based aids such as DME/DME, the
appropriate frequencies will be automatically selected and tuned. Should a required
frequency be unavailable for any reason, the equipment will indicate this fact and make
an alternative selection. In the event of a temporary total loss of data from the ground-
based aids, the FMS will maintain a Dead Reckoning (D/R) plot until data is again

available.

77

In addition to navigation functions, the FMS also provide assistance in fuel
management by computing the present consumption and estimating fuel remaining at
destination, maintain an engineering log by recording the nature and time of events, and

assist in similar housekeeping duties.

3.3.1 Features
CMA-900 features include:
e Multi-sensor navigation modes with available sensors
e Standard Instrument Departure (SID)
e Standard Terminal Arrival Routes (STAR)
e GPS instrument approaches
e Direct-to/intercept navigation, holding patterns, procedure turns, arcs. offset
tracks and search patterns
e Automatic waypoint sequencing, with and without turn anticipation
e Required and actual navigation performance (RNP/ANP)
e Required time of arrival (RTA)

e Fuel management and navigation tuning functions

3.3.2 Waypoint Navigation

The FMS navigates from waypoint to waypoint sequentially, automatically
changes the legs, and displays all required navigation parameters computed according to
the relationships and direction sense illustrated in Figure 26. Those terminology

definitions are described in Appendix H.

78

B e e T T it b PP SO N - o te s et ie e e ek e 8 i “mmmatene 4 ¥ 7

Figure 26: Navigation Relationships [7]

The FMS switches leg prior to reaching the active (TO) waypoint so that the
aircraft turns are smooth without any overshoot. Waypoints may be defined as either fly-
by (with turn anticipation) or fly-over (no turn anticipation). The aircraft is considered to
have passed a given point when it has crossed the bisector of the course change angle.

Thus, for leg sequencing to occur, the aircraft needs to pass the bisector of the course

79

change angle or the way-line of the “TO” waypoint whichever occurs first, depending on
the flight plan geometry of whether the airplane is on/off track [7].

Where automatic leg sequencing has been inhibited, such as at the missed
approach waypoint, the FMS will prevent the leg change from occurring, but will
continue to provide guidance along the extension of the last leg until further operator
action is taken. After the last defined waypoint is overflown, or when a route
discontinuity is active, the FMS will provide guidance along the extension of the last leg,
but will prevent autopilot-coupled navigation by disengaging the LNAV mode of the

autopilot/flight director system.

3.3.3 Departures

The complete departure procedure, including Standard Instrument Departure
(SID) and SID transition, can be loaded into the route at the same time or in segments.
depending on the Air Traffic Control (ATC) clearance received. The segments are
selected form lists of named procedures extracted from the navigation database for the
specified departure airport. For example, in Montreal, the SIDs could be either Dorval or
Mirabel airport.

When a SID is selected, the waypoints and procedural legs are extracted from the
navigation data base, procedural leg types are decoded, and all resulting waypoints are
inserted into the route in the correct order.

The SID transition is linked to the appropriate waypoint of the en-route portion.

If there were no SID transition, the SID would be separated from the en-route portion by

80

a route discontinuity. For certain types of SID and transition, the waypoints may not be
loaded into the route until the runway is selected.

SID transitions are appended to the route after the SID and are usually separated
from it by a route discontinuity, unless the last waypoint of the SID and the first waypoint
of the en-route portion of the route are identical.

ATC clearances that modify the selected SID procedures can be incorporated by
selection of a new procedure, when the aircraft is not in flight. This results in the

automatic deletion of the waypoints associated with the cancelled procedure.

3.3.4 GPS Navigation
The GPS sensor uses 12 independent channels and can track any combination of

GPS satellites. The GPS sensor computes and outputs three-dimensional position and

velocity components, time, groundspeed, and track. Both code and carrier phase tracking

are used. Carrier phase tracking greatly reduces position and velocity errors under highly
dynamic aircraft manoeuvres.

The GPS is selected and will remain selected as the main sensor for navigation
when:

e GPS has Receiver Autonomous Integrity Monitoring (RAIM) with a Horizontal
Integrity Limit (HIL) less than or equal to the GPS Integrity Alarm Limit (GIAL)
defined for the current phase of flight;

e GPS has RAIM with a HIL greater than the GIAL. or has lost its RAIM function but
the aircraft is in the approach phase and the Horizontal Dilution of Precision (HDOP)

is less than 4.0, then GPS shall remain selected for 5 additional minutes;

81

e GPS has RAIM with a HIL greater than the GIAL, or GPS has lost its RAIM function
and no other approved sensor (i.e., INS, DME, VOR) available.

Before a pilot gets airborne, he / she will need to obtain an approach RAIM prediction
for the destination aerodrome. RAIM tells the pilot whether there are enough satellites in
view to establish the accuracy of navigation information provided by GPS. If RAIM is
unavailable, a GPS approach can not be flown. If RAIM is lost, a missed approach must
be executed.

For each specific phase of flight — enroute, terminal and approach — there is an
additional position tolerance called Horizontal Integrity Limit (HIL). HIL is the radius of
a circle in the horizontal plane, with its center being at the indicated position, which
describes the region which is assured to contain the true position. It is the horizontal
region for which the missed alert and false alert requirements can be met. It is only a
function of the satellite and user geometry and the expected error characteristics: it is not

affected by actual measurements. Therefore, this value is predictable [34].

3.3.5 GPS Instrument Approaches

The implementation of the GPS instrument approach procedures has been based
on the evolving Required Navigation Performance (RNP) airspace concept. The
transition from en-route through terminal to non-precision approach is in effect a
seamless series of waypoints/legs with progressive increases in Horizontal Situation
Indicator (HIS) lateral deviation display sensitivity (to reduce flight technical error),

reductions in RNP value, and appropriately-timed alert or advisory messages.

82

Approach transitions are appended to the route after the STAR and are usually
separated from it by a route discontinuity, unless the last waypoint of the STAR and the
first waypoint of the approach transition are identical. Approach transitions may include
procedure turns. Missed approach procedures are loaded as part of the approach. Arrival
waypoint may include speed and altitude constraint advisories.

Baro-corrected altitude is required to enable automatic sequencing of arrival or
missed approach procedure legs with altitude terminations. [f the aircraft installation
provides only a pressure altitude input to the CMA-900, manual entry of the altimeter
correction is necessary to convert this input to baro-corrected altitude. When required,
entry of the altimeter correction for the arrival airport should be performed as soon as
received, and prior to reaching a radial distance of 30 nm from, and an altitude below
15,000 feet above, the arrival airport.

When the approach transition includes a procedure turn, the CMA-900 creates
two outbound legs based on the procedure turn reference fix, followed by a turn in the
correct direction to intercept the inbound course to the final approach fix. The still-air
lengths of the procedure turn outbound legs are computed based on a time of 1 minute
and 45 seconds respectively at a speed of 180 knots.

The CMA-900 provides navigation and guidance in the normal fashion for the
two outbound legs of the procedure turn, followed by a turn to intercept the final
approach course inbound to the final approach fix. When the maximum allowable
procedure turn distance is less than 10 nm, the length of the first outbound leg may be
reduced. As a result, navigation and guidance may be sequenced to the second outbound

leg almost immediately after crossing the procedure turn reference fix.

On entering the terminal area, the GPS instrument approach phase of flight will be

armed automatically 2 nm prior to the Final Approach Fix (FAF) as shown in Figure 27.

GPS
APPROACH
ZONE

ALERT BOUNDARY
CDU MESSAGE:

,,,,, - "FLY TO GPS
N APPR ZONE"
N
N
\
\
\
\
\
l c\-f'
FAF ! MAP

\ 2NM RADIUS

CROSS THIS BOUNDARY
AT ATRACK ANGLE
ERROR OF LESS THAN S0°

Figure 27: GPS Approach [7]

84

3.3.6 Required Navigation Performance

To optimize the flight performance such as fuel economics, landing safety etc.,
Required Navigation Performance (RNP) values are given on different flight phases.
Those values are computed by aerodynamics, engine model etc. The RNP value for each
leg is associated with the current phase of flight (refer to Table 14), or can be manually
assigned by the operator. When the RNP value is included in the navigation database, it
will be automatically extracted. The current estimate of position uncertainty (EPU), also
known as actual navigation performance (ANP), is computed based on the GPS
horizontal integrity limit (HIL) of figure of merit (FOM), or the quality factor of other
navigation modes, and an alert message is generated when the ANP exceeds the RNP. In
case of an alert generated, for example in the approach phase, the pilot must not land the
plane using the malfunction FMS auto-landing navigation. Instead, the pilot should

climb up the plane and use other supplemental navigation for landing.

85

Table 14: Required Navigation Performance

Phase of Condition Manual RNP | Position | GPS HSI scale
flight entry check integrity
limit alert limit
EN-ROUTE When not in None (2.0 nm 2.0 nm 2.0 nm +5.0nm
terminal or approach default)
phase of flight 1.01 t0 20 nm 2.0nm 2.0nm £5.0nm
031to1.0nm 1.0 nm 1.0 nm + 1.0 nm
0.1t100.3nm 0.3 nm 0.3 nm +0.3 nm
TERMINAL | <15,000 ft AGL and None (1.0 nm 1.0 nm 1.0 nm + 1.0 nm
<30 nm from arrival default)
airport but not in 0.31 to 20 nm 1.0 nm 1.0 nm + 1.0 nm
approach, or
<16,000 ft AGL and
<33 nm from 0.1t0 0.3 nm 0.3 nm 0.3 nm £0.3 nm
departure airport
APPROACH | <15,000 ft AGL and None (0.3 nm
within 2 nm of FAF default) 0.3 nm
with approach 0.1 t020 nm

conditions satisfied

3.4 Control display Unit (CDU)

The CDU is the primary control and display operator interface of the CMA-900.

The CDU keyboard, page layout and operating procedures have been designed to emulate

the “full-size” FMSs widely used in “glass-cockpit™ aircraft. This design approach offers

operational commonality across mixed aircraft and equipment types.

The simple,

intuitive, scratchpad/line-select operating procedures and the flexible architecture

eliminate the need for keyboard redesign to accommodate new functions. The CDU front

panel is shown in Figure 28.

86

R N R B e T T e e D e T I e Y S A e I R A T L T i ST A i T L P IR AP A I T T
PR R X A RO R S LSO NI S LA A s o X 3 SRR RT S AL JT LG LR S e G B e I i

ANNUNCIATORS

I
REEE G @M@ o
CENADE AN NERTTN COAPONY

AUTO-BRIGHTNESS

AUTO-BRIGHTNESS

CONTROL SENSOR ™ —" CONTROL SENSOR
DISPLAY SCREEN
LINE SELSCT KEYS LINE SELECT KEYS
(SOFTKEYS) [(SOFTKEYS)
SCRATCHPAD

FUNCTION KEYS ' sec
MENU : @ (a1 |[O5R,] m [Lﬁlﬂ ERE= -[}./ ANNUNCIATOR
ANNUNCIATOR —
o =
(B}

Q)
DECIMALKEY/ S ' @ @@@

/ / \ ‘
SLASH () KEY SPACE PLUS-MINUS CLEAR/DELETE KEY
KEY KEY

Figure 28: CDU Front Panel [2]

The unit has been designed for ease of use, with no multiple-function keys,
immediate function-key access to its principal functions, and display of important
information in well-formatted pages. System level functions are readily accessible

through the MENU key. The pilot enters and views information on several different

87

“PAGES”. For example, on the Departure and Arrival page, the pilot can view all the
names of available Standard Instrument Departures (SIDS), Standard Arrivals (STARS).

departures and arrival runways.

