Breadcrumb

 
 

Parasubicular efferents to layer II of the entorhinal cortex : modulation of responses to piriform cortex inputs in vivo

Title:

Parasubicular efferents to layer II of the entorhinal cortex : modulation of responses to piriform cortex inputs in vivo

Caruana, Douglas A (2003) Parasubicular efferents to layer II of the entorhinal cortex : modulation of responses to piriform cortex inputs in vivo. Masters thesis, Concordia University.

[img]
Preview
PDF
1685Kb

Abstract

Although a major output of the hippocampal formation is from the subiculum to the deep layers of the entorhinal cortex, the parasubiculum projects to the superficial layers of the entorhinal cortex, and may therefore modulate how the entorhinal cortex responds to sensory inputs from other cortical regions. Recordings at multiple depths in the entorhinal cortex were first used to characterize field potentials evoked by stimulation of the parasubiculum in urethane-anesthetized rats. Current source density analysis showed that a prominent surface-negative field potential component is generated by synaptic activation in layer II. The surface-negative field potential was also observed in rats with chronically implanted electrodes. The response was maintained during short stimulation trains of up to 125 Hz, suggesting that it is generated by activation of monosynaptic inputs to the entorhinal cortex. The piriform cortex also projects to layer II of the entorhinal cortex, and interactions between parasubicular and piriform cortex inputs were investigated using double-site stimulation tests. Simultaneous activation of parasubicular and piriform cortex inputs with high-intensity pulses resulted in smaller synaptic potentials than were expected on the basis of summing the individual responses, consistent with the termination of both pathways onto a common population of neurons. Paired-pulse tests were then used to assess the effect of parasubicular stimulation on responses to piriform cortex stimulation. Responses of the entorhinal cortex to piriform cortex inputs were inhibited when the parasubiculum was stimulated 5 ms earlier, and were enhanced when the parasubiculum was stimulated 20 to 150 ms earlier. These results indicate that excitatory inputs to the entorhinal cortex from the parasubiculum may enhance the propagation of neuronal activation patterns into the hippocampal circuit by increasing the responsiveness of the entorhinal cortex to appropriately timed inputs.

Divisions:Concordia University > Faculty of Arts and Science > Psychology
Item Type:Thesis (Masters)
Authors:Caruana, Douglas A
Pagination:xi, 50 leaves : ill. ; 29 cm.
Institution:Concordia University
Degree Name:Theses (M.A.)
Program:Psychology
Date:2003
Thesis Supervisor(s):Chapman, Andrew
ID Code:2250
Deposited By:Concordia University Libraries
Deposited On:27 Aug 2009 13:26
Last Modified:08 Dec 2010 10:25
Related URLs:
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer