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Abstract

Dimension of Attractors
Shashi Kant Mishra

This thesis studies different types of dimensions of attractors in low dimensional
dissipative dynamical systems. Some of them can be calculated by looking directly at the
attractor, other by looking at the system, taking or not into account a probability
distribution. We give some simple examples to make the ideas clear, but the generalized
baker's transformation is taken as a model for such studies. This transformation is used to
illustrate some conjectures about typical chaotic attractor. This thesis may be considered as

a partial report of the seminal article of Farmer et al [12].
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Chapter 1

Preliminaries

In addition to an introduction about the notion of dimension, this chapter contains
definitions and results ( sections 1.3 and 1.4 ) which are neccessary to the next chapters.
In section 1.2, we present the generalized baker's transformation whose attractor is
certainly the most studied one. In section 1.3, we give some conjectures about typical

chaotic attractors, conjectures that have been taken from [12].

1.1 Introduction

There is no unique notion of dimension. In the familiar territory of Euclidean
space, we may all be slaves to a different aspect of dimension and yet arrive at the same
conclusions. But, if we venture into the realm of the bizarre, distinct notions of dimension
diverge. In the domain of chaos, deterministic structure amplifies the uncertainty inherent
in measurement, until only probabilistic information remains. To comprehend the strange
objects that inhabit this world, we must expand our concept of dimension to encompass
chance as well as certainty. Dimension of an attractor is the first kind of knowledge to
characterize it. Roughly speaking, the dimension of a set indicates the amount of

information necessary to specify a given location with a desired precision.
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In this thesis, we present a certain number of definitions of dimension that, we
think, are among the most relevant ones: in chapter 2: similarity dimension and Lyapunov
dimension, in chapter 3: capacity and Hausdorff dimension, in chapter 4: information
dimension and pointwise dimension. We are not maintaining the historical order of these
dimensions. We are presenting them in the order of convenience, starting with those that
are easier to compute or less involved. In particular, it has been possible to introduce
similarity dimension in a general theoritical set up. Capacity and Hausdorff dimension are
called metric dimensions, since the phase space they live in must be equiped with a metric.
Information and pointwise dimensions are called probabilistic dimensions, since in their

definitions we must take into account a natural probability measure defined on an attractor.

The different notions of dimension of attractors are defined for general mappings,
but most of our examples of attractors will come from piecewise affine maps, essentially
because they are easier to handle. We compute explicitly all the above dimensions for the

attractor of the generalized baker's transformation.

As dimension theory for attractors is an active field of interest, something new is

coming every year. This report can be taken as an introduction along this direction.

1.2 Generalized baker's transformation

In this section we define the generalized baker's transformation, which is, as its
name says, a generalization of the following map called the baker's transformation:

B(x, y) = { &% ¥2) 0<x<1/2,0Sys]
VE1@x-1L,y2+12) 125x51,0<y<1 [

We shall study the attractor of the generalized baker's transformation in detail throughout



the thesis (concerning the dimension properties). This transformation is general enough to
be typical ( according to Farmer er al [12] ). It is also simple enough to calculate all the

dimensions we are interrested in. The generalized baker's transformation is:

_ Aaxq, if yy<a
xn+1— {x:x:_}.l/z,nif ynza} (lnla)

{(I/a)yn, if yp<o }
Y'n+1 =

(1/B)(yn-), if yn 2 @ (1.1b)

where p=1-0a, 0 < x, y, < 1and o, A,, Ay < 1/2. We have illustrated in figure 1 the

first two iterates of the transformation. v
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1.3 Conjectures

The goal of this section is to present the conjectures ( about typical attractors ) that

we can find in [12]. We start with some definitions to introduce the notion of attractor.

Definition 1.3,1a and b: Let F: X—> X be a mapping. For any x; € X, the set of
points w(x;) = {x,, F(x,), F2(x,), ...} is called the trajectory of F starting at x, or the

forward orbit of F starting at x;. x, is called an initial condition.

Definition 1.3.2: For any trajectory ®(x;) the set

L(axx,)) = néﬁ closure(F" (o(x,))
is called the limit set of (x,).

Definition 1.3.3: A set A is invariant under F ( or just invariant ), if F’l(A) =A.

Definition 1.3.4: An attractor of F is an invariant compact set A, with the property
that there is a neighborhood of A such that for almost every initial condition x;,

L(w(x,)) = A.

Definition 1.3.5: The basin of attraction of an attractor A is the closure of the set of

initial conditions x; such that L(w(x;)) = A.

In the following conjectures, the first two are true for the generalized baker's
transformation, though the last one is satisfied for special values of A,, Ay, and o A, = A,
and o = B = 1/2. The first conjecture is about metric dimensions and the second, about
probabilistic and Lyapunov dimensions (the definitions of dimensions will be given later ).

Conjecture 1.3.1: For typical attractor, the capacity and the Hausdorff dimension are




equal.

Conjecture 1.3.2: For typical attractor, Lyapunov dimension, information dimension

and the pointwise dimension are equal.

Conjecture 1.3.3: If every (not just almost every) initial condition generates the same
set of Lyapunov numbers and if the first Lyapunov number is greater than 1, then for a
typical attractor, metric dimensions, Lyapunov dimension and probabilistic dimensions are

equal.

1.4 Ergodicity of the map (1.1b)

We shall use in the next chapters a fundamental property of the map defined by
equation (1.1b): ergodicity. The main goal of this section is to prove it. A great deal of the
materials of this section comes from [25]. It should be mentioned that as for as we know
our proof of ergodicity of (1.1b) is new, though inspired from an example found in [25].
In the following, we shall suppose that the reader knows what a measure space and a

probability space are.

Definitions 1.4.1a and b: Let (X, B, 1) and (Y, AU, v) be measure spaces.

9) Amap T : X—> Y is measurable if T (A) e B forall A e 2.

b) A measurable map T : X—> Y is nonsingular if u(T"l(A)) =0 forall Ae AU such
that v(A) = 0.

Definition 1.4.2a, b and c: Let (X, B, p) and (Y, A, v) be measure spaces and
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T : X —> Y be a measurable map. Then we say that T is measure—preserving, or that i
is invariant under T, if u(T'l(A)) =vV(A) for any Ae ¥d. IfT:X—>X is a

measure-preserving transformation, then T is called an automorphism.
Remark 1.4.1: If T is measure-preserving, then T is nonsingular.

Definition 1.4.3: Let (X, B, ) be a probability space and T: X —>X be a
nonsingular transformation. T is ergodic if each invariant set is trivial in the sense of

having measure either O or 1.

The next theorem may be considered as a corner—stone of Ergodic theory. A

complete proof of this theorem can be found in [4].

Theorem 1.4.1 ( Birkhoff Ergodic theorem ): Let (X, 8, p) be a probability
space and T : X —> X be a measure~preserving transformation. If f: X—> R is
integrable, then there exists an integrable function f: X—> R such that;
n-1 K
a) fx) = nliglw‘./nz f(T7x) a.e. (almost everywhere ),
k=0
b) F(T(x)) = f(x) a.e.( £ is invariant ae.),
o [fdu=]fdu,
X X

d) If T is ergodic, then f =J fdu ae..
X

Definition 1.4.4a and b: The function { associated to f in part a) of the above
theorem is called the orbital average of f. When f is the characteristic function f, of

A € B, the number § A(x) is called the average time spent by x in A ( denoted by T,(x) ).
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Remark 1.4.2: The average time spent by a point in a set is a particularly meaningful

application of the concept of orbital average. Observe that:

T,(0) = lim (1/n)(card{0 <j < n-1: T(x) € A)) and )_[tAdu = H(A).

Lemma 1.4.2: Let (X, B, 1) be a probability space and T be an automorphism of X. T
is ergodic if and only if T, = li(A) almost everywhere, forevery Ae B.

Proof: If T is ergodic then:

TA(X) = f AX) = ijdu = W(A) almost everywhere.
X

Conversly, let A € B be T-invariant. Assume U(A) > 0. T,(x) =1 forany x € A, since

A is T-invariant. It follows that p(A)=1.

In order to show that the map (1.1b) is ergodic, we shall introduce three other
important notions: mixing, Frobenius-Perron anf Koopman operators.
Definition 1.4.5: Let (X, B, pu) be a probability space and T:X —>X be a
measure—preserving transformation. T is called mixing if nﬁg,”u( ANT(B)) = p(A)U(B)

for all A, B belonging to 8.

The following lemma shows that the mixing function form a subset of the ergodic

function. We shall prove later that the map (1.1b) is in fact mixing.
Lemma 1.4.3: If T is mixing, then T is ergodic.

Proof: If A is T-invatiant (T"'(A) = A for every n ) and if T is mixing:



HAM(A®) = in W(T(A)NAT) = (ANA”) =0,
which implies that u(A) =0 or p(A) = 1.

