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ABSTRACT

Theory and Applications

of Generalized Linear Models in Insurance

by Jun Zhou Ph.D.

Concordia University, 2011

Generalized linear models (GLMs) are gaining popularity as a statistical

analysis method for insurance data. We study the theory and applications

of GLMs in insurance. The first chapter gives an introduction of the theory

of GLMs and generalized linear mixed models (GLMMs) as well as the bias

correction for GLM estimators. It is shown that the maximum likelihood

estimators (MLEs) of the parameters in GLMs are asymptotically normal

and asymptotically unbiased. However, when the sample size n or the total
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Fisher information is small, the MLEs can be biased. The bias is usually

ignored in practice. However, in small or moderate–size portfolios, a bias

correction can be appreciable.

For segmented portfolios, as in car insurance, the question of credibility

arises naturally; how many observations are needed in a risk class before

the GLM estimators can be considered credible? In this thesis we study

the limited fluctuations credibility of the GLM estimators as well as in the

extended case of GLMMs. We show how credibility depends on the sample

size, the distribution of covariates and the link function. We give a criteria

for full credibility of the GLM estimators. This provides a mechanism to

obtain confidence intervals for the GLM and GLMM estimators.

If the full credibility criteria cannot be satisfied, it is interesting to cal-

culate the partial credibility matrix and the GLM estimators. Here, for

a general link function the credibility matrix is not known explicitly. Un-
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der certain assumptions, numerical methods are developed to compute the

GLM estimators and the credibility matrix. For some specific link functions,

further properties are developed. For instance, Hachemeister’s credibility re-

gression model is one such special case of our model, where the link function

is linear.

Loss reserving is a major challenge for casualty actuaries due to the fre-

quently changing business environments. Recently, some aggregate loss re-

serving models have been extended to or developed by research actuaries

within the framework of GLMs. In this thesis we establish a structural loss

reserving model which combines the exposure and loss emergence patterns

and the loss development pattern, again within the framework of a GLM.

Discounted loss reserves can also be obtained from this model.

Keywords: GLMs, full credibility, partial credibility, loss reserving.
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Chapter 1

Generalized Linear Models and

Mixed Models

1.1 Introduction

Nelder and Wedderburn (1972) introduced the theory of generalized linear

models (GLMs). The class of generalized linear models is an extension of

traditional linear models that allows the mean of a population to depend on

a linear predictor through a nonlinear link function and allows the response

probability distribution to be any member of an exponential family of dis-

tributions. Many other books and journal articles followed the cornerstone
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article by Nelder and Wedderburn (1972). McCullagh and Nelder (1989)

(the original text was published in 1983) provided a detailed introduction to

GLMs. The books by Aitkin et al. (1989) and Dobson (1990) are also excel-

lent references with many examples of applications of GLMs. Haberman and

Renshaw (1996) give a comprehensive review of the applications of GLMs to

actuarial problems. Hardin and Hilbe (2007) provides a handbook of how to

deal with data using GLMs and GLM extensions. Ohlsson and Johansson

(2010) gives several illustrations on how to use GLMs in non–life insurance

pricing, in particular for multiplicative and hierarchical models. Neuhaus et

al. (1991), Neuhaus (1992), Zeger et al. (1998) and Verbeke and Molenberghs

(2000) discuss the use of GLMs in longitudinal or correlated data. Anderson

et al. (2005) is a very good practitioner’s guide for GLMs. Hardin and Hilbe

(2002) generalize the GLMs within the generalized estimating equations the-

ory.
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Lee et al. (2006) is a comprehensive reference for GLMs with random

effects. Generalized linear mixed models (GLMMs) are an extension of

GLMs, complicated by random effects. They have gained significant pop-

ularity in recent years for modeling binary/count, clustered and longitudinal

data. McCulloch and Searle (2001) and Demindenko (2004) are useful refer-

ences for details on GLMMs. Antonio and Beirlant (2007) give an application

of GLMMs in actuarial statistics.

GLMs are becoming quickly the premier statistical analysis method for

insurance data. We consider the question of credibility: how many obser-

vations are needed in a risk class of a segmented portfolio before the GLM

estimator can be considered credible? Schmitter (2004) provides an excellent

simple method to estimate the number of claims that will be needed for a

tariff calculation depending on the number of risk factors and the number

of levels for each factor. Another interesting question of credibility: if the
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observations are less than the number required for full credibility, what is the

partial credibility of the GLM estimator? In this chapter we study the limited

fluctuations credibility of GLM estimators as well as in the extended case of

generalized linear mixed models (GLMMs). Here credibility depends on the

sample size, the distribution of covariates and the choice of link function.

This provides a mechanism to obtain confidence intervals for the estimates

in GLMs and GLMMs. The results in this chapter have already appeared in

Garrido and Zhou (2009). We begin by giving an introduction to GLMs and

GLMMs.

1.2 Generalized linear models (GLMs)

GLMs are a natural generalization of classical linear models that allow the

mean of a population to depend on a linear predictor through a (possibly

nonlinear) link function. This allows the response probability distribution to
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be any member of the exponential family (EF) of distributions.

A GLM consists of the following components:

1. The response Y has a distribution in the EF, with density or probability

function taking the form

f(y; θ, φ) = exp
{∫ [

y − µ(θ)
]

φV (µ)
dµ(θ) + c(y, φ)

}
, (1.1)

where θ is called the natural parameter, φ is a dispersion parameter,

µ = µ(θ) = E(Y ) and V(Y ) = φV (µ), for a given variance function V

and known bivariate function c. The EF is very flexible and can model

continuous, binary, or count data.

2. For a random sample Y1, . . . , Yn, the linear component is defined as

ηi = X ′
iβ , i = 1, . . . , n , (1.2)

for some vector of parameters β = (β1, . . . , βp)
′, and covariate X i =

(xi1, . . . , xip)
′ associated with observation Yi.
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3. A monotonic differentiable link function g describes how the expected

response µi = E(Yi) is related to the linear predictor ηi

g(µi) = ηi , i = 1, . . . , n . (1.3)

Example 1.1. GLMs commonly used in credibility theory

Table 1.1 below gives the different model components of the GLMs most

commonly used in credibility theory for observed claim counts or claim sever-

ities.

Y ∼ Normal(µ, σ2) Gamma(α, β) Poisson(λ) Bin.(m, q)/m

E(Y ) = µ(θ) θ = µ −θ−1 = α
β

eθ = λ eθ

1+eθ = q

V(Y ) = V (µ)φ σ2 1
θ2 α

= α
β2 eθ = λ q (1−q)

m

V (µ) 1 θ−2 eθ = λ q(1− q)

φ σ2 α−1 1 1/m

c(y, φ) − 1
2
[ y2

σ2 + ln(2πσ2)] α ln αy + ln y − ln Γ(α) − ln(y!) ln
(

m
m y

)

Link g identity reciprocal log logit

Table 1.1: GLMs Examples

6



Additional examples include inverse Gaussian and negative binomial ob-

servations, as well as multinomial proportions (for details see McCullagh and

Nelder, 1989).

1.2.1 MLE of the regression parameters

For an observed independent random sample y1, . . . , yn, consider the log–

likelihood of β:

l(β) = ln L(β) =
n∑

i=1

{∫ [
yi − µi(θ)

]

φV (µi)
dµi(θ) + c(yi, φ)

}
. (1.4)

Example 1.2. The following log–likelihood functions are for some commonly

used distributions, where wi is a known weight for each observation (when

the weight is not specified, then simply put wi = 1 for each observation):

1. Normal:

l(β) =
n∑

i=1

−1

2

{wi(yi − µi)
2

φ
+ ln

( φ

wi

)
+ ln(2π)

}
.
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2. Gamma:

l(β) =
n∑

i=1

{wi

φ
ln

(wiyi

φµi

)− wiyi

φµi

− ln(yi)− ln
(
Γ
(wi

φ

))}
.

3. Poisson:

l(β) =
n∑

i=1

{
yi ln(µi)− µi

}
.

4. Inverse Gaussian:

l(β) =
n∑

i=1

−1

2

{wi(yi − µi)
2

yiµ2φ
+ ln

(φy3
i

wi

)
+ ln(2π)

}
.

5. Negative Binomial:

l(β) =
n∑

i=1

{
yi ln(kµ)− (yi + 1/k) ln(1 + kµ) + ln

( Γ(yi + 1/k)

Γ(yi + 1)Γ(1/k)

)}
.

6. Multinomial

l(β) =
n∑

i=1

{
yij ln(µij)

}
.
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Maximizing the log–likelihood function (1.4), we solve for the MLE of the

regression parameter as β̂. Take the derivative of (1.4):

dl(β)

dβ
=

n∑
i=1

dl(β)

dµi

dµi

dβ
=

n∑
i=1

(yi − µi)

φV (µi)

dµi

dX ′
iβ

dX ′
iβ

dβ
,

where

dµi

dX ′
iβ

=
dg−1(X ′

iβ)

dX ′
iβ

=
1

g′(µi)
.

Hence

dl(β)

dβ
=

n∑
i=1

(yi − µi)

φV (µi)

1

g′(µi)
X ′

i . (1.5)

Note that if Yi has a normal distribution, then g′(µi) = 1, and V (µi) = 1

for all i. Setting
dl(β)

dβ
= 0 yields

∑n
i=1 X i(yi −X ′

iβ) = 0. In other EF cases,

no closed form solution is available to this system of p equations. Instead,

to obtain the maximum likelihood estimator (MLE) numerically, we must

resort to an iterative algorithm such as Newton–Raphson or Fisher scoring

methods.
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The Newton–Raphson method provides successive approximations to the

root β̂ of (1.5). On the rth iteration, the algorithm updates the parameter

estimate β̂
r

with

β̂
r+1

= β̂
r
−H−1s , r = 1, 2, . . . ,

where H is the Hessian (second derivative) matrix, and s is the gradient (first

derivative) vector of the log-likelihood function. Both are evaluated at the

current value of the parameter estimate and are given by

s =
∑

i

wi(yi − µi)xi

V (µi)g′(µi)φ
,

H = −X′WoX ,

where X is the design matrix, xi is the transpose of the ith row of X, and

V is the variance function. The matrix Wo is diagonal with its ith diagonal

element equal to

woi = wei + wi(yi − µi)
V (µi)g

′′(µi) + V ′(µi)g
′(µi)

[V (µi)]2[g′(µi)]3φ
,

10



where

wei =
wi

φV (µi)[g′(µi)]2
,

and wi is a known weight for each observation. If the weight is not specified,

then simply put wi = 1 for each observation. The primes denote derivatives

of g and V with respect to µ. The negative of H is called the observed

information matrix. The expected value of Wo is a diagonal matrix We

with diagonal values wei. If you replace Wo with We, then the negative of

H is called the expected information matrix. We is the weight matrix for

Fisher’s scoring method.

Remark 1.1. The theory of GLM’s was developed for observations in the

exponential family (EF) of distributions, but the theory and numerical algo-

rithm also extends to other non–EF distributions.
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1.2.2 Asymptotic properties of the regression MLE

The MLE β̂ for the GLM parameters has some nice asymptotic properties

when n, the number of observations, tends to infinity.

Lemma 1.1. For the MLE, β̂ that solves (1.5), we have:

1. β̂ is an asymptotically unbiased and consistent estimator of β.

2. V(β̂) → Σ = −H−1, as n → ∞. H = −X′WoX is the Hessian

matrix, while Wo = diag(wo1, . . . , won) is a diagonal weight matrix

with i-th element woi = wi

φV (µi)(g′(µi))2
+ wi(yi − µi)

V (µi)g
′′(µi)+V ′(µi)g

′(µi)
(V (µi))2(g′(µi))3φ

,

for known weights wi and covariate matrix X = (X1, . . . , Xn)′.

3. β̂
d→ N

(
β, (X′WX)−1 φ

)
, i.e. it converges in distribution.

For a proof see Fahrmeir and Kaufmann (1985).

Note that for a finite sample, the MLE β̂ is usually biased. Hence its mean

square error MSE(β̂) = V(β̂) + bias(β̂) plays an important role. We will see
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in Section 2.2 that this finite–sample bias is affected by the choice of link

function g (see Cordeiro and McCullagh, 1991). For a proof see McCullagh

and Nelder (1989).

1.3 Generalized linear mixed models (GLMMs)

The generalized linear mixed model is an extension of the generalized linear

model, complicated by random effects. It has gained significant popularity

in recent years for modeling binary/count, clustered and longitudinal data.

A GLMM consists of the following components:

1. For cluster data Yij, i = 1, . . . , n and j = 1, . . . , ni, assumed condition-

ally independent given the random effects U 1, . . . , Un, consider the

following EF distribution:

f(yij|ui, θ, φ) = exp
{[

yijθij − b(θij)
]

φ
+ c(yij, φ)

}
, (1.6)

where ui = (ui1, . . . , uik) are variates from normally distributed k-

13



dimensional random vectors U i ∼ N(0,D), where D is the variance–

covariance matrix and µij = E[Yij|U i = ui] = b′(θij). The variance

of the observations, conditional on the random effects, is given by

V[Yij|U i = ui] = A
1/2
i RiA

1/2
i . The diagonal matrix Ai contains the

variance functions of the model, which express the variance of a re-

sponse Yij as a function of its mean µij. The matrix Ri is the variance–

covariance matrix for the random effects.

2. The linear mixed effects model is defined as:

ηij = X ′
ijβ + T ′

ijui, i = 1, . . . , n, j = 1, . . . , ni, (1.7)

for the fixed effects parameter vector β = (β1, . . . , βp)
′ and random

effects vector ui = (ui1, . . . , uik)
′. Here X ij = (xij1, . . . , xijp)

′ and T ij =

(tij1, . . . , tijk)
′ are both covariates.
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3. A link function g,

g(µij) = ηij , i = 1, . . . , n, j = 1, . . . , ni , (1.8)

completes the model.

Most estimation methods for β and ui of GLMMs rest on some form

of likelihood principle, and numerical methods are needed in most cases

to obtain the estimates. Antonio and Beirlant (2007) give a brief review

of some numerical techniques, such as a restricted pseudo–likelihood, the

Gauss–Hermite quadrature and Bayesian methods. Demidenko (2004) gives

four types of algorithms and methods for the GLMM: (a) maximum likeli-

hood with numerical quadrature, (b) penalized quasi–likelihood (PQL), (c)

specific methods in conjunction with a Laplace approximation or a general-

ized estimating equation (GEE) approach, and (d) Monte Carlo methods for

integral or log–likelihood approximations.
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For the GLMM defined in (1.6)–(1.8), the log–likelihood takes the form

l(β,D) = −nk

2
ln(2π)− n

2
|D|+

n∑
i=1

ln

∫

Rk

eli(β,v)− 1
2
v′D−1vdv , (1.9)

where

li(β, ui) =

ni∑
j=1

[
(X ′

ijβ + T ′
ijui) yij − b(X ′

ijβ + T ′
ijui)

]
(1.10)

is the i-th conditional log–likelihood (the term c(y) is omitted because it does

not affect the likelihood maximization).

As explained in [49, pp.119–121], there are two types of numerical algo-

rithms to solve for (1.9). The first type is based on Taylor series and hence

these algorithms are known as linearization methods. The series expansions

give an approximate model based on pseudo–data, with fewer non–linear

components.

This computation of the linear approximation must be repeated several

times until convergence is reached, according to some criterion. Schaben-
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berger and Gregoire (1996) give several algorithms based on Taylor series for

clustered data.

These fitting techniques based on linearizations are usually doubly iter-

ative. The GLMM is first approximated by a linear mixed model based on

current values of the covariance parameter estimates. Then the resulting

linear mixed model is fitted, forming an iterative process. At convergence,

the new parameter estimates are used to update the linearization, generat-

ing a new linear mixed model. The process stops when parameter estimates,

for successive fits of the linear mixed model, change only within a specified

tolerance.

The second type of algorithm is based on integral approximations. The

log–likelihood of the GLMM is first approximated before the numerical opti-

mization. Various techniques exist to compute the approximation: Laplace

and quadrature methods, Monte Carlo integration, and Markov chain Monte
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Carlo methods. The advantage of these integral approximation methods is

that they give an actual objective function for the optimization step. This

allows for likelihood ratio tests among nested models, and the computation of

likelihood–based fit statistics. The estimation requires only a single iterative

process.

The disadvantage of integral approximation methods is the difficulty to

study crossed random effects, multiple subject effects, and complex Ri–side

covariance structures. Also, the number of random effects must be small if

the integral approximation is to be feasible.

On the other hand, linearization methods yield a simpler linearized mo-

del, for which it is sufficient to fit only the mean and variance of the linearized

form. This is a great advantage for models in which the joint distribution

is difficult or impossible to obtain. Models with correlated errors, a larger

number or crossed random effects, and multiple types of subjects perform
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well under linearization methods. The main disadvantages of this approach

are the absence of a true objective function for the overall optimization.

Also, it can lead to potentially biased estimators of the covariance parame-

ters, especially in the case of binary data. The objective function, after each

linearization update, is dependent on the current pseudo–data. The opti-

mization process can fail at both levels of the double iteration scheme. For

details see Wolfinger and O’Connell (1993).

1.3.1 Pseudo-likelihood estimation based on lineariza-

tion

From (1.7)–(1.8) and the SAS manual [49] we have that E[Y i|U i = ui] =

g−1(X iβ+T iui) = g−1(η
i
) = µ

i
for Y i = (Yi1, . . . , Yini

)′, X i = (X ′
i1, . . . , X

′
ini

),

T i = (T ′
i1, . . . , T

′
ini

), η
i

= (ηi1, . . . , ηini
)′ and µ

i
= (µi1, . . . , µini

)′. The first

Taylor series of µ
i
about β̂ and ûi yields

g−1(η
i
)

.
= g−1(η̂

i
) + ∆̂iX i(β − β̂) + ∆̂iT i(ui − ûi) , (1.11)
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where

∆̂i =
∂g−1(η

i
)

∂η
i

∣∣∣
β̂,ûi

, (1.12)

is a diagonal matrix of derivatives of the conditional mean evaluated at the

expansion locus. Rearranging terms yields the following expression

∆̂
−1

i

(
µ

i
− g−1(η̂

i
)
)

+ X iβ̂ + T iûi
.
= X iβ + T iui . (1.13)

The left–hand side is the expected value, conditional on ui, of

∆̂
−1

i

(
Y i − g−1(η̂

i
)
)

+ X iβ̂ + T iûi ≡ P i (1.14)

and the variance–covariance matrix

V[P i|ui] = ∆̂
−1

i A
1/2
i RiA

1/2
i ∆̂

−1

i . (1.15)

One can thus consider the model

P i = X iβ + T iui + εi , (1.16)

which is a linear mixed model with a pseudo–response P i, fixed effects β,

random effects ui, and V[εi] = V[P i|ui].
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Now define

V (θi) = T iDT i + ∆̂
−1

i A
1/2
i RiA

1/2
i ∆̂

−1

i , (1.17)

as the marginal variance function in the linear mixed pseudo–model, where θi

is the q×1 parameter vector containing all unknowns in D and Ri. Based on

this linearized model, an objective function can be defined, assuming that the

distribution of P i is known. The maximum log pseudo–likelihood, l(θ, P ),

for all θi and P i is then given by

l(θ, P ) = −1

2

[ n∑
i=1

ln |V (θi)| −
n∑

i=1

r′iV (θi)
−1ri − f ln(2π)

]
, (1.18)

where ri = P i − X i

( ∑n
j=1 X ′

jV (θj)
−1Xj

)−1( ∑n
j=1 X ′

jV (θj)
−1P j

)
, while f

denotes the sum of the frequencies used in the analysis. At convergence, the

estimates are

β̂ =
( n∑

i=1

X ′
iV (θ̂i)

−1X i

)−1( n∑
i=1

X ′
iV (θ̂i

)−1
P i

)
, (1.19)

ûi = D̂T′
iV (θ̂i)

−1(P i −X iβ̂) . (1.20)
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For more details on this pseudo-likelihood method with linearization, please

see the SAS manual in [49].

1.4 Bias correction in GLMs

The MLEs of the GLM parameters are asymptotically unbiased and normal.

However, when the sample size n or the total Fisher information is small the

MLEs may be biased. The bias is usually ignored in practice. However, in

small or moderate-size samples, a bias correction can be appreciable. Fur-

thermore, the estimated expected responses are also biased unless the link

function is linear. We give a bias correction in GLMs which makes the GLM

estimators more accurate and credible.

McCullagh and Nelder (1989) and Cordeiro and McCullagh (1991) derive

some general formulae for first-order biases of MLEs of the linear parameters,

linear predictors, the dispersion parameter and the fitted values in GLMs.
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These formulae may be used to compute bias–corrected maximum likelihood

estimates. This will increase the accuracy and credibility of the GLMs esti-

mators, the residual bias being bounded by as term of n−1.

For the GLMs as defined (1.1)–(1.3), let β̂, η̂ and µ̂ = g−1(η̂) be the

MLEs of β, η and µ. Furthermore, let B1(β̂), B1(η̂), B1(µ̂) be the residual

bias of β̂, η̂ and µ̂ respectively, after the above bias correction. Cordeiro and

McCullagh (1991) give the following formulae for first-order biases as follows.

Theorem 1.1. In matrix notation, the bias–corrected β̂, η̂ and µ̂ have resid-

ual biases as follows

B1(β̂) = −(2φ)−1(X′WX)−1X′∆dF1, (1.21)

B1(η̂) = −(2φ)−1∆∆dF1, (1.22)

B1(µ̂) = −(2φ)−1(G2 −G1∆F)∆d1, (1.23)
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and the bias–corrected MLE values are defined as

β̂
c

= β̂ + B1(β̂), (1.24)

η̂
c

= η̂ + B1(η̂), (1.25)

µ̂
c

= µ̂ + B1(µ̂). (1.26)

In these expression φ is the dispersion parameter, X and W are defined as

in Lemma 1.1, ∆ = (δij) = X(X′WX)−1X′ is, apart from the dispersion

parameter φ, the asymptotic covariance matrix for the estimates η̂1, . . . , η̂n

of the linear predictors of the model, ∆d = diag{δ11, . . . , δnn}, 1 is an n× 1

vector of ones, F = diag{ 1
V

dµ
dη

d2µ
dη2 }, where V is the variance function as

defined in (1.1), G1 = diag{dµ
dη
} and G2 = diag{d2µ

dη2 }.

Remark 1.2. For the binomial and Poisson distributions, expressions (1.24)–

(1.26) do not involve φ.

Cordeiro and McCullagh (1991) also give the following example.
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Example 1.3. Binomial proportion with a log–link function

Suppose that Y ∼ Bin.(m, q)/m, the binomial proportion with index m

and parameter q as defined in Table 1.1, and that η = ln[q/(1 − q)] is the

logistic link of q. The MLE of η is

η̂ = ln[Y/(m− Y )] (1.27)

whereas the usual bias-corrected estimates have the form

η̂c = ln[(Y + c)/(m− Y + c)] (1.28)

for some constant, usually taken to be c = 1
2

(Cox and Snell, 1979).

Obviously if c > 0, |η̂c| < |η̂|, so that bias correction has the effect of

shrinking the MLE towards the origin. The general bias-corrected estimate

of the linear predictor described above is equivalent in this case to the choice

c = m/2(m − 1). There is a finite probability that Y = 0 or Y = m, and

consequently η̂ is consistent for η with asymptotic bias of order O(m−1) for
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large m.

Cordeiro and McCullagh (1991) give the first-order bias corrections in

GLMs for small or moderate-sized samples. However, even with large enough

sample size n, the estimated response ŷi = g−1(X iβ̂) is asymptotically biased

due to the curvature of the link function. Cordeiro and McCullagh (1991)

also give numerical examples to illustrate the computations by using the

logistic model.

26



Chapter 2

Full Credibility Theory for

GLMs and GLMMs

2.1 Full credibility criteria

Developed in the early part of the 20th century, limited fluctuations credibility

gives formulas to assign full or partial credibility to an individual or group of

policy–holders’ experience. Mowbray (1914) pioneered the use of experience

rating for worker’s compensation premium formulas. He used a heuristic

approach, based on classical statistics, to develop full credibility formulae.

Also in the context of worker’s compensation, Whitney (1918) is an early
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attempt at a more rigorous greatest accuracy credibility. Bailey (1950) is also

a significant contribution to this early credibility research literature.

A more statistical approach to credibility was developed in the second part

of the century. Some of the important contributions to partial credibility of

that period were given by Bühlmann (1967, 1969), Bühlmann and Straub

(1970), Hachemeister (1975) and Jewell (1975).

More recently, Frees (2003) as well as Goulet et al. (2006) give some

results in using credibility theory in loss data. Nelder and Verrall (1997)

show how credibility theory can be encompassed within the theory of GLMs.

In that vein Schmitter (2004) gives a simple method to estimate the number

of claims needed for a GLM tariff calculation. Here we focus on full credibility

with a GLM model.

The insurer may find credible the estimator µ̂i of the mean parameter

µi it estimates if the probability of small differences |µ̂i − µi| is large. If
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this difference is small “enough”, we say that full credibility is achieved.

Statistically, this can be defined as

πi = P
{|µ̂i − µi| ≤ rµi

} ≥ pi , i = 1, . . . , n , (2.1)

for a chosen estimation–error tolerance level 0 < r < 1 and confidence prob-

ability pi.

Proposition 2.1. For any generalized linear model, as defined in (1.1)–

(1.3), let g be a monotonic increasing link function. Then the probability

πi = P
{|µ̂i − µi| ≤ rµi

}
= P

{
(1− r)µi ≤ µ̂i ≤ (1 + r)µi

}

= P
{
g[(1− r)µi]− g(µi) ≤ g(µ̂i)− g(µi) ≤ g[(1 + r)µi]− g(µi)

}

= P
{
g[(1− r)µi]−X ′

iβ ≤ X ′
iβ̂ −X ′

iβ ≤ g[(1 + r)µi]−X ′
iβ

}
. (2.2)

It is reasonable to restrict g to increasing link functions. If needed, similar

results would follow for decreasing link functions.

Proposition 2.1 gives some expressions equivalent to (2.1) and transfers
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the confidence interval from the scale of the GLM estimators µ̂i, to the scale

of the linear components, through the link function g.

For a general link function the lower and upper bounds to X ′
iβ̂ −X ′

iβ in

(2.2) depend on the parameters in β. But if the link function satisfies the

condition that g(c µi) = g(µi) + c′ for any µi, where c and c′ are constants

with respect to µi, then (2.2) admits a simpler form as follows.

Proposition 2.2. For any given error tolerance level r and any µi,

P
{|µ̂i − µi| ≤ rµi

}
= P

{
c1 ≤ X ′

iβ̂ −X ′
iβ ≤ c2

}
, i = 1, . . . , n , (2.3)

if and only if a log–link function g(x) = c ln(x) + τ is used in (2.2), where c

and τ are scale and shift–parameters, respectively, and c1, c2 are given by:

c1 = c ln(1− r) and c2 = c ln(1 + r) . (2.4)

Proof: (⇐) If g(x) = c ln(x) + τ , by (2.2), it is clear that for any fixed
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i = 1, . . . , n,

g[(1− r)µi]− g(µi) = c ln[(1− r)µi]− c ln(µi) = c ln(1− r) ,

and

g[(1 + r)µi]− g(µi) = c ln[(1 + r)µi]− c ln(µi) = c ln(1 + r) .

(⇒) Again, for any fixed i = 1, . . . , n, if

P
{|µ̂i − µi| ≤ rµi

}
= P

{
c1 ≤ X ′

iβ̂ −X ′
iβ ≤ c2

}
,

then from (2.2), for any µi,

c1 = g[(1− r)µi]− g(µi) and c2 = g[(1 + r)µi]− g(µi). (2.5)

Assuming that g is differentiable, then for any µi

g′(µi) = lim
r→0

g[(1− r)µi]− g(µi)

−rµi

= lim
r→0

c1

−rµi

(2.6)

but also

g′(µi) = lim
r→0

g[(1 + r)µi]− g(µi)

rµi

= lim
r→0

c2

rµi

. (2.7)
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Hence limr→0
c1
−r

= limr→0
c2
r

= c, say. Then g′(µi) = c
µi

, which indicates that

g(x) = c ln(x) + τ . 2

The above proposition shows that for the log–link function, the upper and

lower bounds of the full credibility rule do not depend on the estimated value

µ̂i. They only depend on the chosen error tolerance level r. The following

example gives a concrete illustration.

Example 2.1. Poisson distribution with a log–link function

Let Yi be independent Poisson distributed random variables representing

the number of claims for risk i = 1, . . . , n. Here E(Yi) = µi = exi1β1+···+xipβip .

With the log–link function, g[E(Yi)] = g(µi) = xi1β1 + · · ·+ xipβip. By (2.2),

|µ̂i − µi| ≤ rµi ⇔ ln(1− r) ≤ X ′
iβ̂ −X ′

iβ ≤ ln(1 + r). Since 0 < r < 1, then
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| ln(1 + r)| < | ln(1− r)| and hence

P
{|µ̂i − µi| ≤ rµi

}
= P

{
ln(1− r) ≤ X ′

iβ̂ −X ′
iβ ≤ ln(1 + r)

}

≤ P
{|X ′

iβ̂ −X ′
iβ| ≤ | ln(1− r)|} . (2.8)

Now let s2 = V(β̂1 + · · ·+ β̂p) and X i = (1, 1, . . . , 1), then (2.8) becomes

P
{|X ′

iβ̂ −X ′
iβ| ≤ | ln(1− r)|}

= P
{|(β̂1 + · · ·+ β̂p)− (β1 + · · ·+ βp)| ≤ | ln(1− r)|}

= P
{∣∣(β̂1 + · · ·+ β̂p)− (β1 + · · ·+ βp)

s

∣∣ ≤ | ln(1− r)|
s

}
. (2.9)

Approximating by a normal distribution, (2.9) yields | ln(1−r)|
s

≥ Zπ∗ , where

Zπ∗ is the π∗ = 100[1 − (1−π
2

)]-percentile of a standard normal distribution.

Hence the following asymptotic full credibility criterion is obtained:

s2 ≤ [ ln(1− r)

Zπ∗

]2
= s2

∗ ,

which says that the sample size n must be sufficiently large to ensure that the

variance of the sum of the estimators β̂1, . . . , β̂p be at most s2
∗. For instance,
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if r = 0.1 and π = 90% then s2
∗ = 0.00410. This result is consistent with the

result given by Schmitter (2004, p.258).

The following results consider the asymptotic behaviour of µ̂i = X ′
iβ̂.

Proposition 2.3. Let Σ = (σij)i,j = (X′WoX)−1 and s2
i = V(µ̂i) =

V(X ′
iβ̂). Then for every component i = 1, . . . , n,

s2
i → X ′

iΣX i , (2.10)

as n →∞, where X i, Wo and X are given in Lemma 1.1.

Proof: From Lemma 1.1–(2) we have that V(β̂) → Σ, as n → ∞, and the

iterative β̂ converges to the true β, then

s2
i = V(X ′

iβ̂) = V(xi1β̂1 + · · ·+ xipβ̂p)

=

p∑
j=1

p∑

k=1

xij xik Cov(β̂j, β̂k) →
p∑

j=1

p∑

k=1

xij xik σjk = X ′
iΣX i .

2
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Furthermore, Lemma 1.1 states that β̂ converges to N
(
β,Σ

)
in distribu-

tion. Then, the following corollary to Proposition 2.3 holds.

Corollary 2.1.
(
X ′

iβ̂ −X ′
iβ

)
/si converges to N(0, 1) in distribution.

We are now in a position to state the main results in this section on the

asymptotic full credibility standard for µ̂i.

Theorem 2.1. For the log–link function, an asymptotic normal approxima-

tion gives

πi
.
= Φ

( ln(1 + r)

si

)
− Φ

( ln(1− r)

si

)
, i = 1, . . . , n , (2.11)

where Φ is the cumulative distribution function (cdf) of the standard normal

distribution.

Proof: From Propositions 2.1 and 2.2,

πi = P
{

ln(1− r) ≤ X ′
iβ̂ −X ′

iβ ≤ ln(1 + r)
}

= P
{ ln(1− r)

si

≤ X ′
iβ̂ −X ′

iβ

si

≤ ln(1 + r)

si

}
.
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Hence, by the normal approximation, πi
.
= Φ( ln(1+r)

si
)− Φ( ln(1−r)

si
). 2

For any confidence coefficient πi, Theorem 2.1 gives a 100(1 − r)% con-

fidence interval for µi, the mean response from the GLM. The theorem also

shows that the confidence interval varies with the value of the covariates

since si is a function of X i. The examples in Section 2.3 illustrate the above

results.

Now for a general link function g, let

Q1 = g[(1− r)µi]− g(µi) and Q2 = g[(1 + r)µi]− g(µi) . (2.12)

Theorem 2.2. For a monotonic increasing link function g, we have the

following asymptotic approximation:

πi
.
= Φ

(Q2

si

)
− Φ

(Q1

si

)
, i = 1, . . . , n , (2.13)

where Φ is the cdf of the standard normal distribution, Q1 and Q2 are given

in (2.12) and si in Proposition 2.3.
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Proof:

πi = P
{|µ̂i − µi| ≤ rµi

}
= P

{
Q1 ≤ X ′

iβ̂ −X ′
iβ ≤ Q2

}

= P
{Q1

si

≤ X ′
iβ̂ −X ′

iβ

si

≤ Q2

si

}
.

Approximating by the normal distribution gives (2.13). 2

Clearly, the smaller si the bigger πi (approximately), which differs for

different i. If g is the log–link function, then Proposition 2.2 gives closed

forms for Q1 and Q2. For other link functions, as the true parameter value

µi is unknown, we can approximate Q1, Q2 and πi as follows. First set

Q̂1 = g[(1− r)µ̂i]− g(µ̂i) and Q̂2 = g[(1 + r)µ̂i]− g(µ̂i) , (2.14)

which then implies that

π̂i
.
= Φ

(Q̂2

si

)
− Φ

(Q̂1

si

)
. (2.15)

Section 2.2 discusses the effect of the choice of link function on the above

approximation.
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Finally, similar results hold for the confidence probability estimates in

GLMMs.

Proposition 2.4. For any generalized linear mixed model, as defined in

(1.6)–(1.8), let g be a monotonic increasing link function. Then

πij = P
{|µ̂ij − µij| ≤ rµij

}
= P

{
(1− r)µij ≤ µ̂ij ≤ (1 + r)µij

}

= P
{
g[(1− r)µij]− g(µij) ≤ g(µ̂ij)− g(µij) ≤ g[(1 + r)µij]− g(µij)

}

= P
{
g[(1− r)µij]−X ′

ijβ − T ′
ijui ≤ X ′

ijβ̂ + T ′
ijûi −X ′

ijβ − T ′
ijui

≤ g[(1 + r)µij]−X ′
ijβ − T ′

ijui

}
. (2.16)

Using the same idea as in Theorem 2.2 (see Liang and Zeger, 1986 for

the asymptotic normal distribution of the GLMM estimators), we obtain the

following result for GLMMs.

Theorem 2.3. For any link function g, let s2
ij = V(X ′

ijβ + T ′
ijui) and Q1j,
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Q2j be defined as

Q1j = g[(1− r)µij]− g(µij) and Q2j = g[(1 + r)µij]− g(µij) , (2.17)

then

πij
.
= Φ

(Q2j

sij

)
− Φ

(Q1j

sij

)
, i = 1, . . . , n, j = 1, . . . , ni . (2.18)

2.2 The choice of link function

As shown in the previous section, the main idea here is to transfer the full

credibility condition (2.1) to an equivalent form that is easier to implement,

as in Theorems 2.1–2.2. Expression (2.13) gives the credibility of the GLM

estimator as a function of Q1, Q2 and si, which also depend on the link

function g. Thus, it is natural to investigate the effect of this choice of link

function.

The following lemma shows that rescaling or shifting the link function of

a given GLM has no effect on the credibility of the resulting GLM estimators.
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Lemma 2.1. Rescaling or shifting a given link function g, such as in h(x) =

c g(x)+τ , does not affect the approximate confidence probabilities πi in (2.13).

Proof: For a link function g, (1.3) can be rewritten as g(µi) = β
(g)
0 +X ′

iβ
(g),

where β
(g)
0 is the intercept. Let the new link function be h(x) = c g(x) + τ .

Then h(µi) = β
(h)
0 + X ′

iβ
(h) = c g(µi) + τ and hence g(µi) =

β
(h)
0 −τ

c
+ X ′

i

β(h)

c
.

It follows that β
(g)
0 =

β
(h)
0 −τ

c
and β(g) =

β(h)

c
.

Now let s
(g)
i =

√
V(X ′

iβ̂
(g)

), s
(h)
i =

√
V(X ′

iβ̂
(h)

). Clearly s
(g)
i = 1

c
s
(h)
i , or

equivalently, s
(h)
i = c s

(g)
i , while

Q
(h)
i = h[(1± r)µi]− h(µi) = c

{
g[(1± r)µi]− g(µi)

}
= cQ

(g)
i ,

for i = 1, 2. Refer to (2.13) and substitute Q
(h)
i and s

(h)
i above, to see that

π
(g)
i

.
= Φ

(Q
(g)
2

s
(g)
i

)
− Φ

(Q
(g)
1

s
(g)
i

)
= Φ

(cQ
(g)
2

c s
(g)
i

)
− Φ

(cQ
(g)
1

c s
(g)
i

)
.
= π

(h)
i .

2

Example 2.4 gives a numerical illustration of Lemma 2.1. It shows how
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the estimated probabilities πi, in (2.13), but where si is estimated with ŝi

given by the GLM, also remain essentially unchanged under any rescaling of

the log–link function.

The choice of link function also affects the bias in GLM estimators, β̂,

µ̂i = g−1
(
X ′

iβ̂
)

and in our estimated Q̂1, Q̂2 in (2.14). This is explored in the

next result. We first reproduce a version of Jensen’s inequality that we need.

In what follows a convex function is called convex upward while a concave

function is called convex downward.

Lemma 2.2. (Jensen’s Inequality) Let X be a random variable with finite

mean E(X) and ϕ be a convex upward (respectively downward) function on

R. Then

E
[
ϕ(X)

] ≥ (resp. ≤) ϕ
(
E[X]

)
. (2.19)

Now we can explore how the link function affects the estimation bias in

our confidence intervals. We distinguish the cases when g is linear, convex
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upward and decreasing, like the inverse function g(x) = 1/x, or else when it

is convex downward and increasing, like the log link function g(x) = ln(x).

Theorem 2.4. Q̂1 and Q̂2 (2.14) are:

1. unbiased estimators if the link function g is linear,

2. asymptotically upward–biased if the link function g is convex upward

and decreasing,

3. asymptotically downward–biased if the link function g is convex down-

ward and increasing.

Proof: Recall that Q̂1 = g[(1− r)µ̂i]− g(µ̂i) and Q1 = g[(1− r)µi]− g(µi),

where g(µi) = X ′
iβ and g(µ̂i) = X ′

iβ̂. Then

bias(Q̂1) = E(Q̂1)−Q1

= E
{
g[(1− r)µ̂i]

}− E[X ′
iβ̂]− g[(1− r)µi] + X ′

iβ

= E
{
g[(1− r)µ̂i]

}− g[(1− r)µi]−X ′
i bias(β̂) . (2.20)
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Three cases need to be distinguished:

1. If g is linear then E
{
g[(1− r)µ̂i]

}− g[(1− r)µi] = 0 and β̂ is unbiased,

hence so is Q̂1.

2. If g is a convex upward decreasing function, then by Jensen’s inequality

in (2.19)

E(µ̂i) = E
[
g−1(X ′

iβ̂)
] ≤ g−1

[
E(X ′

iβ̂)
]

= g−1(X ′
iβ) = µi ,

that is E(µ̂i) ≤ µi. Now since

E
{
g[(1− r)µ̂i]

} ≥ g
{
E[(1− r)µ̂i]

}
= g

{
(1− r)E[µ̂i]

} ≥ g[(1− r)µi] ,

and β̂ is asymptotically unbiased, then asymptotically E(Q̂1)−Q1 ≥ 0.

Hence Q̂1 is an asymptotically upward–biased estimator.

3. If g is a concave increasing function, the proof is similar but with the

inverse inequalities. That is asymptotically E(Q̂1)−Q1 ≤ 0 and Q̂1 is

an asymptotically downward–biased estimator.
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The proof is similar for the results on Q̂2. 2

In practice the choice of a link function for a GLM is not a straightfor-

ward problem. Its solution heavily relies on experience and intuition. The

following theorem gives a criterion for the choice of the link function.

Theorem 2.5. For a GLM problem, π̂i given by (2.15) can be used as a

criterion to choose between two link functions g1 and g2. If π̂
(g1)
i < π̂

(g2)
i , we

say that the estimator given under the link function g1 is less credible than

the estimator given under g2, that is g2 is better than g1.

2.3 Numerical examples

Example 2.2. Car Insurance Claims Data (GLM)

The SAS Technical Report P-243 (1993) gives the illustrative dataset in

Table 2.1 of a car insurance portfolio (also reproduced in Schmitter, 2004).

For earlier examples of traditional/nonlinear analysis of car insurance data
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Class Number of Risks Number of Claims Car Type Age Group

i = 1 500 42 small 1

2 1200 37 medium 1

3 100 1 large 1

4 400 101 small 2

5 500 73 medium 2

6 300 14 large 2

Table 2.1: Car Insurance Data

see Coutts (1984), Aitkin et al. (1989) and Brockman and Wright (1992).

Now let the number of claims per risk yi be Poisson and choose a log–link

function. Furthermore, let the covariates X i = (xi1, . . . , xi4)
′, where

xi1 = 1,

xi2 =





1 if car type is large

0 otherwise,

xi3 =





1 if car type is medium

0 otherwise,

xi4 =





1 if age group is 1

0 otherwise.

In this notation X4 = (1, 0, 0, 0)′ defines the base premium E(Y4) = eβ1 for
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a small car type in age group 2 . The matrix of variance–covariance Σ in

Proposition 2.3 is computed with SAS for weights equal to the number of

risks, i.e. w1 = 500, w2 = 1200, w3 = 100, w4 = 400, w5 = 500 and w6 = 300

(see Lemma 1.1–2).

Σ =




0.008150 −0.007772 −0.006344 −0.004623

−0.007772 0.074180 0.006556 0.003113

−0.006344 0.006556 0.016450 −0.002592

−0.004623 0.003113 −0.002592 0.018470




Let the tolerance level r = 0.1 and X3 = (1, 1, 0, 1)′ for the third class of

drivers, i.e. with a large car type in age group 1 . Then the asymptotic

value in (2.10) for s2
3 = X ′

3ΣX3 = 0.082236 and from (2.11) we get π3 =

Φ( ln(1+r)
s3

)− Φ( ln(1−r)
s3

) = 0.273533. Clearly, the current experience produces

GLM estimators that are not credible for this class with only one claim, as

s2
3 = 0.273533 > 0.00410 = s2

∗, for r = 0.1 and π = 90%.

By contrast, letting X1 = (1, 0, 0, 1)′ gives s2
1 = 0.017374 and π1 =

0.553138, which indicates a higher confidence in the GLM estimator for small
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cars than for large cars, in age group 1, although not sufficient for full cre-

dibility s2
1 = 0.017374 > 0.00410 = s2

∗. Table 2.2 reports the asymptotic

variances s2
i = V(X ′

ijβ) → X ′
iΣX i and the credibility probabilities πi for all

6 classes.

Class i = 1 2 3 4 5 6

X ′
i (1,0,0,1) (1,0,1,1) (1,1,0,1) (1,0,0,0) (1,0,1,0) (1,1,0,0)

X ′
iΣX i 0.017374 0.015952 0.082236 0.008150 0.011912 0.066786

πi 0.553138 0.572679 0.273533 0.732868 0.641557 0.302114

Table 2.2: Asymptotic Variances and Confidence Probabilities

Example 2.3. Effect of Sample Size (GLM)

Furthermore, if we modify Example 2.2 so that the claim experience in-

creases proportionally, we see that so does the confidence probability πi. For

instance, in the third class we need to multiply exposures by as much as

23 times (i.e. both the risk and claim counts) to get s2
3 = 0.003575 and

π3 = 0.905492 (i.e. full credibility at the 90% level). As expected, the GLM
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tends to full credibility as the portfolio size increases.

Example 2.4. Effect of the Covariates Distribution (GLM)

This example shows that credibility also depends on the distribution of

the covariates. For instance, modify the above Car Insurance Data to keep

the total number of claims unchanged at 268 in Table 2.1, but rearrange the

claim counts in each group as in Table 2.3.

Class Number of Risks Number of Claims Car Type Age Group

i = 1 500 45 small 1

2 1200 108 medium 1

3 100 9 large 1

4 400 36 small 2

5 500 44 medium 2

6 300 26 large 2

Table 2.3: Modified Car Insurance Data

Then for X3 = (1, 1, 0, 1)′ we get an asymptotic s2
3 = 0.038200 and π3 =

0.392182, which differs from the value of 0.273533 obtained in Example 2.2.

Clearly the credibility of GLM estimates depends on the distribution of the
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covariates.

Example 2.5. Effect of the Link Function (GLM)

Let the link function g(x) = c ln(x) + τ . Lemma 2.1 shows that c and τ

have no effect on the calculation of Q1, Q2 and si. The same is true when

these are estimated by a software implementation of the GLM, for instance

the GENMOD procedure in SAS.

Choosing different rescaling parameters c, Table 2.4 shows that the esti-

mated confidence values πi in (2.13), for classes i = 1 and 3 remain essentially

the same.

c s1 π1 s3 π3

0.1 0.019139 0.552537 0.028674 0.273559

0.5 0.065901 0.553164 0.143400 0.273504

1 0.013181 0.553139 0.286768 0.273533

2 0.263610 0.553157 0.573620 0.273495

5 0.659007 0.553165 1.433855 0.273531

Table 2.4: Rescaled Car Insurance Data
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Hence rescaling or shifting the link function practically does not affect

the πi values.

Example 2.6. GLMM with Territory as Random Effect

This example illustrates the credibility results for GLMMs. We add one

more variable, called territory, to Example 2.2. It takes two values, “rural”

and “urban”, which will illustrate the random effect of a GLMM. In this

example the territory is treated as a random–effect, because some tests at

the data validation step showed that the impact of this variable depends on

the risk class. This in contrast to fixed–effects that have an impact at the

individual level. Here the fixed–effects parameters estimates, β̂, those for the

random–effects, û, as well as their variance–covariance matrix were obtained

with the GLIMMIX procedure in SAS (see [49]).

As in Example 2.2, let yi be Poisson and g be a log–link function. Fur-
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Number Number

Class of Risks of Claims Car Type Age Group Territory

i = 1 500 42 small 1 rural

2 1200 37 medium 1 urban

3 100 1 large 1 rural

4 400 101 small 2 urban

5 500 73 medium 2 rural

6 300 14 large 2 urban

Table 2.5: Car Insurance Data with Territory Random Effects

thermore, let the covariates Xi = (xi1, . . . , xi5)
′ and Tj = (t1j, t2j)

′, be coded
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as:

xi1 = 1,

xi2 =





1 if car type is large

0 otherwise,

xi3 =





1 if car type is medium

0 otherwise,

xi4 =





1 if age group is 1

0 otherwise.

t1j =





1 if territory is rural

0 otherwise.

t2j =





1 if territory is urban

0 otherwise.

The variance–covariance matrices Σ of the fixed effects and D in V(X ′
iβ +

T ′
iui) = X ′

iΣX i + T ′
iDT i of the random effects are given by:

Σ =




0.016500 −0.007440 −0.007600 −0.005230

−0.007440 0.074590 0.006032 0.003173

−0.007600 0.006032 0.017680 −0.001150

−0.005230 0.003173 −0.001150 0.018250




D =


 0.010262 0

0 0.010262


 (2.21)

Let the tolerance level r = 0.1 and X3 = (1, 1, 0, 1)′, T1 = (1, 0)′ for the third
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class of drivers with a large car type in age group 1 and in territory rural .

Then the estimated variance, as given in Theorem 2.3 is s2
13 = X′

3ΣX3 +

T′
1DT1 = 0.100608. This gives π13 = Φ( ln(1+r)

s13
) − Φ( ln(1−r)

s13
) = 0.248217.

Clearly, the current experience produces GLMM estimators in this class that

have a low confidence.

By contrast, letting X1 = (1, 0, 0, 1)′ and T1 = (1, 0)′ gives s2
11 = 0.034552

and π11 = 0.410517, which indicates a GLMM estimator with a higher con-

fidence for small cars in age group 1 than for large cars in age group 1 and

a rural territory.

2.4 Conclusion

This chapter studies the credibility of the estimators obtained from GLM

and GLMM risk models. A closed form of the full credibility criteria is given

for the log–link function, usually paired to Poisson observations (i.e. claim

53



counts). For general link functions, we propose a credibility estimation based

on an asymptotic normal approximation.

