Breadcrumb

 
 

On the Electrochemical Discharges for Nanoparticles Synthesis

Title:

On the Electrochemical Discharges for Nanoparticles Synthesis

Allagui, Anis (2011) On the Electrochemical Discharges for Nanoparticles Synthesis. PhD thesis, Concordia University.

[img]
Preview
PDF - Accepted Version
5Mb

Abstract

The electrochemical discharge phenomenon is a high current density electrochemical process with intrinsic physicochemical properties suitable for the synthesis of nanosized materials. At this mesoscopic range of physics, matter takes on drastically new properties and activities different from its bulk counterpart, which explains the dynamic research activity in building nano-structures. This thesis focuses on the macroscopic and microscopic descriptions of the electrochemical discharges and on the application of the phenomenon for the synthesis of nanoparticles.
It starts by establishing the leading variables to control the process from the perspective of entropy production. The nonequilibrium thermodynamics analysis is successfully adapted to the process to extract a global expression for its entropy balance. Based on the excess entropy production in the system, the conjugated thermal and electrochemical fluxes and forces are the hierarchically top constraints affecting the process and its stability. This approach is supported by experimental evidences on the dynamic analysis of the electrochemical system which is performed through a designed wavelet-based signal processing algorithm. The gas film, covering and insulating the electrode during the process from the rest of the solution, has a life-time and building-time which are respectively an increasing and decreasing positive definite functions of the applied terminal voltage and the bulk temperature.
With the successful synthesis of nickel and platinum nanoparticles, characterized morphologically, chemically and electrochemically, the second part of this thesis presents a comprehensive methodological procedure to apply the process in nanoparticles manufacturing. Two synthesis mechanisms of nano-materials by the electrochemical discharges and supported by the experiment are treated in detail. The first one involves the continuous competition of direct reduction of metal ions by the hydrated electron, e^–_{aq}, the hydrogen radical, H·, and secondary generated species, versus the back reaction of oxidation by the hydroxide radical OH·. The second mechanism is based on electrode sputtering physics by which the positively charged ions are accelerated in the gas film gap and strike the outermost atoms at the electrode surface to be diffused afterwards in the bulk solution. Zero-valent atoms will then undergo time-dependent nucleation and crystal growth processes to form colloidal suspension of nano-sized particles in the bulk solution. The performances of the synthesized nickel oxide nano-materials by electrochemical discharges as supercapacitors for energy storage applications are investigated and discussed. It is shown that the pseudocapacitance behavior and consequently the energy and power densities are size-dependent.