3.5 Breakout Box Design

Breakout box is a part of hardware design to integrate FMS into DTB system. It is
used to interface two donated FMS CMA-900-202 or one new FMS CMA-900-402 with
a CDU to the DTB. The breakout box contains all the interconnections between

interfacing PC and avionics. All wiring connection can be found in Appendix D.

3.5.1 Dimension Design
One suitable box has been chosen as the CIC lab environment. and all the
dimension design is done with an eye for convenient use and neat wiring arrangement.

The dimension design includes all layouts for the box as shown on Figure 29 in details.

88

68

AMIIAIIAQ XOq-Inoyeaag 167 dandig

(19ke puodag) aatp dog,

MIIA Houg

Yoed (T

MIA doy),

0’10

? P9

VOOl AVN'

L0 @4

(124e[puodas) doj, (¢

doy, (1

In Figure 29, the top plane 1) contains connectors J4 (for FMU 202A), J5 (for FMU
202B), J6 (for FMU 402), J7 (for CDU) and the corresponding power switches and
LEDs. It also includes three discrete Ground/Open input switches for the FMUs, namely
OLEO, TOGA and LNAV. The back plane 2) provides three connectors for 28 VDC
power supply, ARINC I/O DB44 and discrete /O SCB100. The second layer of the top
plane was arranged for J1 (for ARINC I/O signals), J2 (for discrete I/O signals), J3 (for

additional common nodes for the Avionics) and the DIO internal circuit board.

90

3.5.2 Breakout-box Components
The breakout-box components include power supply. LED display circuit,
internal circuit board, connectors and cable wiring.

3.5.2.1 Power Supply

The power supply provides the regulated voltage and current source needed to run
the avionics. According to the CMA-900 specification, the maximum power of one FMU
is 38 W at 28 VDC. From the CMA-2014 (CDU) specification. maximum power is 35 W
at 28 VDC.

Hence, for DTB application, three FMU and one CDU will be used, and the total
current draw will be 5.33 A (3*38/28+35/28). Finally, for the DTB application, a power
supply (6 A, 28 VDC) with a safety margin has been selected.
3.5.2.2 LED Display Circuit

In order to monitor the activity of each power of the avionics, the schematic LED
circuit is designed as shown in Figure 30. Once the position of the switch is set to ON,
the FMU or CDU will be ON and the corresponding LED will be lit; when the switch
position is set to OFF, the FMU or CDU will be OFF and the corresponding LED will

become unlit. The maximum current for the standard LED is 20 mA, therefore a 1.5kQ2

current-limiting resistor is chosen.

91

¥28V /l/'
~—e 'sf. L 15 KkO ll>|| l
¢__
GND /V
——o/o 15 KO —}>‘

CDhU GND

Figure 30: LED Display Circuit

3.5.2.3 Discrete Input Switches

In DTB application, all discrete signals are Ground / Open. Those signals can be
controlled either by software through the PCI-6025E card or by single-pole single-throw
(SPDT) ON-ON switches [15]. Since only three discrete signals are required for lab
testing, namely OLEO, Take Off Go Around (TOGA) and LNAV. a simple switching
device will be used as shown in Figure 31. Once it switches to the right. the discrete

input signal is OFF, and when it switches to the left, the discrete input signal is ON.

92

Three-leg
switch O

To discrete
signal input pin

FMU

Figure 31: Discrete Input Switch

3.5.2.4 Internal Circuit Board

The purpose of the internal circuit board is to convert between standard low-level
logic (5 V from DIO card) and high level logic (28 V for CMA-900).

3.5.2.4.1 Conversion (5V to 28V)

Figure 32 shows the circuit design for converting 5 V logic to 28 V logic. The

principle can be explained with the simplified circuit in Figure 32.

9.76 kohms 0.1W

st T000D

1 No
2 »—179

-
3 7|18 .
a4 1 17 discrete
5 7 [16 d inputs to
8 2 |15 ¢ FMS

P *
7 Y14

—b o
8 13
‘—
UDN29B7A

J_12

Figure 32: Logic Conversion (5 V to 28 V)
93

UDN2987A

IN1 OUT |
5V o—» I\ >

N

28V

Figure 33: Simplified Logic Conversion Circuit

According to Kirchoff’s current law (KCL), we have the relationship in Figure

[=] + 5

(93]
(2]

Where the 9.76 kQ resistor provides the necessary current sink in order to meet
the specification of the FMU loading current. UDN2987A is 8-channel source driver
amplifying voltage from 5V to 28V.

3.5.2.4.2 Conversion (28V to 5V)

On the other hand, FLSIM is needed to accept certain discrete valid signal from
FMS for special performance such as Glide Slope guidance of VNAV mode. Therefore.
another circuit is designed for converting FMS logic signal into standard logic level. The

explanation of one line of circuit can be seen in Figure 34.

94

V4 (+5VDC)

9.76 kQ
bi comal 28Q
iscrete signa — R Discrete signal
to DIO (5V) S e from FMU (28V)

Figure 34: Logic Conversion (28V to 5V)

Where the 28 Q and 9.76 kQ resistors provide the necessary loading current for
the DIO input, V¢ provides 5V voltage (logic 1) to DIO input when FMU output is 28V
voltage (logic 1). It is noted that all discrete output signals from FMU are designed in
Open/Ground fashion. “Open” means open circuit, logic 1.

3.5.2.4.3 Voltage Regulator

A voltage regulator circuit is added to the internal circuit board for two reasons.
First, it provides 5V source to the logic conversion circuits for both directions. Second. it

reduces the number of power supply outputs. The circuit is shown in Figure 35.

95

4 »— IN ouT —9— .—»—O

7805

10 uF 0.1uF 10 pF

\|
/1
\|
/1

GND

o

L

Figure 35: Voltage Regulator

Those capacitors in Figure 35 are called by-pass capacitor that acts as a reservoir
and are used to reduce noise from the power supply.

3.5.2.5 Connectors

The selection of connectors is based on three characteristics, namely contact type,
pin pattern. and pin count. Two types of connector are used. The first type is the front
panel connector used to bring power, ground, and ARINC information to the breakout
box. For compatibility with FMS, Zero Insertion Force (ZIF) connectors are chosen.
The second type is part of the module design and bridges the signals between breakout
box and the avionics. Connector designs are important not only because of the assembly
dimensions and the pin arrangement, but also the prevention from vibration and

mechanical stiffness required [8].

96

3.5.2.6 Cables

Cables are used to provide the media for wiring. The only important aspect of it
is the cable type. In DTB application, two sizes of cable are used, namely 22 AWG
(0.0253 inches) and 24 AWG (0.0201 inches). AWG stands for American Wire Gauge.
22 AWG cables are easier to be clamped and maintained but they are heavier, whereas 24
AWG cables are easier to be broken while clamping but they are lighter. For ARINC
information, it is preferable to use 22 AWG cable for 2 reasons. First. bigger cable
provides greater stiffness while it is required in DTB application that the wiring is

designed to be flexible and since the user might need to change channel configuration for
. . . . L .
further testing. Second, according to the basic concept of resistance (R = p; . where p is

resistivity, L is length, A is cross-section area), for same material and length, small
diameter wire provides larger resistance. This concept is important since larger

resistance would make small signals unstable.

97

CHAPTER 4

SOFTWARE IMPLEMENTATION

Even though the general description of DTB software architecture has already been
introduced in Chapter 2, more detailed background information of the architecture shall

be expounded in this chapter, together with the author’s contributions in the DTB

software implementation.

4.1 Software Requirements

Software refers to the instructions and data which control running of computer
hardware. This includes low-level software supplied by the computer vendor to provide a
richer user environment, as well as application programs written for a specific user
function. Modern applications are written in powerful Higher Order Language (HOL) by
which software designers can achieve an impressive level of sophistication and
abstraction. This maturing capability allows system functions to be moved from
hardware implementation and control to software means, increasing system reliability
and simplifying hardware upgrades.

Software technical requirements associated with development may include
functionality, performance, reliability and maintainability. There are many program
languages each having its advantage and disadvantage. The FORTRAN language is good
for scientific computation and the C language for character processing and direct control
of hardware program. But both FORTRAN and C language which are often called
functional or structured programming are clumsy for large projects and both are not

suitable for Internet and visual interface usage [14]. In functional programming, the

98

designer identifies and packages each function that a software must perform as a separate
design entity. These entities, or units, interact to form a system. Visual C++ is another
type of programming, which is likely to emerge as the common language for sensor
electronics control systems being often called object, oriented programming. The design
of object oriented programming comes from the [/O requirements, as well as notions of
data encapsulation and data hiding. Each object must have a state and transitions among
and between states must be defined. An informal method of identifying objects is to
describe the system verbally. The nouns in the description are objects and the verbs are
operations performed on the objects [9].

One problem with the functional design approach is that if the aircraft functions
change during an upgrade, a major software redesign may be needed because of the
complex interface and timing relationships within the code. In principle, object oriented
design defines such relationships more generally and may therefore simplify such
upgrades. Hence, from easier maintainability point of view, Microsoft Visual C++

compiler has been selected for DTB design.

4.2 DTB Realization

There are numerous problems in realizing the DTB software integration. which was
programmed in an easy-to use environment. I[n order to deal with the complexity of such
unstructured environments, a three layer software organization is utilized as shown in
Figure 36, consisting of: 1) organization layer — application layer, 2) coordination layer —
DLL layer, and 3) execution layer — device driver layer. Each layer is in turn subdivided

into additional levels as needed.

99

Simulation Environment Management Program

Simulation Algorithm Program Graphic User Interface Program
e Six Degree Freedom e Main Control Panel

e Autopilot e Surface Control

e Engine e Data Acquisition

‘ I

Signal Processing Module

Application Layer

DLL Process Program
e (lasses

e Methods

e Attributes

e Packet

e Socket

DLL Layer

Device Driver Program
Driver Layer | ¢« ARINC I/O

e ADIO

Figure 36: Block Diagram of DTB Software Integration

100

4.2.1 Device Driver Layer

In the Windows operating system, a programmer cannot access hardware directly
from the application level. Hardware access is allowed only from within the operating
system itself. In order to access a custom hardware device from the application level, a
programmer must do the following:
e Learn how to write a device driver.
e Leamn the internals of the operating system he / she is working on.
e Learn new tools for development / debugging in the Kernel Mode.
e Write the application in the User Mode, which accesses the hardware through the

device driver written in the Kernel Mode.

Therefore developing a device driver for A429-PC16 hardware interface is not an
easy task in the DTB application. A general configuration of the ARINC device driver is
important to achieve objective architecture capabilities and keep costs within an
affordable range. The device driver was written in Visual C++ and it provides
transparent support for Windows NT, furnishing programmers with a function for real-
time direct access to port [/O. The step by step function for obtaining the device driver

can be found in section 3.1.10 of this paper.

4.2.2 Dynamical Link Library Layer
Threads are execution streams and form the basis of multitasking. That is, each
program that runs in Windows has its own main thread to launch the program, and it may

start additional threads. Each new thread has its own procedure and executes the code in

101

that procedure at the same time that other threads are working. Multi-thread
programming was used to achieve synchronization application between FLSIM and FMS.
The methodology was described in section 2.3.2. Visual C++ Microsoft Foundation
Classes (MFC) provide a native class method to achieve the main goal of platform
independence for different thread. When working with native methods, the application

must load dynamic libraries first.

4.2.3 Application Layer

Many DTB functions are implemented in the application layer. To construct an
efficient and practical real time simulation environment, the application layer is divided
into three function modules — signal process module, graphic user interface (GUI)
module, and algorithm of simulation module.

4.2.3.1 Signal Process Module

[n DTB, there are many conventional sensors such as GPS, VOR, DME. INS etc.
An application program has the control capability to present inputs to processes and the
plants of subsystems so that only the desired outputs or actions are fulfilled.
4.2.3.2 GUI Module

Computer generated information displays provide a promising technology for
successful display in GUI design. The Visual C++ dialog based AppWizard supplies
much fancy control features for creating GUI display. A desirable display should
associate information with the individual primitive activities, and letting an intelligent
information manager combine on-line the information associated with each current
activity. How to realize the desired display interface is not easy and in DTB. it depends

upon customer demand only.