Notation 1.4.1: Let (X, B, u) be a measure space. L! will denote ( as usual ) the
space of functions f: X-—> R such that ,f x fldit < ee and L™, the space of all bounded
measurable functions, except possibly for a set of measure zero. The norm of f in L!is

1£1= . 1fldp and the norm of fin L™ is I £ = inf(M: (¢ : £(t) > M) = 0}.

Definition 1.4.6: Assume that a nonsingular transformation T: X—> X on a measure
space (X, B, W) is given. The Frobenius—Perron operator P: L' —> L! associated with T
is defined by the unique Pf € L satisfying:

[ Pecx)d = [foodp , forany A € B,
A W)

Lemma 1.4.4: Let P: L;—> L, be the Frobenius-Perron operator associated with T. If

A s an interval, say [a, x], then:

Pf(x) = d/dx jf(t)dt.
Tl(A)

Proof: Differentiating both sides of the equation given in definition 1.4.6, we get the

result.

Definition 1.4.7: Let (X, B, 1) be a measure space and P be an operator on Ll Any



fin L! is called a fixed point of P, if Pf =f.

Theorem 1.4.5: Let (X, B, ) be a measure space and T : X —> X is a nonsingular
transformation, and P the Frobenius—Perron operator associated with T. Consider a

nonnegative f € L!. Then a measure M, given by:

) = [foodu
A

is invariant under T if and only if f is a fixed point of P. In particular,  is invariant under

T if and only if f = 1 is a fixed point of P.

Proof: Let ju be invariant, i.e.u(A) = u(T"'(A)) for A € B. This is equivalent to:

Jfoodu = [fd forA e B.
A ™4
Then by definition of the Frobenius—Perron operator, we get:

[ Pit)dp = [fe0dy = ffexodu,
A 'r'l (A) A

for any A € B. This implies that Pf = f. The converse follows also automatically.

Proposition 1.4.6: The transformation y = T(x) of equation (1.1b) is Lebesgue

measure—preserving.

Proof: Let [0, x] is a subset of [0, 1]. By definition P1 = d/dy Idt .
T-1[0,y]
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Since T'ly =qy, for0<x <aand T'ly = (1-a)y + o fora £ x £ 1, then:
T710, y] = [0, aty] L [0, (1-c0)y +au].

(1-a)y +o

[0
P1 = d/dy[ Jydt + Jdt 1 =d/dy[y] = 1. Then by theorem 1.4.5, we get the result.
0 a

Definition 1.4.8: Let (X, B, ) be a measure space, T: X—> X be a nonsingular
transformation, and f € L™. The operator U: L™—> L™ defined by:
Uf(x) = f(T(x)),

is called the Koopman operator associated with T.

Remark 1.4.3: Due to the nonsigularity of T, U is well defined since f,(x) = f,(x) a.e.

implies that f;(T(x)) = f5(T(x)) a.e. .

Theorem 1.4.7: Let (X, B, ) be a measure space, T: X—> X be a nonsingular
transformation, and fe L™. The Koopman operator U associated with T satisfies the
following property:

Foreveryfe L ge L™, IPf(x) g(x)du = J'f(x)Ug(x)dp.
X X

Proof: Let us first show the property for g = g, ( the characteristic function of A ). The

left hand side of the equation becomes:
[Poog, o0 = [Piddu = [fx)du,
X A W)
while the right hand side becomes:

JfxUg,x)du = [fxgyTonan = [foodp.
X X

T1(A)
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Because the equation is true for any characteristic function, it is true for any simple

function. Thus it is true for any function gin L™,

Now we are in position to prove the ergodicity of the map y = T(x) defined by
(1.1.b). Here is the procedure that we shall use to attain our goal. Let P be the

Frobenius-Perron operator associated to this map. We prove that:

1
1° {P"f} is strongly convergent to Jf (dt for f € L([0, 1]).
0

2°If a sequence of functions {p,), P € Ll is strongly convergent to p € L!, then {p,}

is weakly convergent to p.

3°If {P"f} is weakly convergent to Jf dp for f e L', then T is mixing.
X

Therefore according to lemma 1.4.3, T is ergodic.

Definition 1.4.8: A sequence of functions {p,}, p, € L' is strongly convergent to

pe L' if lim Iip, —pli=0.

Definition 1.4.9: A sequence of functions (p,}, p, € L}, is weakly convergent to

pPE L' if:

,;&rg,){p«x) gdn = )j(p(x)g(x)du forallge L™

Proof of 3% Let f=f, and g=gg be the characteristic functions of A, Be B

respectively. We have:

lim W((A)NT™(B)) = lim_[f,(x)gg (T" x))dp ,
X
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= lim_|f,(x)U"gg(x)dp, ( by definition of U)
X
= lim_[P"f,(x)gg(x)du , ( by theorem 1.4.7 )
X
= [(Jtaedmgg(x)dn, (by hypothesis )
XX

= [fa00du [gp(x)d = R(AI(B).
X X

Proof of 2°: From Cauchy-Hélder inequality, we have:

I J P-p)X)gx)dp I <llp, ~p IIl gl ,ge L™ and thus, if Il p, - p Il converges to zero,
X

O must j(pn— p)(x)g(x)di. Hence strong convergence implies weak convergence.
X

Proof of 1°: Since the set of continuous functions on [0, 1] is dense in Ll([O, 1]) (see
[28] theorem 4.3.13 ), it suffices to prove the statement for any continuous function f on
[0, 1]. Let B =1-c.. By the argument of proposition 1.4.6, we have:

o By +a

Pf(y) = d/dy[ ﬁf(t) de+  [f() dt] = of(ay) + Be(By+a),
0 a
P’f(y) = o*f(o’y) + apf(apy+od) + off(aPy+o) + B’ (B%y+o+ap).
Let us introduce the following non-commutative products. Letting:
(ofp + qu)‘2 = afp(afp + Bfq) + Pfg(afp + Pfg) = (xzfp2 + affpq + affgp + Bzfqz.
() = p(pug)ug(pug) = p’Upqugpud’
we define by recurrence:
(ofp + Bfg) "(y) = (ofp + Bfa)(afp + Bf) ™y,
(pua)™ = (pug)(pug) .
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Let p(y) = ay and q(y) = By+a and (puq)(y) = p(y)uq(y). One can see that
Pf(y) = (afp + Bfg)(y) and (pug)([0, 11) = p([0, 1])q([0, 11) = [0, aJU[ar, 1] = [0, 1].
One proves by induction that P"f(y} = (afp + Bfq) "(y) and (puiq) ™([0, 1) = [0, 1]. The
latter equality is trivial. To prove the former one, it suffices to remark that by induction
there are 2" terms of the type a’Bfp*1q°L...p%g%y) (ay, by 20, a; +... +a; =T,
by +...+bj=sandr+s=n-1)in (afp + Bfg) " Xy) and that:

Pa'Bp"Iq"...p"iqliy) = o™ Bfp"1*Iq.. pUig"i(y) + o B fqp®iq"...p g"i(y).

Moreover (pUq)‘"([O, 1]) gives a partition of the interval [0, 1]. Indeed, if we suppose

) -

by induction that (puq l)([0, 1]) is a partition of [0, 1] having two consecutive

*(n-

intervals with o as an endpoint, then p(puq) l)([0, 1]) sends the partition
(pu) ™ 1([0, 11) onto [0, «] and qtpug) 1[0, 1) sends the same partition onto
[e, 1]. In particular the k™ term in (puq) ([0, 11) is the k'™ interval in the partition

( from left to right ).

We want to show that rlli_rgm(onfp + qu)‘"(y) is, for any y € [0, 1], the Riemann
integral of f(x) over [0, 1]. Ifa; +... +a;=r1, b +... + bj =§, the coefficient of y in
p1q®L...p"q%i(y) is o'B%. It implies that the length of the interval p*1g®!...p%gPi([0, 1])
of the partition (puq) ([0, 1]) is o'B* (with r+s=n). Since p"lg°!...p%g%(y) €
p*1gPL...p%q"%([0, 1]) (for any y e [0,1]), a'Bfp*!q"L...p%qP%(y) is the area of a
rectangle with base length equal to oB® and height equal to fp®1g™...p%g"%(y), that is the
height of f at a point on the base of the rectangle. Then for large n, (afp + qu)'“(y) isan

approximation of the Riemann integral. Therefore:

1
lim P'f(y) = [f (.
0



Chapter 2

Similarity and Lyapunov dimensions

This chapter deals with the notions of Similarity dimension and Lyapunov
dimension. These dimensions have the advantage of being easily calculable for affine
systems. Similarity dimension is defined only for special linear systems: the similitudes.
The organization of this chapter is following: in the first section we present the notions of
similitude and similarity dimension and compute the similarity dimension of the
generalized baker's transformation. In the second section, we present the notion of
Lyapunov numbers, Lyapunov dimension, and the computation of 1° the Lyapunov
numbers of the generalized baker's transformation and 2° the Lyapunov dimension of the

attractor of this transformation.
2.1 Similarity dimension
We shall present the notion of (hyperbolic) iterated function systems. M. F.

Barmnsley gives a good introduction about these systems in [2, 3]. We shall use this notion

to compute the similarity dimension of the generalized baker's transformation.
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In order to define an iterated function system, a series of definitions and lemmas is

needed.

Definition 2.1.1: Let (X, d) be a metric space. A map f: X—>X is called a
contraction if d(f(x), f(y)) <rd(x, y), for all x and y in X where 0 <r < 1 is called the

contractivity factor of £,

Definitions 2.1.2 a), b) and ¢): Let (X, d) be a complete metric space. Let %6(X)
denote the space whose points are the compact subsets of X other than empty set.
a) Letx e X and B € %(X).
d(x, B) = min{d(x, y): y € B}

is called the distance from the point x to the set B.
b) Let A, B e 3%(X).

d(A, B) =max{d(x,B): x € A}
is called the distance from the set A to the set B.
¢) The Hausdorff distance between the points A and B in $6(X) is defined by:

h(A, B) = max(d(A, B), d(B, A)).

Remark 2.1.1: The Hausdorff distance h depends on the metric d. Sometimes we shall

use the notation h(d).

Example 2.1.1: See the following figure 2.
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je— d(A, B)—{
oF 1 P B =3
b A 41 2- 16
e &(B, A} ——]
Figure 2

Proposition 2.1.1: h: 96 (X)—>R* is a metric.

Proof: Let A, B, Ce % (X). In order to show that h is a metric on % (X), we need to
satisfie the metric axioms:
Al) h(A, B) 2 0 by definition.
A2) h(A, A) =max(d(A, A),d(A, A)) = d(A, A) = max{d(a, A): ac A} = 0.
A3) h(A, B) = max(d(A, B), d(B, A)) = max(d(B, A), d(A, B)) = h(B, A).
Ad4) In order to show that h(A, B) < h(A, C) + h(C, B), we shall show that d(A, B) <
d(A, C) + d(C, B). Consequently we shall obtain:
h(A, B) = max(d(A, B), d(B, A)) < max((d(A, C) + d(C, B)), (d(B, C) + d(C, A)))
< max(d(A, C), d(C, A)) + max(d(C, B), (d(B, C)) = h(A, C) + h(C, B).
Now for any a € A, we have:
d(x, B) =min{d(x, y): y € B} <min{d(x, z) +d(z,y):ye B) forallze C, so
<min{d(x, z) : z € C} + max{min({d(z, y): ye B)ze C} = d(x, C) + d(C, B).
Therefore, d(A, B) <d(A, C) + d(C, B).

Lemma 2.1.2: Letf: X —> X be a contraction map on the metric space (X, d). Then f

is continuous.
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Proof: Let € > 0 be given. Then we must find a 8 > 0 such that:
if d(x, y) < §, then d(f(x), f(y)) <€
Since f is a contraction map, so we have d(f(x), f(y)) Srd(x, y), r is the contractivity

factor of the map f. Then d(f(x), f(y)) <r &/r =€, (8 = &/).

Lemma 2.1.3: Let f: X —> X be a contraction map on (X, d) with contractivity factor
r. Then f: % (X)—>%(X) defined by f(A) = { f(x) : x € A} forall A € ¥ (X) is well

defined and is a contraction map on (36(X), h(d)) with contractivity factorr.

Proof: Since f is a contraction, then by lemma 2.1.1 f is continuous. Since f is
continuous, f(A) is compact if A is compact. Now we have to show that f is a contraction
map on (36(X), h(d)) with contractivity factorr, i.e., we want to show that:
h(f(A), f(B)) <t h(A, B) for all A, Be 36(X).
Let A, Be ¥%(X), then:
d(f(A), f(B)) = max{min{d(f(x), f(y)) : ye B} : x € A}

<Smax{min{rd(x,y):ye B} :xe A}

=rmax{min{ d(x,y) :ye B} : x € A}

=rd(A, B),
Similarly d(f(B), f(A)) <rd(B, A). Therefore
h(f(A), f(B)) = max(d(f(A), f(B)), d(f(B), f(A))) < r max(d(A, B), d(B, A)) = h(A, B).

B

Lemma 2.1.4: Let A, B and C € % (X), and C be a subset of B. Then:
d(A, C) 2d(A, B).
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Proof: d(A, B) = max{d(x, B): xe A} = max{min(d(x,y) :y € B) : xe A}
< max{min(d(x, y) : ye C): xe A}= max{d(x, C): xe A}=d(A, C).
The inequality follows from the definition and the fact that C is a subset of B.

Lemma 2.1.5: Let A, B, Ce ¥%(X). Then:
d(A v B, C)=max{d(A, C),d(B, C)}.

Proof: d(A UB, C)=max{d(x,C):xe AUB)
=max{max{d(x, C) : x € A}, max{d(x, C) : x € B}}
= max{d(A, C), d(B, C)).

Lemma 2.1.6: Let A, B, Cand D e ¥%(X). Then:
dAUB,Cu D) <max{d(A C),dB,D)}.

Proof: By lemma 2.1.5 we know that:
dAuUB,CuD)=max{d(A,CuD),dB,CuD),
Since C and D are subsets of C U D, we know by lemma 2.1.4 that:
max{d(A,CuD),d(B,C u D)<max{d(A, C),d(B,D)]},
Now combining these two, we get:

dAuB,CuD)smax{dA C),dB,D))

Lemma 2.1.7: Let A, B, C and De 3(X). Then:
h(A U B, Cu D) £ (h(A, C), h(B, D)).
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Proof: By lemma 2.1.6: d(A uB, CUD) <max{d(A,C), d(B,D)}. Similarly we
have: d(C U D, A U B) < max{d(C, A ), d(D, B)]. Therefore:
h(A U B, CuUD) =max{d(AuB, CuUD),d(CuD, A UB)}

< max{max(d(A, C), d(B, D)), max(d(C, A), d(D, B))}

= max{max(d(A, C), d(C, A)), max(d(B, D), d(D, B))}

= max(h(A, C), h(B, D)).

Theorem 2.1.8: {2, 3] Let (X, d) be a complete metric space. Let {f;: n=1,..k} be
contraction maps on (% (X),h(d)). Let the coatractivity factor of f;, be r,. Then
F: ®%(X)—>%(X), defined by F(A) = n\l:)lfn(l‘s) for all Ae %(X), is a contraction map on
(%6(X), h(d)) with contractivity factor r = max{r,}. Its unique fixed point Aje 96 (X)
obeys Ay =F(Aj) = ngijlfn(Ao) and is given by A, = %i_r;lan(B) for any Be %6(X).
Proof: Obviously F is well defined. Let us prove first that F is a contraction map. Let
k =2and A, Be %(X). Then:
h(F(A), F(B)) = h(f)(A) U f5(A), f;(B) U £(B))

< max { h(f;(A), f;(B)), h(f2(A), f5(B))}

< max {r; h(A, B), r; h(A, B)} <rh(A, B),
where r = max({r), 1,}. The first inequality follows by lemma 2.1.7 and the second by the
definition of the contraction map. By an induction argument, we prove that F is a
contraction map on (% (X), h(d)) i.e.,

h(F(A), F(B)) < (maxr,)h(A, B).

This completes the first part. Now the uniqueness of the fixed point follows from the

fixed point theorem (see Theorem 1 on page 66 of [24]).
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Definition 2.1.3: A (hyperbolic) iterated function system consists of a complete
metric space (X, d) together with a finite set of contraction maps:

f X—>X
with respective contractivity factors r,, for n=1, ..., k. The abbreviation of an iterated
function system is IFS and denoted by {X:f,, n=1,..k} with contractivity factor

r =max{r;:n=1,.,k}.

Definition 2.1.4: The fixed point Aje ¥ (X) described in the above theorem is called

the artractor of the IFS.

Now we are in position to define similarity dimension which was originally given
by B. B. Mandelbrot [27]. The advantage of the similarity dimension is that it is very easy
to calculate and under certain condition it is exactly equal to the Hausdorff dimension and

the capacity of an attractor (see next chapter).

Definition 2.1.5: A map f: X—>X is called a similitude if d(f(x), f(y)) =rd(x, y),

forall xandy in X, where r e R is called the scale (scaling) factor of the similitude.

Definition 2.1.6: Let {X:f ,n=1,..,k} be an IFS with r, >0, n=1, .., k.
Assume that f_is a similitude. The similarity dimension dg of the IFS is the unique

positive number which satisfies the following equation:

il(rn)ds = 1. @2.1)

n=

Remark 2.1.2: dg is unique , because (1',,)ds (0 <1, < 1)is strictly decreasing in dg. If
r,=r1 (for n=1,..,k), dg =log(1/k) / logr. When the r, are different, dg can be

computed using Newton's method:
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Let f(dg) = nZfl(rn)ds — 1. Since f(dg) # 0, the following formula is well defined:

dy =d, +f(dy) /£(d,).
and ds = \!i-l;l“dv.

Example 2.1.2: The classical Cantor set. Let ([0, 1]: f;, f, } be an IFS, where
f;(x) =x/3 and fy(x) = x/3+ 2/3 are similitudes. Then the Cantor temary set is the
attractor of this IFS and the similarity dimension dg of the IFS is log2/log3, since equation
(2.1) becomes 2(1/3)*S =1.

Remark 2.1.3: The similarity dimension is associated with the IFS, not to a possible

attractor of the IFS. The next example shows why.

Example 2.1.3: Let {[0, 1]: f;,f5 } and {[O, 1]: f, f;,f3} be two IFS, where
f,(x) = x/3, f5(x) = x/3 + 2/3, and f4(x) = x/3. Then the Cantor ternary setis the attractor
of each of the IFS and the similarity dimension dg of the first IFS is log2/log3 and that of

the second is 1, since equation (2.1) becomes 3(1 /3)ds =1 for second IFS.

In order to attach the similarity dimension to the attractor we introduce the

following:

Definition 2.1.7: Let {X:f,,n=1,...,k) be an IFS. We say that the open set

condition is satisfied if there exists a bounded open set V such that:

@ 9 5V)CV md
(b) £, (V)N (V)=@forn#m.
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Remark 2.1.4: This definition is motivated by Theorem 3.3.3 which says that under
the open set condition, the Hausdorff dimension of the attractor of an IFS is equal to the

similarity dimension.

In example 2.1.2, there is nothing special about the factor 1/3. If we replace 1/3 by
0 <k < 1/2 and proceed in the similar way, we shall get the following:

Example 2.1.4: A Cantor set. Let {[0, 1}:1,, f2]be an IFS where fl(x) =kx and
fz(x) = kx + (1-k) for some fixed k, 0 <k < 1/2. The attractor of this IFS is a Cantor set
obtained by removing the segment (k, 1-k). Itis clear that f, and f, are similitudes with
scaling factors k, and the open set condition is satisfied. Since we can take V = (0, 1).

Therefore the similarity dimension of the attractor is: log2/log(1/k), because 2(k)ds =1

In a similar way we can calculate the similarity dimension of a generalized Cantor

set in p—dimension:

Example 2.1.5: A generalized Cantor set ( in p dimensions ).
Let {[O, 1]": iy ipi= b 23 2°} where:
£y 1 (0 = KK s %)+ (1) gy o B,

where 0<k<1/2, 0sx;<1,i;=00r 1 for 1Sj<pand Gy, iy, ..., i) is one of 2P
corners of the hypercube [0, 1]P. fil...ip(x) is sending the hypercube [0, 1]° onto the
hypercube with length k, situated at the corner (iy, iy, ..., i,). So at the n" iterate, the
length of (fi]'__ip)"([O, 11P) isk". Since we can take V =(0, 1)P we can say that the open
set condition is satisfied and equation (2.1) yields 2P(k)d = 1, which implies that the

similarity dimension of the attractor is d = p[ log2 / log(1/k)]. See figure 3.
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Figure 3 (for p=2)

Now we turn to the computation of the similarity dimension of the attractor along
the x—axis of the generalized bakers transformation. From the figure 1, it is clear that the
attractor is a product of the interval [0, 1] along the y-axis and a (assymetric) Cantor set
along the x—axis. Thus we shall compute the dimension along the x—axis and use the fact
that any dimension d of the attractor is equal to 1+d , where d is the dimension along

the x—axis.

Computation of the similarity dimension along the x-—axis of the

generalized baker's transformation:

Let dg be the similarity dimension of the following IFS: ([0, 1] : f;, f,}, where
f1(x) = A.x and f,(x) = Ax +1/2,0 < A, A, < 1/2. Clearly both are similitudes. The
open set condition holds, since we can take V = (0, 1) and immidiately both conditions of
the definition 2.1.7 are satisfied. Therefore the similarity dimension of the attractor can be

calculated using this equation:

Ay Ay =1 (2.2)
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Since both terms on the left side of the equation (2.2) are monotonically decreasing,

dg obtained by solving this equation is unique. Thus the similarity dimension of the
attractor of the generalized baker's transformation is: 1 + dg, where dg is the solution of

equation (2.2).

2.2 Lyapunov dimension

The Lyapunov numbers were originally defined by A. M. Lyapunov [26] in 1950,
for the study of the general problem of stability of motion. Some authors refer to
Lyapunov exponents rather than Lyapunov numbers. The Lyapunov exponents are the

logarithms of Lyapunov numbers.

Definition 2.2.1: LetF:R” —> R’ bea piecewise Cl-mapping and J,(x;) =
J(xp)I(xp.1) .- . J(xy), where J(x) is the Jacobian matrix of the map x..; = F(x,), i.e.
J(x) = dF/dx when it is defined at x. Let j;(n) 2 jo(n) 2...2 jp(n) be the magnitudes of the
eigenvalues of J,(x;). The Lyapunov numbers of F at x, are:

A = lim [j;(m)", (2.3)

n->c0

where the positive real n"™ root is taken.

N iterations

l———#:

- N
Xp& F{x,) F (xpél

NA(x '.
Ee v |

Figure 4
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The Lyapunov exponent measures the exponential separation as shown in the

preceding figure.

Remark 2.2.1: It can be seen that A, 2 A, 2...2 Ap. The Lyapunov numbers generally
depend on the choice of the initial condition x,, but not for an affine system. We shall
look at examples where the Lyapunov numbers are constant. For a p—dimensional map,
A; is the average principal stretching factor of an infinitesimal p—spherical volume in the

direction of the i™ axis. See figure §.

N S
ITERATIONS OF n
n ITE A8
THE 2D MAP

Figure 5 (forp = 2)

The Lyapunov dimension was originally defined by Kaplan and Yorke [22] in 1978

for the problem of determining the dimension of an attractor.

Definition 2.2.2: Suppose that F ; R® —> R” has Lyapunov numbers not depending
on the initial condition x;. If F has an attractor A and if k is the largest value for which
A.A 21 (1<k<p), then the Lyapunov dimension of A denoted by dy is defined by:
dp=0,ifA; <1,
d =k+ log(l]...kk)/log(lfkk a»if 1<k<p, 2.4)
dp =p,ifk=p.
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Remark 2.2.2: Kaplan and Yorke [22] use the following conjecture to justify the
integer k in the above formula: For nearly every (in the generic sence) F satisfying the
hypotheses of definition 2.2.2, the attractor A has Hausdorff dimension greater than or

equal to the intoger k.

Proposition 2.2.1: For 1<k <p,, we have 0 <log(A,..A )/log(1/A, ) < 1.

Proof: From the definition of Lyapunov dimension A ..AA; ., < 1. Therefore

1< ll...hk < (1/A,,)- Hence the result follows.

Example 2.2.1: [After 30]. The Bernoulli shift ¢ : [0, 1]—> [0, 1]:

Xn41 = O(xp) = 2x,(mod 1)
has the Lyapunov number 2, i.., the Lyapunov exponent log2. The Lyapunov dimension
of the Bernoulli shift is d; =1. Indeed A; =2 > 1 and by the above definition d; = p,

where p=1.
6(x)4

1

>y

0 1
Figure 6

Example 2.2.2: [After 22]. The Kaplan-Yorke map:

Xn41 = 2Xy (mod 1)

Ypi = @Y, + COS4TX .
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has the Lyapunov numbers 2 and a; therefore the Lyapunov dimension is 1 + log2/log(1/a)
ifa<1/2,and 2if a2 1/2. See figure 7.

( for a = 1/2; taken from [22] )

For more examples, see [14]. Now we turn to the computation of the Lyapunov
numbers of the generalized baker's transformation and the Lyapunov dimension of it's
attractor.

Computation of Lyapunov dimension:

The Jacobian of the generalized baker's transformation is diagonal and depends

only ony.
J=[1’2(Y) 0 ]
0 Liy)] >
o ify<a

and Lz(y)={"a fy<a

where: L,(y) = { Ay ify>

1/(1-a) ify>a
and where o, A, A, < 1/2. L,(y,)..Ly (yl) = (1/a )"“(1/[3 )'B, where n, is the number

of times the orbit has been in the set y < o and ng is the number of times the orbit has been
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inthe sety > a. Then A= “li_rglw[Ll(yn)...Ll(yl)]”n which implies that:
logll = nli.’;’u[(“ﬂ /m)log(1/a )+ (na/n)log(I/B)] .