The proposed method should become useful to actuaries as it provides full

credibility criteria for GLM estimators, at a time when these are becoming

popular in the statistical analysis of insurance and risk data.
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Chapter 3

Partial Credibility Theory for

GLMs

3.1 Introduction to partial credibility theory

Clearly the applicability of the full credibility is limited. Condition (2.1) gives

a mathematically description of a full credibility. To be able to compute the

probability statements in (2.1), the distribution of µ̂j must be known, or an

approximation be used. When the sample size n is large, the Central Limit

Theorem can be used to approximate it by a normal distribution.

When the standard for full credibility is not met and so the GLMs esti-
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mators are not sufficiently accurate to be used as estimates of the expected

value, we need a method for dealing with this situation. Lo et al. (2007) de-

veloped a generalized estimating equations approach to estimate structural

parameters of a regression credibility model. Partial credibility theory is a

natural and standard approach to solve this actuarial problem.

If we believe that the GLMs parameters are not fully credible, then it

may be desirable to reflect the total portfolio experience µ in the estimation

of each single contract µ̂j. An intuitively appealing method for doing this is

through a weighted average, that is through a linear credibility estimator as

µ̂(z)

j
= Zjµ̂j

+ (I− Zj)µ , (3.1)

where Zj is the credibility factor. The question here is how to estimate the

credibility factor Zj?

There are many formulas for Zj which have been suggested in the ac-
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tuarial literatures, usually justified on intuition rather than from a rigorous

mathematical basis. For instance, intuitively, it should be an increasing func-

tion of nj, the sample size for contract j.

Of many proposals in the actuarial literature, the one that turned out to

be the right choice is

Zj =
nj

nj + kj

, (3.2)

where kj is a parameter to be determined. This particular choice can be

proved to be theoretically justified on the basis of a statistical model. Klug-

man et al. (2004) gives a comprehensive review of this model as well as the

proof. A variety of arguments have been used to derive the value of Zj. Some

of these proposals maybe intuitively appealing but are theoretical difficult or

not statistically sound.

Klugman et al. (2004) also points out several issues with this partial
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linear credibility approach. First, there is no underlying theoretical model

for the distribution of µ̂j, especially when the sample size is small, and thus

no reason why a linear credibility weighted average estimator µ̂
(z)
j in the form

(3.1) is appropriate and preferable to µ or µ̂j. Why not just apply GLMs

on homogeneous data and give full credibility to the GLM estimator? This

approach might be the best way to use all the available information.

While there is a practical reason for using (3.1), no model has been pre-

sented to prove that it is appropriate. Consequently, the choice of Zj and

µ̂
(z)
j is quite arbitrary. Especially for GLMs, little research has been done to

investigate the impact of a non-linear link function on the accuracy of the

linear partial credibility estimator. Intuitively, this may introduce some bias

and linear credibility estimation may not improve the accuracy of the GLM

estimators. In the two chapters that follow, we carry out some theoretical

and numerical investigation to answer this question.
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Furthermore, this approach does not examine the difference between µj

and µ. When (3.1) is used, we are essentially assuming that the value of

(3.1) is an accurate representation of the expected value of this particular

contract. However, µ is usually also only an estimate and therefore itself

subject to error. Finally µ is not necessarily an unbiased estimator of µj.

With regards to the credibility estimator, µ̂
(z)
j is not unbiased for µj. In

fact, one of the characteristics that allows credibility to work empirically

also forces the use of biased estimators. If µ̂j and µ are biased, then µ̂
(z)
j is

also biased, except in some very rare situations. This also means that the

appropriate measure of the quality of the credibility estimator µ̂
(z)
j is not its

variance, but its mean-squared error.

In this thesis, we use the sum of squared errors to assess the adequacy

of the models. However, the mean-squared error requires knowledge of the

bias, and that requires knowledge of the relationship between µj and µ. In
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practice little is known about this relationship in most cases. We often need

to resort to ad hoc assumptions or approximations.

In this chapter, we use the standard partial credibility approach in (3.1) to

derive a theoretical solution for the credibility factor Zj for GLM estimators,

which minimize the mean-squared error, or equivalently, the sum of squares

error (SSE). Then, we use some numerical illustrations to verify if the above

issues stated in Klugman et al. (2004) apply to the linear partial credibility

estimator for GLMs.

3.2 Partial credibility GLM estimators

When the GLM parameters are not fully credible, as defined in Chapter

2, then an alternate estimator to µ̂
j

(or, equivalently, to β̂
j
) as that given

in Section 1.2, may be needed. Actuaries typically use greatest accuracy

credibility estimators of the mean response µ
j

= E(Y j). Here this means
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that we would look for a credibility estimator

µ̂(z)

j
= Zjh(Xβ̂

j
) + (I− Zj)h(Xb) , (3.3)

which is a mixture between the GLM contract estimator h(Xβ̂
j
) and the

portfolio mean h(Xb), where Zj is a credibility factor matrix. Here Zj is

obtained as to minimize the expected value of mean square error:

Q(Zj) = E
{

[h(Xβ
j
)− Zjh(Xβ̂

j
)− (I− Zj)h(Xb)]′

[h(Xβ
j
)− Zjh(Xβ̂

j
)− (I− Zj)h(Xb)]

}
, (3.4)

where β̂
j

is the vector of estimated GLM parameters, β
j

is the true vector

of parameters, Zj = (zil)i,l is the n× n credibility matrix and b is the vector

of portfolio parameters, while h = g−1 is the inverse of the link function g.

3.2.1 Hachemeister’s regression model

De Vylder (1996) gives a complete review of credibility regression models,

including that of Hachemeister. Hachemeister worked on U.S. bodily in-
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jury car insurance data that showed linear inflation trends in claims. This

trend differed from one state to the other and also from the average national

inflation trend. Such examples suggest the generalization of weighted cre-

dibility models to accept regression variables. Hachemeister (1975) relaxes

the assumptions of the model of Bühlmann and Straub (1970) and defines a

credibility regression model as follows:

(1) The contract random vector (Θj, Y j), for j = 1, . . . , k, are pair-wise

independent and the risk parameters Θj identically distributed.

(2) For each j = 1, . . . , k the conditional mean claim vector µ(Θj) =

[µ1(Θj), . . . , µn(Θj)]
′ is defined as:

µ(Θj) = E[Y j|Θj] = Xβ(Θj) = X[β0(Θj), . . . , βp−1(Θj)]
′ (3.5)

where X is a n × p design matrix (of rank p < n) and β(Θj) is an

unknown regression vector of length p.
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(3) Furthermore,

Cov[Y j|Θj] = σ2(Θj)Vj , (3.6)

where Vj is a positive semi–definite n × n (inverse) matrix of weights

and σ2 a scale function of Θj. All matrices X and Vj are assumed

known in advance.

Hachemeister (1975) gives the weighted least squares regression estimators

of β̂
j
= β(Θj) and the related credibility results as follows.

Lemma 3.1. The weighted least squares regression estimators of β
j

which

minimize

Qj(β) = [Y j −Xβ(Θj)]
′V−1

j [Y j −Xβ(Θj)] (3.7)

for j = 1, . . . , k, are given by

β̂
j
= (X′V−1

j X)−1X′V−1
j Y j = UjX

′V−1
j Y j, (3.8)
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and

V(β̂
j
) = A + s2Uj, (3.9)

Cov(β̂
j
, β

j
) = A, (3.10)

E[β̂
j
] = b, (3.11)

where Uj = (X′V−1
j X)−1, s2 = E[σ2(Θj)], A = Cov[β(Θj)] and b = E[β(Θj)].

Corollary 3.1. Weighted least squares estimator of β given by (3.8) produces

the following credibility matrix

Zj = A(A + s2Uj)
−1. (3.12)

The proof of the above results can be found in De Vylder (1996). We

will also show that the above results are a special case of the GLMs partial

credibility model in the following sections.
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3.2.2 The GLM partial credibility model

Consider a generalization of the credibility regression model of Hachemeister

(1975) in the prior section, where a link function relates the linear term to

the expected response. More specifically, the model for the partial credibility

theory of GLMs is defined as follows:

(1) The contract random vectors (Θj, Y j), for j = 1, 2, . . . , k, are pair–

wise independent and the unobservable risk parameters Θj identically

distributed.

(2) For all j = 1, 2, . . . , k, let the vector µ
j
= µ(Θj) = [µ1(Θj), . . . , µn(Θj)]

′

denote the conditional mean claims per contract, where

µ
j
= E[Y j|Θj], j = 1, . . . , k. (3.13)

(3) For an observable random sample Y 1, . . . , Y k, the linear component is

65



defined as

η
j
= η(Θj) = Xβ(Θj), j = 1, . . . , k. (3.14)

where X is an n × p design matrix (of rank p < n) and β(Θj) is an

unknown regression vector of length p (i.e. the vector functions η and

β are the same for all contracts).

(4) A monotonic differentiable link function g describes how the expected

response µ
j
= E[Y j|Θj] is related to the linear predictor as η

j

g(µ
j
) = η

j
, j = 1, . . . , k, (3.15)

or, equivalently,

µ
j
= h(η

j
), j = 1, . . . , k, (3.16)

where h = g−1 is the inverse function of g.

(5) Furthermore,

Cov[Y j|Θj] = σ2(Θj)Vj, j = 1, . . . , k, (3.17)
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where Vj = diag(w−1
j1 , w−1

j2 , . . . , w−1
jn ) is a positive semi–definite n × n

(inverse) matrix of weights and σ2(Θj) a scalar function of Θj, such

that V(Yj|Θj) =
σ2(Θj)

wj
= φ

wj
V[µ(Θj)]. All matrices X and Vj are

assumed known in advance.

Comparing this GLM partial credibility model with Hachemeister’s re-

gression model, the essential differences are in (3.15) and (3.16), where a

non-linear function can be used to link the linear predictors and the estima-

tors. This is an essential characteristics of GLMs.

For each j = 1, 2, . . . , k, we estimate the GLM parameters β
j
, as β̂

j
.

Then, we calculate the credibility of each estimator µ̂
j

= h(Xβ̂
j
) and apply

(3.3) to get the linear credibility estimation. For both steps, explicit solutions

only exist for very special cases. We need to resort to the numerical methods

to approximate the solutions.
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The likelihood method is standard to estimate β
j
, assuming that the GLM

is appropriate and we have the required distributional information. However,

in reality, the distribution of the response variable does not necessarily belong

to the exponential family and is in fact unknown. That restricts the use of

GLMs.

In this chapter, we develop an algorithm using least squares error (LSE)

to estimate β
j
. This is a significant generalization of the GLMs because it

relaxes the assumption on the distribution of the dependent variables Y j.

3.3 Estimation of the GLM parameters

Traditionally, GLMs parameters are estimated by numerical methods because

the explicit solutions do not exist for most link functions. Newton–Raphson

methods were widely used before some of more advanced algorithms were

developed. One such improvement of the Newton–Raphson algorithm is the
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iteratively reweighted least squares (IRLS) algorithm, which is widely used

now for GLM parameter estimation. Hardin and Hilbe (2007) gives a com-

plete review and comparison of these two algorithms.

3.3.1 MLEs of the GLM parameters

Parameter estimation for standard GLMs is based on the likelihood function

by assuming that the model is completely and correctly specified by the

definition in Section 1.2. That is Y j belongs to the exponential family (EF)

as in (1.1), for j = 1, 2, . . . , k. Then the log-likelihood function is as in (1.4)

and the estimators β̂
1
, . . . , β̂

k
are calculated as in Section 1.2.1.

Hardin and Hilbe (2007) gives a clear explanation of the Newton–Raphson

(using the observed Hessian) and IRLS (using the expected Hessian) algo-

rithms. The characteristics of each algorithm are discussed and compared.

Fahrmeir and Gerhard (2001) gives very detailed discussion of the max-

imum likelihood method including the uniqueness and existence of MLEs.
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The questions of whether MLEs exist, whether they lie in the interior of

the parameter space and whether they are unique, are very interesting and

important. Based on the concavity of the log-likelihood, the existence and

uniqueness were developed by various authors.

Haberman (1974) gives the results for log-linear and binomial models.

Wederburn (1976) gives the results for normal, Poisson, gamma and binomial

models. Fahrmeir and Gerhard (2001) discuss the binomial and Poisson

models in their book.

Furthermore, to relax the assumption that the response variable follows a

member distribution of the exponential family, a quasi-likelihood model was

developed. Quasi-likelihood relaxes assumption of GLMs so that only the

mean and the variance function are needed. Fahrmeir and Gerhard (2001)

gives a detailed description for this model as well.

However, in may applications, even the quasi-likelihood assumptions may

70



be too restrictive. In the next section we further relax its assumptions and

extend the result, without any distributional assumptions, using the least

squares error estimation (LSE) approach.

3.3.2 LSEs of the GLMs parameters

Using LSE, there is no need to assume a distribution of Y j, nor a prior

distribution on the Θj’s. An empirical Bayes approach is used as in the

classical credibility models of Bühlmann (1969) and Bühlmann and Straub

(1970). The following results apply to this general model.

For each j = 1, 2, . . . , k, we minimize the sum of squares

Q(β
j
) = [Y j − µ(Θj)]

′V−1
j [Y j − µ(Θj)]. (3.18)

Equivalently, the weighted least squares estimators for β
j

are those that

minimize

Q(β
j
) = [Y j − g−1(Xβ

j
)]′ V−1

j [Y j − g−1(Xβ
j
)]. (3.19)
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Jan and Heinz (1988) is a comprehensive review of matrix differential calculus

with application in Statistics. In particular it gives the following matrix

calculus results needed in this section.

Lemma 3.2. Let ψ be a scalar-valued function, and f be a vector-valued

function of a p× 1 vector x. If ψ(x) = (f(x))′Af(x), then

Dψ(x) = (f(x))′(A + A′)Df(x) , (3.20)

where D = Dx is the differential operator with respect to x.

Lemma 3.3. (Chain rule) Let S be a subset of Rn, and assume that f :

S → Rm is differentiable at an interior point c of S. Let T be a subset of Rm

such that f(x) ∈ T for all x ∈ S, and assume that g : T → Rp is differentiable

at an interior point b = f(c) of T. Then the composite function h : S → Rp

defined by

h(x) = g(f(x))
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is differentiable at c, and

Dh(x)|x=c = [Dyg(y)|y=b] [Df(x)|x=c]. (3.21)

To minimize (3.19), we apply a differential operator with respect to β
j

on Q(β
j
) and then let the result equal to 0.

Lemma 3.4. Take the derivative of (3.18) with respect to β
j
, then

Dβ
j
Q(β

j
) = 2[Y j − h(Xβ

j
)]′ V−1

j H(β
j
)X , (3.22)

where H(β
j
) is a diagonal matrix as

H(β
j
) =




h(1)(X ′
1βj

) 0 . . . 0

0 h(1)(X ′
2βj

) . . . 0
...

... . . .
...

0 0 . . . h(1)(X ′
nβj

)




n×n

,

and h(1)(x) is the first derivative of h(x).

Proof : Now by Lemma 3.2,

DQ(β
j
) = [Y j − g−1(Xβ

j
)]′ [V−1

j + (V−1
j )′] D[Y j − g−1(Xβ

j
)], (3.23)
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where V−1
j = (V−1

j )′, and

D[Y j − g−1(Xβ
j
)] = −Dg−1(Xβ

j
) = −Dg−1(Xβ

j
), (3.24)

with D = Dβ
j

being a differential operator with respect to β
j
. Let h = g−1,

then

Dβ
j
h(Xβ

j
) = Dβ

j




h(X ′
1βj

)

h(X ′
2βj

)
...

h(X ′
nβj

)




n×1

.

More specifically,

Dβ
j
h(Xβ

j
) = Dβ

j




h(βj0 + βj1x11 + · · ·+ βj,p−1x1,p−1)

h(βj0 + βj1x21 + · · ·+ βj,p−1x2,p−1)
...

h(βj0 + βj1xn1 + · · ·+ βj,p−1xn,p−1)




n×1

,
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that is,

Dβ
j
h(Xβ

j
) =




h(1)(X ′
1βj

) h(1)(X ′
1βj

)x11 . . . h(1)(X ′
1βj

)x1,p−1

h(1)(X ′
2βj

) h(1)(X ′
2βj

)x21 . . . h(1)(X ′
2βj

)x2,p−1

...
... . . .

...

h(1)(X ′
nβj

) h(1)(X ′
nβj

)xn1 . . . h(1)(X ′
nβj

)xn,p−1




n×p

=




h(1)(X ′
1βj

) 0 . . . 0

0 h(1)(X ′
2βj

) . . . 0
...

... . . .
...

0 0 . . . h(1)(X ′
nβj

)




n×n




1 x11 . . . x1,p−1

1 x21 . . . x2,p−1

...
... . . .

...

1 xn1 . . . xn,p−1




n×p

,

where h(1)(x) is the first derivative of h(x). Now let

H(β
j
) =




h(1)(X ′
1βj

) 0 . . . 0

0 h(1)(X ′
2βj

) . . . 0
...

... . . .
...

0 0 . . . h(1)(X ′
nβj

)




n×n

,

then (3.23) can be written as

Dβ
j
Q(β

j
) = 2[Y j − h(Xβ

j
)]′ V−1

j H(β
j
)X.

2
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Generally there is no closed form solution for Dβ
j
Q(β

j
) = 0. Numerical

methods are used to obtain the weighted least squares (WLSE) estimator

of β
j
. If the link function is the identity, then the WLSE can be derived

in closed form, which is consistent with Hachemeister’s classical regression

model as in Section 3.2.1.

Proposition 3.1. If the link function is the identity, then the diagonal el-

ements of H(β
j
) are all 1 and the weighted least squares GLM estimators

which minimize

Q(β
j
) = [Y j −Xβ

j
]′V−1

j [Y j −Xβ
j
],

are given by

β̂
j
= [X′V−1

j X]−1X′V−1
j Y j. (3.25)

Proof: Since H(β
j
) is the identity matrix, if all its diagonal elements are
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equal to 1, then Dβ
j
Q(β

j
) = 0 can be written as

[Y j −Xβ
j
]′V−1

j X = 0 , (3.26)

and solving (3.26), we have

β̂
j
= [X′V−1

j X]−1X′V−1
j Y j ,

which is also consistent with the solution of Hachemeister’s credibility re-

gression model. 2

3.4 Algorithms to compute LSE estimators

The least square errors equations and their derivatives are generally non-

linear. For most link functions, no closed form solution of Dβ
j
Q(β

j
) = 0 is

available. Instead, we must resort to an iterative algorithm.

77



3.4.1 Newton–Raphson method

Let U(β
j
) = 1

2
Dβ

j
Q(β

j
), and β̂

j
be the weighted least squares GLM estima-

tor. The Newton–Raphson method is based on a one-term Taylor expansion

0 = U(β̂
j
)

.
= U(β̂

0

j
) + Dβ

j
U(β

j
)|

β
j
=β̂

0

j

(β̂
j
− β̂

0

j
), j = 1, . . . , k. (3.27)

Hence, denoting by Dβ
j
U(β̂

0

j
) = Dβ

j
U(β

j
)|

β
j
=β̂

0

j

, we can write

β̂
j

.
= β̂

0

j
− [Dβ

j
U(β̂

0

j
)]−1 U(β̂

0

j
), j = 1, . . . , k, (3.28)

which defines the iterative algorithm. It is started from an arbitrary but

well-chosen β̂
0

j
to induce an improved approximation of β̂

j
, that we denote

β̂
1

j
. Now using this β̂

1

j
as a starting value in (3.28) instead of β̂

0

j
, produces

a new improved approximation, say β̂
2

j
. With this iterative use of (3.28) we

can obtain successive approximations as β̂
1

j
, β̂

2

j
, β̂

3

j
, . . . , which converge to

β̂
j

in the best case.

The Newton–Raphson method bears the disadvantage that the inverse of
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Dβ
j
U(β̂

0

j
) might not exist. Otherwise, in most cases the Newton–Raphson

method is an efficient and simple algorithm to find the approximate solution

of (3.22).

3.4.2 Fisher scoring method

A Newton–Raphson variant is the Fisher scoring algorithm that replaces the

Hessian matrix by its expectation.

U(β̂
j
)

.
= U(β̂

0

j
) + E

[
Dβ

j
U(β̂

0

j
)
]
(β̂

j
− β̂

0

j
), j = 1, . . . , k. (3.29)

Hence, let

β̂
j

.
= β̂

0

j
− {

E[Dβ
j
U(β̂

0

j
)]
}−1

U(β̂
0

j
) (3.30)

define the iterative algorithm, which avoids the main disadvantage of the

Newton–Raphson method.
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3.4.3 Parameters in the iterative algorithms

Next we derive an iterative solution to the least squares problem in (3.18)-

(3.19).

Theorem 3.1. To solve

Dβ
j
Q(β

j
) = 2[Y j − h(Xβ

j
)]′ V−1

j H(β
j
)X = 0 , (3.31)

the Fisher scoring iteration is given by

β̂
r+1

j
= β̂

r

j
−

[
X′ŴrX

]−1

U(β̂
r

j
), j = 1, . . . , k, (3.32)

where Ŵr = (ŵr
jil) and wjil = h(1)(γji) h(1)(γjl) vjil.

Proof : Refer to (3.23) and let it equal to 0. For notational convenience, let

U(β
j
) = [Y j − h(Xβ

j
)]′ V−1

j H(β
j
)X =




U1(βj
)

U2(βj
)

...

Up(βj
)




1×p

,

and for a fixed j = 1, . . . , k,

γjl = X ′
lβj

, for l = 1, 2, . . . , n. (3.33)
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Then for l = 1, 2, . . . , n,

Ul(βj
) =

n∑

k=1

n∑
i=1

[
Yji vjik h(1)(γjk) xk,l−1 − h(γji) vjik h(1)(γjk) xk,l−1

]
, (3.34)

and

Dβ
j
Ul(βj

) =
n∑

k=1

n∑
i=1

{
Yji vjik h(2)(γjk) xk,l−1 Dβ

j
γjk

−h(1)(γji) vjik h(1)(γjk) xk,l−1 Dβ
j
γji

−h(γji) vjik h(2)(γjk) xk,l−1 Dβ
j
γjk

}

=
n∑

k=1

n∑
i=1

[Yji − h(γji)] vjik h(2)(γjk) xk,l−1 Dβ
j
γjk

−
n∑

k=1

n∑
i=1

{
h(1)(γji) vjik h(1)(γjk) xk,l−1 Dβ

j
γji

}
, (3.35)

where h(1) and h(2) are the first and second derivative, respectively, of h =

g−1.
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Taking the expectation of (3.35) with respect to the observations Y i yields

E
{

Dβ
j
Ul(βj

)
}

=
n∑

k=1

n∑
i=1

E[Yji − h(γji)] vjik h(2)(γjk) xk,l−1 Dβ
j
γjk

−
n∑

k=1

n∑
i=1

{
h(1)(γji) vjik h(1)(γjk) xk,l−1 Dβ

j
γji

}

= −
n∑

k=1

n∑
i=1

{
h(1)(γji) vjik h(1)(γjk) xk,l−1X i

}
. (3.36)

Arranging the derivatives in (3.35) and (3.36) in matrix form, we can write

Dβ
j
U(β

j
) =




Dβ
j0

U1(βj
) Dβ

j0
U2(βj

) . . . Dβ
j0

Up(βj
)

Dβ
j1

U1(βj
) Dβ

j1
U2(βj

) . . . Dβ
j1

Up(βj
)

...
... . . .

...

Dβ
j,p−1

U1(βj
) Dβ

j,p−1
U2(βj

) . . . Dβ
j,p−1

Up(βj
)




p×p

and

E
[
Dβ

j
U(β

j
)
]

= −




∑n
k=1

∑n
i=1

{
h(1)(γji) vjik h(1)(γjk) xk,0 X i

}
∑n

k=1

∑n
i=1

{
h(1)(γji) vjik h(1)(γjk) xk,1 X i

}
...
∑n

k=1

∑n
i=1

{
h(1)(γji) vjik h(1)(γjk) xk,n−1 X i

}




p×p

= X′H(β
j
)V−1

j H(β
j
)X (3.37)

Now let

Wj = (wjil) = H(β
j
)V−1

j H(β
j
), j = 1, . . . , k, (3.38)
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where

wjil = h(1)(γji) h(1)(γjl) vjil.

Similarly let

ŵr
jil = h(1)(X iβ̂

r

j
) h(1)(X lβ̂

r

j
) vjil,

and

Ŵr = (ŵr
jil),

then from (3.37) the Fisher scoring iteration becomes

β̂
r+1

j
= β̂

r

j
−

[
X′ŴrX

]−1

U(β̂
r

j
), j = 1, . . . , k, (3.39)

which converges to the weighted least squares GLM estimator. 2

3.5 The linear credibility premium

Our objective is to find a credibility estimator of the mean µ
j
, called the

credibility premium, µ̂(z)

j
= Zjh(Xβ̂

j
) + (I− Zj)h(Xb), which minimizes
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Q(Zj) = E{[µ(Θj)− µ̂(z)

j
]′Σ[µ(Θj)− µ̂(z)

j
]}. (3.40)

To simplify the problem, assume that the weight matrix Σ = I, then

Q(Zj) = E[µ(Θj)− µ̂(z)

j
]′Σ[µ(Θj)− µ̂(z)

j
]

= E[h(Xβ
j
)− Zjh(Xβ̂

j
)− (I− Zj)h(Xb)]′

[h(Xβ
j
)− Zjh(Xβ̂

j
)− (I− Zj)h(Xb)]. (3.41)

3.5.1 Estimate of the credibility matrix

Theorem 3.2. If the inverse of MSE(β̂
j
) exists, then the credibility matrix

Zj that minimizes (3.41) is given by

Zj =
{
Cov[h(Xβ

j
), h(Xβ̂

j
)] + [E[h(Xβ

j
)]− h(Xb)][E[h(Xβ̂

j
)]− h(Xb)]

}

{
MSE(β̂

j
)
}−1

. (3.42)

Proof : As in (3.33), now for l = 1, 2, . . . , n, let

γl = X ′
lb, and ξl = h(γl), (3.43)

84



while for any given j = 1, . . . , k,

γjl = X ′
lβj

, ξjl = h(γjl) and γ̂jl = X ′
lβ̂j

, ξ̂jl = h(γ̂jl). (3.44)

Also let the credibility matrix

Zj =




zj11 zj12 . . . zj1n

zj21 zj22 . . . zj2n

...
... . . .

...

zjn,1 zjn,2 . . . zjn,n




n×n

. (3.45)

Then, from (3.41) and (3.43)–(3.45) we can write Q(Zj) as

Q(Zj) =
n∑

k=1

[ξjk − ξk +
n∑

i=1

zjki(ξi − ξ̂ji)]
2

=
n∑

k=1

{
(ξjk − ξk)

2 + [
n∑

i=1

zjki(ξi − ξ̂ji)]
2 + 2(ξjk − ξk)

n∑
i=1

zjki(ξi − ξ̂ji)
}
.

Taking the derivative with respect to Zj, we can rewrite it in compact form

as

DZj
Q(Zj) =




Dzj11
Q(Zj) Dzj12

Q(Zj) . . . Dzj1p
Q(Zj)

Dzj21
Q(Zj) Dzj22

Q(Zj) . . . Dzj2p
Q(Zj)

...
... . . .

...

Dzjn,1
Q(Zj) Dzjn,2

Q(Zj) . . . Dzjn,p
Q(Zj)




n×n

,
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and

Dzjuv
Q(Zj) = 2

{ n∑
i=1

zjui(ξi − ξ̂ji)(ξv − ξ̂jv) + (ξju − ξu)(ξv − ξ̂jv)
}

= 2
{ n∑

i=1

zjuiξiξv −
n∑

i=1

zjuiξiξ̂jv −
n∑

i=1

zjuiξv ξ̂ji +
n∑

i=1

zjuiξ̂jiξ̂jv

+ξvξju − ξjuξ̂jv − ξuξv + ξuξ̂jv

}
.

Then, rearranging terms, we get

E[Dzjuv
Q(Zj)] = 2

{
ξv

n∑
i=1

zjui[ξi − E(ξ̂ji)] +
n∑

i=1

zjui[E(ξ̂jiξ̂jv)− ξiE(ξ̂jv)]

+ξv[E(ξju)− ξu]− [E(ξjuξ̂jv)− E(ξuξ̂jv)]
}

= 2
{
ξv

n∑
i=1

zjui[ξi − E(ξ̂ji)] +
n∑

i=1

zjui[E(ξ̂jiξ̂jv)− E(ξ̂jv)E(ξ̂ji)]

+
n∑

i=1

zjui[E(ξ̂jv)E(ξ̂ji)− ξiE(ξ̂jv)]− [E(ξjuξ̂jv)− E(ξju)E(ξ̂jv)]

−[E(ξju)− ξu][E(ξ̂jv)− ξv]
}

Now, for any given j, for l = 1, 2, . . . , n, let

ζ̂jl = E(ξ̂jl)− ξl and ζjl = E(ξjl)− ξl. (3.46)
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Then

E[Dzjuv
Q(Zj)] = 2

{
ξv

n∑
i=1

zjui[−ζ̂ji] +
n∑

i=1

zjuiCov(ξ̂jiξ̂jv) +
n∑

i=1

zjuiζ̂jiE(ξ̂ji)

−Cov(ξjuξ̂jv)− ζjuζ̂jv

}
. (3.47)

From (3.47), we can write E[Dzjuv
QZj

] = 0 in matrix form as

Zj[−ζ̂
j
]ξ′ + ZjCov(ξ̂

j
, ξ̂

j
) + ZjE(ξ̂

j
)ζ̂
′
j
− Cov(ξ

j
, ξ̂

j
)− ζ

j
ζ̂
′
j
= 0, (3.48)

hence

Zj = [Cov(ξ
j
, ξ̂

j
) + ζ

j
ζ̂
′
j
][Cov(ξ̂

j
, ξ̂

j
) + E(ξ̂

j
)ζ̂
′
j
− ζ̂

j
ξ′]−1

=
{
Cov[h(Xβ

j
), h(Xβ̂

j
)] + [E[h(Xβ

j
)]− h(Xb)][E[h(Xβ̂

j
)]− h(Xb)]

}

{
Cov[h(Xβ̂

j
), h(Xβ̂

j
)] + E[h(Xβ̂

j
)][E[h(Xβ̂

j
)]− h(Xb)]′ −

[E[h(Xβ̂
j
)]− h(Xb)]h(Xb)′

}−1

=
{
Cov[h(Xβ

j
), h(Xβ̂

j
)] + [E[h(Xβ

j
)]− h(Xb)][E[h(Xβ̂

j
)]− h(Xb)]

}

{
MSE(β̂

j
)
}−1

. (3.49)
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2

From the above results, it is clear that we need to estimate

E[h(Xβ̂
j
)] , E[h(Xβ

j
)] , h(Xb) , (3.50)

and

Cov[h(Xβ̂
j
), h(Xβ̂

j
)] , Cov[h(Xβ̂

j
), h(Xβ

j
)] (3.51)

to calculate the credibility matrix estimate from (3.42). In most situations,

the explicit solution will not exist. We need to resort to the numerical meth-

ods or some approximations.

3.5.2 Credibility matrix for identity link

For the identity link function, if the credibility matrix Zj applies to the GLM

estimated parameter β̂
j

instead of the contract estimator h(Xβ̂
j
), then (3.4)
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can be written as

Q(Zj) = E
{

[Xβ
j
−XZjβ̂j

−X(I− Zj)b]
′

[Xβ
j
−XZjβ̂j

−X(I− Zj)b]
}

, (3.52)

and the result (3.42) from prior section can be simplified as follows.

Theorem 3.3. If the inverse of MSE(β̂
j
) exist, then the credibility matrix

Zj that minimizes (3.52) is given by

Zj = Cov(β
j
, β̂

j
)
[
Cov(β̂

j
) + Bias(β̂

j
)Bias(β̂

j
)′
]−1

= Cov(β̂
j
, β

j
)
[
MSE(β̂

j
)
]−1

. (3.53)

Proof : Rewrite d(Zj) in (3.52) as

d(Zj) = E
{[

(β
j
− b)− Zj(β̂j

− b)
]′[

(β
j
− b)− Zj(β̂j

− b)
]}

,

and set the first derivative to zero:

∂

∂Zj

d(Zj) = −2E
{[

(β
j
− b)− Zj(β̂j

− b)
]′
(β̂

j
− b)′

}
= 0 .
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Solving gives E
[
(β

j
− b)(β̂

j
− b)′

]
= Zj E

[
(β̂

j
− b)(β̂

j
− b)′

]
, or equivalently

Cov(β̂
j
, β

j
) = Zj MSE(β̂

j
) and the result follows. 2

If the link function is the identity function, then the GLM partial credibi-

lity model becomes Hachemeister’s regression model. The credibility matrix

in (3.53) is consistent with the result of Hachemeister (1975) as in (3.12).

