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This thesis deals with the dcvﬁclopmcnt of a code for the numerical calc'ulatiofnof

two-dimensional inviscid flows over airfoils, by using the primitive variables form of the

¢ . .
unsteady Euler equations. A Cartesian grid is used for the spatial discretization of the flow

.domain into finite volumes and the solution is obtained by marching in time using

. Jameson's fourth order Runge-Kutt3 time-stepping procedure. The results obtained cover

subsonic and transonic flows for both lifting .arid non-lifting test cases on a NACA 0012

et

airfoil and are in reasonable agfeement with other calculations. Finally, an extension toa

‘multi-element airfoil has been carried out.
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- — -
. ' - ’ INTRODUCTION : ,
’ : (O .
L1 Bad | & Literature Revi
/ For the range of flight speeds-of most aircraft, ‘the airflow outside the boundary layer .

on the aircraft surface can be conmdered inviscid. Either the potential equation or the
Euler equations can be used to represent this outer inviscid flow. The.use of the potential
g;quation is based on the assumption that the fiowlis irrotational and isentropic. This :
‘model serves adequately i'or flows with weak shocks. However, Steinhoff and Jameson
(Ref. 1) showed that multiplé solutions of this equation could be Gbtained for a
symmetric airfoil, at a fixed transonic Mach Number and in a sszll range of e{’nglcs of e
attack. Subsequently, a comparative study of this non-uniqueness of 'tl;c potential
equation was “carried out by Salas et al (Re}. 2). In addition to these problems
,er}countercd in external flows, a unique potential solution may not exist for choked
nozzle flows with a prescribed back pressure. This is because the location of the shock is
determined by ihc entropy rise, which is ignored in the potential model. '

Furthermonc the entropy gradxent across a shock is proportional to the third powcr
of the shock strcmth M?- 1 where M is the local upstream Mach Nudlber at the sh‘Bck .

' Therefore, when this Mach Number reaches 1.3 or higher, the "&orrespondmg entropy

rise becomes significant and leads to % shock wave which appears further downstream in

'S

the potential model as compared to the Euler one. Hence, a closer approximation to the

Euler equations can be achieved by a non-isentropic or 'modified’ potential formulation,

. as shown by Hafez and Lovell (Ref. 3) and Habashi et al (Ref. 4&.\ The

Rankine-Hugoniot equations give the the entropy rise across the shock which is used to. P
calculate the tota.l pressure. This model succeeds in overcoming the non-uniqueness

problem of the potential equation. However it does not account for the resulting

_ vorticity production across the shoc}c, given by Crocco's equation, \ < -

s



-

where: | ¥ = velocjty vector ; & = vorticity vector = curlof V °
S = cntropy‘ "y Hy=total cnthali‘:y \ |

The other alternative is a stream funct;’on' formulation which can accc;‘unt for.both the
entropy variation and the corresponding vorticity. Studies on this model haivc been done
by Hafez and Lovell (Ref. 5), Habashi’ and Hafez (Ref."6), who have shown

turbomachine applications and by Atkins and Iﬂ:‘san (Ref. 7); whose formulation does

. not require explicit evaluation of the vorticity.

Howcver, the Euler model is thc approximation to the Navxcr-Stokcs cquadons in
the limit of mﬁmtc Reynold's Number and hence serves _as,a cc'm\{cment foundanon‘ t:o;
testing various solution 'algoritlims,,Among the earliest z:dics on this formulation was"
done by-Magnus and Yps@ihara (Ref. 8), who solved the unsteady 'Eulcr equations
explicjtly, by a Lax-We;ndroff time-marching technique. The drawback of this explicit
model was the long execution time required for reaching llle steady state. Tﬂis led to the
devclop(rr‘lent of implicit methods, notably that-of Beam and Warming (Ref. 9)~, whose

advintagc lies in the unresgricted stability limit. Subsequent improvements in explicit

_ methods were made By Jameson et al (Ref. 10), who used a fourth-order Runge-Kutti

scheme in order to obtafn a larger Courant Number than most other popularly used
schemes like the Lax-Wendroff and MacCormack schemes, which are second order in

Alternatively, the steady Euler equations can be solved by relaxation procedures, as

Shown by Dick (Ref. 11) and VJohnson (Ref.‘ 12). Dick's procedure consisted of three -

steps, of which the first two were a predictor-corrector set of the MacCormack type and
the relaxation was carried out in the 'third step. Johnson sl;owcd that the first-order Euler
equahons could be embedded in a sccond-ordcr system, which he refers to as the
surrogatc equation technique. Relaxation procedures which have been developed for

2

’

Yx@ = VH-TVS | “ L




4
. 7

other second-order equauons such as the full potcnual equauon can be then used for |
\ | solvmg-?hxs surrogate system. LT
Furthcrmo‘r:e, the spatial discretization of the convective terms in the Euler equations ‘
can affect thé stabilit); of the solution. Since thé Euler equations have both positive and
unegati\'rc eigenvalues, the natural choice for a neutrally stable dis_cretization is a centx:al
diffei‘encing scheme. The convective terms of the. Euler equations discretized in this
, manner, have complex cigenvalues. Carey (Ref. 13) studied plots of these eigenvalues
(Gershgorin eircles) in the complex plane, which reveal that for a purely inviscid system, -
the mtcrccpt on the unagmary axis is double- valued in sign. This leads to odd-even
K decouplmg and the ‘w1g les' associated with central differences. The odd and even
numbered grid points give different solution families. In order io couple the odd and
even pomts artificial d:ssxpauon terms are necessary. Addition of these dlsslpanon terms
shifts the eigenvalue circles to the left of the real axxs, thus preventmg bifurcation of the
‘ " imaginary part. These artificial terms must not affect the second order accuracy of the
finite volume schen;e and _hence fourth order di’ssipation is preferred to the simpler \
second order type, for subsonic flows. Since transonic flow cohsists of local supersonic'
pockets in an overall subsonic flow, this dissipation can be adapted to the, ﬂow
switching between fourth order and second order terms.
,Altemate methods of maintaining the stability of the solution scheme include the
split-fiux technique, as shown by_ Steger and Warniing (Ref. 145. They separate the
o fluxes in{o positive and negative eigenvalues and use upwind and downwind
differencing, respectively. 'fhis shock-capturing method can be used either for explicit or
im{alicit algorithms and does not negd.addition of an artificial viscosity.  _ |
' Having justified the choice of the particular solution scheme, the body boundary
) conditions must be exammed Since these condmons have to be sausfied accurately, the
spatial discretization must be achieved throuOh a grid that is preferably body- ﬁtted Thxs

/ X
3!

‘

L
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is achxeved through n'ansformauons that conncct the gnd points from'the computanonal
domam to the physical domam Commonly used mappmgs include algebraxc methods’
and methods bascd on the solution of pamal differential equations.,In the latter case, an '

. elhptxc equauon can be used to determine the mternahgnd pomt spacmg, after the pomts
on the outer b6undaries have been specified. Altematlvcly, a hyperbohc equauon is
sblved by marchmg towards the outer boundary after spemfymg the gnd points on the
airfoil surface In order to eliminate cross-dcnvanve terms in the transfonnanon mctncs
1t is desxrable to have an orthogonal grid. Thxs &an be achxeved through the use of
conformal n}app}ngs (Ref. 15.). The cootdinate system resulting from a conformal

mapping’ can.have singularities’at corners like trailing edges. If a grid has to be
co‘nstructed for a muldply-connefted’regiom for examBlE an airfoil with a flap ora
wing-pylon.\conﬁguration, then special treatment of tﬁese singularitiej' is rcqluired and
s:everal techniques are used by different authors to patch the various ;ub-mgions

' together.. Therefore, interﬁo\lating functions muyst be ué\et the r}xei,ghbouring corners .

leading to disco/ntinuoiie transformation metrics. Tra?;f'mite'ixiterpolati_on is areasonable
solution to,'this problem a}nd uses interpolating functions from finite element
mefthodology to obtain '109/cominuity of transformation mezrics Also, in ofder to use

“ f1n1te volume methods, it is necessary to have gnds with minimum skewness. i—Ience

Wedan and South (Ref. 16) avoided thxs mapping problem by applying a sxmple‘

Cartesum ond to internal flow and smgle airfoil problems and (Ref 17) shows the

a 8

apphcatxon of Cartesian grids to muitylement a.u'foxls

The use of ﬁmte volume methods to dlscrenze the flow domain makes it possxble to .
éénsfy the body ’boundary conditions accurately, irrespective of the shape of the
boundary. "This is similar to the advantage offered by finite clement methods, wheré the
sides of some elements approximate the bo&y su;face. I-fowever, finite vol_qmc methodds
have the adva'niage of si'mgllieity of calcu}adons %f finite differenc:.c r;lethods; .

4

Ve o e N . e .
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4 L2 -Problem Statement and Scope : o _

. In the present wrk, the-unsteady, two-dimensionaf Euler equations are solved for in
primitive variable fonrg. A simple Cartesian grid is used for the spatial discretization of
the flow inito finite volumes. The equations are written in divergence form to_ensure

conservation of fluxes across cell interfaces. The finite volume formulation ensures

" conservation of mass, momentum and energy within a cell. The solution is marched in

time using a fourth orc‘ier' Runge-Kutta, time—stepping procedure. and stability' is”
mamtamcd through addmon of artificial dissipation terms. L
vaen thxs background, the objocuvcs of this thesis can be stated as follows :
(1) To devclop an Euler code using t'}mte volume discretization of the flow-field, on
simple Cartesian gnds |
(25 To show that this Eo&e is capable of producing solutions in agreement with th‘o.sc
obtained using body,ﬂgted grids - for both lifting and non-lifting testiases on a
- NACA 0012 airfoil. ' ‘
(3).\To demdnstrate tl?at this code is also capable of solving flow yroblems involving

multi-element airfoils.

-

. 'I'hc core of the thcsxs is Chapter 2. Each.article of thlS analy51s chaptcr bcgms witha

review of contcmpofary numerical methods for the solution of the Euler cquanons
) . . o

.fo]lowcd by a justification 'of the particular procedure being followed in the present

work. Subséquently, the derived expressions are validated by running the resulting code
for a variety of applications. The results are presented and discussed in Chapier 3, with

referénee to Figs. 6 to 15. In summary, the main engmcermg contribution of this

- ‘Madter's thesis (@ that an Euler code has been devcloped from first principles, using

 contemporary numerical techniques.
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' ANALYSIS. ,

“

\ : \

Each article contams areview of several r\umencal methods for the solution of the
Eulcr equations of fllgd dynamics. This is foﬂxed by derivations of the partxcular

’ cxprcssmns uscd\finally in the computer code. ;

-

"N $21 GoverningEquations : |
’ . The Navier-Stokes equations give a complete description of the fluid flow. But for
“flows avcrairfoﬂS*at high Reynolds' Numbers, the viscou's' effects can be"i'gnore&. This

leads to the Euler equétions The Euler code solves four cquétions for ihe conservatién

of mass, x - and y- momentum and energy. These are two-dimensional equations and

* are written in conservauon fqrm as,

dw + of + 0 = 0 (1
, dt ax 3‘5
“ w - ] 3 " : < ) , Q
4 w = ,lﬁ,pu.,pv,pEJ . % / N
f = [pu,pu2+p,puv,QuHJ , <
"‘"L/ g = = [pv,buv,°pv2+p,va{ : ' - 2) -

o~

" and the quantities p,u, v, pandE are termed as primitive variablés. ..
For a.n\ideal gas, the total enthalpy per unit mass is expressed as, -

]
4

. . T 2 : :
- H = z1’_P___ . 1l + V) . Q9
. a-Dp 2 ' \ .
where the equation of state, ata temperature T and gas constant R gives, - '
o . p = pRT o R ON



A

The integral form of the Eulcr‘c_quatio‘n\ system (D) is obtained frorh the divergence:

thcorcmas, LA

i . 4

”w dxdy Lo .J(fdy - g’c'iX)‘

.

[}
P

(4

‘overa domam S (whxch isa ﬁmtc volume ctll) w1th a boundazy dS

§$ 22 GridGenemfion:. . . - - . °.

Iti is well lmown that there are basmally two types of grid gcncratmn techniques,

. namer algebrmc methods and methods based 'on. the solution of partial differential

Y
;quatxons Vanous transformauons can be used to conncct the gnd points from the

computauonal G - plane, to the: physmal z plane. In order to chmmalc cross-derivative.

terms in the n'ansfonnanon metrics, 1t is dcsuable to have an orthogonal grid. 'I‘hls ¢an

" " be achieved through conformal mappings (Ref. 15). The Joukowski and Karmgn-Trcfftz
' ‘airfoils‘are examples of boundarics"treated like ttus ’I"hc‘cohformal fr;appings. may b oo

?cxprcssed as a series approxxmatlon for z, and it is necessary bto determmc ﬁc |
coefﬁc1ents of thesc senes But the resulting coordinate system can have smgulantxcs at
finite distances from the boundary - so only a pornon of the coordinate system can be
used. This poses a problem for mulnply connected regions, like an zurfoxl with a ﬂap, )

“or aswmg pylon conﬁouranon etc. Othér problems like patching techmqucs have bccn
discussed earlier in Lhe introductory chap_ter. Because of all these problems with body -
fitted grids, Wedan and South (I‘lef. 16) pior;ecred the appfication of CancgiarL grids
generated by simplé algebraic transfomiations.—

The rcctang;xlar or H- gnd system used in this thesis is based on the fom;ul‘ation

proposed in Refs. (16), ( 18); and (19). The grid generation procedure begins with-setting

+ the left, right, upper and lower boundarikcs of the computational (§, 7 ). pla;lo as
follows : Horizontal (§) and vertical (1) ranges are given as,

- .- 7



. ) : I o . . ’ e +
where € is a small number. The next step is to compute the finite volume cell side

lengths. For example, fora (N x M) grid used for an'airfoil, the cell side lengths would

. l?c,

7

3 f

3

L
»

s

. left boundary = -
- N -4

right boundafy .

lower baundary

. upper boundary '’
, — M-4

i s N-2,

i s M-2,

p;s’\xs because the gnd boundaries are chosen as,
for all xl and 3
'-for all Y; and n;

4

so that a margm of two cells can be set at all far-ﬁe}d bolmdanes for use in ghe

_dissipation oalculauons, as demonstrated later. A spline fit of the airfoil coordmates is

made, qsmg a package dcvclopcd m Refs. {18) a.nd (19) and thp intersections of the ‘

' body contour and the érid lines is determined, giving the left and right boundaries - for

areas can' then be computed accordmg to a general cxpressmn glvcn as,

Area

-

%..<§x .S,

where with reference to Fig. 1,

2
5, 4.8,
S, - S,
1S5 - 8,1

+ SK.Dy

+ Sy.Dx + Dx.Dy)

-

. “the § coordmates and the upper and lower hotindaries - for the N coordinates. The cell

®



Consider the boundary cell as in Fig. 2. It is readily seen that its area is,
Sy-8y ~+ 17.(34 + 5).(5; - Sy

The area of a full cell =‘A§.AT\ is similarly equal toy -
S,.8, = §.5 = S§,.§ = \84§S3

These two cases are covered by equation (5), where the D terms are non-zero only for

the boundary cells on the airfoil surface. Thus equation (5) is'valid for any éclI prdvided Ot
'that the lengths of cell sides contained completely within the body are sct to zero. ‘

The spline fit of the axrfoﬂ may produce cells with very small a.reas as comparcd to-

neighbpuring cells, leading to large vanatlons_ in time steps. This is chause the time

steps depend on the side lengths of the cells, as demonstrated later. Since this can

destabilize the solution, this“problem can be overcome by corhparing the areas of

boundary cells, with the areas of cells immeédiately abgvc. or below them. As an example \

consider the upper surface (see.Fig. 3). If the boundary cell area (see F{g. 2)is less than

or equal to 50 % of the area AE . An of a full cell, it is added to the cell immediately

¥

above. Therefore, as shown'in Fig. 3, the cell (i , j- 12 is added to the cell (i, ) The

.boungz}ry of the new augmented cell is shown by the dashed line (see Fig. 3).

§..;iﬁ_ad_’l‘_musfannanm

Asintroduced earlier, the gnd generation is an algebraic ethod. For such problems .

it is simply a matter of choosing a stretchmg and cl
transfprmation. Among papers on Cartesian grids, the following strctchi—ng functions are
notéwolthy. Wedan and South (Ref. 16) use a stn:tchirig fungtion for their grid as,

X, = x, + (ax)"*

where, Ax; = x; - x,; ad a = Ll.

Clarke et al (Ref. 17) use a geometric progression for

grid, of the type,

tering function for the’

"
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+ (xi

1) B whcrc [3

Consider simple 'tn'gonometric functi‘ons like

funcnons As is seen frorn Flg 4 for the reg1on upstream of the mrfoxl, the coordmates

‘

sin x and

’

;.2'5 :

+

tan'x - whxch are odd ,

x and & are neganve. Similarly, for the reglon downstz'eam, X, and é > O 'I'he

-

“h

X

-

y.

.

where Lhe constants A, B and D define the clustenn‘g of the mesh pomts and va.ry

values of these constants axe, /

A.tan§.e

-BE

D. tanT]

08B

’I’hxs gwes CluStC:‘m*’ in the leadlng and n'mhng edge reglons and stretchmg in t.he ‘»
far-field regions (see Flg 4), due to the exponentlal term’ m equanon (6). For transomcc'
flows it s necessarv to’ stretch the far-field boundanes very fa,r away- (about 16 chords
away‘;}from the -axrtod) in order to obtam convergence This is’ done usmg a value for the v
constant A= 8.0, .only in the reglon away from the an'foxl For subsomc hftmg flows,
only in the leading edge reglon A=0. 6 ’ ‘

" ‘From equanon (6), 1t is easy to analytmally obtam fche transformanon rnetncs as;

This is a simple method of cpntrolling.t‘he local clustering of the grid in a oné -

dimensional serse, where the stretching is inversely prépo'r't'iona_l*'tp the constant A.

/

.

3

i

.

LA

N .
¢

06D

I

‘ ’

cos’ /D

I

“t

*»

-

.-

0.2

»

i

" the physical plane, according to the transformation,

4

‘1

'
./’ * r

€ g (BE) + sectENT,

N

- ~

'3

’
'

.

‘ typically between unity and 20, with increased clustenng “For, oeneral a.\rfoﬂs, typlcal

e

(6b)

_uniform (& 1) gnd in the computanonal plane }s transformed into the (x: ,(y) gnd in
. - ’ c -Q' . L ‘l . ‘

¢

,/’

"
.
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. Similarly, the x - momentum equation is obtained as, -

ansmg froma numcncal evaluatxon of the t;-ansformauon metncs, . .“ C e Y )
" (. . o, . . e

Thus the main advantage in usmg algebrmc mappmgs is that they are cqsy touse and - o

—— .,,———-——‘ ¥

§ o e g

to three - d1mcnsxonal problcms in a stmghtforward way, w1th thc same funcnon used )
“for the three dm:cnons (Ref. 20). Aftcr transforming the (g n) planc fo the (x, y) o
plane, the airfoil is shifted to thc lcft of the origin by }5 gwmg the- locanon of thc U

2 1
‘.

 leading edge at x=-05 nd thatofthc umimg edge at x = +05

¢ . re?
‘

. . -
- -t . M P v

24 E‘Lmtz_nhm:.lzmmmn L S

-~

Upon applying equanon (4) to cach ccll 11 j) in thc two duncnsxona.l gnd, thc L

<« finite volume exprcssxons are obtained in a mathemamzal form. - LT

)

Therefore, with reference to Fig. 1,~ the contmmty equation can bc written .as,

. .
= “ . . ’ 'y . .o 4
L . . “ b L4

W C ot - - ~
N T(P A) Z(pk Qk),J =0 ™
;’(here, \ : i_"m‘*ﬁhhﬁ“ T
’ k = side S, ofthecell (i, j)
» ’ .
. ! S
A = -Areaofcell (i,]))
’ Q. = Aywmw - Ax;v, = netvelocity flux
. y .
” Ay, = S - S, . Ax = S, ~8 T ®

It is to be notcci_ that for cells that are not on or inside the airfoil, the ferms A Yy and A x, -

- are equal to zero.

'

) - \
I3 LI N . 1.‘1 -
*
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SRR cncrgy eq{xauoxis can be suhxlarly obtamed.

o ‘“‘ éonvcmcnt, cquanorr (1) can bc wntten as, k . -

- L 5_5_ -P~ ?T;,l%% . 0“ ) (10)

w ” )

Ik

-A\

partial derivative term8JThis is because the finite volume equation (4) rediees t6 a
N _ .

ccntra.l d1ffercncc scheme on a Cartesian gnd. A

It is seen.that in equation ( 10), a transfo: version 6f the Euler \equations hds been
N casxly obtamcd wmch allows a moyement from th\*. phys1ca1 plane to the computatlopal

plane and vice - versa, \/Iultlplymg cquauon (10) by the product AF, An, equanon (11)

A

- 1s obtamcd as,
. r

S

S o d(WAEAN) + JE(AFAT) + M(AgAE) = 0 - o
U e

- X

-
- A -

unsteady term and thq__f_ipx balances (Af.An) and (Ag.Af) ‘in the spatial derivative

.tcrfns. Applying equation (11) to. each. of the Euler eqfxattions, the final version is

ol obtained as,

¢ .
' 1

S i{’-, AegX In gquauon (9) [hg tcrm A pk dcnotcs thc.body pressure, whxch 118 non-zero if and onlY

RN In order to‘dbtam ﬁ form of thc ﬁmtc volume rcpresentatxon that AS\computatxonally

where terms like ARA | £Fe takeh to be the central difference vcrsiii‘ of the

. Equ',aﬁcn (11) has all the features of equation (4), namely LLG cell'area (AE.AT) in the
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where, with reference to Fig.

Sz .= Sy
‘ Suz = 54

Smm © Siiny

Si.j+l/2 - Si.j-m

1; it can bc~sém that,

Siip = 5
‘ S =0 S
= An = §° - §

= A&f = "84 - S

X, = A § = x-projection of segment of airfoil surface
f oo that is intersected b;' a boundsry cell

aY o =; An = y- prbjcction of this segment as above

p, = pressure <;ﬁ body surface ' .

A}

It can be noted from the above cxprcssmns that for the upstream facing side of the

corresponding iricrease in the vertical flux. Thcrcfofc,'thg velocity v thus computed will
show a physically' logical increase on the upstream facing side of the airfoil. Sﬁnﬂarly,
for the ﬁéwnstrcam'sidc of the airfoil, Y, 2 0, thus leading to the reverse of the above”

L]

surface, Xp 2 0.

Furtheriﬁore, if a finite volume\?:ell is on the airfoil surface (i.e. a boundary cell),
. then the cell side {hat is intersected by the airfoil surface is set equal to zero. As an

example, consxder the boundary cell in Fig. 3 shown by dashed hnes Here, the cell s1dc

- As a result of the finite volume dxscreuzanon equations (12), (13), (14) and (15)

airfoil, the term Yp < 0, thus ensuring a decrease in the horizontaf flux and a -

situation. For the lower surface of the airfoil, the term X < 0 and for the upper

S, = 0 (following the notation of Fig. 1). This is accor.gng to the formulauon
proposed by Wedan and South (Ref. .16), which sets the zero --flux boundary condition
on the solid wall of the airfoil surface. Thus the grid generation is indeed criticzil.

can be collccuvcly expressed as a system of ordinary dxffcrcnual equations, by ]

considering the grid to be mvandnt with respect to time, or, -

14

Y

~

i
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where A;; = AE.An. Therefore, they can be written as,

dw; + K 0 ‘e
y o

.J' refers to the unklnown variables as in equation (2). The

time-marching pro€edure (a Runge-Kutta scheme) will be shown later in this chaptcr.'

§ 28 Amﬁmal_Dmmnnnﬁalmnnmna | S :
If Cartesmn grids are used for the finite volume approach. to the solutxon of an

inviscid flow, then the problcm is one of central differences on the Cartesian mesh This

'

is seen from the governing e'Quauons (12) - (15), derived earlier in this chapter This °

central dxfferencmg scheme is charactenzed by 'wiggles' betwcen the odd and even grid

- points and oscillations in regions of high pressure gradients, occuring around shock

waves or stagnation p?"mts (e.g. at the léadix'xg edge, for subsonic lifting flow). For
example, consider the model lineatized one-dimensional flow, with negligible viscosity

-

(viscosity coefficient = € ) described as, *

du N + c.qu = e.dw ~am

.ot dx d x

’

->”

T T A 2u; +u (18)
- P .- '.I l - l-l- —— l
TR vy v

Defining the cell Reynold's (or Peclet) Number as, Re ax = C-Ax/e and acoefficient

r-as, r=¢.At/A x% then the equation (18) can be written as,

Uéin‘g central differences with a one-step explicit scheme, this can be wrgten as follows,



e, ‘

&
- o+l - ' . : n
u = % (2- ReAx).uh‘1 + (1--21').\11i

+ .2+ Rt:Ax).u;’_1 « = (19)
2 .

LN
t ’
‘> -

Now, it is desired’that a steady-state solution be obtained for tthove equation, at a

hxgh Reynold's Numbcr because the Eulcr equations are the §pproximation to the

) N avier-Stokes equatxons, in the limit of mﬁmte Reynold's Number.

k!
Therefore, given an initial condition as (Rcf. 21),
u(x,0) = 0, 0 £ x 51

Ay

and boundafy conditions as,
w(@0,t) = 0 ; - u;t) = 1
the behaviour of u“i*'1 can be studied from équation (19), using a 11-point grid, for
[ g

example. At the end of the first time step, the values of u“i*l‘= 0, atall i gnd

locations exceptat i="10 and i=11 where, -

fl = r.@-Re)(D) + .(1-2r')_;(0) + oL .(2'+Rch)'(O)‘

[
[ L]

il

.(2-Re, ) - T g (20)

- (\).lﬂ

&

and u, isfixedat I, ém the boundary.
In equation (20) if the cell’ Reynolds Numbcr Re,, is increased bcyond 2

o+l \
{ “1:) < O ; this is an even point oscﬂlanon :

At the second time step, using the same valuc of Re,, > 2, ‘thi.s oscillation will

propagate upstream by one poil\t, as from equation (20),

n+2 ) n+l .
u = r. (2 Re ).u ,
9 X ax’-%10 . _ \
"> 0. ; thisisan odd point oscillation
a : . X
’\ \ -
Fn . ) 16

Jl

o



Thus, at subsequent time steps, these 'wiggles' between odd and even points will kcép

on propagating upstream and will exist even.at steady-state, due, to the second-order

truncation error of the central difference schcme used for the convcctivc term in the

equation (17). This can be corrcctcﬂ by usmg an upwind dxffcrcncc for this convective

term, or equivalently, addmg artificfal dxss1panon terms to the convective term.
However, as shown below, u,pyvind differencing schemes: are not always st'ablc.
Consider a ﬁﬁrcly inviscid version of equation (17) with a first 6rder backward

difference for the convective term as,

»

o+l n
u u, X

. -, = o - @2n
Sz “ixx -

i

A Fourier analysis of equation {21) can be carried out for studying the stability of this

scheme, by considering, '

. ' .Al
u? = c“.e’kx\, where j =‘(-1)U2|

The amplification factor is then obtained as, |

aat

z = ¢ = 1 + {-NAt .[25in’(©/2) +jsin6] } 22)
. where, |- 0 = k.Ax. ~ .
Hence ! ')rstabili'ty'ofthis scheme, it is required that, o, \ |
Yz 's 1 - oo X > O | (23)

* But, as is analyzed later in this chapter, the Euler equations have hoth ‘positive and

negative eigenvalues. Hence the backward différence used in equation (21) can be
, R

unstdble for negative eigenvalues, except yvheh ﬁux-splim’ng of the convective terms is
resorted to, in the Euler equations. Thcrcforc, for positive eigenvalues, the first order
backward dxffercncc of equation (21) is uscd and by an analysis similar to cquauons (22)

and (23), it can be shown that, for negative e1genvalues, the ﬁrst order forward
17 )
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d@fmncc (uy,, - y ) can be a stable représentation for A u.