We know from section 1.4 that the map defined by (1.1b) is ergodic. Therefore by lemma
1.4.2, we have 0, o) = nli_rymnm/n = ([0, &]) = & and similarly I¥i_r;1mnp/n =[. Thus:

logh, = olog(1/ar) + Blog(1/B) (2.5)
Similarly:

logh, = alogh, + Blogh, (2.6)
Then A, = (1/a)*(1/B)® and Ay = A)%(Ay)P. A, > 1, since 1/o> 1 and 1/B > 1. Let us
prove that A;A, < 1, where the equality holds only if A, = A, = 1/2. We shall show that
A <2< 1A, ie., (/) (/B)P €2 < (1/A)%(1/A,)P, where the last equalitiy holds only
if A, =X, = 1/2. Since 1/A, 2 1/2 and 1/Ay, 2 1/2, then 2 < 1/A,, where the inequality
holds only if A, = Ay =1/2. From elementary calculus,

max(\;) = max[(1/o)*(1/(1-0))' ] = 2 and is attained at &t = 1/2. Indeed:

. « o _ <0 if a<l/2
A= (1/a) (1/(1-)) " In[(1-o)/a] = § =0if o =1/2¢.
>0ifa>1/2

Then equality in A;A, < 1 implies that d; = 2, by definition also if we put the values of A,
and A, when the equality holds we see that logA,/log(1/A,) = 1, more than that when
A, = A, = 1/2 the attractor is unit square, so that its dimension is 2. Therefore, the
Lyapunov dimension of the attractor of the generalized baker's transformation is:
d, =1+loghy/ log{1/Ay)
= 1 + H(a)/(cdog(1/A,) + Blog(1/A,)), Q2.7)
where H(a) = adog(1/ax) + Blog(1/B) is called the binary entropy function.



Chapter 3

Metric Dimensions

In this chapter we present the notions of capacity ( d¢ ) and Hausdorff dimension
(dy ). Because we need a metric space to define them, we refer to them as metric
dimensions. In sections 3.1 and 3.2 respectively, we present the notions of capacity and
Hausdorff dimension. In section 3.3 we shall present relations between d¢, dyy and dg and
prove that under the open set condition (see definition 2.1.7) these three dimensions are
equal when the attractor is obtained from an IFS. In the last part of section 3.3 we apply
this result to compute the capacity and the Hausdorff dimension of the attractor of the
generalized baker's transformation. To compute these dimensions, we look at the attractor
itself instead of looking at the corresponding map, as we did in chapter 2 to compute the

similarity and Lyapunov dimensions. In fact these dimensions are defined for any set.

3.1 Capacity

The capacity was originally defined by Kolmogorov [23] in 1958.

Definition 3.1.1: Let A be a bounded subset of a p-dimensional euclidean space RP,

and N(g) be the minimum number of closed balls with radius € needed to cover the set A.
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Then the quantity d-(A) (sometimes writen as d¢) given by:
dc(A) = lim logN(e)/log(1/e) (3.1)
is called the capacity of the set A, provided the limit exists.

The following proposition shows that d¢ is not greater than the dimension of the

euclidean space.

Proposition 3.1.1: Let A and B be bounded subsets of RP (with euclidean metric)
such that A C B. Then dc(A) < dc(B), provided both quantities exist. In particular
0<dc(A) <p.

Proof: Let N,(¢) be the minimum number of closed balls needed to cover the set A and
N,(€) be the analogous quantity for the set B. Since the set A is contained in the set B,
this implies that:
N;(€) SN,(e), V e such that 0 < e <1,
Which implies that:
0 <logN;(€) / log(1/e) < logN,(€) / log(1/e), V € such that 0 <€ <1.
Now taking the limit of both sides, we get:
éiglo logN, (€) / log(1/e) < gTologNz(s) / log(1/¢),
which implies that dc(A) < dc(B). If we replace B by a unit hypercube (p—dimensional)
(see example 3.1.1) we see that dc(A) S p.

Definition 3.1.2: We shall say that a set A intersects strongly a set B if and only if

there exists x € int(A) N B.
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Remark 3.1.1: The set A of definition 3.1.2 must have a non—void interior to intersect
strongly a set B. The definition is not symmetric. B does not necessarily intersect

strongly the set A.

Theorem 3.1.2: [The Box Counting theorem] [After 2]. Let A be a bounded
subset of RP, with euclidean metric. Cover RP with closed just touching square boxes
of side length (1/2)". Let N, (A) denote the number of boxes of side length (1/2)" which
intersect strongly the set A. If the following limit exists:

lim logN,(A) /log(2") (32)
then the capacity of A is equal to that limit.

Proof: See the following figure 8. Let N (A, 1/2") be the minimum number of closed
balls with radius 1/2" to cover A. We observe that 27PN, _; < Ny(A, 1/2") < Ny, for all
p=1,2,..and n=1, 2, .., where k(n) is the smallest integer k> n — 1 + (1/2)log,p.
The first inequality will follow from lemma 3.1.3. The second inequality follows because
a box of side length 6 can fit inside a ball of radius € provided € 2 pm(8/2). Indeed by
Pythagoras theorem half of the diameter of a box of side & is (p)”2 (8/2). Therefore  is
less than or equal to the 2£p’m. Letd= (1/2)k and € = (1/2)". The unknown k must

-1/2

satisfy the following inequality: 277k < (1/2)"'l p ', which implies that

k2n—1 +(1/2)logyp. On one hand:

n‘i‘;‘w{log(Nk(n) / 108(2")} =lim_ logzk(")logNk(n) flog2"log2*®
. k
=lim (k(n)/n) [logNy(ny/log2 my
T k(n) _. . _
= nllrgawlogNk(n)/logZ , since nllrﬁ.,k(") /n=1,
On the other hand:

Iim (1og2 Ny, /10g2") = lim_ (log2™ '1og (2PN, _) /log2" 1og2™"}
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= lim {((n-1)log2 logN,_,/nlog2 log2™™")

~ lim {plog2 log2™ /nlog2 log2™ )
= lim [{(n-1)/n)logN,, y/log2""'] - lim p/n
= I}_i_r>nmlogNn_1/10g2“'1,

since lim (n-1)/n=1and lim p/n=0. [
N->c0 Nn->oo
y 4
I. \
4Bk )I
r";‘:- "q'.'. y o
S g
Figure 8

Remark 3.1.2: This theorem proves that the definition of capacity does not depend on
balls. In fact we can use any simple geometric object (triangle for instance) to cover the
attractor. Moreover there is nothing special about the number (1/2)", we can take any €"

(O<e<l).

Lemma 3.1.3: A closed ball of radius 1/2" can intersect strongly at most 2P closed

boxes of side length 172",

Proof: The proof will be done by induction on the dimension of the space. Letp=1. It
is obvious that a closed ball of radius 1/2" intersects strongly at most 2 closed boxes of
side length 1727 (see figure 9a). Suppose that the statement is true for 1 <p<k-1. Let
x; be the i coordinate in IRk. Let x, =c be the hyperplane passing through the center of a

closed ball B of radius 1/2". The union of the closed just touching square boxes in RP
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makes a k—dimensional grid. If we project this grid on the hyperplane, we obtain a
(k~1)-dimensional grid (see figure 9b). By induction hypothesis, the (k—1)-dimensional
ball B,_; = By N (x;=c) of radius 1/2" intersects strongly at most 2% closed
(k-1)-dimensional boxes of side length 1/2"~!, Each such box can be seen as the
projection of the base of a k—dimensional box. Since the height of two k-dimensional
boxes cover the diameter of By (still by induction hypothesis ), then there exists at most

2(2k’1) closed boxes intersected strongly by B,.

v N

ball

T

B o
=
—

Figures 9 (a and b)

Remark 3.1.3: In [2] Barnsley uses the word intersection instead of strong intersection
in theorem 3.1.2. But his proof is wrong according to his statement. A closed ball in R

with radius 1/2 can intersect 3 closed boxes (intervals) as it is shown in figure 9a.

The first of the following examples shows that the notion of capacity fits with the

standard notion of dirnension of a regular geometric object.
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Example 3.1.1: A hypercube. The capacity of a p-dimensional unit hypercube is p.
Indeed we can cover a unit hypercube with 2P hypercubes each with side length (1/2) at
the first stage. So we can see that N, = 27", with £" = (1/2)". Equation (3.2) yields that

the capacity of the unit hypercube is p.

Example 3.1.2: A Cantor set. Let us take the attractor of the IFS of example 2.14.
Let €=k (0 <k < 1/2), then N, =2". Equation (3.2) yields dc = log2 / log(1/k).

Example 3.1.3: [After 8]. The Kiefvetter's curve According to Theorem 2.1.8,

there is a unique attractor for the following IFS : { R? . f,, f5, f3, f4 ) where:
1/4 X 1/4 0][x]  [1/4
fl(xv Y) = [ 6 _1(}2:] [y:l , f2(x’ y) = [ 6 1(;2J [y:' + [_{/2] ,

sen=[5 IG5, aen=4 S+ (Al
The attractor is a continuous curve called the KiePwetter's curve (see figure 10). Since at
the n® stage there will be 4" rectangles each with side lengths 4~ and 2™ * ! and each of
the rectangles of size 4~ and 2™* ! is the union of 2™*! squares of side lengths 4. In
other words the set can be covered by (4" 2™) squares each with side length 4. Then
equation (3.2) yields d¢ = lim _ log(4™ 2™) flog(4™) = Lim (3n + 1)log2/2nlog2 =3/2. It

should be mensioned that ;) is not a similitude, so the similarity dimension is not defined.
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3.2 Hausdorff dimension

The Hausdorff dimension was originaly defined by F. Hausdorff [19] in 1919. It
marked the beginning of the study of geometric measure theory [13, 29]. We give the
original definition of the Hausdorff dimension which is different from that of Farmer er al

[12].

Definition 3.2.1a and b: Let A be a non—empty subset of RP. We define the
diameter of A as diam(A) =sup{d(x,y):X,y€ A}. IfAc n@lAn and diam(A,) < € for

each n, we say that {A,} is an e—cover of A

Definitions 3.2.2a and b: Let A be a subset of RP and d be a non-negative number.
Consider an e-cover {A,} of A. For diam(A,) < € define the quantity Lf,(A ) (some times
written as L) by:

Li(A) = inf) (diam(A,))"%, (3.32)
where the infimum extends over all countable e-covers of A. The following limit is called
the Hausdor{f d-dimensional outer measure:

Ly(A) = lim 1(A). (3.3b)

L4(A) is sometimes written as L.
Remark 3.2.1; The preceding limit exists but may be infinite.
Remark 3.2.2: Farmer et al [12] are using e~covers of cubes only but a different

measure is obtained. See Besicovitch ([5] chapter 3) who compares Hausdorff measure

with Hausdorff measure obtained with e-covers of balls only.
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Remark 3.2.3: Note that an equivalent definition of Hausdorff measure is obtained if
the infimum in (3.3a) is taken over e-covers of A by convex sets rather than by arbitrary

sets since any set lies in a convex set of the same diameter.

Example 3.2.1: Any countable set of points has Hausdorff d—dimensional measure
zero. Indeed we cover it by the set of its points, each point having a diameter equal to

ZCT0.
Lemma 3.2.1: LetA ¢ R IfL4(A) < oo, then Ly(A) = O for any d' > d.

Proof: We may assume thatd > 0 and Ly(A) <oo. Leta>Ly(A). Therefore:
a+8(e) 2Li(A)
for small € where e;hg%)ﬁ(e) =0. This implies that;
a+8(e) 2 inf) (diam(A,))?
g9=d (a + 8(¢)) 2 inf)(diam(A))? e9~d

> infy (diam(A))(diam(A )¢

2 inf ) (diam(A,))®
Taking the limit, we get:

lim (€< (a + 8(©))) 2 ligjinf >, (diam(A,)"

02 lim inf} (diam(A)" = Ly(A).

This implies that Ly(A) =0,

Corollary 3.2.2: There exists a critical point dy of L4 such that L is zero for d > dy

and infinite for d < dy.
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Definition 3.2.3: The critical point dH(A) (sometimes written as dy) of the above
corollary is called the Haudorff dimension of the set A.It is defined as:
d,(A)=inf{d: Ly(A)<oo } =sup{d: L(A)> 0}.
3
L | 4

dy 0 d

Figure 11

Proposition 3.2.2: Let A and B be any subsets of RP (with euclidean metric) such that

A C B. Then dy(A) <dy(B). In particular 0 < dy(A) < p.

Proof: First of all we shall show that the Hausdorff dimension of a hypercube is p. Let
C be a hypercube in RP with side length r (r € IN). Divide C into kP (k € IN) subcubes
of side length r/k in the obvious way. In the equation (3.3a) if we take € = (1/k) , then:

L5 (C) sKP(G/k)P < .
Now take the limit of the above expression:

Thus if s > p, then by corollary 3.2.2 L(C) =0 and so dg(C) =p. Consequently
dy(RP) = p, since dy(C) = p forany r € N. Secondly we shall prove that dy(A) < dy(B).
If A c B, it is obvious that Lf,(A) < Lf,(B) and so LP(A) < LP(B). Then by definition
dy(A) < dy(B). Therefore for any A c RP, dy(A) € dy(RP) =p.
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Example 3.2.2: The classical Cantor ser. We shall prove that its Hausdorff dimension
is log2 /log3. We shall use the last remarks to compute the Hausdorff dimension. Only
intervals are convex sets on the real line.

Let {A,) be an e—cover of A. Without loss of generality, we can consider an e-cover
{A,) such that diam(A,) > 0. Suppose for a while that the 3™ < diam(A) 3™ (n > m).
Let us show that under this restriction (about the lower bound of diam(A;))
ian(diam(An))d =2"3" forany d = 0. If two intervals in an e~cover {B,) of A has a
nonvoid intersection, then:

> (diam(B,))* 2 (diam(A)°,
where {A,} is an e-cover with disjoint intervals. Moreover, if {B,} is an e~cover with

disjoint intervals such that diam(B;) > 3™ for one j then:

Y (diam(B,))* 2 Y (diam(A)°® =2" 3™,
where diam(A,) = 3™. So we get:
inf Y (diam(Ap)! =2" 3™,
where 3™ < diam(A,) £ 3™ (0 >m). If n—> o0, 37" —> 0 and Li(A) = lim 2" 3™ for
alle>0. ThenLy= ,@Qﬁn 3™ Ifd= log2/log3, one can check easily that Ly = 1.

Example 3.2.3: The Hausdorff dimension of the Kiesswetter's curve is 3/2.
1° Upper bound: According to the example 3.1.3 at the nth stage the attractor has 4"
rectangles each with side lengths 4™ and 27" * 1 and each of these ectangles is the union of

2™1 squares of side lengths 4", So for e =2124™", we have from equation(3.3a) that

Li@=3m)S 4" 221242 Therefore from equation (3.3b) we have L, < 27/
< ©0, Hence the Hausdorff dimension of the Kiesswetter's curve is less than or equal to
3/2.

2° Lower bound: For the lower bound see [8]. Complicated and too long.
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3.3 Relations between d¢, dg and dg

In this section we shall present some relations between capacity, Hausdorff
dimension and similarity dimension. We shall give the computation of the metric
dimensions of the attractor of the generalized baker's transformation in a different way

than that given in [12].

Proposition 3.3.1: The capacity of a set is greater than or equal to it's Hausdorff

dimension i.e., d¢ 2 dy.

Proof: Consider an €-cover consisting of balls of equal diameter € i.e., diam(A;) =€

Then due to the infimum in equation (3.4), we see that:
N()
Ly = ; (diam(A,))4 = N(e)(diam(A,))* satisfies IS 2 L.

Let us assume that d = d: for instance, then T.f, > Lf, and:

dc > hm de
de
eh_% N@E)e* > Elg;deC.

It is an immediate consequence of (3.1) that:

lim NE)EC =

when € represents the radius of a ball. But by lemma 3.3.2, we have the same limit when

€ represents the diameter of the ball. This implies that e;hr;loLf,C is zero if dc > dyy or finite if
dC = dH‘

Lemma 3.3.2: Let Np(€) be the minimum number of closed balls with diameter € to

cover a set A and N(g/2) be the corresponding number of closed balls with radius /2.
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Then:

ggblogND(e)/log(IIE) = elér:g)logN(EIZ)/lcg(Z/t':),

provided one of the limit exists.

Proof: Note that Np(€) = N(¢/2). Then:
lim logN(e/2)/log(2/e) = lim [1ogN(e/2)/{log2 + log(1/€)}]
= lim [logN(e/2)/ log(1/¢)]
= elyﬂ)logND(e)/log(lle),

since log2 does not make any difference in the limit.

Farmer er al [12] believe that for attractors the capacity and the Hausdorff
dimension are generally equal (conjecture 1.3.1), while it is still possible to construct

simple examples of sets where the Hausdorff dimension and the capacity are not equal.

Example 3.3.1: [After 12]. For the set of numbers S = (1, 1/2, 1/3, 1/4, ...}, the
Hausdorff dimension is 0 while its capacity is 1/2.
The Hausdorff dimension of the set S is 0. Indeed we can cover the set by a countable set
of points, so the Hausdorff dimension is 0. The computation of the capacity is more
involved. We shall use the box counting theorem (Theorem 3.1.2). Lete, = (1/2)2“, then
we shall show that 2" <N, < 2™ where N, is the number of boxes to cover S.
Assuming these inequalities, we have:
1/2 = 10g2"10g2%" < logN,/10g2*" < log2™/log2?",

1/2 < lim logN,/log2® s lim log2""/log2™'= lim_[{(n + 1)/2n}l0g2/10g2™"] = 112.