Remark 3.1. The above results provide some insight of the credibility of

an estimator. Although we cannot interpret the inverse of a matrix as the

reciprocal of a real number, (3.53) gives some indications that the “smaller”

the MSE of the estimated value β̂
j

the “greater” the credibility matrix Zj.

Similarly the “more” correlated the estimated value β̂
j

is with the real value

β
j
the “greater” the credibility matrix, which is consistent with our intuition.

Furthermore, for large data sets, the properties stated in Lemma 1.1 imply

that the MLE β̂
j

for the GLM parameters, as the sample size n → ∞, is

such that Bias(β̂
j
) → 0 and Cov[β̂

j
] → Cov[β̂

j
, β

j
], hence Zj → I. For
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smaller data sets, we need to estimate the Cov[β̂
j
, β

j
], Cov[β̂

j
] and Bias(β̂

j
)

to calculate the credibility matrix Zj.

3.6 Conclusion

In this chapter, we have extended the GLM estimation to include the use of

partial credibility theory. Also, we further relax the assumption for GLMs

so that the response variable does not need to follow a distribution in the

exponential family. Least squares estimation (LSE) is used instead of max-

imum likelihood. The numerical algorithm is derived to estimate the GLM

parameters by LSE. Finally, the credibility matrix is derived to minimize the

sum of squares error (SSE).
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Chapter 4

Analysis of fit for the GLM

linear credibility estimators

4.1 Introduction

Given certain data and assumptions, in a traditional generalized linear model

we need to choose an appropriate form of the linear predictor, a distribution

in the exponential family for the response variable, and the link function to

combine them. There are various tests and techniques to assess the goodness-

of-fit of GLMs. Hardin and Hilbe (2007) gives a very informed summary of

the analysis of fit. Fahrmeir and Gerhard (2001) gives complete guidelines
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for selecting and checking models.

In this chapter, we compare the GLM to the GLM partial credibility

model estimators. Here, we assume that the link function and the dependent

variables are correctly specified. We focus on the analysis of the models fit

rather than on parametrization and calibration of the models. We compare

the GLM estimators to the linear credibility weighted estimators. In this

chapter, we will answer the question of whether the linear credibility weighted

estimators are superior to the GLM estimators.

The question at hand is of theoretical interest. In Chapter 3, we summa-

rized three issues with partial linear credibility theory as stated in Klugman

et al. (2004). Most credibility factors used in empirical credibility formulas

lack sound theoretical grounds. Even if the credibility factor is estimated by

minimizing the sum of squared errors, there is no evidence in the GLM case

that the credibility weighted estimator is appropriate and preferable to the
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GLM estimators or to the alternate estimator, which is the portfolio aver-

age. Little research has been done in evaluating the effectiveness of partial

credibility estimators.

We have developed a statistically sound formula in (3.42) to calculate the

credibility matrix for partial credibility GLMs. Here, we want to develop an

approach to evaluate whether this partial credibility estimator for GLMs can

substantially improve the accuracy of the GLM estimators.

The results can also significantly impact GLM modelers in practice. A

substantial amount of resources are needed to define the credibility weight

and to calculate the credibility matrix. Modelers could spare time and effort

if the partial linear credibility estimators for GLMs do not increase predictive

power, as judged by a cost-benefit criteria. Efforts could then be directed on

improving the estimation of the components of the GLM, such as variable

selection, the choice of link function and of distribution for the response
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variable.

4.2 Model adequacy testing

Many techniques are used in evaluating GLMs, comparing and selecting mo-

dels. McCullagh and Nelder (1989) gives a comprehensive survey of para-

metric tests, such as testing the correct form of the variance function by

embedding it in a broader parametric class of variance functions. Hardin

and Hilbe (2007) and Fahrmeir and Gerhard (2001) explain the analysis of

fit statistics, such as residuals, Cook’s distance, Akaike information criterion

(AIC) and the Bayesian information criterion (BIC), R2 measures, and other

tests. Sen and Chaubey (2011) and Babu and Chaubey (1996) investigate

a special case of GLMs, the inverse Gaussian (IG) regression, including the

assessment of the IG regression model on gamma errors. McCullagh and

Nelder (1989) gives a widely accepted process of statistical analysis of model
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adequacy in the form

data

model class
- select

model
- summarize

conclusions
- stop.

Figure 4.1: Model Checking Process

Here, model class is the GLM and the partial credibility model for GLMs,

as defined in Chapter 4. This model checking process assumes that one model

is superior to the other. The data is simulated and is explained in more detail

in the next section. The “select model” step is a crucial part in this process.

Then, based on some statistics, we can summarize conclusions and stop the

process.

As explained in McCullagh and Nelder (1989, Chapter 12), model ade-

quacy testing can be either an informal or formal process. Informal tech-

niques rely upon tables and graphs to detect patterns. The argument is that

if we can detect patterns in the residuals we can then find a better model.
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Such informal methods take a successful model to be the one that has not ob-

vious pattern of unexplained trends in the residuals. The practical problem

is that all residuals can seem to exhibit some kind of pattern if we look hard

enough. So, one needs to be cautious to avoid over-interpretation. Informal

methods are important in model checking especially in practice.

Formal methods rely on some quantitative statistics to measure the good-

ness of fit. Here, we use the discrepancy between the observed and fitted value

for each observation as the statistic for the fit analysis.

The differences between the GLM fitted values and observed values are

called residuals. In model assessment, residual analysis is one of the most

commonly used techniques. Pierce and Schafer (1986) and Cox and Snell

(1968) give excellent and comprehensive surveys of many different defini-

tions for residuals in linear regression. Here we list nine different definitions

following those in Hardin and Hilbe (2007). Throughout these formulas, the

97



quantity ∂η/∂µ is evaluated at µ̂.

1. Response residuals:

rR
i = yi − µ̂i . (4.1)

The response residuals are simply the difference between the observed

and fitted outcomes.

2. Working residuals:

rW
i = (yi − µ̂i)

(∂η

∂µ

)
i
. (4.2)

The working residuals are the difference between the working response

and the linear predictor at convergence of the IRLS algorithm in eval-

uating the solution of the estimating equation.

3. Pearson residuals:

rP
i =

yi − µ̂i√
V(µ̂i)

. (4.3)
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Pearson residuals rescale the residuals on similar scales of variance.

The sum of the squared Pearson residuals is equal to the Pearson chi-

squared statistic.

4. Partial residuals:

rT
ki = (yi − µ̂i)

(∂η

∂µ

)
i
+ (xikβ̂k) , (4.4)

where k is the number of predictors. Partial residuals are used to asses

the form of predictors and are thus calculated for each predictor.

5. Anscombe residuals:

rA
i =

A(yi)− A(µ̂i)

A′(µ̂i)
√
V(µ̂i)

, (4.5)

where

A(·) =

∫
dµ

3
√
V(µ)

. (4.6)

Anscombe (1972) defines this residual and the choice of the function
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A(·) was made so that the resulting residuals would be as normal as

possible.

6. Deviance residuals:

rD
i = sign(yi − µ̂i)

√
d̂2

i , (4.7)

The deviance residuals are based on the χ2 distribution and d̂2
i depends

on the underlying distribution of yi.

7. Adjusted deviance residuals:

rDa
i = rD

i +
1

6
ρ3(θ) , (4.8)

where ρ3(θ) is defined for each individual distribution. The adjusted

deviance residuals improve on deviance residuals to make the conver-

gence to normal distribution faster.

8. Likelihood residuals:

rL
i = sign(yi − µ̂i)

{
hi(r

P ′
i )2 + (1− hi)(r

D′
i )2

}1/2
. (4.9)
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Likelihood residuals are a combination of standardized Pearson resid-

uals and standardized deviance residuals.

9. Score residuals:

rS
i =

yi − µ̂i

V(µ̂i)

(∂η

∂µ

)−1

i
. (4.10)

The score residuals are used in calculating the sandwich estimate of

variance.

Each of the residuals defined above have their advantages and disadvan-

tages. For instance, Pearson residuals work well in detecting outliers and

Anscombe residuals are preferred for the binomial family when the denomi-

nator is less than 10. Here, we want to compare the GLM estimators and the

linear credibility weighted estimators. We use the response residuals, which

is simple and intuitively appealing.

Mallows (1973) discusses the interpretation of Cp, which is used to assess
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the goodness-of-fit of a regression model estimated by the least squares error

method. Mallows’ Cp is a goodness-of-fit criteria including the consideration

of residuals, sample size and the number of explanatory variables. Mallows’

Cp address the issue of overfitting. Ye (1998) provides some other methods in

counting the parameters which may lead to different results. In this paper, we

follow the standard process in computing the Mallows’ Cp. The Cp statistic

provided a criterion for selecting among some alternative subset models. The

GLM is a subset model of the linear partial credibility model. The linear

partial credibility model for GLMs requires an additional estimation on top

of the GLMs estimators. These additional parameters should penalize the

sum of squares. Here is the formula to compute Cp:

Cp =
SSEp

S2
−N + 2p , (4.11)

where SSEp =
∑N

i=1(yi − ypi)
2 is the sum of squares error for the model
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with p explaining variables, S2 is the sum of squares error for the full model

with K regressors, N is the sample size and K is the number of all available

variables.

The Cp value is often used as a stopping rule to select a model from many

alternative subset models. Here the GLM is a subset of the linear partial

credibility GLM. The expected value of Cp is equal to p. It is suggested that

we should choose a model with a Cp value approaching p. Hence, we define

the Cp value bias term as

Cp Value Bias Term = Cp − p . (4.12)

In the next section, the distribution of the Cp value bias term for each model

is studied and compared. The one with a Cp value bias term closer to 0 is

seen as a better model.

We use both a residual analysis and Mallows’ Cp to assess and compare
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the model based on GLMs and the linear partial credibility GLM.

4.3 A numerical illustration

Now, with the above understanding of the model checking process, we com-

pare the GLM estimators and the linear partial credibility estimators for

GLMs. We use a numerical example to illustrate how the process works and

summarize the conclusions of the model selection.

4.3.1 The testing process

Refer to Figure 4.1, the testing is based on simulated data. The idea is to

simulate the complete modelling process, first by GLMs and then by linear

credibility weighted estimation. Then, the sum of squares error (SSE) is

calculated for both approaches to help select the model. We assess the two

models by comparing their SSEs. We believe that if the model based on

the credibility estimators is to be considered superior then it should lead to
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smaller SSEs. Linear credibility has been proposed as a way to reduce the

variance of mean estimators for small sample risk classes. In a GLM setting,

it is difficult to asses the variance of the linear credibility GLM estimator

analytically. That is why we resort to simulated values and an SSE criterion.

Here are the twelve steps used in this simulation approach:

Step 1: Define the parameters. In this portfolio we simulate four con-

tracts, that is j = 1, . . . , 4, or k = 4. Each contract has 20 individuals,

that is n = 20. Each individual has three independent variables, that

means p = 4. For each individual, we simulate 25 times the response

ỹl
mj, that is l = 1, . . . , 25. The link functions are selected to be the log

and identity functions.

Step 2: Simulate the covariate matrix X, which is a n× p matrix (here

20 × 4) with all entries in the first column equal to 1.
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Step 3: Select a portfolio mean parameter vector b. In this example, b

is a p = 4 dimensional vector.

Step 4: For each j = 1, . . . , 4 and l = 1, . . . , 25, simulate the contract

specific GLMs parameter β
j

as β̃
l

j
, which is a four dimensional vector.

Step 5: For each given j = 1, . . . , 4 and l = 1, . . . , 25, simulate n = 20

error terms corresponding to each individual as ε̃l
mj, for m = 1, . . . , 20.

Step 6: For each given j = 1, . . . , 4, l = 1, . . . , 25, and m = 1, . . . , 20 ,

calculate the simulated observed response variable as

ỹl
mj = g−1(X ′

mj · β̃
l

j
) + ε̃l

mj . (4.13)

Step 7: For each j = 1, . . . , 4, and l = 1, . . . , 25 we have the simulated

response variable from Step 6 and the design matrix from Step 2. We

can apply the LSE algorithm developed in Section 3.3.2 to estimate the

GLM parameter as β̂
l

j
.
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Step 8: For each j = 1, . . . , 4, we will have 25 pairs of parameters as β̂
l

j

and β̃
l

j
, respectively for the GLM estimated and simulated parameters.

Then, we estimate

E[h(Xβ̂
j
)] , E[h(Xβ

j
)] , h(Xb) , (4.14)

and

Cov[h(Xβ̂
j
), h(Xβ̂

j
)] , Cov[h(Xβ̂

j
), h(Xβ

j
)] , (4.15)

which are used to calculate the credibility matrix Zj as in (3.42). We

estimate four credibility matrices Zj for each j = 1, . . . , 4.

Step 9: From Step 7, for each j = 1, . . . , 4, l = 1, . . . , 25, and m =

1, . . . , 20, we calculate the GLM estimator of the response as

ŷl
mj = g−1(X ′

mj · β̂
l

j
) . (4.16)

Step 10: From Step 8 and Step 9, for each j = 1, . . . , 4, and l =

1, . . . , 25, we calculate the credibility weighted estimator of the response
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as

ŷ(z)l

j
= Zjh(Xβ̂

l

j
)− (I− Zj)h(Xb) . (4.17)

Here, for notational convenience, we write in matrix form. Each ele-

ment in ŷ(z)l

j
is ŷ

(z)l
mj .

Step 11: Step 6 simulates the observed value as ỹl
mj. From Step 9 and

Step 10, we have the GLM estimated responses ŷl
mj and the credibility

weighted responses ŷ
(z)l
mj respectively. The sum of squares errors can be

calculated as

SSE (GLM) =
∑

m,j,l

(ŷl
mj − ỹl

mj)
2 , (4.18)

and

SSE (Credibility) =
∑

m,j,l

(ŷ
(z)l
mj − ỹl

mj)
2 . (4.19)

Assess the model based on the difference of the SSE (GLM) and SSE
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(Credibility). The SSE ratio is the SSE from GLM estimators divided

by the SSE from partial linear credibility estimators. That is (4.19)

divided by (4.18) as

SSE Ratio =
SSE(GLM)

SSE(Credibility)
=

∑
m,j,l(ŷ

l
mj − ỹl

mj)
2

∑
m,j,l(ŷ

(z)l
mj − ỹl

mj)
2
. (4.20)

Step 12: Repeat Step 1 to Step 11 many times and study the distri-

bution pattern of the SSE Ratios. In this example, we repeated 200

times Steps 1 to 11. If the SSE Ratios are significantly larger than

100% most of the time, that can provide an indication that the linear

credibility estimators are better than the GLM estimators. Otherwise,

said, linear credibility is not a good approach to further improve GLM

estimators if these SSE Ratios are too small.
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4.3.2 The testing results

Intuitively, the credibility weighted estimators should give a better fit. How-

ever, to apply partial linear credibility theory to GLM estimators is a rela-

tively new idea. We should be prudent and carry out some tests before we

use this approach. As in Section 3.1, partial credibility theory itself has some

issues here. Also, as discussed in Section 1.4, the estimation of the GLM pa-

rameters is not unbiased. Cordeiro and McCullagh (1991) and Neuhaus and

Jewell (1993) explore this problem. Hence, we are now in a position to verify

if the partial linear credibility approach necessarily improves the fit or not.

To have a complete and robust test, we simulated six different combina-

tions of link functions and error terms. The three link functions are log, iden-

tity and inverse functions. The two error terms are simulated from normal

and Poisson distributions. For each of the six combination, 25 year-to-year

pattern are simulated for each of 80 individuals divided in 4 contracts 200
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times. The SSE ratios are calculated for each of these 200 times simulation.

The histogram and distribution of these 200 SSE ratios are studied to check

the pattern. The year-to-year SSE ratio patterns are also investigated.

Table 4.1 summarizes the distribution pattern of the SSE ratios obtained

from the model checking process described in the prior section for log link

and normal error simulations.

Number of Percentage of

SSE Ratio Simulations in the Range Simulations in the Range

SSE Ratio < 90% 14 7.0%

90% ≤ SSE Ratio < 98% 13 6.5%

98% ≤ SSE Ratio < 102% 53 26.5%

102% ≤ SSE Ratio < 110% 93 46.5%

SSE Ratio ≥ 110% 27 13.5%

Total 200 100%

Table 4.1: SSE Ratio Distribution

From Table 4.1, it is clear that only 13.5% SSE ratios are larger than

110%, and more than 40% are less than 102%. Which leads us to conclude

that from the distribution of SSE ratios, the linear credibility estimators

111



are not a significant improvement over the GLM estimators. That is, linear

credibility theory does not necessarily reduce the variance of GLM estimators.

Figures 4.2–4.7 are histogram and distributional graphs of the SSE ratio

for those six combinations, which give a visual illustration of comparison of

the GLMs and the linear partial credibility model for GLMs.

Figure 4.2: Histogram of SSE Ratios for Log Link and Normal Error

If the linear partial credibility model were significantly superior to the

GLMs, then we would expect to see from Figures 4.2 to 4.7 that the SSE
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Figure 4.3: Histogram of SSE Ratios for Log Link and Poisson Error

ratios are significantly larger than 100%. However, from the six histograms

and distributional graphs, the SSE ratios do not show such a pattern in any

of the six combinations. Most of the SSE ratios are around 100% and there

are large portions of the SSE ratios that are less than 100%.

Figure 4.8 shows the year-to-year patterns of the SSE ratios for a each

of the four contracts. From Figure 4.8, we can see that there are no obvious

patterns to the year-to-year SSE ratios.

We also checked the average SSE ratio instead of the ratio of the SSE.
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Figure 4.4: Histogram of SSE Ratios for Identity Link and Normal Error

We modify (4.18) as the ratio of the sum of the SSE ratios for each contract

instead of the sum of squares errors for all contracts. There is no significant

difference between these two ratios. Hence (4.18) is sufficient to compare the

two models.

Mallows’ Cp is also used to assess the fit of the GLMs and the linear

partial credibility model for GLMs. We follow the definition in equations

(4.11) and (4.12). Figures 4.9 and 4.10 display the Cp value bias term dis-

tribution as defined in (4.12). Clearly, the GLMs give a beautiful bell shape
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Figure 4.5: Histogram of SSE Ratios for Identity Link and Poisson Error

distribution of Cp values around 0 and the linear partial credibility model

from GLMs produce significantly more biased values, which further supports

the conclusion that the linear partial credibility estimators for GLMs are not

necessarily better than the least squares estimators of the GLM parameters.

To further illustrate Mallows’ Cp assessment, Figure 4.11 gives a residual

plot of the Cp values against p. The Mallows’ Cp computed as in (4.11) was

plotted against p for each simulation, which forms a residual graph. The

more concentrated the Cp values to 0 the better the model. Here the two
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Figure 4.6: Histogram of SSE Ratios for Inverse Link and Normal Error

models we are comparing are the best GLM and the linear partial credibility

GLM derived based on the best GLM and Chapter 3 results. Clearly, we

can see that the Cp values are much more concentrated for the GLMs than

for the credibility estimators. This further supports the conclusions from

Figures 4.9 and 4.10.

116



Figure 4.7: Histogram of SSE Ratios for Inverse Link and Poisson Error

4.4 Conclusion

In this chapter, we answer the question whether the linear credibility weighted

estimator is superior to the GLMs estimator through a simulation study.

Following a brief introduction to the analysis of goodness-of-fit, we define a

simulation algorithm to compare these two approaches. A simulator coded

in Visual Basic for Applications (VBA) is implemented under an Excel plat-

form. Five thousand simulations are investigated for each of 80 individuals
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Figure 4.8: Year to Year SSE Ratios Pattern

divided in 4 contracts. The results show that credibility weighted mean es-

timators are not useful to further improve the accuracy (variance/SSE) of

GLM estimators.

The numerical examples illustrate that in most cases for the GLM esti-

mators, the linear partial credibility estimator can only slightly reduce the

SSE, while in the 40% other cases, the linear partial credibility estimator is

not even as good as the GLM estimators.

This result can be theoretically interesting, but is definitely very useful in
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Figure 4.9: Bias of Cp Values for GLMs (Log Link and Normal Error)

practice. This gives a guidance for GLM modelers. They should focus on im-

proving the GLM fit instead of using resources to calculate linear credibility

weighted estimators that do not significantly improve the GLM results.
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Figure 4.10: Bias of Cp Values for Credibility (Log Link and Normal Error)

Figure 4.11: Cp vs p for GLMs and Credibility (Log Link – Normal Error)
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Chapter 5

A Loss Reserving Method

Based on GLMs

5.1 Introduction

Loss reserving is one of the most challenging actuarial tasks. Numerous

approaches have been developed to give reasonable estimates. Wiser et

al. (2001) provides a detailed introduction to loss reserving. Schmidt (2006)

gives a unifying survey of some of the most important methods and models

in loss reserving that are based on loss development triangles. Wüthrich

and Merz (2008) give a handbook of stochastic claims reserving methods in

121



insurance.

Generalized linear models (GLMs) have become a popular statistical anal-

ysis method also for loss reserving data. Haberman and Renshaw (1996) gives

a comprehensive review of the application of GLMs to actuarial problems,

including loss reserving. Taylor and McGuire (2004) reviews loss reserving

models with GLMs. Hoedemakers et al. (2005) constructs bounds for the

discounted loss reserves within the framework of GLMs. Verrall (2004) uses

a Bayesian parametric model based on GLMs to estimate reserves. Venter

(2007) extends generalized linear models beyond the exponential family and

gives loss reserve applications.

Most of the above papers propose aggregate reserving methods based

on loss development triangles, which do not use individual information to

the actual claims processes in each risk class. Frees et al. (2009) demon-

strates actuarial applications of modern statistical methods that are applied
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to detailed, micro-level insurance data. In this chapter we establish a more

complex structural reserving method that uses more detailed information at

the individual risk class level, such as the premium exposure emergence pat-

tern, or the loss emergence and development patterns within risk classes, and

embeds them in the framework of GLMs. This approach has the following

advantages:

• In theory it should be more accurate than aggregate loss reserving

methods based on loss development triangles, as more detailed infor-

mation is used.

• It is more flexible in dealing with unusual or quickly changing situa-

tions, as variables are analyzed continuously rather than discretely.

• A discount factor can be added and the model adjusted easily.

• It provides a mechanism to analyze separately the effect of each loss
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reserving factor.

• The model connects the frequency and severity estimations, both in

ratemaking and loss reserving, making the work of actuaries more con-

sistent and easier to interpret.

5.2 A Loss Reserving Model Based on GLMs

This section gives a detailed description of our GLM loss reserving method,

starting with the definition of the loss, loss development and loss reserve

functions, both with and without discounting.

The loss function l(t) defines a stochastic process representing the rate at

which losses occur at time t. This loss function l tells us how the in–force risk

exposure, and the seasonality in the distribution of risk exposures, determine

losses. A detailed treatment of exposure bases is given in Bouska (1989).

In practice we cannot observe l(t) directly. However, we can approach
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the expected value of l(t), through in–force exposures, as it directly depends

on the premium emergence pattern. Then we can define the aggregate loss

L(t1, t2) occurred over the time period (t1, t2):

L(t1, t2) =

∫ t2

t1

l(t) dt . (5.1)

In conjunction, the loss development function D(t) forms a stochastic

process which represents the percentage of losses that are paid within t years

after their occurrence. It is clear that D(t) = 0 for t ≤ 0, and limt→∞ D(t) =

1, almost surely. For a given time T > t, then l(t)D(T − t) represents the

aggregate paid amount at T , for losses that occurred at time t (see Figure

5.1 for a time–diagram). Assuming that the process has continuous sample

paths, by integrating these aggregate paid amounts over (t1, t2), we can then

define the aggregate paid losses from claims incurred in period (t1, t2), as
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developed to time T ≥ t2 > t1:

L(T, t1, t2) =

∫ t2

t1

l(t) D(T − t) dt . (5.2)

0 t1 t

l(t)

t2 T

l(t)D(T − t)
j

Figure 5.1: Time Scale

The integrals in (5.1) and (5.2) give the ultimate losses and the paid losses

incurred in period (t1, t2). Their difference, L(t1, t2)−L(T, t1, t2), represents

the unpaid losses, or also called loss reserves.

Consequently, given a loss function l and a loss development function D,

the loss reserves for claims incurred in period (t1, t2), as developed to time

T ≥ t2 > t1 are defined as:

R(T ) = L(t1, t2)− L(T, t1, t2)

=

∫ t2

t1

l(t) [1−D(T − t)] dt . (5.3)
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In the case of discounted reserves, we need to add a discount factor in the

above analysis. Let δ(t) be the stochastic force of interest at time t. Again,

assuming continuous sample paths, B(t) =
∫ t

0
δ(s) ds defines the aggregate

interest rate in the period of (0, t), while more generally, B(T + t)−B(t) =

∫ T+t

T
δ(s) ds is the aggregate interest rate over (T, T + t).

In the discounted case, loss reserves are no longer obtained by difference.

Instead, first consider a fixed time t, where t1 < t < t2, at which we incur

losses at rate l(t). Then l(t) d(s − t) ds of these will develop at future in-

stant s > t, where we assume that d(t) = D′(t), almost surely. Hence, the

discounted value at an evaluation date T in (t, s) (see Figure 5.2 for a time–

diagram) is given by e−[B(s)−B(T )] l(t) d(s− t) ds. Finally, integrating over all

future development times s ∈ (T,∞) yields the discounted value at time T

127



of the unpaid loss reserves from period (t1, t2), as developed to T ≥ t2 ≥ t1:

Z(T ) =

∫ t2

t1

l(t)

∫ ∞

T

e−[B(s)−B(T )] d(s− t) ds dt , (5.4)

almost surely.

0 t1 t t2 T s
loss development

discount

*¼

Figure 5.2: Evaluation Time T

Equations (5.3) and (5.4) give the formulas for the loss reserves and dis-

counted loss reserves, respectively. In fact, note that when the aggregate

interest rate B(t) = 0, i.e. no discounting, then (5.4) reduces to (5.3), since

limt→∞ D(t) = 1, almost surely.

To conclude the definition of this loss reserving model, introduce the

following assumption to calculate the expected value of the processes in (5.3)

and (5.4).

(A1) The loss function l, the loss development function D and the force of
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interest δ are independent processes.

Assumption (A1) directly implies the following results for the expected loss

reserves and discounted loss reserves: given E
[
l(t)

]
, E

[
D(t)

]
and E

[
e−B(t)

]
,

for fixed t, then

E
[
R(T )

]
=

∫ t2

t1

E
[
l(t)

] {
1− E[

D(T − t)
]}

dt , T ≥ t2 > t1 , (5.5)

E
[
Z(T )

]
=

∫ ∞

T

E
{
e−[B(s)−B(T )]

} ∫ t2

t1

E
[
l(t)

]
E

[
d(s− t)

]
dt ds . (5.6)

It is clear that the loss reserves only depend on the expected loss func-

tion and loss development function. We use GLMs to estimate these two

functions.

In practice, loss and development functions can be very complex. Even

when long historical data is available, the development process itself can

change with time. The future force of interest is also unknown. In addition

to the assumption (A1) above, the following simplifying assumptions are used
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henceforth:

(A2) All policy periods are one year and the amount of exposure to risk of

an insurance policy spreads uniformly over the policy period.

(A3) The expected value of the loss development function D is of the expo-

nential form E
[
D(t)

]
= 1− a−t, where a > 1 is a constant.

(A4) The future force of interest is a known constant δ ≥ 0, that is B(t) = δt

almost surely.

The average settlement time is a key parameter for loss development. Based

on Assumption (A3), above, we can estimate this parameter within the frame-

work of GLMs.

Given Assumption (A3), the expected average loss development time is

given by:

E(τ) =

∫ ∞

0

E
[
1−D(t)

]
dt =

∫ ∞

0

dt

at
=

1

ln a
, for a > 1 . (5.7)
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The motivation for assumption (A1) is to estimate the expected values

of the loss function, E
[
l(t)

]
, of the loss development function, E

[
D(t)

]
, and

of the discount factor E[e−B(t)
]

= e−δt, separately. These can then be sub-

stituted into (5.5) and (5.6) to estimate the expected loss and discounted

reserves.

Assumption (A2) can be relaxed for seasonality or other distributional

patterns.

Assumption (A3) states that E[D(t)] takes the form of the cumulative

distribution function (CDF) of an exponential distribution, which is appro-

priate for high–frequency/low–severity business lines, such as auto insurance.

For heavy tail cases such as liability claims, the CDF of a Weibull or Pareto

distribution may be more adequate models for the loss development function.

Under these assumptions, we can estimate the expected value of the loss

function l(t) and the loss development function D(t) within the framework
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of GLMs. A key aspect is to model the number of claims n and the claim

severity as independent responses of separate GLMs.

Consider a set of observed claims under some risk classification system.

Let cell i = 1, . . . , k denote a generic risk class defined by this system. The

GLMs for frequency and severity can be written as follows. Let

• fi be the claim frequency, zi the claim severity and τi the average

settlement time, respectively, in cell i = 1, . . . , k,

• wi(t) be the number of exposure units (e.g. policyholders) in cell i =

1, . . . , k, at time t,

• ηfi
, ηzi

and ητi
be the linear predictors of claim frequency, severity and

average settlement time in cell i = 1, . . . , k, respectively.

• gf , gz and gτ be the GLM link functions for the claim frequency, severity

and average settlement time, respectively.
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Then the GLMs give the expected value of the claim frequency, severity and

average settlement time, for each cell i = 1, . . . , k, as:

E(fi) = g−1
f (ηfi

) , E(zi) = g−1
z (ηzi

) and E(τi) = g−1
τ (ητi

) . (5.8)

Combining (5.8) with Assumption (A3) and with (5.7) gives:

g−1
τ (ητi

) =
1

ln ai

⇒ ai = exp
{ 1

g−1
τ (ητi

)

}
, i = 1, . . . , k .

Now with Assumption (A2), we get that the expected total loss rate E
[
li(t)

]

and loss development function E
[
Di(t)

]
in cell i at time t are:

E
[
li(t)

]
= wi(t) g−1

f (ηfi
) g−1

s (ηsi
) , i = 1, . . . , k , (5.9)

E
[
Di(t)

]
= exp

{ 1

g−1
τ (ητi

)

}
, i = 1, . . . , k . (5.10)

Then (5.5) and (5.6) give the expected loss and discounted loss reserves in

cell i:

E
[
Ri(T )

]
=

∫ t2

t1

li(t)
{
1− E[

Di(T − t)
]}

dt , i = 1, . . . , k ,(5.11)

E
[
Zi(T )

]
=

∫ ∞

T

e−δ(s−T )

∫ t2

t1

E
[
li(t)

]
E

[
d(s− t)

]
dt ds . (5.12)
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Hence, summing over all cells in the portfolio we have the total loss and

discounted loss reserves:

E
[
R(T )

]
=

k∑
i=1

E
[
Ri(T )

]
, (5.13)

E
[
Z(T )

]
=

k∑
i=1

E
[
Zi(T )

]
. (5.14)

5.3 Numerical Example

There are numerous methods used to estimate loss reserves, such as the Chain

Ladder (CL) method, Bornhuetter–Ferguson (B–F), Percent of Premium,

Pegged Loss, etc. Each of these methods presents advantages and disadvan-

tages over the others, and there is no generally accepted best method. The

CL and B–F methods are the most widely used in the industry. Actuaries

keep on investigating the properties of these methods, for instance Wüthrich

et al. (2008) recently provided upper and lower bounds on the estimation

error in the chain ladder method.
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For comparison purposes, we call the method proposed in the previous

section the GLM–Reserving (G–R) method. The following examples illus-

trate three of these methods, CL, B–F and G–R, with some real industry

data.

5.3.1 Accident Benefit Coverage Data from a Leading

Property and Casualty Company in Canada

According to the definition of the Financial Services Commission of Ontario

(FSCO), Statutory Accident Benefit Coverage (AB) “provides you with ben-

efits if you are injured in an automobile accident, regardless of who caused the

accident, including supplementary medical, rehabilitation, attendant care,

caregiver, non-earner and income replacement benefits. Benefits are also

provided to passengers and pedestrians who do not have their own policy

under which to claim.” Here, we will study the AB coverage for Accident

Years (AY’s) 2003–2005.
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The empirical average settlement lag is 0.4696 year or 5.6352 months. A

detailed examination of the data shows that most losses were paid within 3

years after the accident. To make a consistent comparison, we first provide

the projected loss development triangles using the CL, B–F and G–R meth-

ods, and then compare them to the observed triangles with the real data, as

these have now developed to year 2008. By comparing the estimated triangle

given by each model with the real triangle, we evaluate the goodness–of–fit

of the models through cross–validation.

For the loss development triangles, each row represents a given Accident

Quarter (AQ). Each row data represents a fixed group of claims defined by

the accident date (in quarters). The columns thus keep track of the losses at

subsequent evaluation dates for an individual accident quarter. Each column

represents the loss development age by accident quarter. Hence, in total we

have twelve rows and twelve columns that represent twelve accident quarters
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of loss experience and twelve quarters of settlement ages.

5.3.2 G–R Method

The following steps summarize the implementation of the GLM loss reserving

model described in (5.8)–(5.14). Log–link functions gf and gz where chosen

for the frequency and severity GLMs, respectively, as this is the most usual in

the auto insurance industry. Then a Poisson distribution was chosen to model

the loss frequency and a gamma for the loss severity, again because these are

industry standards for the portfolio at study. All parameter estimations

for the GLMs components were carried out is SAS using the GENMOD

procedure.

• Step 1: build a log–Gamma GLM to project the severity for each risk;

• Step 2: build a log–Poisson GLM to project the frequency for each risk;

• Step 3: combine the results from Steps 1 and 2, followed by a realloca-
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tion to get the pure premium for each risk;

• Step 4: for any given risk, if there is a claim, project the expected claim

settlement lags using a log–Weibull GLM;

• Step 5: for a given book of business, project the loss payment pattern.

Here Steps 1 to 3 produce standard GLMs for the pure premium. Step 4

gives an estimated settlement lag for any risk in the portfolio given there is

an accident. With the expected loss and expected settlement lag for each

loss, in Step 5 we can produce the expected incremental loss development

triangle, as in the lower right part of Table A.1 in the Appendix.

5.3.3 C–L and B–F Methods

Applying the Chain Ladder and Bornhuetter–Ferguson methods in the usual

way, we obtain the projected incremental loss development triangles illus-

trated in the lower right part of Tables A.2 and A.3 respectively.
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5.3.4 Comparison of Methods

Table 5.1 summarizes the comparison between the empirical loss development

and the projected development from the G–R, C–L and B–F methods. A

more detailed comparison, per quarter, is given in Table A.5.

Empirical C–L/Emp C–L - Emp B–F/Emp B–F - Emp G–R/Emp G–R - Emp

Total 30.39% 763,018 -31.19% -783,073 0.59% 14,907

St.Dev. 46.63% 217,054 32.73% 251,936 39.67% 62,828

Max 128.54% 763,018 65.91% 38,347 16.43% 179,072

Min -64.61% -15,104 -69.29% -783,073 -94.01% -55,477

Mean 32.33% 69,365 -27.93% -71,188 3.78% 1,355

Table 5.1: Comparison of Empirical/Projected Development Triangles

The first row of Table 5.1 gives the relative differences (in percentage) and

the raw differences (in Dollars) between the total projected loss reserves ob-

tained by the C–L, B-F and G–R methods, and the total empirical losses, as

ultimately developed. The G–R method gives the smallest relative difference,

at only 0.59%, while the C–L method over–estimates the loss reserve by more
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than 30% and the B–F method under–estimates it by more than 30%. These

differences are also illustrated graphically in Figures 5.3–5.4 (right–hand side

vertical axis), together with the empirical exposures (left–hand side vertical

axis).

Figure 5.3: Empirical Exposures and Comparison of Percentage Differences

The projected reserves were compared also with the empirical ultimately

developed losses separately for each of the twelve accident quarters. The stan-

dard deviation, maximum, minimum and mean difference for each method

are reported in rows 3 to 5 of Table 5.1. For most of these criteria, the G–R
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Figure 5.4: Empirical Exposures and Comparison of Dollar Differences

method performs better than the classical C–L and B–F methods.

For completeness, Tables A.1–A.3 of the Appendix give the detail of

the loss reserve projections, quarter per quarter, for each of the methods,

while Table A.4 gives the fully developed empirical losses used in the cross–

valuation tests.

The differences between each of the methods and the empirical method

are calculated in Table A.5, both in dollar and in percentage terms for each

accident quarter. The standard deviation, minimum value, maximum value
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and mean differences are calculated to assess each of the methods. The

G–R method gives the smallest mean at 3.78%, which means that the total

projected future losses differs only by 3.78%, compared to the empirical value.

This is much better than the C–L and B–F methods, which are 32.33%

larger and -27.93% smaller respectively. The G–R method also gives the

smallest maximum value of the difference. For the standard deviation, the

G–R method is a little worse than the B–F method and for the minimum

value of the difference, the G–R method is not as good as the C–L and B–F

methods. So, over all, the G–R method gives here a superior estimation of

IBNR reserves compared to the C–L and B–F methods.

5.4 Conclusion

This chapter establishes a structural loss reserving model within the frame-

work of GLMs. It enables the estimation of the loss reserves on an individual
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risk class basis. Compared to traditional models based on the aggregated loss

development triangles, this GLM approach uses more detailed information,

such as the premium exposure emergence pattern, the loss emergence pattern

and the loss development pattern. This means that we can expect that the

GLM loss reserving model should give more accurate and stable estimates of

the loss reserves. It is definitely true for the illustrative Bodily Injury Auto

Insurance dataset analyzed in the previous section.
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Appendix A

Loss Reserves Data and

Projections

Accident Development Age in Quarters

Quarter 1 2 3 4 5 6 7 8 9 10 11 12

2003/1 955,478 613,431 348,077 164,180 82,903 72,933 66,876 63,453 27,357 27,623 26,780 13,651

2003/2 645,197 331,337 175,645 80,949 92,981 50,244 12,390 31,880 14,558 31,301 17,994 1,400

2003/3 452,590 269,145 158,831 115,536 99,189 49,882 36,852 31,902 33,287 28,187 2,929 1,230

2003/4 422,851 263,863 141,592 68,522 42,407 38,978 52,798 43,112 29,450 9,041 4,959 2,629

2004/1 446,742 264,120 169,399 87,825 66,702 48,404 37,445 19,344 7,744 6,765 4,454 2,771

2004/2 282,422 277,838 165,429 121,050 35,593 42,575 33,760 14,304 6,734 2,821 2,468 1,437

2004/3 349,989 310,533 124,391 105,095 83,739 39,971 25,890 11,679 7,150 4,564 3,165 2,366

2004/4 466,583 455,688 193,463 86,952 98,737 62,411 39,962 20,034 12,177 6,169 2,161 1,698

2005/1 445,847 416,837 218,716 133,375 87,462 49,421 27,304 14,331 8,567 4,854 2,772 636

2005/2 369,504 311,752 195,932 132,509 71,580 39,617 21,639 10,343 5,088 3,936 1,921 1,115

2005/3 463,661 430,669 241,183 123,797 64,976 33,292 18,510 9,814 6,370 2,407 1,352 1,078

2005/4 564,744 593, 559 312,606 171,918 92,460 46,651 25,371 12,686 7,265 3,656 1,813 829

Table A.1: Projected Loss Development – GLM (G–R)
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Conclusion

The thesis focuses on the theory of GLMs and their application in insurance.

The aim is to provide some further theoretical insights as well as innovative

methods in practical uses of GLMs.

The first chapter gives an introduction of the theory of GLMs and GLMMs.

The standard maximum likelihood estimation (MLE) method, the asymp-

totic properties and the bias of MLE estimators are presented to give readers

the necessary background.

The second chapter gives a criteria for full credibility of the GLM and

GLMM estimators. We show how credibility relates to the sample size and
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the components of the GLM, as well as the link function and distribution of

covariates.

A closed form of the full credibility criterion is given for the log–link func-

tion, usually paired to Poisson observations (i.e. claim counts). For general

link functions, we propose a credibility estimation based on an asymptotic

normal approximation. This provides a method to compute confidence in-

tervals for GLM estimators. These results can be very useful in practice as

they provide full credibility criteria for the GLM estimators, at a time when

GLMs are becoming popular in the statistical analysis of insurance data.

The third chapter studies the partial credibility theory for GLM estima-

tors. Also, we further relax the assumption for GLMs so that the response

variable does not need to follow a distribution in the exponential family.

Least squares estimation (LSE) is used instead of maximum likelihood. The

numerical algorithm is derived to estimate the GLM parameters by LSE. Fi-
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nally, the credibility matrix is derived to minimize the sum of squares error

(SSE).

In the fourth chapter, we answer the question whether the linear cre-

dibility weighted estimators are superior to the GLM estimators through a

simulation study. Following a brief introduction to goodness-of-fit assess-

ments, we define a simulation algorithm to compare these two approaches.

The numerical examples illustrate that in most GLM cases, the linear

partial credibility estimators can only slightly reduce the SSE, and in some

cases, they are not even as good as the GLM estimators. The results show

that linear credibility weighted mean estimators do not further improve the

accuracy of GLM estimators.

This result can be theoretically interesting, but is definitely very useful in

practice, providing guidance for GLM modelers. The focus should be on im-

proving the GLM fit instead of using resources to calculate linear credibility
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weighted estimators that do not significantly improve GLM results.

The last chapter establishes a structural loss reserving model within the

framework of GLMs. It enables the estimation of the loss reserves on an

individual risk class basis. Compared to traditional models based on the

aggregated loss development triangles, this GLM approach uses more de-

tailed information, such as the premium exposure emergence pattern, the

loss emergence pattern and the loss development pattern. This means that

we can expect the GLM loss reserving model to give more accurate and stable

estimates of the loss reserves. A numerical example confirms this conclusion.

Overall, this thesis is theoretically innovative and has a strong potential

for practical applications. It can become a useful handbook for both actuarial

researchers and GLM modelers.
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[9] Bühlmann, H. (1967) Experience rating and credibility. ASTIN Bulletin,

4(3), 199–207.
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elles and Swiss Association of Actuaries, Belgium.

[18] Dobson, A. (1990) An Introduction to Generalized Linear Models. Chap-

man and Hall, London.

[19] Fahrmeir, L. and Kaufmann, H. (1985) Consistency and asymptotic nor-

mality of the maximum likelihood estimator in generalized linear models.

The Annals of Statistics, 13 (1), 342–368.

[20] Fahrmeir, L. and Gerhard, T. (2001) Multivariate Statistical Modelling

Based on Generalized Linear Models . Springer, New York.

156



[21] Frees, E.W. (2003) Multivariate credibility for aggregate loss models.

North American Actuarial Journal, 7, 13–37.

[22] Frees, E.W., Shi, P. and Valdez, E.A. (2009) Actuarial applications of

a hierarchical insurance claims model. ASTIN Bulletin, 39(1), 165–197.

[23] Garrido, J. and Zhou, J. (2009) Full credibility with generalized linear

and mixed models. ASTIN Bulletin, 39 (1), 61–80.

[24] Goulet, V., Forgues, A. and Lu, J. (2006) Credibility for severity revis-

ited. North American Actuarial Journal, 10, 49–62.

[25] Haberman, S.J. (1974) Loglinear models for frequency tables with or-

dered classifications. Biometrics , 30(4), 589–600.

[26] Haberman, S. and Renshaw, A.E. (1996) Generalized linear models and

actuarial science. The Statistician, 45(4), 407–436.

157



[27] Hachemeister, C.A. (1975) Credibility for regression models with appli-

cation to trend. Credibility, Theory and Application. Academic Press,

New York, 129–163.

[28] Hardin, J.W. and Hilbe, J.M. (2007) Generalized Linear Models and

Extensions . Chapman and Hall/CRC, Boca Raton.

[29] Hardin, J.W. and Hilbe, J.M. (2002) Generalized Estimating Equations .

Chapman and Hall/CRC, London.

[30] Hoedemakers, T., Beirlant, J., Goovaerts, M.J. and Dhaene, J. (2005)

On the distribution of discounted loss reserves using generalized linear

models. Scandinavian Actuarial Journal , 1, 25–45.

[31] Jan, R.M. and Heinz, N. (1988) Matrix Differential Calculus with Ap-

plications in Statistics and Econometrics. Wiley, New York.

158



[32] Jewell, W.S. (1975) The use of collateral data in credibility theory: A

hierarchical model. Giornale dell’ Instituto Italiano degli Attuari , 38,

1–16.

[33] Klugman, S.A., Panjer, H.H. and Willmot G.E. (2004) Loss Models From

Data to Decisions. John Wiley & Sons, New Jersey.

[34] Lee, Y., Nelder, J.A. and Pawitan, Y. (2006) Generalized Linear Models

With Random Effects . Chapman and Hall/CRC, Boca Raton.

[35] Liang, K.Y. and Zeger, S.L. (1986) Longitudinal data analysis using

generalized linear models. Biometrika, 73(1), 13–22.

[36] Lo, C.H., Fung, W.K. and Zhu, Z.Y. (2007) Structural parameter esti-

mation using generalized estimating equations for regression credibility

models. ASTIN Bulletin, 37 (2), 323–343.

159



[37] Mallows, C.L. (1973) Some comments on Cp. Technometrics , 15(4), 661–

675.

[38] McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models.

Chapman and Hall, New–York.

[39] McCulloch, C.E. and Searle, S.R. (2001) Generalized, Linear and Mixed

Models . John Wiley & Sons, New York.

[40] Mowbray, A.H. (1914) How extensive a payroll exposure is necessary

to give a dependable pure premium. Proc. of the Casualty Actuarial

Society , 1, 24–30.

[41] Nelder, J.A. and Verrall, R.J. (1997) Credibility theory and generalized

linear models. ASTIN Bulletin, 27(1), 71–82.

[42] Nelder, J.A. and Wedderburn, R.W.M. (1972) Generalized linear mo-

dels. Journal of the Royal Statistical Society, A, 135(3), 370–384.

160



[43] Neuhaus, J.M. (1992) Statistical methods for longitudinal and clustered

designs with binary responses. Statistical Methods in Medical Research,

1, 249–273.

[44] Neuhaus, J.M., Jewell, N.P. (1993) A geometric approach to asses bias

due to omitted covariates in generalized linear models. Biometrika, 80,

807–815.

[45] Neuhaus, J.M., Kalbfleisch, J.D. and Hauck, W.W. (1991) A compari-

son of cluster–specific and population–averaged approaches for analyzing

correlated binary data. International Statistical Review , 59, 25–35.

[46] Ohlsson, E. and Johansson, B. (2010) Non-life Insurance Pricing with

Generalized Linear Models. Springer-Verlag, Berlin.

[47] Pierce, D.A. and Schafer, D.W. (1986) Residuals in generalized linear

models. Journal of the American Statistical Association, 81, 977–986.

161



[48] SAS Technical Report P–243 (1993) SAS/STAT Software: The GEN-

MOD Procedure, Release 6.09 , SAS Institute Inc., Cary, NC.

[49] SAS/STAT Software (2006) GLIMMIX Procedure, Release 9.1 , June

2006, SAS Institute Inc., Cary, NC.

[50] Schabenberger, O. and Gregoire, T.G. (1996) Population–averaged and

subject–specific approaches for clustered categorical data. Journal of

Statistical Computation and Simulation, 54, 231–253.

[51] Schmitter, H. (2004) The sample size needed for the calculation of a

GLM tariff. ASTIN Bulletin, 34(1), 249–262.

[52] Schmidt, K.D. (2006) Methods and models of loss reserving based on

run-off triangles: a unifying survey. Casualty Actuarial Society Forum,

269–317.

162



[53] Sen, D. and Chaubey, Y.P. (2011) A class of accelerated life testing

models based on the Gamma distribution. Journal of the India Society

of Agricultural Statistics , 65(2), 1–10.

[54] Taylor, G. and McGuire, G. (2004) Loss reserving with GLM: a case

study. Spring 2004 Meeting of Casualty Actuarial Society , 327–392.

[55] Venter, G.G. (2007) Generalized linear models beyond the exponential

family with loss reserve applications. ASTIN Bulletin, 37 (2), 345–364.

[56] Verbeke, G. and Molenberghs, G. (2000) Linear Mixed Models for Lon-

gitudinal Data. Springer, New York.

[57] Verral, R.J. (2004) A Bayesian generalized linear model for the

Bornhuetter-Ferguson method of claim reserving. North American Ac-

tuarial Journal, 8(3), 67–89.

163



[58] Wedderburn, R.W.M. (1976) On the existence and uniqueness of the

maximum likelihood estimates for certain generalized linear models.

Biometrika, 63, 27–32.

[59] Whitney, A.W. (1918) The theory of experience rating. Proc. of the

Casualty Actuarial Society , 4, 274–292.

[60] Wiser, R.F., Cockley, J.E. and Gardner, A. (2001) Loss reserving. Foun-

dations of Casualty Actuarial Science. Casualty Actuarial Society, Vir-

ginia.

[61] Wolfinger, R. and O’Connell, M. (1993) Generalized linear mixed mo-

dels: a pseudo–likelihood approach. Journal of Statistical Computation

and Simulation, 4, 233–243.
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