Now, it is necessary to show thc equivalence between the 1mp11c1t dxssxpauon of an
‘upwmd scheme and thc dissipation’ added e;?plxcnly to th; second-order central difference
terms of the ﬁmtc volume scheme follow;d in this the.s'is\. y “

A second-order central difference form of the convective term du /9 x can be written

. a‘s, ”! ! ) »
U e W = ou <u, + 1 (u -2u +u) (29
. °—“lm L. .13_{1 L m i+1 i - i1 T
b SR
o, -8 = (y-u))Ax = 8§ + (Ax/2)‘.u,;x
PR ~; . nd ‘ . - ’
- = 2 ordercentral difference + Dissipation - (25)
\5 ) Fl a . .
where the second-order central difference is,
- (8 + 5‘)/2 ‘ °
: ] . 1
d and\(}c dissipation is a a second order difference, - ) B .
' . 2 N { } . . . :‘o_,
~ . . .. B . ' T
A L A SU
. C % N . -
' h . b of. { e :
= -(8 -'8)/2 - C . (26) -
¢ N )
"

| whc}e, & and & are denoting the backward and forward diffcrcnccs,"rcspgcﬁvely. .

Next, the second order upwind éngi forward difference formulas can be written as;

- «

. 8; = du = 3. 4u + U, ~Jand -
x TAx :
» " ”
d = Sy + 4u - u 27
? L Zhx T
- ’ . 18
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Thus, another fonn of a second ordcr central difference formula for the convecnve ta-m

can be written’ m a way sumlar to equation (25) as, '

ot _ f 1 - N b
L @& + 3,)/2 = 0, + 4u. - 4u’ + u., .
( :\‘ i 2 ‘ L.1+2‘ '\.1 x5 ".'l. 2 | ‘ -~ «_','
- o= '8; - Dissipaxion . - | (28)
« S w8 v (axiu ' ' -
a . . ‘ N
= 2™ order central difference + Dissipation 29
¢ A” N o / '
where the dissipation is the fourth order-difference, Tﬁ ) ‘ ‘ )
f 4 ’ : o ) ’a -
D. = "'\_sle(uH_2 - 4w o+ 6 -4 o+ ou) ] // R
a«, D' I (& + 8&)/2 - T (30)

- . ) b\ 2 \ , . .
. ‘ ' ! . \

Hence, eqﬁation (25) shows that a first order upwind schemie broduccs 'thc equivalent of

explicitly adding a second difference dissipation D? to a second order central difference. "

Similarly, equation (29) shows t’hat a second order upwind scheme can be equivalent to ’

explicitly adding a fourth difference dissipation D* to a central difference scheme ot: ‘ A
" second order. - . , )

- Now the problem is to switch between the second &iffercnc;c fourth difference

dissipations, in the vicinity of z; shock 'wa\}c. This'can be studied by considering the

&

, \tfollowing problem (Ref. 22),

Qu + QJu = 0 an
g-t_ . =, ax > .
. .assuming-for simplicity, a grid owsh size, Ax = 1°andtimestep, At = 1, & --
19 ‘ * -
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1 . ’ . . . y

given the initial conditions as a shock - like profile, ‘' - . ‘ '

. . %
*o. 1, iog I-1 _
. ~v
=0, i=1 -
'y ) ad = -1, o i 2 I+1 ’ ‘ ' - (32)
- ' - 4 i
"Let the updated value after orie time step be expressed as, -
\ , ‘ - ' o ’ )
o+l o * :
. ui = ui B (:14-1 1—1—2 + Di ) (33)

v

The term D, is a dissipation operator based gn the expressions derive& m equations (26) ;

~  and (30) as,
¢ . ) ) / . .
D, = D = - 025 (uu'2 un+l + 6.u? - 4.ugl + “:2) - (34a)
2 e
= Dy = 1 05, (“m 2.~u;l + u{'_l) ' . (34b)

Using the fourth difﬁere.ncc dissipation D4, the solution-after one time step is secn..to
'h'zﬁ?an overshoot (.= 1. 25) before thc shock,at i.= I-2 and acorresponding
undershoot (= - 1.25) after the shock at i=1I + 2, On the other hand, the second
diff’ercncc dissipation D? allows the initial condition to propagate exactly, without a;xy
oscillations' before and after the shock (Ref. 23). Howew}er as anal)'zcdﬁcarlier, this
dissipation D®> when combined with central differences, produces only a first order
- accurate upwmd scheme. Therefore, in order to have second order accuracy in
upwinding, the D“ .dissipation should be used everywhere, except m the vicinity of
shocks - where the D2 dissipation should be switched om,
The dissipation terms are computed at each cell (i, j), s;parately inthe x and y
_directions..Considering the mass continuity cquatio;{ f;r example,‘it is seen that, |

R 20
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ﬂ B i . ' oy X ot . i - S
. Dp = 'D;p + Dyp- - (39
where (Refs. 24 to 29), , o E
Do i1 dl 112 u
- D'y P“ = dx.m/z - ;'du-l/2 ' ._' (36)

L

. All the terms on. the right hand side of equation (36) have a similar form. For example,

4

. ' - ¢ ¢
. N .

dami = Auiye [ei+112.j Pirg - Py
L i+12,§ '
» L

S - Puzg ~ 3Py * 30 - PPl G

. @ - Co

Gang - = &.li-uz.j ALAPYE (pu © Puyy)

. -112,§ g
T ¥

SR (pH-lJ 3'piJ '+\'3'pi-l,j - pi-'2.j)] - 38

.
A . 9y

The values on the cell side (i+1/2, j) for example, are averaged as,

03 » *
\ -
Pir1r2j Py + Py . s

L
2

kaewxsc, At fedr2d and Al +2 are averagcs of the time steps and the areas of the

“ two cells (i, )] and (i+1, j). ‘I’he equations (37) and (38) are dcnqnng arate c;t' change

" of mass, dimcnsionally %’orrcsponding to equation (16).

It is mterestmo to note from equations (37).and (38) that thc D? and DY
dxssxpanons havc opposxtc signs, so that posmvc damping can bc xmplcmcntcd in
equation (16). This is also seen in cquauons (25) and (29). The tcrm A i is of
order (Ax) and the second difference between two cc‘,}ls is of order (Ax). The fourth

difference between four cells is of ordler. (Ax)3, if the coefficients €@ and @ are each

of order unity. Howcum’ﬁ;;s;c coefficiénts can be adapted to the flow. ’I,'o. achieve this,

.b-\ 'u

(e}

v g
o
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the cocfficicnt e should be of order (Ax)?, so the whole ‘cxprcssion ’and hence the
quantities di sy and dy ‘will both be of order (Ax)*. This means that an error
tcrm of only third order is being added to the spatial differencing opcrator F for the . ‘
' convective terms in the equation (16). Therefore, this third order error is a mixture of ' .
second and fourth dxffcmnccs. An effective sensor of the presence of a shock wav«ne can
be devised by taking the second difference of the‘ pressurg, qo-rres“i)onding to the second
order accuracy of the central differences for the convective terms. The coefficients &@ -

and ,3(4) are then obtained as,

@ - @) :
€12 = K. Max(vi,v,.) B9 .
) , (). @
ei+.ll2.j' =_ Max VO’ (k - “,1/2 J)] , B} | (4%
. - J -
where, X ' -
V.. = J ) . (41)
ij i+l —TTB 11,)JT .
] 1+ldj P P;. 1 ) )
: Oy ‘ i k
cand - 0 kK@ %= 1/4 ;K@ = 1/256. - s

;The arbttrary constants k@ and k@ are empirically chosen, as proposed in Ref.
(74) From equation (40), it is seen that the coefficient €® is of order 1. The second
difference is muitiplied by a coefficient & which is of order (Ax)2 in subsonic flow,
mcrcasmg to ordcr 1 in the vicinity of a shock wave. As for the fourth dxffcr\mce it is
multiplied by a coefficient €4 of'order "1 ‘in subsonic flow, falling to zero through a
.Shock. As these flow-adaptive coefficients 'depend on the grid spacing, it is easily seen

_ thata medium to fine grid ShO}lld be ysed, in order to use as little dissipation as possible.

o The dissipative terms for the morfientum and energy equations are constrycted in the
same Way ;s done for tife continuity equation, by suE)stituting pu, pv and PE in that .

.order, for p ;n équations (37) and (38).
‘ A\cag be seen from cquanons (37) and (38), the cvaluanon of the dxssxpmon terms

22 - o
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" one sct of boundary cclls @{,])) are avaﬂable\ In ordcr to obtaln valucs at the cell (1, =1

- extrapolauon is camed out in the vcmcal direction as (scc Fig. 3(),

" seen that (Ref. 30),

~ i ° il e o T =~
N L
) . 3 . Yoy
X B

poscs some problcms both at the airfoil su;facc and at the far-ficld boundaries, mgandmg 7

. gpost cells. The far-field treatmént will be- scusscd latcr At the mrfoxfsurfacc only t

dcs1gnatcd as cell gl and at the ccll (1, 1-2) de31gnatcd as cell g2 sccond order ‘

M= Wy W CeY L
. - ‘ ’ 20
Wa = LW Wy | 42)
. ‘ e RN e ER Lo - \‘ ;
s ‘ . . 0
where {w} denotes the pmmuvc vanab1cs p, 4,V p and B . n e

Lastly 4t is worth notmg how the dampmg produced by thc dxssxpanon torms can be
mtcrpreted physmally Consider cquauon (16) ,with fourth-order mssxpanon mn'oduccd ) I

as in equation (29), for a fimte volume cell ih onc-dlmenswnal spaco, : \ ' ‘ A

W o= -T%w) ) 1 K W L \ .(43) L
\ | . i » . .
where X¢ = ~e(“) A/ At, as seen in equanons (37) and (38):and A = cell area. -
L{ulnplymo both sides of cquanon 43)by w and mtcgratmg with' rcspcct to x,itis ~

.\‘J%.L-F(w)]dx ; }2 .wa.(K“w“)“dx (44)

-

.- l-si_fw}ﬁdx
7 dt

Integrating the second term on the right hand side of equation (44), [.wyioc by parts with

respect to ’x, it is seen that, o . ' . .' . o
1.d J-aiwlzdx = J'gv_.[-F(w)] dx - L |k e )te . @y
& - ™ J A oy A
' 23 SR
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b
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w4, \ . . . . ,
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where K¢ > 0 mcans that the amﬁcxa.l VlS’COSIty terms dccreaép the total energy of

L T °thc fimtc volumc systcm. chcc this hclps m accelcratmg Jhc conVergcncc of thc

’ . 'unsteadycquanonstothcsmadystate o g "o ., ~ -
' 7 ’,1 J‘~"; e | SR " /_;_—/ -
o .o ’ic unstcady term in cquatmn (16) has o be mtegratcd w1th rcspcct to nme Aftcr L1
, - ’addmon of the d15$1pauon terms DLJ ; equation (16) is modified to, 3 ' ’
L whgrc R(w) is'thg n’csidual.\ o ' . ‘ o C . )
: ? . ’ L. . St ! ‘
_ 'iv l— ;- .':"‘Rm. | ? ;1{1'](1:-1\1 . .Di.j)‘ ) ' (47). |
l_' . The simplest timc:stepping échcmc i; the Euler explicit method(forward time and
‘ ccnxcrcd space) which is unstable as shown in equations (18), (19) and (20). It can be
madc stablc by replacing u; in t.heS hncanzed onc-dxmcnsmnal wave cquanon ’
[, . ‘ % + c.%_\_;_ - ,E -0 - ~ (48a)
. y by, l » - ° | | .
. woo= L wy o (48b).
. ~ ’ | S . . |
) However, this wilkbe only ﬂrst-ordet_"accurate in time. A Fourier stability analysis of. _ .
equation (48) can be carried out by(,constdcring, ‘ v
\ . u? = g"‘. & , where j = (-l)m ’
o from which it is seen .that the amplification f?.ctpr is obtained as, " .
_w » oz g e = cos® - jAsin® | |
" & | o 2 -
M b e
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where, 0 = kAx and 9\. = C.At/ Ax = Courant Number. -~ .
For stablhty of the scheme in cquatmn 48), | zl s 1 6:' A S L
Obvmusly, thisis a hmxtanon on both the umc-accuacy and the Courant Number.

Thé nc,xt explicit schems is the two-stcp Lax-Wendroff mcthod given as,

u+”i ) : a n ' a
o Yan = 21- W +uy) - %— (W uf) -
\ ' ' .
o+l | n 0+ 12 n+172,
v i = Yoo Aolin - Y | (4%
where A = c.At/ Ax = Courant Number. _ N

Upon takmg Taylor s senes expansxons for Space and time, it Is sccn that the suncation

+.error for this Lax-Wendroff scheme is of the order of (Ax)? and-(At)%. The main

drawback of this method is the need to compute unknowns at the two grid points i+1/2 . |

and i1-1/2.

_ This is Arcndcrcd'uﬁneccss‘ar)'! by considering another well known two-step method

" . with second-order spatial accuracy - the explicit predictor-corrector M‘acCorma'ck\
- ¥ B .

. \
.

scheme, . ™

-0+l n
Y = Yoo X(qu - u?)
a+l u\ -0 Il o+l o+l :
3 . - L
wo = l.qu + T ) - A. (G ) o (50)
1 7 i i 2 i I-I L

i

"The stability lumts for both the Lax-Wendroff and the MacCormack. schemes are the .

same, A € L. A

- The simplest second-order time accurate method is the Leap Frog scheine. When this

is applied to equation (48a), it is seen that,




ln+‘l n-1 n ‘n ) .
Eﬁl—li° . + c“ Bi'b-]-ﬁi:l- 0 (51)

- Itis seen from cquauons (49) and (51) that thq second step of thc Lax-chdroff mcthod \
is equal to thc s LeapFrog method for the rcmmmng half time step. The Leap Frog method

. /Isﬁqttcr than the Lax-Wendroff method. in one way - that it does not need an additional

' Sigp to accomplish’ second order time accuracy. Howcvcr the main drawback of the

Lea og method is the need to havc a spcc1al startmg procedure for obtammg the
valucs at the (n-1)® time stzp ) )

All the abové schemes are only (At)2 accuratc and have a limit on Courant Number

"»

.as 1. Thereforc it is necessary to search for a scheme with a higher order of time

accuracy. The classxca.l four step Runge-Kutta scheme has the advantage of being time

»

* accurate to the order of (At)*. Any four stage time-stepping scheme can be studied by"

expanding u2*! in a Taylor's series as, - o
- . ‘\\ B
el n v e 242 A end 83
u = u + Atdu + (A)°dn + (AD°.d
) b ‘ x *a & 5
; 44 '
+ A)Qdy + --- ) (52) -
TR -
. - - ‘h
A Y /\ 5

—~Ahere the term u (=0du/odt) is obtained from equation (48a) as,

=
il

. -c.u_, leadingto )
LS 7 . - . - .
U, = -'c.ux.x , } . | (53a)

" -c.uy, » ’ ) -(53b)

g

[ =1
]

Ay

Substituting for .u,, from eq\iation (53a) into equation (53b), it is seen that,
W = o | i ‘(54a)

Similarly,
~ .26
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* 4 . e " . . M .
b T 7O U o N O
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Upon substituting for™ u,, u,, u,,~and” u, from equations (48a), (54a), (54b) and
. b -

“ s 7

(54c), into the equation (52), the following is obtained as, _

n+1
w

1 = |1:'-l.8u+ A2 8% - A+ A% - 55 >
z 3 T

&

where the terms in 5, &, 5 and 8% are the familiar central difference terms of

second order accuracy and A = c.At/ Ax = Copraxﬁ Number. o

¢

Putting Fourier terms into equation (55) as,

o+l t  jk(x+AX
W, e

l ,  where. j=(D"

it is seen that the arrfpliﬁcatipn factor obtained is a polynomialin z ['=\ j sin (kAx) ],

Gz) -= & = + Kz o+ Az.z2

4 . '
+ A3.23 + Az o+ --F (56)

"

1

“ The stability region of such a fourth-order séhcme is given by those values of z for

which the ampﬁﬁcation factor, GZz) < L . . v

Consider the model problem of equation (48a) with second-difference dissipation,

) d3a =  -c.ou + 20 (57)
ot 0x ' 5%2. ‘ .

9

Introducing central difference approximations and a Fourier term as before, the

amplification factor is obtained as,

L)

[}
o

j(Asia®) + (1 -4Psin'0r2) (58)
. ’ N ) *

L. . - v B
:

& 0

o
H
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whcrc j=(- 1)“z 9 = k.Ax and A = c.At/ Ax = Courant Number.,
‘ Tl'lc stablhty region is glvcn by a plot ‘of values of 8 forwhich |e*| < 1.1tcan
be seen from equation (58) that the addition of the d15$1panon tcrms shifts the s’tablhty
' région to the left of the real axis, while the maxunlxm value of the intercept on the .
“hmaginary axis gives the value of the Courant Number A for which the time-stepping
séhemc will be stable. A similar treatmcn't of equation (56) shows that the Couraﬁt
- Number of any fourth order scheme is given by the intercept of the s}ability region with*
the imaginary axis and has been found to be cquz;u‘to about 2.8 ; by Jameson and
othcrs (Rcfs 24 to 30). Thereforé, in comparison with all the first and sccoqg-ordcr
txmq stcppmg schcmcs examined so far, the classical fourth-order legc Kutta
procedure has the advantage of :
(a) Higher order of time accuracy [ =(At)* ] and
_ (b) Higher value of Courant Number [ = 2.8 ]. ‘
Moreover, in contrast to the Leap Frog schgmc and an alternative fczurth—ordér scheine
like the .Adams-Bashforth method, thc\four:step Runge-Kutta me£h<?d does not require

any special starting procedures for gctting'fnitial values of the unknown variable at

previous time steps. Applying this classical four-step Runge-Kutta method to equation

@6)gives, )
W(O) = \K’n
W < w® . (At 12). R(w®) h S
w® = w . (At/2). R(s:v(l)) . <@
w® = w@ - (At/2). R(w® ), . ”
w® = w® - (At 6RWO I 2RWD) + 2RwD) + Rw)]
W W o ()

where R(w) is obtained from equation (47). However, one drawback of this clagsical

type of four-step Ru'ngé-Kutta methodis the need to store the values of the variable w.

~ . 28 . \
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at cach'of the four steps 0,1,2 and 3 .in or;i;:r to computc'th:: final value at the fourth
stcp This becorncs a serious computer storage problcm “especially since \w\ denotes
‘\ the Euler variables p, pu,\pv and pE. -
Thcreforc, alternative forms of thls classical procedure have bcen studied by
Jameson in Ref. (28) and by Turkcl in Ref. (30), which havc been found to. have r.hc
same Courant Number ( = 2.8) and time accuracy of the ordcr of (At)“ as the classxcal

form. One such scheme which is used in this thesis is given as,

WO = e

w) < WO - (1/4). At . R(w®) ‘ -

w® = u}w - (1/3). At.k(wm)

w® = w® - (172). At.R(wW?) -
w® = w® . At . R(w®) 4 '
Cal L W@ - (60a)

where “R(w) /is obtziined from eﬁuat'ion 4. In this case, gvaluadon of the dissipation
terms D(w) at each of the four steps of the Runge-Kutta scheme; will require a large
amount of c;mputer tixﬁe. It has already been shown in the analysis leading to the
equations (39) and (40), that the dissipation Eemxs are contributing an error term of only
third otder to the convective tern;s. Therefore, a considerable amgunt of computer time
can be saved by freezing the dissipation terms at their values tgcfore the start of the first
step of the Rungc-Kutta scheme. As a result of this, the terms R(w®)) in each step k =

1,2,3,4 clin be written for a finite volume cell (i, j) as, '
. . ff
Rw® = L.[Fw®) - D™ " (60b)

ij
S

Summarizing the time-stepping procedures examined above, after J ameson (Ref. 2.10), -

it is seen that if one unit of work is assigned to the operators F and D of equation (47),

~ AN
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then the following table illustrates their respective merits and demerits :

. ° B ,

Leap Frog 1 -1 2 1 - 0.5 _
’ ' ot /
MacCormack 2 - 1 3 1 . 03 ud
LaxWendoff 2 1 3 1 0.3

4 ~ \ !
R-K (eqn. 60a) 4 4 8 2.8 ' 0.35

RK(qgpéOb) 4 1 5 28 0.56 |
-Hence, although a fourth order Runge-Kutta scheme using q'q;ation (60b) was followed
in the present work, it is possible to use other methods like the Lax-Wendroff and the
MacCormack schemes, where the maximum Courant Number is limited by the number
of steps within a particular scheme. Since all the methods reviewed are of the explicit
- sort, it is obvious that Courdnt Number restrictions cln be overcome by using implicit
methods, which on the other hand, have the drawbacks of more computation and
storage. _ '

\'i’hcmfom, explicit methods require an esti/:rlate of the“l"ocal time step At. Consider
the twp-dimensional form of the linear invisqid flow equation (48a) as, |

T du T+ c.du o+ c.gu = 0 (61)
at - 0x ¢ ay

Using second-order central difference forms of the flux terms and a Simple explicii

.time-stepping scheme, it is seen that, \ N |
el a n n o n ..o '
i - Yyt 2—-—‘:' QU o Upgy) F 29——='§;(~“u+1 TR (62)

Introducing a Fourier term into the above equation (62) as,

u:j = e, cm. ejky , where J = (—1)1/2
— . i Y

~
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the following expression for the arﬁpliﬁcation factor is obtairied as,

i

At - “in

e = »1 - J(lx.smei + ky.smey) ' (63)
» .

where, ‘ . 3 L T A\

A, and A, are the Courant Numbers in the x- and y-directions and

0, =, kAx , By = kAy

Thc thaximum value of the i unagmary part of the amphﬁcanon factor in equation (63) is

A}

, obtmned when, , : )
'e‘x . '--:‘) W\/z R =':- 9

y
For stability it is necessary that |e!| < 1, which leads to,
B 3 L
Is,,l.' A + A .S 1 . - . (64)
oL . |

In the analyms of the. boundary condmons, it will be shown that the maximum
]
eigenvalues in the ‘x- and y-directions are obtained. as | u| + ¢ and- |v| + ¢

H

respectively, where = speed of sound. Thegfom kx and ky are maximum
when, o ‘ »

*‘7\. ﬁ - (lul + )AL ., | A ==}lfr(|v| + c).At . (65

ot oA Y .o .

- LY .

’ N
Substituting for A, and ki from equation (65) into equation (64), it is seen that,

1 L L (66) ,
At Aty - At
where,; . , ‘ ‘
; ' mx - > Ax , . Aty = A!» (67) i

(ful +¢) - 1 (vl +c)

are the time steps in the x- and yirections respectively, where,

31 :
[ ’ ' A

A



o

. . Ax e ‘A N . Ay = A ’ N .
- - . (d§/dx) ‘ @n/dy) : _7
with (0€/9x) and (9n/9y) being given by equation (6b). Equation (66) is used to
) : obtain the value of the resultant local timc step and is valid only for a Courant Number

, (CN) of 1, u'rcspecnve of the time- steppmg procedure followed. Since the overall
- Courant Number depends on the particular time-stepping scheme, it follows that,

v
. - ¢ N Q
. . B

A, = CN = X . : (68)-

\ Putting equation (68) into equation (65), it is seen that the time steps in equation (67) are -
o multipliéd by.a factor cqual to CN (= 2.8, for the fourth order Rufige-Kutta scheme).

In ordcr to exammc the effect of using a local time stcp instead of a fixed mmlmum .

PRSI )
At for the time- steppmg procedurc, itis useful to recall thc Secon\d order wave equanon '
L given by equation (54a) as, ‘ &
‘ 2 - T -
u, = c.u_ where ¢ = linearized wave Speefi‘
Using central differences to discretize the time variable, it is seen that, ’
! n+1 n 'n-1 ’ 2 ' : .
' .- 2y + u L= ¢ .u ' (69)
t N -] f —— .
- N ui{ 7 At)% - i . o XX a ’
= ' ’ ) ’
. where At = local time step. If a rmmmum time step (At) min. 1S chosen, then the
equauon (69) results in, | - L - .
~ . ' ) ! b
{ _— v . g
oL 2 21_xf v uwt = phdhug - (70).
. @, | o= S
N . where, - o
< u‘ \ . RS
’ p ‘= .lckaltimgstep At o .. _Ax,
(At) i, (B%) g,
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with Ax denoting the grid size. Hence, using a local time stei) is equivalent to

2] ,,,_\v'“

* increasing the wave speed ¢ to (p.c) and this factor p ingreases upon gomg'
towards the far-field boundary where the cells are highly suetched as cbmpared to cells
near the airfoil. Therefore, since the di/sturbanccs are carned away fowards the far-field
at a speed equal to the wave speed ¢, it follows that using a local time step is a method

&

of accelerating the t;onvergence rate - although at a reduced Courant Number of L

r

-~ §27 DBoundarvConditions : ‘
At the solid boundary of the airfoil surface, the zero normal flux condition can be

S

easily implemented by setting the length of the finite volume cell 51de that intersects the
boundary, as equal to zero. Therefore,. the only contribution to the flux balance dill

) come from the body pressure Py - If a body-fitted gnd is being used, then it is
¥ . )

necessary to use the normal momentum equation, . ' .
5 2 . < % .
o -gl = .Lq- > . (7 1 )
n K .

where q . is the velocity tangential to the airfoil Surface and x is the radius of
" curvature. Since a simple Cartesian grid is _being used in the present work, the body
pressure can be evaluated using second-order extrapolation in the vertical direction, from

‘neighbouring full cells in the following way (see Fig. 2),

N .
A \ N . ‘ ‘
\\'\q . Py = pu + _EZTI‘%.Q . (pl‘} - Pw_l) . (72)
where, ® |
'ETAD = * %_ (S, + Sl - Am) , forthe boundary cell (i j) inFig. 2 ’

Methods of unple;mentmg the far-field boundary condmons are dlscussed in Refs.

(24), (31) and (32). In Ref. (24), Jameson draws 2 parallel with internal ﬂow calculation
33
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procedures, wherein the pressure at the exit of the channel is specified. This is because,

at the outflow it is required that,
i N ‘~ )
g_p_ o= .0 - <. (T3a)
y ) -
that is, N )
P = P, » -, freestream conditions X ~(73b)

Also, in Ref. (24) it is suggcsted that the density be computed after specifying the

enthalpy H at its freestream values at the far-ﬁcld boundaries. If the grid is very highly b

stretched, it agight not be a problém to set frccstream condmons everywhcre on the.

!
- L.

boundary. *

"In the analysis leading to cquation (70), it was shown that the wave speed of the
sccond‘ ordcr wave equation increases towards the far-field boundary. Thcrefore 'the

Eulcr cquanons bemg hypcrbohc partxal d1ffercnt1al equations, the boundary conditions

" atthe far-field are based on the mgns and magnitudes of the characteristic wave speeds

Thc followmg apalysis is based on the procedurc followed in Ref. (17). Consxder the

inflow and outflow boundanes which are normal to the x-direction. Here, it can be

" assumed thatthe 9/dy derivatives that are tangent to these boundarigs are negligible.

N\,
\

- Accordingly, the Euler equations ( 15 reduce to,

Q
3
«
+
QU
~n
i

0. . ‘ N (74)

. whcre the vectors w and f are given ag in equation (2).

q The equation of state (3b) for an 1dea1 gas can be written as,.
P =  p.(¥- 1) c T
and together with the relation bctwecn the total enprgy per unit volume pE and the
t ’ v

internal energy per unit mass ¢, T, A
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-where, / - . .

... PE = pc,T A-o; gnzx_z»+ 9;3

- .

as, '

Pt o= -, [pE - q%_") (g_z)]

of'degree one in w - [ see equation (2) ], that s, h

f(a W) ‘= a.f(w) , \forany constant a

Now, it is{a praperty of homogenous functions that, _
f £  A.w’',  where A = 0df/dw

y “

. P
Therefore, equation (74) can be written in conservative form as,

~ 0 3w+ [Alaw. = -0 *
31:-' N \37( . - '

The abové equation (76) can also be written in non-conseijrative form as,

© 3w + [Al.w =° 0
Jt . | ox e

3

& = [pu,V,p ¥ = vector of primitive variables

; T -

and, u P o« 0 0
0 u 0 1/p ~
[N »

) (A] = 0 0 u Y0

’ ) -0 Y.p 0 u ) “ '

\ .' — . . 3

A

it can be expressed in terms of the four main co;iscrved variables p, pu, pv and pE

»

15

YAsa result of this, the flux vector f in cquation (76) becomes a homogetous function’

-

(78)

s
Y
i‘\§
7 et
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Now, for finding.non-trjvial eigenvalues A’ of the Jacobian matrix [ Al of

equation (79), it is required that,
C. N

]

Determinant [A' - ~ A% 1] 0 " (80)

»thr"é‘ [I] = - the (4x4) idcnn'ty matrix. Therefore, by putting equation (79)

_into cquatioﬁ (80), it is seen that, ’ \ s
4

(w - )5 [(u - A - y.pipl Y= 0 Co@ey S

~— -

n ) ) .
_Solving this quartic equation (81) for_ A', the follqwin% solutions are obtained for the -
. \ h

eigenvalues as, .

A

A = u”',‘ u, u + c'n,‘_u - ¢ . (52)
Ve | _ .
where « ¢ = v.p/p.Itis seen from equation (82) that all the cigenvalues A’
are real, since the Euler eguations are hy;‘>erbolic equations. ' ‘
Consider subsonic é?g ¢') inflow in the x-direction. In this case, it is seen
from equation (82) that three eigenvalues u, u and u + c' arepqsiti‘{c, while one

L]

eigenvalue u - ¢' is négan've. This is shown in Fig. (5a), where three eigenvaiucs
(positive) are coming in from the left and one eigenvalue (negative) is going out.from the

right, with reference to the inflow boundary of the computational domain. Hence, three

]
_ . characteristic variables can be specified (set equal to freestream conditions) and one

variable must be extrapolated from interior values - at the inflow boundary. On the other
hand, consider subsonic (u < ¢') outflow as shown in Fig. €5b). Three positive
eigenvalues are going out of the computational domain from the left and one eigenvalue foe
is coming in from the right. So, three variables flust be extrapolated and,one vgriable

must bﬁ specified at the outflow boundary.
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It is known from gas dynamic principles that the Riemann invariants R* and R

are characteristic variables. Also [see equation (73a)), it is seen that at at a farfield

boundary, it is required ‘that B p/dy = 0. Subsntutmg equation (73a) into the Euler
v

y-momentum equation (1), leads to, S ’
Dv = . 0 , at the outflow boundary _ . (83)
DBt IR ST

e

v

. i.e. at the outflow, the velocity v is conserved along a strcamlmc Sumlarly, it is

W

}

known that thc entropy S 1s conserved along a streamline, meamng that changcs of state
are adiabatic. chcc v and S are takcn to be charac!cnsnc variables at the far-field
boundaries.

At an inflow boundary, the spéciﬁeti and extrapolated Riemann invariants

respecﬁvely are, N
R, = R* = u, + 2.¢_ and
g -0
\R - R. = u - 2 :cl ‘\ ; (843'.)‘
T T ‘
- A
Similarly-at the outflow éoundary e
- . \ Q \
R, = R ad R = R (84b)

From either of ccﬁxations (84a) and (§4b), it is seen that,

Yyouodary = (R, + R)/2 ‘ ' . //‘
. = ) L) @9

. ' . l) . 7

, ’ Y B -
and, ) o
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C',!.'ooummry - o= CY—-l(R B Re>

’ (u, - ue) + (€ £ c')_‘ (86)

where o« and ¢ denote freestream and extrapolated values, rcspecuvcly

Furthermore, the vcloc1ty v and cntropy S ,are specxfied as freestrcam values at the

inflow, while at thc outflow, they are extrapolated from the interior of the computanonal

domain. .
,Frﬁrn this informatiomrat the boundaries, the density and pressure can be computed
because, ’

p_Y = functionof entropy and ¢ = (Y.p/ p)“2
p

and the cntropy, as well as the sonic speed c', are known The same analysis leading
from equation (76) todquation (86) is followed for the upper and lower far—ﬁeld' ‘
boundaries, where the ;:Swatives 0 /0 x are neglected and the velocijties u and v
age intcrchanécd. This analysis gives the latest updated values at the first 'ghost’ cell
immediately outside the computauonal domain. In.order to obtain values at the second
‘ghost’ cell, second-order extrapolanon is carried out as shown in equation (42).
Non-reflecting boundary conditions are also a method followed for Euler solvers. In

&
Ref. (24), one such non-rcﬂccting procedure is,

. K
v

,a(p - p'.u.c') + a.(p - p.)
2 o P

]
o

87

“where a = 1/8,an empirical constant. This procedure drives the outflow pressure

towards 1ts frecscrcam value. In Ref. (32), Hedstrom proposcs a theorem for obtaining

A
non-reﬂecnng boundary condmons as,



- b .aw = 0 i} ' ST (88)
SR [ . | C

. L N YR

where b, is an eigenvector corresponding to incoming positive eigenvalues at an
N k- ) ot s, 3 . . ‘

inflow and w' denotes the various primitive variables of the Euler equations. In

equation (88), for a tétal of n eigenvalues, with m outgoing characteristics and' k

incoming charactetistics, m < k < m.Sincethe tcmperiture T is taken, -

as one of the primitive variables of the Euler equations, this method appears to guarantee
" that the enthalpy will remain at its frwstmam value at the fafﬁeld, where dT/dt = 0. s
* Having justified the choice of the particular numerical procedure, the expressions

B derived in this chapter are subsequently validated by running the computer code for a

variety of test case$. The results obtaiix_cd from this code are presented in the next R
chapter. " : -
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RESULTS AND DISC{ISSION
. - \

The computer code resulting from the exprcssions;dcrivcd in the previous g:ixéptcr was
run for a varietyrof test cases. The fesults obtained from this c:)dc are discussed in this
chapter. All test cases with Yhe exception of the multi-element case (Figs. 13 to 15)‘are for
comprcsmblc flow over the NACA' 0012 aitfoil, which is well documented in the technical
literature. The geometry of this symmcmc airfoil is given by the following rélation for the
upper surface (Ref. 3’;’>) as,, ' .'

L ylc = 060.[02969(x/c) - 0. 126 (x/ c) - 03516 (x/c)
-+ O.2§43 (x /c) - 0.1015 (x / c) ]

where the leading edge is at the origin of the coordinate system.

Fig. 6 shows the results obtained for a freestréam Mach Number of 0.5, at zero angle
of attac'k and compares them with the fesults of Réf. (17) which uses a Cartesian grid and

with experimental results from Ref. (33). It is seen that there is good agreement for this

subsonic case, run or; a 65 x 34 grid, which serves to validate the Euler code.

~ Fig.7 compares the results obtained with Ref. (23) which uses a body fitted grid and
with Ref. (17), fo; a freestreakMach Number of 0.8, at ze1Q. 'gngle of at}aék‘. This is an
often used test case for transonic flows. It can be seen that good agreement with the results
of Ref. (23) is obtained for the values of the pressure coefficients for thg shock peak and

~
the shock foot. However, the shock appca%s to be one grid point downstream of that of

Ref. (23). This may be due to lack of sufficient clustering in the region of the shock. The

present work uses a 83 x 34 grid for solving the flow in tl‘me upper half-plane of the
airfoil. The second order dissipationwcoefficicpt €2 was locally scaled by a factord I;/I4
in order to obtain the correct pressure at the shock foot, whc,rcl M is. the locﬂach
Number in a finite volume cell. Hence, the amount of smearing <1)f the shock in Fig. 7 is

seen to be equal to that of Ref. (23). It is interesting to compare the results of Ref. (17)

4
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where the shock peak is one point upstream of Rcf. (23). Also, the values of the pressure
coefficients for UE:ock peak and the shock foot in Ref. (17) do not compare favorably

with the corresporiding results of the prcsént work or with Ref. (23). A comparison of the

"' ekperimental results of Ref. (33),fitl\i' the inviscid calculations of Ref¥, (17), (23) and the

present work, shows the effect of the boundary layer oq' the position of the shock”(shifted
upstream By 10 % chord). ‘ |

Convergence upto m significant digits is.machieQed if the maximum relative error, €
is less than 5. 10™ Usually this maximum error occurs at the far-field Ebundaries,
whe%e freestream flow prevails,- i.e. R = 1. The quantity ap / 0t is monitored as a
measure of convergence and the re31duc or rélative error is denotcd as the largest value of
e = |po+l - p%/po*l | in the cntu‘f grid. The calculations were stopped after
convergence to the order of 10-3 was achieved. At this poin(t,‘t,hg~+ flow picture appears to
be fully formed. This is shown in Fig. 8, which describes the convergence history for both
subsonic and transonic runs of the code dcvelopcd' in this thesis. ~

The convergence rates could not be compared with similarCartesian grid results, as
Ref. (17) does not make any“ment'ion of this. Howcver: the converger;ce m?y be improved
by in;:reasing the values of the dissipation coefficients. A Courant Number of 2.0 was

used for all calculations. If a local time step is usedfor convergence acceleration, then the

Courant Number is only 1 and the convergence rate can be usefully compared with only

that fixed time step which uses a Courant Number of 1.0. In this case, the four-step

Rungc-Kutta scheme bccomes redundant and can.be replaced by the MacCormack or
Lax-chdroff schemes, which give a Courant Number of 1.0 - in which case, the
considerable saving in computer time resulting from evaluating thc spatial derivative terms

only twice, becomes a dominant factor. Also, the use of a local time step destroxs, the time

accuracy and is worthwhile only in the final steady state, when the résiduals may be of the

order of machine zero. However, since the results presented in this thesis are fime accurate

- 41
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with residuals of the order of 107 to 10, it is necessary to Use a fixed time step.
The next set of test cases are for lifting flows. Fig. 9 shows the results obtamed for the
subcritical test case of a freestream Mach Numbcr of 0.5, at an angle of attack of 3
degrees and compares them with those of Ref. (29) and the€xperimental results of Ref.

(33). Tt can be seen that the present solution resolves the upper surface pressure peak very

‘well The préssure coefficient prediction for the lower surfacc is a little higher than that of

Ref. (29), which can be due to lack of sufficxent clustermg at the leadmg edge. Howevcr,
there appears to be an overall reasonable level of agreement. This solution used a 65 x 64

grid for the whole airfoil and convergence to the order of 107, was reached in 73

- minutes of CPU time ona VAX 8650 computer.

One important feature of the solutions for the liftiné test cases is that no' Kutta
condition was prescribed, yet the cor}cct pressure coefficients are obtained. 'I';ﬁs was first ‘
observed in Refs. (27) and (345, where similar Euler solvers are described. This can be
pﬁysically valid, if it is considered that the starting.vortex set up at the start of lift, causes a
circulation to bc'cstablished around the airfoil. Thus, circulation is obtained in the absence

of vomc1ty The Kutta condition rcqurrcs that for flow past a two-dimensional airfoil, the

: streamhne leaving the trailing edge must bisect the trailing edgc angle, if the flow on either

side is isentropic. Also, there must be no jump in pressures across this dividing strcamlme.
Obviously this can be accomplished since there is a sharp trailing edge for the' NACA
0012 airfoil. Therefore, it can be said-that there is a tacit implcmentation of the Kutta

————

condmon at the trailing edge of the axrfoxl which comes about by the averaging of the

- —————<ell-centered primitive variables to evaluate fluxes at the faces of neighbouring.cells.

Fig. 10 compares the results obtained for the supercritical lifting test case of a
freestream Mach Number of 0.8, at an angle ofattack of 0.37? with those of Ref. (27).
The upper surface pressure distribution shows good agreement regarding strength and

location of the shock. The lower §urfacc shock peak is shifted downstream by one grid
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point as compared lg% that of Ref. (27). This may be due to the extra grid stretching
employed away from the airfoil, which is necessary for convergence of transonic flows.
However, the shock strength on the lower surface is correctly predicted. The amount of
smearing of both upper and lower surface shocks is tﬁc same as in Ref. (27). In Fig. 10,
‘the trailing edge pressure is less than that of Ref. (27) becaﬁse of lack of adequate grid
clustering over there. !

In rotational flow, that is transonic flow with different shocks over the upper and
lower surfaces of the airfoil, the total pressure behind the shock on the upper surface is
less than that on'the cor;esponding point on the lower surface. This forces a difference in
the flow velocities causing the inviscid flow to leave at the sharp trailing edge. This
'inviscid separation’ kind of behaviour occurs because if the flow along the upper surface
(being faster than the flow along the low‘er\ surface) of the ;irfoﬂ, were to expand to infinite
values around the trailing edge, then there would have to be a shock at this trailing edge.
This would mean a difference in veloci@es betwécn the upper and lower finite volume ceﬁs
- which is caﬁcelled out due to the sharp trailing edge. In this case, finite and equal.
velocities in the upper and lower trailing edge cells is the relevant Kutta condition. This is
implicitly satisfied in the present work, as a stable solution. Hence, it is possible to predict
with reasonable accuracy, the solutions for both subsonic and transonic ljfting test éases .

The third antd last objective of this thesis is to compute the flow around mulﬁ-elemen£
configurations. As a first step towards this goal, the flow over a biplane configuration was
computed (see Fig. 11). The two NACA 0012 airfoils are about one chord apart.
Calculations were carried out for the upper half of this configuration, that is equivalent to
an airfoil hovering about half a chord from the ground or symmetry line. Fig. 12 shows
the results for this biplane configuration at a freestream Mach Number of 0.5 and at zero
angle of attack. It is seen that the results compare quite well‘with those of _kef. (17). The
upper surface profile does not show any dcparm?e from that for an isolated airfoil, while
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the lower surface profile shows the ‘ground effects' on a hovering airfoil.

The final test case is subsonic hftmg flow at a freestream Mach Number of 0.5 and at
o zero angle of attack, over a Karman-’l’refftz airfoil with a trailing edge flap and a flap
-deflection of 10 degrees, as ﬁxom in Fig. 13. Anexact solution for incampressib'le flows
for the configuration of f-‘ig. 13, was obtained b.y Williams in Réf. (35). A grid of size
194 x 64 was used for this test case. Two blocks were generated separately for the main
airfoil and for the flap and were spliced together at the region of overlap. Since the same
grid size is maintained for both blocks, there is no loss of continuity for the transformation
metrics of /ox and dn/ dy.. This _testifiésh to the ease in applying Cartésian grids to
multi-element blocks . A “

Figs. 14 and 15 compare the results obtained in' the present work with tpat of Ref.
17). Fig. 14 compares the results for the main airfoil. Thoﬁ’gh the results do not agree
well, it is sefn that the? is general agreement. The principal discrepancy is at the leading
edge xa consequence of the lack of adequate grid clustenng ovcr thcrc The pressure
coefﬁcxent prechcuon in Ref. (17)is also not very accurate and the value at the leading edge
is also much lower than the desired value. Fig. 15 com{)ares the rcsults for the trailing edge
flap. It is seen that the pressure coefﬁcwnt predmnon for the lower surfacc agrees quue ,
well with the desxred values, while that for the upper surface does not. Th1s can be due to
the fact that some pomts% the leadmg edge were not captured by the spline fit used in the
. present work. On the whole, it appears to satisfy the third obj'e'ctive of ‘this thesis - to -

demonstrate the application of Cartesian grids to multi-element airfoils.
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An Euler code has been developed for computing steady, two-dimensiomal inviscid
ﬂows;over airfoils, by discretizing the flow domam into ﬁmtc volumes on a Cartesian grid

and the solution is marched in time, using a},fourth order Runge-Kuttqgume-steppmg

. scheme. The results obtained cover subsonic and transomc flows for standard test cases on

‘ a NACA 0012-airfoil, as well'as a multi-element case.

" Hence, tt_re 'f‘ollowing observations ahgut the results can be made as :

(1) They are in agreement (wjdﬁn an error margin of aborxt 3 %, or one gﬁd'.pqint -

regarding the location of the\irwiscid shock) with Jameson's Euler code. . |
(2) They compare qualitatively with experimental results. L v
(3)"i‘he code can be used for multi-element airfoils as'well. - . o

As analyzed in Chapter 2 of this thesis, the Runge/Kutta scheme can be isubstituted
for, by other altematlve schemes like the MacCormack method, etc. Therefore, thls code
can handle a varlcty of applications. o
Supsestions for f i

Future work should be in the du'ccuon of three-dlmensmnal extensxons to thlS code,

multi-grid techniques, convergence acceleratlon techmqucs like 'enthalpy dampmg and

resxdual-averagmg methods techniques for i unprovmg the resolutron of shock-waves like
‘total variation diminishing' methods, applrcatron of above ‘techmques for study of

viscous-inviscid interactions and finally solutions for the complete Navier-Stokes

i - + N
.

equations themselves, in primitive variable form.
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