Now we have to show that:

"<N, <2™,
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Let us start with the upper bound. Let us count the number of intervals with length 122
needed to cover S N [1/22", 1], one being needed to cover S N [0, 1/22"]. Since
1/2" - 1/(2"-1) = 1/(2*-2") > 1/2?" the distance between two consequetive points of
S A [1/2", 1] is greater than 1/2%". Therefore we need 2" intervals to cover the points in
S n[1/2" 1]. Let k be the minimum number of intervals needed to cover [l/”.zn, 1/2".
Then k/2%" = 1/2°- 1/2*" = (2"-1)/2*" and k = 21, s0 we need at most k intervals to
cover S N [1/2%", 1/2"[. Thus N, =1+ 2"+ (2" —1) = 2™, For the lower bound: since

we need at least 2" intervals to cover the points in S N [1/2", 1], then 2" < N,.

Now we shall present a theorem originally given by Hutchinson [21] in 1981. It
makes the computation of the capacity and the Hausdorff dimension of an attractor very

easy.

Theorem 3.3.3: Let { X: f,,n=1,2,..,k] be an IFS, and all f's be similitudes and
A be the attractor of the IFS. If the open set condition holds, then dy(A) = dc(A) = dg(A),

i.e. the Hausdorff dimension, the capacity and the similarity dimension are equal.

Proof of dy(A) = dg(A): 1° Upper bound: Let us show that dy < dg, i.e.,
LdS(A) <oo, Let fnl---np = fn1°“'°fnp and f,,lmnp(A) = Anl'"“p‘ By theorem 2.1.8, we
know that A is invariant with respect to f, n = 1, ..., k. Observe the following:

Since diam(A,, . le) < max(r,)” diam(A) —> 0 as p —> 9, {Ap,..n,) is an e~cover of A

for sufficiently large p. By equation (3.3a), we have:

I (A)=infY, (@amAn,.n)S<inf Y, 1 iy (diamA)’s = (@iamA)’s

ny.np ny.np
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since z r‘,’,“l ...rn‘g = (2 r,‘fs)p = 1, by the definition of similarity dimension. By equation
ﬂl...ﬂp
(3.3b) we have Lds(A) <oo,
2° Lower bound: see either [9] or [21]. n

Example 3.3.2: According to the example 2.1.4 we know that the open set condition
holds for a Cantor set and according to the example 2.1.4 we know that the similarity
dimension of the corresponding IFS is log2 / log(1/k). Now according to the above
theorem dy =d¢ = dg = log2 / log(1/k).

Now we shall compute the capacity and the Hausdorff dimension of the attractor of

the generalized baker's transformation.

Computation of capacity and Hausdorff dimension: Since the attractor is a
product of the interval [0, 1] along the y-axis and a (assymetric) Cantor set along the
x~axis, we shall compute the capacity d¢ and the Hausdorff dimension d} of the attractor
along the x—axis to obtain de = 1 + dc and dy = 1 +dy. Using the attractor of the IFS of
page 20 ( Computation of the similarity dimension along the x-axis ), we obtain,

according to the above theorem, dyy = d¢ = dg.




Chapter 4

Probabilistic dimensions

In this chapter we shall present the notions of information and pointwise
dimensions. These dimensions require both a metric and a probability measure for their
definition, and hence we shall refer to them as probabilistic dimensions. As for similarity
and Lyapunov dimensions, information and pointwise dimensions are related to a
mapping. The organization of this chapter is following: in section 4.1 we shall present the
notion of the natural measure. In section 4.2 and 4.3 respectivly, we present the notion of
information dimension and pointwise dimension and compute the information dimension

and pointwise dimension of the attractor of the generalized baker's transformation.

4.1 Natural measure of an attractor

To define the information and pointwise dimensions of an attractor A, we shall take
into account a natural measure on A. In computing d- from equation (3.1), all cubes used
in covering the attractor are equally important even though the frequencies with which an
orbit on the attractor visits these cubes may be different. In order to compute information
and pointwise dimensions, we need to consider not only the attractor itself, but the relative

frequency with which a typical orbit visits different regions of the attractor as well. We
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can say that some regions of the attractor are more probable than others, or alternatively
we may speak of a probabily measure on the attractor. We define the natural measure of

an attractor as follows:

Definition 4.1.1a and b: Let A be the attractor of a mapping F: RP —> RP. Fora
subset S of R p, an initial condition x; in the basin of attraction of A and an
e-neighborhood V(€) of S, let pe(xy, S) = TV(s)(xl) ( see definition 1.4.4b and remark
1.4.2) and let:

K(xy,8) = 3’;’0 He(xy, S) (4.1)
If u(x,;, S) is the same for almost every x; in the basin of attraction, then we denote this

value by [1(S) and call it the natural measure of the attractor A.

Remark 4.1.1: When S is a ball or a cube, V(€) is not needed in the definition of u(S),
since (x,,S) may be rather defined as the fraction of time the trajectory originating at x,
spends in S; in both cases we obtain the same value for p(S). But with this definition, a
difficulty occur in special sets S. For example, if the attractor has zero phase—space
volume and we let the set S be the attractor itself, then for almost every x; in the basin of
attraction, p(x;,5) is zero (for finite length trajectories, the orbit approaches S but is not

on S). A proper definition should give pu(S) =1 for this set S.

Notation 4.1.1: Let F be the generalized baker's transformation, T; = [0, 1]x([0, «]
and T, = [0, 1]X[ a, 1]. The different 2" strips obtained from T, and T, ( see figure 1)
after the n iterate of F will be denoted by S,(m) according to the following rule:

S1(1) =F(T;) and S;(2) = F(T,) and:

S,(m) = F(S,_(m)AT,), for 1 <m < 2™ or = F(S,_(m)NTy), for 2" '+ 1 <m < 2"
n 1 1 n-1 2
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Example 4.1.1: The natural measure of a strip obtained from the '™ iterate of the
generalized baker's transformation ( see figure 1). After one iterate of the map we get
two strips, the first strip S,(1) with width A, the second strip S,(2) with width A;. Let
us recall that n, and ng are respectively the numbers of times the orbit has been in the set
y <o and y > o ( see computation of Lyapunov dimension of the attractor of the
generalized baker's transformation in chapter 2 ). Because the transformation is ergodic,
we have ,I,i_fi‘,,“a/“ = ¢ and rlli_rglmnB/n =P (see lemma 1.4.2). Then u(S;(1)) =a and
H(S;(2)) = B. After the second iterate, we get four strips S,(m), where |(S,(m)) is the
m"™ numbser in the "non-commutative" product (o + )*2, that is the m™ number among
o, ap, Po and B in this order. In general, the n" iterate gives birth to 2" strips S,(m),
where p(S,(m)) is the m™ term in the "non-commutative” product (o + B )*",

n
m=1,...,2".

4.2 Information dimension

The information dimension was originaly defined by Balatoni and Renyi [1] in

1956. The information dimension is a generalization of the capacity.

Notation 4.2.1: Let A be an attractor of a mapping F, N(¢) be the minimum number of
hypercubes with side length € needed to cover the set A and let p; = WW(C;), where C; is the

i" cube in the covering of A.

Definition 4.2.1a and b: The entropy of A ( denoted by I(€) ) is defined as:

N(e)
e) =Y p;log(l/p)
1
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The information dimension of A ( denoted by d;(A) or just d; ) is defined as:
di(A) = elﬂb I(e) / log(1/€) 4.2

The quantity I(e) is the amount of information necessary to specify the state of a
system to within an accuracy €, or equivalently, it is the information obtained in making a
measurement that is uncertain by an amount €. Since for small €, I(€) = d; log(1/€), dj may
be viewed as telling how fast the information necessary to specify a point on the attractor

increases as € decreases. For more details see [10, 11].

Propositon 4.2,1: dc(A) = d(A). In particular;
a) If all cubes have equal measure i. €., p; = p (say), then dc(A) = di(A).
b) If condition a) is not satisfied, then dc(A) > dy(A).

Proof:

a) Since p; = p for any i and:
N(e)

Y p=1
1
then p = 1/N(g). Therefore:

I(€) = N(g)p log(1/p) = logN(e).
From equation (4.2) and the definition of capacity (equation (3.1)), it follows that d; =d,..

b) In order to show thatd; < d, it is sufficient to show that I(€) < logN(€). We have:

N(e) NE)
I(e) = Y, pilog(l/pi) = Y, log(1/p)"
1 1

N(e) N(e)
=log [ T (Wp)Pi <logl’, pi(l/pi) = logN(e).
1=1 1
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The inequality follows from inequality (2.5.2) in Hardy et al [18], that is:
N N
H(ai)qi < Zqiai ’
i=1 =1
N
where a; >0, g; 2 0 and Zqi =1.
i=1
n

Example 4.2.1: The classical Cantor set. Let us take the IFS of example 2.1.2. Let
€ =(1/3)". When n=1,N(g) =2 and p, =p, = 1/2, since each interval has equal length.
In general, when n =ng, N(€) = 2"0 and p; = 1/2" for any i. Using (4.2), we get

d; = log2/log3.

Now we turn to the computation of the information dimension of the attractor of the

generalized baker's transformation.