102

4.2.3.3 Simulation Algorithm Module

In DTB, this module is called VPIGateway. Besides using native functions in
FLSIM libraries, user customizable properties are provided such as adding a new control
law of flight. The conversion between ARINC words and the engineering values has

been designed in this module.

4.3 Software Development Examples

In DTB, there are three major essential workspaces, namely VPIGateway, VPIGUI
and DTBExecutive. The author’s contribution to the software development is on the
Interface PC with DTBExecutive workspace. Two small GUIs have been attached to the
DTBExecutive workspace for monitoring the real-time performance of ARINC-label and
discrete-signal statuses, namely ARINC label GUI and DIOGUI respectively. Since both
are assistance software and they are not in the requirement of the DTB, the detailed
information would not be shown in the paper. There is another independent GUI which
has been created to provide flexibility in changing the ARINC channel property, namely

ARINC Bus Channel Switch workspace.

4.3.1 ARINC Channel Switch GUI

4.3.1.1 Introduction

The primary purpose of creating this GUI is to provide a flexible tool for
switching the existing ARINC channel configuration. Since the DTB will be tested on
different models of aircraft, whose different hardware configurations force the DTB to be

flexible, the *ARINC Bus Channel Switch’ is essential. Also, in the real testing

103

environment, this GUI furnishes a faster way to reconfigure the ARINC bus property
without specific training in ARINC standards.

4.3.1.2 Software Architecture

To implement this GUI, the first step is to put the complete ARINC channel
property file into a certain directory on the Interface PC. The second step is to program
the ‘discrete’ track bar control using the MFC library view class. Each track bar (slider)
represents an ARINC channel, the static text to the left of each slider representing the
name of the ARINC bus and the tick mark on the slider showing the current channel set
up for a certain ARINC bus. The value is initialized at zero, the assumed default value.
Any new position setting can be traced by “Now” column, which is just to the right of the
slider. The layout of the GUI is shown in Figure 37. The final step is to program list-box
control functionality. The first list box reads the original existing property file from a
certain directory and puts it into a buffer, where the switching of channels is dealt with.
Then the modified property file is copied into the second list box which finally writes and
saves the modified property file into the "DTBExecutive’ working directory. This
principle applies to “device 2” with other two list box controls as well. The schematic
diagram is shown in Figure 38. Note that, to use this GUI, the combined channels

(device 1, channel 3, 4, 5) have to be selected first in ascending order.

104

| ATIINC BUS CHANNEL SWITCH

. o Now Defak Now
T BEC[I Dm!_..... : : _sz_- Je- .
| % T . RS . i f :
, 0 A | DME TUN ; !
? arcs 1} ‘ e PSS . o
P o vy g EoL
: ' Device T_oulprts—————————— Device 2_outouts ,
i I SewHRST U e It : - T .
'[rsdm I‘L ’ - * » 3 - » . '0 a; r i
| H , . :
| et R - g ;
| [” SetAHRAS2 b T : T . el
TSz [P Poocacz i
il'sunsz £ | i
} Vﬂn [': . . 3 0 ‘
7 SaiRsa L — |
¢ ™ SeNS3 LL s s r s+ v, % : :DME I:] &8 :
. ™ SetAS3 P — i
: R T J [SN 0 !
H . » 3 » . i
i P51 |+ 6 g | 3
. ' [3 » . . i
i T S N S ! FC I+ o :
T 6 i
: 1
esa |t : : ‘o g

SeiDevicel l

ResetDevice2

Figure 37: Layout of the ARINC Channel Bus Switch GUI

file to List 1 ;
List2
ist bo :> Buffer ‘:> s

Figure 38: List Box Control Block Diagram

105

4.3.1.3 Software Components

The major GUI components are the class ‘GUIIDIlg” and the header file
*fileload.h’. Class GUI1DIg contains a program for setting up ARINC bus configuration.
All calling functions for class ‘GUIIDIg are included in ‘fileload.h’ and are presented in

Table 15. The software implement flow chart can be simplified as shown in Figure 39.

START

OnlnitDialog ():
e Default Values
e Slider Range

|

OnHScroll ()

v

ReadFileToListBox ():
Call the original property files

L

OnSetDevice ()

No

(m_slider != default) &&
(m_slider!'=0)

Switch Channel Device

v

FromListBoxWriteFile () :
Updated the property files

END

Figure 39: Flow Chart of Channel Switch

106

Table 15: Functions in Class GUI1DIg

Functions

Description

OnlnitDialog ()

This function is called by the framework in response to the
WM _INITDIALOG message, the message being sent to the
dialog box during the Create, Createlndirect, or DoModal
calls, which occur immediately before the dialog box is

displayed.

OnHScroll ()

This method is called by the framework when the user
clicks a The
SB_THUMBTRACK scroll-bar code typically is used by

applications that give some feedback while the scroll box is

window's horizontal scroll bar.

being dragged.

ReadFileToListBox ()

Copies existing property files into list box 1 or 2 for device

1 or 2 respectively.

FromListBoxWriteFile ()

Copies the edited property files into the desired

DTBExcutive directory from list box 3 or 4.

FindStringInListBox ()

Finds the specific string in a list box that contains the

specified prefix, without changing the list-box selection.

SwitchChannelDevicel ()

Implements all channel resetting for device 1 with all

options.

SwitchChannelDevice2 ()

Implements all channel resetting for device 2 with all

options.

OnSetAHRS () For the combination channels 3A or 4A or 5A. selects
AHRS bus for the specified channel.

OnSetINS () For the combination channels 3A or 4A or 5A. selects INS
bus for the specified channel.

OnSetIRS () For the combination channels 3A or 4A or 5A. selects [RS

bus for the specified channel.

OnSetDevicel ()

After selecting AHRS/INS/IRS, switches all necessary
channels for device 1 and then saves to desired working

directory.

107

OnSetDevice2 () After selecting AHRS/INS/IRS, switches all necessary
channels for device 2 and then saves to desired working

directory.

OnResetDevice2 () If there are no changes in device 2. copies the default setting

for device 2 directly into the desired working directory.

AddString () Adds a string to a list box.

GetDlgltem () Retrieves a handle to a control in the specified dialog box.

GetPos () Retrieves the current position of the slider in a slider
control.

GetText () Retrieves a string from a list box.

GetCount () Retrieves the number of elements in this list.

SetRange () Sets the range (minimum and maximum positions) for the

slider in a slider control.

SetDlgltemText () Sets the text of a control in a dialog box.

SetCurSel () Selects a string and scroll it into view, if necessary. When
the new string is selected, the list box removes the highlight

from the previously selected string.

ResetContent () Removes all items from a list box.

4.3.2 ARINC I/O Configuration Management

For easy maintenance, instead of hard coding, five new classes
(‘Arinc429Channel’, ‘Arinc429Device’, ~Arinc429TCB’, ‘Arinc429RCB"™ and
‘DTBProperties’) have been inserted into the workspace of DTBExecutive. Also. two
property files called ‘A429Configl.prop” and *A429Config2.prop’ have been built under
the same directory, thus all the ARINC words properties such as frame time. schedule
time and repeat rate can be entered into the file without changing other classes. The
details for setting up the property files can be found in Chapter 3.

108

4321 Class Arinc429Channel

This class (“Arinc429Channel.cpp” under the workspace of “DTBExecutive™)
contains a program to initialize and set up the ARINC 429-PCl16 channels for
transmitting and receiving on the 429 buses. Functions of this class are shown in Table

16.

Table 16: Functions of Class Arinc429Channel

Functions Description

Arinc429Channel () Creates an Arinc429Channel object for construction.

InitializeAsTransmitter () Initializes the transmitting channels and calls the specific

library init routines.

InitializeAsReceiver () Initializes the receiving channels and calls the specific

library init routines.

haltChannel () Halt the Transmit Control Block chain, disabling the
receivers.
writeWord () Gets the address of the data buffer from the Transmit

Control Block and then writes the data to a chain link

transmit data buffer.

Remarks: there are three 16-bit words for each Transmit
entry. The first word is the transmit control word,
followed by the lower 16-bit of ARINC data word, then
by upper 16-bit of the ARINC data word.

readWord () Reads the last received word, followed by its three
associated time stamp words and converts a label to or

from a bit-swapped value.

Remark: for ARINC specifications, the 8-bit label has a

109

reversed bit order.

GetWordAsULONG ()

Drops out the first 10 bits and reads the 19-bit data only.

GetArincWordAsULONG()

Reads the current values of the last received 32-bit Arinc

word.

4.3.2.2 C(Class Arinc429Device

This class (“Arinc429Device.cpp” under the workspace of “DTBExecutive™)

contains a program to parse the configuration file. initialize a device and declare certain

functions at device level. Functions of this class are shown in Table 17.

Table 17: Functions of Class Arincd429Device

Functions Description

Arinc429Device () | Creates an Arinc429Device object.

shutdown () Stops the /O, closes the devices and exits.

isConfigured () Returns ‘correctlyConfigured’.

writeWord () Transmits data.

Remark: the data does not include the label and SDI bits.

readWord () Receives data.

4.3.2.3 Class Arinc429TCB

This class (“Arinc429TCB.cpp” under the workspace of “DTBExecutive™)

includes all class members to set up transmitting command blocks. Functions of this class

are shown in Table 18.

110

Table 18: Functions of Class Arinc429TCB

Functions

Description

Arinc429TCB ()

Creates an Arinc429TCB object for construction.

getTCB () Returns the number of transmitting command block.

getChainID () Returns the ID number of a chain.

hasLabel () Returns TRUE if it is correctly configured.

writeWord () Gets the address of the data buffer from the Transmit Control Block
and then writing the data to a chain link transmit data buffer.
Remarks: there are three 16-bit words for each Transmit entry. The
first word is the transmit control word, followed by the lower 16-bit
of ARINC data word, then by upper 16-bit of the ARINC data word.

isConfigured () | Returns logic state of “correctlyConfigured”.

4.3.2.4 Class Arinc429RCB

This class (“Arinc429RCB.cpp” under the workspace of “DTBExecutive™) serves

to set up a receiver control block. Functions of this class are shown in Table 19.

Table 19: Functions of Class Arinc429RCB

Functions Description

Arinc429RCB () | Creates an Arinc429RCB object for construction.

hasLabel () Returns TRUE if it is correctly configured for a receiver.
isConfigured () | Returns logic state of “correctlyConfigured” for a receiver.
readWord () Reads the last received word, followed by its three associated time

stamp words and converting a label to or from a bit-swapped value.

Remark: for ARINC specifications, the 8-bit label has a reversed bit

order.

111

4.3.2.5 Class DTBProperties

This class includes all attributes and methods in order to match and read the

*A429Config.prop’ text file. Functions of this class are shown in Table 20.

Table 20: Functions of Class DTBProperties

Functions Description

DTBProperties () | Creates a DTBProperties object for construction.

getShort () Returns Cstring key and passes the value to the pointer short.

getint () Returns Cstring key and passes the value to the pointer int.

getLong () Returns Cstring key and passes the value to the pointer long.

getFloat () Returns Cstring key and passes the value to the pointer tloat.

getDouble () Returns Cstring key and passes the value to the pointer double.

getString () Returns Cstring key and reads the value from the Cstring.

Put () Inserts the character and dynamically creates “Property” text file.

Load () Reads the *A429Config.prop” text file.

Save () Writes the “A429Config.prop” text file.

Dump () Dumps the contents of *“A429Config.prop” and checks if it is
correct.

4.3.2.6 Class DTBArncIOThread

This class is an individual running program within the main Executive Thread

Loop, which contains a separate execution path. The general information about “Thread”

is introduced in Chapter 2. There are three main methods under this class as shown in

Table 21.

Table 21: Functions of Class DTBArincIOThread

Functions Description

getDataFromBus () | Sets a pointer to the readable double buffered bus and reads the
contents irom the layer.

performlO () Receives data from the readable double buffered bus and transmits

to required channels.

REMARK: In order to cancel out the effect of delay when
updating data in double buffer container, multi-rate flag
“tickmarkIndex” is set so that the receiving data can be updated

with different specific frequency.

SetDatalntoBus ()

Writes the new data into the writable layer of the double buffer

bus.

CHAPTER S

SYSTEM VALIDATION

Since this DTB was mostly involved with technical implementation, particular in
the area of software development, not much theory can be presented since verifying the
whole DTB system depends mostly on data comparison or navigation working
experience. To test both software and hardware in the DTB system, three stages have

been passed through, namely loop-back testing, LNAYV testing and VNAV testing.

5.1 First Stage: Loop-back Test

As described in Chapter 4, the software development can be divided into three
levels. To ensure that the device driver layer is working, the loop-back test has to be
passed first. Loop-back is a simplified system without breakout-box connection. The
Simulation PC converts certain signals (say Heading and True Air Speed) from
engineering values to ARINC 32-bit words and sends them into a double buffer
container, then Interface PC picks up the data and transmits them on different ARINC
channels (say channel S and 6). With loop-back connection, in this example, channel 5
and channel 6 were directly connected to channel 1 and channel 2 respectively. When the
expected results are achieved, it means that all received information from channel 1 and
channel 2 are perfectly identical with transmitted information from channel 5 and channel
6 respectively without any run-time errors.

Similar testing has been held with different channels including Device 2. It

should be noted here again that A429-PC16 has two devices, each device having 8

114

channels. For the loop-back test, we always assign the upper 4 channels as transmitters
and the lower 4 channels as receivers in each device.

At this stage, it should be ensured that the primary functions of the device driver
layer are working properly, including ARINC channel configuration file, ARINC device

initialization, transmitting and receiving.

5.2 Second Stage: LNAV Test

LNAYV verification is one of the primary objectives of the DTB. To begin the test.
besides having the device driver layer set up properly, all necessary input buses including
the conversion between the FLSIM engineering values and ARINC words have to be all
correct and stable. The pin-connections in the breakout box is a main concern at this
stage, and loose contacts have to be eliminated totally. After making sure there is no

poor contact on the wiring, the LNAV testing block diagram can be replaced with the

sketch in Figure 40.
FLSIM GPS

P

ADC FMS 4_.>§
- @)

AHRS LNAV
> Air/ Ground

Switch
T Roll Command

Figure 40: LNAYV Test Block Diagram

Figure 40 indicates that the only input needed from the FMS for lateral navigation
is the roll angle. However, the FMS needs other information to compute the proper
steering command. [t is necessary to make sure that the FMS is reading correctly the
airspeed, the heading, the baro-corrected altitude and the position from the FMS. After
verifying that the ground speed (GS) is greater than 140 knots and all GPS validity and
integrity flags are as transmitted by the DTB, DTB is ready to have the LNAV test with a
certain flight plan. Figures 40 to 43 show the active progress of LNAV with a flight plan

from CYMX (Montreal) to CYYZ (Toronto).

ACT FTELD LEGS
2437 —B5SNM
~B00
5. 04nNmM
—ud

. S 3NM

37.9NM_
5000

LEGS ETAR

Figure 41: Flight Plan Along Legs (Waypoints)

116

AT PROGRESS 1.4
L2A3T [rns ol
Z26bNnMm 1 /34.3=Z
3177 ocrs
L /0 271NM 17368z
THUE T IR

= 1807/ e T 0007/ 160k T
| S SN I
P11/70/7P09/NM
RN R [T E Y B T I
la 00/ 00 02NM SO0FT/ 1« 0NM
Pl ITar
GRS

Figure 42: LNAV OFF Status

Figure 42 shows that the course of waypoint AGBEK is 243 (degrees True) with

Ground Track Angle Error (TKE) Right 117 degrees before LNAV is engaged.

117

—H_T FROGRESS
AT IR f
2B, NnM L3457

17T RS
L SO 272NM 173647
THUE T R

0517/ By T 29227 /160 1
IEod N
RPOS2O0/ R4« 23NmM
O R A [(Y IO AT B B
|« OO0/ 0 J22NM S0O00FT/ 1-0NM
Ploat o eI

AaGPS

Figure 43: LNAYV CN Status

Figure 43 indicates that once the LNAV is engaged, the Heading changes as the
aircraft turns. It is suggested that the TAS should be set in the range of 160 — 170 knots
to prevent navigation overshoot. This diagram also shows that the TKE is decreasing and

the aircraft is tracing the prescribed path (Heading).

118

H T PROGRESS
A3 T Prois T
259NMm 1 /3347

P17 RS
L S0 26H4ANM 1735 .27

THUE iz N

> 145717/ v T 2437/ 170k 1
[S R S
LOOOV/RP0.00NM
N L [N I Y I S
la OO/ 0 a0)22NM S00FT/ 1« 0NM
Phogt b =it i
A4GPS

Figure 44: LNAV Completed

Figure 44 shows that the aircraft is following the roll command, and once the
Heading reaches the expected course, the roll angle becomes zero and the Heading a
constant. For easier comparison, the wind speed is set to zero. When LNAV is
completed, it is verified by looking at both TKE and XTK which become zero and the
Heading equal to 243 (Degrees True). To understand those navigation relationships, see

Figure 26.

119

5.3 Third Stage: VNAYV Test

The VNAYV test is another primary objective of DTB. Instead of roll command
from the FMS, the only input for FLSIM is FMS Vertical Deviation, and once the VNAV
is engaged, FLSIM should follow the Glide slope control law during the approach phase.

The components of the Approach / Landing phase are shown in Figure 45.

Approach/landing
En-route =
phase phase —>
Transition Final .
approach ¢ Visual €

IAF

ﬁ ____________________

Vertical Deviation

TDP
Glide slope = 3°

[T 777777 777777777777 R

Runway

Figure 45: Components of Approach/Landing Phase (side view)

Where: IAF = initial approach fix
FAF = final approach fix
MAP = missed approach point

TDP = touch down point

Besides having all input verified, the LNAV should be activated correctly as
Figure 46 shows and, in order to go into GPS approach mode, the FMS makes Predictive
Real-time Receiver Autonomous Integrity Monitoring (RAIM) requests for the final
approach fix (FAF) and missed approach point (MAP).

As part of the request, the DTB shall receive the Destination waypoint ETA label
on the GPS input channel and acknowledge reception of this label by transmitting the
Destination waypoint ETA label back and a Destination waypoint HIL label in particular
format on the GPS output channel. The Label Destination waypoint HIL should contain
a user-specified horizontal integrity limit. The default value should be 0.1 nm. After
programming a certain format with counters properly (Appendix G has detailed
information), its value should be entered on the navigation status window (Predict RAIM

HIL) as shown in Figure 46.

121

oF= PREDICT
— YYZ
S

S TATUS SR DESEL»

Figure 46: GPS with RAIM

To further ensure that the VNAYV is good for approach, it is essential to verify that
the RAP is 0.3 nm when the aircraft is getting FAF within 2 nm as shown in Figure 47.

For the specification of the Requirement of Approach Performance, see Table 14 in this

paper.

H- T PROGRESS
3177 CrRs e t
la ./ /NM 160Sa 17

HeIYNnm 1BOBbabBZ

| AR
326717170 1
[+t R
RPOO0OSO/ L0 15NnM
T I I T (Y I I T B B
De 30700 022NM CO00FT/70a 3NM
Floatt it

AGPS MISSED APPR»

Figure 47: Entering GPS Approach Zone

Up to this point, all work has been completed on the Interface PC side including
software development, breakout box and hardware components. However, the result of
the VNAYV test is not perfectly matched as desired since the Glide Slope control law from
FLSIM library does not support Vertical Deviation as input, accepting glide slope only.
The discussion will be presented in Chapter 6 and the remaining task of implementing the

new Glide slope control law will be left for future work.

CHAPTER 6

CONCLUSION

6.1 Background Review

In the future, aircraft design performance and control will be focused on the
capabilities of the flight management system (FMS). Instead of aircraft flight
instruments such as air speed indicator, altimeter, artificial horizon, automatic direction
finder, climb rate indicator, compass, course indicator, heading indicator, horizontal
situation indicator, omni-bearing indicator, radio magnetic indicator and turn coordinator,
the FMS will be completely integrated to supply all instantaneous information. The pilot
will no longer rely on mental calculations to determine the position or attitude of his
aircraft. Instrumentation and displays of a FMS will show current status together with
command information, such as the proper altitude and speed required for making good a
predetermined line of flight. Most normal in-flight corrections will eventually be
automated so that the pilot need not interpret the data to make the necessary corrections.

GPS holds the highest priority of a FMS external navigation sensor, approaching
very closely the ideal worldwide navigation aid with an accuracy of a few meters.
However, GPS is expensive to operate, costing nearly a billion dollars per year for the
replacement of satellites and the maintenance of the ground-control and monitoring
network [3]. The cost of collecting user charges would exceed the revenue that could be
extracted from navigation-only users. Hence, in the next generation. GPS transmitters
will be installed on low-cost communication satellites as a way to augment the GPS

network or as a low-cost replacement for dedicated GPS satellites.

124

6.2 Hardware Summary & Discussion

ARINC 429-PC16 interface plays the most important role in DTB hardware
integration. A429 provides concurrent simulation of multiple transmit channels,
monitoring of multiple receive channels, sequential monitoring, advanced interrupt
services, and high speed host operations. The device driver is the core of ARINC
specification. Compared with A429, it should be noted that MIL-STD-1553 systems offer
more robustness, simplicity of hardware and software interfaces, and better performance,
but are more expensive [8].

Breakout box design is able to respond to changing demands and situations and is
oriented towards satisfying many requirements at once. It is maintained not only within
specified limits, but it is also done cheaply, quickly, and efficiently. The grade of
connector selection, module insertion and extraction forces must be low enough to
simplify maintenance procedures, yet high enough to assure good electrical contact even
during highly dynamic force loading. In short, the usual commercial breakout box design
with conventional contacts is unlikely to offer adequate performance for FMS. On the
other hand, the military connectors are likely to be much too expensive for workstation
designs, and in the near future it is unlikely that unique military connector designs will be

available.

6.3 Software Summary & Discussion
A vigorous but disciplined approach to technology development is the key to both
achieving Objective Architecture capabilities and keeping costs within affordable range.

Three layers are designed to appear in DTB, namely, driver layer. DLL layer and

125

application layer. In DTB, a real flight management can be used and accessed by the
application program through the DLL layer and device-driver hardware layer. The DTB
execution is responsible for the interface to FMS and handling of the database through a
bi-directional channel A429. During run time, FMS sends labels into ARINC channels
with a specific command protocol. For real time interfacing with GUI, a dedicated
Ethernet is used. This arrangement takes advantage of a computer’s internal memory-to-
memory transfer speed, especially when large amounts of data need to be transferred
[16].