Divisions:Concordia University > Faculty of Engineering and Computer Science > Mechanical and Industrial Engineering
Item Type:Thesis (PhD)
Authors:Allagui, Anis
Institution:Concordia University
Degree Name:Ph. D.
Program:Mechanical Engineering
Date:September 2011
Thesis Supervisor(s):Wuthrich, Rolf
Keywords:Electrochemical discharges, Plasma electrolysis, Gas film, Conservation laws, Entropy balance, Stability, Signal processing, Wavelet decomposition, Nanoparticles, Nickel, Platinum, Catalysis, Radiation chemistry, Electrode sputtering, Nucleation, Energy storage, Supercapacitor
ID Code:35771
Deposited By:ANIS ALLAGUI
Deposited On:22 Nov 2011 09:01
Last Modified:22 Nov 2011 09:01
Related URLs:
References:
1. Wüthrich, R.; Fascio, V. Machining of non-conducting materials using electrochemical discharge phenomenon – an overview. International Journal of Machine Tools and Manufacture 2005, 45, 1095–1108.
2. Wüthrich, R. Micromachining using electrochemical discharge phenomenon: fundamentals and applications of spark assisted chemical engraving; Micro & nano technologies;William Andrew, 2009.
3. Wüthrich, R.; Mandin, P. Electrochemical discharges–Discovery and early applications. Electrochimica Acta 2009, 54, 4031 – 4035.
4. Gao, J.; Wang, X.; Hu, Z.; Hou, J.; Lu, Q. A review on chemical effects in aqueous solution induced by plasma with glow discharge. Plasma Science and Technology 2001, 3, 765–774.
5. Yerokhin, A.; Nie, X.; Leyland, A.; Matthews, A.; Dowey, S. Plasma electrolysis for surface engineering. Surface and Coatings Technology 1999, 122, 73–93.
6. Toriyabe, Y.; Watanabe, S.; Yatsu, S.; Shibayama, T.; Mizuno, T. Controlled formation of metallic nanoballs during plasma electrolysis. Applied Physics Letters 2007, 91, 041501–041503.
7. Kawamura, H.; Moritani, K.; lto, Y. Discharge electrolysis in molten chloride: formation of fine silver particles. Plasmas & Ions 1998, 1, 29–36.
8. Oishi, T.; Kawamura, H.; Ito, Y. Formation and size control of titanium particles by cathode discharge electrolysis of molten chloride. Journal of Applied Electrochemistry 2002, 32, 819–824.
9. Lal, A.; Bleuler, H.; Wüthrich, R. Fabrication of metallic nanoparticles by electrochemical discharges. Electrochemistry Communications 2008, 10, 488–491.
10. Fizeau, H.; Foucault, L. Recherches sur l’intensité de la lumière émise par le charbon dans l’expérience de Davy. Comptes Rendus des Séances de l’Académie des Sciences 1844, 18, 746–754.
11. Glansdorff, P.; Prigogine, I. Thermodynamic theory of structure, stability and fluctuations; New York: Wiley-Interscience, 1971.
12. Fizeau, H.; Foucault, L. Recherches sur l’intensité de la lumière émise par le charbon dans l’expérience de Davy. Comptes Rendus des Séances de l’Académie des Sciences 1844, 18, 860–862.
13. Hoho, P. Phénomène calorifique produit par le courant électrique au contact d’un solide et un liquide. La Lumière Electrique 1894, 52, 113–120.
14. Hoho, P. Phénomène calorifique produit par le courant électrique au contact d’un solide et un liquide. La Lumière Electrique 1894, 52, 165–169.
15. Bagard, H. A. Wehnelt. – Ein elektrolytischer stromunterbrecher (Interrupteur électrolytique) –Wied. Ann., LXVIII, p.233-272. Journal de Physique Théorique Appliquée 1899, 8, 438–444.
16. Kellogg, H. H. Anode effect in aqueous electrolysis. Journal of The Electrochemical Society 1950, 97, 133–142.
17. Hickling, A.; Newns, G. R. Glow-discharge electrolysis. Part V. The contact glow-discharge electrolysis of liquid ammonia. Journal of the Chemical Society 1961, 5186–5191.
18. Hickling, A.; Ingram, M. Contact glow-discharge electrolysis. Transactions of the Faraday Society 1964, 60, 783–793.
19. Sengupta, S. K.; Singh, O. P. Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolytes. Journal of Electroanalytical Chemistry 1994, 369, 113–120.
20. Gao, J.; Wang, A.; Fu, Y.; Wu, J.; Ma, D.; Guo, X.; Li, Y.; Yang, W. Analysis of energetic species caused by contact glow discharge electrolysis in aqueous solution. Plasma Science and Technology 2008, 10, 30–38.
21. Wüthrich, R.; Allagui, A. Building micro and nanosystems with electrochemical discharges. Electrochimica Acta 2010, 55, 8189 – 8196.
