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Abstract 

 

A finite element mesh optimization method incorporating geologic features for stress 

analysis of underground excavations 

 

Bahareh Vazhbakht 

 

 

Application of numerical modeling in civil and mining engineering projects not only 

increases the effectiveness of analysis but also improves the results of the analysis. 

However, due to complexity of model generation and analysis, it still is a time consuming 

process. The finite element method requires a discretization, or a mesh, to solve the partial 

differential equations representing the problem. The finer and denser is the mesh, the more 

time and computer memory consuming is the analysis. Therefore, one of possible solutions 

is to simplify the analysis by reducing the mesh density while maintaining the quality of 

solution. Previously, with help of a cost function, a framework was introduced for mesh 

optimization considering the geometries of excavations only. From the current research, the 

optimization strategy is improved by including the effect of geologic features represented 

by rock properties. Among different rock properties, Young’s modulus (E) and Poisson’s 

ratio (µ) were considered. The effect of each of these properties on the mesh optimization 

was investigated and it was concluded that the E has the most significant effect on the 

results of stress analysis of dissimilar rocks. Subsequently, an expanded cost function 

incorporating E was formulated. Finally, an application of expanded cost function was 

demonstrated using a few representation case studies.   
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INTRODUCTION 

 

Stability estimations for underground excavations consist of variety of analysis and 

design among which, stress analysis is an essential procedure. Identifying and determining 

different types of stress, factors which causes stress changes over time, and the 

consequences of stress redistribution, are important subjects that should be considered in 

stress analysis. There are different factors to stress redistribution one of which is geological 

inclusions (Martin & Chandler, 1993; Rebaï, Philip, & Taboada, 1992; Zhang, Dusseault, & 

Yassir, 1994). Excavations can create stress perturbation and redistribution (Eberhardt, 

2001; Martin, Kaiser, & Christiansson, 2003). The coincidence of a geological discontinuity 

and an excavation makes the stress analysis even more complicated. As mining and 

tunneling progresses, excavation reaches deeper. The problem with depth is the higher risk 

of instability. Therefore, the presence of faults, fracture zones, microckracks, or in general, 

heterogeneity of the rock mass cannot be avoided. Location, direction and properties of the 

geological structures are the factors which control the effect of them on the stability of 

tunnels. 

To understand and estimate the behavior of a medium, differential equations 

representing stresses and displacement should be solved. The introduction of numerical 

modeling to civil and mining engineering made it considerably simpler for engineers to 

solve these equations; however there are still many problems to achieve the best result in 

the less time and computer memory consumption. Depending on the numerical method 

which is being used, different procedures should be established to solve an equation. One of 

the generally used numerical methods is the finite elements method, which has a broad use 

in civil and mining engineering simulations. The method uses a mesh to solve differential 
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equations. To get the best results from the method, mesh generation should be adequate, 

not very coarse and not very dense. Despite the popularity of the method, it still is time and 

memory consuming, specially when used for simulations of multiple excavation, different 

materials (existence of geological discontinuities and inclusions), and multiple staging 

procedures. 

Mesh simplification is a possible way to achieve the best result for these types of 

complicated processes. Zsaki and Curran (2005) introduced a method to simplify the mesh 

by removing unnecessary vertices. The method focused on the excavations geometry with 

respect to a region of interest (ROI). By assigning a cost value to each vertex (which is 

depended on the location and distance of the vertex to the ROI) the less effective vertices on 

the analysis will be recognized and removed. The method worked properly and accurately, 

even for the multiple stage mining simulations.  

 The aim of this research is to introduce a method to improve the finite element 

analysis by simplifying the mesh generation for the complicated models with a variety of 

materials. For that purpose the method used by Zsaki and Curran (2005) will be completed 

by considering material properties as well as excavations geometries. 

 In the first chapter, the problem will be explained by considering previous 

researches and studies. Then in the next chapter the effect of material properties on the 

stresses and displacements analysis will be studied; also the relationship between mesh 

density and material properties will be determined. Finally, an expanded cost function will 

be introduced at the third chapter and its application will be discussed.    
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CHAPTER ONE 

1. LITERATURE REVIEW 
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 Engineering projects related to soils and rocks are always full of uncertainties; there 

is always a parameter or a condition that it is not considered in planning, analysis, or 

design. Underground excavations, including tunnels and mining shafts, are one of the most 

problematic structures since they need accurate predictions of earth (soil and rock) 

behavior. It is very important to consider all the parameters which affect the stability of a 

tunnel, often from a very limited amount of available data. 

 Studies showed (Hoek & Brown, 1994) that there are different parameters which 

affect stress state around an excavation; type of rocks, existence of fractures and joints, 

faults near excavation and generally geological structures are the most problematic 

phenomena. Each of these geological features, like faults and fractures, affects stress states 

near an excavation in different ways; either they change the stress direction or change the 

magnitude of stress in particular area. 

 A finite area of influence can be expected for each of these geological features; 

outside of which their effect can be neglected. Perhaps the most important step is to find 

parameters which affect stresses near an excavation and to understand the effect of 

geological features on such excavations.  

1.1 Stresses in a rock mass 

 Generally, stresses within the ground consist of normal stresses and shear stresses. 

The principal normal stresses, near the ground surface, are divided into vertical and 

horizontal stresses, which are orthogonal to each other. However, the stress direction varies 

with depth and it might not be vertical or horizontal after a certain depth. The vertical 

stress is also called gravitational stress and it exists due to the weight of the overburden or 

gravity force. It is a function of density, gravitational acceleration, and height of overburden 



5 
 

or depth at which it is calculated. Meanwhile, horizontal stresses are caused by tectonic 

forces. Thus, their origin leads changes of stress orientation and magnitude with time. 

Presence of these forces or stresses and their changes with time makes the rock mass, in 

general, a complex, heterogeneous material.    

 The best way to measure stress in a specific area is using in-situ stress 

measurement; however this is an expensive way to estimate stress orientation and 

magnitude (Fairhurst, 2003) . By avoiding those methods and to better understanding the 

tectonic forces and their effect on stress distribution, the Stress World Map was prepared 

by co-operation of a group of researchers (Fuchs & Müller, 2001; Zoback & Magee, 1991). 

 Previously, only a local stress distribution was studied and the effect of tectonic 

activities on stress distribution was not considered. Due to preparation of the Stress World 

Map (Figure 1-1) the relationship between tectonic activities and stress distribution and 

deviation has been confirmed. 

 The World Stress Maps is a new perspective on stress deviation and heterogeneities 

due to faults or mountain belts. The effect of these geological features in large scale and the 

effect of joints, fractures, in small scale will be discussed in the following sections. 

 Stress direction and magnitude is affected by not only the geological features but 

also by built structures or activities such as underground excavations, boreholes, oil and gas 

development and so on. 
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Figure 1-1 World Stress Map (Zoback & Magee, 1991) 

 

1.2 Stress around an excavation 

 

 Considering the disturbance in the state of stress around local features, such as 

excavations, Hoek and Brown (1994) discussed that the extent of disturbance could lead to 

failure in the rock mass adjacent to the excavation. Consequently, this concept is the basis of 

all tunneling and excavation design currently in use today.  

 Figure 1-2 shows stress trajectories around a cavern located in Norway (Martin et 

al., 2003) . It is a good example to illustrate how an excavation could change the local stress 

distribution. If it was assumed that 25 m from the cavern, the stress direction is the in-situ 
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stress trajectory of the local surroundings, changes in stress direction and stress 

concentration near roof, side walls, and bottom edges of the cavern is illustrated in Figure 

1-2. Near the side walls stress direction rotates almost 90˚ in relation to the in-situ states. 

Stress density has its highest value near the crown of the cavern and the bottom edges. 

Farther from the cavern, the stress direction changes back to its original orientation and its 

distribution changes as well to the in-situ one.   

 

Figure 1-2 Stress perturbation due to an excavation of a cavern in Norway (Martin et al., 2003) 

 

 Generally, the normal stresses present in rock mass changes due to a decrease or 

increase in the magnitude of the overburden load. This will help to better understand that 

how tunneling or opening an excavation may cause redistribution of stresses. Since 

construction of an underground structure is equal to removing a considerable mass of rock 
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or soil and creating a hollow cavity, it will result in stress change. Constructing a tunnel or a 

cavern not only means elimination of rocks and soils but also it creates a new free surface 

(Fuchs & Müller, 2001) . Thus, the combined effect of these, results in stress perturbation. 

 

Figure 1-3 Stress orientation rotation and stress magnitude changes as tunnel approaches and passes 
the rock mass (Eberhardt, 2001) 
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 Stress redistribution and deviation from the in-situ values near an underground 

excavation consists both changes in magnitude and rotation of orientation of stress. Far 

from the excavation, the stress state reaches its in-situ local or regional direction and 

magnitude. 

 As Eberhardt (2001) demonstrated that for a given volume of rock, as the tunnel 

advances through the rock mass, the stress orientation will rotate almost 90˚ and the 

magnitude of stress may increase or decrease as the tunnel passes through the rock. Figure 

1-3 illustrates different states of tunneling advancement and changes in stress direction and 

magnitude in these different states. 

 

Figure 1-4 Conceptual model of the EDZ (Sato, Kikuchi, & Sugihara, 2000) 

 

 Stress redistribution, and in general, rock mass disturbance due to excavation 

results in the existence of a zone, which is called excavation damage zone (EDZ). As it has 
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been noted by Sato et al. (2000) , rock properties and conditions such as, fractures, 

permeability, and stress state, are expected to be different in this zone due to excavation 

(Figure 1-4). Presence of EDZ is the reason of instability of underground openings and it has 

been proven that it is strongly depends on the excavation method itself (Cai et al., 2004) .  

1.3 The effect of geological structures on stress state  

 

 The effect of geological structures on stress distribution should be discussed 

considering different parameters. Depending on the scale of structures, changes in stress 

orientations and magnitudes are different; however this does not mean that the effect of the 

microcracks is negligible. To understand the point, it can be said that the effect of large scale 

structures like tectonic structures due to for instance, continental collision is used to 

prepare stress maps whereas the effect of the fractures and joints cannot be included in 

maps since they are much more localized. However, when discussing engineering cases 

these types of geological structures may be considered as more important, due to smaller, 

local scales. 

 Any geological structure within the rock mass such as joints, faults and any other 

type of discontinuities, regardless of their size and geometry, significantly influence the 

stress orientation and magnitude throughout the rock mass. Martin and Chandler (1993) in 

a research done using  stress measurement from URL (Underground Research Laboratory) 

concluded that stress magnitude varies significantly near a geological structure over a short 

distance, and also they found that stress orientation can rotate even near 90˚ in the 

presence of geological structure, similar to the advancing from in tunneling, as discussed 

earlier (Fairhurst, 2003; Martin & Chandler, 1993). 
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 Figures 1-5 and 1-6 illustrate stress magnitude near a fracture zone due to a fault, 

and changes in stress magnitude adjacent to fracture zone at URL, respectively.   

   

 

Figure 1-5 Variation of normal stress magnitude along a thrust fault at the URL, Canada. Vertical and 
horizontal scales are the same (Fairhurst, 2003; Martin & Chandler, 1993) 

 

 Included in their research, Martin and Chandler (1993) determined stress state for 

three different geological structures of varying scales; microcracks, fractures, and a thrust 

fault.    

 For microcracks the analysis showed a reduction in stress magnitude and this 

reduction is more significant in a borehole perpendicular to the microcracks (Martin & 

Chandler, 1993). In another investigation, Martin and Chandler (1993) studied the effect of 

fractures on stress distribution and magnitude. Results show that the orientation of the 
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minor principal stress (σ₃) rotates almost 90˚and the stress magnitude also changes near 

the fracture zone (Martin & Chandler, 1993).   

 Similar results for stress magnitude and orientation changes were observed near 

large scale geological structures like faults. The stress magnitude above the fault is less than 

the stress magnitude below the fault (Martin & Chandler, 1993). Similarly, Zhang et al. 

(1994) concluded that shear stress at the sides of the fault shows a reduction in magnitude. 

 

Figure 1-6 In-situ stress magnitude at URL and its changes with respect to fracture zone (Martino & 
Chandler, 2004) 

 

 In general, not only the existence of geological structures but also presence of any 

kind of inclusion affects stress distribution. The effect can occur as a decrease or an increase 

in the magnitude of stress or as a change in stress orientation or both together. 
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Figure 1-7 Effect of inclusions on horizontal stress orientations in soft and stiff, isotropic and anisotropic 
inclusion and materials. The square represents inclusion (Zhang et al., 1994) 

 

 Zhang et al. (1994), by testing four cases of isotropic and anisotropic inclusions and 

host material explained that no matter what kind of inclusion (isotropic or anisotropic), its 
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presence will affect the stress distribution; however the intensity of the effect will vary from 

one case to another, which  can be seen in figure 1-7. In this figure, the effect of inclusion on 

stress orientation is illustrated and it is understandable that the intensity of this effect is 

much higher when an anisotropic inclusion exists in an anisotropic material (Zhang et al., 

1994). The same result achieved from studying the effect of inclusions on stress magnitude. 

Once again, changes in stress magnitude from anisotropic inclusion in anisotropic material 

were the most significant (Zhang et al., 1994).  

 Although the effect of geological inclusions on stress distribution including stress 

magnitude and stress direction has been proven, changes may not necessarily occur in both 

stress magnitude and orientation simultaneously. Research done in a copper mine in central 

Chile shows that, despite the fact that the stress orientation in a mine area (which is located 

in a shear zone of a fault) is completely different from the regional stress orientation, the 

magnitude of the stress shows no significant changes due to presence of the fault 

(McKinnon & Garrido de la Barra, I., 2003). 

 The stress concentration in porphyroclasts is an example of small scale inclusions 

and their effect on stress distribution. Kenkmann and Dresen (1998) showed that the 

interface of a porphyroclasts and its surrounding matrix is a suitable place for stress 

concentration. This phenomenon can be due to dislocation density and its relation to the 

applied stress (De Bresser, J. H. P., 1996). As stresses concentrate in the porphyroclasts-

matrix interface, their magnitude increases in all directions (Kenkmann & Dresen, 1998).  

 Therefore, it can be concluded that stress distribution (regardless of the given scale) 

strongly depends on discontinuities and their activities (Rebaï et al., 1992).  
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1.4 Underground excavation in the vicinity of geological structures 

 The vicinity of an excavation and a geological inclusion, like faults, requires careful 

analysis and excavation design. Concentration of stresses near geological inclusions is a 

detail that makes stability analysis more and more essential for underground structures. 

Existence of geological structures like faults or fractures is one of the most important 

reasons of underground failures. This is because of the lack of knowledge about the 

behavior of geological discontinuities or heterogeneities. By assuming a potential fault 

negligible, the stability estimation may be inaccurate. Several case studies have been done 

to give a better perspective of these kinds of scenarios; however there still remain too many 

questions and problems to solve. 

 In summary, the effect of geological structures on an underground excavation 

depends on different factors. These factors may be classified as type of the inclusion, 

distance between an inclusion and the excavation, the geometry of the inclusion, roughness 

or softness of the geological structure, etc (Everitt & Lajtai, 2004; Hao & Azzam, 2005; 

Singh, Singh, Singh, & Jethwa, 1994; Suorineni, Tannant, & Kaiser, 1999). 

 As it has been mentioned, problems related to excavation stability are considered 

with respect to the concept of EDZ. This means that the effect of heterogeneity should be 

estimated on excavation damage zone. Nevertheless, a plastic zone may be preferred by 

some scientist instead of EDZ to explain this particular area, which surrounds an 

underground opening (Golshani, Oda, Okui, Takemura, & Munkhtogoo, 2007). 

 Lei et al. (1995) illustrated the effect of fault near an excavation by using numerical 

modeling (Figure 1-8). An underground tunnel and the stress trajectory around the tunnel 
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has been modeled and then by adding two faults, stress perturbation has been studied (Lei 

et al., 1995).  

 

Figure 1-8 Principal stress distribution due to an underground excavation and presence of faults (Lei et 
al., 1995) 

 

 Later Hao & Azzam (2005), in a study of fault parameters’ effect on displacement 

near an excavation, indicated changes of horizontal stress near a fault and its effect on 

plastic zone near an excavation and the fault. It was concluded that augmentation of 
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horizontal stress causes an increase in plastic zone (Hao & Azzam, 2005). This can be clearly 

seen in the figure 1-9; however there are other parameters which play a significant role like 

fault dip and location.  Also changes in horizontal stress not only results in increase of 

plastic zone, but also it causes redistribution of the plastic zone (Hao & Azzam, 2005).  

 

Figure 1-9 The effect of horizontal stress state on plastic zone distribution affected by fault in two 
different locations (Hao & Azzam, 2005) 

 

 In addition, the effect of the fault’s location can be seen from Figure 1-9, and it can 

be concluded that the fault, which intersects the sidewall of excavation, is more dangerous 

than the fault near the roof of the excavation (Hao & Azzam, 2005). 

 Singh et al. (1994) with respect to Singh’s equation (1991) concluded that the effect 

of fault on excavation stability does not only depend on fault orientation but also it is 

strongly depends on fault’s location. Actually, effect of the fault orientation is considerable 

until it reaches certain degree (in Singh’s study 45˚) (Singh et al., 1994). 

 Zhu & Bruhns (2008) investigated parameters, which affect EDZ and its 

redistribution. Analyzing different parameters, they concluded that since stress 
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redistribution has the most effect on EDZ, therefore, all the parameters, which cause stress 

deviation, should be considered as the most effective parameters on EDZ redistribution 

(Zhu & Bruhns, 2008). As it had been demonstrated, geological inclusion or generally rock 

heterogeneity results in stress perturbation. Accordingly, Zhu and Bruhns (2008) studied 

rock heterogeneity and the consequence of its existence on EDZ near a circular opening. 

They found out that it is not the homogeneity index, which controls disturbance of damage 

zone; the EDZ is in fact controlled by the ratio of the boundary stress (Zhu & Bruhns, 2008).  

 To emphasize heterogeneity, the effect of two faults near an excavation was 

investigated and crack initiation due to fault presence and stress concentration near faults 

was considered (Zhu & Bruhns, 2008). The results are the same as the result achieved by 

Lei et al. (1995).  Similarly to Lei et al. (1995), Zhu and Bruhns (2008) concluded that the 

effect of faults is strongly depends on the fault’s location and direction. They also discussed 

that in-situ stress magnitude is the other parameter that, together with stress concentration 

around fault, may drastically change the shape and effective area of the EDZ (Zhu & Bruhns, 

2008). 

 As it has been discussed, generally all kind of inclusions will lead to stress changes, 

the question is whether they will all change or accelerate the changes in EDZ? Everitt and 

Lajtai (2004) studied the effect of rock fabric and texture and also the effect of rock 

heterogeneity and anisotropy on excavation failures. From their work it can be concluded 

that by being familiar with the fabric of host rock (near tunnel) even the fracture 

distribution by excavating can be predicted (Everitt & Lajtai, 2004). Also as it has been 

expected the rock fabric as like as faults, joints, and fractures controls EDZ (Everitt & Lajtai, 

2004). Their report also indicates that even batholiths, which seem homogenous and 

isotropic, have a complicated interior texture (Everitt & Lajtai, 2004). The effect of these 
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types of anisotropy and heterogeneity specially depends on the location and direction of the 

excavation with respect to these inclusions.    

 In general, existence of any kind of heterogeneity or inclusion in rock mass, even 

existence of variability of rock fabric and texture will make an underground opening to be 

subjected to different kind of failures. Excavating an underground opening around a 

geological structure will increase EDZ. This increase strongly depends on additional 

parameters like properties of inclusion (such as friction, density, permeability), and its 

direction and location from excavation. 

1.5 Numerical modeling  

 

 Expensive and time consuming in-situ testing in conjunction with the rapid progress 

of numerical computation lead to application of numerical modeling to solve geological, 

geotechnical, and rock mechanics problems. Although, highly accurate modeling of complex 

geotechnical situations is not achievable at this time due to the data-limited nature of the 

field, numerical modeling finds its place in geo-science and it is now applied in variety of 

research projects; however the accuracy of the result still needs to be considered (Wiles, 

2006). Additionally, it also has its disadvantages.  One of the most important problems with 

numerical modeling is the memory and speed of the computations (Zsáki & Curran, 2005). 

Generally, the more complex is the problem, the more time consuming is the process of 

simulation.  

 Numerical modeling is now used to compute stress state in a particular area, stress 

magnitude and orientation around geological structures, development of EDZ, stress 

perturbation due to mining or tunneling, and stability of underground openings.  
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 Based on different numerical models, various computer simulation programs are 

available. Depending on the assumptions and implementation of numerical model used in 

these programs, the results will be different. Therefore, not all of these programs are 

suitable to solve all kinds of geo-science problems. 

 The finite element method, boundary element method, elasto-static and elasto-

dynamic boundary element method, the discrete element method and variations and 

combinations of these methods are some, which are applied to solve the models. Siebrits 

and Crouch (1993), and Fotoohi and Mitri (1996) successfully applied the boundary 

element method to simulate geological structure and stress distribution around them, and 

the effect of fault near an excavation, respectively. 

 FLAC (Itsaca International Inc., 2000), UDEC (Itasca International Inc., 2000), and 

Phase² (Rocscience Inc., 2008), are some of the simulation programs, which are widely 

applied for analyzing geotechnical and rock mechanics models. For instance, Hao & Azzam 

(2005) claim that for simulating the effect of fault around an excavation in a block rock 

mass the most appropriate numerical tool is UDEC (Itasca International Inc., 2000). UDEC 

(Itasca International Inc., 2000), based on distinct element method, has been proven by 

other researchers (Hart, 2003; Jiang, Li, & Yamashita, 2009) as a better numerical 

simulation program to illustrate discontinuity in rocks; however Hart (2003) indicated that 

to simulate geological structures it is better to use 3DEC (Itasca International Inc., 1998) 

instead of UDEC (Itasca International Inc., 2000), for the true three-dimensional geologic 

structures.  

  Cai (2008) made a comparison between two simulation programs, FLAC (Itsaca 

International Inc., 2000) and Phase² (version 5.0) (Rocscience Inc., 2008) to illustrate that 

the result of these two programs can be different, and the similarity of the result depends 
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on excavation method and properties of host rock. FLAC (Itsaca International Inc., 2000) is 

based on explicit finite difference method and Phase² (Rocscience Inc., 2008) is based on 

implicit finite element method (Cai, 2008). Table 1-1 compares some properties and 

capabilities of these two programs.  

Table 1-1 Comparison between FLAC and Phase² (Cai, 2008) 

 FLAC Phase² 

Solution scheme Explicit Implicit 

Computer memory 
requirement 

Low High 

Non-linear problem handling 
No iteration necessary 
Computationally stable 

Iteration required 
Diverge may occur 

Physical process 
Always follow the physics if the 
timestep criterion is guaranteed 

Need to be demonstrated that it 
follows the physical process 

Excavation method Delete or assign null element 
Excavation(assign very low 
modulus) 

Structural elements Yes Yes 

Discontinuity model Yes (interface element) Yes (joint element) 

User interface Good  Excellent  

First release 1986 1990 

 

 The results from two simulation programs differ in some cases, and it is a 

consequence of different applied numerical modeling. Cai (2008) concluded that although 

these simulation tools seem easy-to-use, the users can only gain an accurate result if they 

had considerable knowledge about numerical modeling. He also indicated that the result of 

the research is not a key to find that which of these tools are more accurate or powerful, the 

result just simply illustrates that each of these numerical methods are compatible with a 

specific area of geo-science. 
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 The application of numerical methods is extremely wide that in every research area, 

one or two numerical methods are used and discussed; however this vast application did 

not eliminate usage of physical methods. Most of the time physical methods are still 

employed and the final decision is based on comparison between the results of these two 

methods (Cavendish, Field, & Frey, 1985). Some attempts have been done to combine these 

two methods together to achieve the most reliable results (Li, Liu, Dai, & Su, 2005). Li et al. 

(2005) combined the two methods, and with benefits of both numerical and physical 

modeling demonstrates more accurate results. They also successfully applied the combined 

method to solve the problem of a large underground hydropower project. 

 As it has been indicated by Cai (2008) it is not wise to compare different numerical 

methods to find the best one. They can only be compared in their ability to solve the same 

problem.  

1.5.1 Mesh Generation 

 

 As it was discussed in previous section, numerical modeling is more and more 

employed to solve geological problems. In order to apply numerical modeling to a problem, 

first a mathematical method should be selected to solve the partial differential equations via 

a discretization or mesh of the problem domain, like in the finite element, finite difference 

or boundary element method. These methods work in conjunction with a mesh generator, 

which can be done automatically or manually. Giving inaccurate results and being time 

consuming are two main disadvantages of manual meshing. Therefore many efforts have 

been done to automate mesh generation (Cavendish et al., 1985; Denayer, 1978).  
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 Ho-Le (1988) presented almost the first classification of mesh generation methods 

(Figure 1-10). This classification has been done according to the temporal order of the 

creation of nodes and elements (Ho-Le, 1988).  

 

 

Figure 1-10 Classification scheme for mesh generation methods (Ho-Le, 1988) 

 

  

 Different methods have their own merits and demerits. As an example, a 

comparison of four automatic methods is summarized in Table 1-2; however this 

comparison is not very accurate and up to date. 

 Although most of these methods generate triangular meshes, few of them can 

produce quadrilateral meshes in 2D (table 1-2). Not all of these methods can be used for 3D 

mesh generation; however in this thesis only 2D mesh generation will be considered (table 

1-2).  
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Table 1-2 Comparison of the mesh generation approaches (Ho-Le, 1988) 

Approach 
Quadri-
lateral 

Brick Element shape 
Mesh density 

control 
Time 

efficiency 

Topological 
decomposition 

No No Poor No O (N²) 

Node connection Yes No 
2D good 
3D fair 

Yes O (N) 

Grid-based Yes 
Relatively 

easy 

Interior 
elements 
excellent 

Yes O (N) 

Geometric 
decomposition 

Yes No 
2D good 

3D unknown 
Yes Unknown 

(N = number of nodes in the mesh) 

 

 The latest mesh classifications are determined based on mesh connectivity or 

element’s geometry. Connectivity-based classification included Cartesian, structured, 

unstructured, hybrid and gridless (Soni, 2000). Cartesian grids consist of a network of grid 

lines with constant spacing which are located in a 2D rectangle or 3D rectangular box (Soni, 

2000). Structured mesh generation is based on regular connectivity. A logical rectangular or 

hexahedral pattern is expected for structured mesh generation (Soni, Shih, & Ito, 2010); 

whereas unstructured mesh generation is based on irregular connectivity, and it does not 

follow a logical connections of adjacent points (Soni et al., 2010). Unstructured 2D grids are 

usually in form of triangles and 3D unstructured grids are mostly tetrahedrons (Soni, 2000). 

Compared with unstructured mesh generation, structured meshes are simpler to use, they 

need less computer memory and it is easier to control their shapes and sizes; however since 

they are not flexible enough to adapt to an irregular geometry of geologic structures, thus it 

is more preferable to use unstructured meshes (Bern & Eppstein, 1992). Hybrid or 
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generalized grids included polygonal shapes with unlimited numbers of sides (Soni, 2000). 

In gridless method explicit connectivity between nodes is unnecessary (Soni, 2000).   

 From the first application of mesh generations until now, this field of mathematics, 

relevant to meshing, has made a considerable progress. The history of different mesh 

generation methods and their future is shown in figure 1-11. 

 

Figure 1-11 History of grid generation application (Soni, 2000) 

   

 As it can be seen from figure 1-11, unstructured mesh generation and hybrid 

meshes will be used mostly in the future, which is due to their high flexibility. Among all the 

shapes, triangular and tetrahedral forms of unstructured mesh generation are the most 

common.  



26 
 

 There are three different methods that can be used to generate mesh in these two 

forms: Octree, Delaunay, and Advancing Front (Owen, 1998). Delaunay criterion (Figure 1-

12) is the most popular method, which can be achieved in two ways; by point insertion or 

by boundary constrained triangulation (Owen, 1998). 

 

Figure 1-12 Delaunay criterion (van Kreveld, Löffler, & Silveira, 2010) 

 

 All these methods and criterions just generate meshes. However, these meshes, with 

some post-processing improvements, will reach the required quality for numerical 

modeling.  

1.5.2 Smoothing and clean-up 

 

 Smoothing and Clean-up are two main categories of mesh improvements (Owen, 

1998). Smoothing is a procedure in which, by repositioning individual nodes, the quality of 

the elements is improved (Owen, 1998). All the smoothing techniques can be classified in 

four groups: averaging, optimization-based, physically-based, and mid-nodes placement 

methods (Owen, 1998). Smoothing is done using different kinds of algorithms that the 

simplest one is Laplacian which can be classified in averaging methods group (Owen, 1998).  

 Clean-up will improve mesh quality by changing the elements’ connectivity while 

improving shape or topology (Owen, 1998).   
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1.5.3 Refinement 

  

 One of the most commonly used post-processing procedures that are applied on 

meshes is mesh refinement. This operation will reduce the element size by increasing the 

number of elements in a region. Refinement can be done several times in succession to 

achieve the desired element size. Different methods and algorithms can be used for mesh 

refinement operation. One method is to regenerate the meshes with desired element size 

and distribution; however this method is computationally expensive and complicated (De 

Cougny & Shephard, 1999). Other methods and algorithms can be classified depending on 

meshes; whether meshes are triangular, tetrahedral, quadrilateral, or hexahedral. The 

refinement methods will be different for each type; however some of these methods can be 

applied for two or more types. 

 Owen (1998) presented a general classification for mesh refinement depending on 

meshes form. According to Owen (1998), there are two base groups of refinement methods: 

1) triangular/tetrahedral refinement which consists of three sub-groups; edge bisection, 

point insertion, and templates, and 2) quad/hex refinement. 

