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ABSTRACT 

HUMAN IDENTIFICATION OF PROBLEMATIC HANDWRITTEN DIGITS FOR 
PATTERN RECOGNITION 

Nabil Khoury 

After decades of work in pattern recognition, humans are still considered the best 

recognizers of images and symbols especially in unconstrained everyday applications. 

This has made the human visual model a major topic of interest in pattern recognition 

research. A number of studies have presented promising recognition models that 

incorporate different aspects of the human model such as selective attention, biologically 

plausible saliency detection and top-down recognition. On the other hand, the last 

hundred years of research in human eye movement behaviour has revived the ancient 

philosophical idea that we see in our mind’s eye. Several computational models of eye 

movement control were suggested that successfully predict eye movement behaviour 

demonstrating a close coupling between eye movements and underlying oculomotor and 

cognitive processes. In the present study, the author evaluates a combined approach to 

identifying features of interest for Pattern Recognition applications. In the data collection 

stage, sixty participants are asked to verbally identify fifty-four problematic and twenty 

prototypical handwritten digits. Both verbal responses and visual fixations are recorded 

for further analysis. In the analysis stage, a smaller set of ambiguous digit images is 

identified based on how often participants change their minds about the numeral they 

represent. For each digit, visual fixations are grouped based on the numeral that 

participants called out. Each fixation group is then combined into a single fixation heat 

map. Results show that by comparing and contrasting heat maps for a given digit the 

features deemed most disambiguating by the human model can be identified. 
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INTRODUCTION 

After decades of work in pattern recognition, humans are still considered the best 

recognizers of images and symbols especially in unconstrained everyday applications. 

This has made the human visual recognition model a major topic of interest in pattern 

recognition and machine intelligence research (Barriere and Plamondon 1998; Côté and 

others 1998; Keller and others 1999; Suen and others 2000; Maw and Pomplun 2004). 

One hundred years of research into human eye movement behaviour, on the other hand, 

has revived the ancient philosophical idea that we see in our mind’s eye. Several 

computational models of eye movement control were suggested that successfully 

approximate different aspects of collected human eye movement data and demonstrate a 

close coupling between eye movements and underlying oculomotor and cognitive 

processes (Brandt and Stark 1997; Chernyak and Stark 2001; Ojanpää 2006; Paulson and 

Goodman 1999; Stark and Choi 1996; Reichle, Rayner, and Pollatsek 2003; Reilly and 

O'Regan 1998). The focus in most of these computational models, however, is on topics 

of interest in psychology such as psycholinguistics and visual perception. Some 

computational models in the vision science literature focus on eye movement control 

during visual search and detection (Rao and others 2002; Rao and others 1996; Zhang 

and others 2006) While, at least one computational model claims to successfully predict 

human visual fixations during identification of handwritten Katakana letters (Watanabe, 

Gyoba, and Maruyama 1983)  

Eye movement research inspired a number of studies in image analysis and 

pattern recognition. Some present scene analysis and visual recognition techniques that 
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incorporate different characteristics of the human model. Among these, selective 

attention, biologically plausible saliency detection and top-down recognition have been 

used with promising results. Some of these techniques exploit the computational 

efficiency associated with serial recognition (Exel and Pessoa 1998; Itti, Koch, and 

Niebur 1998; Rybak and others 1998; Salah, Alpaydin, and Akarun 2001; Salah, 

Alpaydin, and Akarun 2002; Xianglin Meng and Zhengzhi Wang 2009). Others exploit 

context awareness to guide the recognition process (Chernyak and Stark 2001; Exel and 

Pessoa 1998).Yet others attempt to predict image coordinates and regions that are most 

likely to attract human attention (Hacisalihzade, Stark, and Allen 1992; Osberger and 

Maeder 1998; Privitera and Stark 2000; Yagi, Gouhara, and Uchikawa 1993). However, 

limitations in biologically inspired saliency detection, and the increased availability of 

eye tracking equipment motivated a multidisciplinary approach. A number of saliency 

detection schemes were evaluated, refined or trained using human eye movement and 

identification data specifically collected for these purposes. These include: (1) algorithms 

for defining regions of interest in static images (Watanabe, Gyoba, and Maruyama 1983; 

Privitera and Stark 2000; Yagi, Gouhara, and Uchikawa 1993; Kienzle and others 2007; 

Schomaker and Segers 1999), (2) task-dependent selective attention in video analysis 

(Peters and Itti 2007), and (3) identification of informative features in handwriting 

(Watanabe, Gyoba, and Maruyama 1983; Schomaker and Segers 1999). Despite 

promising results in detecting features and regions of interest in scenery and video, the 

author found no mention of similar research in the context of pattern recognition 

applications. 

In the present study, the author evaluates a novel approach that explores the use of 

human visual fixations and identification data in order to identify features of interest for 

Pattern Recognition applications. We select handwritten digit recognition as a prototype 
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application and use seventy-four digit images from the NIST database as stimuli. Fifty-

four of these digits are of particular interest because they are reported to be particularly 

problematic for a variety of classifiers in the literature (Lauer, Suen, and Bloch 2007; 

Suen and Tan 2005). The other twenty look very prototypical and are used as a reference. 

In the data collection stage, sixty participants are asked to identify the handwritten digits 

verbally. Both verbal responses and visual fixations are recorded during the course of the 

identification task for further analysis. In the analysis stage, a smaller set of ambiguous 

digit images is identified based on how often participants change their minds about the 

numeral they represent. For each of these ambiguous digits, visual fixations 

corresponding to a given response are combined into a single fixation heat map. 

Preliminary results show that, by comparing and contrasting these maps, the handwritten 

digit features deemed most disambiguating by the human model can be identified.   

We start with an overview of recurrent challenges in the field of visual pattern 

recognition, to motivate a closer look at the human visual model. We proceed with a 

presentation of existing methods and computational approaches incorporating different 

aspects of this model in the eye movement and pattern recognition literatures. A detailed 

discussion of our data collection methodology and various technical aspects will follow 

as well as a description of the computational tools we developed to facilitate the use and 

analysis of collected data. We proceed by ranking the handwritten digits based on a 

number of difficulty and ambiguity criteria and presenting corresponding fixation heat 

maps. We conclude with a summary of our findings.
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 CHAPTER 1 

BACKGROUND AND LITERATURE REVIEW 

According to Watanabe (1985) a pattern “[is] the opposite of a chaos; it is an 

entity, vaguely defined, that could be given a name.” More formally, visual pattern 

recognition is the study of how machines can learn to discern visual patterns of interest 

from their environment and accurately determine the category to which they belong 

(Watanabe 1985; Jain, Duin, and Jianchang Mao 2000). 

Visual Pattern Recognition Progress and 
Challenges 

The past two decades have seen a resurgence of interest in visual pattern 

recognition due to the emergence of complex and computationally demanding 

applications like handwriting recognition, efficient searching of text documents and 

multimedia databases as well as personal identification based on face and fingerprints 

(Suen and others 2000; Jain, Duin, and Jianchang Mao 2000).This interest has resulted in 

significant advances in this research area. In handwriting recognition, for instance, efforts 

have translated into close to perfect recognition rates in some restricted applications. Yet 

despite numerous such breakthroughs – thanks to the use of powerful approaches like 

neural networks, hidden Markov models and support vector machines – many real-life 

applications of visual pattern recognition remain unreliable. This is partially due to the 

pitfalls of real-life conditions like optical artefacts and position variations. It is also due 

to the nature of certain visual patterns exhibiting large within category variations and 

considerable similarities among different categories. This makes it difficult to define the 
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most identifying discriminative features for a given category in a reliable way. In fact, in 

many of the emerging applications, it is clear that no single approach or simple scheme 

will ever be found that can find such features (Suen and others 2000; Jain, Duin, and 

Jianchang Mao 2000). The search for an adequate and perhaps multi-facetted scheme is 

hence ongoing and the human model, widely held as the best existing recognizer thanks 

largely to its heavy reliance on context, knowledge and experience, is an obvious target 

of investigation for researchers in this field (Barriere and Plamondon 1998; Côté and 

others 1998; Suen and others 2000; Jain, Duin, and Jianchang Mao 2000). However, such 

investigation requires concerted collaboration with other disciplines ranging from biology 

to cognitive psychology. In these disciplines, human eye movement data has long been 

used as a metric of processes underlying human visual behaviour (Jain, Duin, and 

Jianchang Mao 2000). We now turn to a brief background on the human visual system 

and, in particular, anatomical, behavioural and cognitive aspects that affect human eye 

movement.  

Background in Eye Movements 

The human visual system relies on a multi-resolution field of view. At the sensory 

level, the retina has two kinds of photoreceptors: the rods, sensitive to low illumination, 

and the cones, sensitive to normal illumination levels. The cones are densely present, and 

therefore provide higher resolution sampling, at the centre of the field of view (fovea) 

decreasing rapidly towards the periphery. This decrease in sensory resolution outwards is 

coupled by an analogous decrease in processing resources represented by the number of 

neuronal receptive fields and the size of visual cortical area devoted to the transmission 

and processing of sensory input. The combined effect of sensory density at the fovea and 

cortical magnification of its signals means that our 180×140-degree field of vision is 

reduced to the central foveal area with a 2-degree diameter for high visual acuity (Keller 
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and others 1999; Rybak and others 1998). Under normal reading conditions of font size 

and reading distance, the multi-resolution field of view breaks down into three regions of 

visual acuity. The foveal region spanning over the range of 6-8 Latin letters provides the 

highest sampling resolution. The parafoveal region extending over 15 to 20 Latin letters 

has been found to possess enough visual acuity to provide fuzzy sensory input necessary 

for efficient recognition (Paulson and Goodman 1999). The third is the peripheral region, 

spanning over the rest of the visual field, provides the lowest sampling resolution. These 

characteristics mean that, in order for the mind to study the points of interest of a given 

scene with enough details for adequate awareness, rapid eye movement shifts (saccades) 

are required (Osberger and Maeder 1998). Saccades occur every 100 to 500 milliseconds 

and are guided in a pre-attentive manner. The eye movement literature presents a number 

of theoretical models and evidence for various factors guiding this behaviour.  

Evidence for Low Level Attractors 

For a long period, the widely accepted nature of visual processing was 

predominantly passive, responding to certain physical characteristics and cues present in 

the surroundings. Even when prior knowledge did bias the visual search process, it was 

believed to do so by selecting from a list of conspicuous features that had already been 

detected and stored in a topographically coded map (Saliency Map). According to this 

model, the selection of target features is done in a largely low-level, fast and feed-

forward manner involving relatively little processing. The best evidence for this view 

came relatively early with neuroanatomical data of a visual pathway containing cells 

uniquely responsive to different stimulus dimensions. Frequency, line orientation, edge 

size and direction of motion, for instance, are among the numerous dimensions detectable 

at the cellular level (Itti, Koch, and Niebur 1998). Other evidence shows the Human 

Visual System attuned to edge-like and line end features that are bright, contrast rich, 
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larger or more elongated (Ojanpää 2006; Osberger and Maeder 1998). This was a general 

view biased towards a separation between the low-level and higher levels of processing 

and awareness. The biological bias of this view was perhaps compounded by the 

prevailing Behaviourist paradigm of the time (Paulson and Goodman 1999) emphasizing 

learning principles and Black Box treatment of organisms. Models based on the Feature 

Integration Theory proposed a similar view;  a vastly parallel pre-attentive saliency 

mapping guides a time-consuming, serialized object recognition task attending only to a 

subset of the total retinal projection while attention is used to glue object features hence 

giving us the illusion of a united whole (Gestalt) (Itti, Koch, and Niebur 1998). These 

models seemed both biologically plausible and efficient justifying the vastness of human 

visual processing capabilities. 

Evidence for High Level Guidance and 
Scanpath 

Evidence for high-level processes guiding eye movements came as early as a 

hundred years ago with experimental data showing how the eyes scan text differently 

when reading foreign and native languages. Other evidence came during viewing and 

reading experiments where subject eye movements scanning an image or text employ 

different path patterns depending on the viewing instructions and purpose (Yarbus 1967; 

Buswell 1937). Some suggested that, depending on the instructions and motivation, a 

painting could convey different relevant content and different timeline hence guiding 

subject’s eyes in a compatible way to scan a relatively small number of features in a 

repetitive idiosyncratic manner. The commonality of features attended across subjects as 

well as the ordered and repetitive nature of the path taken to foveate them provided 

strong evidence for an object-specific internal representation guiding the scan. Noton and 

Stark (1971) called it a scanpath and theorized that we learn and memorize images by 
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associating each with its own representation. Accordingly, such representation is 

composed and stored the first time we view the image and is later repeatedly invoked 

every time we encounter it. The nature of the representation is formulated as an ordered 

sequence of eye muscle motor traces and visual sensory traces residing in our memory. 

When played back, the representation generates a feature template matching route, 

embedded in the eye scan path, to confirm the hypothesized identity of the image being 

recognized. (Fig. 1) (Stark and Choi 1996; Noton and Stark 1971). 

 

Fig. 1. Early eye movement experiment showing eye scan path. Reprinted, by permission, from Noton and 
Stark (1971). 



9 

 

Although eye movement researchers never rejected the existence of bottom-up 

attractors, it was clear from experimental data that these alone could not account for the 

observed scanning characteristics especially the lack of a common idiosyncratic path 

across different reading and image viewing tasks  (Stark and Choi 1996; Noton and Stark 

1971). From this line of reasoning came the idea that other factors, which account for 

context awareness and higher semantics, have to be considered. As Stark eloquently puts 

it, “we have to approximate the outside world with an internal representation for our 

species to have survived.” Such internal representation needs to take account of laws of 

physical action and reaction and spatial relationship that bottom-up facilities, alone, 

cannot be expected to embed (Stark and Privitera 1997).  

But what evidence do we have that eye movements serve as a template-matching 

scheme for our internal representations or, to put it differently, that higher level cognitive 

factors drive our visual search early enough in the human visual process to affect eye 

movements so significantly? 

Two bodies of evidence came to support the acceptance of a scanpath-internal 

representation model of visual recognition. One came from Imagery experiments 

showing that eyes will trace similar paths when subjects are imagining or recalling an 

image as when they are actually viewing it (Brandt and Stark 1997). The other came from 

anatomical findings by Mishkin of two cortical pathways that, for the most part, 

presented a concrete and biologically plausible framework for cognitive control of the 

lower facilities of the visual system. As such, it identifies two pathways for visual 

processing: the what and the where pathways dealing with representing object features 

and spatial information respectively. Perhaps the most significant implication of this 

framework, as far as scanpath theory is concerned, is that it provides an explicit 

functional coupling between low-level vision (at the foveal and visual cortex level) and 
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high-level brain structures involved in visual perception and recognition and points out 

the role of visual attention in this coupling (Keller and others 1999; Rybak and others 

1998). 

Review of Eye Movement Research  

Can eye movements really serve as a reliable window into cognitive and 

oculomotor phenomenon and to what extent? A landmark study by Tinker in 1936 

investigated the validity of eye movement experiments in reading tasks and concluded 

that the presence of a tracking camera was not obtrusive to the extent of affecting eye 

movement performance  (Paulson and Goodman 1999; Tinker 1936). In addition, Just 

and Carpenter (1980) gave credence to two major assumptions stemming from eye 

movement data and in particular the differing length of fixations during reading tasks. 

The first is the immediacy assumption where word recognition starts as soon as the 

respective text is focused. The second is the eye-mind assumption stating that the eye will 

fixate a word as long as it is being processed (Paulson and Goodman 1999).  

Recent research on eye movement control during reading saw the emergence of 

many promising computational models based on two contrasting theoretical viewpoints. 

On the one hand, Reilly and O’Regan (1998) demonstrate that a set of simple oculomotor 

heuristics can provide a good account of the positioning of subject eye fixations during 

reading. On the other hand, Reichle, Rayner, and Pollatsek (2003) posit that eye 

movement is triggered by serial cognitive processing and can account for both location 

and timing of eye fixations. These two viewpoints roughly correspond to the low-level 

and high-level control we discussed before. However, the difference among models 

adhering to the first or the second viewpoints is one of degree rather than kind. In fact, all 

promising eye movement control models in reading suggest that both oculomotor and 

cognitive processes interact to guide the reader’s eye fixations. 
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In summary, despite the theoretical contrast within eye movement research, there 

is wide acceptance regarding the reliability and validity of experimentally collected eye 

movements as an expression of cognitive and oculomotor processes that drive the 

execution of a given visual task (Reichle, Rayner, and Pollatsek 2003; Zhang and others 

2006). 

Eye Movement in Pattern Recognition 
and Image Analysis 

There are two main approaches and respective sets of models that are inspired by 

eye movement behaviour in the image analysis and pattern recognition literatures. The 

first set includes recognition models that borrow the concepts of selective attention and 

serial processing of image parts, chosen based on their perceived importance, to improve 

recognition performance. In most such models the process starts with a topographic 

mapping of features of interest detected based on a biologically plausible scheme like 

presence of contrast, edges or difference in orientation in the subsampled image. This 

mapping is then used to guide a selective attention template-matching scheme to examine 

each feature in more details until a certain level of confidence of the image category is 

reached (Exel and Pessoa 1998; Itti, Koch, and Niebur 1998; Rybak and others 1998; 

Salah, Alpaydin, and Akarun 2001; Salah, Alpaydin, and Akarun 2002; Xianglin Meng 

and Zhengzhi Wang 2009; Stark and Privitera 1997). Some of these recognition models 

are augmented with a higher level of image category awareness to guide the selective 

attention scheme more wisely (Chernyak and Stark 2001; Exel and Pessoa 1998).  

The second set is of eye movement prediction techniques that simulate human eye 

movement behaviour using a variety of saliency detection schemes. Some use 

biologically plausible low-level saliency detection (Xianglin Meng and Zhengzhi Wang 

2009; Hacisalihzade, Stark, and Allen 1992; Osberger and Maeder 1998; Privitera and 
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Stark 2000; Kienzle and others 2007) or a mathematical model (Watanabe, Gyoba, and 

Maruyama 1983; Yagi, Gouhara, and Uchikawa 1993) to predict human subject eye 

fixations while viewing different stimuli. However, limitations in these low-level 

techniques, and the increased availability of eye tracking equipment motivated a 

multidisciplinary approach. A number of saliency detection schemes were evaluated, 

refined or trained using human eye movement and identification data specifically 

collected for these purposes (Watanabe, Gyoba, and Maruyama 1983; Privitera and Stark 

2000; Yagi, Gouhara, and Uchikawa 1993; Kienzle and others 2007; Schomaker and 

Segers 1999; Peters and Itti 2007). 

The main purpose of the eye movement prediction approach is to segment images 

or other visual media according to regions of perceptual importance. The more important 

regions can then receive further attention such as: (1) higher sampling rates during image 

compression or higher bandwidth during broadcasting (Osberger and Maeder 1998; 

Privitera and Stark 2000), (2) extra processing during image or video analysis (Xianglin 

Meng and Zhengzhi Wang 2009; Hacisalihzade, Stark, and Allen 1992; Privitera and 

Stark 2000; Yagi, Gouhara, and Uchikawa 1993; Kienzle and others 2007; Peters and Itti 

2007) and (3) identification of informative features in handwriting (Watanabe, Gyoba, 

and Maruyama 1983; Schomaker and Segers 1999).  

Review of Pattern Recognition Related 
Work 

In the two sets of eye-movement-inspired research we briefly summarized above, 

a number of studies piqued the author’s interest due to striking similarities in method or 

objectives. A study by Salah, Alpaydin, and Akarun (2001) is of particular interest 

because it is prototypic of other studies that use biologically plausible saliency-based 

visual attention to train and test pattern classifiers. A common concern among eye 
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movement prediction studies relates to the validity of saliency detection schemes even in 

the context of low-level analysis of scenes and videos. We examine a study by Privitera 

and Stark (2000) because it represents attempts to evaluate a number of such bottom-up 

schemes based on their ability to accurately predict human-like regions of interest (ROI). 

A closer look at a study by Kienzle and others (2007) follows since it questions the 

validity of relying on biologically plausible saliency detection alone. We briefly discuss 

the proposed use of human eye movement data to compliment bottom-up visual saliency, 

in order to motivate our own research methodology. If the exclusive reliance on bottom-

up saliency techniques is questionable in the context of predicting ROI during general 

viewing, it is even more limited in the context of task-dependent viewing. We briefly 

discuss the work of Peters and Itti (2007) which combines human visual fixations 

recorded during video game play and bottom-up saliency to train a promising top-down-

bottom-up ROI estimation scheme.  

Selective Attention in Handwritten 
Digit Recognition 

Salah, Alpaydin, and Akarun (2001) present a serial recognition technique 

whereby an image of a handwritten digit or a face is attended to by examining a sequence 

of regions defined by a 4x4 grid. The regions are selected based on their perceived 

saliency using a simplified biologically plausible detection algorithm.  This work is 

particularly interesting in that it borrows significantly from the human visual model by: 

(1) attending to alignment features – considered an instance of low-level eye movement 

attractors –, (2) employing selective attention, and (3) using serial processing strategies 

(Fig. 2). These similarities with the human model allow this method to be scaled to more 

computationally intensive recognition tasks.  

The suggested model has an Attentive, Intermediate and Associative levels. In the 
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training mode, the Attentive level produces four line maps for each digit image in the 

training set. This allows the selection of the n most salient points in an image and, 

consequently, the generation of an ordered sequence from the most to the least salient 

points, also known as the where stream. This stream will guide the selective attention 

shifts in the Intermediate Level. 

 

Fig. 2. Saliency mapping in eye movement-inspired digit recognition. Left, Attentive Level; right, 
Intermediate Level. Reprinted, by permission, from Salah, Alpaydin, and Akarun (2001). 

