
i

Solving Manufacturing-Remanufacturing System Production

Planning Problems Using Lagrangian Relaxation

Pegah Abrishami Shirazi

A Thesis

in

The Department

of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Industrial Engineering) at

Concordia University

Montreal, Quebec, Canada

September 2011

© Pegah Abrishami Shirazi, 2011

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: ___

Entitled: ___

and submitted in partial fulfillment of the requirements for the degree of

complies with the regulations of the University and meets the accepted

standards with respect to originality and quality.

Signed by the final examining committee:

Approved by

Dr. O. Kuzgunkaya Chair

Dr. Z. Tian Examiner

Dr. G. Gouw Examiner

Dr. M. Chen Supervisor

Approved by ___

Chair of Department or Graduate Program Director

Dean of Faculty

Date ___

iii

Abstract

In recent years, environmental legislation, societal pressure and economic opportunities

have motivated many firms to integrate remanufacturing activities into the regular production

environment. This presents many new challenges involving the collection, disassembly,

refurbishing of used products and incorporation of remanufacturing activities into new product

manufacturing. This research presents a mixed integer programming model addressing

production planning problems in hybrid Manufacturing-Remanufacturing systems. The objective

is optimizing an overall cost function based on an optimal number of new items to produce,

number of items to be remanufactured, and number of new products to assemble in each time

period of the planning horizon. A Lagrangian decomposition based method is developed to solve

the problem efficiently. Numerical examples are presented to analyze the model performance

and the developed solution procedure.

Keywords: Hybrid Manufacturing-Remanufacturing, Reverse Logistics, Optimum Policies.

iv

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Mingyuan Chen, for

his invaluable support and guidance during each stage of my graduate study and thesis

preparation. His encouragement, insight, and patience made this entire effort possible.

I would like to appreciate my friend Dr Mehdi Towhidi for his help and his precious

comments and critiques in fulfillment of my thesis.

I profoundly thank my parents, my brothers and my husband. I have been blessed with a

family that remained dedicated and believed in me throughout the years. Their love and

encouragement have enabled me to reach to this education level.

v

Table of Contents

List of Figure viii

List of Table ix

1. Introduction 1

 1.1 Foreword 1

 1.2 Reverse Logistic 1

 1.2.1 Return Types 1

 1.3 Green Production 2

 1.4 Remanufacturing 3

 1.4.1 Motives in Remanufacturing 4

 1.4.2 Remanufacturing Beneficiary 4

 1.4.3 Obstacles 6

 1.5 Scope and Objective of This Thesis 7

 1.6 Thesis Organization 8

2. Literature review 9

 2.1 Introduction 9

 2.2 Remanufacturing in General 9

 2.3 Hybrid Manufacturing-Remanufacturing Systems 10

 2.4 Summery 14

vi

3. Problem Description and Model Formulation 15

 3.1 Problem Description 15

 3.2 Model Assumption 15

 3.3 Model Notations 16

 3.4 Model Formulation 19

 3.4.1 Objective Function 20

 3.4.2 Constraints 20

4. Solution Approach and Methodology 22

 4.1 Model Relaxation 22

 4.1.1 Lagrangian Relaxation 22

 4.1.2 Sub-gradient Method 23

 4.2 Application of Lagrangian Relaxation in Solving HMRS Model 24

 4.2.1 Lagrangian Relaxation 25

 4.2.3 Sub-Problems 27

 4.3 Solving the Sub-Problems 29

 4.3.1 Wagner-Whitin 30

 4.3.2 Dynamic Programming 31

 4.4 Complete Solution Procedure to Solve the HMRS Problem 32

vii

5. Numerical example and Analysis 34

 5.1 Example Problems and Data 34

 5.2 Computational Result and Analysis 38

 5.3 More Examples 43

 5.4 Summery 56

6. Conclusion and Future research 57

 6.1 Conclusion 57

 6.2 Future Research 58

References 59

Appendix A 62

Appendix B 81

viii

List of Figure

Figure 5.1.Convergence Behaviour of the Lagrangian Function [Example 1] 39

Figure 5.2.Behaviour of the Lagrangian Function in Close Capture [Example 1] 40

Figure 5.3.Convergence Behaviour of the Lagrangian Function [Example 2] 50

Figure 5.4.Convergence Behaviour of the Lagrangian Function [Example 3] 56

ix

List of Table

Table 5.1: Cost and Demand for Component from New Material [Example 1] 35

Table 5.2: Cost and Demand for Component to be Remanufactured [Example 1] 35

Table 5.3: Cost Corresponds to the Returned Products [Example 1] 36

Table 5.4: Cost and Demand for New Products of New Components [Example 1] 36

Table 5.5: Cost and Demand for New Products of Remanuf. Components [Example 1] 37

Table 5.6: Number of Parts in the Returned Products [Example 1] 37

Table 5.7: Number of New Parts in the Assembled New Products [Example 1] 37

Table 5.8: Number of Remanuf. Parts in the Assembled New Products [Example 1] 38

Table 5.9: Resource Time Required and Quality Ratio [Example 1] 38

Table 5.10: Resource Availability [Example 1] 38

Table 5.11: Results Corresponding to the Components [Example 1] 41

Table 5.12: Results Corresponds to the Products [Example 1] 42

Table 5.13: Lagrangian Multipliers [Example 1] 43

Table 5.14: Cost and Demand for Component from New Material [Example 2] 44

Table 5.15: Cost and Demand for Component to be Remanufactured [Example 2] 45

Table 5.16: Cost Corresponds to the Returned Products [Example 2] 46

Table 5.17: Cost and Demand for New Products of New Components [Example 2] 47

Table 5.18: Cost and Demand for New Products of Remanuf. Compone nts [Example 2] 48

Table 5.19: Number of Parts in the Returned Products [Example 2] 48

Table 5.20: Number of New Parts in the Assembled New Products [Example 2] 49

Table 5.21: Number of Remanuf. Parts in the Assembled New Products [Example 2] 49

Table 5.22: Resource Time Required and Quality Ratio [Example 2] 49

Table 5.23: Resource Availability [Example 2] 49

x

Table 5.24: Cost and Demand for Component from New Material [Example 3] 51

Table 5.25: Cost and Demand for Component to be Remanufactured [Example 3] 52

Table 5.26: Cost Corresponds to the Returned Products [Example 3] 53

Table 5.27: Cost and Demand for New Products of New Components [Example 3] 53

Table 5.28: Cost and Demand for New Products of Remanuf. Components [Example 3] 54

Table 5.29: Number of Parts in the Returned Products [Example 3] 54

Table 5.30 Number of New Parts in the Assembled New Products [Example 3] 54

Table 5.31: Number of Remanuf. Parts in the Assembled New Products [Example 3] 55

Table 5.32: Resource Time Required and Quality Ratio [Example 3] 55

Table 5.33: Resource Availability [Example 3] 55

1

Chapter One

 Introduction

1.1 Foreword

Today’s manufacturing industries in many countries have started to develop systematic product recovery,

remanufacturing and recycling procedures to reduce negative environmental impact. There are estimated more

than 73,000 firms engaged in remanufacturing in the United States, directly employing over 350,000 people

Remanufacturing account for total sales in excess of $53 billion per year.

Environmental friendly manufacturing activities, including product recovery, remanufacturing and

recycle can substantially reduce material consumption and improve the technology and performance of

manufacturing industry. Remanufacturing reserve the material and energy added in the primal

manufacturing processes when the products were originally made.

1.2 Reverse Logistic

Fleischmann (2000) defined reverse logistics as “the process of planning, implementing, and

controlling the efficient, effective inbound flow and storage of secondary goods and related information

opposite to the traditional supply chain direction for the purpose of recovering value or proper disposal.”

It covers activities leading recovering product values, remanufacturing, reuse, repair, recycle, etc.

1.2.1 Return Types

Returned Products may fill in one of the five categories based on Fleischmann (2000) definition of

the different return types: end-of-use returns, commercial returns, warranty returns, production scraps

and by-products, and packaging materials as explained below.

2

 End-of-use returns

 End-of-use products include products that have reached the end of their life, products that their

use has been completed as well as leased product returns that can be used further.

 Commercial returns

 Commercial returns include product returns from costumers to sellers for refund.

 Warranty returns

These types of returns are the products that are failed during use or damaged while delivered.

They are returned to the manufacturer for refund or repair.

 Production scrap and by-products

In many cases production scraps and by-products are of the nature of a process. However, they need to

be recovered or recycled due to resource savings and economic considerations as well as environmental

regulations.

 Packaging materials

Returns of this type of product are desirable since they just need cleaning or minor maintenance. They can

be reused directly in the same supply chain network. Examples for this category of returns can be crates,

refillable bottles, pallets, and reusable boxes.

1.3 Green Production

Amezquita et al. (1995) and Ijomah et al. (1999) introduced the five processes of Reuse, Repair,

Reconditioning, Recycling and Remanufacturing as Green Production processes. Among all, remanufacturing is

highly desirable for ecological, economical and legislative considerations.

 Reuse - Using functional components from retired assemblies.

3

 Repair - Bringing the damaged product back to the functional conditions by fixing it.

 Reconditioning - Restoring components to the functional satisfactory level within original

specifications. This may be achieved using resurfacing, repainting, etc.

 Remanufacturing - Bringing an assembly to like-new conditions through replacing and

rebuilding component parts to required specifications.

 Recycling - Taking components and processing them to the original level or to useful degraded

levels.

1.4 Remanufacturing

Many researchers have their own definitions for remanufacturing activities with the most

comprehensive terminology proposed in Ijomah et al. (1999). In general, remanufacturing may refer to

the following activities:

1. Receive the core that is the part of the product to be remanufactured. The term core is used since

typical remanufactured parts are large core items of the products.

2. Strip and clean the core into individual elements as the used parts may be dirty. They are

dismantled and appropriately cleaned. A visual inspection would discard badly damaged

elements.

3. Estimate and quote remanufacturing costs. As many remanufacturing companies are

subcontractors to the OEM (Original Equipment Manufacturer), the cost of remanufacturing is

often estimated for each product to determine an appropriate rectification strategy.

4. Remanufacture. If the component is suitable, the appropriate machining/fabrication processes

would be used to remanufacture the component to “as new” specifications.

4

5. Build, test and dispatch. Finally, the remanufactured components are assembled (together with

necessary replacement components) to build the new product. After appropriate quality testing,

the product would be dispatched for sale.

1.4.1 Motives in Remanufacturing

According to Amezquita et al. (1995), the main reasons for companies to practice remanufacturing

are based on ecology, legislation and economic considerations.

 Ecological factors

The amount of the waste generated in remanufacturing is noticeably less than manufacturing.

Hence, remanufacturing reduces industrial waste considerably.

 Legislative factors

Many government agencies have legislated strict environmental laws toward industrial waste.

More policies have been generated concerning environmental attributes of manufactured

products. More manufacturers are asked to take the responsibility of their product such as to

take back their end-of-life products.

 Economic factors

In general remanufacturing operations requires less capital investment and manufacturing

operations since most of the main work has already been done during the primary

manufacturing process. On the other hand, consumers constantly look for products of lower

price and having the same or better quality than expensive items. Remanufactured products

offer the opportunities for consumers looking for values in the products they purchase.

1.4.2 Remanufacturing Beneficiary

According to Giuntini and Gaudette (2003), the main beneficiaries of remanufacturing are :

5

 Business enterprises

Capital goods remanufacturing as well as consumer goods remanufacturing are covered directly

or indirectly throughout the original equipment manufacturer (OEM). Many enterprises are

stakeholders in the successful expansion of remanufacturing.

 The workforce

Remanufacturing environment is more dynamic in comparison to conventional manufacturing

environment. Hence the workforce involved is required to have more initial training and skills.

More training provides the workers with broader skills and longer term work satisfaction.

 Consumers

A remanufactured product can be 40% less expensive than a similar new products.

 Society

Society can be seen as the greatest beneficiary in remanufacturing era. Saving on energy and

other natural resources are intrinsic social benefits.

1.4.3 Parties Involved

 Third-party remanufacturing

Third-party remanufacturing is very common in remanufacturing industry especially in United

States. One example is the automotive after-market providing consumers with replacement parts

for their vehicles. Typical remanufactured components are: starters, alternators, water pumps,

transmissions, and so on. The remanufacturers do disassembly, clean functional parts, add

grease, paint or other material for protection, replace all worn parts, reassemble them, refurbish

the exterior and test the reassemble unit. It is also common to offer warranty for the value-added

remanufactured products by the third-part manufacturers separately from the original

manufacturer.

6

 Original-manufacturers remanufacturing

Original manufacturers are more capable to do remanufacturing work. They have the

opportunity to use the same assembly line and other equipment for manufactured and

remanufactured products.

1.4.3 Obstacles

Considering all the benefits of remanufacturing, yet surprisingly remanufacturing accounts for a

very small portion of total production. Giuntini and Gaudette (2003) identified the following several

factors.

 Design

In most manufacturing industries, products are not designed for disassembly. The cost of

remanufactured products may not be lower than new products.

 Sales

Sales people are more willing to sell new products over remanufactured ones. They may view

remanufactured product as a threat to the new ones.

 Marketing

Selling remanufactured products has not been identified in marketing strategic plans in many

companies. Marketing division mostly consider remanufacturing as the individual sale to the

individual consumer at the time of a need.

 Production and inventory management

There are more challenging issues in remanufacturing than producing new products. The

required parts are (for new product production are mostly) known, while remanufacturing

processes are associated with more uncertainties.

7

 Workforce skill levels

Remanufacturing require broader technical skills from the workforce over the regular

manufacturing environment. There are many techniques specialized to the remanufacturing that

may not be required for regular workforce. Examples are disassembly, testing and selecting

returned products.

 Metrics

Businesses sometimes take revenue growth as their measure of performance. However, revenue

tends to be greater in manufacturing than remanufacturing.

 Advertising

To some extent, advertising tend to promote the latest and the most advanced version of a

technology. This practice may not promote remanufactured products.

 Accounting

Traditional accounting may provide the management with inaccurate financial performance of

remanufacturing processes. This may cause the management to neglect the profitable effects of

remanufacturing.

1.5 Scope and Objective of This Thesis

The purpose of this research is to develop a mixed integer programming model addressing

production planning problems in hybrid manufacturing-remanufacturing systems (HMRS). The

purposed model focuses on optimization of a cost function and determines the number of new products

and remanufactured products of the considered HMRS process. An efficient solution approached is

developed to solve the problem based on Lagrangian decomposition. The effectiveness and efficiency of

8

the developed method are evaluated by computing several numerical examples and comparing the

results with the generated lower bound of the objective function.

1.6 Thesis Organization

This thesis has six chapters. Following the introductory Chapter One, Chapter Two provides a

review of the literature in remanufacturing. Chapter Three presents problem description and model

formulation. Solution approach is presented and discussed in Chapter Four. Example problems are

presented and solved in Chapter Five with results analysis. Finally, Chapter Six presents remarks and

future research directions.

9

Chapter Two

Literature review

2.1 Introduction

Literature on remanufacturing system research is abundant. In this chapter, a review on the more

recent and relevant literature to the work done in this thesis is presented.

2.2 Remanufacturing in General

Amezquita et al. (1995) discussed characteristics of products to be remanufactured in order to

improve the process as a whole. They addressed some basic design features to be considered for

remanufacturing. These features lead to time reduction in disassembly reassembly, and other operations

of remanufacturing. They introduced a guideline in designing remanufacturable products considering the

ease of disassembly, cleaning, inspection, part replacement, reassembly and the use of reusable

components.

Giuntini and Gaudette (2003) discussed remanufacturing issues for represented to improved

productivity. They addressed the remanufacturing beneficiaries as business enterprises, workforce,

consumers and society. In this paper they identified several aspects to achieve more successful

remanufacturing including product design, sales, marketing, production, inventory management,

workforce skills, tax credits, among others.

King et al. (2004) discussed four approaches for waste reduction; repairing, reconditioning,

remanufacturing and recycling. They argue that economic growth is the main cause of waste production

in that production growth leads to consumerism followed by waste growth.

10

Ijomah et al. (2007) stated that long term sustainability requires a balance between economic or

social development and environmental protection. Remanufacturing is the most profitable and

environmental friendly approach towards sustainability together with recycling, reconditioning and

repair. Some of the challenges facing remanufacturing include reluctant consumer acceptance, scarcity

of remanufacturing tools and techniques, and poor remanufacturability of many products. The authors

identified some influential product for improve remanufacturability features such as material, modularity

and durability, part complexity, type of a fixing, joining methods, and so on.

Ijomah et al. (1999) discussed remanufacturing and differentiate it from other comparable green

production alternatives. They discussed remanufacturing problems in terms of business process

operations, since they are associated with high uncertainty and high risk due to difficulties in

determining quality and quantity of returned products. The reasons undergoing the uncertainties attribute

to variability in demand volume, core quality, core quantity, product type and availability of technical

knowledge.

2.3 Hybrid Manufacturing-Remanufacturing Systems

Inderfurth (2004) discussed optimal policies for production control in hybrid manufacturing

remanufacturing systems. The discussed problem is a single-stage and single-period problem with

independent demand for two types of products. Lead times for these two types of products are

deterministic and may not be the same. The objective is to maximize the expected profit to determine

optimal manufacturing and remanufacturing order quantities with an arbitrary starting inventory level of

serviceable products. The author discussed the problem for separate cases when manufacturing lead-

time is shorter than remanufacturing lead-time and vice-versa.

11

Kim et al. (2006) considered a remanufacturing system where the parts can either be supplied by

an external supplier or by using returned products cores. The considered remanufacturing system

includes collection, disassembly, refurbishment and assembly operations. A mathematical model was

developed for optimal production planning of this system. Numerical examples were presented to

illustrate the considered problem and developed model.

Rubio and Corominas (2007) discussed issues related to implementing a reverse-logistics system

for remanufacturing in a lean production environment. The studied problem considers a deterministic

environment. A mathematical model was developed based on lean and just-in-time production. The

purposed model allows manufacturing and remanufacturing capacities to be adjusted. The proposed

model considers manufacturing and remanufacturing capacities, return rate and used rate for end-of-life

products. The authors showed that remanufacturing is compatible with lean production practice. They

also stated that combination of manufacturing, partial recovery, disposal and remanufacturing can lead

to economic improvement and competitiveness.

Daniel and Guide (2000) studied industry practices and research needs of production planning (PP)

and control (C) for remanufacturing. They identified seven complicating characteristics in production

planning and control activities in remanufacturing.

1. Uncertain timing and quantity of returns

2. Need to balance returns with demands

3. Disassembly of returned products

4. Uncertainty in materials recovered from returned items

5. Requirement for a reverse logistics network

6. Complication of material matching restrictions

12

7. Problems of stochastic routings for materials for remanufacturing operations and highly variable

processing time.

The authors listed threats to remanufacturing industry growth. Remanufacturing executives cited the

increased pressure to reduce remanufacturing lead times continuously (60%), lack of formal systems to

manage their business (38%), lack of cores to be remanufactured (50%), product designed for disposal

(34%) and rapid technological changes (28%). The authors also discussed production planning and

control problems in remanufacturing.

Behret and Korugan (2007) developed a mathematical model to analyze a hybrid system that meets

the demand with remanufactured or new products. They classified the returned products to different

quality levels for remanufacturing. Different quality levels correspond to different remanufacturing

processing times, material recovery rates, remanufacturing costs and disposal costs. The authors

compared their model with a benchmark model with no product classifications. They showed that

classifying returned products according to quality level brings approximately 8% improvements in cost

savings when the return rate is high.

Subramoniam et al. (2009) presented a literature review on research articles and future research

needs in strategic decision making in remanufacturing and reverse logistic. They identified four strategic

factors: product strategic planning processes, physical distribution structures, plant location and

production systems, and cooperation among remanufacturing supply chain stakeholders. The authors

also identified following aspects having positive impact on remanufacturing: global environmental

regulations with proper incentives, needs to protect intellectual property, outside competition to

remanufacture products, product design with consideration for product life cycle, increased interest to be

a “green” company , good reverse logistic network , technology change and the resulting increasing

disposal costs, increased product value, good core availability, a regional remanufacturing operation,

13

eco-designed products, a well-integrated physical and non-physical organizational structure , good

buyback or lease programs for products.

Kiesmuller (2003) discussed a production control problems in remanufacturing systems. The author

also discussed pull and push policies in such systems. He introduced a new production control approach

based on two different inventory positions of longer lead-time and shorter lead time.

Laan et al. (1999) investigated the influence of lead-time duration and lead-time variability on total

expected costs in a system with manufacturing and remanufacturing operations. To control the system

they applied both Push and Pull strategies. The authors used numerical examples to illustrate the effects

of lead-time duration and lead-time variability on total expected costs in production/inventory systems

with remanufacturing. The outcomes from the numerical examples show that:

1. Manufacturing lead-times have a larger influence on system costs than remanufacturing lead-

times.

2. Increase in manufacturing lead-times may result in larger cost than equivalent increase in

remanufacturing lead-times. Longer manufacturing lead-times require higher safety stocks to

protect against costly stock-out events than equivalently longer remanufacturing lead-times.

3. Increase in variability of remanufacturing lead-times results in an increase in total expected

costs, both under a Push and Pull strategies. The authors did not analytically prove this point.

Teunter et al. (2008) discussed multi-product economic lot scheduling problems with returns

(ELSPR) where there are separate production lines for manufacturing and remanufacturing. The authors

developed a mixed integer programming (MIP) model to solve the problem for a fixed cycle time which

can be combined with a cycle time search to find an optimal solution. The authors used a numerical

experiment to analyze the effects of switching a single production line to separate lines. these examples

14

revealed that setting up dedicated lines for manufacturing and remanufacturing can lead to significant

reduction in holding costs through lower production rate and increased scheduling flexibility. On the

other hand, separate lines will require additional investment cost. A trade-off analysis is required in

future research.

2.4 Summery

 Remanufacturing has been studied for several decades and has become more importance in

today’s world. Much research work has been done in developing mathematical models for HMRS

analysis. Various solution approaches have been developed to overcome the difficulties in solving HMRS

problems and to further improve them for real world application. However, many aspects of HMRS systems still

remain to be discussed. Due to the all the benefits and importance of the remanufacturing and increasing a

demand for remanufactured items in this research we are going to study the hybrid manufacturing and

remanufacturing systems.

In the next chapter, a new mathematical model for HMRS system optimization is presented.

Wagner-Within method and a new solution approach based on dynamic programing are employed to

solve the proposed model.

15

Chapter Three

Problem Description and Model Formulation

3.1 Problem Description

This chapter presents a detailed discussion of certain production planning problems in HMRS

systems. The considered HMRS system uses both manufactured and remanufactured parts to assemble

products for different markets. The remanufacturing process covers disassembly, inspection as well as

machining used items to produce “as good as new” items. At the same time the manufacturing process

makes new components using new materials. Inventory controls are required for returned products,

remanufactured items, new manufactured components and finished products.

In the considered HMRS system, the acquired returned products may enter the remanufacturing

process directly or through inventory. Returned products entering the remanufacturing process will be

disassembled. The parts from the disassembly process will be inspected to determine if they can be

reused or should be disposed. Remanufactured items may be kept in inventory for later use or may

continue in the process to the assembly stage. The process of manufacturing new parts is similar.

Manufactured new items may be kept in inventory before entering the assembly stage. Finished products

made from new items or remanufactured ones. They may also be kept in inventory before delivery.

3.2 Model Assumption

 The following list presents specific assumptions in developing the model to solve the HMRS

production problem.

1. The model is based on multiple time periods.

16

2. Deterministic demands for products made from new components and remanufactured

components.

3. Deterministic demands for both new and remanufactured components.

4. Quality of remanufactured components is “as good as the new”. However, their market may be

different from that of new products.

5. Deterministic recovery rate of the components from the returned products.

6. Capacity limit on available production time for producing both new and remanufactured

products.

7. Remanufacturing time includes disassembly time and inspection time for returned products.

8. Inventory costs are incurred for product or items held in inventory.

9. Setup costs are incurred for disassembly, remanufacturing, as well as manufacturing and

assembly.

10. There are separate manufacturing lines for each of the operation on new components,

remanufactured components, returned and new products.

11. A common resource (such as labour force) is shared by manufacturing and remanufacturing

operations in the system.

12. No order of manufacturing, remanufacturing or assembly will be place at the time when there is

enough of inventory (Wagner-Whitin condition).

3.3 Model Notations

Index sets

 Number of components in each unit of products in time period t

17

 Number of products produced in a time period t

 Number of time periods

Variables

tix ,
 Number of new component i to produce in time period t

tie ,
 Number of new component i in inventory in time period t

tix ,
 Number of remanufactured component i to produce in time period t

tie ,
 Number of remanufactured component i in inventory in time period t

tjd ,
 Number of returned product j to disassemble in time period t

 Number of new product j to assemble from the new components in time period t

 Number of new product j to assemble from the remanufactured components in time

 period t

tjr , Number of returned product j to acquire in time period t

tjf , Number of returned product j in inventory in time period t

 Number of new product j in inventory made out of new component in time period t

 Number of new product j in inventory made out of remanufactured components in time

 period t

otherwise.,0

, period in time component new make toupset is system theif,1
,

ti
ti

otherwise. ,0

, period in time component returned ureremanufact toupset is system theif,1
,

ti
ti

otherwise.,0

, period in time eddisassembl be willproduct returned if,1
,

tj
tj

18

otherwise.,0

, period in timecomponent new from assembled be willproduct new if,1
,

tj
n

tj

otherwise.,0

, period in time components uredremanufact from assembled be willproduct new if,1
,

tj
R

tj

Parameters

tiP ,
 Unit manufacturing cost of new component i in time period t

tiS ,
 Setup cost for manufacturing new component i in time period t

tiV ,
 Unit inventory cost for new component i in time period t

tiP ,
 Unit remanufacturing cost of recovered component i in time period t

tiS ,
 Setup cost for remanufacturing recovered component i in time period t

tiV ,
 Unit inventory cost for remanufactured component i in time period t

tiD , Demand for new component i in time period t

tiD ,
 Demand for remanufactured component i in time period t

 Demand for new product j made out of new components in time period t

 Demand for new product j made out of remanufactured components in time period t

jiB , Number of component i contained in returned product j

 Number of new component i contained in new product j

 Number of remanufactured component i contained in new product j

iUR Average recovering rate of component i from all returned products

tjAQ , Unit cost to acquire returned product j in time period t

tjRD , Unit cost to disassemble returned product j in time period t

19

 Unit cost of assembly for new product j made out of new components in time period t

 Unit cost of assembly for new product j made out of remanufactured components in time

 period t

tjSD ,
 Unit setup cost for disassembling product j in time period t

 Unit setup cost to assemble new product j from new components in time period t

 Unit set up cost to assemble new product j from remanufactured components in time

 period t

tjIN ,
 Unit inventory cost for storing returned product j in time period t

 Unit inventory cost for storing new product j from the new components in time period t

 Unit inventory cost for storing new product j from the remanufactured components in

 time period t

tACAP Available production time in time period t

iAST Production time for manufacturing new component i

iST Setup time for manufacturing new component i

iASR Production time for remanufacturing returned component i

iSR Setup time for remanufacturing returned component i

M A large positive number

3.4 Model Formulation

The mathematical model to solve the production planning problem in HMRS systems is

formulated as follows in this section with the variables and parameters defined in the previous section.

20

3.4.1 Objective Function

The objective function of the model is to minimize the total cost in the HMRS systems. It

includes the cost of manufacturing and remanufacturing, cost of disassembly and assembly, setup costs

for disassembly, manufacturing, remanufacturing and assembly, inventory holding costs of the returned

products, remanufactured and new parts and holding cost of the finished products.

 ∑ ∑(̅ ̅ ̅ ̅ ̅ ̅)

 ∑∑(

)

The solution of the model is to determine the optimal number of items to be produced and

remanufactured as well as optimal number of returned products to acquire in each period of time. There

is also a decision to make on the optimal number of products to get assembled in each period of time

based on the known demand for both new and remanufactured products.

3.4.2 Constraints

 ̅ ̅ ̅ ̅

 ̅ ̅

21

∑ ̅ ̅

 ̅ ∑

∑

∑

 ̅

 ̅

 ̅ ̅

 ̅

Constraints (3.2) and (3.3) present relationship of production, inventory, setup and demand for

new items. Constraints (3.4) and (3.5) present similar relationship for remanufactured items. Constraints

(3.6), (3.7) and (3.8) present the relationship between setups and assembly (disassembly) of products

(returned products). Constraints (3.9), (3.10) and (3.11) are inventory equations for returned and newly

assembled products. Constraint (3.12) introduces a time capacity limitation for the time required for

manufacturing and remanufacturing. This constraint is the common resource of the system. Constraint

(3.13) represents the relationship between the number of remanufactured items and the number of

recovered items from the returned products. Constraints (3.14) and (3.15) ensure that the number of new

parts and remanufactured parts should always meet the demands for new products. Constraint (3.16)

initialises inventories to zero at the beginning of the planning horizon. Constraint (3.17) is the non-

negativity constraint and constraint (3.18) indicates binary decision variables.

22

Chapter Four

Solution Approach and Methodology

The developed model shown in chapter 3 is difficult to solve due to large number of integer variables

involved. This chapter presents a solution method based on relaxation. However, the relaxation must be

performed in a way that the applicability of the model is not destroyed. Details of the developed solution approach

to solve the mathematical model are given in the following sections.

4.1 Model Relaxation

Complex constraints can be relaxed with the help of Lagrangian relaxation. The relaxed model can then

be decomposed to different smaller sub-problems. These sub-problems are much simpler to solve by different

methods such as Wagner-Whitin method. Sub-gradient method is used to improve Lagrangian multiplier in each

iteration to find optimal or near-optimal solution of the original problem, following a standard procedure.

4.1.1 Lagrangian Relaxation

The specific procedure of using Lagrangian relaxation follows the steps given in Fisher (1985).

In general, the idea of Lagrangian relaxation is to relax those constraints which make it hard and time

consuming to solve the problem. Relaxed constraints will be added to the objective function associated

with certain weights (the Lagrangian multipliers). Each Lagrangian multiplier can be considered as a

penalty added to the solution not satisfying the corresponding constraint.

Mathematical presentation of the general Lagrangian relaxation can is presented below. Consider

a minimization integer programming problem with , and being parameter matrices. and are

right hand side vectors.

23

 Subject to:

Let , assuming optimization over can be done easily. After adding

constraint the problem becomes very difficult to solve. Using Lagrangian relaxation, dual

variables will be used for constraints . The vector ≥0 is the vector of Lagrangian

multipliers of the same dimension as vector . For a fixed ≥0, the relaxed problem is:

 Subject to:

 ,

If the optimal solution of the relaxed problem with fixed vector can be found relatively easier,

the value of will present a upper bound on

4.1.2 Sub-gradient Method

Sub-gradient method is a technique to set the dual variables (Lagrangian multipliers) at different

values in obtaining tighter bounds. Assuming that are resource constraints and have been

relaxed. Beginning with an arbitrary value of , we can find a solution of the relaxed problem. If we

substitute the obtained solutions into the objective function of the Lagrangian problem, we have a linear

objective function of . We should maximize the Lagrangian function in terms of . The sub-gradient

24

method starts from an arbitrary set of alternative optimal Lagrangian solution and uses the vector

 for this solution to calculate the sub-gradient of . The result is a procedure that defines a

sequence of values for by beginning at an initial point and applying the formula:

In this formula is a scalar stepsize and is an optimal solution to the Lagrangian problem

with dual variables set to . The following formula calculates :

∑ ∑

 is the objective function value of the best known feasible solution to (known as upper

bound in minimization problem) and is a scalar chosen between 0 and 2. Frequently the sequence

is determined by starting with and reducing it by a factor of 2 whenever fails to increase

in a specific number of iterations. Value initially be set to 0 and then updated using the solution

that is obtained on those iterations in which the Lagrangian problem solution turns out to be feasible in

the original problem. Unless we obtain a for which = , we cannot prove the optimality in the

sub-gradient method. In this case the search process usually terminates upon reaching specified number

of iterations.

4.2 Application of Lagrangian Relaxation in Solving HMRS Model

We apply Lagrangian relaxation to solving the model developed and presented in Chapter 3.

25

4.2.1 Lagrangian Relaxation

The model presented in Chapter 3 has four sets of complex constraints, Eqs (3-12), (3-13), (3-14)

and (3-15). These constraints make solving the problem intractable. Applying Lagrangian relaxation, 4

sets of Lagrangian multipliers, and are introduced where represents the Lagrangian multiplier

assigned to constraint (3.12), represents Lagrangian multiplier assigned to the constraint (3.13),

represents the Lagrangian multiplier assigned to constraint (3.14) and finally represents the

Lagrangian multiplier assigned to constraint (3.15). We move these constraints to the objective function

with associated Lagrangian multipliers to obtain the following relaxed model:

 ∑∑(̅ ̅ ̅ ̅ ̅ ̅)

 ∑∑(

)

 ∑ ∑(̅ ̅)

 ∑∑ ̅ ∑

 ∑∑

∑

 ∑∑

∑

 ̅

26

Subject to:

 ̅ ̅ ̅ ̅

 ̅ ̅

 ̅

 ̅ ̅

 ̅

4.2.2 Decomposition Method

Above relaxed model can be decomposed to five sub-problems based on the variables and

parameters for new components, remanufactured components, returned products, new products made out

of new components and new products made out of remanufactured parts, respectively. The five sub-

problems are discussed separately below.

27

4.2.3 Sub-Problems

Sub-problem 1 is a minimization problem representing all the decision variables and parameters

contributing to manufacturing of new components including manufacturing cost, setup cost and

inventory controls subject to constraints related to manufacturing, setup and inventory of new

components.

SM1-i, i=1,…,I

 ∑ (]

∑

Subject to:

 Sub-problem 2 corresponds to the parts to be remanufactured with related setup and setups and

inventory variables:

SM2-i, i=1…I

 ∑ (̅ ̅ ̅ ̅ ̅ ̅]

Subject to:

 ̅ ̅ ̅ ̅

 ̅ ̅

28

 ̅ ̅ ̅

 ̅

 Sub-problem 3 determines the number of returned products to acquire, with related setups for

disassembling and inventory requirement.

SM3-j, j=1…J

 ∑ (∑

)

Subject to:

 Sub-problem 4 specifies similar relations for new product production with new items.

SM4-j, j=1…J

 ∑

 (
 ∑

)

Subject to:

29

 Sub-problem 5 determines the optimal number of new products with remanufactured items to be

assembled, considering assembly setup and inventory costs.

SM5-j, j=1…J

 ∑

 (
 ∑

)

Subject to:

4.3 Solving the Sub-Problems

The sub-problems presented in the previous section are much easier to solve than the original

problem. Four of them can be solved by existing method. Sub-problem 3 requires developing new

method to solve with details discussed next.

30

4.3.1 Wagner-Whitin

Linear presentation of the Wagner-Whitin method gives a format similar to solving sub-problems

1, 2, 4 and 5 discussed in previous section. With minor changes we can effectively solve these

corresponding sub-problems using Wagner-Whitin method. The general Wagner-Whitin method can be

discussed below.

Assuming a N-period planning horizon with known demands , fixed setup cost , unit

production cost and holding cost , the following dynamic lot sizing and scheduling problems can

be solved by Wagner-Whitin algorithm.

To solve the problem:

Subject to:

Where is the inventory level at time period t, is the number of products to be manufactured

at t, is the binary variables to allocate the setup cost of production at t. Constraint Eq (4.4) is the

inventory balance equation. Wagner-Whitin algorithm will force zero inventories at the time of

production as shown in Eq (4.5). Eq (4.6) is the setup requirement for manufacturing.

31

We follow the steps of Wagner-Whitin algorithm in solving the dynamic lot sizing problems, as

presented in sub-problems 1, 2, 4 and 5. Detailed steps of Wagner-Whitin method can be found in Evans

(1985) and are omitted in this thesis.

4.3.2 Dynamic Programming

Sub-problem 3 presented in section 4.2.3 has the same linear functions as other four sub-

problems. However, it does not have fixed demand and cannot be solved by Wagner-Whitin algorithm.

A heuristic method based on dynamic programing is developed to solve this sub-problem.

 As one can see, the number of remanufactured parts required in each period can be obtained by

solving sub-problem 2. This solution can be used in constraint (3.13) to obtain an estimated number of

the returned products. We will acquire the product when the cost of purchasing is less. Our algorithm

also implies the same inventory role as Wagner-Within in that whenever there is an order to be placed in

a certain period, inventory at the beginning of that period must be zero. Specific steps of calculation are

given below:

Step 1. Let
tix ,

~
 be the current solution of Sub-problem 2. Let tjd ,

~
 be the minimum values

 satisfying

J

j

tjjiiti dBURx
1

,,,

~~
. Define)(

~
,

1

,,, iti

I

i

jitjtj URBRDR

 . Let 1,1,

~
jj AQA .

 Let 1,1,1,

~
jjj drd , 11, j and let 2t Goto Step 2.

Step 2. Recursively calculate: }
~

,min{
~

1,1,,, tjtjtjtj AINAQA .

 Step 2.1. If)
~~

(
~

,,,, tjtjtjtj SDdAR let 0,,,, tjtjtjtj frd , Goto Step 3;

 otherwise, let 1, tj and tjtj dd ,,

~
 , Goto Step 2.2.

32

 Step 2.2. If: 1,1,,

~
 tjtjtj AINAQ , let tjtj dr ,,

~
 , Goto Step 3.

 Otherwise, let s be the last time period when 0, tjr and let

 tjsjsj drr ,,,

~

 tskdff tjkjkj ,...,,
~

,,, ,

 0,, tjtjd

 Goto Step 3.

Step 3. If Tt , stop; otherwise, let 1 tt , Goto Step 2.

4.4 Complete Solution Procedure to Solve the HMRS Problem

The complete procedure of Lagrangian decomposition and sub-gradient method to solve the

HMRS production planning problem is provided below.

Step 1. Find a feasible solution of the original problem given in equation number (3.1) using any

 optimization software or by decomposition.

Step 2. Use the objective function of the current feasible solution to calculate the upper bound

 (UB) for solving the original problem.

Step 3. Set iteration number It=1. Starting from an arbitrary set of Lagrangian multipliers

 and apply Lagrangian relaxation to the original main model as described in Section

 4.2.1.

Step 4. Decompose the original problem to the 5 sub-problems as described in Section 4.2.3.