  



28 
 

 

Figure 1-13 Edge bisection refinement methods (Owen, 1998) 

 Edge bisection splits the edges and therefore the two triangles which are adjacent 

the same edge will split into two. Figure 1-13 illustrates this refinement methods and the 

result of refinement (Ho-Le, 1988). In the figure edge A-B is split at point C and it causes the 

splitting of the surrounding tetrahedral (Owen, 1998). 

 The simplest method is point insertion, in which a single node will be inserted at the 

center of an element and divide it into three (for triangle) or four (for tetrahedral) new 

elements (Owen, 1998). A potential disadvantage of this method is the poor quality of the 

resulting elements (Owen, 1998). This method is equal to insertion of Delaunay criterion in 

another classification. 

 Another method is the templates method, which consist of different variations to 

decompose a triangle. One of these methods is shown in Figure 1-14. As it can be seen each 

triangle divided to four triangles by inserting 3 nodes at each of the edges of the triangle 

(Owen, 1998). 
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Figure 1-14 Templates refinement methods (Owen, 1998) 

 

 Quadrilateral and hexahedral meshes generated by structured mesh generation are 

due to their forms, not suitable for edge bisection and point insertion. Only the templates 

method is good for these meshes (Owen, 1998). 

1.5.4 Coarsening 

 

 As it has been discussed, many post-procedures are carried out in order to reduce 

computation time and error in the solution. The last, but not least, operation is mesh 

coarsening. This is a procedure, which eliminates all unnecessary nodes and elements from 

a mesh (Hattangady, 1999a). The general changes due to mesh coarsening (depending on 

coarsening factor) are illustrated in Figure 1-15. 

 

Figure 1-15 Mesh coarsening procedure (Miller, Talmor, & Teng, 1999) 
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 Miller et al. (1999) classified coarsening methods into 3 groups of; element-nested, 

node-nested, and non-nested. Another classification proposed by Hattangady (1999a)which 

has three methods such as; edge collapsing, edge swapping, and planar smoothing. 

Following is a brief explanation of these methods. 

 Edge collapsing is a procedure, which removes all the edges that comply with the 

edge collapsing criteria, and all the adjacent faces connected to these edges (Hattangady, 

1999a). Edge swapping is about rearranging face connectivity by decreasing the maximum 

angle of the triangular face (Hattangady, 1999a). Planar smoothing works with relocating 

nodes, for which all the faces that are connected to it are located in the same plane 

(Hattangady, 1999a). After planar smoothing it may be necessary to use edge collapsing 

(Hattangady, 1999a). 

1.5.5 Influence of mesh size  

 

 Numerical modeling is applied in different fields of science and engineering. It has 

been determined that the finite element mesh size has a considerable effect on analysis 

result. Some of these supporting investigations will be discussed in this section to clarify the 

importance of mesh size on final results of the numerical modeling. Generally, mesh size 

may have an effect on the accuracy of the final result, and the time of analysis. 

 Choi and Kwak (1990) illustrated that when using non-linear analysis to monitor 

the effect of load increasing on concrete reinforced structures, the finite element mesh size 

plays a significant role. Their research showed that by changing the mesh sizes the errors 

which depend on the mesh size, will be reduced (Choi & Kwak, 1990). It can be seen from 

this research that the mesh size, should not be very large (Choi & Kwak, 1990). By their 
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proposed model the best mesh size can be achieved, which will then decrease the numerical 

error caused by mesh fineness (Choi & Kwak, 1990).  

 Another field in which numerical modeling has a wide application is metallurgic 

science, in particular metal forming. Fatigue crack closure is an important discussion in this 

field and it has been proven that to achieve the most appropriate numerical crack opening 

results, it is necessary to use the proper mesh sizes through different applied mesh sizes 

(Lee & Song, 2005). It was also considered by Park et al. (1997) that the result of the finite 

element analysis, which used on the most suitable mesh size, is more compatible with 

experimental analysis results.  

 Relationship between mesh size and analysis or computation time is an important 

aspect of mesh generation and numerical modeling. It has been proven that analyzing fine 

meshes needs more time than coarse meshes. Hattangady (1999b)shows that by coarsening 

meshes, the time spent to analyze the geometry will be significantly reduced. In simulating 

the metal forging process, which is a time consuming process simulation-wise, coarsening 

meshes will reduce CPU time almost 20.55% and the result of the analysis of coarse mesh 

and fine mesh are almost identical (Hattangady, 1999b).  It is also considered in their 

research that more the mesh is uniform, the more dramatic is the reduction of CPU time 

(Hattangady, 1999b). Another advantage of a coarse mesh in their research is: reduction of 

memory usage, smaller result file, faster visualization, and faster transmission of files 

(Hattangady, 1999b). 

 All these investigations show that, as it was expected mesh size not only improved 

analysis accuracy, but also it will help to reduce analysis time and even the memory usage. 

As was mentioned in previous sections, with mesh refining and coarsening we can have a 

more appropriate finite element model to be solved in a shortest amount of time.  
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CHAPTER TWO 

2. THE RELATION OF MESH OPTIMIZATION 

WITH YOUNG’S MODULUS AND 

POISSON’S RATIO 
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 Mining and civil excavation analysis and design consists of considerable amount of 

input data fed into a numerical or analytical model. The amount of input is required due to 

the inherent uncertainty and complexity associated with geologic media, such as rocks and 

soils. In contrast to the limited nature of analytical models, numerical modeling not only 

makes the analysis simpler but also improves the result of the analysis and predictions. 

There are different numerical methods of stress analysis like boundary element and finite 

element methods. Although the finite element method simplifies stress analysis, due to 

complexity of model generation and analysis it still is time consuming process which also 

needs adequate computational resources. The finite element method requires a 

discretizations, or a mesh, to solve the problem. The meshes are created by mesh 

generation. Mesh density has a direct effect on time and memory consumption of the 

analysis. Therefore one of the possible solutions to simplify the analysis is to reduce the 

mesh density and element number while the analysis result is comparable with the original 

results. 

 There are different parameters which should be considered for estimating mesh 

adequacy. Stress analysis of an underground excavation depends on the excavation’s 

geometry, its location and geological, geotechnical, and rock mechanical properties of the 

rock mass. Therefore mesh density and the number of mesh elements are directly 

dependent on these parameters as well. Zsaki and Curran (2005) introduced a framework 

for boundary and finite element mesh optimization with respect to excavations’ geometry. 

With help of a cost function, they introduce an equation for simplifying a mesh depending 

on the geometry of the excavation. However, their method did not include the influence of 

geologic features on simplification. 
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 The focus of this thesis is mesh optimization with respect to rock material 

properties. As discussed in the preceding chapter, the mesh optimization scheme of Zsaki 

and Curran (2005) only considers the optimization of geometry of excavations. This thesis 

expands on the optimization strategy by including rock properties.  Among the many 

different properties of rocks Young’s Modulus (E) and Poisson’s Ratio (μ) are considered in 

this thesis. Thus different mesh generation methods are applied and the relation between 

rocks’ properties (E and μ) with number of elements will be studied to find out which of 

these two properties has the most significant effect on the stress analysis as affected by the 

number of elements in a FEM analysis. Subsequently, a cost function for the most effective 

property will be formulated. 

 For modeling and stress analysis         (a finite element program by Rocscience) 

is used (Rocscience Inc., 2008). The effect of mesh density and mesh element number on a 

model without excavation was studied, to establish a base case, and then an excavation was 

added to the model and stress analysis was repeated. Models and analysis details are 

summarized in following sections. 

 For each model a set of different values for E and μ was used for evaluating their 

effect on mesh optimization. Estimations were carried out for 4 different E values: 10000, 

20000, 40000, and 75000 MPa and for 3 different μ values: 0.1, 0.2, and 0.3. These values 

cover a range of representative rock properties from very weak to a fairly competent and 

sound rock. As a resource, Table 2-1 shows E for different type of intact rocks. Similarly, the 

values of μ are chosen considering Figure 2-1. Although the effect of E and μ were 

considered and investigated, the examination was not simultaneous; when the effect of E 

was studied μ was assumed to be constant and equal to 0.3, and E was considered constant 

and equal to 20000 MPa during the stress analysis with different values of μ. 
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Table 2-1 Typical values of uniaxial compressive strength and elasticity modulus of some rocks 
(Palmström & Singh, 2001) 

 
Average values from tests of 
rock samples               

 
Test of rocks world-wide 

Rock  
    

MPa 
E 

GPa 
E/    

Number of 
tests 

Crystalline 
texture 

Dolomite 
Limestone 

Marble 

86 
107 
113 

38 
47 
63 

443 
441 
474 

8 
81 
20 

      
 Clay schist/- 

stone 
Micaschist 

68 
 

104 

38 
 

39 

563 
 

374 

2 
 

16 
      
 Gneiss 

Granulite 
130 
90 

53 
41 

406 
451 

27 
4 

      
 Amphibolite 

Greenstone 
Quartzite 

212 
281 
209 

101 
101 
58 

474 
359 
276 

7 
1 

28 
      
 Anorthosite 

Diorite 
Granite 

Granodiorite 
Gabbro 
Norite 

Peridotite 
Monzonite 

228 
173 
154 
160 
228 
229 
197 
110 

90 
64 
48 
51 

106 
82 
55 
28 

395 
368 
313 
319 
466 
356 
280 
256 

2 
6 

71 
2 
5 
8 
1 
8 

      
 Andosite 

Basalt 
Diabase, 
dolerite 

152 
145 
229 

31 
50 
88 

206 
347 
384 

6 
25 
13 

      
Clastic Graywacke 81 25 310 12 
      
Texture Sandstone 

Siltstone 
109 
89 

28 
31 

257 
350 

95 
14 

      
Very fine-
grained rocks 

Hornfels 
Claystone 

Phylite 

111 
5 

39 

74 
2 

26 

668 
301 
672 

3 
2 
4 

      
 Chalk 

Marl, 
marlstone 
Mudstone 

1 
17 

 
11 

2 
2 
 

1 

1606 
133 

 
106 

2 
9 
 

4 
      
Organic rocks Coal 30 3 107 14 
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 There are four types of mesh generation options available in         (Rocscience 

Inc., 2008): graded, uniform, radial, and “no internal nodes”. Since only the uniform mesh 

generation creates a mesh without any consideration to geometry it was selected to serve as 

a base case without bias such as gradation of elements. However, the number of elements 

and mesh density was changed to compare the results from a coarse and fine mesh. These 

changes first applied to whole model and later in a selected area of the model. 

 

Figure 2-1 Typical ranges of values for Poisson's ratio of some rock types (Gercek, 2007) 
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2.1 Model without excavation 

 

 This simple model scenario, in which a fault line traverses a host rock, consists of 

two different types of material (different E and μ) for rock mass and fault zone. Figure 2-2 

shows models geometry details. 

 

Figure 2-2 Model's geometry - without excavation (the dimensions are in meters) 

 

 Material properties when E is different and μ is constant and equal to 0.3 are 

summarized in Table 2-2. 

 For this model in-situ field stresses are assumed to be constant and equal to 10 MPa 

in all the directions (essentially a hydrostatic case). Due to the changes of E and μ of the 
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material in the fault zone, the resulting behavior could be softer or stiffer, or more brittle or 

ductile than the host rock mass.  

 

Table 2-2 Material properties with different E and constant μ. 

 

 

 Analysis can be classified into two main categories; a.) the set of analysis in which μ 

is constant, and b.) in which E is constant. Each category has two sub-categories as 

illustrated in figure 2-3. 

 

Figure 2-3 Classification of Young's modulus and poisson's ratio analysis 

 

Stress analysis  

μ is constant  

E is changing  

  >    

  <    

E is constant  

μ is changing  

  >    

  <    
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 Subscripts R and F are used for Rock mass and Fault zone respectively. It should be 

noted that in each sub-categories just one of the parameters is changing and the other one is 

fixed, it means that for instance when    is greater than   ,    will be constant and equal to 

5000 MPa and    will change from 10000 MPa to 75000 MPa (10000, 20000, 40000, and 

75000 MPa). Therefore in each sub-categories of the first category the lowest value of E will 

be 5000 MPa whether it is for fault zone or for rock mass, and for μ the one with the greater 

value will be assumed to be constant and equal to 0.4. 

 For each modeling case the principal stresses (   ,    ) and total displacement (U) 

were interpreted from the result of analysis and their changes were plotted along a 

longitudinal line which has been showed in Figure 2-2.  

 Likewise, to avoid the errors caused by the closeness of boundaries and their effect, 

the interpretations were considering only inside a specified area (the box in figure 2-2), far 

from boundaries.  

2.1.1 μ is constant and E is changing 

 

a)    >    

 As it has been said,    and μ are assumed to be constant and equal to 5000 MPa and 

0.3, respectively. The analysis was carried out with two different methods of mesh 

generation; in the first method uniform mesh was applied in whole model with sets of 

different numbers of elements. For this method the result of five different numbers of 

elements including 500, 1000, 3000, 5000, and 10000 was examined and compared. These 

numbers cover a wide range from coarse to fine element distribution. 
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 As it has been indicated for each analysis, the values of    ,    , and U were plotted 

along a longitudinal line. This is to illustrate the changes in values along the domain 

analyzed. A special consideration has to be given to the issue of obtaining the most accurate 

and representative graph, the sampling of data should be considered. Sampling should 

contain enough values with the most appropriate distance between them to avoid both over 

and under sampling problems. To find the best number of values that should be plotted, a 

trial and error method was applied. Along each line 50, 200, 500 and 1000 locations were 

chosen to be plotted, and then the results were compared to find the most appropriate 

number of locations or values. The result for     analysis in a model with 500 element’s 

number and     equal to 10000 MPa is illustrated  in figures 2-4 to 2-7. 

 

 

Figure 2-4     stress analysis,     : 10000 MPa and    : 5000 MPa - 500 element, 50 location along a 
longitudinal line is sampled. 
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Figure 2-5    stress analysis,     : 10000 MPa and    : 5000 MPa - 500 element, 200 location along a 
longitudinal line is sampled. 

 

 

Figure 2-6    stress analysis,     : 10000 MPa and    : 5000 MPa - 500 element, 500 location along a 
longitudinal line is sampled. 
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Figure 2-7    stress analysis,     : 10000 MPa and    : 5000 MPa - 500 element, 1000 location along a 
longitudinal line is sampled. 

 

 In the figure with 50 values (Figure 2-4) the distance between values is not small 

enough to create a smooth and well-shaped graph. Although for the 500 and 1000 number 

of values the graph is smooth enough, as it can be seen too many values were plotted. In 

figure 2-6 and 2-7 the overall shape of the graph does not differ from the graph with 200 

values; however 200 values seems inadequate to cover enough data’s in the selected area 

(figure 2-5).  This can be due to under sampling or lack of enough mesh elements. Since 

inadequacy of values in the selected area is slightly observable in figures 2-6 and 2-7 with 

500 and 1000 values, respectively, it is hard to accept the under sampling as a reason. 

Therefore it should be due to inadequate number of finite element. To further investigate 

the real reason, the results of the same analysis with 10000 elements’ are shown in figures 

2-8 to 2-11. 
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Figure 2-8    stress analysis,     : 10000 MPa and    : 5000 MPa - 10000 element, 50 location along a 
longitudinal line is sampled. 

 

 

Figure 2-9    stress analysis,     : 10000 MPa and    : 5000 MPa - 10000 element, 200 location along a 
longitudinal line is sampled. 
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Figure 2-10    stress analysis,    : 10000 MPa and   : 5000 MPa - 10000 element, 500 location along a 
longitudinal line is sampled. 

 

 

Figure 2-11    stress analysis,     : 10000 MPa and    : 5000 MPa - 10000 element, 1000 location along 
a longitudinal line is sampled. 
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 By comparing figures 2-8 - 2-11 with figures 2-4 – 2-7, it is evident that in figures 2-

8 – 2-11 from figure 2-9 with 200 plotted values the shape of the graph does not change by 

adding more sample points; however in figures 2-4 – 2-7 as the number of sample points 

changes the shape of the graphs changes as well. For figures 2-8 – 2-11 it is due to more 

finite elements that the shape of the graphs does not change by adding more data samples. 

Since figure 2-9 does not significantly differ from figures 2-10 and 2-11, 200 values were 

assumed to be adequate number of samples to represent the graph.  

 Eventually, after considering the effect of number of elements on stress analysis for 

   and displacement analysis in which     is equal to 10000 MPa, It can be seen that as the 

number of elements increases the shape of the graphs changes into a smoother graph. This 

is due to adequate values along the lines which help to cover lack of values and results in 

smoother and well-shaped graphs. 

  

Figure 2-12 Changes in maximum    (solid line) and maximum    (dashed line) as the number of 
elements increases for different     
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 To estimate the effect of number of elements on the result of analysis, maximum 

values for    ,    , and U were determined from a query line with 200 values (figures 2-12 

and 2-13). 

 The graphs illustrate an increase in    by increasing the number of element (figure 

2-12). Almost identical result is achieved for values of    (figure 2-12); whereas U stays 

constant as the number of elements increase, as seen from figure 2-13.   

 

Figure 2-13 Changes in maximum U as the number of elements increases for different     

 

It is evident from figures 2-12 and 2-13 that the changes in analysis results for different E 

values can be estimated as well; however for each set of number of elements an average 

was determined for stresses and displacements to clearly show the effect of E on analysis 

results (figures 2-14 and 2-15). 
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Figure 2-14 Changes in     and     with     (an average of maximum values of    and    for each set of 
element numbers were used)  

 

 

Figure 2-15 Changes in U with     (the average of maximum values of U for each set of element 

numbers were used) 
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 It should be noted that since     is constant and equal to 5000 MPa (to show that 

fault zone consist of a softer material), by increasing     the ratio of    to     (    ⁄ ) 

increases. The changes in    and    are in direct proportion to the changes of      ⁄  . Thus 

   and    will increase by an increase of     ⁄ ; While U decreases with the increase in  

    ⁄  . 

 The effect of number of elements and mesh density was also examined by applying a 

uniform coarse mesh with approximately 500 elements which was then partially refined. 

Refinement was applied in a specific area which can be seen in figure 2-2. To find the most 

appropriate mesh density, refinement was carried out once, twice and five times.  

  

 

Figure 2-16 Changes of maximum    (solid lines) and    (dashed lines) with refinements’ grades for 
different     
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 For these analyses longitudinal line was used and data sampling was accomplished 

by 50, 200, 500, and 1000 values. The comparison verified that again 200 values are 

adequate to determine the analysis result with enough sampling precision. After comparing 

the result of the two methods  it can be concluded that the result of the both methods are 

substantially the same; however it is necessary to compare maximum values of stresses and 

displacements, and their changes with number of elements and Young’s modulus as well. 

 Changes of maximum    ,    , and U with mesh refinement levels can be determined 

from figures 2-16 and 2-17,respectively. 

 

 

Figure 2-17 Changes of maximum displacement U with refinements’ grades for different     
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 The maximum values were derived using the same method as the one which was 

discussed before in the previous section. Likewise, the average values of stresses and 

displacements were computed and the relation between changes of stresses and 

displacements was determined by considering figures 2-18 and 2-19. 

 

Figure 2-18 Changes in     and     with     (an average of maximum values of    and    for each set of 
element numbers were used) with different mesh generation 

 

Figure 2-19 Changes in U with     (the average of maximum values of U for each set of element 
numbers were used) with different mesh generation 
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 Figures 2-16 and 2-17 show essentially the same trend in the results as the first 

mesh generation method; it can be observed that as the refinement level (mesh density) or 

number of elements increases,    and     will show a rise and U will be constant. 

 Meanwhile, as the      ⁄  increases, the difference between the two meshing 

methods will be more noticeable. 

b)    >    

 

 All the analyses were repeated when the fault zone is stiffer than the host rock mass. 

This time    was assumed to be constant and equal to 5000 MPa to make rock mass softer 

than the fault zone.      will have different values, 10000, 20000, 40000, and 75000 MPa. 

Other material properties such as Poisson’s ratio were the same as the first model and same 

general settings in the analysis were used. Two different meshes were used and the results 

were compared; changes of    ,    , and U were almost the same as the model with softer 

fault zone.  As the number of elements increases maximum     and     increase as well, 

while U is almost constant.  

 For this set of analysis the effect of E on stress and displacement values was also 

considered. It can be concluded that as     ⁄  decreases (   is constant and equal to 5000 

and    has higher values than   )    shows an increase, whereas     and U decrease. 

 Same analyses with different meshes which was explained in previous section 

(section a), was carried out and the results and observable trends are essentially the same 

as the other mesh generation method,    and    increase and U is constant. The same 

results as the first mesh generation method were achieved when the effect of E on principal 

stresses and displacement considered. 
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2.1.2 E is constant and μ is changing 

 

a)    >    

 In the second part of the investigation, the effect of Poisson’s ratio on stress and 

displacement analysis was considered. E assumed to be constant and equal to 20000 MPa 

(not very soft and not very stiff material), also    is constant and equal to 0.4 to show that 

rock mass consists of a ductile material. Mesh generation and sampling methods are the 

same as previously; two different mesh generations were applied. The results of analysis 

with 200 samples were considered, which, as established earlier, is the optimum. 

 Comparing the results of analysis for different number of elements for   ,   , and U 

exhibit  the same trend; the greater is the number of elements the more accurate is the 

analysis (accuracy is understood in the sense that as subsequent refinements are made, the 

results only change by a little). The smoothness of the graphs can also be achieved as the 

number of elements increase which is due to adequate analysis result at each sampled 

points. 

 To study the changes of stresses and displacements as a function of number of 

elements and Poisson’s ratio, the same method as for Young’s modulus was used and 

maximum values for    ,    , and U were derived. The results were then plotted; Figures 2-

20 and 2-21 show changes with number of elements and figures 2-22 and 2-23 illustrate 

changes with Poisson’s ratio. 

 Similar to the Young’s Modulus analysis, for different Poisson’s ratio, as the number 

of elements increase,    and U increase and     is fluctuating. An increase in    results in a 

decrease in    and U and an increase in    .  
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Figure 2-20 Changes of maximum    (solid lines) and    (dashed lines) with changes in number of 
elements  for different     

 

 

Figure 2-21 Changes of maximum U with changes in number of elements for different     
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Figure 2-22 Changes in     and     with     (an average of maximum values of    and     for each set of 

element numbers were used) 

 

 

Figure 2-23 Changes in U with     (an average of maximum values of U for each set of element numbers 
were used) 
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 In the second round another method (mesh refinement) of mesh generations was 

applied for these analyses. Although only the mesh generation method is changed, as the 

mesh density increases     increases as well. The result of analysis for     and U was the 

same as the other mesh generation methods. Also, for this mesh generation method as    

changes,   ,   , and U show almost the same variations as the other method. 

b)    <    

 

 While     is constant and equal to 0.4 and E is 20000 (MPa) all the analyses were 

repeated twice with the two different mesh generation methods.  

 The first set of analysis was carried out with uniform mesh and changing the 

number of elements in whole model. By augmenting number of elements    and    show an 

increase and U was constant. The same result as the model in which    >    is achieved 

for this set of analysis.  

 Then mesh refinement method was applied and results were compared to the first 

method of mesh generation. Changes of    ,    , and U by increasing mesh density were as 

same as  the first method. Also as Poisson’s ratio increased     ,    , and U followed same 

trend as in the first method of mesh generation. 

2.2 Model with excavation: 

 

 The previous model is used with an excavation; the model consists of two different 

types of material (different E and μ) for a rock mass and fault zone, and an excavation 

located in a rock mass adjacent to the fault zone in the foot wall region. This scenario 

depicts a common approach in mining where an approach drift is excavated near an ore 

body. The model’s geometric details are illustrated in the figure 2-24. 
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Figure 2-24 The geometry of  model with an excavation  (the units are meters) 

 

 The material properties are the same as the first model, which is summarized in 

table 2-2. Similarly the model is subjected to the same in-situ field stresses, Young’s 

modulus, and Poisson’s ratio as the first model along with all analysis assumptions. The only 

difference is that for the second model, due to the existence of an excavation, for plotting 

changes in stresses and displacement, two lines were selected, one longitudinal line 

adjacent to top of the excavation and the other one a diagonal line which covers the 

excavated area. The longitudinal line was located at the top of the excavation as long as the 

highest    values concentrates near the roof of the excavation and also this line contains the 

highest value of    as well, which is located in the left portion of the model. Another reason 

to choose a diagonal line is to show the highest variation in U. (figure 2-25) 
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Figure 2-25 - The interpretation of analysis lines and area 

 

 Similar to the first model, analysis results were interpreted with respect to the 

values inside the area, which is illustrated in figure 2-25, due to having more accurate 

results and avoiding the errors caused by closeness of boundaries. 

 The same mesh generation methods were used for the model with excavation, as 

detailed previously.  

 The effect of the number of elements on the stress and displacement analysis, and 

the effect of the Young’s modulus and Poisson’s ratio where both analyzed.  
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2.2.1  μ is constant and E is changing 

a)    >    

 Figures 2-26 and 2-27 show that by increasing the number of elements    , and U 

increases; however     decreases.  

 

 

Figure 2-26 Changes of maximum    (solid lines) and maximum    (dashed lines) as the number of 
elements increases for different     

 

 Figures 2-28 and 2-29 show that by increasing      ⁄  ,    and    both increase and 

U decreases. The result is as same as the first model (model without excavation). 
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Figure 2-27 Changes of maximum U as the number of elements increases for different     

 

 

Figure 2-28 Changes in    and    with     (an average of maximum values of    and    for each set of 
element numbers were used) 
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Figure 2-29 Changes in U with     (the average of maximum values of U for each set of element 
numbers were used) 

 For the second method of mesh generation, mesh refinement was applied in a 

specific area which is shown on figure 2-30. The result of the analysis, are shown in the 

figures2-31–2-34.  

 

Figure 2-30 - Application of uniform coarse mesh which is refined once in a specific area around an 
excavation 
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Figure 2-31 Changes of maximum    (solid lines) and maximum     (dashed lines) with refinement level 
for different     

 

 

Figure 2-32 Changes of maximum displacement U with refinement level for different     
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Figure 2-33 Changes in    and    with     (an average of maximum values of    and    for each set of 

element numbers were used)  

 

Figure 2-34 Changes in U with     (the average of maximum values of U for each set of element 
numbers were used) 
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 The results are similar to the first method of mesh generation;      and U increase as 

the number of elements and the density of mesh increases in the selected area and    will 

decrease; however comparing with results of the first method of mesh generation, changes 

in stresses and displacements with number of elements are slighter. 

 From figures 2-33 and 2-34 it can be seen that as the young’s modulus of rock mass 

increases     and     increase as well, while U shows a decline. 

b)    >    

 

 Once again as the number of elements increases, maximum     and U increase as 

well; however the increase occurs with a different trend. For U this trend is even different 

from one    to another one.    decreases as the number of elements increases. For this set 

of analysis as the ratio of    and    decline,     and U decreases; while    increases. 

 Stress and displacement analysis results for the second method of mesh generation 

were generally the same as the first one; as the refinement level increases,     and U 

increase and    decreases. Also changes of the maximum of     ,   , and U with     are as 

same as the first method.  

2.2.2  E is constant and μ is changing 

a)    >    

 As like as the first model after analyzing the effect of Young’s modulus, the effect of 

Poisson’s ratio was considered.  For the first set it can be concluded that     and U increase 

as the number of elements increases, while    decreases. 
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 Stress and displacement changes with changes in the Poisson’s ratio, was also 

studied. It was proved that     and U are in direct relation to    , on the contrary    

decreases as     increases. 

 As the method of mesh generation changes, the result of the analysis for    changes 

as well. In the mesh refinement method, increasing the number of elements and density 

results in a decrease of   . The result for    and U were the same. 

 Comparing the changes in   ,   , and U with respect to   , it can be concluded that  

  follows a different trend for this method and by increasing     , increases. 

b)    <    

 The analysis result are almost the same as the situation where    >    ; an 

increase in number of elements increased     and U, and decreased   . Changes in Poisson’s 

ratio have the same effect on stresses and displacement. 

 For this set of analysis as well two methods of mesh generation were used. The 

results of the second method (mesh refinement method) are substantially the same as for 

first one. However, the characteristics of changes in     with     is different from the first 

method of mesh generation, in fact it is completely opposite of the first method; while 

changes in     and U are the same. 

2.3 Discussion  

 All the above mentioned analysis had been carried out to determine the effect of 

Young’s modulus and Poisson’s ratio on the analysis results as the number or the density of 

elements is changing. In previous sections the effect of Young’s modulus and Poisson’s ratio 

has been analyzed in detail and the results of the analysis for two different methods of mesh 
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generations have been compared. However between Young’s modulus and Poisson’s ratio, 

one has more significant effect on stresses and displacement analysis. To compare these 

two rock properties, the ratio of the two different Young’s modulus and Poisson’s ratio for 

fault zone and rock mass has been considered. To clarify the comparison, for each ratio the 

maximum and minimum of it were compared. The ratio of     ⁄  has its maximum value for 

a case that    is equal to 75000 MPa, and    is equal to 5000 MPa, and its minimum when 

it’s on the contrary. The ratio of         is maximum when      is equal to 0.4 and     is 

equal to 0.1 and it is minimum when    = 0.1 and    = 0.4. 

 

 

Figure 2-35 Changes of total displacement with different ratio off Young’s modulus and Poisson’s ratio 
by increasing the number of elements 

 

 Figures 2-35 and 2-36 illustrate the comparison of Young’s modulus and Poisson’s 

ratio regarding changes in total displacement and stresses, respectively.  
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 From figure 2-35 it can be illustrated that as the number of elements increases 

changes in total displacement is almost constant; however these changes for maximum and 

minimum of      ⁄  is more significant than for maximum and minimum of         .  

 

Figure 2-36 Changes of principle stresses with different ratio of Young’s modulus and Poisson’s ratio by 
increasing the number of elements  

 

 For     as like as U, changes with the ratio of Young’s modulus are more noticeable 

than the ratio of Poisson’s ratio (figure 2-36). Although, it is hard to compare the changes in 

   for     ⁄  and         from figure 2-36, these changes are more obvious for changes in  

    ⁄ . 

 To summarize all the above analysis results and discussions of results, it can be 

concluded that, changes in    ,    , and U in a case that Young’s modulus is changing does not 
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vary for the two different methods of mesh generations, and changes have a direct relation 

with the ratio of    to     (    ⁄ ); however stresses and displacement do not show reliable 

relation with Poisson’s ratio. Due to the result of analysis for both Young’s modulus and 

Poisson’s ratio, the relation between the mesh generation method or mesh density and 

number of elements with Poisson’s ratio may depend on other properties or conditions. 

Therefore to find out a new cost function for mesh simplification only the effect of the 

Young’s modulus will be considered; the ratio of E₁ (higher) and E₂ (smaller).  
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CHAPTER THREE 

3. EXPANDED COST FUNCTION AND ITS 

APPLICATION 
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3.1 Expanded cost function 

 

 The cost function and the mesh simplification operates with respect to a region of 

interest (ROI). This region is an area or a point at which the effect of the excavation or 

geological features on stresses will be studied (Zsáki & Curran, 2005). The closer the 

excavations or geological inclusions are, to the ROI, the more effective they are, on the 

stress perturbation. Regarding this concept vertices nearer to the ROI are more important 

for stress analysis than the ones farther away. Therefore, to apply the cost function it is 

essential to have an area or a point considering as ROI.  

 The previous cost function consists of three different costs (geometry, proximity, 

and visibility) multiplied by their weights, the values which indicate their level of 

importance in the calculations (Zsáki & Curran, 2005). The new cost function will have one 

more cost which is a cost based on Young’s modulus.  

 As it has been indicated in a previous chapter, stress and displacement changes have 

the relation with the ratio of    to     (    ⁄ ). Likewise, the cost function of the Young’s 

modulus is anticipated to have the same relation. 

                  or     illustrates the cost of removing a vertex due to difference 

between Young’s modulus of the difference material existing near that vertex. Therefore, for 

different materials with different E, the cost function is as follow: 

       
  

  
⁄

    
    

⁄
                                             (1) 

In which: 

   = Cost of removing a vertex regarding Young’s Modulus  
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E₁ = maximum E between the E’s around the vertex 

E₂= minimum E between the E’s around the vertex 

    = the maximum E of the whole area of study 

    = the minimum E of the whole area of study  

Therefore the new cost function is proposed: 

                                                                           (2)  

 In the first try   ,   ,   , and     are assumed to have the values of 1, 0.5, 0.5, 

and 0.5, respectively (Zsáki & Curran, 2005).  

 The costs of geometry, proximity, and visibility were calculated from the equations 

introduced by Zsaki and Curran (2005), equations (3), (4), and (5), respectively. 

            
  

⁄                                                 (3) 

As it can be seen in figure 3-1(a), L is a chord length between two vertices adjacent to the 

selected vertex, and l is distance between the chord and the vertex (Zsáki & Curran, 2005). 

The cost of proximity can be calculated from equation (4): 

           
      

         
                                                                                                                                (4) 

In which d is the distance between the vertex and the ROI, and      and      are the 

distances between the furthest and the nearest vertices to the ROI (Zsáki & Curran, 2005) 

(figure 3-1(b)). 

To calculate the cost of visibility equation (5) should be considered: 
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                                                                                                                                 (5) 

Where α is the angle between averaged normal at the vertex and the vector pointing from 

the vertex to the ROI,      and      are the largest and the smallest angles (Zsáki & Curran, 

2005). Figure 3-1 (c) illustrates the angles.  

 

Figure 3-1  (a) geometry cost (b) proximity cost (c) visibility cost (Zsáki & Curran, 2005) 
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3.2 Application of the new cost function 

 

 Mesh optimization function first applied to the simplest model, a model with two 

different materials.    and    are 5000 MPa and 75000 MPa, respectively. The number of 

elements for this model is 1000, and there are 128 vertices on the boundaries, and each 

vertex is signified by a number which is given to the vertex by software. ROI is assumed to 

be a point near the fault zone with coordinates of (-0.08, -6.021) which is illustrated in 

figure 3-2.  

 

Figure 3-2 The original model which illustrates the vertices numbers and the location of the ROI 
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 To simplify the mesh, cost function should be calculated for all of the vertices. In 

each round one vertex which has the least cost is removed and calculations of cost will be 

repeated. Figures 3-3 and 3-4, show the model after removing 20 and 40 vertices, 

respectively. 

 Figure 3-3 shows that almost all the removed vertices are located in the left 

boundary; however it seems that there are other vertices that have the less effect on the 

analysis at ROI than some of the vertices that have been removed. For instant, vertex 

number 69 or 92 could have the less cost than the vertex number 80 which has been 

removed on the third round.  

 

Figure 3-3 Model after removing 20 vertices 
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 From figure 3-4 the same result can be concluded, that even after removing 20 more 

vertices the vertices that seems to have the less effect on the analysis still were not 

removed. The problem could be caused by the values that have been given to the weights 

related to each cost. After considering all the costs, and evaluating the model, it can be 

concluded that considering      equal to 0.5 gives more value to the visibility cost which 

does not seem as effective as the proximity cost for this model. Therefore to get the better 

result of the simplification and to have the more homogenous mesh    was assumed to be 

equal to 0.3. Calculation repeated for the new    value, and new results were achieved 

(figures 3-5). 

 

Figure 3-4 Model after removing 40 vertices 
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 Although after changing    , vertices seems to be removed in a correct  order, still 

the simplified model is not homogenous and uniform (figures 3-5). The length of elements 

in some areas is too large to give an acceptable mesh generation, for instance, the distance 

between vertices numbered 70 and 62 in figure 3-5. A uniform mesh is necessary to have an 

accurate analysis. This problem cannot be solved by changing the weight values only.  

 

Figure 3-5 New simplified model with    equal to 0.3, after removing 40 vertices 

 To get a reasonable result from mesh optimization process, it is essential to 

introduce another cost. This new cost will control the distance between two adjacent 

vertices. This distance should not exceed a significant number. The number will be chosen, 

by trial and error method and it will represent the uniformity of the generated mesh after 
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removing each vertex. The cost as well will have a weight value which will be chosen 

depending on the effect of the cost on the calculation and simplification process. 

 The new cost will be entitled uniformity cost. As it has been said, uniformity cost 

depends on the distance between two consecutive vertices which should not exceed 

constant a (uniformity constant). Uniformity cost can be calculated from the following 

function: 

If       >    or    >         then                         
  

 
  

  

 
                                                       (6) 

In which    and    are the distances between two adjacent vertices to the vertex. The 

equation also shows that if neither    nor    were bigger than a,              is equal to 

zero. 

 Constant a (uniformity constant) is a coefficient of an element edge length in 

uniform mesh where all of elements have the same length. Practically uniform mesh has 

been rarely used in analysis; the common meshing method is graded mesh in which the 

mesh density is varies for different part of the model, therefore uniformity cost should be 

determined from another equation in which uniformity constant should be replaced by an 

equation of maximum and minimum element edge length and the distance between a vertex 

and ROI. For graded mesh a is variable and equal to: 

   |             |                                                                                                                        (7) 

 In the above equation a is uniformity variable, d is the distance between a vertex and ROI, 

     and      are maximum and minimum lengths of elements, respectively. Uniformity 

cost for graded mesh is calculated from the same equation (6) as for uniform mesh the only 

difference is in the a values.   
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Consequently, the new cost function is: 

                                                                (8) 

   is assumed to be equal to 0.5 for the model. Also since the uniform mesh was used for 

the analysis a is considered to be constant and equal to the distance between two vertices in 

the original model multiplied by two, which is equal to 3 (average element edge length is 1.5 

for the model). The simplification result after removing 40 vertices can be found in figure 3-

6. 

 

Figure 3-6  Simplified model with    equal to 0.3 and    (a = 3), after removing 40  vertices 

 The simplification also checked with    = 0.3; however results did not show a 

dramatic change, and it only indicated that     = 0.5 was an acceptable value to be chosen.  
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 Figures 3-6 illustrates a considerable change in simplification process. It can be seen 

that, even after removing 40 vertices, mesh quality is acceptable.  

 To be certain that the value of a is acceptable, another value have been tried, a=4.5 

(when a is equal to the element edge length multiplied by three), the result of which was as 

satisfactory as the first try (figure 3-7).  

 

Figure 3-7  Simplified model with     = 0.3 and    (a = 4.5), after removing 40  vertices 

 As it has been discussed, figure 3-7 illustrates that the mesh generation with new a 

value (a=4.5) is also acceptable, and mesh generation quality is as good as the first try. The 

only way to choose between the two values is to compare the result of the principal stresses 

and displacement analysis. 
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Figure 3-8 Changes in maximum    and maximum    as the number of removed vertices increases 
where a=3 

 

Figure 3-9 Changes in U as the number of removed vertices increases where a=3 
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 To choose the best value for a the stresses and displacement results have been 

considered. Therefore, after removing each set of ten vertices maximum    ,    , and U was 

determined. Figures 3-8 – 3-11 illustrate changes in stresses and displacements after 

removing 10, 20, 30, …, and 110 vertices. Comparing figures 3-8 and 3-9 to 3-10 and 3-11, 

respectively, it can be concluded that a=4.5 is the better assumption than a=3. Figures 3-10 

and 3-11 have less fluctuations comparing with figures 3-8 and 3-9. Therefore, vertex 

removal is more uniform where a is equal to 4.5. 

 As it has been concluded, for further calculations a will be assumed equal to 4.5 as it 

shows more uniform mesh during vertex removal process. 

 

 

Figure 3-10 Changes in maximum    and maximum    as the number of removed vertices increases 
where a=4.5 
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Figure 3-11 Changes in U as the number of removed vertices increases where a=4.5 

 

 The expanded cost function then has been applied for mesh improvement of the 

model with an excavation. The model is the same as the model with excavation of previous 

chapter, which was a model with an underground excavation at the vicinity of a fault zone.  

 As like as the first model, an uniform mesh was used, number of elements has 1000, 

Young’s modulus of the rock mass is 5000 MPa, and Young’s modulus of fault zone is 

assumed to be equal to 75000 MPa. ROI is located on the bottom right of the model with a 

coordinates of (3.5, -11.796). The total number of boundary vertices is 153.    ,   ,   , 

   , and    are equal to 1, 0.5, 0.3, 0.5, and 0.5, respectively. As it has been discussed, a is 

constant and equal to 4.5. Figures 3-12 shows the original model with excavation, and also 

the vertex numbers. Numbers of the vertices located on the top boundary of the excavation 

were removed due to overlapping; however the number of the first and the last vertices 

were illustrated on the figure. 
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Figure 3-12 The original model with excavation  

 

Figure 3-13 The model with excavation after removing 40 vertices 
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 Then the cost function was applied to 153 vertices. The procedure was the same as 

the first model, in each round one vertex with the less cost was removed. Figure 3-13 

illustrates the model after removing 40 vertices. As it has been expected despite of 

removing 40 vertices, mesh is still uniform. From the figure also it can be seen that the 

vertices removed from the areas far from the ROI. 

 

Figure 3-14 Model after removing 80 vertices  

 

 Figure 3-14 illustrates the model with 80 removed vertices. Since the vertices 

removed from the top of the excavation are not defined in the figure 3-14, figure 3-15 

focused on the excavation area, and shows the vertex number and the removed vertices 

from the excavation. 
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Figure 3-15 The excavation boundary after removing 80 vertices from the whole model 

 

 Vertex removal continued until all the vertices have been removed, then the stress 

and displacement analysis after removing each set (10 vertices) were determined and the 

mesh quality were examined, to decide how many vertices should be removed which 

completely depends on the accuracy of the analysis and the quality of the mesh. 

 Table 3-1 compares mesh quality for the original model and after removing vertices. 

As listed in   table 3-1 mesh quality is acceptable for up to 90 removed vertices. 

 Furthermore, figures 3-16 and 3-17 illustrate that principal stresses and total 

displacement analysis has the same result as the original model when less than 90 vertices 
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has been removed, after which as shown in the figures 3-16 and 3-17 the results were not as 

accurate as they had to be. 

Table 3-1 Mesh quality for each 10 removed vertices (153 vertices) 

Removed 
vertices 

Elements with  
side length ratio 
 greater than 30 

Elements with 
internal angle  

less than 2 

Elements with 
internal angle  

greater than 175 

Number of 
inverted  
elements 

Total bad  
elements 

0 0 0 0 0 0/2054 

10 0 0 0 0 0/392 

20 0 0 0 0 0/385 

30 0 0 0 0 0/373 

40 0 0 0 0 0/350 

50 0 0 0 0 0/283 

60 0 0 0 0 0/265 

70 0 0 0 0 0/259 

80 0 0 0 0 0/244 

90 0 0 0 0 0/229 

100 0 2 0 0 2/206 

110 0 0 0 0 0/176 

120 0 0 0 0 0/94 

130 0 0 0 0 0/44 

138 0 1 0 0 1/28 

 

 Since the number of vertices that should been removed depends on stresses and 

displacement analysis, and as it has been concluded the best results achieved when less 

than 90 vertices have been removed, it can be concluded that the procedure should be 

terminated after removing 60% of vertices. This number differs from model to model and 

for each model stresses and displacement analysis should be done and mesh quality should 

be checked for each set of removed vertices to determine the appropriate number of 

vertices that can be removed while the results are still as accurate as possible. 



86 
 

 

Figure 3-16 Changes in maximum principal stresses as vertices being removed 

 

 

Figure 3-17 Changes in maximum displacement as vertices being removed  
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3.3 Case Study 

 

 To properly check the effect of the new cost function, the new equation has been 

applied on a real case with multiple excavations and different materials. Figure 3-18 shows 

the studied model. Model consists of 12 excavations and three different materials. ROI 

located in the host rock and at center of the model close to excavations and the hard rock 

material boundary. 

 

Figure 3-18 A case study with multiple excavations and different material 
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 Table 3-2 illustrates material properties for three different materials in the model. 

As it can be seen Young’s modulus is different from one material to another; however 

Poisson’s ratio, cohesion, and other properties are assumed to be the same for all materials. 

 

Table 3-2 Material properties (case study) 

 

 

 As it has been illustrated in figure 3-18 graded mesh was used for this model, 

therefore uniformity cost should have a uniformity variable instead of uniformity constant. 

To calculate the uniformity variable, the equation number (7) should be used. All the costs 

were determined from the same equations as the previous two models (equations number 

1, 3, 4, 5, and 6). Then the new cost function (8) was applied to the model. The calculations 

were repeated for 490 vertices. 

 Figure 3-19 shows the model after removing 100 vertices. As it has been expected, 

vertices had been removed from the areas far from the ROI, mostly from the exterior 

boundaries, and the material boundaries with the highest Young’s modulus ratio.  
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Figure 3-19 The Model after removing 100 vertices 

 

Figure 3-20 A close up of excavations after removing 100 vertices. 
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 Figure 3-20 shows a close up of excavations, which once more confirms the previous 

argument about the vertex removal expectations. The excavation and material boundaries 

closer to the ROI are almost untouched after removing 20% of the vertices. Vertices have 

been removed from excavations number 2,3, and 4 mostly. 

Table 3-3 Mesh quality for each set of 20 removed vertices and the original model (490 vertices) 

Removed 
vertices 

Elements with  
side length ratio 
 greater than 30 

Elements with 
internal angle  

less than 2 degrees 

Elements with 
internal angle  

greater than 175 
degrees 

Number of inverted  
elements 

Total bad  
elements 

0 0 0 0 0 0/3688 

20 0 0 0 0 0/3565 

40 0 0 0 0 0/3511 

60 0 0 0 0 0/3174 

80 0 0 0 0 0/3005 

100 0 0 0 0 0/2827 

120 0 0 0 0 0/2724 

140 0 0 0 0 0/2534 

160 0 0 0 0 0/2336 

180 0 0 0 0 0/2104 

200 0 0 0 0 0/1910 

220 0 0 0 0 0/1754 

240 0 1 1 0 1/1546 

260 1 3 1 0 3/1348 

280 1 3 1 0 3/1214 

300 1 3 0 0 3/1110 

320 1 3 0 0 3/1004 

340 1 2 0 0 2/774 

360 1 2 0 0 2/633 

380 1 2 0 0 2/506 

 

 As like as previous models mesh quality and stresses and displacements analysis 

were determined. Mesh quality checked for each set of 20 removed vertices; results are 

available in table 3-3. Mesh quality changed after removing 240 vertices, before which total 

bad elements number are zero (table 3-3). 
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Figure 3-21 Changes in principal stresses for each set of 20 removed vertices  

 

 As it has been discussed, to find the limit for vertex removal, stresses and 

displacement analysis results for each set of 20 removed vertices and the original model 

were compared ( figured 3-21 and 3-22). Results for stresses and displacement analysis 

illustrate that as the vertices have been removed principal stresses and total displacement 

decrease steadily which were predictable; however a sudden changes can be found in     , 

   after removing 120 vertices which are perhaps due to a bad element that then after 

removing 20 more vertices improved. Considering both mesh quality and stresses and 

displacement analysis it can be concluded that vertex removal should be continued until 

mesh quality changes and the number of total bad elements increases.   For the studied 

model vertex removal process should be terminated when less than 50% (240 vertices) of 

vertices were removed, to achieve both a simpler model and accurate results. 
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Figure 3-22 Changes in total displacement for each set of 20 removed vertices 
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CONCLUSION 
 

 Underground excavation simulations and analysis is a complex problem solving 

process. The existence of geological heterogeneity around an excavation makes the stress 

and displacement analysis even more complicated. Numerical modeling methods such as 

finite element method are intended to determine the stress analysis with the best accuracy 

at the less time and by less computer memory consumption. Despite the purpose of its 

existence, finite element method is not as efficient as it should be. Considerable efforts were 

done to improve the quality of the method. This thesis as well aims to improve the analysis 

process and results by considering both material properties and excavations’ situation and 

geometry.  

 To fulfill the purpose of the research, a model with an excavation and different 

materials was considered. The effects of materials were studied considering Young’s 

modulus and Poisson’s ratio among varieties of material properties. The results of 670 

analyses show that Young’s modulus has more significant effect on stress and displacement 

analysis comparing to Poisson’s ratio; however considering other material properties it 

cannot be said that Poisson’s ratio has no effect on stress and displacement analysis, it can 

only be concluded that for this model, and in the same situation as assumed for these 

models, the Poisson’s ratio did not affect the analysis result significantly.  

 To improve the finite element analysis results considering material properties, only 

Young’s modulus was taken into account. The cost of removing a vertex depending on the 

material properties that the vertex is situated in, then was formulated and added to the 

existing cost function. The new cost function has then applied to two models, one with two 

different materials and another with different materials and an excavation. Process then 
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encountered a problem, when the mesh was not as uniform as it should be after removing 

vertices. To overcome the problem another cost was introduced which is called Uniformity 

Cost. The new cost improved the process and the expected results were achieved.  

 The results of the original model and the model after removing vertices for different 

set of removed vertices were compared. The analysis accuracy was acceptable. Then a real 

case with the same assumption as the previous models and with multiple excavations and 

materials was chosen. The cost function was applied for almost 500 vertices and the results 

after and before vertex removal were compared which once again approved the accuracy of 

the proposed functions. 

 Despite all the effort the cost function still is not complete. For further studies other 

material properties (tensile strength, cohesion, etc.) should be taken into account; and their 

effect on stress analysis and their relation to mesh density should be studied whether 

separately or together with another rock property. In addition, the proposed simplification 

method can be generalized for the 3D finite element analysis as well; however changes 

should be done to make this method compatible with the 3D environment.  
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