22. Wüthrich, R.; Allagui, A. In Electrolysis: Theory, Types and Applications; Kuai, S., Meng, J., Eds.; Nova Science Publishers Inc., 2010; Chapter 5.
23. Wüthrich, R.; Allagui, A. Electrolysis in aqueous solutions under extreme current densities – fundaments and applications of electrochemical discharge phenomenon; Nova Science Publishers Inc., 2010.
24. Rudor , D. Principles and applications of spark machining. Proceedings of the Institution of Mechanical Engineers 1957, 17, 495–507.
25. Kurafuji, H.; Suda, H. Electrical discharge drilling of glass. Annals of the CIRP 1968, 16, 415–419.
26. Harada, K.; Igari, S.; Takasaki, M.; Shimoyama, A. Reductive fixation of molecular nitrogen by glow discharge against water. Journal of the Chemical Society, Chemical Communications 1986, 17, 1384–1385.
27. Harada, K.; Iwasaki, T. Syntheses of amino acids from aliphatic carboxylic acid by glow discharge electrolysis. Nature 1974, 250, 426–428.
28. Harada, K.; Suzuki, S. Formation of amino acids from elemental carbon by contact glow discharge electrolysis. Nature 1977, 266, 275–276.
29. Efrima, S. Morphology of quasi-two-dimensional electrodeposits - a generalized Wagner number. Langmuir 1997, 13, 3550–3556.
30. Mandin, P.; Wüthrich, R.; Roustan, H. Polarization curves for an alkaline water electrolysis at a small pin vertical electrode to produce hydrogen. AIChE Journal 2010, 56, 2446–2454.
31. Roussenq, J.; Clerc, J.; Giraud, G.; Guyon, E.; Ottavi, H. Size dependence of the percolation threshold of square and triangular network. Journal de Physique Lettres 1976, 37, 99–101.
32. Wüthrich, R.; Bleuler, H. A model for electrode effects using percolation theory. Electrochimica Acta 2004, 49, 1547–1554.
33. Azumi, K.; Mizuno, T.; Akimoto, T.; Ohmori, T. Light emission from Pt during high-voltage cathodic polarization. Journal of The Electrochemical Society 1999, 146, 3374–3377.
34. Gao, J.; Liu, Y.; Yang, W.; Pu, L.; Yu, J.; Lu, Q. Oxidative degradation of phenol in aqueous electrolyte induced by plasma from a direct glow discharge. Plasma Sources Science and Technology 2003, 12, 533.
35. Hickling, A.; Ingram, M. D. Glow-discharge electrolysis. Journal of Electroanalytical Chemistry 1964, 8, 65–81.
36. Allen, A. O. Radiation chemistry of aqueous solutions. The Journal of Physical and Colloid Chemistry 1948, 52, 479–490.
37. Allen, A. O. Radiation chemistry. Annual Review of Physical Chemistry 1952, 3, 57–80.
38. Allen, A. O. The yields of free H and OH in the irradiation of water. Radiation Research 1954, 1, 85–96.
39. Allen, A. O. Radiation yields and reactions in dilute inorganic solutions. Radiation Research Supplement 1964, 4, 54–73.
40. Fricke, H.; Thomas, J. K. Pulsed electron beam kinetics. Radiation Research Supplement 1964, 4, 35–53.
41. Dewhurst, H. A.; Samuel, A. H.; Magee, J. L. A theoretical survey of the radiation chemistry of water and aqueous solutions. Radiation Research 1954, 1, 62–84.
42. Hummel, A.; Allen, A. O.; Freddie H. Watson, J. Ionization of Liquids by Radiation. II. Dependence of the Zero-Field Ion Yield on Temperature and Dielectric Constant. The Journal of Chemical Physics 1966, 44, 3431–3436.
43. Allen, A. O. Yields of free ions formed in liquids by radiation; NSRDS-NBS 57; U.S. Dept. of Commerce, National Bureau of Standards, 1976.
44. Guilpin, C.; Garbarz-Olivier, J. Analyse de la lumière émise aux électrodes pendant les effects d’électrode, dans des solutions aqueuses d’électrolyte. Spectrochimica Acta Part B: Atomic Spectroscopy 1977, 32, 155–164.
45. Yerokhin, A. L.; Snizhko, L. O.; Gurevina, N. L.; Leyland, A.; Pilkington, A.; Matthews, A. Discharge characterization in plasma electrolytic oxidation of aluminium. Journal of Physics D: Applied Physics 2003, 36, 2110–2120.
46. Valognes, J. C.; Bardet, J. P.; Mergault, P. Contribution à l’étude des effets d’électrode. Spectrochimica Acta Part B: Atomic Spectroscopy 1987, 42, 445–458.
47. Kobayashi, K.; Tomita, Y.; Sanmyo, M. Electrochemical generation of hot plasma by pulsed discharge in an electrolyte. The Journal of Physical Chemistry B 2000, 104, 6318–6326.
48. Maximov, A.; Khlustova, A. Optical emission from plasma discharge in electrochemical systems applied for modification of material surfaces. Surface and Coatings Technology 2007, 201, 8782–8788.
49. Maximov, A. I.; Khlyustova, A. V. Physical chemistry of plasma-solution systems. High Energy Chemistry 2009, 43, 149–155.
50. Griem, H. R. High-density corrections in plasma spectroscopy. Physical Review 1962, 128, 997.
51. Denaro, A. A model for glow discharge electrolysis. Electrochimica Acta 1975, 20, 669 – 673.
52. Mazza, B.; Pedeferri, P.; Re, G. Hydrodynamic instabilities in electrolytic gas evolution. Electrochimica Acta 1978, 23, 87–93.
53. Vogt, H. Heat transfer at gas evolving electrodes. Electrochimica Acta 1978, 23, 1019–1022.
54. Vogt, H. Mechanisms of mass transfer of dissolved gas from a gas-evolving electrode and their effect on mass transfer coeffcient and concentration overpotential. Journal of Applied Electrochemistry 1989, 19, 713–719.
55. Wüthrich, R.; Fascio, V.; Bleuler, H. A stochastic model for electrode effects. Electrochimica Acta 2004, 49, 4005–4010.
56. Sengupta, S. K.; Srivastava, A. K.; Singh, R. Contact glow discharge electrolysis: a study on its origin in the light of the theory of hydrodynamic instabilities in local solvent vaporisation by Joule heating during electrolysis. Journal of Electroanalytical Chemistry 1997, 427, 23 – 27.
57. Vogt, H.; Aras, O.; Balzer, R. J. The limits of the analogy between boiling and gas evolution at electrodes. International Journal of Heat and Mass Transfer 2004, 47, 787 – 795.
58. Nicolis, G.; Prigogine, I. Self-organization in non-equilibrium systems; New York: Wiley-Interscience, 1977.
59. Glansdorff, P.; Prigogine, I. Sur les propriétés différentielles de la production d’entropie. Physica 1954, 20, 773–780.
60. Prigogine, I. Time, structure, and fluctuations. Science 1978, 201, 777–785.
61. Glansdorff, P.; Nicolis, G.; Prigogine, I. The thermodynamic stability theory of non-equilibrium states. Proceedings of the National Academy of Sciences of the United States of America 1974, 71, 197–199.
62. de Groot, S.; Mazur, P. Non-equilibrium thermodynamics; New York: Interscience Publishers, 1962.
63. Wilf, H. Mathematics for the physical sciences; New York and London: JohnWiley and Sons Inc., 1962.
64. Kondepudi, D.; Prigogine, I. Modern thermodynamics, from heat engine to dissipative structures; New York: Wiley-Interscience, 1999.
65. Planck, M. Treatise on thermodynamics, 3rd ed.; Courier Dover Publications, 1945.
66. Fermi, E. Thermodynamics; Dover Publications, 1956.
67. Griffths, D. Introduction to electrodynamics, 3rd ed.; New Jersey: Prentice Hall, 1999.
68. Allagui, A.; Wüthrich, R. Contact glow discharge electrolysis: a far from thermodynamic equilibrium system; 60th Meeting of the International Society of Electrochemistry: Beijing, China, 2009.
69. Chapman, S.; Cowling, T. The mathematical theory of non-uniform gases, 2nd ed.; New York: Cambridge University Press, 1953.
70. Kjelstrup, S.; Bedeaux, D. Non-equilibrium thermodynamics of heterogeneous systems; Advances in Statistical Mechanics;World Scientific Publishing, 2008; Vol. 16.
71. Onsager, L. Reciprocal relations in irreversible processes. I. Physical Review 1931, 37, 405–426.
72. Onsager, L. Reciprocal relations in irreversible processes. II. Physical Review 1931, 38, 2265–2279.
73. Hangos, K.; Bokor, J.; Szederkényi, G. Analysis and control of nonlinear process systems; Springer, 2004.
74. Khalil, H. Nonlinear systems, 2nd ed.; Prentice Hall, 1996.
75. Orlov, Y. Discontinuous systems: Lyapunov analysis and robust synthesis under uncertainty conditions; Springer, 2008.
76. Allagui, A.; Wüthrich, R. The gas film on the onset of non-equilibrium plasma electrolysis; 1st Concordia University MultiphysicsWorkshop: Montreal, Canada, 2009.
77. Allagui, A.; Wüthrich, R.Onthe modelling of non-equilibrium plasma electrolysis:gas film stability; 8th World Congress of Chemical Engineering: Montreal, Canada, 2009.
78. Wüthrich, R.; Baranova, E. A.; Bleuler, H.; Comninellis, C. A phenomenological model for macroscopic deactivation of surface processes. Electrochemistry Communications 2004, 6, 1199–1205.
79. Fowler, R. H.; Nordheim, L. Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A 1928, 119, 173–181.