33

Step 5. Solve the 5 sub-problems as discussed in Section 4.3.

Step 6. Compose the solutions of the 5 sub-problems obtained in Step 5 and calculate the value

 of shown in Eq (4.3).

Step 7. If the solution composed from the solutions of the 5 sub-problems obtained in step 5 is feasible

to the original problem and the corresponding value of the original objective function Eq (3.1)

is less than the UB (, then let and go to step 8. Otherwise, go to step 8 without

 updating UB.

Step 8. If the stopping criterion is reached, stop. Otherwise, let It=It+1 and update Lagrangian

 multipliers based on sub-gradient search method shown in Eq (4.1) and Eq (4.2) Go to Step 4.

Step 9. When the search process stops, take the best feasible solution found in the process as the

 final solution of the problem.

The algorithm has been coded in Python 2.6 and implemented in a PC computer. Several example

problems were calculated to test the model and solution method it will be discussed in the next chapter.

34

Chapter Five

Numerical Example and Analysis

 In this chapter we present several numerical examples to illustrate the developed model and the

algorithm presented in previous chapters and following the solution procedure presented in Section 4.4.

The algorithm is coded in Python-2.6 to solve the example problems. Some of the smaller size examples

were solved to optimality by Lingo 10. All the computer work was performed on a laptop with Intel

Core i5 CPU and 4 GB RAM.

5.1 Example Problems and Data

The first example, Example 1, is to solve a production planning problem with 3 time periods.

The considered HMRS system produces 4 different types of components from new materials or from

returned products. The cores to be remanufactured are from disassembly of 3 different types of returned

products. Remanufactured and manufactured components are assembled to make 3 different products.

Tables 5.1 and 5.2 present the costs and demands of new and remanufactured components, respectively.

Table 5.3 presents similar data for the returned products. Tables 5.4 and 5.5 give the cost and demands

for new products with new components and with remanufactured components. The numbers and types

of components contained in each of the products are shown in Tables 5.6, 5.7 and 5.8. Table 5.9 gives

the time requirements to produce the new and remanufactured components requiring the shared

resources. It also gives the empirical ratio of each type component that is of a good quality and can be

remanufactured, out of the total acquired returned products. Table 5.10 is the available time for setting

up the system and producing the components by the shared resource in the 3 time periods.

35

Table 5.1: Cost and Demand for Component from New Material [Example 1]

Time

Period

Cost and Demand

Component Type

1 2 3 4

1

Production Cost/item 100 90 110 95

Setup Cost 600 700 600 550

Inventory Cost/item 100 120 105 115

Demand 180 270 235 250

2

Production Cost/item 80 100 80 80

Setup Cost 600 700 600 550

Inventory Cost/item 100 120 105 115

Demand 200 305 260 260

3

Production Cost/item 110 80 95 70

Setup Cost 600 700 600 550

Inventory Cost/item 100 120 105 115

Demand 225 320 275 265

Table 5.2: Cost and Demand for Component to be Remanufactured [Example 1]

Time

Period

Cost and Demand

Component Type

1 2 3 4

1

Production Cost/item 30 40 20 15

Setup Cost 400 500 450 350

Inventory Cost/item 50 80 60 75

Demand 80 88 83 80

2

Production Cost/item 30 40 15 30

Setup Cost 400 500 450 350

Inventory Cost/item 50 80 60 75

Demand 95 96 100 95

3

Production Cost/item 30 30 18 25

Setup Cost 400 500 450 350

Inventory Cost/item 50 80 60 75

Demand 75 85 80 81

36

Table 5.3: Cost Corresponds to the Returned Products [Example 1]

Product Type Cost
Time Periods

1 2 3

1

Disassembly /item 30 35 20

Setup 22 30 33

Inventory/item 240 240 240

Acquiring/item 25 15 20

2

Disassembly /item 25 30 15

Setup 35 25 35

Inventory/item 250 250 250

Acquiring/item 35 20 30

3

Disassembly /item 20 18 30

Setup 30 28 30

Inventory/item 230 230 230

Acquiring/item 25 28 30

Table 5.4: Cost and Demand for New Products of New Components [Example 1]

Product Type Cost
Time Periods

1 2 3

1

Assembly/item 32 35 22

Setup 26 31 34

Inventory/item 100 100 100

Demand 10 15 16

2

Assembly/item 30 31 18

Setup 38 26 36

Inventory/item 90 90 90

Demand 13 14 16

3

Assembly/item 22 24 28

Setup 32 30 31

Inventory/item 95 95 95

Demand 15 14 13

37

Table 5.5: Cost and Demand for New Products of Remanuf. Components [Example 1]

Product Type Cost
Time Periods

1 2 3

1

Assembly/item 15 12 10

Setup 15 18 20

Inventory/item 90 90 90

Demand 6 5 7

2

Assembly/item 16 16 11

Setup 26 20 22

Inventory/item 60 60 60

Demand 15 22 20

3

Assembly/item 14 11 12

Setup 22 20 25

Inventory/item 85 85 85

Demand 5 6 7

Table 5.6: Number of Parts in the Returned Products [Example 1]

 Component

Type Product Type

1

2

3

4

1 10 10 8 13

2 12 12 10 12

3 15 11 3 11

Table 5.7: Number of New Parts in the Assembled New Products [Example 1]

 Component

Type Product Type

1

2

3

4

1 5 7 4 3

2 6 5 7 6

3 2 4 5 7

38

Table 5.8: Number of Remanuf. Parts in the Assembled New Products [Example 1]

 Component

Type Product Type

1

2

3

4

1 4 3 3 4

2 3 5 4 4

3 4 5 2 3

Table 5.9: Resource Time Required and Quality Ratio [Example 1]

 Component Type

1 2 3 4

New Component Production Time 100 150 100 120

New Component Setup Time 50 50 40 30

Remanuf. Component Production Time 80 80 75 80

Remanuf. Component Setup Time 30 30 35 30

Quality Ratio 0.5 0.5 0.6 0.2

Table 5.10: Resource Availability [Example 1]

Time Period 1 2 3

Resource Available Time 600000 150000 250000

5.2 Computational Results and Analysis

In this section we will discuss the results obtained from solving the Example 1. In calculating

this example, we used two stopping criteria. The process will stop if the Lagrangian search reaches 300

iterations (It=300) or the difference between the value of Lagrangian function in Eq (4.3) and value of

the original objective function in Eq (3.1) is less than 0.01 (As discussed in the

previous chapter, in each iteration, the Lagrangian multipliers and will be updated so is the

value of the upper bound, if required.

39

Corresponding input data for the first example has been shown in Tables 5.1 to 5.10. The initial

upper bound, the value of the first feasible solution to the original objective function Eq (3.1), was set at

334291. This value will be used in the beginning of the sub-gradient method to update Lagrangian

multipliers. The value of the first set of the Lagrangian multipliers was set at 0.1. They got updated at

every iteration following the described sub-gradient method in Section (4.1.2). In the process of

updating the Lagrangian multiplier using Eqs (4.1) and (4.2), the scalar is reduced by a factor of 2.0

after every 5 consecutive iterations that the Lagrangian function fails to increase. Upper bound stays the

same the search process if it cannot find a better feasible solution to substitute for the current upper

bound. The convergence of the Lagrangian function obtained from Eq (4.3) can be seen in

Figure 5.1 by the solid line. Figure 5.2 presents the closer capture of the convergence of the Lagrangian

function. The search process took 12.47 seconds to find the best solution in 300 iterations.

Corresponding solution is near-optimal and is quite close to the upper bound.

Figure 5.1.Convergence Behaviour of the Lagrangian Function [Example 1]

270000

280000

290000

300000

310000

320000

330000

340000

1

15 29 43 57 71 85 99

11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

C
o

st
 (

 $
)

Iteration Number

Lagrangian Function

Upper Bound

40

Figure 5.2.Behaviour of the Lagrangian Function in Close Capture [Example 1]

The value of the original objective function (total cost), after 300 iterations is 328471. The best

solutions are presented in Tables 5.11 and 5.12 with specific values of the decision variables. The first

four rows in the Table 5.11 present the values associated with new manufactured components. The

second four rows present the values associated with the remanufactured components. Respectively, data

for the inventory of new components, inventory of remanufactured components and finally setups for

the new and remanufactured components are presented. Table 5.12 presents the values for inventory of

the returned products, number of returned products to acquire, number of returned products to

disassemble, setups correspond to disassembling, inventory of new and remanufactured products,

number of new and remanufactured products to assemble and finally setups associate with assembly of

new and remanufactured products. Table 5.13 presents the values to the Lagrangian multipliers when the

search process stopped.

270000

280000

290000

300000

310000

320000

330000

340000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

C
o

st
 (

 $
)

Iteration Number

Lagrangian Function

Upper Bound

41

Table 5.11: Results Corresponding to the Components [Example 1]

Decision

Variables

 Period

Component

1 2 3

1 180 200 225

2 270 305 320

3 235 260 275

4 250 260 265

 ̅

1 80 95 75

2 88 96 85

3 83 100 80

4 80 95 81

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

 ̅

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

 ̅

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

42

Table 5.12: Results Corresponds to the Products [Example 1]

Decision

Variables

 Period

Product
1 2 3

1 0 0 0

2 0 0 0

3 0 0 0

1 31 0 0

2 0 0 0

3 0 0 0

1 31 0 0

2 0 0 0

3 0 0 0

1 1 0 0

2 0 0 0

3 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0

1 10 15 16

2 13 14 16

3 15 14 13

1 6 5 7

2 6 7 5

3 5 6 7

1 1 1 1

2 1 1 1

3 1 1 1

1 1 1 1

2 1 1 1

3 1 1 1

43

Table 5.13: Lagrangian Multipliers [Example 1]

Decision

Variables

 Period

Product
1 2 3

1 0.09992 0.10009 0.10007

2 0.09993 0.10009 0.10008

3 0.09993 0.10010 0.10008

4 0.09999 0.10009 0.10008

1 0.10002 0.10001 0.10002

2 0.10007 0.10007 0.10007

3 0.10002 0.10003 0.10003

4 0.10003 0.10003 0.10003

1 0.10001 0.10003 0.10000

2 0.10001 0.10001 0.10000

3 0.10003 0.10004 0.10001

4 0.10001 0.10002 0.10001

 t 0.00000 0.10365 0.00459

5.3 Other Examples

Several other example problems were used to test model and solution method developed in this

research. Some features for two of them are introduced below. Computations of these examples follow

the same stopping criteria as in Example 1.

Example 2 is a HMRS production planning problem with 5 time periods, 4 products

and 5 components, other information and data are presented in Tables 5.14 to 5.23.

44

Table 5.14: Cost and Demand for Component from New Material [Example 2]

Time

Period
Cost and Demand

Component Type

1 2 3 4 5

1

Production Cost/item 100 90 110 95 85

Setup Cost 600 700 600 550 600

Inventory Cost/item 100 120 105 115 100

Demand 240 370 285 250 300

2

Production Cost/item 80 100 80 80 100

Setup Cost 600 700 600 550 600

Inventory Cost/item 100 120 105 115 100

Demand 200 300 230 212 240

3

Production Cost/item 90 90 95 100 100

Setup Cost 600 700 600 550 600

Inventory Cost/item 100 120 105 115 100

Demand 210 345 260 205 280

4

Production Cost/item 90 85 70 80 90

Setup Cost 600 700 600 550 600

Inventory Cost/item 100 120 105 115 100

Demand 220 385 310 260 370

5

Production Cost/item 75 110 85 80 110

Setup Cost 600 700 600 550 600

Inventory Cost/item 100 120 105 115 100

Demand 140 235 162 170 120

45

Table 5.15: Cost and Demand for Component to be Remanufactured [Example 2]

Time

Period
Cost and Demand

Component Type

1 2 3 4 5

1

Production Cost/item 30 40 20 15 10

Setup Cost 400 500 450 350 400

Inventory Cost/item 50 80 60 75 65

Demand 130 150 155 155 135

2

Production Cost/item 20 50 15 30 25

Setup Cost 400 500 450 350 400

Inventory Cost/item 50 80 60 75 65

Demand 126 142 150 155 130

3

Production Cost/item 40 30 18 25 15

Setup Cost 400 500 450 350 400

Inventory Cost/item 50 80 60 75 65

Demand 119 120 135 135 120

4

Production Cost/item 15 30 18 22 15

Setup Cost 400 500 450 350 400

Inventory Cost/item 50 80 60 75 65

Demand 90 100 100 95 84

5

Production Cost/item 20 55 20 32 20

Setup Cost 400 500 450 350 400

Inventory Cost/item 50 80 60 75 65

Demand 114 125 130 140 114

46

Table 5.16: Cost Corresponds to the Returned Products [Example 2]