Computation of the information dimension: We shall use the old technique, that
is, we let dj; = 1 + dj, where dj is the information dimension of the attractor along the
x—axis. Let I(€) = I(€) + I(€), where I(€) is the entropy for the strip [0, A,] and I, (¢) is
the analogous quantity for the strip [1/2, 1/2 + A;]. From the scaling property of the
transformation, covering the strip [0, A,] at resolution €A, requires N(€) strips of width €.
Since o= lim ny/n, where ng is the number of times the orbit has been in the set y <o,
the probability of finding a point of the attractor in the i™ strip of width €A, becomes ap;,
where p; is the probability of finding a point of the attractor in the it strip of width €.
Then:

N(e) N(©)
I(e\) = Y ap; log[1/(ap;)] = @y, pillog(l/cx) +log(1/p;)]
1 1
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N(e) N(e) N(e)
=y, pilog(l/a)+ ey, p; log(l/p;) = olog(l/e) + &, p; log(l/p;)
1 1 1

N(e)
= oflog(l/a) + Y, p; log(1/p)] = aflog(1/ax) + K(€)).
1

Therefore I,(€) = oflog(1/a) + I(e/A,)]). Similarly Iy(€) = B[log(1/B) + I(e/Ay)], where
B=1-0. Thus:
I(e) = I,(e) + Iy(€)
= a[log(1/ax) + I(€/A,)] + Bllog(1/B) + I(e/Ay)]
= odog(1/a) + Blog(1/8) + al(e/A,) + BI(e/Ay)
= H(a) + al(e/A,) + PIE/AL),
where H(o) is the binary entropy function. To simplify the notations, but without loss of
rigour, we assume that I(€) = 51 log(1/€), since I(e) = cTI log(1/¢) for very small €.
Therefore I(e/A,) = dy log(A/€) and I(e/A,) =dj log(Ay/E. Putting these values in the
above equation, we get:
dj log(1/e) = H(o) + oudy log(A,/€) + Bdy log(Ay/€)
H(o:) =dy log(1/e) - [ad; log(A/e) +Bd; log(A/€) ]
d; [og(1/e) —log(A/e)*~ log(hy/€)"]
d; Llog(1/6) — Log(1/e)” ~ log(1/e)® - log (1) - 1og ()]
d; [og(1/e) — log(1/e)* P~ log(A,)* - log ()P
d; [og(1/6) — log(1/€) — log(h)™ — log(A,)P]
=3 [ log(y)" - 10g(Ay)’)
= d [1og(1/,)* + log(1/Ap)")
Thus d; = H(0)/ [log(1/A,)" + log(1/A,)P], which is exactly dy - 1.
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4.3 Pointwise dimension

The pointwise dimension was originally defined by Farmer er al [12] in 1983.

Similar quantities can be seen in Billingsley [4].

Definition 4.3.1a and b: Let B(g, x) denote a p-dimensional ball of radius € centered
at a point x on an attractor A embeded in the p-dimensional phase space of the dynamical
system being considered. Then the pointwise dimension at the point x of the attractor is
defined as:

dp(x) = lim log)(B(e, x))/loge , 4.3)
where M is the natural measure of A. If dp(x) is the same for almost every x on the
attractor, then we denote this value by dp and call it the pointwise dimension of the

anractor A.

Remark 4.3.1: One can show that dp(x) is the same for almost every x on the attractor,

if the mapping F is smooth except at a finite set of points ( see [2] )

Example 4.3.1: The classical Cantor set. Its pointwise dimension is log2/log3. If we
choose € = (1/3)", then u(B(e, x)) = (1/2)". Equation (4.3) yields:
dp =log(1/2)"log(1/3)" = log2/log3.

The next lemma will be needed to compute the pointwise dimension of the attractor
of the generalized baker's transformation. We shall compute dp for a special case
(A, =) of the transformation, as it is done in [12]. But it should be mentioned that the

result is still valid for more general A, and Ay,
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Lemma 4.3.1: LetA, = A, in equation (1.1). Then u(B(g, x)) £ Mu(§,(m)), where
M >0 is defined in the proof, where p(B(g, x)) is a ball of radius € =4," centered at

x € S,(m) ( see notation 4.1.1).

Proof: Let x be in the strip S,(m). The ball B(g, x) cannot intersect more than two
consecutive strips ( S,(m) and S,(m+1) or S (m-1) and S (m) ), because their width is
7»,," which is the radius of the ball. According to example 4.1.1, pu(S,(m)) = a“'ij where
this number is the m™ term in the "non-commutative” product (a + B )y, m=1,.,2"
Therefore U(B(E, x)) € u(S,(m)) + p(S,(m+1)) (or £ u(S,(m-1)) +U(Sy(m)) ), that is:
W(B(E, X)) < o3P + o™ Ip = 20",
or; <™+ @I = ™R + a7'p),
or: < o™Ipl+ ™I = o™i + a7

Let M be the max(2, (1+ o'B), (1 +af™)}. Thus u(B(e, x)) < My(S,(m)).

Now we turn to the computation of the pointwise dimension of the attractor of the

generalized baker's transformation.

Computation of the pointwise dimension along the x-axis: In this computation
we assume that A, =L,. By equation (2.6), we get: logh, = log7L,,‘Hﬂ = logA,; then
A, = Ay, where A, is the second Lyapunov number. After example 4.1.1, we know that
after n iterates we get 2" strips.

Suppose first that A, < 1/4. Let x € S,(m). The width of S,(m) is &€ = (A,)". Because

A, < 1/4, the gaps between strips are bigger than the strips. Since B(g, X) covers the base
of S,(m), but does not intersect more than one strip, then u(B(g, x) = pu(S,(m)) = a“'j[}j.

Therefore the pointwise dimension of the attractor along the x—axis is:
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d,= 32‘0103“(3(8’ x))/loge = elix;xologu(s,,(m))llogt»:
= I _log(" )/ logh,"
= lim_ [ (n-j)logo. + jlogf 1/ nlogha
= (lllog?»,)rlli_r;)" ((n=j)/m)logo + (§/n)logp.

By definition of p(S,(m) = a“"jﬁj, n~j is the number of times the orbit has been in
the set y < o and j is the number of times the orbit has been in the set y > ¢ ( see notation
4.1.1 and example 4.1.1). By the Birkhoff Ergodic therorem ( see remark 1.4.2 ), we
have for almost every x ( that is, for almost every strip S, (m) ):

lim (n—j)/n=co and lim j/n =p.
Then:
d, = (1logh,)[aloga + logB]
=H(1/0) / logA,
=H(ax) / log(1/A,) = d;.
Suppose now that 1/4 <A, <1/2. According to lemma 4.3.1, (B(e, x))  Mu(S,).
Since S, C B(g, x), we have also u(S,) < W(B(E, x)). Thus (S,) SU(B(E, x)) < Mu(S,)

and we get the same value of the pointwise dimension.



Conclusion

There are several different dimensions that can be used to describe dynamical
systems and their attractors. In this report we have presented few notions of dimensions
of attractors. There exists many other notions of dimension that we did not look at, for
example, correlation dimension, I-capacity dimension, I-Hausdorff dimension,
Hausdorff dimension of the core... But we think that we have considered some of the
most important ones, at least to underline the importance of the notion of dimension of an

attractor and to illustrate the different conjectures of Farmer et al [12].

Looking back to the preceding chapters, we conclude that the attractor of the
generalized baker's transformation satisfies:
1° The conjecture 1.3.1, by the sections 2.1 and 3.3. We have obtained:

de=dy=1+ds,

where dg is the solution of la;s + ldbs =1,
2° The conjecture 1.3.2, by the sections 2.2, 4.2 and 4.3. We have obtained:
dp =dp=dp = 1+1logh,/ log(1/Ay) = 1 + H(e)/(alog(1/As) + Blog(1/A,)),
where H(o) = alog(1/c) + Blog(1/p) is the binary entropy function.
3° The conjecture 1.3.3, if we let A, = A, and o = B = 1/2. Indeed in this case:

ds =log(1/2) / logh,, H(a) = log(1/ox) = log2 and alog(1/A,) + Blog(1/A,) = log(1/A.),
which implies that:

dC=dH=dL= dl=dp.
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Among all the notions of dimension, probabilistic dimensions are probably the most
interresting ones, since as we know, capacity ( a metric dimension often equal to the
Hausdorftf dimension, according to conjecture 1.3.1) is a limiting case of probability
dimension: see introduction of section 4.1. Moreover recent works related to dimensions
of attractors have introduced generalizations of probabilistic dimensions (see [6],
[14] -[18] and [20] ). The generalized dimension dq ( Grassberger [15] ), the periodic
point dimension (’i\q ( Celso et al [6]), the partition function dimension Hq ( Hencel et al
[20] ) are all in fact functions of a variable q. For certain values of q, one finds again
standard known notions of dimension. For example, dy is the capacity and d; is the
information dimension. Conjectures about these generalized dimensions ( similar to

1.3.1-13.3 ) have been also stated: for typical attractors, d, = 3q =d;. The realm of

dimensions is still ¢, &0 being completely explored.
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