80. Stern, T. E.; Gossling, B. S.; Fowler, R. H. Further studies in the emission of electrons from cold metals. Proceedings of the Royal Society of London. Series A 1929, 124, 699–723.
81. Murphy, E. L.; Good, R. H. Thermionic emission, field emission, and the transition region. Physical Review 1956, 102, 1464–1473.
82. Wüthrich, R.; Hof, L. The gas film in spark assisted chemical engraving (SACE) – a key element for micro-machining applications. International Journal of Machine Tools and Manufacture 2006, 46, 828–835.
83. Wüthrich, R. Spark assisted chemical engraving - a stochastic modelling approach. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 2003.
84. Wüthrich, R.; Spaelter, U.; Bleuler, H. The current signal in spark-assisted chemical engraving (SACE): what does it tell us? Journal of Micromechanics and Microengineering 2006, 16, 779–785.
85. Daubechies, I. Ten lectures on wavelets; SIAM, 1992.
86. Holschneider, M. Wavelets: an analysis tool; Oxford Mathematical Monographs; Oxford University Press, 1995.
87. Mallat, S. A wavelet tour of signal processing; Academic Press, 1998.
88. Allagui, A.; Wüthrich, R. Gas film formation time and gas film life time during electrochemical discharge phenomenon. Electrochimica Acta 2009, 54, 5336–5343.
89. Vogt, H.; Thonstad, J. Review of the causes of anode effects. Aluminium 2003, 77, 98–102.
90. Feynman, R. There’s plenty of room at the bottom [data storage]. Journal of Microelectromechanical Systems 1992, 1, 60–66.
91. Halperin, W. P. Quantum size effects in metal particles. Reviews of Modern Physics 1986, 58, 533–606.
92. Kubo, R.; Kawabata, A.; Kobayashi, S. Electronic properties of small particles. Annual Review of Materials Science 1984, 14, 49–66.
93. Bansmann, J. et al. Magnetic and structural properties of isolated and assembled clusters. Surface Science Reports 2005, 56, 189–275.
94. Stewart, G. R. Size effects in the electronic heat capacity of small platinum particles embedded in silica. Physical Review B 1977, 15, 1143–1150.
95. Bradley, J. In Cluster and colloids. From theory to applications; Schmid, G., Ed.; VCH, Weinheim, 1994; Chapter 6.
96. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis 1989, 115, 301 – 309.
97. Haruta, M. Size- and support-dependency in the catalysis of gold. Catalysis Today 1997, 36, 153 – 166.
98. Buffat, P.; Borel, J.-P. Size effect on the melting temperature of gold particles. Physical Review A 1976, 13, 2287–2298.
99. Shvartsburg, A. A.; Jarrold, M. F. Solid clusters above the bulk melting point. Physical Review Letters 2000, 85, 2530–2532.
100. Mulvaney, P. Not all that’s gold glitter. MRS Bulletin 2001, 26, 1009–1014.
101. Ung, T.; Liz-Marzán, L.; Mulvaney, P. Gold nanoparticle thin film. Colloids and Surfaces A 2002, 202, 119–126.
102. McCarter, S.; Harris, C. Nanotechnology now used in nearly 500 everyday products; 2007.
103. Chin, N. Nanotech-enabled Consumer Products Top the 1,000 Mark; 2009.
104. 2010; http://www.nanotechproject.org/.
105. Pérez, J.; Bax, L.; Escolano, C. Roadmap report on nanoparticles; 2005.
106. Nagarajan, R. In Nanoparticles: synthesis, stabilization, passivation, and functionalization; Nagarajan, R., Hatton, T. A., Eds.; American Chemical Society, 2008; Chapter 1.
107. Reetz, M. T.; Helbig,W. Size-selective synthesis of nanostructured transition metal clusters. Journal of the American Chemical Society 1994, 116, 7401–7402.
108. Reetz, M. T.; Helbig,W.; Quaiser, S. A. Electrochemical preparation of nanostructural bimetallic clusters. Chemistry of Materials 1995, 7, 2227–2228.
109. Reetz, M. T.; Winter, M.; Breinbauer, R.; Thurn-Albrecht, T.; Vogel, W. Sizeselective electrochemical preparation of surfactant-stabilized Pd-, Ni- and Pt/Pd colloids. Chemistry 2001, 7, 1084–1094.
110. Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.;Wang, C. R. C. Gold nanorods: electrochemical synthesis and optical properties. The Journal of Physical Chemistry B 1997, 101, 6661–6664.
111. Mohamed, M. B.; Ismail, K. Z.; Link, S.; El-Sayed, M. A. Thermal reshaping of gold nanorods in micelles. The Journal of Physical Chemistry B 1998, 102, 9370–9374.
112. Yin, B.; Ma, H.; Wang, S.; Chen, S. Electrochemical synthe
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer