
i 

Solving Manufacturing-Remanufacturing System Production 

Planning Problems Using Lagrangian Relaxation 

 

Pegah Abrishami Shirazi 

 

A Thesis 

in 

The Department 

of 

Mechanical and Industrial Engineering 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science (Industrial Engineering) at 

Concordia University 

Montreal, Quebec, Canada 

 

September 2011 

© Pegah Abrishami Shirazi, 2011 



ii 

CONCORDIA UNIVERSITY 

School of Graduate Studies 

 

This is to certify that the thesis prepared 

By:   _____________________________________________ 

Entitled:  _____________________________________________ 

and submitted in partial fulfillment of the requirements for the degree of 

_____________________________________________ 

complies with the regulations of the University and meets the accepted 

standards with respect to originality and quality. 

Signed by the final examining committee: 

Approved by 

Dr. O. Kuzgunkaya                                         Chair  

Dr. Z. Tian                                                      Examiner  

Dr. G. Gouw                                                   Examiner  

Dr. M. Chen                                                    Supervisor 

 

Approved by _________________________________________ 

Chair of Department or Graduate Program Director 

 

_________________________________________ 

Dean of Faculty 

 

Date   _________________________________________ 



iii 

  

 

Abstract 

 

In recent years, environmental legislation, societal pressure and economic opportunities 

have motivated many firms to integrate remanufacturing activities into the regular production 

environment. This presents many new challenges involving the collection, disassembly, 

refurbishing of used products and incorporation of remanufacturing activities into new product 

manufacturing. This research presents a mixed integer programming model addressing 

production planning problems in hybrid Manufacturing-Remanufacturing systems. The objective 

is optimizing an overall cost function based on an optimal number of new items to produce, 

number of items to be remanufactured, and number of new products to assemble in each time 

period of the planning horizon. A Lagrangian decomposition based method is developed to solve 

the problem efficiently. Numerical examples are presented to analyze the model performance 

and the developed solution procedure.  
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Chapter One 

 Introduction 

1.1 Foreword  

Today’s manufacturing industries in many countries have started to develop systematic product recovery, 

remanufacturing and recycling procedures to reduce negative environmental impact. There are estimated more 

than  73,000 firms engaged in remanufacturing in the United States, directly employing over 350,000 people  

Remanufacturing account for total sales in excess of $53 billion per year. 

Environmental friendly manufacturing activities, including product recovery, remanufacturing and 

recycle can substantially reduce material consumption and improve the technology and performance of 

manufacturing industry. Remanufacturing reserve the material and energy added in the primal 

manufacturing processes when the products were originally made.  

 

1.2 Reverse Logistic  

Fleischmann (2000) defined reverse logistics as “the process of planning, implementing, and 

controlling the efficient, effective inbound flow and storage of secondary goods and related information 

opposite to the traditional supply chain direction for the purpose of recovering value or proper disposal.” 

It covers activities leading recovering product values, remanufacturing, reuse, repair, recycle, etc.  

1.2.1 Return Types 

Returned Products may fill in one of the five categories based on Fleischmann (2000) definition of 

the different return types: end-of-use returns, commercial returns, warranty returns, production scraps 

and by-products, and packaging materials as explained below. 
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 End-of-use returns 

 End-of-use products include products that have reached the end of their life, products that their 

use has been completed as well as leased product returns that can be used further. 

 Commercial returns  

               Commercial returns include product returns from costumers to sellers for refund.                                          

 Warranty returns 

These types of returns are the products that are failed during use or damaged while delivered. 

They are returned to the manufacturer for refund or repair.  

 Production scrap and by-products  

In many cases production scraps and by-products are of the nature of a process. However, they need to 

be recovered or recycled due to resource savings and economic considerations as well as environmental 

regulations. 

 Packaging materials  

Returns of this type of product are desirable since they just need cleaning or minor maintenance. They can 

be reused directly in the same supply chain network. Examples for this category of returns can be crates, 

refillable bottles, pallets, and reusable boxes.  

 

1.3 Green Production 

Amezquita et al. (1995) and Ijomah et al. (1999) introduced the five processes of Reuse, Repair, 

Reconditioning, Recycling and Remanufacturing as Green Production processes. Among all, remanufacturing is 

highly desirable for ecological, economical and legislative considerations. 

 Reuse - Using functional components from retired assemblies. 
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 Repair - Bringing the damaged product back to the functional conditions by fixing it.  

 Reconditioning - Restoring components to the functional satisfactory level within original 

specifications. This may be achieved using resurfacing, repainting, etc. 

 Remanufacturing - Bringing an assembly to like-new conditions through replacing and 

rebuilding component parts to required specifications.  

 Recycling - Taking components and processing them to the original level or to useful degraded 

levels. 

 

1.4 Remanufacturing  

Many researchers have their own definitions for remanufacturing activities with the most 

comprehensive terminology proposed in Ijomah et al. (1999). In general, remanufacturing may refer to 

the following activities: 

1. Receive the core that is the part of the product to be remanufactured. The term core is used since 

typical remanufactured parts are large core items of the products. 

2. Strip and clean the core into individual elements as the used parts may be dirty. They are 

dismantled and appropriately cleaned. A visual inspection would discard badly damaged 

elements.  

3. Estimate and quote remanufacturing costs. As many remanufacturing companies are 

subcontractors to the OEM (Original Equipment Manufacturer), the cost of remanufacturing is 

often estimated for each product to determine an appropriate rectification strategy.  

4. Remanufacture. If the component is suitable, the appropriate machining/fabrication processes 

would be used to remanufacture the component to “as new” specifications.  
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5. Build, test and dispatch. Finally, the remanufactured components are assembled (together with 

necessary replacement components) to build the new product. After appropriate quality testing, 

the product would be dispatched for sale. 

1.4.1 Motives in Remanufacturing  

According to Amezquita et al. (1995), the main reasons for companies to practice remanufacturing 

are based on ecology, legislation and economic considerations.  

 Ecological factors  

The amount of the waste generated in remanufacturing is noticeably less than manufacturing. 

Hence, remanufacturing reduces industrial waste considerably. 

 Legislative factors  

Many government agencies have legislated strict environmental laws toward industrial waste. 

More policies have been generated concerning environmental attributes of manufactured 

products. More manufacturers are asked to take the responsibility of their product such as to 

take back their end-of-life products. 

 Economic factors 

In general remanufacturing operations requires less capital investment and manufacturing 

operations since most of the main work has already been done during the primary 

manufacturing process. On the other hand, consumers constantly look for products of lower 

price and having the same or better quality than expensive items. Remanufactured products 

offer the opportunities for consumers looking for values in the products they purchase.   

1.4.2 Remanufacturing Beneficiary  

According to  Giuntini and Gaudette (2003), the main beneficiaries of remanufacturing are :  
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 Business enterprises  

Capital goods remanufacturing as well as consumer goods remanufacturing are covered directly 

or indirectly throughout the original equipment manufacturer (OEM). Many enterprises are 

stakeholders in the successful expansion of remanufacturing. 

 The workforce  

Remanufacturing environment is more dynamic in comparison to conventional manufacturing 

environment. Hence the workforce involved is required to have more initial training and skills. 

More training provides the workers with broader skills and longer term work satisfaction.  

 Consumers  

A remanufactured product can be 40% less expensive than a similar new products.  

 Society  

Society can be seen as the greatest beneficiary in remanufacturing era. Saving on energy and 

other natural resources are intrinsic social benefits.   

1.4.3 Parties Involved  

 Third-party remanufacturing  

Third-party remanufacturing is very common in remanufacturing industry especially in United 

States. One example is the automotive after-market providing consumers with replacement parts 

for their vehicles. Typical remanufactured components are: starters, alternators, water pumps, 

transmissions, and so on. The remanufacturers do disassembly, clean functional parts, add 

grease, paint or other material for protection, replace all worn parts, reassemble them, refurbish 

the exterior and test the reassemble unit. It is also common to offer warranty for the value-added 

remanufactured products by the third-part manufacturers separately from the original 

manufacturer.  
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 Original-manufacturers remanufacturing  

Original manufacturers are more capable to do remanufacturing work. They have the 

opportunity to use the same assembly line and other equipment for manufactured and 

remanufactured products.  

1.4.3 Obstacles 

Considering all the benefits of remanufacturing, yet surprisingly remanufacturing accounts for a 

very small portion of total production. Giuntini and Gaudette (2003) identified the following several 

factors. 

 Design 

In most manufacturing industries, products are not designed for disassembly. The cost of 

remanufactured products may not be lower than new products.  

 Sales 

Sales people are more willing to sell new products over remanufactured ones. They may view 

remanufactured product as a threat to the new ones.   

 Marketing 

Selling remanufactured products has not been identified in marketing strategic plans in many 

companies. Marketing division mostly consider remanufacturing as the individual sale to the 

individual consumer at the time of a need.  

 Production and inventory management  

There are more challenging issues in remanufacturing than producing new products. The 

required parts are (for new product production are mostly) known, while remanufacturing 

processes are associated with more uncertainties.  
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 Workforce skill levels  

Remanufacturing require broader technical skills from the workforce over the regular 

manufacturing environment. There are many techniques specialized to the remanufacturing that 

may not be required for regular workforce. Examples are disassembly, testing and selecting 

returned products. 

 Metrics  

Businesses sometimes take revenue growth as their measure of performance. However, revenue 

tends to be greater in manufacturing than remanufacturing. 

 Advertising  

To some extent, advertising tend to promote the latest and the most advanced version of a 

technology. This practice may not promote remanufactured products.  

 Accounting 

Traditional accounting may provide the management with inaccurate financial performance of 

remanufacturing processes. This may cause the management to neglect the profitable effects of 

remanufacturing. 

 

1.5 Scope and Objective of This Thesis  

The purpose of this research is to develop a mixed integer programming model addressing 

production planning problems in hybrid manufacturing-remanufacturing systems (HMRS). The 

purposed model focuses on optimization of a cost function and determines the number of new products 

and remanufactured products of the considered HMRS process. An efficient solution approached is 

developed to solve the problem based on Lagrangian decomposition. The effectiveness and efficiency of 
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the developed method are evaluated by computing several numerical examples and comparing the 

results with the generated lower bound of the objective function.  

 

1.6 Thesis Organization  

This thesis has six chapters. Following the introductory Chapter One, Chapter Two provides a 

review of the literature in remanufacturing. Chapter Three presents problem description and model 

formulation. Solution approach is presented and discussed in Chapter Four. Example problems are 

presented and solved in Chapter Five with results analysis. Finally, Chapter Six presents remarks and 

future research directions. 
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Chapter Two 

Literature review 

2.1   Introduction  

Literature on remanufacturing system research is abundant. In this chapter, a review on the more 

recent and relevant literature to the work done in this thesis is presented.  

 

2.2   Remanufacturing in General 

Amezquita et al. (1995) discussed characteristics of products to be remanufactured in order to 

improve the process as a whole. They addressed some basic design features to be considered for 

remanufacturing. These features lead to time reduction in disassembly reassembly, and other operations 

of remanufacturing. They introduced a guideline in designing remanufacturable products considering the 

ease of disassembly, cleaning, inspection, part replacement, reassembly and the use of reusable 

components.  

Giuntini and Gaudette (2003) discussed remanufacturing issues for represented to improved 

productivity. They addressed the remanufacturing beneficiaries as business enterprises, workforce, 

consumers and society. In this paper they identified several aspects to achieve more successful 

remanufacturing including product design, sales, marketing, production, inventory management, 

workforce skills, tax credits, among others.  

King et al. (2004) discussed four approaches for waste reduction; repairing, reconditioning, 

remanufacturing and recycling. They argue that economic growth is the main cause of waste production 

in that production growth leads to consumerism followed by waste growth.  
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Ijomah et al. (2007) stated that long term sustainability requires a balance between economic or 

social development and environmental protection. Remanufacturing is the most profitable and 

environmental friendly approach towards sustainability together with recycling, reconditioning and 

repair. Some of the challenges facing remanufacturing include reluctant consumer acceptance, scarcity 

of remanufacturing tools and techniques, and poor remanufacturability of many products. The authors 

identified some influential product for improve remanufacturability features such as material, modularity 

and durability, part complexity, type of a fixing, joining methods, and so on.  

Ijomah et al. (1999) discussed remanufacturing and differentiate it from other comparable green 

production alternatives. They discussed remanufacturing problems in terms of business process 

operations, since they are associated with high uncertainty and high risk due to difficulties in 

determining quality and quantity of returned products. The reasons undergoing the uncertainties attribute 

to variability in demand volume, core quality, core quantity, product type and availability of technical 

knowledge. 

 

2.3 Hybrid Manufacturing-Remanufacturing Systems  

Inderfurth (2004) discussed optimal policies for production control in hybrid manufacturing 

remanufacturing systems. The discussed problem is a single-stage and single-period problem with 

independent demand for two types of products. Lead times for these two types of products are 

deterministic and may not be the same. The objective is to maximize the expected profit to determine 

optimal manufacturing and remanufacturing order quantities with an arbitrary starting inventory level of 

serviceable products. The author discussed the problem for separate cases when manufacturing lead-

time is shorter than remanufacturing lead-time and vice-versa.  
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Kim et al. (2006) considered a remanufacturing system where the parts can either be supplied by 

an external supplier or by using returned products cores. The considered remanufacturing system 

includes collection, disassembly, refurbishment and assembly operations. A mathematical model was 

developed for optimal production planning of this system. Numerical examples were presented to 

illustrate the considered problem and developed model.  

Rubio and Corominas (2007) discussed issues related to implementing a reverse-logistics system 

for remanufacturing in a lean production environment. The studied problem considers a deterministic 

environment. A mathematical model was developed based on lean and just-in-time production. The 

purposed model allows manufacturing and remanufacturing capacities to be adjusted. The proposed 

model considers manufacturing and remanufacturing capacities, return rate and used rate for end-of-life 

products. The authors showed that remanufacturing is compatible with lean production practice. They 

also stated that combination of manufacturing, partial recovery, disposal and remanufacturing can lead 

to economic improvement and competitiveness. 

Daniel and Guide (2000) studied industry practices and research needs of production planning (PP) 

and control (C) for remanufacturing. They identified seven complicating characteristics in production 

planning and control activities in remanufacturing.  

1. Uncertain timing and quantity of returns 

2. Need to balance returns with demands 

3. Disassembly of returned products 

4. Uncertainty in materials recovered from returned items 

5. Requirement for a reverse logistics network 

6. Complication of material matching restrictions 
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7. Problems of stochastic routings for materials for remanufacturing operations and highly variable 

processing time.   

The authors listed threats to remanufacturing industry growth. Remanufacturing executives cited the 

increased pressure to reduce remanufacturing lead times continuously (60%), lack of formal systems to 

manage their business (38%), lack of cores to be remanufactured (50%), product designed for disposal 

(34%) and rapid technological changes (28%). The authors also discussed production planning and 

control problems in remanufacturing.  

Behret and Korugan (2007) developed a mathematical model to analyze a hybrid system that meets 

the demand with remanufactured or new products. They classified the returned products to different 

quality levels for remanufacturing. Different quality levels correspond to different remanufacturing 

processing times, material recovery rates, remanufacturing costs and disposal costs. The authors 

compared their model with a benchmark model with no product classifications. They showed that 

classifying returned products according to quality level brings approximately 8% improvements in cost 

savings when the return rate is high.  

Subramoniam et al. (2009) presented a literature review on research articles and future research 

needs in strategic decision making in remanufacturing and reverse logistic. They identified four strategic 

factors: product strategic planning processes, physical distribution structures, plant location and 

production systems, and cooperation among remanufacturing supply chain stakeholders. The authors 

also identified following aspects having positive impact on remanufacturing: global environmental 

regulations with proper incentives, needs to protect intellectual property, outside competition to 

remanufacture products, product design with consideration for product life cycle, increased interest to be 

a “green” company , good reverse logistic network , technology change and the resulting increasing 

disposal costs, increased product value, good core availability, a regional remanufacturing operation, 
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eco-designed products, a well-integrated physical and non-physical organizational structure , good 

buyback or lease programs for products.  

Kiesmuller (2003) discussed a production control problems in remanufacturing systems. The author 

also discussed pull and push policies in such systems. He introduced a new production control approach 

based on two different inventory positions of longer lead-time and shorter lead time.  

Laan et al. (1999) investigated the influence of lead-time duration and lead-time variability on total 

expected costs in a system with manufacturing and remanufacturing operations. To control the system 

they applied both Push and Pull strategies. The authors used numerical examples to illustrate the effects 

of lead-time duration and lead-time variability on total expected costs in production/inventory systems 

with remanufacturing. The outcomes from the numerical examples show that: 

1. Manufacturing lead-times have a larger influence on system costs than remanufacturing lead-

times. 

2. Increase in manufacturing lead-times may result in larger cost than equivalent increase in 

remanufacturing lead-times. Longer manufacturing lead-times require higher safety stocks to 

protect against costly stock-out events than equivalently longer remanufacturing lead-times. 

3. Increase in variability of remanufacturing lead-times results in an increase in total expected 

costs, both under a Push and Pull strategies. The authors did not analytically prove this point.  

Teunter et al. (2008) discussed multi-product economic lot scheduling problems with returns 

(ELSPR) where there are separate production lines for manufacturing and remanufacturing. The authors 

developed a mixed integer programming (MIP) model to solve the problem for a fixed cycle time which 

can be combined with a cycle time search to find an optimal solution. The authors used a numerical 

experiment to analyze the effects of switching a single production line to separate lines. these examples 
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revealed that setting up dedicated lines for manufacturing and remanufacturing can lead to significant 

reduction in holding costs through lower production rate and increased scheduling flexibility. On the 

other hand, separate lines will require additional investment cost. A trade-off analysis is required in 

future research.  

 

2.4   Summery  

  Remanufacturing has been studied for several decades and has become more importance in 

today’s world. Much research work has been done in developing mathematical models for HMRS 

analysis. Various solution approaches have been developed to overcome the difficulties in solving HMRS 

problems and to further improve them for real world application. However, many aspects of HMRS systems still 

remain to be discussed. Due to the all the benefits and importance of the remanufacturing and increasing a 

demand for remanufactured items in this research we are going to study the hybrid manufacturing and 

remanufacturing systems. 

In the next chapter, a new mathematical model for HMRS system optimization is presented. 

Wagner-Within method and a new solution approach based on dynamic programing are employed to 

solve the proposed model.  

 

 

  

 

 



 

15 

Chapter Three 

Problem Description and Model Formulation 

3.1 Problem Description  

This chapter presents a detailed discussion of certain production planning problems in HMRS 

systems. The considered HMRS system uses both manufactured and remanufactured parts to assemble 

products for different markets. The remanufacturing process covers disassembly, inspection as well as 

machining used items to produce “as good as new” items. At the same time the manufacturing process 

makes new components using new materials. Inventory controls are required for returned products, 

remanufactured items, new manufactured components and finished products.  

In the considered HMRS system, the acquired returned products may enter the remanufacturing 

process directly or through inventory. Returned products entering the remanufacturing process will be 

disassembled. The parts from the disassembly process will be inspected to determine if they can be 

reused or should be disposed. Remanufactured items may be kept in inventory for later use or may 

continue in the process to the assembly stage. The process of manufacturing new parts is similar. 

Manufactured new items may be kept in inventory before entering the assembly stage. Finished products 

made from new items or remanufactured ones. They may also be kept in inventory before delivery.  

 

3.2 Model Assumption  

 The following list presents specific assumptions in developing the model to solve the HMRS 

production problem. 

1. The model is based on multiple time periods. 
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2. Deterministic demands for products made from new components and remanufactured 

components. 

3. Deterministic demands for both new and remanufactured components. 

4. Quality of remanufactured components is “as good as the new”. However, their market may be 

different from that of new products.   

5. Deterministic recovery rate of the components from the returned products. 

6. Capacity limit on available production time for producing both new and remanufactured 

products. 

7. Remanufacturing time includes disassembly time and inspection time for returned products. 

8. Inventory costs are incurred for product or items held in inventory. 

9. Setup costs are incurred for disassembly, remanufacturing, as well as manufacturing and 

assembly. 

10. There are separate manufacturing lines for each of the operation on new components, 

remanufactured components, returned and new products. 

11. A common resource (such as labour force) is shared by manufacturing and remanufacturing 

operations in the system.  

12. No order of manufacturing, remanufacturing or assembly will be place at the time when there is 

enough of inventory ( Wagner-Whitin condition ). 

 

3.3 Model Notations 

Index sets  

         Number of components in each unit of products in time period t 



 

17 

          Number of products produced in a time period t  

         Number of time periods 

Variables 

tix ,
 Number of new component i  to produce in time period t  

tie ,
 Number of new component i  in inventory in time period t  

tix ,
 Number of remanufactured component i  to produce in time period t  

tie ,
 Number of remanufactured component i  in inventory in time period t  

tjd ,
 Number of returned product  j to disassemble in time period t  

    
       Number of new product  j to assemble from the new components in time period t  

    
       Number of new product  j to assemble from the remanufactured components in time 

           period t                                                                   

tjr ,  Number of returned product j  to acquire in time period t  

tjf ,  Number of returned product j  in inventory in time period t  

    
        Number of new product  j in inventory made out of new component in time period t  

    
         Number of new product  j in inventory made out of remanufactured components in time    

            period t 






otherwise.,0

,  period in time  component  new  make   toupset    is  system  theif,1
,

ti
ti   






otherwise. ,0

,  period in time   component  returned  ureremanufact  toupset    is  system  theif,1
,

ti
ti   






otherwise.,0

,  period in time eddisassembl be  willproduct  returned if,1
,

tj
tj
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otherwise.,0

,  period in timecomponent  new from assembled be  willproduct  new if,1
,

tj
n

tj  






otherwise.,0

,  period in time components uredremanufact from assembled be  willproduct   new if,1
,

tj
R

tj  

Parameters  

tiP ,
 Unit manufacturing cost of new component i  in time period t  

tiS ,
 Setup cost for manufacturing new component i  in time period t  

tiV ,
 Unit inventory cost for new component i  in time period t  

tiP ,
 Unit remanufacturing cost of recovered component i  in time period t  

tiS ,
 Setup cost for remanufacturing recovered component i  in time period t  

tiV ,
 Unit inventory cost for remanufactured component i  in time period t  

tiD ,  Demand for new component i  in time period t  

tiD ,
 Demand for remanufactured component i  in time period t  

     
       Demand for new product j made out of new components in time period t  

    
        Demand for new product j made out of remanufactured components in time period t 

jiB ,  Number of component i  contained in returned product j  

    
       Number of new component i contained in new product j  

    
       Number of remanufactured component i contained in new product j  

iUR  Average recovering rate of component i  from all returned products 

tjAQ ,  Unit cost to acquire returned product j  in time period t  

tjRD ,  Unit cost to disassemble returned product j  in time period t  
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     Unit cost of assembly for new product  j made out of new components in time period t  

     
     Unit cost of assembly for new product  j made out of remanufactured components in time  

            period t 

tjSD ,
 Unit setup cost for disassembling product j  in time period t  

     
  Unit setup cost to assemble new product j  from new components in time period t  

     
     Unit set up cost to assemble new product  j from remanufactured components in time  

            period t 

tjIN ,
 Unit inventory cost for storing returned product j  in time period t  

     
      Unit inventory cost for storing new product  j from the new components in time period t  

     
      Unit inventory cost for storing new product  j from the remanufactured components in  

             time period t 

tACAP  Available production time in time period t  

iAST  Production time for manufacturing new component i  

iST  Setup time for manufacturing new component i  

iASR  Production time for remanufacturing returned component i  

iSR  Setup time for remanufacturing returned component i  

M  A large positive number 

3.4 Model Formulation  

The mathematical model to solve the production planning problem in HMRS systems is 

formulated as follows in this section with the variables and parameters defined in the previous section. 
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3.4.1 Objective Function  

The objective function of the model is to minimize the total cost in the HMRS systems. It 

includes the cost of manufacturing and remanufacturing, cost of disassembly and assembly, setup costs 

for disassembly, manufacturing, remanufacturing and assembly, inventory holding costs of the returned 

products, remanufactured and new parts and holding cost of the finished products. 
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The solution of the model is to determine the optimal number of items to be produced and 

remanufactured as well as optimal number of returned products to acquire in each period of time. There 

is also a decision to make on the optimal number of products to get assembled in each period of time 

based on the known demand for both new and remanufactured products.  

3.4.2 Constraints 
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Constraints (3.2) and (3.3) present relationship of production, inventory, setup and demand for 

new items. Constraints (3.4) and (3.5) present similar relationship for remanufactured items. Constraints 

(3.6), (3.7) and (3.8) present the relationship between setups and assembly (disassembly) of products 

(returned products). Constraints (3.9), (3.10) and (3.11) are inventory equations for returned and newly 

assembled products. Constraint (3.12) introduces a time capacity limitation for the time required for 

manufacturing and remanufacturing. This constraint is the common resource of the system. Constraint 

(3.13) represents the relationship between the number of remanufactured items and the number of 

recovered items from the returned products. Constraints (3.14) and (3.15) ensure that the number of new 

parts and remanufactured parts should always meet the demands for new products. Constraint (3.16) 

initialises inventories to zero at the beginning of the planning horizon. Constraint (3.17) is the non-

negativity constraint and constraint (3.18) indicates binary decision variables.  
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Chapter Four 

Solution Approach and Methodology 

The developed model shown in chapter 3 is difficult to solve due to large number of integer variables 

involved. This chapter presents a solution method based on relaxation. However, the relaxation must be 

performed in a way that the applicability of the model is not destroyed. Details of the developed solution approach 

to solve the mathematical model are given in the following sections.  

 

4.1 Model Relaxation   

Complex constraints can be relaxed with the help of Lagrangian relaxation. The relaxed model can then 

be decomposed to different smaller sub-problems. These sub-problems are much simpler to solve by different 

methods such as Wagner-Whitin method. Sub-gradient method is used to improve Lagrangian multiplier in each 

iteration to find optimal or near-optimal solution of the original problem, following a standard procedure.    

4.1.1 Lagrangian Relaxation  

The specific procedure of using Lagrangian relaxation follows the steps given in Fisher (1985). 

In general, the idea of Lagrangian relaxation is to relax those constraints which make it hard and time 

consuming to solve the problem. Relaxed constraints will be added to the objective function associated 

with certain weights (the Lagrangian multipliers). Each Lagrangian multiplier can be considered as a 

penalty added to the solution not satisfying the corresponding constraint.  

Mathematical presentation of the general Lagrangian relaxation can is presented below. Consider 

a minimization integer programming problem with  ,   and   being parameter matrices.   and    are 

right hand side vectors. 
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                                                           Subject to: 

     

     

                                                                                         

Let                      , assuming optimization over   can be done easily. After adding 

constraint        the problem becomes very difficult to solve. Using Lagrangian relaxation, dual 

variables     will be used for constraints     . The vector   ≥0 is the vector of Lagrangian 

multipliers of the same dimension as vector  . For a fixed   ≥0, the relaxed problem is:  

                     

                                                    Subject to: 

                                                       ,                  

If the optimal solution of the relaxed problem with fixed vector   can be found relatively easier, 

the value of      will present a upper bound on      

4.1.2 Sub-gradient Method  

Sub-gradient method is a technique to set the dual variables (Lagrangian multipliers) at different 

values in obtaining tighter bounds. Assuming that      are resource constraints and have been 

relaxed. Beginning with an arbitrary value of  , we can find a solution of the relaxed problem. If we 

substitute the obtained solutions into the objective function of the Lagrangian problem, we have a linear 

objective function of  . We should maximize the Lagrangian function in terms of   . The sub-gradient 
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method starts from an arbitrary set of alternative optimal Lagrangian solution and uses the vector 

     for this solution to calculate the sub-gradient of      . The result is a procedure that defines a 

sequence of values for   by beginning at an initial point     and applying the formula: 

                                                                                                                                                                                           

In this formula    is a scalar stepsize and    is an optimal solution to the Lagrangian problem 

with dual variables set to   . The following formula calculates    : 

                                                                      
            

∑  ∑      
  

       
 
   

                                                                 

   is the objective function value of the best known feasible solution to     (known as upper 

bound in minimization problem) and    is a scalar chosen between 0 and 2. Frequently the sequence    

is determined by starting with      and reducing it by a factor of 2 whenever       fails to increase 

in a specific number of iterations. Value         initially be set to 0 and then updated using the solution 

that is obtained on those iterations in which the Lagrangian problem solution turns out to be feasible in 

the original problem. Unless we obtain a    for which       =  , we cannot prove the optimality in the 

sub-gradient method. In this case the search process usually terminates upon reaching specified number 

of iterations.  

 

4.2 Application of Lagrangian Relaxation in Solving HMRS Model 

We apply Lagrangian relaxation to solving the model developed and presented in Chapter 3. 
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4.2.1 Lagrangian Relaxation  

The model presented in Chapter 3 has four sets of complex constraints, Eqs (3-12), (3-13), (3-14) 

and (3-15). These constraints make solving the problem intractable. Applying Lagrangian relaxation, 4 

sets of Lagrangian multipliers,       and   are introduced where   represents the Lagrangian multiplier 

assigned to constraint (3.12),   represents Lagrangian multiplier assigned to the constraint (3.13),   

represents the Lagrangian multiplier assigned to constraint (3.14) and finally   represents the 

Lagrangian multiplier assigned to constraint (3.15). We move these constraints to the objective function 

with associated Lagrangian multipliers to obtain the following relaxed model:  
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Subject to: 

                                                                                                                                                                                                                                                                  

                                                                                                                                                                                                                                                                                                         

  ̅      ̅      ̅    ̅                                                                                                                                                                                                                                                              

 ̅      ̅                                                                                                                                                                                                                                                                                                      

                                                                                                                                                                                                                                                                                                         

    
       

                                                                                                                                                                                                                                                                                                

    
       

                                                                                                                                                                                                                                                                                                

                                                                                                                                                                                                                                                                                       

    
      

        
      

                                                                                                                                                                                                                                                  

    
      

        
      

                                                                                                                                                                                                                                                 

       ̅            
      

                                                                                                                                                                                                                       

 ̅      ̅                      
      

           
       

                                                                                                                                                         

      ̅             
      

                                                                                                                                                  

 

4.2.2 Decomposition Method    

Above relaxed model can be decomposed to five sub-problems based on the variables and 

parameters for new components, remanufactured components, returned products, new products made out 

of new components  and  new products made out of remanufactured parts, respectively. The five sub-

problems are discussed separately below. 
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4.2.3 Sub-Problems   

Sub-problem 1 is a minimization problem representing all the decision variables and parameters 

contributing to manufacturing of new components including manufacturing cost, setup cost and 

inventory controls subject to constraints related to manufacturing, setup and inventory of new 

components.  

SM1-i, i=1,…,I  

           ∑ (                                               ]  

 

   

∑       

 

   

 

Subject to: 

                      

           

                   

           

    Sub-problem 2 corresponds to the parts to be remanufactured with related setup and setups and 

inventory variables:  

SM2-i, i=1…I 

           ∑ ( ̅                      ̅       ̅          ̅     ̅     ̅  ]

 

   

 

Subject to: 
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 ̅       ̅     ̅      

 ̅          

    Sub-problem 3 determines the number of returned products to acquire, with related setups for 

disassembling and inventory requirement.  

SM3-j, j=1…J 

          ∑                    (      ∑        
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Subject to: 

                      

           

                        

           

    Sub-problem 4 specifies similar relations for new product production with new items. 

SM4-j, j=1…J 

          ∑     
     

  (     
  ∑    

 

 

   

    )    
       

     
 

 

   

 

Subject to: 
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    Sub-problem 5 determines the optimal number of new products with remanufactured items to be 

assembled, considering assembly setup and inventory costs. 

SM5-j, j=1…J 
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Subject to: 

    
      

        
      

  

    
       

  

    
        

      
    

    
        

 

4.3 Solving the Sub-Problems 

The sub-problems presented in the previous section are much easier to solve than the original 

problem. Four of them can be solved by existing method. Sub-problem 3 requires developing new 

method to solve with details discussed next. 
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4.3.1 Wagner-Whitin 

Linear presentation of the Wagner-Whitin method gives a format similar to solving sub-problems 

1, 2, 4 and 5 discussed in previous section. With minor changes we can effectively solve these 

corresponding sub-problems using Wagner-Whitin method. The general Wagner-Whitin method can be 

discussed below. 

Assuming a N-period planning horizon with known demands   , fixed setup cost   , unit 

production cost    and holding cost   , the following dynamic lot sizing and scheduling problems can 

be solved by Wagner-Whitin algorithm.  

To solve the problem: 

                      

Subject to: 

                                                                                                                                                     

                                                                                                                                                                 

                                                                                                                                                               

                                                                                                                                                        

Where    is the inventory level at time period t,    is the number of products to be manufactured 

at t,    is the binary variables to allocate the setup cost of production at t. Constraint Eq (4.4) is the 

inventory balance equation. Wagner-Whitin algorithm will force zero inventories at the time of 

production as shown in Eq (4.5). Eq (4.6) is the setup requirement for manufacturing.  
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We follow the steps of Wagner-Whitin algorithm in solving the dynamic lot sizing problems, as 

presented in sub-problems 1, 2, 4 and 5. Detailed steps of Wagner-Whitin method can be found in Evans 

(1985) and are omitted in this thesis.  

4.3.2 Dynamic Programming  

Sub-problem 3 presented in section 4.2.3 has the same linear functions as other four sub-

problems. However, it does not have fixed demand and cannot be solved by Wagner-Whitin algorithm. 

A heuristic method based on dynamic programing is developed to solve this sub-problem. 

  As one can see, the number of remanufactured parts required in each period can be obtained by 

solving sub-problem 2. This solution can be used in constraint (3.13) to obtain an estimated number of 

the returned products. We will acquire the product when the cost of purchasing is less. Our algorithm 

also implies the same inventory role as Wagner-Within in that whenever there is an order to be placed in 

a certain period, inventory at the beginning of that period must be zero. Specific steps of calculation are 

given below: 

Step 1. Let 
tix ,

~
 be the current solution of Sub-problem 2. Let tjd ,

~
 be the minimum values 

 satisfying 



J

j

tjjiiti dBURx
1

,,,

~~
. Define )(

~
,

1

,,, iti

I

i

jitjtj URBRDR 


 . Let 1,1,

~
jj AQA  .  

            Let 1,1,1,

~
jjj drd  , 11, j  and let 2t  Goto Step 2. 

Step 2. Recursively calculate: }
~

,min{
~

1,1,,,   tjtjtjtj AINAQA . 

 Step 2.1. If )
~~

(
~

,,,, tjtjtjtj SDdAR   let 0,,,,  tjtjtjtj frd  , Goto Step 3; 

     otherwise, let 1, tj  and tjtj dd ,,

~
 , Goto Step 2.2. 
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 Step 2.2. If: 1,1,,

~
  tjtjtj AINAQ , let tjtj dr ,,

~
 , Goto Step 3. 

     Otherwise, let s  be the last time period when 0, tjr  and let 

   tjsjsj drr ,,,

~
  

   tskdff tjkjkj ,...,,
~

,,,  ,  

   0,,  tjtjd   

              Goto Step 3. 

Step 3. If Tt  , stop; otherwise, let 1 tt , Goto Step 2. 

 

4.4 Complete Solution Procedure to Solve the HMRS Problem 

The complete procedure of Lagrangian decomposition and sub-gradient method to solve the 

HMRS production planning problem is provided below. 

Step 1. Find a feasible solution of the original problem given in equation number (3.1) using any  

 optimization software or by decomposition.  

Step 2. Use the objective function of the current feasible solution to calculate the upper bound  

 ( UB) for solving the original problem. 

Step 3. Set iteration number It=1. Starting from an arbitrary set of Lagrangian multipliers  

       and   apply Lagrangian relaxation to the original main model as described in Section 

 4.2.1. 

Step 4. Decompose the original problem to the 5 sub-problems as described in Section 4.2.3. 
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Step 5. Solve the 5 sub-problems as discussed in Section 4.3. 

Step 6. Compose the solutions of the 5 sub-problems obtained in Step 5 and calculate the value  

 of                 shown in Eq (4.3). 

Step 7. If the solution composed from the solutions of the 5 sub-problems obtained in step 5 is feasible  

to the original problem and the corresponding value of the    original objective function  Eq (3.1) 

is less than the UB (     , then let      and go to step 8. Otherwise, go to step 8 without  

 updating UB. 

Step 8. If the stopping criterion is reached, stop. Otherwise, let It=It+1 and update Lagrangian   

 multipliers based on sub-gradient search method shown in Eq (4.1) and Eq (4.2) Go to Step 4.  

Step 9. When the search process stops, take the best feasible solution found in the process as the  

 final solution of the problem. 

The algorithm has been coded in Python 2.6 and implemented in a PC computer. Several example 

problems were calculated to test the model and solution method it will be discussed in the next chapter.  
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Chapter Five 

Numerical Example and Analysis 

  In this chapter we present several numerical examples to illustrate the developed model and the 

algorithm presented in previous chapters and following the solution procedure presented in Section 4.4. 

The algorithm is coded in Python-2.6 to solve the example problems. Some of the smaller size examples 

were solved to optimality by Lingo 10. All the computer work was performed on a laptop with Intel 

Core i5 CPU and 4 GB RAM.  

 

5.1 Example Problems and Data 

The first example, Example 1, is to solve a production planning problem with 3 time periods. 

The considered HMRS system produces 4 different types of components from new materials or from 

returned products. The cores to be remanufactured are from disassembly of 3 different types of returned 

products. Remanufactured and manufactured components are assembled to make 3 different products. 

Tables 5.1 and 5.2 present the costs and demands of new and remanufactured components, respectively. 

