INFORMATION TO USERS

This manuscript has been reproduced from the microfim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA
800-521-0600

®

UMI

An Inverted Index Generator
for CINDI

Hudong Li

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

April 2003

© Hudong Li, 2003

i+l

National Library Bibliothéque nationale
of Canada du Canac!aue b
Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques
395 Wellington Street 385, rve Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Vowe rébirence
Qur e Notre rédideence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77916-5

Abstract
An Inverted Index Generator for CINDI

Hudong Li

Human maintained search engines are expensive, slow to update, and cannot
cover all the web pages. Automated search engines that rely on keyword matching
usually return too many low quality results, with most users only looking at the
first few tens of the search results. Because search engine development has gone
on at companies with little publication of technical details, it is a challenging task
to develop a search engine. The use of hypertextual information can help to
improve search quality. This report addresses the question of how to build an
inverted index for a search system that can use the additional information
presented in hypertext to produce better search results. This report is part of the
work of the Concordia INdexing and DIscovery (CINDI) Digital Library System.
In this report, we summarize the research work I have done; we present some
implementation issues for the project; and present the data structures that can be
used in indexing web pages. The design decision was driven by the desire to have
a reasonable compact data structure, and the ability to fetch a record in few disk
seeks during a search. This project has been implemented in C++ on Linux

platform.

i

Acknowledgements

I would like to express my sincere thanks to my major report supervisor, Dr.
Bipin C. Desai for his guidance and encouragement during the period of research
that has lead to this report.

[would also like to thank my friends, Mr. Jack Klein and Guoshun Zhan for their
helpful suggestions during the writing of this report.

[gratefully acknowledge the Quebec government for the financial support during

my studies at Concordia University.

v

Contents

List of Figures

1. Introduction

1.1 Discovery Problem ...
1.2 About This Projectcoooriimiitie it e e e e

1.3 About This REPOIto e e e e e

2. Background

2.1 Information Retrievalt e e e e e

22G008IE e e e e e e e

221

222

223

23 Inverted INAEXonoen e oo e e e e e e e e e e e e e

23.1

2.3.2 ApPlICAtIONottt e e e
24 HTML DOCUMENEoeiim it it et e i e eee e et cee e cee eeeeee e

2.5 Data Structures and Algorithmso

25.1

25.2

253

254

255

Web Crawling Subsystem ...
Indexing Subsystemcoiii i

Searching Subsystem ...

Original Meaningcooiuiiiiiiii i i e e e

Linked LiStooeiirit e et e e e e e
Internal Sort ... e
String-Based Pattern Matchingoooi i
Bit Field Structurecoootimiieiee e et et e cen e

File Operationcooemnieiie e e e e

g9

10

10

11

13

13

13

14

14

15

15

3. Implementation of Inverted Index

3.1 Major Data StIUCIUIEScooeeernmnionne e e e
31,1 REPOSILOLY ...ooeoeiin e e iee et i e e e e e
312 LeXICOM oon et oot cee e eet e eem e e e et e e e e e e e
314 ForwardIndexcoooimiiii i
315 InvertedIndexcoomiioniim i
3.2 Document Processingcooooiiimmeimniininn e
321 INtErfaCeooooiee i et e e e e e e
3.2.2 Extract a Page from Repositoryooiiiin
3.2.3 ExtractltemsfromaPagecooeiiii
3.2.4 Search a Given Word in the Temporary Array
3.2.5 Construct Nodes and Add Them to the HitLists
3.2.6 Construct Forward Barrels ...
3.2.7 Generate Inverted Barrel from Forward Barrel
3 3 LEXICOM - . coe it e et e e et e e e e e e e e e e s i e s
3.3.1 Implementation Strate€giescoooorrmareiiiuininineneeeen
332 LexiconData cooooiiiniiii i
3.3.3 Computer Aided Lexicon Data Generation
3.3.4 Useand Maintainthe Lexiconooooiiiinn

3.3.5 Trimming of Punctuationc..cooiiiiiiiii i iens

Vi

20

20

20

3.3.6 About Stemming Processoi s
33.7 SOpWOIASconmnneeoe e e e e
3.4 Parsing HTML Documentc.ocoooiiiiiiten i eee e e
3.4.1 Extract Single Document ...
342 ExtractTitleo e e
3.4.3 Extract Anchor Text and Meta Content
344 ExtractPlain Textcoooi oottt e e e e e
3.5 SOMHNG ... oo it eee e et e et e e e e e eee e
350 Build HIt LiStsoooooeomn i e e et e e
3.5.2 Merge Sort Forward Barrels
3.6 MainFunction ..o e e

I T 2 (=Y O

Conclusion

4.1 Contributions for the Projectc..c

B2 CONCIUSION ... oon oo e e e e e e e e e e e e e e e e e e

References

Appendices

A Repository Data Sample
B Lexicon Data Sample
C Source Code and Data File List

D Forward Barrel Setup Method

vil

38

40

41

41

42

43

46

47

47

47

51

52

54

54

54

56

58

64

67

68

E Inverted Barrel Setup Method

viii

71

List of Figures

Figure 2-1 Vector file and its inverted vector file
Figure 2-2 An inverted index example ...

Figure 3-1 Hits SIUCLUIEcoiimitiieiee e it

Figure 3-2 Forward barrel structure

Figure 3-3 Inverted barrel structure ...

Figure 3-4 Search engine’s internal interfaces

Figure 3-5 Data flow diagram

Figure 3-6 Element structure of the hit list
Figure 3-7 Temporary array and linked lists of a page.
Figure 3-8 Lexicon as a structured array in main memoryc.c......
Figure 3-9 Relationship between the amount of words and documents
Figure 3-10 Lexicon as a record fileindisk

Figure 3-11 Forward barrel example ...

Figure 3-12 Index and inverted barrel after the firt step of merge

Figure 3-13 Index and inverted barrel after the second step of merge

X

Chapter 1

Introduction

1.1 Discovery Problem

People usually use search engines to search needed material on the Internet. However, finding
relevant resources on the Internet may take a fair amount of time. Human maintained search
engines are expensive to maintain. Because the database cannot be updated frequently, people
may find the content out of date. Automated search engines that rely on keyword matching
usually return too many low quality matches. In order to search efficiently, Meta information

must be used in the indexing process as well.

CINDI (Concordia INdexing and Discovery System) system, which is under
development, aims to provide a mechanism to support crawling, indexing, and searching.
CINDI is a virtual library supporting advanced search and targeted to improve the web

search quality.

1.2 About This Project

The aim of the CINDI project, which is proposed by Dr. Desai [1, 2], is to build a

system that can do effective search on documents of different formats.

There have been different steps in the development of CINDIL Firstly, the semantic
header, which is used for indexing, was provided by the author of the resource. Secondly,

a system to generate the semantic header and the subject of the document was developed

[31]

The web is a vast collection of completely uncontrolled documents mainly based on
hypertexts. Information retrieval techniques need to be extended to deal with the web.
Our project is to provide CINDI system with hypertext indexing ability in order to
support online query efficiently. CINDI supports two types of query requests. The search
could be on title, author(s), subject, keyword(s), etc. In the search, user can search using a
word, substring, or exact phrase. The inverted index presented in this report is an aid to

support keyword search.

For the time being, very little academic research has been done on large-scale hypertext
search engine. We seldom see a detailed technical report for a search engine’s

development, since much of it is a business secret.

1.3 About This Report

In this report, the fundamentals of the search engine development including the structure
of a search engine, string-based pattern matching, bit and file processing techniques are
given in chapter 2. In chapter 3, we present project major data structures and project
processing principals. Some implementation issues are also discussed in this chapter.

Finally, chapter 4 is the conclusion.

Chapter 2

Background

2.1 Information Retrieval

Work in information retrieval goes back to many years before. Most of the research is on
well-controlled collections such as collections of scientific papers. Things that work well
on small and well-controlled collections often do not produce “good” results in the context
of the web [4]. There are huge differences between the web and well-controlled

collections. Information retrieval work needs to be extended to deal with the web.

For the web, we can make use of internal Meta information. For example, we can keep
track of some visual presentation details, such as font size of words. Words in a large or
bolder font are more important than others. We can also make use of external Meta
information. External Meta information includes things like reputation of the source,
update frequency, and citation. PageRank is used in Google search engine developed at

Stanford University [4].

2.2 Google

Google was originally a Stanford University project called BackRub carried out by
students Larry Page and Sergey Brin [26]. By 1998, the name had been changed to
Google, and the project jumped off the campus and became the private search engine

company, Google Inc.

Google supports text-based searches. It belongs to automatic search engine. It can cover a
much larger proportion of the web sites - 30% of the web or more [4]. Text-based search
engines sift through the text of millions of web pages and look for the word(s) or

phrase(s). If a page contains the word(s) or phrase(s), it is a hit.

2.2.1 Web Crawling Subsystem

Google uses crawling subsystem to download web pages. It starts on a page and follows
each link on the page to locate other pages or documents. This strategy is like the width-
first search algorithm. The administration interface provides fields with multiple URLs
and specifies which web hosts and domain names the robot is allowed to access, and keep

it from crawling inappropriate hosts.

Google has gone through a number of different versions. In version 3.3, the crawling has

some intelligent priorities, allowing it to crawl the pages with high PageRank .

The major function of the web crawling subsystem is to gather web pages/files from
remote WWW servers. It may involve the whole Internet. This gathering task is usually
carried out automatically by a program called web robot, whose major functions can be

briefly described as follows:

1. Starting from a single URL, it downloads the web page from the remote web site.
It parses and adds all the URLs in this page to a queue for future downloading.

2. For the web page from (1), the HTML source code is stored in the repository. If
the web page is in other formats, a converter is applied in order to obtain HTML
code.

3. After (2) is done, it gets a new URL from the queue, checks if the new URL IS
already downloaded. If so, it gets a next URL from the queue, and repeats 3).

Otherwise, repeats (1).

In summary, a web robot continuously requests files from remote web sites and stores the

HTML documents in the repository for further processing.

Crawling involves interacting with hundreds of thousands of web servers. In a fast-
distributed crawling system, the URL server sends the URLSs to a number of crawlers. A

fast server side script language is used, for example, script language Python.

2.2.2 Index Subsystem

The index subsystem defines how contents gathered from remote web sites is internally
stored and managed in a text database to support search/query efficiently. It depends on

the logical data structure of the text entities and the physical organization in the database.

The index subsystem is tightly coupled with the search subsystem, as its sole purpose is
to speed up the free text search/query process conducted by the search subsystem. A

common approach is to build an inverted index for the documents [7].
The major decisions to be made for the index subsystem are as follows:

1. What compression scheme will be used to store the text and its index.

2. Do we keep both original text and its index in the database, or just the index? In
order to support certain advanced search capabilities such as exact phrase search,
the original text must be stored together with its index. This will increase the need
for storage space.

3. Index modes: batch indexing, or incremental indexing [17]. Batch indexing only
updates index in a batch mode after a bulk of text has been loaded. Incremental
indexing allows the indexing process to be done incrementally.

4. Case sensitivity, symbols, or numbers. Support of case sensitivity and symbols in

the index will increase the storage space requirements.

Performance of a web search system will largely depend on its index structure. A good
index structure should have small storage requirement, thus speeding query processing

significantly.

Goggle’s main steps in indexing are as follows[4 |:
Converting Converters are applied to the downloaded files to obtain HTML documents.
For example, if the file is in Microsoft Word format, a converter is used to convert it from

Word format to HTML format.

Parsing HTML documents ~ Extracting needed words from HTML documents.

Indexing documents into forward barrels Every document is encoded into a number
of barrels. We use a binary file as a barrel. By using an in-memory lexicon, a word
(except noise word) occurrence is coded into a hit, and is written into a forward barrel. If

a word is not in the lexicon, a log file is used to register this word.

Sorting In order to generate the inverted index, a program processes each forward

barrel, sorts it by wordID to produce an inverted barrel.

The index system needs to be designed to be robust in order to deal with vast amounts of

CITOorsS.

Google does not do incremental updates in an index [4]. However, it is possible to
remove URLs from the searchable index without reindexing. In version 3.3, Google can
search on a combination of two collections: a main collection of documents is not
changed often, and a changeable collection that is often updated, such as breaking news.
The changeable collection can be indexed continuously, while the main collection index

is updated monthly.

This search engine has reporting features. It provides a status report showing what was
indexed and what went wrong. It provides options to see one or many hosts, the URLs,
the errors and the successes, so it can explain what happened when indexing a site. For

example, certain page of the site may be reported to have error.

2.2.3 Search Subsystem

The search subsystem accepts queries from a Web-based search interface and schedules,
partitions, and executes them against the indexed database to locate URLs and their
associated attributes that satisfy the query criteria. Partitions are based on the wordid. It
also deals with the /O, caching, assembling, sorting, and performance-related system
activity. Based on what content is indexed and the scheme used in the index subsystem, it
implements and supports different search algorithms to provide one word, multi-words,
and exact phrase search capabilities for a text retrieval system. Together with the
crawling and index subsystems, the search subsystem supports basic and advanced search

capabilities [5].

The search subsystem provides quality search results. There is a query evaluation process
in searching. The main goal of the query evaluation process is to generate search results

efficiently.

Because of transfer efficiency, the search result is in XML format. The result layout is

HTML code generated by the sever.

2.3 Inverted Index

2.3.1 Original Meaning

Documents and words in these documents can be expressed as a invert vector file [12].

“Invert” means a vector file’s rows become columns and its columns become rows. Let

us use the following example.

Word 1 Word2 ... Wordj
Doct Oll Ol12 ... Ol
Doc2 021 022 .. 0%
Doc i Oil 012 ... Oy

(a) Document-Word hit

Doc 1 Doc2 ... Doci
Word 1 Ol11 021 .. 0Oil
Word 2 012 022 ... 02
Word j Olj 02j .. Oy ...
(b) Word-Document hit

Figure 2-1 Vector file and its inverted vector file

10

Doc 1,Doc?2, ... Doci are documents.
Word 1, Word 2, Word j are words.

ie[0,1,2,....n],je[0,1,2,...,m]

We use vector file (a) to express that in document i, there are Oij hits for word j.
The inverted vector file (b) says word j occurs Olj times in documents Doc 1, O2j times
inDoc 2, In fact, the inverted file answers the problem of search engine, that 1S,

what documents have the given word?

It is natural that the inverted file can be used as the major structure of the index for a

search engine.

2.3.2 Application

To find the occurrences of a given pattern in a text that has not been preprocessed is
inefficient. Indexed searching speeds up the search by preprocessing the documents and
storing the results in appropriate data structure. This data structure is called index.
Inverted files and signature files are two kinds of indexing techniques. A signature file is
a filtering mechanism to reduce the amount of data to be indexed. Zobel and Moffat
compare these two methods and conclude that inverted file is a better method as it takes
less time and space [9]. The inverted index file contains an entry for every unique
document-word pair. Inverted file is a word-oriented mechanism for indexing a text

collection. It uses vocabulary and occurrences. Vocabulary consists of the words in the

11

text, and occurrence is about the word position in the text. If the word appears multiple

times in this document, they are different hits.

In inverted files, the index is split into posting part and vocabulary part. The posting part

is the file in which the lists of word occurrences and documents are stored contiguously.

The vocabulary part is kept in main memory. It is stored in the dictionary order. For each

word, there is a pointer to its list in the posting file. Following is an example of an

inverted index.
Vocabulary Part Posting Part

Words Documents Hits

Word] —® (Doc 1, 8)

Word 2 (Doc 2, 3)
(Doc 3, 1)
(Doc 1, 1)
(Doc 9, 4)

Figure 2-2 An inverted index example

We can implement inverted barrels as binary files. For the inverted file, the word

occurrences need much storage space since every occurrence must be recorded. Because

stop words are in all text, we do not index such words.

12

Google is a widely used search engine for querying hypertext data. It uses inverted index
to support query efficiently[4]. Inverted index supports single word and multi-words

queries.

2.4 HTML Document

HTML is the language of publishing hypertext on the web. Every text-based web page
has its HTML source code (also called HTML document). A repository is used to store
HTML documents. We limit the scope in this project to scan HTML documents and
extract title, anchor, Meta content, and plain text words from the HTML documents. So,

we need to use some of the HTML tags.

2.5 Data Structures and Algorithms

2.5.1 Linked List

Single linked list is used to record the occurrences (hits) of a word. Although there are
four kinds of hits (title, anchor, Meta content, and plain text), we use the integrated node
structure, all the nodes in the linked list have same structure because this is required for
the node in a linked list. Some fields of the node may be empty. Single linked list is
pointed by the temporary array’s pointer area. We use two operations: add a node to the

rear of the linked list, and read every node’s data and release the node.

13

2.5.2 Internal Sort

In the project, we use computer aided generation method to produce the lexicon. That is
to say, the lexicon is not generated completely automatically. This is because the lexicon
is relative stable. When we generate the lexicon, we choose different words from a vast
amount of web pages, then, we use an internal sort algorithm to make these words in

dictionary order. We choose quick sort algorithm.

2.5.3 String-Based Pattern Matching

String pattern matching technology is used to extract information between HTML tags.
This issue is also known as searching a string in a text. The well-known character
comparing based methods are simple shift pattern method and Boyer-Moore method[15].
The Boyer-Moore method is considered as the most efficient string-matching method in
usual application. A simplified version is often used in editor program. The algorithm
scans the characters of the pattern from right to left, beginning with the rightmost one. It
uses two precomputed functions to shift the pattern to the right. These two shift functions

are called good matching shift and bad character shift.

14

2.5.4 Bit Field Structure

In this project, we use bit field structure in order to store data in compact format in both
forward and inverted barrels. A barrel is in fact a binary file. Bit field can be accessed
individually. We can specify how many bits are used for each field. We can write binary
data to a file and read data from a binary file by making use of bit field structure. [n the
following example, we first define a bit field structure variable, then assign two numbers
to the two bit fields.
struct {
unsigned docid:24; // 24 bits is used to store documentID
unsigned hits: 8; // 8 bits to store the number of hits

} dochits;

dochits.docid=5; // documentIDis 5 (101)
dochits.hits=9; // the given word occurs 9 (1001) times in the document
Using the system call write(), binary data could be written to a binary file. The system

call write() is given in section 2.5.6.

2.5.5 File Operation
File operations are essential tools for the project. When parsing HTML documents, we

use file; the lexicon is maintained in a file; hit data is stored in files.

C++ supports file input and output through the following classes:

15

« ofstream: File class for writing operations (derived from ostream)
o ifstream: File class for reading operations (derived from istream)

o fstream: File class for both reading and writing operations (derived from iostream)

Open a file
Open file is represented by a stream object (an instantiation of one of the above classes)
and any input or output performed on this stream object will be applied to the physical
file.
In order to open a file with a stream object, we use its member function open ():

void open (const char * filename, openmode mode);
mode is a combination of the following flags:

jos::in ios:out ios:app ios::binary
These flags can be combined using bitwise operator OR: |. For example, if we want to
open the file "example.dat” in binary mode to add data, we write:

ofstream file;

file.open ("example.dat”, ios::out | ios::app | i0s::binary),
We could also declare the previous object and conduct the same opening operation by
writing:

ofstream file ("example.dat”, ios::out | ios::app | ios::binary);

You can check if a file has been correctly opened by calling the member function

is_open():

bool is_open();

16

It returns true in case the object has been correctly opened or false otherwise.

Close a file
By calling member function: void close ();
Once this member function is called, the stream object can be used to open another file,

and the file is available again to be opened by other processes.

We can verify the state of the stream (all of them return a bool value):

bad()
Returns true if a failure occurs in a reading or writing operation. For example, in
case we try to write to a file that is not open for writing or if there is no space left
on the disc where we try to write.

fail()
Returns true in the same cases as bad() , plus in case that a format error occurs.

eof()

Returns true if a file opened for reading has reached the end.

Get and put stream pointers

All /O streams objects have, at least, one stream pointer:

e ifstream, like istream, has a pointer known as get pointer that points to the next
element to be read.
« ofstream, like ostream, has a pointer known as put pointer that points to the

location where the next element to be written.

17

e fstream, like iostream, inherits both: get and put

These stream pointers that point to the reading or writing locations within a stream can be
read and/or manipulated using the following member functions:
telig() and tellp()
These two member functions don’t have parameters and return a value of type
long int.
seekg() and seekp()
This pair of functions serves respectively to change the position of stream
pointers. Both functions are overloaded with two different prototypes:
seekg (pos_type position);
seekp (pos_type position),
Using this prototype, the stream pointer is changed to an absolute position from the
beginning of the file. The type required is of the same as the one returned by functions
tellg and tellp.
seekg (off_type offset, seekdir direction);
seekp (off_type offset, seekdir direction),
The direction could be:
i0s::beg offset specified from the beginning of the stream
ios::cur offset specified from the current position of the stream pointer

ios::end offset specified from the end of the stream

18

Binary file

File streams include two member functions used for input and output data sequentially:
write and read. The first one (write) is a member function of ostream, also inherited from
ofstream. And read is a member function of istream and it is inherited from ifstream.

Objects of class fstream have both. Their prototypes are:

write (char * buffer, streamsize size),

read (char * buffer, streamsize size);

Here, buffer is the address of a memory block where read data are stored or where the
data to be written are taken from. The size parameter is an integer value that specifies the

number of characters to be read/written from/to the buffer.

Processing Unit

From current position, we can read a character from the given file, or write a character to

the given file. Then, the position moves forward by one character.

We can read a structure from the current position of the given file, or write a structure to

the given file from the current position. The position moves forward by the size of the

structure.

Read/write a character and read/write a structure can be used together. Doing these, we

should remember that the positions moved forward are different.

19

Chapter 3

Implementation of Inverted Index

3.1 Major Data Structures

Other than the usual data structures, such as stack, queue, string, and internal sort, some
special data structures are used in this project. These data structures are in compacted
format in order not to take up too much space, as we use compact method to store data in

binary files.

3.1.1 Repository

The repository contains the web pages’ source HTML documents. If the web page is not
in HTML format, a converter may be applied to obtain HTML code. Converter is not

used in this project. In the repository, the HTML documents are stored one after the

other. A repository data sample is given in appendix A.

20

3.1.2 Lexicon

The lexicon may have different forms. For example, lexicon may act as a dictionary or a
file’s index. Our major lexicon is kept in the main memory. In this way, we can reduce
the search time. The lexicon is a list of words and wordIDs. Its function is mapping a
word to a number (wordID). We choose sequential structure to save storage space thus to

hold more words.

3.1.3 Hit Lists

A hit list corresponds to a list of occurrences for a particular word in a particular
document, including word position, font, and capitalization information. Hit lists take up
most of the space used in both the forward and inverted indices. It is important to code
the hit lists as compactly as possible. We use a program to implement compact encoding.

Our aim is to reduce the space for storing these data.

As in Google, our compact encoding uses one machine word for every hit. There are two

types of hits: fancy hits and plain hits.

Fancy hits include hits that occurre in title, anchor text, and Meta tag. Plain hits include
everything else. A plain hit consists of a capitalization bit, 3 bits for the word size, and 20
bits for word position in a document. A fancy hit consists of a capitalization bit, the three
font bits are set to 111(distinguish from plain hit), and 20 bits for the position. The other

8 bits is used to identify that this is a hit data.

cap:l size:3 position:20 flag:8

111

(a) plain hit

cap:l imp:3 position:20 flag:8

111

(b) fancy hit
Figure 3-1 Hit structures

3.1.4 Forward Index

The forward index is partially sorted. It is stored in a number of barrels. Each barrel
holds a range of wordid. If a document contains the word that fall into a particular barrel,
the wordID is recorded into the barrel, followed by a list of hit data (capitalization bit, hit
type, and word position). The length of a hit list is stored before the hits themselves.

Forward barrel’s structure is given below:

docid wordid:24 hits:8 hit hit hit ...
wordid:24 hits:8 hit hit hit
null wordid

docid wordid:24 hits:8 hit hit hit ...
wordid:24 hits:8 hit hit hit ...
wordid:24 hits:8 hit hit hit
null wordid

Figure 3-2 Forward barrel structure

22

24 bits for wordid.

8 bits for hits, can store 2**8=256 hits.

Every hit is coded to 32 bits binary data. Hits data, including the first character’s
capitalization information (upper or lower case), hit type (the word occurs in title, anchor,
Meta content, or plain text), and position of the word in correspond text are stored in

forward barrel.

3.1.5 Inverted Index

From forward barrel, we obtain the inverted index, which includes inverted barrels and
their indices. An inverted barrel is a binary file. Its size is variable based on the HTML
documents that are indexed. For every valid wordid, the index contains a pointer which
points to the barrel that wordid falls into. It points to a document list together with its hit

list. This document list represents all the occurrences of that word in all the documents.

docid:24 hits:8 hit hit hit hit hit
wordid | docs | _ docid:24 hits:8 hit hit hit
wordid | docs » docid:24 hits:8 hit hit hit hit

wordid | docs \\ docid:24 hits:8 | hit

Figure 3-3 Inverted barrel structure

Docs field stores the number of documents that having the given word.
24 bits for docid and 8 bits for hits. Every hit is coded with 16 bits.

3.2 Document Processing

3.2.1 Interface

Here, we talk about the interfaces between the indexing subsystem and other subsystems.
Repository is the interface between crawling subsystem and indexing subsystem. Crawler
downloads web pages’ HTML source code from WWW. Crawler downloads HTML
source code by making use of protocols, according width-first search algorithm. HTML
source code is stored in the repository. Single page’s download data include URL,
protocol used, content type, connection status, content length, last modified date, server
type, download date and time, and HTML source code. The download information is
stored together with HTML code for this information can be used in special processing.
A repository data sample from Google Inc. [6] is given in appendix A. The data format

in the repository is given below:

URL of page 1
........ // Download information

</html> // end of page 1

URL of page 2

24

// Download information

</html> // end of page 2

URL of page n
// Download information

</html> // end of page n

Inverted index is the interface between the index subsystem and search subsystem. The

indexer takes data from repository and processes these data. The result is stored in the

inverted index.

The search subsystem takes data from inverted index and generates the query result.

The overview search engine’s internal interfaces is given below:

www repository inverted index query result

crawling > { _indexing > gg;ching.

Figure 3-4 Search engine’s internal interfaces

25

3.2.2 Extract a Page from Repository

Well formed page’s HTML source code begins with <html> , or <HTML> , and ends
with </html>, or <HTML> . We can obtain a single page’s HTML source code by
scanning characters between <html> and </html> , or between <HTML> and </HTML> .
Since the repository is a file, we can extract the first page’s source code from repository
file’s beginning, extract the second page’s source code next, ... , until we meet the end of

file character.

If 2 HTML document has no </html> tag, we use this page’s </body> tag. If </body> is

also missing, we scan until we meet the next page’s <html> tag .

3.2.3 Extract Items from a Page

From single page’s HTML source code, we can extract title, anchor text, Meta content,

and plain text.

Title pattern is as

<title>******</title>
Where ****+**+ is the title text. We get the characters between <title> and </title> . The
title text may be empty or the title may be missing. There is only one title text (or none)

in a page’s source code.

Anchor text pattern is as

##+*++</z>

26

where ***#****#* s the anchor text. We obtain an anchor text by accessing the characters
between <a href= “URL™ and . Single page’s source code may have several
anchors, or none. We use loop function to extract anchors between <html> and </html>.
In each iteration, we extract one anchor text. If </html> is missing, we can use tag
</body>. If no </body> , we can use next document <html> tag, for the next page’s

anchor is after its <htmlI> tag.

Like anchor text, single page may have zero, one or more Meta content. The Meta
content pattern is as follows:
<mata name= “-——" content= “*FEEEEEET>

+kx£4x% |5 the Meta content.

Single page may have zero, one or more paragraphs. A paragraph may begin with <p ...>

</p> tag is optional.

The data flow diagram is given below:

title
HTML each HTML —>
document —~~._ anchor text

extract *

items >
4'

— meta content
4’
plain text

Figure 3-5 Data flow diagram

27

3.2.4 Search for a Given Word

Title, anchor text, Meta content, and plain text are made of words. From section 3.1.2, we
know that lexicon is maintained in a database. Before using the lexicon, we load it into
the main memory in the form of an array. Every element in this array has two parts: word
and wordid. Since an array is a sequential storage structure, and words are in dictionary
order, we can do binary search for a given word. If the word is in the array, program
returns its index. If the word is not in the lexicon array, O is returned, we store it in a log

file for future reference.

3.2.5 Construct Nodes and Add Them to the Hit Lists

We create a temporary array for each page. The temporary array and linked lists are given
in figure 3-7. The element type of the temporary array is a structure. The structure has

four fields:

e word : stores word
e wordid : stores word id
¢ hits : number of occurrence of the word in the document

e pointer: points to the hit list of the word

The linked list stores a word’s occurrences in the document. The element type of the

linked list is shown in figure 3-6 and its fields are described below.

type cap imp f type position next

Figure 3-6 Element structure of the hit list

28

word wordid hits pointer hit lists
abacus 1 - TP
abacuses 1 - 'J—'{
abandon 3 —p
abandoned 3 —4p —»
abandoning 3
abandonment | 3 —» —1—>
200 19197 Tl
zoology 19197
zoological 19199 -1
zoologist 19199 —T—> TP

Figure 3-7 Temporary array and linked lists

The six fields used are as follows:

1. type: identify the type of the hit

29

0: fancy hit
1: plain hit
2. cap : the word first character’s capitalization information
0: lower case
I: upper case
3. imp : for the fancy hit, it stores ‘111’
for the plain hit, it stores the word size
4. f type: identify kind of fancy hit
1: title hit
2: anchor hit
3: meta hit
5. position: it stores the word position in the document

6. next: points to the next element of the linked list, or null

For each word in the document, if the word is in title, anchor text, or Meta content
hit(fancy hit), we need to fill fields: type, cap, imp= “111’, position, and make up the

node.

For the plain hit, fill areas: type, cap, imp, position, and make up the node.

Once the node is constructed, we search the temporary array, if we find the word in the
array, a node is added to the hit list and the word’s hits field is increased by 1. If we
cannot find the word in the array, we do not index this word (it may not be an English

word, or is a stop word, we use a log file to store it for later reference), and process the

30

next word in the document. When we finished processing all the words in the document,

we go to the next step outlined below.

3.2.6 Constructing the Forward Barrels

The construction of nodes here is different from the construction node discussed in 3.2.5.
In there, we construct one kind of node, which is in the hit lists. Although there are
different kinds of hits, the node type in 3.2.5 is the same (as figure 3-6). In this step, we
construct four kinds of nodes, each of them is used to record the hits. Four kinds of nodes
are used for recording title hit, anchor text hit, Meta content hit, and plain text hit. We

should know that, the four kinds of nodes here are built based on the data that are in the

nodes of the linked lists of the words..

For the fancy hit, the node here is like the structure in Figure 3-1 (b), and plain hit
corresponds to Figure 3-1 (a). In constructing the node, we use a bit field structure. We
first define a variable of bit field structure type, and then assign data to the bit fields, we

manually compact the hits data, and store the data in the forward barrels.

There are 64 files that are used as forward barrels. Every barrel holds a range of wordid.
From the temporary array, index 0 to 300, are put into the forward barrel 1. 301 to 600
are written to forward barrel 2, ... , array index 18901 to 19200(the number of words in
the lexicon) are written to forward barrel 64. We may add more words into the lexicon
and adjust the number of words in each forward barrel thus not increasing the number of

files.

31

3.2.7 Generate Inverted Barrel from Forward Barrel

For each forward barrel, we need to sort it. We use two-way-two-phase merge sort. In
merging, temporary storage space is needed. From one forward barrel, we obtain one
inverted barrel, plus one array as its index. Since we use 64 forward barrels, the final
result includes 64 files as the inverted barrels and 64 arrays as their indices. The inverted
index is the internal interface between the index subsystem and the search subsystem, the

search subsystem takes data from the inverted index, based on the data to answer user’s

query.

3.2.8 Summary

From repository, we extract each HTML document.

Form the document, we extract the title, anchor, Meta content, and plain text.

For each word in the above four kinds of text, we search the word. If the word is not in

the lexicon, we register this word in the log file, and process next word. If the word is in

the lexicon, we construct its hit node, and add the node to the word’s hit list.

When all the words in the document, which are also in the lexicon, are added to the

linked lists, documentID, wordID and the amount of hits (in the temporary array), and

hits data(in the linked lists) are written to the forward barrels based on wordID.

32

When all the HTML documents are processed, forward barrels are setup. We sort every

forward barrel, and obtain inverted barrel and an array as its index.

Finally, we obtain 64 inverted barrels and 64 arrays, called inverted index. These arrays

are in the main memory thus support fast processing for the query subsystem.

3.3 Lexicon

Lexicon (dictionary) is mainly used for mapping a word to a wordid. The operations are:

e Lookup a word

e Insert an item including a word and its id, and reserve the dictionary order

3.3.1 Implementation Strategies

The lexicon may be implemented as a B+ tree, a hash table, or as an array in the main

memory.

B+ tree is efficient in search and insertion. Its disadvantage is the large space is needed to
maintain pointers in the main memory. The advantage of using hash table is in insertion
while searching. The disadvantages are pointers take up too much memory space and

there are collisions during insertion which increases search time.

Our implementation is based on a structured array in the main memory. It can be

maintained as a database file. The amount of words, or the capacity of the lexicon is the

33

size of the array. All the items placed in the lexicon must have the same type. For an
array, the type for the items is specified when the array is declared. The lexicon stores
word and wordid pairs, ordered by the dictionary order, so that the binary search could be

used when searching.

Array-based lexicon has its advantages. First, it support fast search because words are in
dictionary order. Second, it uses less storage space because it is a sequential structure.
Third, we use this kind of lexicon to deal with stop words (see 3.3.7). Fourth, it can be

used in the stemming process (see 3.3.6).

3.3.2 Lexicon Data

In our lexicon, every item has two parts of data: word and wordid. Words in the lexicon
are in common dictionary order. See figure 3-8.

You may find that compute (ID 10070) and computer (ID 10080) are divided into two items
in the lexicon, this is because compute is a verb, and computer is the device for

computing, which is a noun.

3.3.3 Computer Aided Lexicon Data Generation

The lexicon data is stable compared to the indexing and querying. The lexicon data is not

changed very often. We use computer aided generation method to generate the lexicon

data. Words in the lexicon come from web pages. There are three phases:

34

WORD WORDID
compress 10010
compressed 10010
compresses 10010
compression 10020
comprise 10030
comprised 10030
comprises 10030
compulsory 10040
compunction 10050
computation 10060
computations 10060
compute 10070
computed 10070
computes 10070
computer 10080
computers 10080
concatenation 10090
concatenations 10090
concede 10100
conceded 10100
concedes 10100

Figure 3-8 Lexicon as a structured array in main memory

35

You may find that compute (ID 10070) and computer (ID 10080) are divided into two
items in the lexicon, this is because compute is a verb, and computer is the device for

computing, which is a noun.

The first phase is to extract different words from certain amount of web pages. We use
about 20 M bytes of data to generate 20,000 different words. The web pages cover
business and economy, computer and Internet, news, entertainment, sports, health,
military, law, taxes, environment, religion, history, and psychology fields. Following
figure shows the relationship between the number of distinct words and the number of
HTML documents. For the first 30 documents, samples used affect the words amount

tremendously. When the number of documents increases, the increase is smaller.

words®

18000
16000+—
14000—
12000

6000
4000|
2000)

N SN Y S N [S B N B

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 documents

Figure 3-9 Relationship between the amount of words and documents

36

The algorithm is as follows:

Cal()
{save web page in file webpage.dat;
open webpage.dat;
read a word from webpage.dat and string copy to an array;
read a word from webpage.dat and string copy to the tempstring;
while (‘eof())
{ if (tempstring is not in the array)
search the position to insert and do the string copy to this position;
read a word from webpage.dat and string copy to tempstring; }

L

The second phase is to sort the words in the array. We use quick sort to sort the array.

In the third phase, we write words and their array indices to a structured file, and
performing the wordID manually, this is related to the stemming process (see 3.3.6) and

eliminating the stop words (see 3.3.7).

3.3.4 Use and Maintain the Lexicon

The lexicon is defined as:

typedef struct
{ char word[16];

int wordid;

37

} worditem,;

typedef worditem lexicon[19200];

When we want to use the lexicon, we first load it into the main memory as an array. We
use a loop program structure. [n each iteration, we read a string from the lexicon data file
and do the string copy to the worditem.word area, read a number from the lexicon data
file and assign it to the worditem.wordid area. In the main memory, we can use

lexicon[i].word , lexicon{i].wordid to read or write a word and its id.

[f we do not use the lexicon, the lexicon is stored as a record file. To do this, we use the
loop function. In each iteration, write the contents of worditem.word and
worditem.wordid to the lexicon file. Figure 3-10 shows the data sample stored in the file

lexicon.dat (corresponding to the data in figure 3-8).

3.3.5 Trimming of Punctuation

In a text, words are separated by punctuation or blanks. A word is a string of alphabetic
characters. We should remove the trailing and leading punctuation before searching in the

lexicon. The words are converted to lowercase before they are indexed.

3.3.6 About Stemming Process

Stemming is a process to find out a word’s stem or root. Some stemming algorithms,
Okapi [22] for instance, uses both weak stemming to remove plural endings and

grammatical suffixes like ing and ed and strong stemming to remove derivational

10010 compress
10010 compressed
10010 compresses
10020 compression
10030 comprise
10030 comprised
10030 comprises
10040 compulsory
10050 compunction
10060 computation
10060 computations
10070 compute
10070 computed
10070 computes
10080 computer
10080 computers
10090 concatenation
10090 concatenations
10100 concede
10100 conceded
10100 concedes

Figure 3-10 Lexicon as a record file in disk

39

suffixes like ent, ence, and sion. Other stemming algorithms use truncation to find the

root. For example, Qpatus [3] uses sophisticated linguistic rules.

We think that using sophisticated linguistic rules inevitably causes problems. First, it is
difficult to gather all linguistic rules. Second, error is inevitable. According to their
linguistic rules, we can find an error example easily. Third, processing too many rules

takes too much CPU time.

Stemming problem is avoided by using our method, that is to say, we need not solve
stemming problem specially. Rather than using an stemming algorithm to generate the
stem, we present a method, called lookup dictionary method. Let us go back to figure 3-
10, the stem word and its grammatical variations have the same wordid. For example,
verbs “compute”, “computed”, and “computes”, correspond to wordID 10070. Nouns
“concatenation” and “concatenations” correspond to the wordID 10090. Table-lookup

method allows quick indexing over the derivations of the stem error freely.

3.3.7 Stop Words
Stop words are words that are commonly used in sentences, but they do not carry any

features of the text. Stop words include “and”, “of”, “the”, etc. Stop words shouldn’t be

indexed because their occurrences are very frequent and their hits would take up too

40

much space. In our implementation, stop words are not in the lexicon, so they are not

indexed.

Roughly speaking, stop words take up 20% of all the text words. Although the stop words
have no inference upon the crawling subsystem for the search engine, for the index

subsystem, they will take up more storage space.

3.4 Parsing HTML Document

3.4.1 Extract Single Document

Repository is a text file that stores HTML documents. From repository, we extract single
HTML document one by one. We use following program segment:

ifstream fromr("repository.dat” ios::in);
fromr>>ch;
for(i=0;i<100;i++) /1 if we store 100 pages in the repository
{docid++;
ofstream totp("temppage.htm" i0s::out);
while(strncmp(ch,"</htmI>",6))
{
fromr>>ch; totp<<ch<<'",
IR
}
totp.close();

fromr.close();

41

3.4.2 Extract Title

From single HTML document, we extract the title of the page. Each HTML document
has a title. The title text may be empty. We use following program segment:

char ct;
char cht{7];
ifstream fromtp("temppage.htm"); // single html document
ofstream tott("temptitle.htm"); // file to store title text
cht[0]=fromtp.get();
cht{1]=fromtp.get();
cht[2]=fromtp.get();
cht[3]=fromtp.get();
cht[4]=fromtp.get();
cht[5]=fromtp.get();
cht[6]=fromtp.get();
while(!(cht[0]="<' && cht[1]=—"t' && cht[2]='I'&&cht[3]="t&&

cht[4]="T && cht[5]='¢' && cht[6]—">")) // compair

{ // shift to right by one position

cht[O}=cht[1];

cht{1]=cht[2];

cht[2]=cht[3];

cht[3]=cht[4];

cht{4]=cht[5];

cht[S]=cht[6];

cht[6]=fromtp.get();

b
ct=fromtp.get();
while(ct!='<")
{ // extract title text
tott.put(ct);

42

ct=fromtp.get(); // write to a file
s

tott.close();

fromtp.close();

The processing unit here is single character.
3.4.3 Extract Anchor Text, Meta Content

The principal of extracting anchor and Meta content is the same. We take the anchor text
for example. Similar to 3.4.3, we can extract an anchor text. We put the extraction of
single anchor in a loop, loop starts from this page’s beginning, ends in the page’s end,

then, we can extract all the anchors of the page. The program segment is as follows:

ifstream fromtp("temppage.htm"); // extract from a document
ofstream tota("tempanchor.htm"); /I file to store anchor text
char ca, cha[7];
cha[0]=fromtp.get();
cha[1]=fromtp.get();
cha[2]=fromtp.get();
cha[3]=fromtp.get();
cha[4]=fromtp.get();
cha[5]=fromtp.get();
while(!(cha[0]=='<' && cha[1]=" && cha[2]="h' && cha[3]=—="t &&
cha[4|—'m' && cha[5]=T1"))
{ while(!(cha[0]—"' && cha[l]=—"h' && cha[2]=T"' &&
cha[3]='¢' && cha[4]=—='f && cha[5]=—="="))
{ // compair
cha[0]=cha[1];

43

cha[1]=cha[2];
cha[2]=cha[3];
cha[3]=cha[4];
cha[4]=cha[5];
if(!fromtp.eof())
cha[5]=fromtp.get(); // read a character
else return(0);
3
// if not meet the end of file, shift to the right by one character
if(cha[0]— '&&
cha[l[=h'&&
cha[2]=r&&
cha[3]—'e'&&
cha[4]—f&&
cha[5]==)
{ ca=fromtp.get(); //read a character
while(ca!='<")
{ tota.put(ca);
ca=fromtp.get(); }; //store them ina file
tota.put(\n');
B
cha[0]=fromtp.get();
cha[I]=fromtp.get();
cha[2]=fromtp.get();
cha[3]=fromtp.get();
cha[4]=fromtp.get();
cha(5]=fromtp.get(); // read a character
}:
tota.close();
fromtp.close();

Here, the processing unit is a single character, but in the further processing, we choose

single word (a character string) as the processing unit.

Filtering Sometimes, we can not extract the exact term in one time. [n these cases, we

need to filter the extracted data one or more times. The algorithm is given below:

read a character from anchor text;
while(! end of anchor text)
{if it is the noise character
then push it to the noise stack;
read a character from anchor text; }

clear the noise stack;

Here is the example of filtering. The HTML source code is from URL:

http://www.cit.buffalo.edu/search.html. One anchor is:

 About CIT
After the first round of filtering, we get:

http://www.cit.buffalo.edwabout.html”> About CIT

After the second round of filtering, we get:
About CIT

We obtain the anchor text.

45

3.4.4 Extract Plain Text

Plain text includes the words that are not in title, anchor text, or Meta tag. We extract

plain text from the body of a HTML document. These words are between HTML tags (if

any).

Following are some possible patterns for plain text.

<[i> #****E <f]i>
<dt> *FF*** </dt>
<p ...> *EEEEE Chr>
RREREE >
<h]> ****** <h1>
<h2> **EEEx < ho>

Where ****** is the plain text.

We cannot get plain text simply from pattern: <p> ****** </p> for two reasons:
1. </p>is optional, a paragraph may have a start tag <p>, but no end tag </p>.

2. Plain text may be in other patterns.

46

3.5 Sorting

3.5.1 Build Hit Lists

We have seen a method for building hit lists for single document from the web. They do
the sequential search for all the words in the document. Then they sort the hit lists index.
In our implementation, we only do the binary search for all the words in the document.
We believe that our method is better than the above mentioned method. For the same
number of words, we simply do fast search instead of sequential search plus a sorting. [n
our implementation, the sorting is implied in the processing. We change a sequential
searching plus a sorting problem to a fast searching problem by making use of the

lexicon.

3.5.2 Merge Sort Forward Barrels
Let us examine a forward barrel example in figure 3-11.

We use two-way-two-phase merge to sort each forward barrel, and get an inverted barrel

and an array as the index.

In the first phase, we merge section Doc001 and section Doc002 (in figure 3-11), The
merge is based on the wordID in these two sections. Suppose we use 0 stands for the
nullword, variable term! stands for a wordID in section Doc001, term2 for a wordID in

section Doc002, then we have 5 conditions:

47

Figure 3-11 Forward barrel example

Doc 001 Word 001 61
Word 002 50
Word 005 4
Word 008 2
Word 010 15
Word 517 51
Word 980 41
Null word

Doc 002 | Word 001 31
Word 002 1
Word 003 4
Word 008 5
Word 057 11
Word 110 3
Null word

Doc 004 | Word 001 5
Word 002 2
Word 003 1
Word 007 4
Word 110 10
Null word

48

. term1=0 and term2=0
. term1=0 and term2>term|1

. term!1'=0 and term2'=0 and term<term2

1

2

3. term2=0 and term[>term2

4

5. term1'=0 and term2'=0 and term2<term!

Merging section Doc001 and section Doc002 (in figure 3-11), we obtain following array
and file as in figure 3-12

Array File
Word 001 | 2 —» Doc 001 61
Word 002 |2 - Doc 002 31
Word 003 | 1 \\N Doc 001 50
Word 005 | 1 - Doc 002 1
Word 008 | 2 4 Doc 002 4
Word 010 | 1 N Doc 001 4
Word 057 | 1 N Doc 001 2
Word 110 |1 N Doc 002 5
Word 517 | 1 N Doc 001 15
Word 980 | 1 R Doc 002 11
Doc 002 3
Doc 001 51
Doc 001 41

Figure 3-12 Index array and inverted barrel after the first step of merge

£

9

In the second phase, we merge structures in figure 3-12 and section Doc004 in figure 3-
11, the merge is based on the wordID in the array in figure 3-12 and wordID in section

Doc004 in figure 3-11. we obtain following array and file as in figure 3-13.

Array File
Word 001 |3 » Doc 001 61
Word 002 |3 ~ Doc 002 31
Word 003 |2 \\. Doc 004 5
Word 005 |1 \ Doc 001 50
Word 007 |1 \ Doc 002 1
Word 008 |2 N Doc 004 2
Word 010 |1 Doc 002 4
Word 057 | 1 . Doc 004 1
Word 110 |2 . Doc 001 4
Word 517 | 1 . Doc 004 4
Word 980 | 1 Doc 001 2
Doc 002 5
Doc 001 15
Doc 002 11
Doc 002 3
Doc 004 10
Doc 001 51
Doc 001 41

Figure 3-13 Index array and inverted barrel after the second step of merge

50

[f there are more sections below the section Doc004, then the second phase needs reuse.

This two-way-two-phase merge program is the core part for the inverted index generator

project.

3.6 Main Function

The main function connects all the subroutines of the project. It calls subroutines directly
or indirectly. We assume that all the HTML documents in the repository are error free.
The final results are 64 files as inverted barrels and 64 in memory arrays as their indices.

We maintain these arrays as structured files.

In the main function, we first load the lexicon from disk. [n main memory, the lexicon is
an array. We open the repository file for reading. We need to initialize the temporary
array. Now, parsing begins. We obtain the title text, anchor text, meta content, and plain
text. We use the words to build temporary array and linked lists. Then according to the
wordid, we distribute the hits to 64 forward barrels. The last step is merge sort forward

barrels until the inverted index is set up.

We give the algorithm of the main function.

main()

{
load lexicon{19200];

open(“repository.dat™);
docid=0;

51

while(block'=EOF) // repository not finish

{
while(block!=“<HTML>"|| “<htmI>") // proceed to the beginning of the page

read a block;

docid++;

initialize temporary array;

read a block;

while(block!= “</HTML>"|| “</htmI>")

{extract terms; read a block;};

search words and add hits to the linked lists;
array temp and linked lists=>forward barrels;

read a block };

close(“repository.dat™);

gib(); } // forward barrels are change to inverted index

3.7 Test

During the implementation process of this project, we have tested the following items:
1. Extracted terms test
a. Whether the title is correct.
b. Whether the anchor is correct
c. Whether the Meta content is correct
d. Whether the plain text is correct
2. Filter result test
3. Verify the content in each forward barrel
4. Verify the contents both in each inverted barrel and its index

5. Project final test

52

a. Whether the indexed word is in the document

b. Whether the word in the document is indexed

c. Whether each document in the repository is indexed

d. Whether the indexed document is in the repository

e. Each forward barrel increases as the number of documents increases

f. Each inverted barrel and its index increase as the number of documents

increases

For example, when test 5 (a), we indexed a word that ID is 1215, which is in the first

document in the repository file. In the lexicon file, correspond to 1215 is the word

“allow”, when we open repository file, “allow” is there.

53

Chapter 4

Conclusion

4.1 Contributions for the Project

Following is our contributions for the CINDI project:

e The search engine’s internal interface research

e Extraction of terms from HTML documents

¢ Design, implementation, and maintenance of the lexicon
e Present lookup lexicon stemming method

e Forward and inverted barrel research

¢ Prototype implementation

4.2 Conclusion

CINDI is designed to be a scalable search engine. A large-scale web search engine is a

complex system and much remains to be done. By taking part in this project, we find that

54

inverted index supports single word and multi-words queries. If we plan to answer exact
phrase query, we need to store the whole text together with the inverted index. If we put
words’ synonyms together with the words themselves in the lexicon, then we can answer
the synonym query. For example, if query is “programmer”, the search engine could

answer “programmer”, “software developer”, and “software engineer”.

It is necessary to develop a PageRank subroutine to prioritize the search results. In this
way, search subsystem may use two kinds of index results: semantic header-based index
results and inverted index-based index results. We may prioritize by using the weights of

the different factors, and provide user with the integrated search results.
In implementing inverted index generator, we have experienced complexity program

structures. New and advanced technologies are needed for this project. So, we believe

that CINDI will be a resource for searchers and researchers.

55

References

10
11
12

13

14

Bipin C. Desai, Semantic Header aka Cover Page, Department of Computer
Science, Concordia University

http://www.cs.concordia.ca/~facuity/bcdesai/web-publ/semantic-header. html

Bipin C. Desai, The Semantic Header and Indexing and Searching on the Internet
Department of Computer Science, Concordia University
http://www.cs.concordia.ca/~faculty/bcdesai/web-publ/cindi-system-1.0. html
Sami Haddad, Automatic Semantic Header Generator, Department of Computer
Science, Concordia University. September 1998

Brin, S. and Page, L. The anatomy of a large-scale hypertextual search engine.

In Proceedings of the 7th International World Wide Web Conference (Brisbane,
Australia, April 14-18), 107-117. 1998

Google Search Engine, http:/www.google.com
First Annual Google Programming Contest, Google Inc. April 2002

http.//www.google.com/programming-contest/
Gang Cheng, Search Engine Subsystem, December 1996

http://www.npac.syr.edw/users/gcheng/homepage/thesis/node 103.html

Lycos Search Engine, http://www.netscape.com

Zobel J., Moffat,A. and Rao, K. R., Inverted Files Versus Signature Files for Text
Indexing, ACM Transactions and Database Systems, Vol. 23, 453-490, 1998.
Yahoo! http://www.yahoo.com/

Excite Search Engine, http://www.excite.com/

Marti Hearst and Ray Larson, Implementation Issues Information Seeking
Behavior, Fall 1998.
http://www.sims.berkeley.edu/courses/is202/f98/Lecture 19/ts1d005.htm

Nivio Ziviani, Edleno Silva de Moura, Gonzalo Navarro, Ricardo Baeza-Yates,

Compression: A Key for Next-Generation Text Retrieval Systems, IEEE
Computer, 33(11): 37-44, November 2000
Inverted Index Algorithm and Compression,

hgp://ir.iit.edu/~dag[/c5529/ﬁles/handouts/OZaComgression-6mr.PDF

56

15

16

17

18

19

20

21

22
23

24

25

26

Donald E. Knuth, The Art of Computer Programming, Volumn 1, Fundamental
Algorithms, Third Edition, Addison-Wesley, ISBN 0-201-89683-4. Volumn 3,
Sorting and Searching, Second Edition, Addison-Wesley, [SBN 0-201-89585-0.
Markus Kuhn, Table-based/ inverted index text search algorithms,
http://mail.nl.linux org/linux-utf8/2002-04/msg001 17.html

Ajith N_, Jyothir G. R., Abhishek S., An Inverted Index Implementation
Supporting Efficient Querying and Incremental Indexing, May 2002.
http://www.cs. wisc.edw/~jyothir/784/report.pdf

Scott Weber and Sam Vann, Lehigh Search Engine, Indexer Implementation
Document, October 2002.

http://www.lehigh.eduw/~sdw3/csc397/indexer/implementation_doc.htm|
Christof Monz and Maarten de Rijke, Inverted Index Construction, Spring 2002

http://remote.science.uva.nl/~christof/courses/ir/transparencies/clean-w-05. pdf

Nazli Goharian, Introduction to Information Retrival Systems, course notes,
February, 2002. http://www.csam.iit.edu/~abet/CourseOverviews/cs495.doc
Jeffrey D. Ullman, Data Mining Lecture Notes, Searching the Web, http:/www-
db.stanford. edu/~ullman/mining/mining. html

S. E. Robertson, Okapi at TI, http:/trec.nist.gov/pubs/trec2/papers/txt/02. txt
JeanTreblay and Grant Cheston, Data Structure and Software Development,

Prentice-Hall Inc. 2001

Uresh U., UNIX Internals: The New Frontiers, Prentice Hall, 1997. ISBN
0-13-101902-2

The American Heritage College Dictionary, Third Edition, Houghton Mifflin Co.
1993.

Cathleen Moore, Top Ten Technology Innovators: Larry Page and Sergey Brin

http://archive.infoworld.comv/articles/fe/xml/02/03/04/020304fegoogle. xmi

57

Appendix A Repository Data Sample

URL: http://www.yale.edu/yser/

HTTP/1.1 200 OK

X-Google-Crawl-Date: Thu, 13 Sep 2001 21:24:12 GMT
Connection: close

Content-length: 7655

Last-modified: Thu, 30 Aug 2001 22:56:11 GMT
Content-type: text/html

Date: Thu, 13 Sep 2001 21:24:12 GMT

Server: Netscape-Enterprise/3.6 SP3

<htmI>

<head>

<title>YSER Home Page</title>

<meta http-equiv="Content-Type" content="text’/html; charset=iso-8859-
">

<meta name="keywords" content="Yale, undergraduate research
opportunities, science and engineering research, undergraduate
research programs, undergraduate research fellowships ">

</head>

<body bgcolor="#FFFFFF" text="#000000">
<table width="100%" border="0">
<tr>
<td width="24"> </td>
<td>
<div align="center">
<table width="667" border="0" cellspacing="0" cellpadding="0">
<tr>
<td width="148"><img src="yser_logo.gif" width="148"
height="150"></td>
<td width="10"> </td>
<td width="509"><img src="yser _title.gif" width="509"
height="44"></td>
</tr>
</table>

</div>
<table width="600" border="0" height="300" align="center">
<tr>
<td></td>

58

<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</table>
<p> </p>
<p>Original research
is an integral part of undergraduate science education at Yale.
Academic year and summer research opportunities bring classroom
concepts to life and prepare Yale students for postgraduate
training and careers in the sciences and engineering. With access
to more than 800 faculty laboratories in 43 degree-granting
programs in the Faculty of Arts and Sciences, Yale School of
Medicine and Yale School of Forestry and Environmental Studies,
Yale undergraduates perform research ranging from the observation
of black holes to the development of the nervous system.</p>
<p>The YSER (Yale
Science and Engineering Research) Program provides access to
research opportunities via the YSER web site,
YSER workshops,
YSER News and links
and YSER-sponsored programs for the support of undergraduate
research.</p>
<p> </p>
<p><font face="Verdana, Arial, Helvetica, sans-serif"
size="+1">Research Opportunities at Yale</p>
<p>Yale provides a
variety of programs tailored to the individual needs of students,
ranging from interdepartmental programs such as STARS and
Perspectives on Science to departmentally-based programs and other
opportunities to perform research in the laboratories of faculty
throughout Yale University. </p>
<p>
Perspectives
on Science is a yearlong course and summer program
providing first year students with an introduction to contemporary
scientific research and research opportunities.</p>
<p>
STARS
(Science, Technology and Research Scholars) provides selected first
year students through seniors with an integrated experience in
research, course-based study and development of mentorship

59

skills.</p>
<p>
Departmentally-based research programs
provide a wide variety of research opportunities to students
throughout their time at Yale. While many students perform
research in conjunction with departmental major requirements, such
research may alternatively be carried out in laboratories of
faculty in other appropriate departments throughout Yale
University. </p>
<p> </p>
<p>Support for Undergraduate Research at
Yale</p>
<p>
[nterdepartmental programs such as
Perspectives on Science
and STARS provide funding for research
during the summer and/or academic year.</p>
<p>More than fifteen
individual fellowship programs are
available for the support of undergraduate research.</p>
<p> Many student
research projects are supported by individual faculty research
grants.</p>
<p> </p>
<p>Frequently Asked Questions</p>
<p>When can I start research?</p>
<p>Should I do research in the academic year or
the summer?</p>
<p> How will my research be funded? Can I receive
stipend support?</p>
<p>How do I find a research lab?</p>
<p>How will my research project be
defined?</p>
<p> </p>
<div align="left"></div>
<table width="616" border="0" cellspacing="0" cellpadding="0">
<tr>
<td rowspan="2" width="84" valign="bottom"><a

60

href="index.html"><img src="small_logo.gif" width="74"
height="75" border="0" alt="YSER"></td>
<td height="25" valign="bottom">
<div align="right">
<p align="center"> </p>
</div>
</td>
</tr>
<tr>
<td height="50" valign="top" align="right"><img src="news.gif" width="152" height="26" border="0" alt="News
and Links"><img src="research.gif" width="138"
height="26" border="0" alt="Research Programs"><img src="fellowship.gif" width="151" height="26"
border="0" alt="Fellowship Programs"><img src="faq.gif"
width="44" height="26" border="0" alt="FAQs"></td>
</tr>
</table>
<table width="616" border="0" cellspacing="0" cellpadding="0">
<tr>
<td width="84"> </td>
<td align="right">
<div align="center">yser@yale.edu
<i> • Last updated</i>: 30 August, 2001
• Copyright
Yale University 200 1</div>
<itd>
</tr>
</table>
<center>
<center>
</center>
</center>
<p>
</td>
</tr>
<tr>
<td width="24"> </td>
<td> </td>
</tr>
</table>
</body>
</html>

61

URL: http://www.crk.umn.edu/newsevents/notices00-01/grad2001/

HTTP/1.0 200 OK

Content-length: 2506

Last-modified: Mon, 21 May 2001 21:07:48 GMT
Content-type: text/html

Accept-ranges: bytes

Server: WebSitePro/2.3.10

Date: Mon, 06 Aug 2001 08:19:32 GMT

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">

<meta name="Progld" content="FrontPage.Editor. Document">
<title>Commencement 2001 </title>

</head>

<body>

<p align="center"><img
src="../../../wdmking2 gif"

alt="University of Minnesota, Crookston" width="407" height="62"
border="0"></p>
<p align="center"> Commencement 2001

Saturday, May 5, 2001

<img border="1" src="photos-scan/carrie-mid.jpg" alt="Carrie Tollefson - UMC
Graduate" width="200" height="202">

<span style="mso-bidi-font-size:10.0pt;mso-bidi-
font-family:
Arial">One of the largest groups ever—148 graduates—took part in
commencement ceremonies, held May 5.<span style="mso-spacerun:
yes">

The event was also notable because of the first ROTC
commissioning ceremony in
UMC history.

Colonel Clark P. Wigley, Commander of Air Force ROTC Detachment 6 10,

swore in cadet Lisa Marie Stanley as a Second Lieutenant in the U.S. Air Force.

Graduating Crookston Student Association President Shane Roers was the student
speaker.

Regent Neel was guest speaker.

Follow the links below for photos from

62

the event.</p>

<p align="center">Photos [:
Ceremony | Photos II:
Individuals

View

List of Candidates

</p>

<p align="center"> </p>

<p align="center">UMC
Home</p>

<hr>

<p align="center">© 2001 by the Regents of the
University of Minnesota

The University of Minnesota is an equal opportunity educator and employer.

Last Updated: <!--webbot bot="Timestamp" s-type="EDITED"

s-format="%A, %B %d, %Y" startspan -->Monday, May 21, 2001<!--webbot
bot="Timestamp" i-CheckSum="24896" endspan -->

Created by UMC's Web Team. Comment to Webmaster.

</p>

</body>

</html>

63

Appendix B Lexicon Data Sample

1

1

2

9

abacus
abacuses
abandon
abandoned
abandoning
abandonment
abase
abasement
abash
abashed
abate
abated
abatement
abattoir
abbess
abbey

abbeys

10 abbot

11 abbreviate

11 abbreviated

11 abbreviation

12 abdicate

12 abdicated

64

12

13

14

15

16

17

18

18

19

19

19

19

20

20

20

21

21

22

22

22

23

23

23

abdication
abdomen
abdominal
abduct
abduction
abeam
aberrant
aberration
abhor
abhorrence
abhorrent
abhorred
abide
abided
abiding
abilities
ability
abject
abjection
abjectly
abjuration
abjure

abjured

65

24

25

26

27

28

27

30

30

31

32

33

33

33

34

34

35

36

37

37

ablative
ablaut
ablaze

able
ablutions
ably
abnegation
abnormal
abnormalities
abnormality
abnormally
aboard
abode
abolish
abolished
abolitionism
abolitionist
abolitionists
abominable
abominably
abominate

abominations

66

Appendix C Source Code and Data File List

Makefile: project makefile

ligc.cpp: project main function

Agpl.cpp: extract title from a HTML document
Agta_cpp: extract anchor text from a HTML document
Agtm.cpp: extract Meta content from a HTML document
Agtp.cpp: extract each HTML document from repository
Agtt.cpp: extract title from a HTML document
Bs.cpp: binary search

Cal.cpp: computer aided lexicon data generation
Filter.cpp: refine the extracted terms

Initarr.cpp: initialize the temparary array
Insertsort.cpp: insertion sort

Linkedlist.cpp: linked list operations

Loadlexi.cpp: load lexicon

Rw.cpp: read a character string from file

Trh.cpp: trimming of punctuation

Twm.cpp: two way merge to generate inverted index
Data files

Repository.dat: repository data file

Lexicon.dat: store lexicon data

Fbl.dat, Fb2.dat, ... , Fb64.dat: forward barrels

Ibl.dat, Ib2.dat, ... , [b64.dat: inverted barrels

67

Appendix D Forward Barrel Setup Method

We use an example to explain how to create a forward barrel.
The forward barrel data will be

DocumentID WordID Hits Hitdata
9 3 2 1 111 0000 0000 0001, 0 100 0000 0000 0110
10 2 001100000000 1111,0010 00000001 0000
nullword(0000 0000 0000 0000 0000 0000 0000 0000)
15 11 4 1 111 0000 0000 1000, 0 000 0000 00000011
0 010 0000 0000 0010, 0 000 00000001 1111
nullword(0000 0000 0000 0000 0000 0000 0000 0000)
0

we use following code to write the data to the forward barrel fb.dat(binary file)

#include <stdio.h>
#include <iostream.h>

void main(void)
{
struct // store wordid+hits
{
unsigned wordid:24;
unsigned hits:8§;
jwh;

struct // store one hit
{
unsigned capl:1; // first word first letter’s capitalization, 0 lowercase
//1 uppercase
unsigned imp1:3; // word size or fancy type
unsigned positionl:12; // word position in the text
unsigned cap2:1; // next word
unsigned imp2:3;
unsigned position2:12;
joh;

struct // store docid
unsigned docid:24;
unsigned :8;
}doc;

fstream fblfpl("fbl.dat", ios::out/ios::injios::binary);

68

doc.docid=9;
fb1fpl.write((char *)&doc.4); // docid 9 =>fb.dat

wh.wordid=3; // wordid 3+ hits 2=>fb.dat
wh.hits=2;
fo1fpl.write((char *)&wh.4);

oh.capl=l; // two hits =>fb.dat
oh.imp1=7,

oh.positionl=1;

oh.cap2=0;

oh.imp2=4;

oh.position2=6;

fb1fpl.write((char *)&oh,4);

wh.wordid=10; // wordid 10+ hits 2=>fb.dat
wh.hits=2;
fb1fpl.write((char *)&wh.4);

oh.cap1=0;

oh.imp1=3;
oh.positionl=15;
oh.cap2=0;

oh.imp2=2;
oh.position2=16;
fb1fpl.write((char *)&oh.4);

wh.wordid=0; // nullword=>fb.dat
wh.hits=0;
fblfpl.write((char *)&wh,4);

doc.docid=15;
fblfpl.write((char *)&doc,4); // docid 15 =>fb.dat

wh.wordid=11; // wordid 11+ hits 4=>fb.dat
wh.hits=4;
fb1fpl.write((char *)&wh.4);

oh.capl=l; // two hits=>fb.dat
oh.impl=7,
oh.position1=8§;

69

oh.cap2=0;

oh.imp2=0;

oh.position2=3;
fb1fpl.write((char *)&oh,4),

oh.capl=0;

oh.impl=2;

oh.position1=2;

oh.cap2=0;

oh.imp2=0;
oh.position2=31;
fb1fpl.write((char *)&oh.4);

wh.wordid=0; /[nullword=>fb.dat
wh.hits=0;
fblfpl.write((char *)&wh,4),

doc.docid=0; /{ nulldocid=>fb.dat
fb1fpl.write((char *)&doc,4);

fbifpi.close();

}

70

Appendix E Inverted Barrel Setup Method

An inverted barrel is associated with its index(an arrey). The inverted index(include an

array and an inverted barrel) is as follows:

Array Inverted barrel
WordID Docs Offset DocID Hits Hitdata
3 2 —» 9 2 1 111 0000 0000 0001

0 100 0000 00000110

16 4 1 111 0000 0000 1000

0 000 0000 0000 0011

0 010 0000 0000 0010

0 000 0000 0001 111t

10 1 » 8 1 001100000000 t111

We use following code to create the inverted index(include array and inverted barrel)

#include <stdio.h>
#include <iostream.h>

void main(void)

{

struct
{int wordid;
int docs;
long offset;
} ibindex([2];

struct // store wordid+hits
{
unsigned docid:24;
unsigned hits:8;
}dh;
struct // store one hit
{

71

unsigned capl:1; // first word first letter’s capitalization, 0 lowercase

//1 uppercase
unsigned imp1:3; // word size or fancy type
unsigned positionl:12; // word position in the text
unsigned cap2:1; // next word
unsigned imp2:3;
unsigned position2:12;
joh;

fstream ib1fp1("ibl.dat", ios::outfios::injios::binary); // inverted barrel

ibindex[1].wordid=3; // write to the array
ibindex[1].docs=2;
ibindex[1].offset=1bfp!.tellp();

dh.docid=9; // docid 9 and hits 2 =>ib.dat
dh.hits=2;
iblfpl.write((char *)&wh,4);

oh.capl=l; // two hits =>ib.dat
oh.imp1=7;

oh.positionl=1;

oh.cap2=0;

oh.imp2=4;

oh.position2=6;

iblfpl.write((char *)&oh,4);

dh.docid=16; // docid 16 and hits 4 =>ib.dat
dh.hits=4;
iblfpl.write((char *)&wh.4);

oh.capl=l; // 4 hits=>ib.dat
oh.imp1=7,

oh.position1=8;

oh.cap2=0;

oh.imp2=0;

oh.position2=3;

iblfp1.write((char *)&oh,4);

oh.capl=0;
oh.impl=2;
oh.position1=2;
oh.cap2=0;

72

oh.imp2=0;

oh.position2=31;

ib1fpl.write((char *)&oh,4);
ibindex[2].wordid=10; // write to the array
ibindex[2].docs=1;
ibindex[2].offset=ibfp1.tellp();

dh.docid=8; // docid 8 and hits 1 =>1b.dat
dh.hits=1;

ib1fpl.write((char *)&wh.4);

oh.cap1=0;

oh.imp1=3;

oh.position1=15;
iblfpl.write((char *)&oh,4);

iblfpl.close();
}

73