Object oriented design is an abstract, sophisticated method of integrating a large
application project. An object has state, behavior, and identity: the structure and behavior
of similar objects are defined in their common class [11]. This design originated with
software developers, but is rapidly gaining acceptance as a systems design model as well,
due to its close relationship to the process maturity model and the increasingly important
role that software plays in systems design. [t should be mentioned that Ada is superior to
C++ in terms of safety and reliability [23]. Originally sponsored by the US Department
of Defense, the Ada programming language is designed for applications where
correctness, safety, and reliability are the prime goals. As an internationally standardized
object-oriented programming language (OOP), Ada is well suited for developing reusable
components, real-time and parallel processing systems, and interfaces with systems
written in other languages. Also, it should be mentioned that the operating systems for
embedded, real-time computers have rather harsh performance requirements. Window
NT (4.0) is not a real real-time operating system, UNIX is not designed for real-time

application either, but for multi-user, multi-tasking system [24]. The OS and Ada run

126

time system provide linkage between low-level hardware and application software. This
software can have a tremendous impact on performance in terms of execution speed,

memory capacity utilization, and determination.

6.4 Future Work

The DTB has reached an application level as a testing tool for FMS. The whole
software architecture of DTB has been proven to be a solid system. The enhanced GUI
has been developed on the Simulation PC and foundation breakout box designed.

However, there are still some tasks remaining for future work.

6.4.1 Breakout box Modification

The breakout box provides hardware interface between the Interface PC and FMS.
Major modification will be on the internal DIO circuit board. This circuit was primarily
designed for both CMA-900-202 and CMA-900-402 models. However. the discrete logic
has been modified in the 402 model and it is not compatible with the older design.
Hence, an enhanced compatible internal DIO circuit board should be built so that FMS
discrete output signals can be software-controlled through the Simulation PC. As an
optional feature, power supply with a fan could be put into the breakout box in order to

make a complete portable unit.

6.4.2 Software Development
At present the ARINC channel switch GUI has been programmed as a semi-

automated tool to reconfigure ARINC channel properties from text files only. It could be

updated to a fully-automated tool by adding a few control buttons and updating the
DTBArinclOThread simultaneously. Adding the corresponding CDU IO port numbers
into the GUI is also desirable.

Although our aim is to develop a foundation dynamic test bed for FMS, the more
flexible we make the DTB, the safer it would be for flight with FMS in the real world.
Hence, a complete tactical model should be added in terms of terrain, weather,

electromagnetic and infrared environment.

6.4.3 Testing Aspects

Under the VNAV mode from FMS, the development of a Glideslope control law
has started, but the result did not come up to FMS expectation, and modification should
be carried on in the next phase. Also, there are many control laws awaiting development
once they are well defined by CMC. Furthermore. other lower priority navigation modes
such as VOR, DME and IRS should be tested once sufficient commitments are obtained

from CMC.

6.5 Concluding Remarks
By the end of the thesis, the author’s contributions on the DTB are included as
follows:
e Designed and implemented real-time software architecture for the DTB using
OOP features. MFC, ActiveX controls. muiltithreaded programming with C and

Microsoft Visual C++.

e I[mplemented the system software including a GUI. an executive program. device
drivers for I/O cards of ARINC 429 PC-16 and National Instrument PCI-6023E, a
client-server Ethernet TCP/IP network software and a data acquisition software.

e Designed and implemented a breakout box and internal circuit board (A/D, D/A).

o Verified the DTB by identifying and improving the software modules.

e Created a user guide, a programmer guide and an installation guide.

e Familiarized with electrical hardware units of GPS and FMS.

Even though each dynamic interface simulation does have limitations and it is not
possible to optimize the DTB in all areas simultaneously, the DTB research has benefited
from collaboration between CMC and Concordia University. The collaboration is a
vehicle for exchanging working experience, information and models, as well as sharing
the results of relevant research.

This thesis has presented an overview of the current work undertaken as a joint
project between CMC and Concordia University — Dynamic Test Bed for Flight
Management System. The following concluding remarks are indicated:

e The DTB as a demanding and capability adequate and worthwhile testing tool is just
becoming available.

e The DTB could provide significant cost and operational benefits in verifying FMS
dynamic performance.

e The advanced solid software architecture of the DTB is vital to the success of further

research on development of this valuable tool for use in this field.

e The collaboration continues to be a valuable element in augmenting DTB’s

capability.

mat

10.

11

12.

13.

14.

15.

16.

17.

REFERENCES

. S. B. Fishbein, Flight Management Systems, London: Westport, 1995.

. B. Kendal, Manual of Avionics, 3" ed., London: Blackwell Scientific Publications.

1993.

M. Kayton and W. R. Fried, Avionics Navigation Systems, 2™ ed.. New York: John

Wiley & Sons, 1997.

ARINC 429 Reference Manual, 2" ed., SBS Avionics Technologies, 1999.

DAQ PCI-6025E User Manual, National Instruments, 1998.

CMA-900 Internal Reports, CMC, 1999.

Operator’s Manual CMA-900/CMA-2014, CMC, 1999.

J. R. Newport, Avionic Systems Design, Florida: CRC Press, 1994.

Visual C++ 6.0 Programming,

Visual C++ 6.0 MSDN Documentation, 1999.

S. Holzner, Visual C++ 6.0 Programming, New York: John Wiley & Sons, 1998.

Getting Started with the ARINC 429 PC8/PC16, SBS Avionics Technologies, 1999.

What is New in the Integrated Avionics Libraries, SBS Avionics Technologies. 1999.

X. Qiuand F. Liao, *“Visual Flight Simulation of UAVs in Real-time Programmed in
JAVA Language”, Beijing University of Aeronautics & Astronautics, 1999.

AMP, http://www.digikey.com

S. B. Anderson, “Historical Review of Piloted Simulation at NASA Ames™. NASA
Ames Research Center, 1995.
M. E. C. Roberts, “Simulated Visual Scenes — Where Are the Critical Cues?".

Thomson Training & Simulation, 1995.

131

18.

19.

20.

21.

22.

28.

29.

K. Alvermann and S. Graeber, “The RTSS Image Generation System™, Institute of
Flight Mechanics, Germany, 1995.

F. D. Heran, “ Tactical Environment Servicers”, SOGITEC Division Electronic,
France, 1996.

H. A. J. M. Offerman, “Advancements in Simulator Technology and Application”,
National Aerospace Laboratory, Holland, 1994.

S. W. Paris, “Optimal Trajectories by Implicit Simulation”, Boeing Final Report to
the Air Force Flight Dynamics Lab, 1997.

J. Ball, et al., “Military Spaceplane Mobile Operations Test Bed”, AIAA, Defense &

Space Programs, 1997.

. D. L. Bryan, Exploring Ada, NJ: Prentice-Hall, 1992.

. Bell Labs Innovations, http://www.bell-labs.com.

. CMA-900 GPS/FMS Technical Notes, CMC. 1999.

. J.L. Tomsic, SAE Dictionary of Aerospace Engineering, 2™ ed., SAE International,

1998, p.418.

. Minimum operational performance standards for airborne supplemental navigation

equipment using global positioning system (GPS) / RTCA , Washington DC: RTCA,

cl991.

Moura and Jose Manuel Fonseca de, Narrow-base passive systems theory with

applications to positioning and navigation, Cambridge: Massachusetts Institute of

Technology, Research Laboratory of Electronics, 1976.

Guidance and control, New York: Academic Press, 1962-1964.

[9%)
wn

36.

40.

. CMA-900 PTT GUI, CMC, 1999.

.G. B. Gilyard, J. Georgie and J. S. Barnicki, “Flight Test of an Adaptive

Configuration Optimization System for Transport Aircraft”,Dryden Flight Research

Center, Edwards, California, 1999.

. Boeing, “Open Control Platform for Uninhabited Air Vehicles”, DARPA ITO

Sponsored Research, 2001.

. Engineering Flight Simulators, Cranfield University, College of Aeronautics. UK,

2000.

. B. W. Parkinson and P. Axelrad, “Autonomous GPS Integrity Monitoring Using the

Pseudorange Residual™, Navigation, Vol. 35, No. 2, Summer, 1988.

. G.B. Green, P.D. Massatt and N.W. Rhodus. “The GPS 21 Primary Satellite

Constellation”, Navigation, Vol. 36, No. 1, Spring 1989.
M.A. Sturza, *“Navigation System Integrity Monitoring Using Redundant

Measurements”, Navigation, Vol. 35, No. 4, Winter 1989.

. M.A. Sturza and A.K. Brown, “Comparison of Fixed and Variable Threshold RAIM

Algorithms”, Proceedings of [ON GPS-90. Colorado Springs, CO., 1990.

. R.G. Brown, “A Baseline GPS RAIM Scheme and a Note on the Equivalence of

Three RAIM Methods”, Navigation, Vol. 39, No. 3. Fall 1992.

.M. Durand and A. Caseau, “GPS Availability, Part II: Evaluation of State

Probabilities for 21 Satellite and 24 Satellite Constellations”, Navigation, Vol. 37,
No. 3, Fall 1990.
A.G. Gower, “Putting a number on GPS Integrity: The IBM GPS Integrity Study for

the DoD”, Proceedings of ION GPS-91. Albuquerque. NM. 1991.

41

45.

46.

. B.S. Pervan, C.E. Cohen and B.W. Parkinson, “Autonomous Integrity Monitoring for
Precision Approach using DGPS and a Ground-Based Pseudolite™, Proceedings of
ION GPS-93. Salt Lake City, UT.. 1993.

.JL. Farrell and F. von Graas, “Statistical Validation for GPS Integrity Test”.
Proceedings of ION GPS-91. Albuquerque, NM. 1991.

J.M. Davis and R.J. Kelly, “RNP Tunnel Concept for Precision Approach with
GNSS Application”, Proceedings of the ION 49" Annual Meeting. Cambridge, MA.,
1993.

. P.W. McBurney and R.G. Brown, *“Self-Contained GPS Integrity Monitoring Using a

Censored Kalman Filter”, Proceedings of ION GPS-88. Colorado Springs, CO.,

1988.

S. Bancroft and S.S. Chen, “Integrity Monitoring Using Bayes’ Rule”, Proceedings of

ION GPS-91. Albuquerque, NM. 1991.

N. F. Chui, “The Development of a Dynamic Test Bed for Flight Management

Systems”, Thesis (M. A. Sc), Department of Mechanical and Industrial Engineering,

Concordia University, 2002.

APPENDIX

A. “Sbs_dev.cfg” File

*

Copyn,ht (c) 1999 by SBS Technologies, Inc.
2400 Louisiana Blvd., NE
AFC Building 5, Suite 600
Albuquerque, New Mexico 87110
Technical support (toll free)
877-TECHSBS (877-832-4727)

-

&

-

-

-

-

SBS INTEGRATED AVIONICS LIBRARY Version 6.1 (08 Mar. 1999)

-

. e e owe
#l#l**#*

;"‘ NAME: sbs_dev.cfg

-%

;* DESCRIPTION:
;* This file contains the information required to initialize one or

;* more SBS device(s).
i
;* FUNCTIONS: None
-k

v
x

’

[DEVICE=1]

; Base Memory Address in hex
base_address=D0000h

; PCMCIA DSP Bootloader program filename (defauit bootload.txt)
; bootloader=bootload.txt

Devnce Type (M1553_cPCl_3U, A429 PCS,
; M1553_cPCI_6U_1, A429 PClé6_1,
M1553_cPCI_6U_2, A429 _PC16 2,
MI553_FW5000, A429 PCl04,
M1553_PC104, A429 PCMCIA,
MI1553_PC3_1, A429 V2 1,
MI1553_PC3_2, A429 V2 2,
MI553_PCI_I, A429 cPCI_3U,

; M1553_PCI_2, A429 _cPCI 6U_
; MI1553_PCMCIA, A429 cPCI_6U_2
: MI1553_PMC, A429 PCI_8,

; MI1553_Ve6_l, A429_PCI_l6_1,
H MI155 , A429 PCI_16_2,
; MI155 ,

; MI5s5 K

; MI1553 V6_CC_I.

; MI553_V6_CC_2.

; ML1773_PCI)

devnce _type=A429_PC16_1

e e e e s o

N l\)

V6
V6
V6

I

) bJ (V3] bJ

; PCMCIA DSP BIT/Application program filename
; dsp_file=PCMDSP.TXT

; UNIX/NT Device Driver Name

136

; filename=sbspci320
filename=sbsa429 0

; Firmware filename
firmware=f030h.dat

; VME Interrupt Vector in hex (0-FFh)
; int_vector=FFh

; PC Base [/O Address in hex (300h-3FFh)
;io_base=390h
io_base=390h

; Interrupt Request Level in hex (0-OFh)
irq_level=0Fh

; Number of Receive channels
num_receive=2

; Number of Transmit channels
num_transmit=6

; Product Type (ABI[,ASF,A429)
; product=A429

; Relative position of PCI card under Windows 95
; relative_position=0

; PCMCIA Socket number (0-7)
; socket=0

; PC Memory Window Size (16k, 64k)
window_size=64k

; PCMCIA Xilinx downloadable filename (.bit extension)
; xilinx_file=00670002.BIT

[DEVICE=2]

; Base Memory Address Segment in hex
base_address=D0000h

; PCMCIA DSP Bootloader program filename (default bootload.txt)
; bootloader=bootload.txt

; Device Type
device_type=A429 PCl16_2

; PCMCIA DSP BIT/Application program filename
; dsp_file=PCMDSP.TXT

; UNIX/NT Device Driver Name
; filename=sbspci320
filename=sbsa429_0

; Firmware filename
firmware=f030h.dat

; VME Interrupt Vector in hex (0-FFh)
; int_vector=FFh

; PC Base [/O Address in hex (300h-3FFh)
;io_base=390h
io_base=390h

; Interrupt Request Level in hex (0-0Fh)
irq_level=0Fh

; Number of Receive channels
num_receive=2

; Number of Transmit channels
num_transmit=6

; Product Type (ABI,ASF.,A429)
; product=A429

; Relative position of PCI card under Windows 95
; relative_position=0

: PCMCIA Socket number (0-7)
; socket=0

; PC Memory Window Size (16k, 64k)
window_size=64k

; PCMCIA Xilinx downloadable filename (.bit extension)
; xilinx_file=00670002.BIT
; [DEVICE=3]

; Base Memory Address Segment in hex
; base_address=D0000h

; PCMCIA DSP Bootloader program filename (default bootload.txt)
; bootloader=bootload.txt

: Device Type
; device_type=A429 PC8

; PCMCIA DSP BIT/Application program filename
; dsp_file=PCMDSP.TXT

; UNIX/NT Device Driver Name
; filename=sbspci320

; Firmware filename
; firmware=f024k.dat

; VME Interrupt Vector in hex (0-FFh)

; int_vector=FFh

; PC Base I/O Address in hex (300h-3FFh)
; io_base=380h

; Interrupt Request Level! in hex (0-0Fh)
; irq_level=0Ah

; Number of Receive channels
; num_receive=4

: Number of Transmit channels
; num_transmit=4

; Product Type (ABI,ASF)
; product=ABI

; Relative position of PCI card under Windows 95
; relative_position=0

; PCMCIA Socket number (0-7)
; socket=0

; PC Memory Window Size (16k, 64k)
; window_size=16k

; PCMCIA Xilinx downloadable filename (.bit extension)
; xilinx_file=00670002.BIT

B. “sbsa429.ini” File

140

\Registry\Machine\System\CurrentControlSet\Services\EventLog
System
SBSA429
EventMessageFile = REG_EXPAND_SZ "%SystemRoot%\Sysiem32\loLogMsg.dIl"
TypesSupported = REG_DWORD 0x00000007

\Registry\Machine\System\CurrentControlSet\Services\SBSA429
Type =REG_DWORD 0x00000001
Start = REG_DWORD 0x00000003
Group = Extended Base
ErrorControl = REG_DWORD 0x00000001
SBSA429 0
Parameters

Interrupt = REG_DWORD 0x0000000f

PortAddress = REG_DWORD 0x00000390

PortCount = REG_DWORD 0x0000000¢e

141

C. ARINC Label Property File

B R R R R R R R R R R R B R R B R B R R R
##4# lines starting with pound sign are comments!!!

blank lines are ignored.
B R R R R R R R R B R R R R R R R RH B RHRERE RS

B R R R R B R R R R R R R R R R R R R R
Rt HE# Channel configuration ###HHHHRHRHHEH AR HRIERHEHES
B B B R R R B R B R R R R R B R R
e T g
BRI Device | e e

B R B R R R R R R R R R R AR R R R R R

e
#EHHHHIHH#E Receive channels configuration ###S##HHHREFEHBRRRI
B T e

B R
BHRHHEBH AR channel | #RF#RHHHBHBHRR TR RRAHER SRR RS

BH AR channel parameters ##HBHHHHHFHARBRERRHRHBHHRHHERY
T for transmit, R for receive:
DevIChnl1ChnDirection=R

SLOW for 12.5KHz, FAST for 100 KHz:
DevIChniSpeed=SLOW

time-out in milliseconds for read operation:
Dev1Chn1ReadTimeOut=1000

Bt RE RS RCB paramelters ###H#HRHHREHRHHBHERRHEERBHRANRER GRS
number of labels this channel will receive/transmit:
Dev1Chn1RCBWordCount =7

comma separated list of labels, labels are in decimal format:

DevIChnlRCBLabels = 136,131.132,1,78,86,81

EHAHHAHH R H#EE channel configuration end #ARERSFHFHFRHERFRIFHEGIRE

B R R R R R R R R R R R R AR R R R R AR R AR R R R

#
#
#

B R R R R R R R R AR R R R R R R R AR B R
HEHHHATR IR channel 2 #HRHEHHHHHH EHERRRBHHER IR HHRRHHHRY

R R #H## channel parameters #4#HBR#HBHBHBRBRABHABRRARBHARHHE
T for transmit, R for receive:
DevIChn2ChnDirection=R

SLOW for 12.5KHz, FAST for 100 KHz:
DeviChn2Speed=SLOW

time-out in milliseconds for read operation:

DevIChn2ReadTimeQut=1000

HEBHB R RCB parameters #H TR ST IR S
number of labels this channel will receive/transmit:
DevIChn2RCBWordCount = 7

comma separated list of labels, labels are in decimal format:
DevIChn2RCBLabels = 136,131,132,1.78,86,81

BT channel configuration end ##EHHHRHHEHERRRAHHRRERE
B R R R R R R R R R R R R R R R R R R e

#
#
#

B R R R R R R R R R A R
e e e e
R B R R A R R R R R R B R TR R R
g g e e
g Transmit channels configuration ####HBEBHRRBHEFHBRHEY
e e
B B B R R R R R R B R R R AR BB R R
R R R S R R R R R R R R BB R R R S AR R
B R Channel 3 #HBHEHHEBIHIBHHBREHHERB HBHERARIH IR
HEH R B R AR SRR “############## SHEER

RHHBH R B B R R R R R R R R AR ““ﬂ############'
HHHHH R HAEHE Channel parameters ####SH#HSHEHHARBRIRERRERER

Dev1Chn3ChnDirection=T
Dev1Chn3MinFrameCount=4
Dev1Chn3MajFrameCount=0
DevIChn3GapTime=0
Devi1Chn3Speed=SLOW
Dev1Chn3ChainID = |

#frame period in microseconds:
Dev 1Chn3FramePeriod=250000

number of transmit command blocks:
DevI1Chn3TCBCount=1

#EHHEGH R ERER TCB | config parameters ##E#BEFRHEHFERBRRHBRIFERRARAS
schedule time in microseconds:

DevIChn3TCBI1SchedTime=0

DevI1Chn3TCBIChainID=1

DeviChn3TCBIWordCount=2

Dev1Chn3TCB|RepeatRate=1

DevIChn3TCBIStartFrame=1

comma separated labels to transmit in this transmit control block:
DevIChn3TCB|Labels= 184,185
###
BiuhnRtrast 44 End channel configuration ##H##BHERHRHESHETHRHRE
HHHBHBRBR SRR IR B B H B HR AR R BB U B B R E BHERHBRERR AR TR ##r‘nrr»####

144

#
#
#

e
R HE RS channel 4 B RSB R HEH R RS

REBHHHRH A Channel parameters #HHHHHHRHTHBR TR IR HTHH]

Dev1Chn4ChnDirection=T
DevIChn4MinFrameCount=35
Dev1Chn4MajFrameCount=0
DevIChn4GapTime=0
Dev1Chnd4Speed=SLOW
DeviChn4ChainID =2

#frame period in microseconds:
Dev1Chn4FramePeriod=200000

number of transmit command blocks:
Dev1Chn4 TCBCount=1

#RRRER AR TCB | config parameters #HERHREREFHEHHHHBHBHHHRER#THERE
schedule time in microseconds:

DeviChn4TCBISchedTime=0

DevIChn4 TCBI1ChainlD=2

DevIChnd4TCB1 WordCount=2

DevIChn4d TCB1RepeatRate=1

Dev1Chn4TCBI StartFrame=1

comma separated labels to transmit in this transmit control block:
DevIChn4TCBILabels= 28,146

R R R R R B R R R R R A R TR R R B R H R AR R R
rEnHRR R ERHREE End channel configuration ######HEHRIHHIBHBHAHIR
R R R R R R R B R TR R R B R R B R R SRR

#
#
#

R R R R B R R R B R R R R AR R R B BB R R
HRRRHREHHEHREEE Channel 5 HHHHRHERHIHEHREH TR HH SRR BRHHES
B R B R R B R R R H R B R R B R R R R R BB

R R AR R R R R R R R B R A SR R B R B B HR HE R
BRERRR R AR ERE Channel parameters #######-#-HHERHISHATR ISR

DevIChn5ChnDirection=T
DeviChnSMinFrameCount=20
DeviChn5MajFrameCount=0
Dev1Chn5GapTime=0
DevI1Chn3Speed=SLOW
DeviChnSChainID =3

#frame period in microseconds:

145

DevI1Chn3FramePeriod=50000

number of transmit command blocks:
DevIChn3TCBCount=2

B TCB | config parameters ##H#RI#HREHHEB BRI RS
schedule time in microseconds:

DeviChn5TCB1SchedTime=0

DevIChn5TCB1ChainID=3

DevIChn53TCB | WordCount=2

DevI1Chn5TCB IRepeatRate=9

DevIChn5TCBIStartFrame=1

comma separated labels to transmit in this transmit control block:
DevIChn5TCB1Labels= 136, 81

B TCB 2 config parameters #HHHEHER##HHHHE BB RS
schedule time in microseconds:

DeviChn5TCB2SchedTime=0

DevI1Chn3TCB2ChainID=3

Dev1Chn5TCB2WordCount=2

DevIChn5TCB2RepeatRate=2

DevIChn5TCB2StartFrame=1

comma separated labels to transmit in this transmit control block:
Dev1Chn3TCB2Labels= 131,132

B R R R R B R R R R R B R R B

BipHnHR# R HE End channel configuration ###8##HHHEBHHHREIRY

B R R R R B B R S R R R R R R R i i

#
#
#

B R R R S R R R R R R R R R R R R R R R R

B ERE Channel 6 #HEHEHIHIHHHIHBHHB BB

B R R R R R R R R R R R R R R R R R R

R R R R R R B B R R R R B R R R R

B R Channel parameters ##RESHEHHHEHIHRH R

DevIChn6ChnDirection=T
DeviChnéMinFrameCount=20
DevChné6MajFrameCount=0
DevIChn6GapTime=0
DeviChn6Speed=SLOW
DevIChn6ChainID = 4

#frame period in microseconds:
DevChn6FramePeriod=50000

number of transmit command blocks:
DevIChn6TCBCount=2

#eninRaaatRERE TCB | config parameters ###HHRBHHHEHHHBHIHBH IR

146

schedule time in microseconds:
DevIChn6TCB1SchedTime=0
DevI1Chn6TCBIChainlD=4
DeviChn6TCB1 WordCount=1
Dev1Chn6TCB 1RepeatRate=9
DevIChn6TCBIStartFrame=1

comma separated labels to transmit in this transmit control block:
DevI1Chn6TCB!Labels= 136

M R TCB 2 config parameters S HHHHHHHHHTHEHEHE
schedule time in microseconds:

DevI1Chn6TCB2SchedTime=0

DevI1Chn6TCB2ChainlD=4

Devi1Chn6TCB2WordCount=2

Dev1Chn6TCB2RepeatRate=2

Dev1Chn6TCB2StartFrame=1

comma separated labels to transmit in this transmit control block:
Dev1Chn6TCB2Labels= 131,132

B R R R R R R R B R R R
RERBRH R End channel configuration #######REHHHEREHHHER
B R R R R R R AR R B R R R R

#
#
#

R R R R R R R R R R R R R R R BRI RS
R Channel 7 $#fHERTHHERHHIRHEIFHHRRTRH TR Y
B R R R R R R R R R R R R R AR B

B R R S R R R R R R R B R R B R R
BHAREREHRSR R Channel parameters #HHRHHHETREREHHRBHBRIR BT

DevI1Chn7ChnDirection=T
DevIChn7MinFrameCount=1
Dev1Chn7MajFrameCount=0
DevI1Chn7GapTime=0
DevIChn7Speed=SLOW
Dev1Chn7ChainID = 5

#frame period in microseconds:
Dev1Chn7FramePeriod=1000000

number of transmit command blocks:
Dev1Chn7TCBCount=1

AR HHESHE TCB | config parameters ######HAZHEHBHEHBHBHABHERHHEH
schedule time in microseconds:

DevIChn7TCBI1SchedTime=0

DevI1Chn7TCB1ChainID=5

DevIChn7TCB1 WordCount=19

DevIChn7TCB1RepeatRate=1

DeviChn7TCBIStartFrame=1

147

comma separated labels to transmit in this transmit control block:

DevIChn7TCB1Labels= 187,62,65,66,67,72,80,73,81,74.88,91,167,94,117,176,104,114.227
e g e e
BHRRHHRRR#ERE End channel configuration ####HEREIE#ESHEBRERHHE

R R R R R R R R R R R R

#
#
#

B R R R R R R R R
HHHRRRH R Y Channel 8 S#####EHEHHEHBRHHIBHH HRBEEHEHRHHEE
R R R R R R R B B R R R R H B R R R B R

B R R R R R R A R R R R R A
REHHHHEH AR Channel parameters ####EHHHHHHFRHHBEHHREHEHHEE

Dev1Chn8ChnDirection=T
Dev1Chn8MinFrameCount=1
Dev1Chn8MajFrameCount=0
DeviChn8GapTime=0
Dev1Chn8Speed=SLOW
DeviChn8ChainID = 6

#frame period in microseconds:
Dev 1 Chn8FramePeriod=1000000

number of transmit command blocks:
Dev1Chn8TCBCount=1

BERHHHHHHEHH TCB | config parameters ##HEEHH#BHHHBHIHABERHBRESHEHIE
schedule time in microseconds:

DevIChn8TCB1SchedTime=0

DevIChn8TCB1ChainlD=6

Dev!Chn8TCB1WordCount=19

DevIChn8TCB1RepeatRate=1

DevIChn8TCB|StartFrame=1

comma separated labels to transmit in this transmit control block:

DevIChn8TCBLabels= 187,62,65,66,67,72,80,73,81,74,88.91.167,94,117,176,104,114.227
AR AR R R R R B R R R R R R R R R R R R
BR#HHRERTHAHEHEE End channel configuration #####HBRRHHERREIHRERR

B R R R R R B R R R R B R R R R R R

148

D. Breakout Box Wiring Table

149

Source ARINC Inputs Destination
Pins LRU LRU Name LRU LRU Pins Pins
Pin (port)
J4-11 | FMUI MP-3A (#6) | AFCS-1 DTB CI-1A (+) J1-1
J4-12 | FMUI1 MP-3B (#6) | AFCS-1 DTB Cl-1A () Ji-2
J6-1 FMU TP-7C (#1) | REC/AFCS DTB Cl-1A (+) Ji-1
J6-2 FMU TP-7D (#1) | REC/AFCS DTB CIl-1A () JI-2
J5-5 FMU2 MP-3A (#6) | AFCS-1 DTB CI-2A (+) JI-3
J5-6 FMU2 MP-3B (#6) | AFCS-1 DTB CIl-2A(-) Ji-4
J6-5 FMU MP-2C (#4) | GPS RAIM REQUEST DTB CI1-2A (+) JI-3
J6-6 FMU MP-2D (#4) | GPS RAIM REQUEST DTB CI-2A () Ji-4
J4-1 FMU1 TP-8C (#2) | GPS RAIM REQUEST DTB Cl-1B (+) J-18
J4-2 FMU1 TP-8D (#2) | GPS RAIM REQUEST DTB CIl-1B () Ji-19
J6-13 | FMU TP-8C (#5) | DME TUN/IRS ALIGN DTB Cl-IB(+) JI1-18
J6-14 | FMU TP-8D (#5) | DME TUN/IRS ALIGN DTB Cl-1B () J1-19
Destination ARINC Outputs Source
Pins LRU LRU Pins Name LRU LRU Pins
Pin (port)
J1-5 DTB CI1-3A (+) FSIM BUS-1 FMUIL | TP-9C (#1) J4-18
J1-6 DTB CI1-3A (-) FSIM BUS-1 FMU1 | TP-9D (#1) J4-19
J1-5 DTB CIl-3A (+) AHRSVINSI/IRS1 FMU TP-15C (#9) J6-7
Jj1-6 DTB C1-3A (-) AHRSI/INS1/IRS1 FMU TP-15D (#9) J6-8
Ji-7 DTB CI-4A (+) FSIM BUS-2 FMU2 | TP-9C (#1) J5-9
J1-8 DTB Cl-4A (-) FSIM BUS-2 FMU2 | TP-9D (#1) J5-10
J1-7 DTB Cl-4A (+) AHRS2/INS2/IRS2 FMU MP-1A (#11) N/A
JI-8 DTB CI4A (-) AHRS2/INS2/IRS2 FMU MP-IB (¥#11) N/A
J1-9 DTB Cl-3A (+) ADC-1 FMUIL | TP-15C (#1) J4-7
J1-10 DTB Cl1-5A (-) ADC-1 FMUI1 | TP-15D (#1) J4-8
J1-9 DTB Cl1-5A (+) AHRS3/INS3/IRS3 FMU TP-1C (#11) N/A
J1-10 DTB CI-5A (9) AHRS3/INS3/IRS3 FMU TP-1D (#11) N/A
J1-11 DTB Cl-6A (+) ADC-2 FMU2 | TP-15C (#10) | J3-1
Ji-12 DTB CI1-6A (-) ADC-2 FMU2 | TP-15D (¥10) | J5-2
J1-11 DTB Cl1-6A (+) GPS-1 FMU TP-14C (#8) J6-3
11-12 DTB Cl1-6A (-) GPS-1 FMU TP-14D (#8) J6-4
Ji-13 DTB Cl-7A (#) GPS-1 FMUI | TP-14C (#8) J4-9
J1-14 DTB Cl-7A (7) GPS-1 FMU!1 | TP-14D (#8) J4-10
J1-13 DTB CI-7TA (+) GPS-2 FMU TP-14C (#8) N/A
J1-14 DTB Cl-7A () GPS-2 FMU TP-14D (#8) N/A
J1-16 DTB Cl1-8A (+) GPS-2 FMU2 | TP-14C (#8) 15-7
J1-17 DTB CI1-8A () GPS-2 FMU2 | TP-14D (#8) J5-8
J1-16 DTB Cl1-8A (+) GPS-3 FMU TP-14C (#8) N/A
J1-17 DTB CI1-8A (-) GPS-3 FMU TP-14D (#8) N/A
J1-22 DTB Cl1-3B(+) ADC-1 FMU BP-1C (#19) J6-15
J1-23 DTB Cl1-3B (-) ADC-1 FMU BP-1D (¥19) J6-16
J1-24 DTB Cl-4B (+) ADC-2 FMU BP-1A (#16) N/A
J1-25 DTB Cl1-4B (-) ADC-2 FMU BP-1B (¥16) N/A
J1-26 DTB CI1-5B (+) AHRS-1 FMU1 | TP-15A (%#9) J4-5
J1-27 DTB CI1-5B (-) AHRS-1 FMUIL | TP-15B (#9) J4-6
J1-26 DTB CI-5B (+) VOR FMU TP-14A (R7) J6-11
J1-27 DTB CI-5B (-) VOR FMU TP-14B (#7) J6-12
J1-28 DTB Cl1-6B (+) AHRS-2 FMU2 | TP-153A (#9) J5-3
J1-29 DTB Cl1-6B (-) AHRS-2 FMU2 | TP-15B (#9) 15-4
J1-28 DTB Cl1-6B (+) DME FMU MP-3C (#14) J6-18
J1-29 DTB Cl1-6B (-) DME FMU MP-3D (#14) J6-19

150

J1-31 DTB Cl1-7B (+) VOR FMUI | TP-14A (#7) J4-13
J1-32 DTB CI-71B(») VOR FMU1 | TP-14B (#7) J4-14
J1-31 DTB CI-TB (+) FSIM BUS FMU MP-4C (#13) J6-9
J1-32 DTB CI-7B (-) FSIM BUS FMU MP-4D (#13) J6-10
J1-33 DTB Cl1-8B (+) DME FMU1 | TP-13A (#3) J4-15
J1-34 DTB C1-8B (-) DME FMUI | TP-13B (#5) J4-16
J1-33 DTB C1-8B (+) FUEL COMPUTER FMU TP-9C (#1) N/A
J1-34 DTB CI1-8B (-) FUEL COMPUTER FMU TP-9D (%#1) N/A
Source CDU & FMUs Destination
Pins LRU LRU Pins Name LRU LRU Pins Pins
J7-3 CDU J3-25 CDU Output ARINC Bus FMUI1 | TP-11A (#3) | J4-34
FMU2 | TP-11A (#3) | J5-23
FMU TP-11A (#3) | J6-22
174 CDU J3-26 CDU Output ARINC Bus FMUIL | TP-11B (#3) | J4-35
FMU2 | TP-11B (#3) | J5-24
FMU TP-11B(#3) | J6-23
J4-36 FMUI1 MP-2A (#4) | FMU Output ARINC Bus | CDU J3-10 J7-5
J4-37 FMU1 MP-2B (#4) | FMU Output ARINC Bus CDU J3-11 J7-6
J5-25 EMU2 MP-2A (#4) | FMU Output ARINC Bus | CDU J3-12 J7-1
J5-26 FMU2 MP-2B (#4) | FMU Output ARINC Bus CDU J3-18 J7-2
J6-20 FMU MP-2A (#2) | FMU Output ARINC Bus | CDU J3-10 J7-5
J6-21 FMU MP-2B (#2) | FMU OQutput ARINC Bus | CDU J3-11 J7-6
Source Cross-talk Destination
Pins LRU LRU Pins Name LRU LRU Pins Pins
J4-38 FMUI TP-7C (#1) Cross-talk ARINC Output | FMU2 | TP-12A (#4) | J5-42
J4-39 FMUI TP-7D (#1) | Cross-talk ARINC Qutput | FMU2 | TP-12B (#4) | J5-31
J5-11 FMU2 TP-7C (#1) Cross-talk ARINC Output | FMUL | TP-12A (#4) | J4-40
J5-12 FMU2 TP-7D (#1) Cross-talk ARINC Output | FMUI1 | TP-12B (#4) | J4-41
Source Discrete Inputs Destination
Pins LRU LRU Pins Name LRU LRU Pins Pins
J4-26 FMU1 TP-1A System Valid FMUI DTB ICB DI (J2-17)
J6-26 FMU TP-1A System Valid FMU DTB ICB D1 (J2-17)
Cl iICB System Valid FMUI DTB PBO PCI-81
Cl ICB System Valid FMU DTB PBO PCI-81
J5-27 FMU2 TP-1A System Valid FMU2 DTB ICB D2 (J2-18)
Cc2 ICB System Valid FMU2 DTB PBI PCI-79
J4-27 FMUI TP-1B Wpt Alert, FMU1 DTB ICB D3 (J2-19)
J6-27 FMU TP-9B Wpt Alert, FMU DTB ICB D3 (J2-19)
C3 ICB Wpt Alert, FMU1 DTB PB2 PCI-77
C3 ICB Wpt Alert, FMU DTB PB2 PCI-77
J5-28 FMU2 TP-1B Wpt Alert, FMU2 DTB ICB D4 (J2-20)
Cc4 ICB Wwpt Alert, FMU2 DTB PB3 PCI-75
N/A FMUI TP-11D Approach Capture, FMUl | DTB ICB D5(J2-21)
J6-28 FMU TP-11D Approach Capture, FMU DTB ICB D5(J2-21)
G5 ICB Approach Capture, FMU1 | DTB PB4 PCI-73
C5 ICB Approach Capture, FMU DTB PB4 PCI-73
N/A FMU2 TP-11D Approach Capture, FMU2 | DTB ICB D6(J2-22)
Cé ICB Approach Capture, FMU2 | DTB PB5 PCI-71
J4-28 FMUI MP-15A LNAYV Valid, FMU DTB ICB D7(J2-23)
J6-29 FMU MP-15A LNAYV Valid, FMU DTB ICB D7(J2-23)
Cc7 ICB LNAYV Valid, FMU1 DTB PB6 PCI-69
C7 ICB LNAYV Valid, FMU DTB PB6 PCI-69
J5-29 FMU2 MP-15A LNAYV Valid, FMU2 DTB ICB D8(J2-24)

151

C8 ICB LNAYV Valid, FMU2 DTB PB7 PCI-67
J6-30 | FMU VNAYV Sub-mode DTB ICB DI1(J2-27)
Cll ICB VNAYV Sub-mode DTB PAQ PCI-97
FMU VNAYV Sub-mode DTB ICB D12(J2-28)
Cl2 ICB VNAYV Sub-mode DTB PAI PCI-95
FMU VNAYV Sub-mode DTB ICB D13(J2-29)
Ci3 ICB VNAYV Sub-mode DTB PA2 PCI-93
J6-31 FMU MP-8B VNAYV Sub-mode DTB ICB D14(J2-30)
Cl4 ICB VNAYV Sub-mode DTB PA3 PCI-91
Source Discrete Outputs Destination
Pins LRU LRU Pins Name LRU LRU Pins Pins
PCI-29 DTB DIO2 OLEO Air Ground ICB Al
B1(J2-1) | ICB OLEO Air Ground FMU1 | TP4A J4-29
FMU2 | TP4A J5-18
FMU TP-4A J6-32
PCI-31 DTB DIO3 TOGA ICB A2
B2(J2-2) | ICB TOGA EMUI | TP-9A J4-30
FMU2 | TP-9A J5-19
FMU MP-14C J6-33
PCI-26 DTB DIO4 TAS Valid FMUI, FMU ICB A3
B3(J2-3) | ICB TAS Valid FMUL, FMU FMUL | MP-6A J4-31
FMU MP-6A J6-34
PCI-28 DTB DIOS TAS Valid FMU2 ICB A4
B4(J2-4) | ICB TAS Valid FMU2 FMU2 | MP-6A J5-20
PCI-32 DTB DIO7 VNAV Engage ICB A5
B5(J2-5) | ICB VNAV Engage FMU MP-5A J6-35
PCI-65 DTB PCO Altitude Valid FMU ICB A6
B6(J2-6) | ICB Altitude Valid FMU FMU BP-3A J6-36
PCI-61 DTB PC2 Slave Free FMUI, FMU ICB A8
B8(J2-8) | ICB FMUL | MP-14C J4-32
FMU TP-7A J6-37
PCI-59 DTB PC3 Slave Free FMU?2 ICB A9
B9(J2-9) | ICB Slave Free FMU2 FMU2 | MP-14C J5-21
PCI-30 DTB DIO6 LNAYV Engage ICB Al6
B16(J2- | ICB LNAV Engage FMU!l | TP-4B J4-33
16) FMU2 | TP-4B J5-22
EMU TP-4B J6-38
Source Program Pin Destination
Pins LRU LRU Pins Name LRU LRU Pins Pins
J6-49 FMU TP-3A SDI FMU DTB DC Gnd DC Gnd
J5-32 FMU2 | TP-3A SDI FMU2 DTB DC Gnd DC Gnd
J6-50 FMU TP-8A Flight Simulator Program DTB DC Gnd DC Gnd
Source Program Pin Destination
Pins LRU LRU Pins Name LRU LRU Pins Pins
DTB 28 VDC+ Switch SO-1
S0-2 Switch To FMU1 CBI CBI-1
FMU2 CB2 CB2-1
FMU CB3 CB3-1
CDhU CB4 CB4-1
DTB 28 VDC Ground DTB DC Gnd DC Gnd
CBI-2 DTB FMUI1:28 VDC + FMU1 | BP-2 J4-55
DCGnd | DTB FMUI:28 VDC Gnd FMU1 | BP-3 J4-56
CB2-2 DTB FMU2:28 VDC + FMU2 | BP-2 J5-55
DCGnd | DTB FMU2:28 VDC Gnd FMU2 | BP-3 J5-56

152

CB3-2 DTB FMU:28 VDC + FMU BP-10A J6-55
DCGnd | DTB FMU:28 VDC Gnd FMU BP-9A J6-56
CB4-2 DTB CDU:28 VDC + CDU 34 J7-55
DCGnd | DTB CDU:28 VDC Gnd CDU J3-6 J7-56

Index of Connectors

J1 ARINC | DB44
2 DIO (Discrete /O) SCB-100
J3 | 2MS0FC Can be replaced by fixed wires

J4 FMUI (202)

J5 FMU?2 (202)

J6 FMU (402)

J7 | CDU

J8 28 VDC Power Supply

E. ARINC Output Words

154

ARINC Bus Description Label (Oct) Speed (ms)
ADC True Airspeed 210 100
ADC Pressure Altitude 203 450
ADC Baro-Corrected Alt 204 450

AHRS True Headding 314 50
AHRS Magnetic Heading 320 50
GPS GPS Sensor Status 273 1000
GPS GPS Altitude Word 076 1000
GPS GPS HDOP word 1 101 1000
GPS GPS HDOP word 2 102 1000
GPS GPS Track Angle word 103 1000
GPS Latitude word 110 1000
GPS Fine Latitude word 120 1000
GPS Longitude 11 1000
GPS Fine Longitude 121 1000
GPS Ground Speed 112 1000
GPS GPS HIL word 130 1000
GPS GPS VIL 133 1000
GPS GPS HFOM word 247 1000
GPS GPS VFOM word 136 1000
GPS Vertical Velocity 165 1000
GPS Date word 260 1000
GPS UTC word 150 1000
FSIM Simulator Command 270 250
FSIM Simulator LRU Choose 271 250

F. Detailed ARINC Word (Label 001) Description

Word Name: 001 Distance to the “TO” Waypoint

APPROX. RESOLUTION: 0.1 NM UNITS :NM
MAXIMUM VALUE 1399939 NM DATA FORMAT: BCD
MINIMUM VALUE :0 FULL SCALE :3999.9

Field Name Bit NO. Description

01
02
03
04
Label 05
06
07
08

Code OCTAL =001

SDI 09 Spares

10

I
)
13
4

Tenths NM

15
16
17
18

Units NM

19
Data 20
21
22

Tens NM

23
24
25
26

Hundreds NM

27 Thousands NM

28

29 Positive

SM 30 Normal Operation

31

| | D O | 24| | | >l o] | <l 5| <l | | 3| <l >l | ¢l x| =] o] ~| o o] S| o] S| 2| ©

Parity 32 0dd

157

G. GPS WITH RAIM

158

In order to go into GPS approach mode, the FMS makes Predictive RAIM
requests for the final approach fix (FAF). As part of the request, the Destination
waypoint ETA is transmitted in label 152. This label is transmitted every 500 msec
during 3-second burst, along with the other labels making up the request.

The DTB shall receive from FMS label 152 on the GPS input channel (low speed)
and shall acknowledge reception of this label by transmitting the following two labels on
the GPS output channel:

e Label 162 (Destination waypoint ETA) shall contain the same ETA as label 152.

e Label 343 (Destination waypoint HIL) shall contain a user-specified horizontal
integrity limit. Its value shall be enterable on the navigation status window (PRAIM
HIL). The default value shall be 0.1 nm.

These labels shall be transmitted every second until label 152 is no longer received on
input channel #2. Label 343 shall be transmitted for all the sequence counter values.

The sequence of transmission is:

LABEL SEQUENCE COUNTER COMMENT
162 -
343 0 ACK
343 1 HIL AT ETA
343 2 HIL AT ETA — 5 min
343 3 HIL AT ETA + 5 min
343 4 HIL AT ETA - 10 min
343 5 HIL AT ETA + 10 min
343 6 HIL AT ETA - 15 min
343 7 HIL AT ETA + 15 min
162 -
343

159

H. Navigation Terminology Definitions

160

Course — The intended direction or path of flight in the horizontal plane measured
in degrees from north. The actual course or path of an aircraft should be distinguished
from its heading. (They may coincide, but usually do not, the difference being a function
of heading, side-slip and drift.)

Cross Track Distance — The shortest distance between the present position of an
aircraft and the desired track.

Cross Wind — The wind component measured in knots at 90 degree to the
longitudinal axis of the flight path.

Drift Angle — The angle between the aircraft centerline and ground track; or the
angular difference between true heading and ground track angle. Drift angle is “right”
when ground track angle is greater than true heading; and “left” when ground track angle
is less than true heading.

Heading — The direction, usually expressed in degrees relative to true or magnetic
north, in which the longitudinal axis of an aircraft points.

Ground Speed — The speed of an aircraft relative to the surface of the earth,
typically expressed in knots.

Ground Track Angle — The clockwise angle from true north to an imaginary line
on the earth’s surface connecting successive points over which the aircraft has flown
(ground track).

Ground Track Angle Ermor — The angular difference between ground track angle
and desired track angle. Track angle error is “left” when the actual track angle is less
than the desired track angle, and “right” when the actual track angle is greater than the

desired track angle.

161

True Air Speed — Indicated airspeed adjusted for error from the installation of the

sensing equipment, the compressibility of the air, and the density of the air.

162

I. PCI- 6025E Block Diagram

170 Connector

7 Yahge

9 Coftraticr:
13 DaCs
) .
A
vy e e ot AD
i Muaes Muligaer Comerer
Cither
\x Generaber
b
Sy
. 1] 1
— Al oo : Anzog input : .
2 Tosper aisiaz | TrraCarto | - s oy
.’:T: :
— a| Cowster! e
— e 10| DAQ-STC e
:] m{w_.g [
p— A Siatl k0 1+ '
Irplsi .) ;g Canird '
AG ot
ol 14

-

RT3l Coractr

=aul v
T loen | wesn

v
il
e

- m-d

PCl Connector tor PCI-602X, PX| Connector tor PXI-6025E

164