Table 5.3 presents similar data for the returned products.  Tables 5.4 and 5.5 give the cost and demands 

for new products with new components and with remanufactured components. The numbers and types 

of components contained in each of the products are shown in Tables 5.6, 5.7 and 5.8. Table 5.9 gives 

the time requirements to produce the new and remanufactured components requiring the shared 

resources. It also gives the empirical ratio of each type component that is of a good quality and can be 

remanufactured, out of the total acquired returned products. Table 5.10 is the available time for setting 

up the system and producing the components by the shared resource in the 3 time periods. 
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Table 5.1: Cost and Demand for Component from New Material [Example 1] 

Time 

Period 

 

Cost and Demand 

Component Type 

1 2 3 4 

 

 

1 

 

Production Cost/item 100 90 110 95 

Setup Cost 600 700 600 550 

Inventory Cost/item  100 120 105 115 

Demand 180 270 235 250 

 

 

2 

 

Production Cost/item 80 100 80 80 

Setup Cost 600 700 600 550 

Inventory Cost/item 100 120 105 115 

Demand 200 305 260 260 

 

 

3 

 

Production Cost/item 110 80 95 70 

Setup Cost 600 700 600 550 

Inventory Cost/item 100 120 105 115 

Demand 225 320 275 265 

 

Table 5.2: Cost and Demand for Component to be Remanufactured [Example 1] 

Time 

Period 

 

Cost and Demand 

Component Type 

1 2 3 4 

 

 

1 

 

Production Cost/item 30 40 20 15 

Setup Cost 400 500 450 350 

Inventory Cost/item 50 80 60 75 

Demand 80 88 83 80 

 

 

2 

 

Production Cost/item 30 40 15 30 

Setup Cost 400 500 450 350 

Inventory Cost/item 50 80 60 75 

Demand 95 96 100 95 

 

 

3 

 

Production Cost/item 30 30 18 25 

Setup Cost 400 500 450 350 

Inventory Cost/item 50 80 60 75 

Demand 75 85 80 81 
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Table 5.3: Cost Corresponds to the Returned Products  [Example 1] 

Product Type Cost 
Time Periods 

1 2 3 

 

 

1 

Disassembly /item  30 35 20 

Setup 22 30 33 

Inventory/item 240 240 240 

Acquiring/item  25 15 20 

 

 

2 

Disassembly /item  25 30 15 

Setup 35 25 35 

Inventory/item 250 250 250 

Acquiring/item  35 20 30 

 

 

3 

Disassembly /item 20 18 30 

Setup 30 28 30 

Inventory/item 230 230 230 

Acquiring/item  25 28 30 

 

Table 5.4: Cost and Demand for New Products of New Components [Example 1] 

Product Type Cost 
Time Periods 

1 2 3 

 

 

1 

Assembly/item  32 35 22 

Setup 26 31 34 

Inventory/item 100 100 100 

Demand  10 15 16 

 

 

2 

Assembly/item 30 31 18 

Setup 38 26 36 

Inventory/item 90 90 90 

Demand  13 14 16 

 

 

3 

Assembly/item 22 24 28 

Setup 32 30 31 

Inventory/item 95 95 95 

Demand  15 14 13 
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Table 5.5: Cost and Demand for New Products of Remanuf. Components [Example 1] 

Product Type Cost 
Time Periods 

1 2 3 

 

 

1 

Assembly/item 15 12 10 

Setup 15 18 20 

Inventory/item 90 90 90 

Demand  6 5 7 

 

 

2 

Assembly/item 16 16 11 

Setup 26 20 22 

Inventory/item 60 60 60 

Demand  15 22 20 

 

 

3 

Assembly/item 14 11 12 

Setup 22 20 25 

Inventory/item 85 85 85 

Demand  5 6 7 

 

Table 5.6: Number of Parts in the Returned Products [Example 1] 

                           Component  

Type Product Type 

 

1 

 

2 

 

3 

 

4 

1 10 10 8 13 

2 12 12 10 12 

3 15 11 3 11 

 

Table 5.7: Number of New Parts in the Assembled New Products [Example 1] 

                           Component  

Type Product Type 

 

1 

 

2 

 

3 

 

4 

1 5 7 4 3 

2 6 5 7 6 

3 2 4 5 7 
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Table 5.8: Number of Remanuf.  Parts in the Assembled New Products [Example 1] 

                           Component  

Type Product Type 

 

1 

 

2 

 

3 

 

4 

1 4 3 3 4 

2 3 5 4 4 

3 4 5 2 3 

 

Table 5.9: Resource Time Required and Quality Ratio [Example 1] 

 Component Type 

1 2 3 4 

New Component Production Time 100 150 100 120 

New Component Setup Time 50 50 40 30 

Remanuf. Component Production Time 80 80 75 80 

Remanuf. Component Setup Time 30 30 35 30 

Quality Ratio 0.5 0.5 0.6 0.2 

 

Table 5.10: Resource Availability [Example 1] 

Time Period 1 2 3 

Resource Available Time 600000 150000 250000 

 

5.2 Computational Results and Analysis  

In this section we will discuss the results obtained from solving the Example 1. In calculating 

this example, we used two stopping criteria. The process will stop if the Lagrangian search reaches 300 

iterations (It=300) or the difference between the value of Lagrangian function in Eq (4.3) and value of 

the original objective function in Eq (3.1) is less than 0.01 (               As discussed in the 

previous chapter, in each iteration, the Lagrangian multipliers       and   will be updated so is the 

value of the upper bound, if required. 



 

39 

Corresponding input data for the first example has been shown in Tables 5.1 to 5.10. The initial 

upper bound, the value of the first feasible solution to the original objective function Eq (3.1), was set at 

334291. This value will be used in the beginning of the sub-gradient method to update Lagrangian 

multipliers. The value of the first set of the Lagrangian multipliers was set at 0.1. They got updated at 

every iteration following the described sub-gradient method in Section (4.1.2). In the process of 

updating the Lagrangian multiplier using Eqs (4.1) and (4.2), the scalar    is reduced by a factor of 2.0 

after every 5 consecutive iterations that the Lagrangian function fails to increase. Upper bound stays the 

same the search process if it cannot find a better feasible solution to substitute for the current upper 

bound. The convergence of the Lagrangian function             obtained from Eq (4.3) can be seen in 

Figure 5.1 by the solid line. Figure 5.2 presents the closer capture of the convergence of the Lagrangian 

function. The search process took 12.47 seconds to find the best solution in 300 iterations. 

Corresponding solution is near-optimal and is quite close to the upper bound.  

 

Figure 5.1.Convergence Behaviour of the Lagrangian Function [Example 1] 
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Figure 5.2.Behaviour of the Lagrangian Function in Close Capture [Example 1] 

 

The value of the original objective function (total cost), after 300 iterations is 328471. The best 

solutions are presented in Tables 5.11 and 5.12 with specific values of the decision variables. The first 

four rows in the Table 5.11 present the values associated with new manufactured components. The 

second four rows present the values associated with the remanufactured components. Respectively, data 

for the inventory of new components, inventory of remanufactured components and finally setups for 

the new and remanufactured components are presented. Table 5.12 presents the values for inventory of 

the returned products, number of returned products to acquire, number of returned products to 

disassemble, setups correspond to disassembling, inventory of new and remanufactured products, 

number of new and remanufactured products to assemble and finally setups associate with assembly of 

new and remanufactured products. Table 5.13 presents the values to the Lagrangian multipliers when the 

search process stopped.  
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Table 5.11: Results Corresponding to the Components [Example 1] 

Decision 

Variables 

             Period 

        

Component 

1 2 3 

  

1 180 200 225 

2 270 305 320 

3 235 260 275 

4 250 260 265 

 ̅ 

1 80 95 75 

2 88 96 85 

3 83 100 80 

4 80 95 81 

  

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

 ̅ 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

  

1 1 1 1 

2 1 1 1 

3 1 1 1 

4 1 1 1 

 ̅ 

1 1 1 1 

2 1 1 1 

3 1 1 1 

4 1 1 1 
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Table 5.12: Results Corresponds to the Products  [Example 1] 

Decision 

Variables 

       Period       

Product  
1 2 3 

  

1 0 0 0 

2 0 0 0 

3 0 0 0 

  

1 31 0 0 

2 0 0 0 

3 0 0 0 

  

1 31 0 0 

2 0 0 0 

3 0 0 0 

  

1 1 0 0 

2 0 0 0 

3 0 0 0 

   

1 0 0 0 

2 0 0 0 

3 0 0 0 

   

1 0 0 0 

2 0 0 0 

3 0 0 0 

   

1 10 15 16 

2 13 14 16 

3 15 14 13 

   

1 6 5 7 

2 6 7 5 

3 5 6 7 

   

1 1 1 1 

2 1 1 1 

3 1 1 1 

   

1 1 1 1 

2 1 1 1 

3 1 1 1 
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Table 5.13: Lagrangian Multipliers  [Example 1] 

Decision 

Variables 

       Period       

Product  
1 2 3 

  

1 0.09992 0.10009 0.10007 

2 0.09993 0.10009 0.10008 

3 0.09993 0.10010 0.10008 

4 0.09999 0.10009 0.10008 

  

1 0.10002 0.10001 0.10002 

2 0.10007 0.10007 0.10007 

3 0.10002 0.10003 0.10003 

4 0.10003 0.10003 0.10003 

  

1 0.10001 0.10003 0.10000 

2 0.10001 0.10001 0.10000 

3 0.10003 0.10004 0.10001 

4 0.10001 0.10002 0.10001 

  t 0.00000 0.10365 0.00459 

  

5.3 Other Examples  

Several other example problems were used to test model and solution method developed in this 

research. Some features for two of them are introduced below. Computations of these examples follow 

the same stopping criteria as in Example 1.  

Example 2 is a HMRS production planning problem with 5 time periods, 4 products 

and 5 components, other information and data are presented in Tables 5.14 to 5.23.  
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Table 5.14: Cost and Demand for Component from New Material [Example 2] 

Time 

Period 
Cost and Demand 

Component Type 

1 2 3 4 5 

 

 

1 

 

Production Cost/item 100 90 110 95 85 

Setup Cost 600 700 600 550 600 

Inventory Cost/item 100 120 105 115 100 

Demand 240 370 285 250 300 

 

 

2 

 

Production Cost/item 80 100 80 80 100 

Setup Cost 600 700 600 550 600 

Inventory Cost/item 100 120 105 115 100 

Demand 200 300 230 212 240 

 

 

3 

 

Production Cost/item 90 90 95 100 100 

Setup Cost 600 700 600 550 600 

Inventory Cost/item 100 120 105 115 100 

Demand 210 345 260 205 280 

4 

Production Cost/item 90 85 70 80 90 

Setup Cost 600 700 600 550 600 

Inventory Cost/item 100 120 105 115 100 

Demand 220 385 310 260 370 

5 

Production Cost/item 75 110 85 80 110 

Setup Cost 600 700 600 550 600 

Inventory Cost/item 100 120 105 115 100 

Demand 140 235 162 170 120 
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Table 5.15: Cost and Demand for Component  to be Remanufactured [Example 2] 

Time 

Period 
Cost and Demand 

Component Type 

1 2 3 4 5 

 

 

1 

 

Production Cost/item 30 40 20 15 10 

Setup Cost 400 500 450 350 400 

Inventory Cost/item 50 80 60 75 65 

Demand 130 150 155 155 135 

 

 

2 

 

Production Cost/item 20 50 15 30 25 

Setup Cost 400 500 450 350 400 

Inventory Cost/item 50 80 60 75 65 

Demand 126 142 150 155 130 

 

 

3 

 

Production Cost/item 40 30 18 25 15 

Setup Cost 400 500 450 350 400 

Inventory Cost/item 50 80 60 75 65 

Demand 119 120 135 135 120 

4 

Production Cost/item 15 30 18 22 15 

Setup Cost 400 500 450 350 400 

Inventory Cost/item 50 80 60 75 65 

Demand 90 100 100 95 84 

5 

Production Cost/item 20 55 20 32 20 

Setup Cost 400 500 450 350 400 

Inventory Cost/item 50 80 60 75 65 

Demand 114 125 130 140 114 
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Table 5.16: Cost Corresponds to the Returned Products  [Example 2] 

Product Type Cost 
Time Periods 

1 2 3 4 5 

 

 

1 

Disassembly/item 30 35 20 15 27 

Setup 22 30 33 22 33 

Inventory/item 40 40 40 40 40 

Acquiring/item 25 15 20 21 18 

 

 

2 

Disassembly/item  25 30 15 22 28 

Setup 35 25 35 30 27 

Inventory/item 50 50 50 50 50 

Acquiring/item 35 20 30 30 22 

 

 

3 

Disassembly/item 20 18 30 18 14 

Setup 30 28 30 32 27 

Inventory/item 30 30 30 30 30 

Acquiring/item 25 28 30 28 30 

4 

Disassembly/item 17 22 26 21 19 

Setup 31 29 32 33 29 

Inventory/item 35 35 35 35 35 

Acquiring/item 22 26 31 20 32 
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Table 5.17: Cost and Demand for New Products of New Components [Example 2] 

Product Type Cost 
Time Periods 

1 2 3 4 5 

 

 

1 

Assembly/item   32 35 22 20 29 

Setup 26 31 34 23 34 

Inventory/item  60 60 60 60 60 

Demand  20 15 20 14 17 

 

 

2 

Assembly/item   30 31 18 32 26 

Setup 38 26 36 31 28 

Inventory/item 70 70 70 70 70 

Demand  18 16 14 12 17 

 

 

3 

Assembly/item   22 24 28 26 22 

Setup 32 30 31 33 28 

Inventory/item 45 45 45 45 45 

Demand  16 11 16 12 14 

4 

Assembly/item   32 28 26 30 25 

Setup 30 28 30 30 29 

Inventory/item 65 65 65 65 65 

Demand  14 15 10 17 11 
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Table 5.18: Cost and Demand for New Products of Remanuf. Components [Example 2] 

Product 

Type 
Cost 

Time Periods 

1 2 3 4 5 

 

 

1 

Assembly/item  30 33 20 19 25 

Setup 25 31 34 23 34 

Inventory/item 55 55 55 55 55 

Demand  9 9 9 8 6 

 

 

2 

Assembly/item 30 28 18 22 24 

Setup 36 30 36 31 30 

Inventory/item 60 60 60 60 60 

Demand  7 4 8 5 6 

 

 

3 

Assembly/item 25 22 25 23 26 

Setup 32 30 32 35 30 

Inventory/item 44 44 44 44 44 

Demand  7 8 7 3 7 

4 

Assembly/item  28 30 25 27 26 

Setup 34 34 30 28 30 

Inventory/item 50 50 50 50 50 

Demand  9 10 5 4 9 

 

Table 5.19: Number of Parts in the Returned Products [Example 2] 

                           Component  

Type Product Type 
1 2 3 4 5 

1 10 10 8 13 8 

2 12 12 10 12 15 

3 15 11 3 11 2 

4 11 15 9 10 13 
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Table 5.20: Number of New Parts in the Assembled New Products [Example 2] 

                           Component  

Type Product Type 
1 2 3 4 5 

1 3 6 5 3 8 

2 2 6 3 4 2 

3 5 7 5 2 3 

4 2 2 3 5 3 

 

Table 5.21: Number of Remanuf.  Parts in the Assembled New Products [Example 2] 

                           Component  

Type Product Type 
1 2 3 4 5 

1 3 5 5 3 4 

2 4 4 3 4 3 

3 5 6 5 6 5 

4 3 2 4 5 3 

 

 

Table 5.22: Resource Time Required and Quality Ratio  [Example 2] 

 Component Type 

1 2 3 4 5 

New Component Production Time 120 150 130 120 110 

New Component Setup Time 50 50 40 45 50 

Remanuf. Component Production Time 80 80 75 75 75 

Remanuf. Component Setup Time 30 30 30 30 30 

Quality Ratio 0.5 0.5 0.6 0.4 0.7 

 

Table 5.23: Resource Availability [Example 2] 

Time Period 1 2 3 4 5 

Resource Available Time 250000 230000 230000 230000 230000 

 



 

50 

The computation results show convergence behavior of the procedure. Figure 5.3 

presents the graph corresponds to the convergence of the Lagrangian function as well as 

the upper bound. In the first 80 i terations, the upper bound remained the same at 700926 

since search process did not find a better feasible solution to substitute for upper bound. 

The first feasible solution obtained in iteration 81 causes the significant drop in the value 

of the upper bound. The value of the objective function for the original model (total cost) 

obtained from Eq (3.1) after 300 iterations is 697999 which corresponds to the feasible 

near optimal solutions. The computation took 61 seconds.   

 

Figure 5.3.Convergence Behaviour of the Lagrangian Function [Example 2] 
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Example 3 is a HMRS production planning problem with 4 time periods, 3 products 

and 4 components, other information and data are presented in Tables 5.24 to 5.33. 

Table 5.24: Cost and Demand for Component from New Material [Example 3] 

Time 

Period 
 

Cost and Demand 

Component Type 

1 2 3 4 

 

 

1 

 

Production Cost/item 93 90 104 95 

Setup Cost 555 723 618 550 

Inventory Cost/item 105 112 115 105 

Demand 180 270 235 250 

 

 

2 

 

Production Cost/item  74 101 88 83 

Setup Cost 555 723 618 550 

Inventory Cost/item 105 112 115 105 

Demand 200 305 260 260 

 

 

3 

 

Production Cost/item 91 93 90 100 

Setup Cost 555 723 618 550 

Inventory Cost/item 105 112 115 105 

Demand 225 320 275 265 

4 

Production Cost/item 102 87 83 98 

Setup Cost 555 723 618 550 

Inventory Cost/item 105 112 115 105 

Demand 150 200 210 200 
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Table 5.25: Cost and Demand for Component  to be Remanufactured [Example 3] 

Time 

Period 

 

Cost and Demand 

Component Type 

1 2 3 4 

 

 

1 

 

Production Cost/item 28 41 22 15 

Setup Cost 420 512 468 421 

Inventory Cost/item 58 83 62 75 

Demand 80 88 83 80 

 

 

2 

 

Production Cost/item 28 40 15 30 

Setup Cost 420 512 468 421 

Inventory Cost/item 58 83 62 75 

Demand 95 96 100 95 

 

 

3 

 

Production Cost/item 29 33 18 25 

Setup Cost 420 512 468 421 

Inventory Cost/item 58 83 62 75 

Demand 75 85 80 81 

4 

Production Cost/item 30 35 18 30 

Setup Cost 420 512 468 421 

Inventory Cost/item 58 83 62 75 

Demand 80 85 82 80 
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Table 5.26: Cost Corresponds to the Returned Products  [Example 3] 

Product 

Type 
Cost 

Time Periods 

1 2 3 4 

 

 

1 

Disassembly/item  28 34 21 22 

Setup 23 31 33 35 

Inventory/item 180 180 180 180 

Acquiring/item 24 17 20 22 

 

 

2 

Disassembly/item 25 33 15 18 

Setup 35 25 34 32 

Inventory/item 220 220 220 220 

Acquiring/item 33 20 31 15 

 

 

3 

Disassembly/item  20 18 30 15 

Setup 31 27 30 31 

Inventory/item 200 200 200 200 

Acquiring/item 25 28 30 20 

 

 

Table 5.27: Cost and Demand for New Products of New Components [Example 3] 

Product 

Type 
Cost 

Time Periods 

1 2 3 4 

 

 

1 

Assembly/item  32 31 22 20 

Setup 28 31 34 28 

Inventory/item 103 103 103 103 

Demand/item  9 13 16 15 

 

 

2 

Assembly/item 28 31 18 22 

Setup 34 26 35 32 

Inventory/item 92 92 92 92 

Demand/item  12 14 15 14 

 

 

3 

Assembly/item  22 23 26 20 

Setup 32 30 31 28 

Inventory/item 95 95 95 95 

Demand/item  13 13 13 16 
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Table 5.28: Cost and Demand for New Products of Remanuf. Components [Example 3] 

Product 

Type 
Cost 

Time Periods 

1 2 3 4 

 

 

1 

Assembly/item  16 12 13 11 

Setup 16 18 21 20 

Inventory/item 93 93 93 93 

Demand  5 6 5 4 

 

 

2 

Assembly/item  13 15 11 14 

Setup 24 20 21 25 

Inventory/item 74 74 74 74 

Demand  6 5 5 5 

 

 

3 

Assembly/item  14 11 13 14 

Setup 28 19 23 22 

Inventory/item 85 85 85 85 

Demand  4 6 6 4 

 

Table 5.29: Number of Parts in the Returned Products [Example 3] 

                           Component  

Type Product Type 

 

1 

 

2 

 

3 

 

4 

1 10 10 8 13 

2 12 12 10 12 

3 15 11 3 11 

 

Table 5.30 Number of New Parts in the Assembled New Products [Example 3] 

                           Component  

Type Product Type 

 

1 

 

2 

 

3 

 

4 

1 5 7 4 3 

2 6 5 7 6 

3 2 4 5 7 
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Table 5.31: Number of Remanuf.  Parts in the Assembled New Products [Example 3] 

                           Component  

Type Product Type 

 

1 

 

2 

 

3 

 

4 

1 2 3 3 4 

2 3 3 4 2 

3 4 1 2 3 

 

Table 5.32: Resource Time Required and Quality Ratio  [Example 3] 

 Component Type 

1 2 3 4 

New Component Production Time 102 100 110 110 

New Component Setup Time 52 48 43 44 

Remanuf. Component Production Time 77 80 75 83 

Remanuf. Component Setup Time 32 31 35 30 

Quality Ratio 0.5 0.5 0.6 0.2 

 

Table 5.33: Resource Availability [Example 3] 

Time Period 1 2 3 4 

Resource Available Time 600000 200000 250000 200000 

 

The computation results show convergence behavior of the procedure. Figure 5.4 

presents the graph corresponds to the convergence of the Lagrangian function as well as 

the upper bound. Upper bound remained the same since search process did not find a 

better solution to substitute for upper bound. The value of the objective function for the 

original model (total cost) obtained from Eq (3.1) after 300 iterations is 412012 which 

corresponds to the feasible near optimal solutions. The computation took 12.92 seco nds.   



 

56 

 

Figure 5.4.Convergence Behaviour of the Lagrangian Function [Example 3] 

 

5.4 Summary 

In testing the developed model and solution method, we used several example 

problems of different sizes with randomly generated data. These example problems have 3 

to 5 different types of products with 3 to 5 components. The planning time horizon has 3 

to 6 periods. The computational results show that the developed solution method can reach 

optimal or near optimal solution for all of the tested problems within very short 

computational time. As can be observed, the convergence of the Lagrangian function in 

Figures (5.1) to (5.4) attributes to the same trend which corresponds to the fact that upper 

bound stays the same during the whole searching process.  
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Chapter Six 

Conclusion and Future Research 

In this chapter we present a summary of the research carried out in this thesis. It also includes 

several concluding remarks based on the problem modeling. Future research directions will be 

discussed. 

 

6.1 Conclusion 

Production planning problems in hybrid manufacturing remanufacturing systems (HMRS) are 

studied. Optimal or near-optimal decisions on system setup, production, inventory to produce new 

components and remanufactured components are required in solving such problems. The optimal 

production decisions are to be coordinated with decisions for purchasing, disassembly, assembly and 

inventory of a both returned products to retrieve the components for remanufacturing and new products 

to be assembled out of new and remanufactured components. 

  A mixed integer linear programming (MILP) is developed to obtain optimal solution of the 

considered problem. To efficiently solve the MILP model, a solution procedure based on Lagrangian 

decomposition is developed so that the original model can be solved through solving a set of much 

smaller sub-problems. 

  The model and solution procedure were tested using several numerical examples. The testing 

results show that the proposed solution procedure can reach optimal or very close to optimal solutions in 

short computational time.  
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6.2 Future Research  

There are several options to extend the model framework presented in this thesis. Our suggestions 

for future research in this area could be:  

 Considering results application in the real case. 

 Considering non deterministic demands for new products and consequently both new 

components and remanufactured components. 

 Considering the combined assembly of new products from new and remanufactured components 

at the same time. 

 Considering more detailed inventory control strategies with back orders and other aspects. 
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Appendix A 
 

Python codes for Production Planning Problems of Hybrid Manufacturing-Remanufacturing 

Systems 

import numpy as np 

import math 

import xlrd 

import sys 

import time 

PEGAH=xlrd.open_workbook('C:\\Data\\Desktop\\example two.xls') 

PEGAH.sheet_names() 

sh=PEGAH.sheet_by_index(0) 

def readMatrix(sheet, fromLine, toLine, fromcol, tocol): 

        s = [sheet.row_values(row,fromcol,tocol) for row in range(fromLine,toLine+1)] 

        return np.matrix(s) 

def readArray(sheet, row , fromcol, tocol): 

         w=[sh.row_values(row,fromcol, tocol+1)]       

         return np.array(w[0])         

V=np.matrix(readMatrix(sh,49,52,2,5)) 

V_bar=np.matrix(readMatrix(sh,56,59,2,5)) 

P=np.matrix(readMatrix(sh,1,4,1,4)) 

P_bar=np.matrix(readMatrix(sh,8,11,1,4)) 

AQ=np.matrix(readMatrix(sh,68,70,2,5)) 

SD=np.matrix(readMatrix(sh,73,75,2,5)) 

RD=np.matrix(readMatrix(sh,63,65,2,5)) 

IN=np.matrix(readMatrix(sh,15,17,1,4)) 

S=np.matrix(readMatrix(sh,34,37,1,4)) 

S_bar=np.matrix(readMatrix(sh,41,44,1,4))        

D=np.matrix(readMatrix(sh,20,23,1,4)) 
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D_bar=np.matrix(readMatrix(sh,27,30,1,4)) 

AST=np.array(readArray(sh,87,2,5)) 

ST=np.array(readArray(sh,89,2,5)) 

ASR=np.array(readArray(sh,91,2,5)) 

SR=np.array(readArray(sh,93,2,5)) 

ACAP=np.array(readArray(sh, 85, 2, 4)) 

B=np.matrix(readMatrix(sh,78,81,2,5)) 

UR=np.array(readArray(sh,95,2,5)) 

RR=np.matrix(readMatrix(sh,233,235,2,5)) 

RN=np.matrix(readMatrix(sh,228,230,2,5)) 

SDN=np.matrix(readMatrix(sh,184,186,2,5)) 

SDR=np.matrix(readMatrix(sh,189,191,2,5)) 

RDN=np.matrix(readMatrix(sh,194,196,2,5)) 

RDR=np.matrix(readMatrix(sh,199,201,2,5)) 

INR=np.matrix(readMatrix(sh,174,176,2,5)) 

INN=np.matrix(readMatrix(sh,179,181,2,5)) 

BN=np.matrix(readMatrix(sh,214,217,2,5)) 

BR=np.matrix(readMatrix(sh,221,224,2,5)) 

nPeriods = P.shape[1]  

nComponents = P.shape[0] 

nProducts = AQ.shape[0] 

print nPeriods, nComponents, nProducts 

#Computes the cost of producing 'd' of component 'i'  in period [t] 

def cost(i, d, t, lmda, phi):    

    return d * (P[i , t] + lmda[t] * AST[i]-phi[i,t]) + S[i, t] + lmda[t] * ST[i] 

def InvCost(i, fromPeriod, toPeriod, v): 

    s = 0 

    for t1 in range(fromPeriod + 1, toPeriod+1): 

        sumv=0 

        for t2 in range(fromPeriod, t1): 
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            sumv+=v[i,t2] 

        s+=D[i,t1]*sumv 

    return s         

def ww(i, lmda, gmma, phi,khi): 

    x = nPeriods * [0] 

    LastProductingPeriod = 0    

    x = nPeriods * [0] 

    teta = nPeriods * [0] 

    e = nPeriods * [0]     

    x[0] = D[i, 0] 

    teta[0] = 1 

    e[0] = 0     

    minCost = nPeriods * [0] 

    minCost[0] = cost(i, D[i, 0], 0, lmda,phi) 

    for t in range(1, nPeriods): 

        cppc = minCost[t-1] + \ 

               cost(i, D[i, t], t, lmda, phi) 

        lpppc = minCost[LastProductingPeriod] + \ 

               cost(i, D[i, t], LastProductingPeriod, lmda, phi ) + \ 

               InvCost(i, LastProductingPeriod, t, V) - \ 

                S[i, t] + lmda[t] * ST[i]       

        if lpppc > cppc: 

            x[t] = D[i, t] 

            teta[t] = 1 

            LastProductingPeriod = t 

            minCost[t] = cppc 

        else: 

            x[LastProductingPeriod] += D[i,t] 

            teta[t] = 0 

            x[t] = 0 
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            for period in range(LastProductingPeriod, t): 

                e[period] += D[i, t] 

            minCost[t] = lpppc                

    return x, e, teta 

def cost2(i, d_bar, t, lmda, gmma, khi ): 

    return d_bar * (P_bar[i , t] + lmda[t] * ASR[i] + gmma[i, t]-khi[i,t]) + S_bar[i, t] + lmda[t] * SR[i] 

def InvCost2(i, fromPeriod, toPeriod, v): 

    s = 0 

    for t1 in range(fromPeriod + 1, toPeriod+1): 

        sumv = 0 

        for t2 in range(fromPeriod, t1): 

            sumv += v[i,t2] 

        s += D_bar[i,t1] * sumv 

    return s 

def ww2(i, lmda, gmma,phi,khi): 

    x = nPeriods * [0] 

    LastProductingPeriod = 0  

    x_bar = nPeriods * [0] 

    teta_bar = nPeriods * [0] 

    e_bar = nPeriods * [0]    

    x_bar[0] = D_bar[i, 0] 

    teta_bar[0] = 1 

    e_bar[0] = 0 

    minCost = nPeriods * [0] 

    minCost[0] = cost2(i, D_bar[i, 0], 0, lmda, gmma, khi) 

    for t in range(1, nPeriods): 

        cppc = minCost[t-1] + \ 

               cost2(i, D_bar[i, t], t, lmda, gmma, khi) 

        lpppc = minCost[LastProductingPeriod] + \ 

               cost2(i, D_bar[i, t], LastProductingPeriod, lmda, gmma, khi) + \ 
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               InvCost2(i, LastProductingPeriod, t, V_bar) - \ 

                 S_bar[i, t] + lmda[t] * SR[i]   

 

        if lpppc > cppc: 

            x_bar[t] = D_bar[i, t] 

            teta_bar[t] = 1 

            LastProductingPeriod = t 

            minCost[t] = cppc 

        else: 

            x_bar[LastProductingPeriod] += D_bar[i,t] 

            teta_bar[t] = 0 

            x_bar[t] = 0 

            for period in range(LastProductingPeriod, t): 

                e_bar[period] += D_bar[i, t] 

            minCost[t] = lpppc            

    return x_bar, e_bar, teta_bar 

#*************************************************************************************************** 

def cost3(j, RN, t, lmda, gmma, phi ): 

    vv=0 

    for i in range(1,nComponents): 

        vv+=BN[i,j]* phi[i,t]      

    return RN * (RDN[j , t] +vv)+SDN[j,t]  

def InvCost3(j, fromPeriod, toPeriod, INN): 

    s = 0 

    for t1 in range(fromPeriod + 1, toPeriod+1): 

        sumINN = 0 

        for t2 in range(fromPeriod, t1): 

            sumINN += INN[j,t2] 

        s += RN[j,t1] * sumINN 

    return s 
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def ww3(j, lmda, gmma,phi,khi): 

    x = nPeriods * [0] 

    LastProductingPeriod = 0  

    dn = nPeriods * [0] 

    deln = nPeriods * [0] 

    fn = nPeriods * [0]   

    dn[0] = RN[j, 0] 

    deln[0] = 1 

    fn[0] = 0 

    minCost = nPeriods * [0] 

    minCost[0] = cost3(j, RN[j, 0], 0, lmda, gmma, phi) 

    for t in range(1, nPeriods): 

        cppc = minCost[t-1] + \ 

               cost3(j, RN[j, 0], 0, lmda, gmma, phi) 

        lpppc = minCost[LastProductingPeriod] + \ 

               cost3(j, RN[j, t], LastProductingPeriod, lmda, gmma, phi) + \ 

               InvCost3(j, LastProductingPeriod, t, INN) - \ 

                 SDN[j,t]   

        if lpppc > cppc: 

            dn[t] = RN[j, t] 

            deln[t] = 1 

            LastProductingPeriod = t 

            minCost[t] = cppc 

        else: 

            dn[LastProductingPeriod] += RN[j,t] 

            deln[t] = 0 

            dn[t] = 0 

            for period in range(LastProductingPeriod, t): 

                fn[period] += RN[j, t] 
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            minCost[t] = lpppc        

    return fn, dn, deln 

#*************************************************************************************************** 

def cost4(j, RR, t, lmda, gmma, khi ): 

    ll=0 

    for i in range (1,nComponents): 

        ll+=BR[i,j]* khi[i,t] 

    return RR * (RDR[j , t] +ll)+SDR[j,t] 

def InvCost4(j, fromPeriod, toPeriod, INR): 

    s = 0 

    for t1 in range(fromPeriod + 1, toPeriod+1): 

        sumINR = 0 

        for t2 in range(fromPeriod, t1): 

            sumINR += INR[j,t2] 

        s += RR[j,t1] * sumINR 

    return s 

def ww4(j, lmda, gmma,phi,khi): 

    x = nPeriods * [0] 

    LastProductingPeriod = 0     

    dr = nPeriods * [0] 

    delr = nPeriods * [0] 

    fr = nPeriods * [0] 

    dr[0] = RR[j, 0] 

    delr[0] = 1 

    fr[0] = 0 

    minCost = nPeriods * [0] 

    minCost[0] = cost4(j, RR[j, 0], 0, lmda, gmma, khi) 

    for t in range(1, nPeriods): 

        cppc = minCost[t-1] + \ 

               cost4(j, RR[j, t], t, lmda, gmma, khi) 
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        lpppc = minCost[LastProductingPeriod] + \ 

               cost4(j, RR[j, t], LastProductingPeriod, lmda, gmma, khi) + \ 

               InvCost4(j, LastProductingPeriod, t, INR) - \ 

                 SDR[j,t]  

        if lpppc > cppc: 

            dr[t] = RR[j, t] 

            delr[t] = 1 

            LastProductingPeriod = t 

            minCost[t] = cppc 

        else: 

            dr[LastProductingPeriod] += RR[j,t] 

            delr[t] = 0 

            dr[t] = 0 

            for period in range(LastProductingPeriod, t): 

                fr[period] += RR[j, t] 

            minCost[t] = lpppc         

    return fr, dr, delr 

#******************************************************************************************* 

import pulp 

def getD_tilde(x_bar):     

    prob = pulp.LpProblem("Sub3 LP",pulp.LpMinimize) 

    periods = [str(i) for i in range(nPeriods)] 

    products=[str(k) for k in range(nProducts)] 

    varNames = [str(k) + str(i)  for i in range(nPeriods) for k in range(nProducts)] 

    d_tilde=pulp.LpVariable.dict('d_tilde', varNames,lowBound =0, cat = pulp.LpInteger) 

    print varNames 

    prob += sum(d_tilde[str(j) + str(t)] for j in range(nProducts) for t in range(nPeriods)) 

    for i in range(nComponents): 

        for t in range (nPeriods): 

            prob +=   UR[i] * sum(B[i,j] * d_tilde[str(j)+str(t)] for j in range(nProducts)) >= x_bar[i,t] 
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    prob.solve(pulp.COIN(msg=0)) 

    ret_d_tilde = np.matrix(np.zeros((nProducts, nPeriods))) 

    for v in prob.variables(): 

        n = v.name 

        ret_d_tilde[n[-2], n[-1]] = v.varValue         

    return ret_d_tilde 

def PegHeur(x_bar, gmma): 

    #Initializing the return variables 

    d = np.matrix(np.zeros((nProducts, nPeriods))) 

    delta = np.matrix(np.zeros((nProducts, nPeriods))) 

    r = np.matrix(np.zeros((nProducts, nPeriods))) 

    f = np.matrix(np.zeros((nProducts, nPeriods))) 

    #Setting the values of d_tilde 

    d_tilde = getD_tilde(x_bar) 

    print "d_tilde" 

    print d_tilde 

    #Initializeing R_tilde 

    R_tilde = np.matrix(np.zeros((nProducts, nPeriods))) 

    for t in range(nPeriods): 

        for j in range(nProducts): 

            s = sum(B[i,j] * gmma[i,t] * UR[i] for i in range(nComponents)) 

            R_tilde[j,t] = RD[j,t] - s 

    A_tilde = np.matrix(np.zeros((nProducts, nPeriods))) 

    for j in range(nProducts): 

        A_tilde[j, 0] = AQ[j,0] 

    for j in range(nProducts): 

        for t in range(1, nPeriods): 

            A_tilde[j,t] = min(AQ[j,t], IN[j, t-1] + A_tilde[j, t-1]) 

    #step2 

    for j in range(nProducts): 
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        d[j,0] = r[j,0] = d_tilde[j,0] 

        if d[j,0]>0: 

           delta[j,0] = 1 

    #step3        

    maxper=0   

    for j in range(nProducts): 

        for t in range(1,nPeriods): 

            if R_tilde[j, t] >= - (A_tilde[j,t] * d_tilde[j, t] + SD[j,t]): 

               d[j,t]= r[j,t] = d_tilde[j,t]=d[j,t]=0 

            else:           

                if AQ[j,t] <= IN[j, t-1] + A_tilde[j,t-1]: 

                   r[j,t] = d_tilde[j,t] 

                   f[j,t]=0 

                   delta[j,t]=1 

                   maxper=t   

                else:   

                      r[j, maxper] += d_tilde[j,t] 

                      delta=[j,maxper]=1 

                      for k in range(maxper,t-1): 

                          f[j,k]+=d_tilde[j,t] 

    return  d,delta, r,f           

def getSlacksOfFirstCommonConstraint(x, teta, x_bar, teta_bar): 

    slack = [] 

    for t in range(nPeriods): 

        s = sum(AST[i]*x[i,t] + ST[i] * teta[i,t] + ASR[i]*x_bar[i,t] + SR[i] * teta_bar[i,t] for i in range(nComponents)) 

        slack.append(s - ACAP[t]) 

    return slack 

    slackone =sum(slack for i in range (nComponents) for t in range (nPeriods)) 

    #print slackone 

def getSlacksOfSecondCommonConstraint(x_bar, d): 
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    slack = [] 

    for i in range(nComponents): 

        slack.append([]) 

        for t in range(nPeriods): 

            s = sum(B[i,j] * d[j,t] for j in range(nProducts)) 

            s *= UR[i] 

            slack[-1].append(x_bar[i, t]- s) 

    return slack 

#**************************************************************************** 

def getSlacksOfThirdCommonConstraint(x, dn): 

    slack = [] 

    for i in range(nComponents): 

        slack.append([]) 

        for t in range(nPeriods): 

            s = sum(BN[i,j] * dn[j,t] for j in range(nProducts)) 

            slack[-1].append(x[i, t]- s) 

    return slack 

def getSlacksOfForthCommonConstraint(x_bar, dr): 

    slack = [] 

    for i in range(nComponents): 

        slack.append([]) 

        for t in range(nPeriods): 

            s = sum(BR[i,j] * dr[j,t] for j in range(nProducts)) 

            slack[-1].append(x_bar[i, t]- s) 

    return slack 

#*************************************************************************** 

def Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn): 

        gmma = np.matrix(np.zeros((nComponents, nPeriods))) 

        lmda = np.array(np.zeros(nPeriods)) 

        phi= np.matrix(np.zeros((nComponents, nPeriods))) 
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        khi= np.matrix(np.zeros((nComponents, nPeriods))) 

        return  Z_lag(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d, lmda, gmma,fr,fn,deln,delr,dr,dn,phi,khi) 

def Z_lag(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d, lmda, gmma,fr,fn,deln,delr,dr,dn,phi,khi): 

    sum_sub1 =0 

    for i in range (nComponents): 

        sum_sub1 += sum([(P[i,t] +lmda[t]*AST[i]+phi[i,t])* x[i,t] + (S[i, t]+lmda[t]*ST[i])*teta[i, t] \ 

                         + V[i, t]* e[i, t] for t in range(nPeriods)])  

    sum_sub2 =0 

    for i in range (nComponents): 

        sum_sub2 += sum((P_bar[i,t]+lmda[t]*ASR[i]+gmma[i,t]+khi[i,t])* x_bar[i,t] + \ 

                        (S_bar[i, t]+lmda[t]*SR[i])* teta_bar[i, t] + V_bar[i, t]* e_bar[i, t]for t in range(nPeriods)) 

    sum_sub3 =0 

    for j in range (nProducts): 

        sum_sub3 += sum([AQ[j, t]* r[j, t] +SD[j, t]* delta[j, t]+ (RD[j, t] - \ 

                        sum([B[i,j]*gmma[i,t]*UR[i] for i in range(nComponents)]))*d[j,t] +IN[j, t]* f[j, t] \ 

                         for t in range(nPeriods)]) 

    sum_sub4 =0     

    for j in range (nProducts): 

        sum_sub4 += sum([SDN[j, t]* deln[j, t]+ (RDN[j, t] - \ 

                        sum([BN[i,j]*phi[i,t] for i in range(nComponents)]))*dn[j,t] +INN[j, t]* fn[j, t] \ 

                         for t in range(nPeriods)]) 

    sum_sub5 =0 

    for j in range (nProducts): 

        sum_sub5 += sum([SDR[j, t]* delr[j, t]+ (RDR[j, t] - \ 

                        sum([BR[i,j]*khi[i,t] for i in range(nComponents)]))*dr[j,t] +INR[j, t]* fr[j, t] \ 

                         for t in range(nPeriods)]) 

            sum_sub1=sum_sub1- sum([lmda[t]*ACAP[t] for t in range(nPeriods)]) 

    return sum_sub1 + sum_sub2 + sum_sub3 +sum_sub4 +sum_sub5 

from xlwt import Workbook 

def initializeXL(filename): 
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    workbook = Workbook() 

    sheet1 = workbook.add_sheet('Lagranigian') 

    sheet1.write(0,0,'Iteration') 

    sheet1.write(0,1,'z_l') 

    sheet1.write(0,2,'z') 

    sheet1.write(0,3,'Feasibility') 

    sheet1.write(0,4,'ub') 

    ind = 5 

    for t in range(nPeriods): 

        sheet1.write(0,ind,'lamda_'+str(t)) 

        ind += 1 

    for i in range(nComponents): 

        for t in range(nPeriods): 

            sheet1.write(0,ind,'gamma_'+str(i) + str(t)) 

            ind += 1 

    return workbook,sheet1 

def finalizeXL(book, filename): 

    book.save(filename + '.xls')    

def writeToXL(sheet, iteration, feasible, z_l,ub, z,x, x_bar, teta, teta_bar, e, e_bar, f, r, d, delta, lmda, gmma): 

    sheet.write(iteration + 1,0,iteration) 

    sheet.write(iteration + 1,1,z_l) 

    sheet.write(iteration + 1,2,z) 

    sheet.write(iteration + 1,3,feasible) 

    sheet.write(iteration + 1,4,ub)         

    ind = 5 

    for t in range(nPeriods): 

        sheet.write(iteration + 1,ind,lmda[t]) 

        ind += 1  

    for i in range(nComponents): 

       for t in range(nPeriods): 
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            sheet.write(iteration + 1,ind,gmma[i,t]) 

            ind += 1 

    sheet.flush_row_data() 

import time      

def lagSolve(lmda, gmma,phi,khi, maxIterations): 

    ub =334291.0 

    noUpdateIterations = 0 

    stoppingIteration = 0 

    start1= time.time() 

    print "start1=", start1 

    f = open('res.txt', 'w') 

    f.write('hello') 

    f.close() 

    book, sheet = initializeXL('expanded results') 

    x = np.matrix(np.zeros((nComponents, nPeriods))) 

    e = np.matrix(np.zeros((nComponents, nPeriods))) 

    teta = np.matrix(np.zeros((nComponents, nPeriods))) 

    x_bar = np.matrix(np.zeros((nComponents, nPeriods))) 

    e_bar = np.matrix(np.zeros((nComponents, nPeriods))) 

    teta_bar = np.matrix(np.zeros((nComponents, nPeriods))) 

    dn = np.matrix(np.zeros((nProducts,nPeriods))) 

    deln = np.matrix(np.zeros((nProducts,nPeriods))) 

    fn = np.matrix(np.zeros((nProducts,nPeriods))) 

    dr = np.matrix(np.zeros((nProducts,nPeriods))) 

    delr = np.matrix(np.zeros((nProducts,nPeriods))) 

    fr = np.matrix(np.zeros((nProducts,nPeriods))) 

     

    step = 2 

    z_best = 10**10 

    x_best= x_bar_best= e_best= e_bar_best= f_best=fn_best=fr_best= r_best= d_best=dn_best=dr_best= 

delta_best=delr_best=deln_best= \ 
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            teta_best = teta_bar_best = best_lmda = best_gmma =best_khi=best_phi= -1 

    k=2.0 

    z_l = -1 

    for iteration in range(1, maxIterations):       

        for i in range(nComponents): 

            x_i,e_i,teta_i = ww(i, lmda, gmma,phi,khi) 

            x[i, :] = x_i 

            e[i, :] = e_i 

            teta[i, :] = teta_i 

        for i in range(nComponents): 

            x_bar_i, e_bar_i, teta_bar_i = ww2(i, lmda, gmma,phi,khi) 

            x_bar[i, :] = x_bar_i 

            e_bar[i, :] = e_bar_i 

            teta_bar[i, :] = teta_bar_i 

        for j in range (nProducts): 

            fn_j, dn_j, deln_j=ww3(j, lmda, gmma,phi,khi) 

            fn[j,:]=fn_j 

            dn[j,:]=dn_j 

            deln[j,:]=deln_j 

        for j in range (nProducts): 

            fr_j, dr_j, delr_j=ww4(j, lmda, gmma,phi,khi) 

            fr[j,:]=fr_j 

            dr[j,:]=dr_j 

            delr[j,:]=delr_j 

        d,delta, r,f = PegHeur(x_bar, gmma) 

              if iteration == 299: 

              print "gmma=",gmma 

              print "lmda=",lmda 

              print "phi=",phi  

              print "khi=",khi 
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              print "dr=",dr 

              print "dn=",dn 

              print "fn=",fn 

              print "fr=",fr 

              print "deln=",deln 

              print "delr=",delr 

              print "x=" 

              print x 

              print "x_bar=" 

              print x_bar 

              print "e=" 

              print e 

              print "e_bar=" 

              print e_bar 

              print "teta=" 

              print teta 

              print "teta_bar=" 

              print teta_bar 

              print "r=" 

              print r 

              print "f=" 

              print f 

              print "delta=" 

              print delta 

              print "d=" 

              print d 

              print 'Primal Objective Value:' 

              print Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn)      

        s1 = getSlacksOfFirstCommonConstraint(x, teta, x_bar, teta_bar) 

        s2 = getSlacksOfSecondCommonConstraint(x_bar, d) 
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        s3 = getSlacksOfThirdCommonConstraint(x, dn) 

        s4 = getSlacksOfForthCommonConstraint(x_bar, dr) 

        feasible = '-' 

        print "number of infeasible constraints = " , [s>0.0000000001 for s in s1].count(True) 

        if [s>0.0000000001 for s in s1].count(True)>0: 

            print [s>0.0000000001 for s in s1].index(True) 

        else: 

            feasible='feasible' 

        if [s>0.0000000001 for s in s1].count(True) == 0 and (gmma>=0).all():# and Z_lag < z_best: 

            feasible = 'feasible' 

        z_lold=z_l 

        z_l = Z_lag(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d, lmda, gmma,fr,fn,deln,delr,dr,dn,phi,khi) 

        oo=z_l-z_lold 

        if (oo <0.00001).all(): 

            noUpdateIterations += 1 

        else: 

            noUpdateIterations = 0 

        z= Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn) 

        if feasible == 'feasible' and z < ub: 

            ub = z 

               writeToXL(sheet,iteration, feasible, z_l, ub,z, x, x_bar, teta, teta_bar, e, e_bar, f, r, d, delta, lmda, gmma)  

        if noUpdateIterations == 15: 

            noUpdateIterations = 0 

            k=k/2 

        qp=z-z_l 

        if (0<qp and qp <0.01).all(): 

            print "best soulution so far", z 

            duration_if=time.time()-start1 

           #print 'Problem took ' + '%6.2f'%duration_if + ' seconds' 

            print "stoppingIteration",stoppingIteration 



 

79 

            print "gmma=",gmma 

            print "lmda=",lmda 

            print "phi=",phi  

            print "khi=",khi 

            print "dr=",dr 

            print "dn=",dn 

            print "fn=",fn 

            print "fr=",fr 

            print "deln=",deln 

            print "delr=",delr 

            print "x=" 

            print x 

            print "x_bar=" 

            print x_bar 

            print "e=" 

            print e 

            print "e_bar=" 

            print e_bar 

            print "teta=" 

            print teta 

            print "teta_bar=" 

            print teta_bar 

            print "r=" 

            print r 

            print "f=" 

            print f 

            print "delta=" 

            print delta 

            print "d=" 

            print d 
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            print 'Primal Objective Value:' 

            print Z_function(x, x_bar, e, e_bar, teta, teta_bar, r, f, delta, d,fr,fn,deln,delr,dr,dn) 

            break 

           #iteration = stoppingIteration     

        else: 

            stoppingIteration += 1 

        denom=sum([h**2 for h in s1]) 

        for s in s2: 

            denom +=sum ([h**2 for h in s]) 

        step= k*(ub-z_l)/denom 

        lmda = [max(0, lmda[i] + step * s1[i]) for i in range(nPeriods)] 

        for i in range(nComponents): 

            for t in range(nPeriods): 

                   gmma[i, t] = max(0, gmma[i, t] + step * s2[i][t]) 

        for i in range(nComponents): 

            for t in range(nPeriods): 

                   phi[i, t] = max(0, phi[i, t] + step * s3[i][t]) 

        for i in range(nComponents): 

            for t in range(nPeriods): 

                   khi[i, t] = max(0, khi[i, t] + step * s4[i][t]) 

    finalizeXL(book, 'expanded results')     

g = np.matrix(np.zeros((nComponents, nPeriods))) 

g += 0.1 

l=np.array(np.zeros(nPeriods)) 

l+= 0.1 

p =np.matrix(np.zeros((nComponents, nPeriods))) 

p+= 0.1 

k =np.matrix(np.zeros((nComponents, nPeriods))) 

k+= 0.1 

start = time.time() 



 

81 

lagSolve(l,g,p,k ,300) 

duration = time.time()-start 

print 'Problem took ' + '%6.2f'%duration + ' seconds' 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B 
 

Lingo codes for finding the first feasible solution in solving HMRS problem 
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Sub model 1  

SETS: 

Component/1..4/:AST,URST,ASR,SR,ST,UR;     !i; 

Product/1..3/;        !j; 

Period/1..3/:ACAP,Landa;       !t; 

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t; 

ProPer(Product,Period):dtilda,f,r,del,AQ,SD,RD,IN,INN,SDN,FN,deln,dn,RN,RDN; 

ComPro(Component,Product): B,BN;  

 

 

ENDSETS 

 

 

DATA: 

 

 

P = @OLE('C:\Data\Desktop\example tow.xls','P') ; 

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ; 

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ; 

D = @OLE('C:\Data\Desktop\example tow.xls','D') ; 

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ; 

S = @OLE('C:\Data\Desktop\example tow.xls','S') ; 

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ; 

V = @OLE('C:\Data\Desktop\example tow.xls','V') ; 

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ; 

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ; 

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ; 

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ; 

B = @OLE('C:\Data\Desktop\example tow.xls','B') ; 

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ; 

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ; 

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ; 

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ; 

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ; 

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ; 

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ; 

ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ; 

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ; 

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ; 

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ; 

M= @OLE('C:\Data\Desktop\example tow.xls','M') ; 

@OLE('C:\Data\Desktop\example tow.xls','X') = X; 

@OLE('C:\Data\Desktop\example tow.xls','e') = e; 

@OLE('C:\Data\Desktop\example tow.xls','Tet') = Tet; 

 

END DATA 

 

!OBJECTIVE FUNCTION; 

 

Min= @sum(ComPer(i,t): P(i,t)*X(i,t) + S(i,t)*Tet(i,t) + V(i,t)*e(i,t)); 

     

 

!SUBJECT TO; 

@for(ComPer(i,t):@BIN(Tet(i,t))); 

@for(ComPer(i,t):@GIN(e(i,t))); 
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@for(ComPer(i,t):@GIN(X(i,t))); 

 

 

!1; 

@for(ComPer(i,t)| t #GT# 1 : e(i,t-1)+ X(i,t) - e(i,t)= D(i,t)); 

@for(Component(i) : X(i,1) - e(i,1)= D(i,1)); 

!2; 

@for(ComPer(i,t): X(i,t) <= 100000* Tet(i,t)); 

 

!3; 

@for(Period(t):@sum(Component(i): AST(i)* X(i,t) + ST(i)*Tet(i,t)) <= ACAP(t) ); 

 

 

 

 

 

Submodel 2  
 

 

SETS: 

Component/1..4/:AST,URST,ASR,SR,ST,UR;     !i; 

Product/1..3/;        !j; 

Period/1..3/:ACAP,Landa,RAMA;       !t; 

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t; 

ProPer(Product,Period):dtilda,f,r,del,delr,deln,FN,FR,SDN,SDR,RDR,RDN,INN,INR,RR,RN

,dn,dr,AQ,SD,RD,IN; 

ComPro(Component,Product): B,BN,BR;  

 

 

ENDSETS 

 

 

DATA: 

P = @OLE('C:\Data\Desktop\example tow.xls','P') ; 

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ; 

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ; 

D = @OLE('C:\Data\Desktop\example tow.xls','D') ; 

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ; 

S = @OLE('C:\Data\Desktop\example tow.xls','S') ; 

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ; 

V = @OLE('C:\Data\Desktop\example tow.xls','V') ; 

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ; 

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ; 

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ; 

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ; 

B = @OLE('C:\Data\Desktop\example tow.xls','B') ; 

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ; 

RAMA = @OLE('C:\Data\Dropbox\thesis\EXAMPLE TWO\remaining.xls','RAMA') ; 

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ; 

ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ; 

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ; 

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ; 

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ; 

M= @OLE('C:\Data\Desktop\example tow.xls','M') ; 

SDR=@OLE('C:\Data\Desktop\example tow.xls','SDR') ; 

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ; 
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BR=@OLE('C:\Data\Desktop\example tow.xls','BR') ; 

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ; 

RDR=@OLE('C:\Data\Desktop\example tow.xls','RDR') ; 

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ; 

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ; 

INR=@OLE('C:\Data\Desktop\example tow.xls','INR') ; 

RR=@OLE('C:\Data\Desktop\example tow.xls','RR') ; 

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ; 

@OLE('C:\Data\Desktop\example tow.xls','X_bar') = X_bar; 

@OLE('C:\Data\Desktop\example tow.xls','Tet_bar') = Tet_bar; 

@OLE('C:\Data\Desktop\example tow.xls','dtilda') = dtilda; 

@OLE('C:\Data\Desktop\example tow.xls','RO') = r; 

@OLE('C:\Data\Desktop\example tow.xls','F') = f; 

@OLE('C:\Data\Desktop\example tow.xls','del') = del; 

@OLE('C:\Data\Desktop\example tow.xls','e_bar') = e_bar; 

 

END DATA 

 

!OBJECTIVE FUNCTION; 

 

Min= @sum(ComPer(i,t): P_bar(i,t)*X_bar(i,t) + S_bar(i,t)*Tet_bar(i,t) + 

V_bar(i,t)*e_bar(i,t))+ 

@sum(ProPer(j,t):AQ(j,t)*r(j,t)+SD(j,t)*del(j,t)+RD(j,t)*dtilda(j,t)+IN(j,t)*f(j,t)

); 

 

 

!SUBJECT TO; 

@for(ComPer(i,t):@BIN(Tet(i,t))); 

@for(ComPer(i,t):@BIN(Tet_bar(i,t))); 

@for(ProPer(j,t):@BIN(del(j,t))); 

@for(ComPer(i,t):@GIN(X_bar(i,t))); 

@for(ComPer(i,t):@GIN(e_bar(i,t))); 

@for(ProPer(j,t):@GIN(r(j,t))); 

@for(ProPer(j,t):@GIN(f(j,t))); 

@for(ProPer(j,t):@GIN(dtilda(j,t))); 

 

 

!1; 

@for(ComPer(i,t)| t #GT# 1 : e_bar(i,t-1)+ X_bar(i,t) - e_bar(i,t)= D_bar(i,t)); 

@for(Component(i): X_bar(i,1) - e_bar(i,1)= D_bar(i,1)); 

 

!2; 

@for(ComPer(i,t): X_bar(i,t) <= M* Tet_bar(i,t)); 

 

 

 

!3; 

@for(Period(t):@sum(Component(i):ASR(i)*X_bar(i,t) + SR(i)*Tet_bar(i,t) ) <= 

RAMA(t) ); 

 

 

!4; 

@for(ProPer(j,t)| t #GT# 1 : f(j,t) + dtilda(j,t) - f(j,t-1) = r(j,t)); 

@for(Product(j) : dtilda(j,1)+f(j,1)= r(j,1)); 

 

 

!5; 
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@for(ProPer(j,t): dtilda(j,t) <= M*del(j,t)); 

!6; 

@for(ComPer(i,t): X_bar(i,t)<= UR(i)* @SUM(Product(j):B(i,j)*dtilda(j,t))); 

 

 

Sub model 3  

 

SETS: 

Component/1..4/:AST,URST,ASR,SR,ST,UR;     !i; 

Product/1..3/;        !j; 

Period/1..3/:ACAP,Landa;       !t; 

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t; 

ProPer(Product,Period):dtilda,f,r,del,AQ,SD,RD,IN,INN,SDN,FN,deln,dn,RN,RDN; 

ComPro(Component,Product): B,BN;  

 

 

ENDSETS 

 

 

DATA: 

 

X=@OLE('C:\Data\Desktop\example tow.xls','X') ; 

 

P = @OLE('C:\Data\Desktop\example tow.xls','P') ; 

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ; 

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ; 

D = @OLE('C:\Data\Desktop\example tow.xls','D') ; 

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ; 

S = @OLE('C:\Data\Desktop\example tow.xls','S') ; 

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ; 

V = @OLE('C:\Data\Desktop\example tow.xls','V') ; 

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ; 

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ; 

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ; 

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ; 

B = @OLE('C:\Data\Desktop\example tow.xls','B') ; 

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ; 

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ; 

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ; 

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ; 

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ; 

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ; 

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ; 

ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ; 

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ; 

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ; 

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ; 

M= @OLE('C:\Data\Desktop\example tow.xls','M') ; 

@OLE('C:\Data\Desktop\example tow.xls','deln') = deln; 

@OLE('C:\Data\Desktop\example tow.xls','FN') = FN; 

@OLE('C:\Data\Desktop\example tow.xls','dn') = dn; 
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END DATA 

 

!OBJECTIVE FUNCTION; 

 

Min= @sum(ProPer(j,t):SDN(j,t)*deln(j,t)+RDN(j,t)*dn(j,t)+INN(j,t)*FN(j,t)); 

     

 

!SUBJECT TO; 

@for(ProPer(j,t):@BIN(deln(j,t))); 

 

@for(ProPer(j,t):@GIN(FN(j,t))); 

@for(ProPer(j,t):@GIN(dn(j,t))); 

 

!1; 

@for(ProPer(j,t)| t #GT# 1 : FN(j,t-1) + dn(j,t) - FN(j,t) = RN(j,t)); 

@for(Product(j) : dn(j,1)- FN(j,1) = RN(j,1)); 

!2; 

@for(ProPer(j,t): dn(j,t) <= 100000*deln(j,t)); 

!3; 

@for(ComPer(i,t): X(i,t)>= @SUM(Product(j):BN(i,j)*dn(j,t))); 

 

 

 

 

Sub model 4  
 

SETS: 

Component/1..4/:AST,URST,ASR,SR,ST,UR;     !i; 

Product/1..3/;        !j; 

Period/1..3/:ACAP,Landa,RAMA;       !t; 

ComPer(Component,Period):X,X_bar,P,P_bar,V,V_bar,S,S_bar,Tet,Tet_bar,e,e_bar,D,D_ba

r; !i,t; 

ProPer(Product,Period):dtilda,f,r,del,delr,deln,FN,FR,SDN,SDR,RDR,RDN,INN,INR,RR,RN

,dn,dr,AQ,SD,RD,IN; 

ComPro(Component,Product): B,BN,BR;  

 

 

ENDSETS 

 

 

DATA: 

X_bar=@OLE('C:\Data\Desktop\example tow.xls','X_bar') ; 

P = @OLE('C:\Data\Desktop\example tow.xls','P') ; 

P_bar = @OLE('C:\Data\Desktop\example tow.xls','P_bar ') ; 

IN = @OLE('C:\Data\Desktop\example tow.xls','IN') ; 

D = @OLE('C:\Data\Desktop\example tow.xls','D') ; 

D_bar = @OLE('C:\Data\Desktop\example tow.xls','D_bar ') ; 

S = @OLE('C:\Data\Desktop\example tow.xls','S') ; 

S_bar = @OLE('C:\Data\Desktop\example tow.xls','S_bar ') ; 

V = @OLE('C:\Data\Desktop\example tow.xls','V') ; 

V_bar = @OLE('C:\Data\Desktop\example tow.xls','V_bar ') ; 

RD = @OLE('C:\Data\Desktop\example tow.xls','RD') ; 

AQ = @OLE('C:\Data\Desktop\example tow.xls','AQ ') ; 

SD = @OLE('C:\Data\Desktop\example tow.xls','SD') ; 

B = @OLE('C:\Data\Desktop\example tow.xls','B') ; 

ACAP = @OLE('C:\Data\Desktop\example tow.xls','ACAP') ; 

AST = @OLE('C:\Data\Desktop\example tow.xls','AST') ; 
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ST = @OLE('C:\Data\Desktop\example tow.xls','ST') ; 

ASR = @OLE('C:\Data\Desktop\example tow.xls','ASR') ; 

SR = @OLE('C:\Data\Desktop\example tow.xls','SR') ; 

UR = @OLE('C:\Data\Desktop\example tow.xls','UR') ; 

M= @OLE('C:\Data\Desktop\example tow.xls','M') ; 

SDR=@OLE('C:\Data\Desktop\example tow.xls','SDR') ; 

SDN=@OLE('C:\Data\Desktop\example tow.xls','SDN') ; 

BR=@OLE('C:\Data\Desktop\example tow.xls','BR') ; 

BN=@OLE('C:\Data\Desktop\example tow.xls','BN') ; 

RDR=@OLE('C:\Data\Desktop\example tow.xls','RDR') ; 

RDN=@OLE('C:\Data\Desktop\example tow.xls','RDN') ; 

INN=@OLE('C:\Data\Desktop\example tow.xls','INN') ; 

INR=@OLE('C:\Data\Desktop\example tow.xls','INR') ; 

RR=@OLE('C:\Data\Desktop\example tow.xls','RR') ; 

RN=@OLE('C:\Data\Desktop\example tow.xls','RN') ; 

@OLE('C:\Data\Desktop\example tow.xls','FR') = FR; 

@OLE('C:\Data\Desktop\example tow.xls','delr') = delr; 

@OLE('C:\Data\Desktop\example tow.xls','dr') = dr; 

 

END DATA 

 

!OBJECTIVE FUNCTION; 

 

Min=@sum(ProPer(j,t):SDR(j,t)*delr(j,t)+RDR(j,t)*dr(j,t)+INR(j,t)*FR(j,t)); 

 

 

!SUBJECT TO; 

@for(ProPer(j,t):@BIN(delr(j,t))); 

@for(ProPer(j,t):@GIN(FR(j,t))); 

@for(ProPer(j,t):@GIN(dr(j,t))); 

 

!1; 

 

@for(ProPer(j,t)| t #GT#1 : FR(j,t-1) + dr(j,t) - FR(j,t) = RR(j,t)); 

@for(Product(j) : dr(j,1)- FR(j,1) = RR(j,1)); 

 

!2; 

@for(ProPer(j,t): dr(j,t) <= M*delr(j,t)); 

 

 

!3; 

@for(ComPer(i,t): X_bar(i,t)>= @SUM(Product(j):BR(i,j)*dr(j,t))); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