Product Type Cost
Time Periods

1 2 3 4 5

1

Disassembly/item 30 35 20 15 27

Setup 22 30 33 22 33

Inventory/item 40 40 40 40 40

Acquiring/item 25 15 20 21 18

2

Disassembly/item 25 30 15 22 28

Setup 35 25 35 30 27

Inventory/item 50 50 50 50 50

Acquiring/item 35 20 30 30 22

3

Disassembly/item 20 18 30 18 14

Setup 30 28 30 32 27

Inventory/item 30 30 30 30 30

Acquiring/item 25 28 30 28 30

4

Disassembly/item 17 22 26 21 19

Setup 31 29 32 33 29

Inventory/item 35 35 35 35 35

Acquiring/item 22 26 31 20 32

47

Table 5.17: Cost and Demand for New Products of New Components [Example 2]

Product Type Cost
Time Periods

1 2 3 4 5

1

Assembly/item 32 35 22 20 29

Setup 26 31 34 23 34

Inventory/item 60 60 60 60 60

Demand 20 15 20 14 17

2

Assembly/item 30 31 18 32 26

Setup 38 26 36 31 28

Inventory/item 70 70 70 70 70

Demand 18 16 14 12 17

3

Assembly/item 22 24 28 26 22

Setup 32 30 31 33 28

Inventory/item 45 45 45 45 45

Demand 16 11 16 12 14

4

Assembly/item 32 28 26 30 25

Setup 30 28 30 30 29

Inventory/item 65 65 65 65 65

Demand 14 15 10 17 11

48

Table 5.18: Cost and Demand for New Products of Remanuf. Components [Example 2]

Product

Type
Cost

Time Periods

1 2 3 4 5

1

Assembly/item 30 33 20 19 25

Setup 25 31 34 23 34

Inventory/item 55 55 55 55 55

Demand 9 9 9 8 6

2

Assembly/item 30 28 18 22 24

Setup 36 30 36 31 30

Inventory/item 60 60 60 60 60

Demand 7 4 8 5 6

3

Assembly/item 25 22 25 23 26

Setup 32 30 32 35 30

Inventory/item 44 44 44 44 44

Demand 7 8 7 3 7

4

Assembly/item 28 30 25 27 26

Setup 34 34 30 28 30

Inventory/item 50 50 50 50 50

Demand 9 10 5 4 9

Table 5.19: Number of Parts in the Returned Products [Example 2]

 Component

Type Product Type
1 2 3 4 5

1 10 10 8 13 8

2 12 12 10 12 15

3 15 11 3 11 2

4 11 15 9 10 13

49

Table 5.20: Number of New Parts in the Assembled New Products [Example 2]

 Component

Type Product Type
1 2 3 4 5

1 3 6 5 3 8

2 2 6 3 4 2

3 5 7 5 2 3

4 2 2 3 5 3

Table 5.21: Number of Remanuf. Parts in the Assembled New Products [Example 2]

 Component

Type Product Type
1 2 3 4 5

1 3 5 5 3 4

2 4 4 3 4 3

3 5 6 5 6 5

4 3 2 4 5 3

Table 5.22: Resource Time Required and Quality Ratio [Example 2]

 Component Type

1 2 3 4 5

New Component Production Time 120 150 130 120 110

New Component Setup Time 50 50 40 45 50

Remanuf. Component Production Time 80 80 75 75 75

Remanuf. Component Setup Time 30 30 30 30 30

Quality Ratio 0.5 0.5 0.6 0.4 0.7

Table 5.23: Resource Availability [Example 2]

Time Period 1 2 3 4 5

Resource Available Time 250000 230000 230000 230000 230000

50

The computation results show convergence behavior of the procedure. Figure 5.3

presents the graph corresponds to the convergence of the Lagrangian function as well as

the upper bound. In the first 80 i terations, the upper bound remained the same at 700926

since search process did not find a better feasible solution to substitute for upper bound.

The first feasible solution obtained in iteration 81 causes the significant drop in the value

of the upper bound. The value of the objective function for the original model (total cost)

obtained from Eq (3.1) after 300 iterations is 697999 which corresponds to the feasible

near optimal solutions. The computation took 61 seconds.

Figure 5.3.Convergence Behaviour of the Lagrangian Function [Example 2]

670000

675000

680000

685000

690000

695000

700000

705000

1
14 27 40 53 66 79 92

10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

C
o

st
 (

 $
)

Iteration Number

Lagrangian Function

Upper bound

51

Example 3 is a HMRS production planning problem with 4 time periods, 3 products

and 4 components, other information and data are presented in Tables 5.24 to 5.33.

Table 5.24: Cost and Demand for Component from New Material [Example 3]

Time

Period

Cost and Demand

Component Type

1 2 3 4

1

Production Cost/item 93 90 104 95

Setup Cost 555 723 618 550

Inventory Cost/item 105 112 115 105

Demand 180 270 235 250

2

Production Cost/item 74 101 88 83

Setup Cost 555 723 618 550

Inventory Cost/item 105 112 115 105

Demand 200 305 260 260

3

Production Cost/item 91 93 90 100

Setup Cost 555 723 618 550

Inventory Cost/item 105 112 115 105

Demand 225 320 275 265

4

Production Cost/item 102 87 83 98

Setup Cost 555 723 618 550

Inventory Cost/item 105 112 115 105

Demand 150 200 210 200

52

Table 5.25: Cost and Demand for Component to be Remanufactured [Example 3]

Time

Period

Cost and Demand

Component Type

1 2 3 4

1

Production Cost/item 28 41 22 15

Setup Cost 420 512 468 421

Inventory Cost/item 58 83 62 75

Demand 80 88 83 80

2

Production Cost/item 28 40 15 30

Setup Cost 420 512 468 421

Inventory Cost/item 58 83 62 75

Demand 95 96 100 95

3

Production Cost/item 29 33 18 25

Setup Cost 420 512 468 421

Inventory Cost/item 58 83 62 75

Demand 75 85 80 81

4

Production Cost/item 30 35 18 30

Setup Cost 420 512 468 421

Inventory Cost/item 58 83 62 75

Demand 80 85 82 80

53

Table 5.26: Cost Corresponds to the Returned Products [Example 3]

Product

Type
Cost

Time Periods

1 2 3 4

1

Disassembly/item 28 34 21 22

Setup 23 31 33 35

Inventory/item 180 180 180 180

Acquiring/item 24 17 20 22

2

Disassembly/item 25 33 15 18

Setup 35 25 34 32

Inventory/item 220 220 220 220

Acquiring/item 33 20 31 15

3

Disassembly/item 20 18 30 15

Setup 31 27 30 31

Inventory/item 200 200 200 200

Acquiring/item 25 28 30 20

Table 5.27: Cost and Demand for New Products of New Components [Example 3]

Product

Type
Cost

Time Periods

1 2 3 4

1

Assembly/item 32 31 22 20

Setup 28 31 34 28

Inventory/item 103 103 103 103

Demand/item 9 13 16 15

2

Assembly/item 28 31 18 22

Setup 34 26 35 32

Inventory/item 92 92 92 92

Demand/item 12 14 15 14

3

Assembly/item 22 23 26 20

Setup 32 30 31 28

Inventory/item 95 95 95 95

Demand/item 13 13 13 16

54

Table 5.28: Cost and Demand for New Products of Remanuf. Components [Example 3]

Product

Type
Cost

Time Periods

1 2 3 4

1

Assembly/item 16 12 13 11

Setup 16 18 21 20

Inventory/item 93 93 93 93

Demand 5 6 5 4

2

Assembly/item 13 15 11 14

Setup 24 20 21 25

Inventory/item 74 74 74 74

Demand 6 5 5 5

3

Assembly/item 14 11 13 14

Setup 28 19 23 22

Inventory/item 85 85 85 85

Demand 4 6 6 4

Table 5.29: Number of Parts in the Returned Products [Example 3]

 Component

Type Product Type

1

2

3

4

1 10 10 8 13

2 12 12 10 12

3 15 11 3 11

Table 5.30 Number of New Parts in the Assembled New Products [Example 3]

 Component

Type Product Type

1

2

3

4

1 5 7 4 3

2 6 5 7 6

3 2 4 5 7

55

Table 5.31: Number of Remanuf. Parts in the Assembled New Products [Example 3]

 Component

Type Product Type

1

2

3

4

1 2 3 3 4

2 3 3 4 2

3 4 1 2 3

Table 5.32: Resource Time Required and Quality Ratio [Example 3]

 Component Type

1 2 3 4

New Component Production Time 102 100 110 110

New Component Setup Time 52 48 43 44

Remanuf. Component Production Time 77 80 75 83

Remanuf. Component Setup Time 32 31 35 30

Quality Ratio 0.5 0.5 0.6 0.2

Table 5.33: Resource Availability [Example 3]

Time Period 1 2 3 4

Resource Available Time 600000 200000 250000 200000

The computation results show convergence behavior of the procedure. Figure 5.4

presents the graph corresponds to the convergence of the Lagrangian function as well as

the upper bound. Upper bound remained the same since search process did not find a

better solution to substitute for upper bound. The value of the objective function for the

original model (total cost) obtained from Eq (3.1) after 300 iterations is 412012 which

corresponds to the feasible near optimal solutions. The computation took 12.92 seco nds.

56

Figure 5.4.Convergence Behaviour of the Lagrangian Function [Example 3]

5.4 Summary

In testing the developed model and solution method, we used several example

problems of different sizes with randomly generated data. These example problems have 3

to 5 different types of products with 3 to 5 components. The planning time horizon has 3

to 6 periods. The computational results show that the developed solution method can reach

optimal or near optimal solution for all of the tested problems within very short

computational time. As can be observed, the convergence of the Lagrangian function in

Figures (5.1) to (5.4) attributes to the same trend which corresponds to the fact that upper

bound stays the same during the whole searching process.

340000

350000

360000

370000

380000

390000

400000

410000

420000

1

16 31 46 61 76 91

10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

C
o

st
 (

 $
)

Iteration Number

Lagrangian Function

Upper Bound

57

Chapter Six

Conclusion and Future Research

In this chapter we present a summary of the research carried out in this thesis. It also includes

several concluding remarks based on the problem modeling. Future research directions will be

discussed.

6.1 Conclusion

Production planning problems in hybrid manufacturing remanufacturing systems (HMRS) are

studied. Optimal or near-optimal decisions on system setup, production, inventory to produce new

components and remanufactured components are required in solving such problems. The optimal

production decisions are to be coordinated with decisions for purchasing, disassembly, assembly and

inventory of a both returned products to retrieve the components for remanufacturing and new products

to be assembled out of new and remanufactured components.

 A mixed integer linear programming (MILP) is developed to obtain optimal solution of the

considered problem. To efficiently solve the MILP model, a solution procedure based on Lagrangian

decomposition is developed so that the original model can be solved through solving a set of much

smaller sub-problems.

 The model and solution procedure were tested using several numerical examples. The testing

results show that the proposed solution procedure can reach optimal or very close to optimal solutions in

short computational time.

58

6.2 Future Research

There are several options to extend the model framework presented in this thesis. Our suggestions

for future research in this area could be:

 Considering results application in the real case.

 Considering non deterministic demands for new products and consequently both new

components and remanufactured components.

 Considering the combined assembly of new products from new and remanufactured components

at the same time.

 Considering more detailed inventory control strategies with back orders and other aspects.

59

References

1. Amezquita, T, Hammond, R, Salazor, M, Bras, B. (1995), ”Characterizing the

Remanufacturability of Engineering Systems”, Proceeding 1995 ASME Advances in Design

Automation Conference, Boston, Massachusetts, USA, pp. 271-278.

2. Behret, H and Korugan, A. (2009), “Performance Analysis of a Hybrid System under Quality

Impact of Returns”, Computers and Industrial Engineering, Vol.56, pp.507-520.

3. Chen, M. (1996), “A Mathematical Programming Model for AGVS Planning and Control in

Manufacturing Systems”, Computers and Industrial Engineering, Vol.30, pp.647-658.

4. Guide, VDR. (2000), “Production Planning and Control for Remanufacturing: Industry Practice

and Research Needs”, Journal of Operations Management, Vol.18, pp.467-483.

5. Evans, JR. (1985), “An Efficient Implementation of Wagner-Whitin Algorithm for Dynamic Lot-

Sizing”, Journal of Operations Management, Vol.5, pp.229-235.

6. Fisher, ML. (1985), “An ApplicationS Oriented Guide to Lagrangian Relaxation”, Interfaces,

Vol.15, pp.10-21.

7. Fisher, ML. (2004), “The Lagrangian Relaxation Method for Solving Integer Programming

Problems”, Management Science, Vol.27, pp.1-18.

8. Fleischmann, M, Krikke, HR, Dekker, R, Flapper, SDP. (2000), “A Characterisation of Logistics

Networks for Product Recovery”, Omega, Vol.28, pp.653-666.

9. Giuntini, R and Gaudette, K. (2003), “Remanufacturing: The Next Great Opportunity for

Boosting US Productivity”, Business Horizons, Vol.46, pp.41-46.

10. Ijomah, WL, Bennett, JP, Pearce, J. (1999), “Remanufacturing: Evidence of Environmentally

Conscious Business Practice in the UK”, Proceeding of the first International Conference on

Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan.

60

11. Ijomah, WL, Mcmahon, CA, Hammond, GP, Newman, ST. (2007), “Development of Design for

Remanufacturing Guidelines to Support Sustainable Manufacturing”, Robotics and Computer-

Integrated Manufacturing, Vol.23, pp.712-719.

12. Inderfurth, K. (2004), “Optimal Policies in Hybrid Manufacturing/Remanufacturing Systems

with Product Substitution”, International Journal of Production Economics, Vol.90, pp.325-343.

13. Kiesmuller, GP. (2003), “A New Approach for Controlling a Hybrid Stochastic

Manufacturing/Remanufacturing System with Inventories and Different Lead Times”, European

Journal of Operation Research, Vol.147, pp. 62-71.

14. Kim, K, Song, I, Kim, J, Jeong, B. (2006), “Supply Planning Model for Remanufacturing System

in Reverse Logistics Environment”, Computers and Industrial Engineering, Vol.51, pp.279-287.

15. King, AM, Burgess, SC, Ijomah, W, McMahon, CA. (2006), “Reducing Waste: Repair,

Recondition, Remanufacture or Recycle?”, Sustainable Development, Vol. 14, pp. 257-267.

16. Laan, E van der, Salomon, M, Dekker, R. (1999), “An Investigation of a Lead-Time Effects in

Manufacturing/Remanufacturing Systems under Simple PUSH and PULL Control Strategies”,

European Journal of Operational Research, Vol.115, pp.195-214.

17. Richter, K and Weber, J. (2001), “The Reverse Wagner/Whitin Model with Variable

Manufacturing and Remanufacturing Cost”, International Journal of Production Economics, Vol.

71, pp. 447-456.

18. Rubio, S and Corominas, A. (2008), “Optimal Manufacturing –Remanufacturing Policies in a

Lean Production Environment”, Computers and Industrial Engineering, Vol. 55, pp. 234-242.

19. Subramoniam, R, Huisingh, D, Chinnam, RB. (2009), “Remanufacturing for the Automotive

Aftermarket-Strategic Factors: Literature Review and Future Research Needs”, Journal of

Cleaner Production, Vol.17, pp. 1163-1174.

61

20. Teunter, RH, Bayindir, ZP, Heuvel, W van der. (2006), “Dynamic Lot Sizing with Product

Returns and Remanufacturing”, International Journal of Production Research, Vol.44, pp.4377-

4400.

21. Teunter, R, Kaparis, K, Tang, O. (2008), “Multi-Product Economic Lot Scheduling Problems

with Separate Production Lines for Manufacturing and Remanufacturing”, European Journal of

Operations Research, Vol.191, pp.1241-1253.

62

Appendix A

Python codes for Production Planning Problems of Hybrid Manufacturing-Remanufacturing

Systems

import numpy as np

import math

import xlrd

import sys

import time

PEGAH=xlrd.open_workbook('C:\\Data\\Desktop\\example two.xls')

PEGAH.sheet_names()

sh=PEGAH.sheet_by_index(0)

def readMatrix(sheet, fromLine, toLine, fromcol, tocol):

 s = [sheet.row_values(row,fromcol,tocol) for row in range(fromLine,toLine+1)]

 return np.matrix(s)

def readArray(sheet, row , fromcol, tocol):

 w=[sh.row_values(row,fromcol, tocol+1)]

 return np.array(w[0])

V=np.matrix(readMatrix(sh,49,52,2,5))

V_bar=np.matrix(readMatrix(sh,56,59,2,5))

P=np.matrix(readMatrix(sh,1,4,1,4))

P_bar=np.matrix(readMatrix(sh,8,11,1,4))

AQ=np.matrix(readMatrix(sh,68,70,2,5))

SD=np.matrix(readMatrix(sh,73,75,2,5))

RD=np.matrix(readMatrix(sh,63,65,2,5))

IN=np.matrix(readMatrix(sh,15,17,1,4))

S=np.matrix(readMatrix(sh,34,37,1,4))

S_bar=np.matrix(readMatrix(sh,41,44,1,4))

D=np.matrix(readMatrix(sh,20,23,1,4))

63

D_bar=np.matrix(readMatrix(sh,27,30,1,4))

AST=np.array(readArray(sh,87,2,5))

ST=np.array(readArray(sh,89,2,5))

ASR=np.array(readArray(sh,91,2,5))

SR=np.array(readArray(sh,93,2,5))

ACAP=np.array(readArray(sh, 85, 2, 4))

B=np.matrix(readMatrix(sh,78,81,2,5))

UR=np.array(readArray(sh,95,2,5))

RR=np.matrix(readMatrix(sh,233,235,2,5))

RN=np.matrix(readMatrix(sh,228,230,2,5))

SDN=np.matrix(readMatrix(sh,184,186,2,5))

SDR=np.matrix(readMatrix(sh,189,191,2,5))

RDN=np.matrix(readMatrix(sh,194,196,2,5))

RDR=np.matrix(readMatrix(sh,199,201,2,5))

INR=np.matrix(readMatrix(sh,174,176,2,5))

INN=np.matrix(readMatrix(sh,179,181,2,5))

BN=np.matrix(readMatrix(sh,214,217,2,5))

BR=np.matrix(readMatrix(sh,221,224,2,5))

nPeriods = P.shape[1]

nComponents = P.shape[0]

nProducts = AQ.shape[0]

print nPeriods, nComponents, nProducts

#Computes the cost of producing 'd' of component 'i' in period [t]

def cost(i, d, t, lmda, phi):

 return d * (P[i , t] + lmda[t] * AST[i]-phi[i,t]) + S[i, t] + lmda[t] * ST[i]

def InvCost(i, fromPeriod, toPeriod, v):

 s = 0

 for t1 in range(fromPeriod + 1, toPeriod+1):

 sumv=0

 for t2 in range(fromPeriod, t1):

64

 sumv+=v[i,t2]

 s+=D[i,t1]*sumv

 return s

def ww(i, lmda, gmma, phi,khi):

 x = nPeriods * [0]

 LastProductingPeriod = 0

 x = nPeriods * [0]

 teta = nPeriods * [0]

 e = nPeriods * [0]

 x[0] = D[i, 0]

 teta[0] = 1

 e[0] = 0

 minCost = nPeriods * [0]

 minCost[0] = cost(i, D[i, 0], 0, lmda,phi)

 for t in range(1, nPeriods):

 cppc = minCost[t-1] + \

 cost(i, D[i, t], t, lmda, phi)

 lpppc = minCost[LastProductingPeriod] + \

 cost(i, D[i, t], LastProductingPeriod, lmda, phi) + \

 InvCost(i, LastProductingPeriod, t, V) - \

 S[i, t] + lmda[t] * ST[i]

 if lpppc > cppc:

 x[t] = D[i, t]

 teta[t] = 1

 LastProductingPeriod = t

 minCost[t] = cppc

 else:

 x[LastProductingPeriod] += D[i,t]

 teta[t] = 0

 x[t] = 0

65

 for period in range(LastProductingPeriod, t):

 e[period] += D[i, t]

 minCost[t] = lpppc

 return x, e, teta

def cost2(i, d_bar, t, lmda, gmma, khi):

 return d_bar * (P_bar[i , t] + lmda[t] * ASR[i] + gmma[i, t]-khi[i,t]) + S_bar[i, t] + lmda[t] * SR[i]

def InvCost2(i, fromPeriod, toPeriod, v):

 s = 0

 for t1 in range(fromPeriod + 1, toPeriod+1):

 sumv = 0

 for t2 in range(fromPeriod, t1):

 sumv += v[i,t2]

 s += D_bar[i,t1] * sumv

 return s

def ww2(i, lmda, gmma,phi,khi):

 x = nPeriods * [0]

 LastProductingPeriod = 0

 x_bar = nPeriods * [0]

 teta_bar = nPeriods * [0]

 e_bar = nPeriods * [0]

 x_bar[0] = D_bar[i, 0]

 teta_bar[0] = 1

 e_bar[0] = 0

 minCost = nPeriods * [0]

 minCost[0] = cost2(i, D_bar[i, 0], 0, lmda, gmma, khi)

 for t in range(1, nPeriods):

 cppc = minCost[t-1] + \

 cost2(i, D_bar[i, t], t, lmda, gmma, khi)

 lpppc = minCost[LastProductingPeriod] + \

 cost2(i, D_bar[i, t], LastProductingPeriod, lmda, gmma, khi) + \

66

 InvCost2(i, LastProductingPeriod, t, V_bar) - \

 S_bar[i, t] + lmda[t] * SR[i]

 if lpppc > cppc:

 x_bar[t] = D_bar[i, t]

 teta_bar[t] = 1

 LastProductingPeriod = t

 minCost[t] = cppc

 else:

 x_bar[LastProductingPeriod] += D_bar[i,t]

 teta_bar[t] = 0

 x_bar[t] = 0

 for period in range(LastProductingPeriod, t):

 e_bar[period] += D_bar[i, t]

 minCost[t] = lpppc

 return x_bar, e_bar, teta_bar

#***

def cost3(j, RN, t, lmda, gmma, phi):

 vv=0

 for i in range(1,nComponents):

 vv+=BN[i,j]* phi[i,t]

 return RN * (RDN[j , t] +vv)+SDN[j,t]

def InvCost3(j, fromPeriod, toPeriod, INN):

 s = 0

 for t1 in range(fromPeriod + 1, toPeriod+1):

 sumINN = 0

 for t2 in range(fromPeriod, t1):

 sumINN += INN[j,t2]

 s += RN[j,t1] * sumINN

 return s

67

def ww3(j, lmda, gmma,phi,khi):

 x = nPeriods * [0]

 LastProductingPeriod = 0

 dn = nPeriods * [0]

 deln = nPeriods * [0]

 fn = nPeriods * [0]

 dn[0] = RN[j, 0]

 deln[0] = 1

 fn[0] = 0

 minCost = nPeriods * [0]

 minCost[0] = cost3(j, RN[j, 0], 0, lmda, gmma, phi)

 for t in range(1, nPeriods):

 cppc = minCost[t-1] + \

 cost3(j, RN[j, 0], 0, lmda, gmma, phi)

 lpppc = minCost[LastProductingPeriod] + \

 cost3(j, RN[j, t], LastProductingPeriod, lmda, gmma, phi) + \

 InvCost3(j, LastProductingPeriod, t, INN) - \

 SDN[j,t]

 if lpppc > cppc:

 dn[t] = RN[j, t]

 deln[t] = 1

 LastProductingPeriod = t

 minCost[t] = cppc

 else:

 dn[LastProductingPeriod] += RN[j,t]

 deln[t] = 0

 dn[t] = 0

 for period in range(LastProductingPeriod, t):

 fn[period] += RN[j, t]

68

 minCost[t] = lpppc

 return fn, dn, deln

#***

def cost4(j, RR, t, lmda, gmma, khi):

 ll=0

 for i in range (1,nComponents):

 ll+=BR[i,j]* khi[i,t]

 return RR * (RDR[j , t] +ll)+SDR[j,t]

def InvCost4(j, fromPeriod, toPeriod, INR):

 s = 0

 for t1 in range(fromPeriod + 1, toPeriod+1):

 sumINR = 0

 for t2 in range(fromPeriod, t1):

 sumINR += INR[j,t2]

 s += RR[j,t1] * sumINR

 return s

def ww4(j, lmda, gmma,phi,khi):

 x = nPeriods * [0]

 LastProductingPeriod = 0

 dr = nPeriods * [0]

 delr = nPeriods * [0]

 fr = nPeriods * [0]

 dr[0] = RR[j, 0]

 delr[0] = 1

 fr[0] = 0

 minCost = nPeriods * [0]

 minCost[0] = cost4(j, RR[j, 0], 0, lmda, gmma, khi)

 for t in range(1, nPeriods):

 cppc = minCost[t-1] + \

 cost4(j, RR[j, t], t, lmda, gmma, khi)

69

 lpppc = minCost[LastProductingPeriod] + \

 cost4(j, RR[j, t], LastProductingPeriod, lmda, gmma, khi) + \

 InvCost4(j, LastProductingPeriod, t, INR) - \

 SDR[j,t]

 if lpppc > cppc:

 dr[t] = RR[j, t]

 delr[t] = 1

 LastProductingPeriod = t

 minCost[t] = cppc

 else:

 dr[LastProductingPeriod] += RR[j,t]

 delr[t] = 0

 dr[t] = 0

 for period in range(LastProductingPeriod, t):

 fr[period] += RR[j, t]

 minCost[t] = lpppc

 return fr, dr, delr

#***

import pulp

def getD_tilde(x_bar):

 prob = pulp.LpProblem("Sub3 LP",pulp.LpMinimize)

 periods = [str(i) for i in range(nPeriods)]

 products=[str(k) for k in range(nProducts)]

 varNames = [str(k) + str(i) for i in range(nPeriods) for k in range(nProducts)]

 d_tilde=pulp.LpVariable.dict('d_tilde', varNames,lowBound =0, cat = pulp.LpInteger)

 print varNames

 prob += sum(d_tilde[str(j) + str(t)] for j in range(nProducts) for t in range(nPeriods))

 for i in range(nComponents):

 for t in range (nPeriods):

 prob += UR[i] * sum(B[i,j] * d_tilde[str(j)+str(t)] for j in range(nProducts)) >= x_bar[i,t]

70

 prob.solve(pulp.COIN(msg=0))

 ret_d_tilde = np.matrix(np.zeros((nProducts, nPeriods)))

 for v in prob.variables():

 n = v.name

 ret_d_tilde[n[-2], n[-1]] = v.varValue

 return ret_d_tilde

def PegHeur(x_bar, gmma):

 #Initializing the return variables

 d = np.matrix(np.zeros((nProducts, nPeriods)))

 delta = np.matrix(np.zeros((nProducts, nPeriods)))

 r = np.matrix(np.zeros((nProducts, nPeriods)))

 f = np.matrix(np.zeros((nProducts, nPeriods)))

 #Setting the values of d_tilde

 d_tilde = getD_tilde(x_bar)

 print "d_tilde"

 print d_tilde

 #Initializeing R_tilde

 R_tilde = np.matrix(np.zeros((nProducts, nPeriods)))

 for t in range(nPeriods):

 for j in range(nProducts):

 s = sum(B[i,j] * gmma[i,t] * UR[i] for i in range(nComponents))

 R_tilde[j,t] = RD[j,t] - s

 A_tilde = np.matrix(np.zeros((nProducts, nPeriods)))

 for j in range(nProducts):

 A_tilde[j, 0] = AQ[j,0]

 for j in range(nProducts):

 for t in range(1, nPeriods):

 A_tilde[j,t] = min(AQ[j,t], IN[j, t-1] + A_tilde[j, t-1])

 #step2

 for j in range(nProducts):

71

 d[j,0] = r[j,0] = d_tilde[j,0]

 if d[j,0]>0:

 delta[j,0] = 1

 #step3

 maxper=0

 for j in range(nProducts):

 for t in range(1,nPeriods):

 if R_tilde[j, t] >= - (A_tilde[j,t] * d_tilde[j, t] + SD[j,t]):

 d[j,t]= r[j,t] = d_tilde[j,t]=d[j,t]=0

 else:

 if AQ[j,t] <= IN[j, t-1] + A_tilde[j,t-1]:

 r[j,t] = d_tilde[j,t]

 f[j,t]=0

 delta[j,t]=1

 maxper=t

 else:

 r[j, maxper] += d_tilde[j,t]

 delta=[j,maxper]=1

 for k in range(maxper,t-1):

 f[j,k]+=d_tilde[j,t]

 return d,delta, r,f

def getSlacksOfFirstCommonConstraint(x, teta, x_bar, teta_bar):

 slack = []

 for t in range(nPeriods):

 s = sum(AST[i]*x[i,t] + ST[i] * teta[i,t] + ASR[i]*x_bar[i,t] + SR[i] * teta_bar[i,t] for i in range(nComponents))

 slack.append(s - ACAP[t])

 return slack

 slackone =sum(slack for i in range (nComponents) for t in range (nPeriods))

 #print slackone

def getSlacksOfSecondCommonConstraint(x_bar, d):

72

 slack = []

 for i in range(nComponents):

 slack.append([])

 for t in range(nPeriods):

 s = sum(B[i,j] * d[j,t] for j in range(nProducts))

 s *= UR[i]

 slack[-1].append(x_bar[i, t]- s)

 return slack

#**

def getSlacksOfThirdCommonConstraint(x, dn):

 slack = []

 for i in range(nComponents):

 slack.append([])

 for t in range(nPeriods):

 s = sum(BN[i,j] * dn[j,t] for j in range(nProducts))

 slack[-1].append(x[i, t]- s)

 return slack

def getSlacksOfForthCommonConstraint(x_bar, dr):

 slack = []

 for i in range(nComponents):

 slack.append([])

 for t in range(nPeriods):

 s = sum(BR[i,j] * dr[j,t] for j in range(nProducts))

 slack[-1].append(x_bar[i, t]- s)

 return slack

#***

def Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn):

 gmma = np.matrix(np.zeros((nComponents, nPeriods)))

 lmda = np.array(np.zeros(nPeriods))

 phi= np.matrix(np.zeros((nComponents, nPeriods)))

73

 khi= np.matrix(np.zeros((nComponents, nPeriods)))

 return Z_lag(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d, lmda, gmma,fr,fn,deln,delr,dr,dn,phi,khi)

def Z_lag(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d, lmda, gmma,fr,fn,deln,delr,dr,dn,phi,khi):

 sum_sub1 =0

 for i in range (nComponents):

 sum_sub1 += sum([(P[i,t] +lmda[t]*AST[i]+phi[i,t])* x[i,t] + (S[i, t]+lmda[t]*ST[i])*teta[i, t] \

 + V[i, t]* e[i, t] for t in range(nPeriods)])

 sum_sub2 =0

 for i in range (nComponents):

 sum_sub2 += sum((P_bar[i,t]+lmda[t]*ASR[i]+gmma[i,t]+khi[i,t])* x_bar[i,t] + \

 (S_bar[i, t]+lmda[t]*SR[i])* teta_bar[i, t] + V_bar[i, t]* e_bar[i, t]for t in range(nPeriods))

 sum_sub3 =0

 for j in range (nProducts):

 sum_sub3 += sum([AQ[j, t]* r[j, t] +SD[j, t]* delta[j, t]+ (RD[j, t] - \

 sum([B[i,j]*gmma[i,t]*UR[i] for i in range(nComponents)]))*d[j,t] +IN[j, t]* f[j, t] \

 for t in range(nPeriods)])

 sum_sub4 =0

 for j in range (nProducts):

 sum_sub4 += sum([SDN[j, t]* deln[j, t]+ (RDN[j, t] - \

 sum([BN[i,j]*phi[i,t] for i in range(nComponents)]))*dn[j,t] +INN[j, t]* fn[j, t] \

 for t in range(nPeriods)])

 sum_sub5 =0

 for j in range (nProducts):

 sum_sub5 += sum([SDR[j, t]* delr[j, t]+ (RDR[j, t] - \

 sum([BR[i,j]*khi[i,t] for i in range(nComponents)]))*dr[j,t] +INR[j, t]* fr[j, t] \

 for t in range(nPeriods)])

 sum_sub1=sum_sub1- sum([lmda[t]*ACAP[t] for t in range(nPeriods)])

 return sum_sub1 + sum_sub2 + sum_sub3 +sum_sub4 +sum_sub5

from xlwt import Workbook

def initializeXL(filename):

74

 workbook = Workbook()

 sheet1 = workbook.add_sheet('Lagranigian')

 sheet1.write(0,0,'Iteration')

 sheet1.write(0,1,'z_l')

 sheet1.write(0,2,'z')

 sheet1.write(0,3,'Feasibility')

 sheet1.write(0,4,'ub')

 ind = 5

 for t in range(nPeriods):

 sheet1.write(0,ind,'lamda_'+str(t))

 ind += 1

 for i in range(nComponents):

 for t in range(nPeriods):

 sheet1.write(0,ind,'gamma_'+str(i) + str(t))

 ind += 1

 return workbook,sheet1

def finalizeXL(book, filename):

 book.save(filename + '.xls')

def writeToXL(sheet, iteration, feasible, z_l,ub, z,x, x_bar, teta, teta_bar, e, e_bar, f, r, d, delta, lmda, gmma):

 sheet.write(iteration + 1,0,iteration)

 sheet.write(iteration + 1,1,z_l)

 sheet.write(iteration + 1,2,z)

 sheet.write(iteration + 1,3,feasible)

 sheet.write(iteration + 1,4,ub)

 ind = 5

 for t in range(nPeriods):

 sheet.write(iteration + 1,ind,lmda[t])

 ind += 1

 for i in range(nComponents):

 for t in range(nPeriods):

75

 sheet.write(iteration + 1,ind,gmma[i,t])

 ind += 1

 sheet.flush_row_data()

import time

def lagSolve(lmda, gmma,phi,khi, maxIterations):

 ub =334291.0

 noUpdateIterations = 0

 stoppingIteration = 0

 start1= time.time()

 print "start1=", start1

 f = open('res.txt', 'w')

 f.write('hello')

 f.close()

 book, sheet = initializeXL('expanded results')

 x = np.matrix(np.zeros((nComponents, nPeriods)))

 e = np.matrix(np.zeros((nComponents, nPeriods)))

 teta = np.matrix(np.zeros((nComponents, nPeriods)))

 x_bar = np.matrix(np.zeros((nComponents, nPeriods)))

 e_bar = np.matrix(np.zeros((nComponents, nPeriods)))

 teta_bar = np.matrix(np.zeros((nComponents, nPeriods)))

 dn = np.matrix(np.zeros((nProducts,nPeriods)))

 deln = np.matrix(np.zeros((nProducts,nPeriods)))

 fn = np.matrix(np.zeros((nProducts,nPeriods)))

 dr = np.matrix(np.zeros((nProducts,nPeriods)))

 delr = np.matrix(np.zeros((nProducts,nPeriods)))

 fr = np.matrix(np.zeros((nProducts,nPeriods)))

 step = 2

 z_best = 10**10

 x_best= x_bar_best= e_best= e_bar_best= f_best=fn_best=fr_best= r_best= d_best=dn_best=dr_best=

delta_best=delr_best=deln_best= \

76

 teta_best = teta_bar_best = best_lmda = best_gmma =best_khi=best_phi= -1

 k=2.0

 z_l = -1

 for iteration in range(1, maxIterations):

 for i in range(nComponents):

 x_i,e_i,teta_i = ww(i, lmda, gmma,phi,khi)

 x[i, :] = x_i

 e[i, :] = e_i

 teta[i, :] = teta_i

 for i in range(nComponents):

 x_bar_i, e_bar_i, teta_bar_i = ww2(i, lmda, gmma,phi,khi)

 x_bar[i, :] = x_bar_i

 e_bar[i, :] = e_bar_i

 teta_bar[i, :] = teta_bar_i

 for j in range (nProducts):

 fn_j, dn_j, deln_j=ww3(j, lmda, gmma,phi,khi)

 fn[j,:]=fn_j

 dn[j,:]=dn_j

 deln[j,:]=deln_j

 for j in range (nProducts):

 fr_j, dr_j, delr_j=ww4(j, lmda, gmma,phi,khi)

 fr[j,:]=fr_j

 dr[j,:]=dr_j

 delr[j,:]=delr_j

 d,delta, r,f = PegHeur(x_bar, gmma)

 if iteration == 299:

 print "gmma=",gmma

 print "lmda=",lmda

 print "phi=",phi

 print "khi=",khi

77

 print "dr=",dr

 print "dn=",dn

 print "fn=",fn

 print "fr=",fr

 print "deln=",deln

 print "delr=",delr

 print "x="

 print x

 print "x_bar="

 print x_bar

 print "e="

 print e

 print "e_bar="

 print e_bar

 print "teta="

 print teta

 print "teta_bar="

 print teta_bar

 print "r="

 print r

 print "f="

 print f

 print "delta="

 print delta

 print "d="

 print d

 print 'Primal Objective Value:'

 print Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn)

 s1 = getSlacksOfFirstCommonConstraint(x, teta, x_bar, teta_bar)

 s2 = getSlacksOfSecondCommonConstraint(x_bar, d)

78

 s3 = getSlacksOfThirdCommonConstraint(x, dn)

 s4 = getSlacksOfForthCommonConstraint(x_bar, dr)

 feasible = '-'

 print "number of infeasible constraints = " , [s>0.0000000001 for s in s1].count(True)

 if [s>0.0000000001 for s in s1].count(True)>0:

 print [s>0.0000000001 for s in s1].index(True)

 else:

 feasible='feasible'

 if [s>0.0000000001 for s in s1].count(True) == 0 and (gmma>=0).all():# and Z_lag < z_best:

 feasible = 'feasible'

 z_lold=z_l

 z_l = Z_lag(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d, lmda, gmma,fr,fn,deln,delr,dr,dn,phi,khi)

 oo=z_l-z_lold

 if (oo <0.00001).all():

 noUpdateIterations += 1

 else:

 noUpdateIterations = 0

 z= Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn)

 if feasible == 'feasible' and z < ub:

 ub = z

 writeToXL(sheet,iteration, feasible, z_l, ub,z, x, x_bar, teta, teta_bar, e, e_bar, f, r, d, delta, lmda, gmma)

 if noUpdateIterations == 15:

 noUpdateIterations = 0

 k=k/2

 qp=z-z_l

 if (0<qp and qp <0.01).all():

 print "best soulution so far", z

 duration_if=time.time()-start1

 #print 'Problem took ' + '%6.2f'%duration_if + ' seconds'

 print "stoppingIteration",stoppingIteration

79

 print "gmma=",gmma

 print "lmda=",lmda

 print "phi=",phi

 print "khi=",khi

 print "dr=",dr

 print "dn=",dn

 print "fn=",fn

 print "fr=",fr

 print "deln=",deln

 print "delr=",delr

 print "x="

 print x

 print "x_bar="

 print x_bar

 print "e="

 print e

 print "e_bar="

 print e_bar

 print "teta="

 print teta

 print "teta_bar="

 print teta_bar

 print "r="

 print r

 print "f="

 print f

 print "delta="

 print delta

 print "d="

 print d

80

 print 'Primal Objective Value:'

 print Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn)

 break

 #iteration = stoppingIteration

 else:

 stoppingIteration += 1

 denom=sum([h**2 for h in s1])

 for s in s2:

 denom +=sum ([h**2 for h in s])

 step= k*(ub-z_l)/denom

 lmda = [max(0, lmda[i] + step * s1[i]) for i in range(nPeriods)]

 for i in range(nComponents):

 for t in range(nPeriods):

 gmma[i, t] = max(0, gmma[i, t] + step * s2[i][t])

 for i in range(nComponents):

 for t in range(nPeriods):

 phi[i, t] = max(0, phi[i, t] + step * s3[i][t])

 for i in range(nComponents):

 for t in range(nPeriods):

 khi[i, t] = max(0, khi[i, t] + step * s4[i][t])

 finalizeXL(book, 'expanded results')

g = np.matrix(np.zeros((nComponents, nPeriods)))

g += 0.1

l=np.array(np.zeros(nPeriods))

l+= 0.1

p =np.matrix(np.zeros((nComponents, nPeriods)))

p+= 0.1

k =np.matrix(np.zeros((nComponents, nPeriods)))

k+= 0.1

start = time.time()

81

lagSolve(l,g,p,k ,300)

duration = time.time()-start

print 'Problem took ' + '%6.2f'%duration + ' seconds'

Appendix B

Lingo codes for finding the first feasible solution in solving HMRS problem

82

Sub model 1

SETS:

Component/1..4/:AST,URST,ASR,SR,ST,UR; !i;

Product/1..3/; !j;

Period/1..3/:ACAP,Landa; !t;

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t;

ProPer(Product,Period):dtilda,f,r,del,AQ,SD,RD,IN,INN,SDN,FN,deln,dn,RN,RDN;

ComPro(Component,Product): B,BN;

ENDSETS

DATA:

P = @OLE('C:\Data\Desktop\example tow.xls','P') ;

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ;

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ;

D = @OLE('C:\Data\Desktop\example tow.xls','D') ;

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ;

S = @OLE('C:\Data\Desktop\example tow.xls','S') ;

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ;

V = @OLE('C:\Data\Desktop\example tow.xls','V') ;

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ;

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ;

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ;

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ;

B = @OLE('C:\Data\Desktop\example tow.xls','B') ;

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ;

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ;

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ;

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ;

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ;

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ;

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ;

ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ;

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ;

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ;

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ;

M= @OLE('C:\Data\Desktop\example tow.xls','M') ;

@OLE('C:\Data\Desktop\example tow.xls','X') = X;

@OLE('C:\Data\Desktop\example tow.xls','e') = e;

@OLE('C:\Data\Desktop\example tow.xls','Tet') = Tet;

END DATA

!OBJECTIVE FUNCTION;

Min= @sum(ComPer(i,t): P(i,t)*X(i,t) + S(i,t)*Tet(i,t) + V(i,t)*e(i,t));

!SUBJECT TO;

@for(ComPer(i,t):@BIN(Tet(i,t)));

@for(ComPer(i,t):@GIN(e(i,t)));

83

@for(ComPer(i,t):@GIN(X(i,t)));

!1;

@for(ComPer(i,t)| t #GT# 1 : e(i,t-1)+ X(i,t) - e(i,t)= D(i,t));

@for(Component(i) : X(i,1) - e(i,1)= D(i,1));

!2;

@for(ComPer(i,t): X(i,t) <= 100000* Tet(i,t));

!3;

@for(Period(t):@sum(Component(i): AST(i)* X(i,t) + ST(i)*Tet(i,t)) <= ACAP(t));

Submodel 2

SETS:

Component/1..4/:AST,URST,ASR,SR,ST,UR; !i;

Product/1..3/; !j;

Period/1..3/:ACAP,Landa,RAMA; !t;

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t;

ProPer(Product,Period):dtilda,f,r,del,delr,deln,FN,FR,SDN,SDR,RDR,RDN,INN,INR,RR,RN

,dn,dr,AQ,SD,RD,IN;

ComPro(Component,Product): B,BN,BR;

ENDSETS

DATA:

P = @OLE('C:\Data\Desktop\example tow.xls','P') ;

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ;

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ;

D = @OLE('C:\Data\Desktop\example tow.xls','D') ;

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ;

S = @OLE('C:\Data\Desktop\example tow.xls','S') ;

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ;

V = @OLE('C:\Data\Desktop\example tow.xls','V') ;

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ;

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ;

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ;

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ;

B = @OLE('C:\Data\Desktop\example tow.xls','B') ;

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ;

RAMA = @OLE('C:\Data\Dropbox\thesis\EXAMPLE TWO\remaining.xls','RAMA') ;

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ;

ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ;

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ;

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ;

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ;

M= @OLE('C:\Data\Desktop\example tow.xls','M') ;

SDR=@OLE('C:\Data\Desktop\example tow.xls','SDR') ;

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ;

84

BR=@OLE('C:\Data\Desktop\example tow.xls','BR') ;

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ;

RDR=@OLE('C:\Data\Desktop\example tow.xls','RDR') ;

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ;

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ;

INR=@OLE('C:\Data\Desktop\example tow.xls','INR') ;

RR=@OLE('C:\Data\Desktop\example tow.xls','RR') ;

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ;

@OLE('C:\Data\Desktop\example tow.xls','X_bar') = X_bar;

@OLE('C:\Data\Desktop\example tow.xls','Tet_bar') = Tet_bar;

@OLE('C:\Data\Desktop\example tow.xls','dtilda') = dtilda;

@OLE('C:\Data\Desktop\example tow.xls','RO') = r;

@OLE('C:\Data\Desktop\example tow.xls','F') = f;

@OLE('C:\Data\Desktop\example tow.xls','del') = del;

@OLE('C:\Data\Desktop\example tow.xls','e_bar') = e_bar;

END DATA

!OBJECTIVE FUNCTION;

Min= @sum(ComPer(i,t): P_bar(i,t)*X_bar(i,t) + S_bar(i,t)*Tet_bar(i,t) +

V_bar(i,t)*e_bar(i,t))+

@sum(ProPer(j,t):AQ(j,t)*r(j,t)+SD(j,t)*del(j,t)+RD(j,t)*dtilda(j,t)+IN(j,t)*f(j,t)

);

!SUBJECT TO;

@for(ComPer(i,t):@BIN(Tet(i,t)));

@for(ComPer(i,t):@BIN(Tet_bar(i,t)));

@for(ProPer(j,t):@BIN(del(j,t)));

@for(ComPer(i,t):@GIN(X_bar(i,t)));

@for(ComPer(i,t):@GIN(e_bar(i,t)));

@for(ProPer(j,t):@GIN(r(j,t)));

@for(ProPer(j,t):@GIN(f(j,t)));

@for(ProPer(j,t):@GIN(dtilda(j,t)));

!1;

@for(ComPer(i,t)| t #GT# 1 : e_bar(i,t-1)+ X_bar(i,t) - e_bar(i,t)= D_bar(i,t));

@for(Component(i): X_bar(i,1) - e_bar(i,1)= D_bar(i,1));

!2;

@for(ComPer(i,t): X_bar(i,t) <= M* Tet_bar(i,t));

!3;

@for(Period(t):@sum(Component(i):ASR(i)*X_bar(i,t) + SR(i)*Tet_bar(i,t)) <=

RAMA(t));

!4;

@for(ProPer(j,t)| t #GT# 1 : f(j,t) + dtilda(j,t) - f(j,t-1) = r(j,t));

@for(Product(j) : dtilda(j,1)+f(j,1)= r(j,1));

!5;

85

@for(ProPer(j,t): dtilda(j,t) <= M*del(j,t));

!6;

@for(ComPer(i,t): X_bar(i,t)<= UR(i)* @SUM(Product(j):B(i,j)*dtilda(j,t)));

Sub model 3

SETS:

Component/1..4/:AST,URST,ASR,SR,ST,UR; !i;

Product/1..3/; !j;

Period/1..3/:ACAP,Landa; !t;

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t;

ProPer(Product,Period):dtilda,f,r,del,AQ,SD,RD,IN,INN,SDN,FN,deln,dn,RN,RDN;

ComPro(Component,Product): B,BN;

ENDSETS

DATA:

X=@OLE('C:\Data\Desktop\example tow.xls','X') ;

P = @OLE('C:\Data\Desktop\example tow.xls','P') ;

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ;

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ;

D = @OLE('C:\Data\Desktop\example tow.xls','D') ;

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ;

S = @OLE('C:\Data\Desktop\example tow.xls','S') ;

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ;

V = @OLE('C:\Data\Desktop\example tow.xls','V') ;

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ;

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ;

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ;

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ;

B = @OLE('C:\Data\Desktop\example tow.xls','B') ;

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ;

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ;

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ;

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ;

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ;

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ;

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ;

ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ;

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ;

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ;

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ;

M= @OLE('C:\Data\Desktop\example tow.xls','M') ;

@OLE('C:\Data\Desktop\example tow.xls','deln') = deln;

@OLE('C:\Data\Desktop\example tow.xls','FN') = FN;

@OLE('C:\Data\Desktop\example tow.xls','dn') = dn;

86

END DATA

!OBJECTIVE FUNCTION;

Min= @sum(ProPer(j,t):SDN(j,t)*deln(j,t)+RDN(j,t)*dn(j,t)+INN(j,t)*FN(j,t));

!SUBJECT TO;

@for(ProPer(j,t):@BIN(deln(j,t)));

@for(ProPer(j,t):@GIN(FN(j,t)));

@for(ProPer(j,t):@GIN(dn(j,t)));

!1;

@for(ProPer(j,t)| t #GT# 1 : FN(j,t-1) + dn(j,t) - FN(j,t) = RN(j,t));

@for(Product(j) : dn(j,1)- FN(j,1) = RN(j,1));

!2;

@for(ProPer(j,t): dn(j,t) <= 100000*deln(j,t));

!3;

@for(ComPer(i,t): X(i,t)>= @SUM(Product(j):BN(i,j)*dn(j,t)));

Sub model 4

SETS:

Component/1..4/:AST,URST,ASR,SR,ST,UR; !i;

Product/1..3/; !j;

Period/1..3/:ACAP,Landa,RAMA; !t;

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t;

ProPer(Product,Period):dtilda,f,r,del,delr,deln,FN,FR,SDN,SDR,RDR,RDN,INN,INR,RR,RN

,dn,dr,AQ,SD,RD,IN;

ComPro(Component,Product): B,BN,BR;

ENDSETS

DATA:

X_bar=@OLE('C:\Data\Desktop\example tow.xls','X_bar') ;

P = @OLE('C:\Data\Desktop\example tow.xls','P') ;

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ;

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ;

D = @OLE('C:\Data\Desktop\example tow.xls','D') ;

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ;

S = @OLE('C:\Data\Desktop\example tow.xls','S') ;

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ;

V = @OLE('C:\Data\Desktop\example tow.xls','V') ;

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ;

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ;

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ;

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ;

B = @OLE('C:\Data\Desktop\example tow.xls','B') ;

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ;

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ;

87

ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ;

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ;

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ;

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ;

M= @OLE('C:\Data\Desktop\example tow.xls','M') ;

SDR=@OLE('C:\Data\Desktop\example tow.xls','SDR') ;

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ;

BR=@OLE('C:\Data\Desktop\example tow.xls','BR') ;

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ;

RDR=@OLE('C:\Data\Desktop\example tow.xls','RDR') ;

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ;

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ;

INR=@OLE('C:\Data\Desktop\example tow.xls','INR') ;

RR=@OLE('C:\Data\Desktop\example tow.xls','RR') ;

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ;

@OLE('C:\Data\Desktop\example tow.xls','FR') = FR;

@OLE('C:\Data\Desktop\example tow.xls','delr') = delr;

@OLE('C:\Data\Desktop\example tow.xls','dr') = dr;

END DATA

!OBJECTIVE FUNCTION;

Min=@sum(ProPer(j,t):SDR(j,t)*delr(j,t)+RDR(j,t)*dr(j,t)+INR(j,t)*FR(j,t));

!SUBJECT TO;

@for(ProPer(j,t):@BIN(delr(j,t)));

@for(ProPer(j,t):@GIN(FR(j,t)));

@for(ProPer(j,t):@GIN(dr(j,t)));

!1;

@for(ProPer(j,t)| t #GT#1 : FR(j,t-1) + dr(j,t) - FR(j,t) = RR(j,t));

@for(Product(j) : dr(j,1)- FR(j,1) = RR(j,1));

!2;

@for(ProPer(j,t): dr(j,t) <= M*delr(j,t));

!3;

@for(ComPer(i,t): X_bar(i,t)>= @SUM(Product(j):BR(i,j)*dr(j,t)));