The Intermediate Level trains, in a supervised manner, a neural network to 

quantize the regions of the most salient points. To do so, the neural network uses Line 

Maps data as input and outputs an attribute vector that is clustered into Observation 

Symbols using k-means clustering. The Associative Level acquires the what and the 

where information from the previous levels in the form of quantified Observation 

Symbols and foveation states respectively to train an Observable Markov Model. 
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In the recognition mode, the model defines the line maps and foveation states for 

the digit image to be classified (Attentive Level), quantizes the foveation contents using 

the same neural-network-k-means clustering procedure to produce Observation Symbols 

(Intermediate Level) and uses the Observable Markov Model from the Training mode to 

find the likely digit label. 

Selective Attention in Scene 
Class Recognition 

Chernyak and Stark (2001) present a model of scene class recognition augmented 

with top-down selective attention. The model acquires higher awareness of the scenery 

image under study by segmenting it into regions of distinct colours. The presence of blue 

and yellowish-grey regions, for instance, may be an indication that the image is of beach 

scenery. The model then attempts to increase its level of confidence in the hypothesized 

scenery category by attending to the respective colour regions in more details until a 

predefined confidence level is reached (Fig. 3). 

 

Fig. 3. A top-down augmented recognition model. Left, the model segments an image of scenery into 
colour histograms and identifies the most disambiguating scene segments; Right, the model fixates 
individual segments to verify the hypothesized scene category. © 2001 IEEE. Reprinted, by permission, 
from Chernyak and Stark (2001). 
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Bottom-Up Detection of Salient and 
Perceptually Important Features 

The study by Privitera and Stark (2000) represents a significant contribution in the 

context of our research because it outlines the limitation of relying on a single bottom-up 

saliency scheme to predict human-like regions of interest (ROIs). The paper describes the 

process of automatically defining a sequence of ROIs on a given image using a wide 

range of image processing algorithms and clustering techniques. It also defines a 

similarity metric, using clustering and string editing, to quantify the difference between 

two arbitrary sequences of ROIs. This metric allows the evaluation of candidate ROI-

detection schemes by measuring the similarity of their output to human visual fixations 

recorded during the viewing of the same images. The study concludes that a well-chosen 

image processing algorithm – irrespective of its biological plausibility – can come a long 

way in predicting human-like regions of high perceptual importance. 

Each candidate image processing algorithm is used to define a large set of ROIs 

that are later clustered using a simple scheme to yield regions of yet higher interest. 

These regions are subsequently compared to eye fixations collected from human 

participants during free viewing of the same image (Fig. 4). 

Two main conclusions can be drawn from this study. First, although image 

processing techniques by definition do not account for higher-level visual processes, 

some can be effectively used to predict regions that attract human eye fixations, which 

are guided, at least in part, by such processes. Second, there is no optimal image 

processing algorithm that works all the time. Rather, we can only determine which 

algorithm will work best for a particular class of images, such as paintings, landscapes or 

terrain photographs, after it has been used on that class and its output compared with 

human eye movement data. 



17 

 

 

Fig. 4. Bottom, A bottom-up algorithm is used to generate fixations similar to those recorded during an eye-
tracking experiment (top). © 2000 IEEE. Reprinted, by permission, from Privitera and Stark (2000). 

Kienzle and others (2007) identify the downsides of manually defining bottom-up 

saliency detectors in Privitera and Stark (2000) and other works. The paper notes that, 

irrespective of biological plausibility, a number of parameters still need to be specified 

manually by the researcher in ways that are often ad hoc and hard to justify. A non-

parametric alternative is proposed which starts with a generic saliency model made up of 

a linear combination of Gaussian radial basis functions. The specific parameters of these 

functions are then learned directly from human eye movement data recorded on the same 

images. The machine learning model is claimed to predict image ROIs as well as the best 

biologically motivated models without the questionable assumptions and guesswork 

associated with the latter. 
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Top-Down Selective Attention using 
Eye Movement Data 

So far, we presented research that attempts to detect features and define regions 

based on a bottom-up estimate of their perceptual importance in humans. Such techniques 

may be suitable for visual media compression, broadcasting, and other applications where 

the influence of task and context specifics is minimal. However, for applications where 

the intention is to guide selective attention in visual search or object recognition bottom-

up visual saliency alone is very limited. Peters and Itti (2007) present a computational 

model that combines bottom-up (BU) saliency and dynamic top-down (TD) task 

relevance in order to predict human visual fixations while playing a video game. The TD 

model is acquired by learning to associate the signature of a video frame with the 

corresponding human fixation data. A hybrid biologically plausible saliency map made 

up of colour and line orientation detectors is used to determine the signature for both BU 

and TD models. The results show that while the TD model alone performs twice as well 

as the BU model, a combined model obtained using point-wise multiplication is 

significantly better than either model on its own.  

Other Related Work 

A number of other studies have also used human eye movement and identification 

data to explore aspects of the human model with some relevance to pattern recognition. 

Watanabe, Gyoba and Maruyama (1983) demonstrated the use of Hayashi’s 

quantification discriminant to predict the confusability of handwritten Katakana letters. 

They found that features identified by the model were also fixated more frequently by 

experiment participants. Unfortunately, the details of the study were published in 

Japanese only and the author found very few related citations (Tappert, Suen, and 

Wakahara 1990).  

Schomaker and Segers (1999) conducted an experiment to identify the types of 
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geometrical features most attended to by participants during reading of Western cursive 

handwriting. Participants were asked to identify initially blurred handwritten words under 

time pressure and could unblur a given part of the word using mouse clicks. Their results 

show that ascenders, descenders, crossings and points of high curvature where most 

frequently clicked suggesting their informative value.  

Maw and Pomplun (2004) studied the role of parafoveal and peripheral vision in 

the recognition of actors faces using a gaze-contingent mask to hide face parts during an 

eye tracking experiment. Their findings confirm that extra-foveal vision plays a crucial 

role in successful recognition. Response time was also reported to increase significantly 

under more restrictive viewing conditions especially for unfamiliar faces of non-famous 

actors. 

Summary and Conclusions 

Eye movement research inspired a number of studies in image analysis and 

pattern recognition. All start off with a low-level scheme: an algorithm that detects 

differences in contrast, orientation or colour mapping arguably informative features to 

(1) guide attentional shifts for recognition (Exel and Pessoa 1998; Rybak and others 

1998; Salah, Alpaydin, and Akarun 2001; Salah, Alpaydin, and Akarun 2002; Stark and 

Privitera 1997), or (2) find human-like features and regions of interest for further analysis 

(Xianglin Meng and Zhengzhi Wang 2009; Hacisalihzade, Stark, and Allen 1992; 

Osberger and Maeder 1998; Privitera and Stark 2000; Yagi, Gouhara, and Uchikawa 

1993; Kienzle and others 2007; Peters and Itti 2007). A few of these complement the 

low-level saliency scheme using eye movement data to (1) evaluate the validity of their 

models (Privitera and Stark 2000), (2) optimize biologically inspired saliency detection 

parameters (Kienzle and others 2007) or (3) acquire task-dependent strategies (Peters and 

Itti 2007). Despite promising results of this approach in scene and video analysis, the 
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author found no mention of similar research in the context of pattern recognition 

applications. A number of studies, however, are note worthy since they used human data 

to explore aspects of the human visual recognition model with pattern recognition in 

mind (Maw and Pomplun 2004; Watanabe, Gyoba, and Maruyama 1983; Schomaker and 

Segers 1999).
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CHAPTER 2 

PRESENT STUDY 

In the context of handwritten digit recognition, a widely cited study of error 

analysis identified three categories of errors made by some of the best classifiers in the 

literature (Suen and Tan 2005). 

Category 1, accounting for around a quarter of classification errors, is of digit 

images that are easily confused with other numerals because of the similarity of their 

primitives and structures. Images in this category usually belong to these confusing pairs: 

4–9, 0–6, and 3–5 some of which are shown in Fig. 5a.  

 

Fig. 5. Samples of misclassified data: (a) Category 1, (b) Category 2, and (c) Category 3. Reprinted, by 
permission, from Suen and Tan (2005). 

Category 2, accounting for around an eighth of all errors, is of digits that are 

difficult to recognize by classifiers and humans alike because of degradation and 

distortion due to factors ranging from poor scanners to peculiar writing habits (Fig. 5b).  

Category 3, accounting for 62.70% of classification errors, is of digits that 

humans can recognize without any ambiguity (Fig. 5c.) but are nevertheless 

misrecognized by classifiers due to the lack of training samples that have the same 
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prototype (Lauer, Suen, and Bloch 2007; Suen and Tan 2005). 

In the present study, we focus on seventy-four MNIST digit images (Fig. 6).  

 

Fig. 6. The original seventy-four MNIST digit images on which our experiment stimuli are based with their 
respective sequence number and numeral label: (a) fifty-four irregular digits from the MNIST testing 
database and (b) twenty regular digits from the MNIST training database. The MNIST index and correct 
numeral-label are indicated under each digit. 

Fifty-four of these digits were selected based on their identification by the 

literature as commonly misclassified due to one of the above errors (Lauer, Suen, and 

Bloch 2007; Suen and Tan 2005). We refer to this subset as irregular digits. An 

additional twenty digit images were chosen based on a subjective evaluation favouring 

the more prototypical among forty randomly selected MNIST images. We refer to this 
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subset as regular digits. The goal of the present study is to build a database of human eye 

movement collected during the identification of these digits. The purpose of the database 

is to provide reliable statistics on the regions and features most commonly fixated by the 

participants during the identification of the selected MNIST digits. Here, we note that 

while we do not make any specific claims as to the significance of these statistics, our 

guiding assumption, based on the preceding literature review, is that by properly 

controlling for various threats to validity, we increase our confidence that the data not 

only provide reliable recording of participant eye movement, but also that it closely 

reflect the informative value of digit features they fixate during the digit identification 

task. As such, our database can serve as a reference to guide future efforts to overcome 

common errors in handwritten digit recognition by embedding various human-like 

characteristics and observations. Next, we discuss the data collection methodology.
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CHAPTER 3 

DATA COLLECTION 

Lab Setup and Available Tools 

The setup at the Vision Lab features an EyeLink II® head-mounted eye tracker 

used in at least two other studies reviewed  earlier (Maw and Pomplun 2004; Kienzle and 

others 2007). The system is made up of two PCs: the display and the host (Fig. 7).  

  

Fig. 7. Experimental setup at the Concordia Vision Lab 
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On the left, the display PC, where the participant is seated, is delegated the task of 

presenting audio and visual stimuli and controlling the flow of the experiment. On the 

right, the host PC, where the experimenter is seated, ensures the proper operation of the 

eye tracker worn by the participant. The eye tracker connects to the host PC directly and 

has three infrared video cameras. A head-tracking camera, mounted on the eye tracker's 

headband near the participant's temple, points forward to capture the IR signature of four 

infrared markers positioned at the corners of the display monitor. Two adjustable eye 

cameras, each equipped with a pair of IR illuminators, are mounted at the front of the eye 

tracker to capture the infrared signal reflected by the participant's eyes (EyeLink II head-

mounted user manual 2009). The host receives the infrared video from the two eye 

cameras at a sampling rate of 500 frames per second. A host background algorithm 

measures the pupil's position as detected in these samples to calculate the instantaneous 

rotation of each eye. The video from the head-tracking camera allows detection of the 

position and rotation of the participant's head which is then combined with the eyes' 

rotation to determine the on-screen gaze coordinates. Another real-time host algorithm 

uses angular velocity heuristics to parse the resulting stream of gaze coordinates into 

corresponding saccades and fixations. The EyeLink II (2009) specification claims a 

binocular eye-tracking capability with a 500 Hz sampling rate, a typical average error of 

<0.5°, and a spatial resolution of <0.01°. A gamepad-like button box, used to record 

participant manual response, is connected directly to a host's USB port to maximize 

timing accuracy (EyeLink II head-mounted user manual 2009). 

In order to record various experiment trial events and eye movement data in a 

synchronized fashion, the host communicates with the display computer constantly 

during the operation of the eye tracker. A crossover network connection is used to notify 

the host of changes in stimulus presentation and other trial events on the display side. It is 
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also used to signal various eye-tracking events captured on the host's side to the display 

computer. Besides making synchronized recording of trial events and eye movement data 

possible, the real-time connection also allows the experimenter to monitor both 

participant gaze and what the participant is viewing via the host's LCD monitor.  

The display computer features a pair of desktop speakers to play back audio 

stimuli and a standard IBM keyboard providing an alternative form of input to the button 

box. It also features a high-end flat CRT monitor with a 120-Hertz refresh rate at 

1024×768 resolution and a 20-inch viewable screen. In order to improve eye-tracking 

reliability the participant's head is stabilized with a chin guard mounted at the edge of 

their desk at a standard viewing distance of 57cm from the display monitor. To enable 

recording of participant voice, a common desktop microphone, attached to the stem of the 

chin guard, is connected to the display computer audio input port (Fig. 7). 

A proprietary software program, Experiment Builder® (2009), is available to 

create eye-tracking experiments that run seamlessly on the above eye-tracking hardware. 

The graphical environment comes with a suit of predefined node-like components to 

facilitate the process of designing and controlling the presentation of audio and visual 

stimuli during experiments. Action nodes and trigger nodes can be dragged, dropped, 

linked together and grouped into sequences to define the experiment's workflow (see Fig. 

A1c).  

A typical workflow starts with an introduction in the form of a sequence of nodes 

(see Fig. A1a). Display action nodes with nested text resources may be used to display 

introductory slides (see Fig. A2) while key-press trigger nodes allow the participant to 

move to the next slide in the sequence. The eye tracker setup sequence follows allowing 

the calibration and testing of the eye tracker. During calibration, the participant, wearing 

the head-mounted eye tracker, is asked to focus on dots appearing in sequence at different 
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spots on the display monitor. At the mean time, a host background algorithm uses the 

sample frames captured by the eye tracker's infrared cameras to determine various 

parameters necessary for subsequent eye tracking. The next sequence typically represents 

an experiment block. A block sequence contains a sub-sequence defining the flow of an 

experiment trial (see Fig. A1c). A display action node with a nested image resource may 

be used to display a PNG file to cover the full screen while a voice-key and a timer node 

can trigger a sound action node to play an error sound if the participant fails to identify 

the image on time. A trial sequence can be executed a predetermined number of times. 

The experimenter can define its iterative behaviour by attaching a spreadsheet-like data 

source. Each data row contains stimuli and parameters corresponding to a single trial. 

The experimenter can also set randomization rules to control the order of trials during the 

experiment. 

When the workflow is completed, it can be compiled and built into an executable 

experiment. An executable generated by Experiment Builder can, on the one hand, 

manage the various operations of the eye tracker while, on the other, control the 

experiment workflow and record  participant responses all under the close monitoring of 

the experimenter. This greatly facilitates the task of running eye-tracking experiments as 

well as storing the synchronized recordings of participant eye movement, button presses 

and other event data in a single binary file (EDF). The experimenter also has the option to 

record select experiment data like key presses and trial-specific parameters to a more 

readily accessible plain text Results File. Data collected during a single experiment 

session is saved under a distinct session folder specified at the start of the experiment. A 

session data folder may contain an EDF file, a Results File or both. Since the actual trial 

order may be randomized and different from the original order specified in Experiment 

Builder, a modified version of the data source is generated in the session folder at the end 
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of the experiment. The new data source has its rows rearranged to reflect the actual trial 

order. 

EDF files can be visualized using a proprietary data analysis program. 

Alternatively, a free API is also available which allows parsing, reading and exporting of 

the EDF file contents to plain text. 

Experiment Design Justification  

Due to the novelty aspect of the present study – the absence of research on 

identification of a specific category of images in the eye movement literature – a number 

of new considerations relating to data collection have to be taken into account. Our 

purpose of research dictates numerous departures from experiment design norms whereby 

multiple controls are put in place to allow investigation of a stated hypothesis with clearly 

defined and quantifiable variables. For one thing, we have no prior notion of how humans 

will examine these or other handwritten digits; indeed, our digits were not selected based 

on how we expect humans to respond to them but rather how problematic they are to 

automatic classifiers. It is also worth mentioning that the puzzling complexity of 

cognitive processes unfolding during handwriting identification is precisely the reason 

why we chose to exploit the human model in the first place. This makes the general 

methodology found in a number of studies discussed in the literature review such as: 

Privitera and Stark (2000), Yagi, Gouhara, and Uchikawa (1993), Kienzle and others 

(2007), Peters and Itti (2007), Schomaker and Segers (1999) and Noton and Stark (1971), 

more appropriate than the more rigorous design norms typically followed in eye 

movement research proper: (Ojanpää 2006; Paulson and Goodman 1999; Legge and 

others 1997). To put it plainly, since we are trying to learn from humans how to better 

identify handwritten digits, the best we can do is let them do it as normally and 

unconstrained as possible. However, such lack of experimental controls comes with a 
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number of threats to validity especially under eye-tracking conditions.  

In the particular case of handwritten character recognition, a plausible threat to 

validity relates to the size at which single-character images need to be presented under 

eye-tracking conditions. Individual eye fixations have a perceptual span ranging from 1-

5° of the field of vision. Under normal reading conditions, printed Latin letters and 

Arabic numerals occupy a visual angle of around 0.25° (Rayner 1998; Brysbaert 1995). 

This means that a single fixation is normally enough to process several printed characters 

(Ojanpää 2006; Legge and others 1997; Duchowski and SpringerLink 2007). In addition, 

technical specifications of even higher-end eye trackers like the one we are using 

acknowledge tracking errors may often exceed 0.5° (EyeLink II head-mounted user 

manual 2009). Therefore, in order to record human eye fixations with a level of reliability 

and details suitable for our purposes in automated recognition, the digits will need to be 

displayed at a much larger scale. This may represent a serious threat to validity since it 

constitutes a major departure from viewing conditions under which humans normally 

recognize digits.  

Another threat to validity stems from peculiarities in the widely used MNIST 

image database from which the seventy-four handwritten digits were chosen. Scaling 

20×20-pixel handwritten digits to fit a standard 20-inch display already results in heavily 

aliased images with prominently jagged contours or jaggies (Fig. 8). Such artefacts may 

indeed be conspicuous enough to influence eye movement due to sudden changes in 

orientation and intensity against the plain background (Itti, Koch, and Niebur 1998). 

To make things even worse, in the process of size normalization, most MNIST 

database images were sub-sampled from the original NIST version (LeCun and Cortes 

2010). In order to counteract the resulting aliasing, an anti-aliasing algorithm was used to 
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make MNIST digits look like the original NIST digits when viewed at normal size of 1° 

or less; however, when these digits are magnified significantly this process may actually 

add distortions and artefacts to the final image (Fig. 8b). 

 

Fig. 8. Top, Aliasing artefacts and anti-aliasing distortions in MNIST images: (a) shows a 20×14-pixel 
MNIST image of a six while (b) shows the same image after scaling to 200×140 pixels using nearest-
neighbour interpolation. Bottom, Aliasing artefacts in NIST images: (c) shows the original NIST version 
after scaling to 200×140 using nearest-neighbour interpolation while (d) shows NIST after being scaled to 
same size using bicubic interpolation and smoothed using MATLAB disk filter. 

When it comes to foreground-background contrast manipulation the presence of 

greyscale pixels in MNIST images presents an additional problem. According to the 

literature on eye movement during reading and visual search, both luminance contrast 
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and size of printed character interact to affect participant performance. A decrease in 

contrast and character size are reported to significantly decrease performance speed and 

increase both number of saccades and the duration of individual fixations (Ojanpää 2006; 

Legge and others 1997). While no data is available on the effect of these dimensions 

during identification of individual or handwritten digits, it is plausible to assume such 

effects apply in our experiment. For instance, a lowering of display contrast may force 

the human visual system to fixate features of interest more closely. Hence, in addition to 

controlling for the effect of contrast variations on collected eye movement, the use of 

different contrast conditions can also help us identify guidelines that, when used to 

display a handwritten digit, may yield eye movement data that is most suitable for pattern 

recognition applications (Optimal Viewing) for similar research in the future. 

 However, varying the luminance contrast of greyscale images presents some 

questions and challenges. For instance, it is quite likely that the visual system perceives 

luminance variations in a non-linear manner making any such manipulation subjective 

and difficult to justify. 

Therefore, eye movement recorded under these conditions may be largely 

influenced by the manner in which the digit being identified is displayed. This casts 

serious concerns about the validity of our methodology: The use of eye movement data to 

determine the informative value of handwritten digit features during identification. 

Unfortunately, many of these threats to validity are largely unavoidable: In order to 

obtain detailed eye movement statistics suitable for character recognition applications, 

digit images have to be displayed at a much larger scale than during normal reading. 

Conspicuous aliasing artefacts will follow potentially influencing collected eye 

movements. However, measures can be taken in designing the experiment that can help 

control for these and other extraneous variables. Below, we discuss these considerations. 
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Visual Stimuli 

Visual Parameters and Display 
Considerations 

The reduced resolution, increased spatial aliasing and complications relating to 

image processing manipulation make the use of MNIST database less suitable for the 

purposes of our research than the NIST images from which it is derived. NIST digits are 

black and white (binary), and offer higher details when compared to their MNIST 

counterparts (Fig. 8). We therefore opted for the NIST images instead.  

Finding Matching Digits in NIST 

Matching MNIST digits into the NIST database from which they are derived is 

not a task to be taken lightly. The creators of the MNIST database do not provide the 

detailed image processing algorithm they used to size-normalize NIST digit images and 

the author found no published mapping between MNIST and NIST images based on 

indexes or identifiers. Matching by naked eye is not an option since each NIST numeral 

set contains tens of thousands of handwritten digit images.  To find the corresponding 

twenty regular and fifty-four irregular MNIST digits in the NIST database, the author 

experimented on a number of image processing transformations using MATLAB Image 

Processing Toolbox (2009). Fig. 9 summarizes our simple yet effective matching scheme. 

First, using a given MNIST index and an open-source MATLAB tool loadMNIST 

(Sirotenko 2009) the digit image is extracted into a matrix object and transposed to 

compensate for the different coordinate systems. The loaded MNIST image differs from 

the NIST original in two ways: The MNIST image is size-normalized to fit a 20×20-pixel 

box then padded by positioning its centre of mass in the middle of a 28×28-pixel canvas; 

the NIST images, on the other hand, have an arbitrary size and no padding.  
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Fig. 9. MNIST-NIST matching scheme 

In order for the two image types to be easy to compare they have to have the same 

size without the padding; however, perhaps due to the anti-aliasing algorithm, the 

removal of the MNIST white padding often results in an unpadded image of a different 

aspect ratio compared to its NIST counterpart. Upon further examination of a small set of 

pre-matched MNIST and NIST digits, the author determined that in order to rectify this 

discrepancy additional cropping of the lightest grey contours is needed. Based on 

greyscale index range from black=0.0 to white=1.0, the threshold grey index was 

determined experimentally as 0.85. Cropping the padding and light grey contours 

proceeds as follows: (1) the greyscale MNIST images are converted to binary images via 

thresholding: Pixels with grey indexes of the threshold value or lower become black 
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while all other pixels become white; (2) the bounding box of the binary image is 

calculated; (3) this bounding box is used as a guide to crop the initial greyscale MNIST 

image into an unpadded version with an aspect ratio that is now more true to the original 

NIST. 

The goal of the next step is to produce a similarity ranking for each of the 

candidates in the NIST database using a very simple scheme. Since both NIST and 

MNIST images are labelled and the corresponding numeral is known, NIST candidate 

images are found under the corresponding numeral's folder. Each NIST candidate is 

loaded then resized to match the dimensions of the target MNIST image. Then, the 

average per-pixel absolute difference between the two greyscale-indexed matrices is 

calculated and the result used to rank the similarity of all NIST candidates to the MNIST 

image in question. The author experimented with a number of resizing interpolation 

methods available in MATLAB and determined that bicubic interpolation gave a 

greyscale image that resembled the MNIST image the most; indeed, in most of the fifty-

four MNIST digits, the correct NIST match was found among the ten highest ranking 

candidates according to this scheme. This greatly simplifies the matching process and 

suggests that the size normalization and anti-aliasing scheme used to create the MNIST 

database has a somewhat similar effect as the bicubic interpolation resizing implemented 

in the Image Processing Toolbox. 

Once the corresponding NIST digit images have been identified, the process of 

manipulating contrast and other viewing conditions becomes easier given the binary 

nature of these images. The higher level of details available in NIST images also 

significantly alleviates the problems associated with spatial aliasing outlined before. The 

general process of creating digit stimuli starts with size normalization of NIST images to 

make the most use of available display area.  The images are rescaled such that the digit 



35 

 

bounding box fits in a 575×575 pixel box or roughly 23°×23° at the standard 57cm 

viewing distance – compared to a 20×20-pixel box (0.8°×0.8°) for MNIST images. This 

box is then centred on a 1024×768 pixel canvas chosen to cover the entire 20-inch 

display during the experiment– compared to the 28×28 pixel canvas for MNIST images. 

The foreground and background greyscale colours can now be chosen based on the 

desired Michelson contrast. Smoothing algorithms that eliminate spatial aliasing along 

the rough jagged contours of the digit images can also be applied more conveniently. 

Verbal Task Design and Testing 

Identification Response Considerations 

Manual response using a button box or a computer keyboard is generally much 

more convenient as far as data analysis is concerned; however, due to the need for ten 

different buttons corresponding to the ten Arabic numerals, the use of a button box or 

keyboard would greatly interfere with participant eye movement in our experiment. An 

on-screen input method where participants can use eye movements to select alternative 

responses is another possibility but may still present a serious visual distraction when 

displayed along the handwritten digit. verbal identification may also interfere with eye 

movement. For instance, it is plausible to assume that eye movements made during 

speech have a special significance. However, unlike other response methods, 

questionable fixations can be reliably isolated by identifying the corresponding speech 

segments. Therefore, despite the added labour and overhead associated with the labelling 

and accurate isolation of audio segments, we opted for verbal identification as the 

superior identification methods in the context of our experiment. As such, we refer to the 

eye-tracking experiment as the Verbal task. 
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Verbal Task Temporal Parameters 
Considerations 

Of prime concern to us is the relevance of recorded eye movement to the 

identification task. Our driving motivation during experiment design is to say with 

confidence that features most fixated by participants during the presentation of 

handwritten digits are also most attended to by cognitive processes involved in 

recognizing the numeral in question. By asking participants to identify the displayed 

handwritten digit such claim can be made with more confidence. However, since no 

similar research has been conducted in the past, this leaves the question of how 

participants should be prompted for their verbal response wide open. For instance, should 

the participants have all the time they require before they give an answer?  

To answer such question a closer look at the intended use of the collected eye 

movement data is due. One of the principle challenges in automated handwriting 

recognition is determining the most disambiguating features. For example, in handwritten 

digit recognition an important challenge is to identify features that can best tell two or 

more numerals apart. If the human participant is asked to identify the displayed digit once 

and given an open window to do so, we risk recording visual fixations without the ability 

to correlate them with the corresponding numerals that the participant is considering as 

potential answers. This limits the usefulness of collected data especially since many of 

the digit stimuli resemble two or more numerals. 

An alternative approach would be to prompt the participant for their answer once 

at the start of a trial with a response window that is only sufficient for the participant to 

give their quick instinct. After a predefined period, during which the participant is given 

ample window to reconsider their earlier response, another beep prompts the participant 

for their second and final answer. This way, eye movement recorded during the first 

prompt may be better correlated with their first verbal response; the second set of eye 
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movement recorded during the intermediate period between the two prompts is likely to 

correlate with a wider set of features that represent various candidate numerals that the 

participant's mind is considering while the third set of eye movement captured during the 

second prompt is likely to correlated with their second verbal response. 

This still leaves many temporal parameters wide open. Assigning proper trial 

events time and duration can be very subjective without proper pilot testing which we 

discuss next. 

Verbal Task Pilot Testing 

The pilot test was conducted on ten participants. Five participants were Vision 

Lab volunteers and another five were students recruited in class. 

The purpose of the pilot test was to fine-tune a number of experiment parameters: 

1. The first response window 

2. Timing of the second prompt 

3. Second response window 

4. Total trial length 

5. Different contrast conditions 

6. Description of the task and wording of the introduction 

7. Content of pre-recorded sample trials  

8. Number of practise trials needed to familiarize participant with the task prior to 

data collection 

Based on pilot testing, the first prompt was set to occur at the onset of the trial and 

give the participant 1.5 seconds to provide their verbal response. This response window 

was determined based on observations made during and interviews conducted after each 

pilot experiment. The 1-1/2-second period was deemed a good compromise to ensure that 

participants have sufficient time to give a preliminary identification of the presented 
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handwritten digit yet still have enough doubt requiring further verification.  

The pilot testing also helped determine the appropriate timing of the second 

prompt and subsequent response window. A period of three seconds was deemed an 

appropriate delay between the estimated end of the first response and the onset of the 

second prompt followed by a one-second response window. 

A tutorial segment was also added to the experiment based on pilot feedback that 

task description was a bit vague. The segment came after the introduction and before the 

practise trials and included four pre-recorded sample trials. The first and second sample 

trials show an easy image of a handwritten numeral one with a pre-recorded voice 

demonstrating how to identify the numeral verbally at each prompt. The third and forth 

sample trials show an ambiguous image of numeral two, which resembles a seven, with a 

pre-recorded voice identifying it as a two at the first prompt then a seven at the second 

prompt. The purpose of the third and forth sample trials is to impress upon the participant 

the fact that some of the digits they will be identifying may be so poorly written that they 

should go with their instinct. The participant is instructed as follows:  

You should focus on giving a quick answer on the first prompt to avoid 
hearing the error sound... [And] it’s perfectly alright to change your mind on the 
second prompt if you feel you have a better answer. 

Pilot testing also helped determine the number of practise trials needed to 

familiarize participants with the digit identification task. Six additional NIST digits were 

handpicked for practise. Unlike test trials, a practise trial is repeated as long as the 

participant fails to give their verbal answer within the allotted response window. Due to 

the limited sensitivity of the available desktop microphone, the practise trials are also 

important in that they train participants to identify the digit more clearly to avoid hearing 

an error sound after which they would need to repeat the practise trial again. This also 

makes the labelling of verbal responses easier during data analysis. 
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During subjective analysis of high contrast condition with foreground RGB(0,0,0) 

and background RGB(240,240,240), an eye movement pattern emerged in some 

participants where fixations exhibited excessive central tendency. This observation is 

consistent with a well-documented correlation between visual span and contrast (Ojanpää 

2006; Legge and others 1997). In short, the higher the contrast between stimulus and 

background the bigger the part of the stimulus that can be perceived with a single fixation 

and the less eye movement is required to study the whole stimulus.  In our experiment 

this is a serious threat to validity since potentially informative features on the outskirts of 

a handwritten digit are significantly less likely to be directly fixated regardless of their 

informative value and how likely they are to be attended to by the participant's visual and 

cognitive processes. This came as a confirmation of the concern that various contrast 

conditions need to be tested and led the author to test lower contrast conditions to 

investigate the increase in the eccentricity of recorded fixations. In total, four levels of 

Michelson contrast were tested during the pilot. To reduce eye fatigue associated with 

bright white backgrounds all contrast conditions had a light grey background 

RGB(240,240,240). The four contrast conditions had grey foreground colours: 

RGB(0,0,0), RGB(192,192,192), RGB(210,210,210) and RGB(228,228,228). Based on 

post-experiment interviews and subjective evaluation of recorded eye movement the 

author determined that foreground RGB210 provides a good compromise by addressing 

the issue of excessive central fixations without significantly affecting participant 

identification performance. 

Main Verbal Task Viewing Conditions 

Seven different PNG image files were generated for each of the seventy-four 

NIST test digits and six NIST practise digits (Fig. 10). The background colour of all 

seven PNG versions was set to the special transparency value that allows for more 
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flexibility during experiment design and deployment. Five of these are scaled using 

nearest-neighbour interpolation to ensure that the resulting digit images contained the 

same details as the original digits (Fig. 10a-e). The resizing is done such that the digit 

bounding box fits in a 575×575 pixel box. This box is then centred on a 1024×768 pixel 

canvas chosen to cover the entire 20-inch display during the experiment. The foreground 

colour (FG) is set to one of the following RGB values: (0,0,0), (120,120,120), 

(180,180,180), (210,210,210) and (228,228,228).  

  

Fig. 10. viewing conditions in Verbal: (a) Unsmoothed-FG0, (b) Unsmoothed-FG120, (c) Unsmoothed-
FG180, (d) Unsmoothed-FG210, (e) Unsmoothed-FG228, (f) Smoothed-FG0 and (g) Smoothed-FG210. 
See Fig. A7-21 For a complete listing of handwritten digit stimuli in all Verbal viewing conditions. 

To control for the effect of rough aliased contours we discussed earlier, two 

additional PNG images were generated using a smoothing scheme (Fig. 10f-g). A widely 

used MATLAB Image Processing Toolbox filter called disk was used to smooth the 

rough contours. In order to minimize the changes on the resulting image, the original 

NIST images were size-normalized using bicubic interpolation. This results in 

significantly less rough contours allowing use of a relatively small 22-pixel disk during 
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smoothing (Fig. 8d, Fig. 10f-g). The foreground colour for the two smoothed versions 

was set to one of the following RGB values: (0,0,0) and (210,210,210). Since all seven 

PNG versions have background pixels set to a special transparency value, the actual 

background colour (BG) can be changed during experiment design and programming. 

The experiment background was ultimately set to RGB value (240,240,240) instead of 

white (255,255,255) based on a common norm in eye-tracking experiments to reduce 

background brightness (Fig. 10). 

 

Fig. 11. viewing conditions in Verbal and respective background and foreground luminance measured 
using a handheld luminance meter. Top table row and graph show corresponding Michelson contrast 

defined as  

Verbal Task Design and Implementation 

The Verbal task was designed and implemented using Experiment Builder. 

EyeLink II options were set to pupil-only binocular tracking at 500 Hz with high saccadic 

detection sensitivity. The Verbal task workflow is made up of four major sequences (see 

Fig. A1a). In the introduction sequence, the participant is presented with a welcome 

screen introducing the handwritten digit identification task, its general purpose, 

approximate duration and asking them to advise the experimenter of any discomfort they 
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may experience with the head-mounted eye tracker. The introduction sequence also 

explains the use of the button box and microphone and reminds the participant that they 

are free to discontinue the experiment at any time without adverse consequences.  

The second major sequence is the setup sequence that insures accurate calibration 

of the eye tracker and proper working of the desktop microphone. During calibration, the 

participant is asked to focus on nine dots appearing in random sequence on a 3×3 grid 

covering most of the display monitor. The calibration is followed by a similar validation 

process to ensure accurate eye tracking. The experimenter closely monitors the 

calibration process and can make adjustments on the eye tracker's headband or eye 

cameras, assist the participant with detailed instructions or repeat the entire process as 

they see fit. During the microphone test, the participant is asked to say, “Continue”. If the 

audio capture setup fails to detect the participant's voice, the experimenter can readjust 

the position of the microphone and ask the participant to repeat the test. The setup 

sequence completes when the voice-key node detects the participant’s voice properly 

hence triggering the display node, which confirms that audio recording is in working 

order.  

The third major sequence is a collection of five tutorials that were added based on 

pilot testing. The first tutorial familiarizes the participant with a recurrent display called 

drift correction that precedes each of the six practise trials and seventy-four test trials. 

The purpose of drift correction is to compensate for any drift in eye tracking that may 

result from variations in participant pupil size or other parameters effecting eye tracker 

calibration. It can also correct for small slippage in the head-mounted eye tracker. During 

the drift correction display, the participant sees a blank screen with a black dot located at 

the centre. She is then required to press a button on her gamepad while focusing her eyes 

on the central dot. If the drift angle separating the fixation locus from the central dot is 
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within the acceptable range (typically < 5°), the eye-tracking host software uses the drift 

angle to update calibration parameters. If, however, the drift angle is too large the 

experimenter is alerted on their display monitor and a recalibration process is required 

before the experiment can go on. When in doubt about the quality of calibration, the 

experimenter can pause the experiment between trials to carry out eye-tracking validation 

or repeat the entire calibration process as they see fit. 

Tutorials two through five present four pre-recorded sample trials. These tutorials 

are played back like screencasts allowing the participant to move through textual 

descriptions and pre-recorded trial segments using their gamepad. The first and second 

sample trials show an easy image of a handwritten numeral one with a pre-recorded voice 

demonstrating how to identify the numeral verbally at each prompt. The third and forth 

sample trials show an ambiguous image of numeral two that resembles a seven with a 

pre-recorded voice identifying it as a two at the first prompt then a seven at the second 

prompt. The purpose of the third and forth sample trials is to impress upon the participant 

the fact that some of the digits they will be identifying may be so poorly written that they 

should go with their instinct. The participant is reminded that they should focus on giving 

a quick answer at the first prompt to avoid hearing the error sound and because it is 

perfectly alright for them to change their mind at the second prompt if they feel they have 

a better answer. 

The fourth and last major sequence is the trial block sequence. Experiments are 

often divided into a number of trial blocks. This division helps separate practise trials 

from test trials and trials corresponding to one experimental condition from trials of other 

conditions. Since Experiment Builder's abstraction of a sequence allows for nesting and 

looping we can think of a block sequence as a nested for loop statement. The block 

sequence corresponding to an outer for loop executes a number of times corresponding to 
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the number of experiment blocks. The trial sequence corresponding to an inner for loop 

executes a number of times depending on the current block. In the Verbal task, the block 

sequence executes twice: first for the practise block with six practise trials and next for 

the test block with seventy-four test trials (see Fig. A1b). The workflows of practise and 

test blocks differ in their introduction slides but share the same trial sequence (see Fig. 

A1c).  

After completing the tutorial sequence, the participant is introduced to the practise 

part and reminded that they can rest their eyes after each handwritten digit. During the 

drift correction display, participants have the opportunity to pause the experiment, rest 

their eyes and resume the experiment when they are ready. This is particularly important 

in eye-tracking experiments since the presence of the high-energy infrared illuminators of 

the eye tracker can cause the eyes to get dry and teary which, beside the unpleasantness, 

can affect eye-tracking reliability. After completing the six practise trials, the participant 

is advised that the main part is about to start. They are reminded of how to rest their eyes 

and to inform the experimenter in case they feel any discomfort due to the head-mounted 

eye tracker. Once the seventy-four main test trials have been completed the participant 

sees the concluding slide advising them that the eye-tracking part of the experiment is 

over and thanks them for their valuable contribution. 

As noted earlier a trial sequence executes a predetermined number of times. In our 

experiment, this iterative behaviour is defined by attaching a spreadsheet-like data source 

(see Fig. A1b). Each data row contains stimuli and parameters corresponding to a single 

trial. These column fields include the trial index, the name of a handwritten digit image 

file, the corresponding numeral label, whether the digit is regular or irregular, practise or 

test and other details of secondary interest. Data source columns also allow setting the 

trial randomization rules. The Boolean practise column is used as a blocking criterion. As 
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such data rows with practise value 'true' are used for the practise block while data rows 

with practise value 'false' are used for the main test block. The trial index column, from 1 

to 80, is used to define within-block randomization behaviour with the experiment start 

time as the seed value for the pseudo-random number generator (see Fig. A1b). 

The trial sequence defines the operations to be executed just before, during and 

right after each trial. Two pre-trial operations are essential to the reliable recording of eye 

movement. The first operation, executed using the prepare sequence action node, ensures 

that all graphical and audio resources are optimally cached to avoid processing overhead 

during the actual trial. The second operation, executed using the drift correction node, 

ensures that small drift in eye-tracking calibration is corrected before the recording of 

trial eye movement begins. In our experiment, a third operation is added that initializes 

the audio file to which participant sound will be recorded during the trial. 

The actual trial lasts six seconds during which a full-screen handwritten digit 

image is presented and the participant's speech is recorded to a trial-specific audio file. 

The digit PNG files used for a given participant corresponds to one of the seven viewing 

conditions of contrast and smoothing we discussed earlier and remains the same 

throughout the Verbal task. As such, in unsmoothed viewing experiments the foreground 

colour of handwritten digits is fixed to one of the RGB values (0,0,0), (120,120,120), 

(180,180,180), (210,210,210) or (228,228,228). While in smoothed viewing experiments, 

the foreground colour of handwritten digits is fixed to one of the RGB values (0,0,0) or 

(210,210,210). The background colour of digit images as well as all experiment displays 

and slides is always set to RGB value (240,240,240). 

The logic and timing of experiment trials is the same regardless of selected 

viewing condition. At the start of the trial, coinciding with the onset of the digit, the 

participant hears a 100-millisecond beep prompting for their first verbal identification 
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with a 1-1/2-second response window. At the end of this window, 1.5 seconds into the 

trial, an error sound is given if the participant has failed to call out their first answer. 

During the next three seconds, the participant has the opportunity to take a closer look at 

the digit. At the end of the three-second window, 4.5 seconds into the trial, the participant 

hears another 100-millisecond beep prompting for their second verbal identification with 

a one-second response window. At the end of this window, 5.5 seconds into the trial, an 

error sound is given if the participant has failed to call out an answer within the previous 

second. The handwritten digit is replaced with a blank display six seconds into the trial. 

The trial ends when the recording of eye movement and participant voice stops a few 

milliseconds after the blank display.  

As we discussed before, it is important to ensure that participants give a quick 

first response even if they are unsure. The six practise trials are designed so that each is 

repeated until the participant enunciates their response in a timely fashion. To this effect, 

the trial sequence keeps track of the timeliness of participant verbal responses using a 

counter (see Fig. A1c). During the post-trial part of the trial sequence, the workflow 

proceeds by evaluating the timeliness counter to decide whether to repeat the practise 

trial and which feedback message to display. Practise trials completed on time are 

followed by feedback: “Good Speed!” or instruction to “Try to call out the number 

clearly and as fast as possible after each beep” otherwise. Main test trials, however, are 

never repeated and have no post-trial feedback. The identity of the displayed digit is 

hence never divulged. 

Verbal Task Output Format 
and Data Files 

Data collected during a Verbal task session is saved under a distinct folder 

specified at the start of the task session (see Fig. A3a). The folder name contains the 
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participant's initials and the date of the experiment. A session data folder holds a binary 

eye movement data file (EDF) of the same name. The EDF contains a sequence of time-

stamped records of participant eye movement samples, saccades and fixations in addition 

to corresponding NIST images and trial events. The data folder also contains the 

participant's verbal identification in the form of trial-specific wave audio files of six 

seconds each. In addition, a modified version of the original data source, which is 

attached to the trial sequence in Experiment Builder, is also generated. The new data 

source has its rows rearranged to reflect the actual trial order in the current session. An 

optional subjective evaluation file (notes.txt) may also be added by the experimenter at 

the end of the session. The text file primarily contains eye-tracking calibration or 

participant alertness issues as observed by the experimenter or reported by the participant 

during the course of the session. It is used to help determine the reliability rating of 

session data during data analysis (see p. 53 below).  

Unconstrained Identification during 
Normal Viewing 

In order to control for the effects of large digit size and double-prompt digit 

identification used in the Verbal task due to eye-tracking considerations, a new digit 

identification task is required that features normal digit size and unconstrained digit 

identification.  

Manual Task Design and Testing 

Manual Task Design Considerations 

Since no eye movement is recorded and given the overhead associated with 

processing and labelling verbal response during data analysis, the author opted for 

manual input using the numeric keypad of a standard IBM keyboard instead. To facilitate 
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future discussion, we refer to this task as the Manual task. This task is conducted on the 

same participants and right after they have completed the Verbal task. The purpose of the 

Manual task is hence to keep a record of how participants would identify the same 

seventy-four digits with no timing constraints and under normal viewing conditions of 

scale and contrast. Such data can serve as a reference to assess the extent to which eye-

tracking conditions during the Verbal task, like large scale and time constraints, affect 

identification performance. Furthermore, since manipulation of aliasing and contrast is no 

longer a requirement, the author opted to use the MNIST version of the digit images 

instead of NIST for two reasons. First, MNIST images are already size-normalized for 

normal viewing conditions under which they are virtually indistinguishable from the 

NIST version. Second, since MNIST digits are widely used in classifier performance 

benchmarks, human identification data on these digits makes for a more relatable 

reference. To insure normal viewing conditions during identification, the MNIST digits 

need to be presented at the centre of the display without scaling. In their original size-

normalized dimensions, fitting a 20×20 pixel box or less, MNIST digits span around 0.8° 

of the participant's visual field when displayed at 1024×768 resolution on a 20-inch 

monitor at 57cm viewing distance. To ensure that the task is as unconstrained as possible, 

any temporal controls are removed leaving identification response time completely up to 

the participant.  

Manual Task Pilot Testing 
and Modifications 

The pilot testing was conducted on six participants recruited in class. The purpose 

of the pilot test was to uncover design flaws and to address any threats to validity that 

may arise. Based on post-experiment interviews and subjective evaluation, the author 

determined that the number of practise trials initially set to three was insufficient. This 
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came after a number of complaints of manual entry errors especially when using the 

keyboard's numeric keypad. As a result, fourteen additional practise trials were 

introduced for a total of seventeen in the final version of the Manual task. The Manual 

task part of the experiment, which takes up to five minutes to complete, was conducted 

on participants after they have completed the twenty-five minute long Verbal task. 

Manual Task Design and Implementation 

The Manual task was also designed and implemented using Experiment Builder 

(see Fig. A2). This part of the experiment has a simpler workflow compared to that of the 

Verbal task. The first sequence is the introduction explaining the handwritten digit 

identification task using the numeric keypad of a standard IBM keyboard. The second 

sequence is the block sequence that, together with the nested trial sequence, yields a 

practise block with seventeen trials and a main test block with seventy-four trials. The 

practise and test trials are randomized in the same way as in the Verbal task but unlike 

the latter, only one viewing condition is used. The original greyscale MNIST digit images 

are presented to span roughly 0.8° degrees of the participant's field of view on a light 

grey background with no modification in scale, contrast or smoothing. 

Just like in the Verbal task, the trial sequence defines the operations to be 

executed just before, during and right after each trial. During pre-trial, the prepare 

sequence action node, ensures that all graphical and audio resources are optimally cached 

to avoid processing overhead during the actual trial. Unlike Verbal task trials, Manual 

task trial duration depends on how fast the participant identifies the handwritten digit. 

The actual trial starts with a standard fixation screen showing a cross at the centre of the 

display. One second into the trial, the cross disappears and the handwritten digit is shown 

for a maximum of ten seconds. The participant can identify the digit by selecting one of 

the numerals using the numeric keypad or the alphanumeric keys. Upon identification, 
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the handwritten digit disappears and a right-wrong feedback sound is played back 

indicating whether the participant has selected the correct numeral followed by a new 

trial.  

The decision to add right-wrong feedback is mainly due to an important shift in 

emphasis compared to the preceding task. In the Verbal task, a participant is trained to 

give a somewhat rushed first response followed by an amply delayed second and final 

response. In the Manual task, conducted right after the Verbal task, a participant is asked 

to give her best and final answer during the first and only response. Therefore, the author 

opted for right-wrong feedback during Manual task trials to remind participants of the 

shifting emphasis from speed of identification to correctness of identification.  

The workflow during the post-trial segment is slightly different in practise and 

test trials. The main objective of practise trials is to ensure that participants are 

comfortable using the numeric keypad. The seventeen practise digits are selected 

subjectively based on ease of identification. Therefore, erroneous identification made 

during practise trials is likely due to entry errors. Practise trials incorrectly identified are 

hence recycled for repetition until their correct identification while test trials are never 

repeated. 

Manual Task Output Format 
and Data Files 

Data collected during a Manual task session is saved under a distinct folder 

specified at the start of the task session. The folder name contains the participant's initials 

and the date of the experiment. A session data folder holds the plain text Results File 

containing a set of trial records (see Fig. A3b). Records are tab-separated and contain the 

participant's manual identification response in the form of a timestamp, the selected 

numeral in addition to the corresponding MNIST image. An optional subjective 
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evaluation file (notes.txt) may also be added by the experimenter at the end of the 

session. The text file primarily describes any numeric keypad entry issues reported by the 

participant during the post-experiment interview. Like the Verbal task notes.txt file, it is 

used to help determine the reliability rating of session data during data analysis.  

Data Collection Process 

Ethical Approval 

The ethical approval to recruit and conduct our study was obtained under the 

banner of the Concordia Vision Lab due to similarity to other ongoing research in general 

objectives and experimental conditions.  

Participant Recruiting 

Participant recruiting and testing was conducted during the months of February, 

March and April 2010. In total, the author recruited seventy-seven volunteers for the 

main phase of data collection. Sixty-one participated in the Verbal task under one of the 

seven aforementioned viewing and contrast conditions (see p.53 below). The remaining 

sixteen completed a drastically modified version of the Verbal task experiment featuring 

gaze-contingent extra-foveal masking that will not be discussed in this paper. The 

Manual task part was introduced a week after the start of Verbal task data collection and 

was completed by sixty-one volunteers only. The author solicited participants via a 

webpage listing of the university participant pool and through in-class presentations in 

two undergraduate Psychology courses. When a potential participant expressed their 

interest in volunteering in the experiment, the author contacted them via email and 

offered a number of available time slots from which to choose. A confirmation email 

followed advising them of the time of their participation and illustrated directions to the 

Concordia Vision Lab. The robustness of the EyeLink II meant that it could reliably track 
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eye movement of most participants with corrective vision. As such, there were no 

exclusion criteria for people wearing prescription glasses or contact lenses.  

Most participants were female in their early twenties and registered in 

preapproved participant pool credit courses, which entitled them to half a mark bonus on 

their final course grade. Students whose participation went over one hour were entitled to 

a full bonus mark. After the experiment, the student submits the participant pool credit 

form, which has been filled out and signed by the author-experimenter, to the department 

of Psychology for granting of course bonus. Two participants accepted a nominal 

monetary compensation of ten dollars as an alternative to course bonus. Three 

participants failed to complete the experiment due to technical difficulties but were still 

entitled to the credit or compensation.  

Testing Process 

The experiment starts with the greeting of the participant and signing of the 

consent form describing the risks associated with eye-tracking experiment such as the 

exposure to safe levels of infra-red radiation and advising the participant that they can 

discontinue the experiment at any time without adverse consequences (see Fig. A4).  

The experiment is composed of two handwritten digit identification tasks. The 

first part is the Verbal task, which uses an eye tracker and a microphone to record 

participant identification behaviour and lasts around twenty-five minutes. The 

preparations for this task include seating the participant, fitting of the head-mounted eye 

tracker, readjustment of eye cameras to ensure proper framing and detection of pupils. 

The participant is then given the gamepad-like button box and advised of the big button 

to press in order to advance through the experiment. Next, they are notified of the 

presence of the desktop microphone and instructed to rest their chin on the chin guard. 

The room lights are turned off shortly after in order to improve eye-tracking reliability 



53 

 

and reduce visual distractions.  

The Verbal task is followed by the Manual task, which uses a keyboard to record 

identification response and lasts five minutes or less. The preparations for this task 

include removing the eye tracker, collapsing of the chin guard, turning the lab room lights 

back on and pulling the display PC's keyboard closer to facilitate the participant's access 

to it. After the completion of the Manual task, the author-experimenter completes the 

participation credit form and conducts a short interview with the participant. The primary 

purpose of the post-experiment interview is to obtain participant self-report. Questions 

can range from “Did you feel that there were some number entry errors during the second 

part?”, “Did you change your mind on the second answer because you felt it was another 

possibility or a better answer?” or “Did you notice that the numbers were the same in 

both experiments?” to more general enquiries like “How was the experiment?” After the 

interview, the participant is debriefed about the purpose of the study, how it relates to 

Handwritten Character Recognition, and a short list of relevant references in the literature 

(see Fig. A5). After the participant is shown out, the author-experimenter completes a 

subjective evaluation of the two parts of the experiment. The evaluation record is kept in 

two notes.txt text files along with the participant's experiment data. Subjective evaluation 

is used to help determine the reliability rating of experiment data, which we discuss next. 

Collected Data Reliability Ranking 

Fig. 12 summarizes the collected data and its reliability. Sixty-one participants 

underwent both main Manual and main Verbal tasks. All sixty-one participations in the 

Manual task were ranked as good with a negligible number of participant-reported 

manual entry errors. In the Verbal task, on the other hand, fifty-three participations were 

ranked as good with seven and one participations assigned fair and poor ranking 

respectively and subsequently excluded from analysis. Five and two participations were 
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ranked as fair due to experimenter-reported calibration-recalibration issues and 

participant-reported fatigue respectively. The one poor-ranked participation was due to 

eye-movement data file corruption resulting in processing errors during conversion to 

plain text format to be discussed in the next chapter. Overall, 4514 Manual trials, 3883 

Verbal trials and 7766 verbal responses (7702 non-empty responses) made it to the data 

analysis phase. 

 

Fig. 12. Summary of collected data and reliability. Sixty-one and 53 participations were considered during 
analysis of Manual and Verbal respectively. Eight participations in Verbal were assigned poor or fair 
ranking and excluded from analysis due to: (1) data processing errors, (2) questionable calibration 
reliability, or (3) participant-reported fatigue. 
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CHAPTER 4 

DATA ANALYSIS AND DISCUSSION 

Before the analysis of collected data can proceed, a number of crucial steps need 

to be taken in order to consolidate and facilitate access to all relevant data. We start this 

chapter with a discussion of a number of steps taken and tools developed to prepare 

Manual and Verbal tasks data for analysis. We then move on to the analysis of 

identification and visual response data.  

Preparation of Identification Data 

Verbal Response Isolation and Labelling 

As we discussed before, the decision to opt for verbal identification stems from 

the requirement to collect ten possible responses (0 to 9) which makes manual input 

inappropriate in the context of eye tracking. Verbal identification, however, has its own 

challenges; indeed, the most accurate way to identify the numeral in a verbal response is 

by ear. In addition, it is quite possible that eye movement made during or right before the 

actual verbal response have special significance requiring accurate isolation. To do so 

necessitates pinpointing the start and the end of the verbal response. Even though 

experiments programmed using Experiment Builder have a voice-key trigger node that 

records the start of a participant's oral response (see Fig. Ac), the author found no 

discussion or available software components to record the end of the oral response. 

Furthermore, a participant often produces inadvertent sounds while clearing their throat 

or saying “ah” prior to enunciating the numeral making any response-timing data 
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inherently unreliable. The quality and sensitivity of the desktop microphone used in the 

Verbal task only adds to the problem; during data collection, the author often noticed that 

the late response error was sounded even when participants clearly gave their response on 

time. Alternatively, when the author-experimenter increased the voice-key trigger 

threshold or placed the microphone closer to the participant's mouth to compensate for 

sensitivity limitations, the system often mistook ambient noise or non-Verbal sounds 

made by the participant to an actual verbal response and failed to sound the late response 

error. This makes verbal identification response time as recorded in the EDF file highly 

unreliable and unsuitable for our purposes.  

Although listening to thousands of six-second trial audio files is not very time 

consuming, the process of accurately isolating verbal response time is. In addition, the 

process of manually labelling then consolidating the labelled responses of all participants 

across different viewing conditions is highly error-prone. These issues cast concerns not 

just over the quality of our own data analysis but also over the feasibility of further 

efforts to use eye movement for pattern recognition applications.  

Evaluation of Available Tools 

The search for automated or semi-automated tools to facilitate the processing of 

verbal response data led the author to evaluate a number of available tools. Among these, 

an open-source sound recording and editing program called Audacity (Brubeck, 

Haberman, and Mazzoni 2010) was most promising. The program (Windows version 1.3 

Beta) came with an impressive suit of features that allows loading several trial audio files 

at a time as well as carrying out noise reduction and removal of audio recording artefacts 

like clicks. This, in addition to a labelling feature that allows the user to graphically select 

audio segments of interest, label their selection, then export the labels in the form of an 

accessible spreadsheet containing the selection label, start time and end time. A Sound 
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Finder add-on based on amplitude heuristics is also available which automatically 

identifies and creates a label tag for the corresponding sound segments. Despite striking 

similarities to features of interest to us, the Sound Finder feature was highly unreliable 

perhaps due to the presence of breathing noise in many of the trial recordings making 

solely amplitude-based algorithms all but unusable. The manual labelling feature greatly 

facilitates labelling and consolidation of verbal identification data into a single 

spreadsheet; however, the process was still extremely time-consuming and quite error-

prone especially when it came to precisely selecting verbal response endpoints then 

tagging the selected audio segments.   

However, the program offers a number of built-in spectral analysis options one of 

which, Enhanced Autocorrelation, the author discovered by accident to be a reliable way 

to discriminate between spoken audio and breathing noise. The author later discovered 

that the function was an implementation of the Enhanced Summary Autocorrelation 

Function (ESACF) described in Tolonen and Karjalainen (2000) and widely cited as an 

efficient multi-pitch detection technique. Since much of human voice, especially during 

vowel sounds, has a highly auto-correlating spectral pattern in the form of a fundamental 

frequency ranging from 80Hz to 350Hz (Plannerer 2005), the ESACF plot shows big 

even spikes in that range only when speech segments are analyzed. Unfortunately, this 

scheme often fails to detect fricative sounds, which lack a fundamental frequency like the 

s sound at the beginning and the end of six making it limited on its own. A combination 

of ESACF and amplitude-based heuristics seemed like a very plausible alternative; 

however, the Sound Finder add-on cannot be customized to include criteria other than 

amplitude and the author found no implementation of ESACF in the Nyquist scripting 

language used to program Audacity add-ons. 

A common technique in voice-activity detection (VAD) uses amplitude and zero-
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crossing rate heuristics and is widely shared in the open-source community under both 

C++ and MATLAB implementations. Most of the implementations the author evaluated 

seemed geared to efficient and approximate detection of voice or voice-like audio 

segments rather than accurate isolation of spoken segments per se. In addition, none 

offered the manual editing means available in Audacity in case the user chooses to do 

some fine-tuning.  

Development of Verbal Response 
Isolation and Labelling Tool 

Given the wide availability of audio analysis implementations in the form of 

MATLAB toolboxes, the author chose the high-level programming language to explore 

alternative solutions more suited to the research requirements. The author used 

windowing, spectral analysis, and zero-crossing rate functions in the VOICEBOX 

toolbox (Brookes 2010) to implement a new speech isolation scheme which combines a 

new, simplified, implementation of ESACF with the amplitude-zero-crossing-rate VAD 

scheme discussed above (see Fig. A6).  

To determine the precise start and end points of an isolated voice segment, the 

program also detects extrema in the spectral distance and amplitude curves. When a 

specific number of extrema overlap or are adjacent, a candidate block is marked. The 

closest candidate within a maximal interval before or after a detected voice segment is 

then merged with the segment to form the isolation label. A graphical user interface is 

also available which allows the user to click on a given isolation and enter the numeral it 

represents. Since a trial audio file may be missing one or both verbal responses, if the 

participant failed to identify the handwritten digit, the user has the option to create a new 

isolation label and annotate it with () denoting a missing-empty response. To facilitate 

further fine-tuning, candidate blocks can be removed or added using mouse clicks.  
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A batch-mode feature was also added to allow loading and isolation of all trial 

audio in a given participant's data folder. When the user has completed editing and 

annotating all isolation labels, two export functions, reminiscent to the ones in Audacity, 

are used. The first, exports all labels into separate verbal response audio files that can 

then be conveniently loaded into an audio player play-list and played back for a quick 

final verification. The second export function converts all labels into a text file of tab-

separated rows. Each row represents a single label and contains the trial number in which 

the verbal response is given, whether it is the first or second response, the start and the 

end of the response in trial time as well as the numeral identified. The response start and 

end times are expressed in seconds and precise to 11 milliseconds with an average error 

of 33 milliseconds (author’s rough estimate). 

Consolidation of Manual and Verbal 
Identification Data 

Development of Consolidation Tools 

The spreadsheet-like text file containing a participant's verbal response labels is 

copied and pasted into a template-based MS Excel workbook named using the 

participant's unique ID. Since the trial order is randomized and differs from one 

participant to another, the participant's own trial data source is needed in order to 

determine the corresponding handwritten digit. Once copied over into the workbook, the 

trial numbers and handwritten digits are automatically matched and merged into a new 

table now containing all verbal response data necessary for analysis as follows:  

1. The name of the PNG image file containing the handwritten digit being 

identified and its true numeral label. 

2. Which numeral the participant called out during their first and second 

responses. 
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3. The start and the end of the first and second responses in trial time. 

When this process is completed for all participants, the individual verbal response 

workbooks are copied to a special folder for further consolidation.  

In the next phase, the author implemented two MS Excel VBA macros embedded 

in a macro-enabled workbook (XLSM). The two macros use each of the seventy-four 

handwritten digits to locate and retrieve the corresponding identification response for 

each participant automatically one viewing condition at a time. At the end of each batch 

job, a log table reports the count of unsuccessful lookups for each participant to facilitate 

verifying that all available data has been successfully retrieved. The first macro is used to 

consolidate the participants' verbal response workbooks while the second is used to 

consolidate their manual response Results Files described on p. 50 above. The two 

macros use a consolidation table to combine the identification responses as they are being 

retrieved one row at a time. Each table row contains the two verbal and one manual 

identification response details for a given participant on a given handwritten digit. This 

structuring facilitates cross analysis of first versus second verbal responses, on the one 

hand, and verbal versus manual responses on the other. To facilitate analysis of verbal 

identification or manual identification as a whole, a similar approach is used to 

consolidate identification responses individually into distinct rows. 

The verbal and manual identification data is now consolidated and can be 

conveniently accessed using pivot tables. These powerful data-processing tools are 

particularly suited for the task of custom filtering, summarizing and visualizing large 

amounts of tabulated data. 

Preparation of Visual Data 

The EyeLink system comes with a powerful data analysis tool (Data Viewer) to 

analyze, filter, consolidate and visualize the eye movement data in the binary EDF files 



61 

 

(EyeLink data viewer 2010). However, as we argued during the data collection 

discussion, the potential usefulness of eye movement data for pattern recognition 

applications is quite limited without the possibility to correlate it with the corresponding 

identification response. Since there is no viable way to isolate and label a participant's 

verbal responses online (i.e., during the experiment), the recorded EDF files have no 

reliable record of verbal identification of which to make use. One possibility is to use 

Data Viewer's filtering feature to select visual fixations individually or based on specified 

periods of interest. However, such manual process is highly error-prone and extremely 

time-consuming. Another downside to this option is the lack of a batch-mode in Data 

Viewer's fixation heat-mapping feature (version 1.10.1). Of particular interest to us, heat 

mapping is widely used to visualize a set of related visual fixations of an arbitrary size. It 

can be best thought of as a colour-coded probability density map representing the average 

share of gaze that various parts of a given image receive. The source of gaze data can be 

an arbitrary number of participants viewing the image over an arbitrary period. The 

ability to generate custom heat maps for the seventy-four handwritten digits would be a 

great boon to this study since they intuitively communicate the attractiveness of various 

digit features. However, since Data Viewer only allows the creation of one map at a time, 

our ability to generate heat maps based on a variety of criteria and periods of interest is 

severely limited. 

The alternative is to implement consolidation, visualization and heat-mapping 

tools while focusing on a subset of Data Viewer features that are of primary interest. In 

order to facilitate the use of the tabulated verbal identification data as selection criteria, 

the author opted to consolidate the visual fixations into a similar tabulated form in MS 

Excel. 
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Import and Consolidation of Visual Fixation 
Data 

The manufacturer of the EyeLink system provides a C-based EDF access API and 

example source-codes demonstrating how to use it. One of the examples, EDF2ASC, is a 

command-line utility that allows the conversion of a set of binary EDF files into ASCII 

files (ASC). As such, an ASC is a text file containing an ordered sequence of time-

stamped event records of a single eye-tracking session. Given this sequential form, data 

corresponding to the start, end, duration and screen-coordinates of a single fixation is 

located in different records throughout an ASC. Since time stamps used in EDF are 

expressed in experiment-time, trial-specific events, spanning over thousands of other 

event records, are also required to determine a fixation's start in trial time.  

Development of Conversion and 
Consolidation Tools 

In order to facilitate the process of consolidating visual fixations into tabulated 

form, the author carried out the following modifications on the way EDF2ASC processes 

a set of EDF files as summarized in Fig. 13: 

1. Fixation Record Creation: All event records corresponding to individual 

fixations need to be detected and combined into a single tab-separated record containing 

the participant ID (name of the EDF file) and fixation-specific data: Trial number, right 

or left eye, start and end time, duration and screen coordinates. 

2. Trial Record Creation: All event records corresponding to individual 

experiment trials need to be detected and combined into a single tab-separated record 

containing the participant ID and trial-specific data: (a) trial number, (b) trial index, 

(c) handwritten digit image file name, (d) its true numeral label, (e) trial start time, 

(f) trial end time, (g) fixation count and (h) start and end times of the trial audio 

recording. The latter is needed since it differs from the start and end times of the actual 
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trial by a few milliseconds. 

3. Consolidation of Fixation and Trial Records: In order to facilitate the process 

of mapping fixations to trials, the two sets of fixation and trial records need to be 

consolidated separately in two spreadsheets (XLS). As such, instead of one ASC per EDF 

the conversion produces two consolidated XLS files for all EDFs (Fig. 13). 

 
Fig. 13. Output comparison of original and modified EDF2ASC tool. Top, two views of the same ASCII 
eye movement data of a single participant after conversion from EDF using original EDF2ASC. Bottom, 
the corresponding visual fixation and trial data organized in tabulated form along with data of all 
participants in Verbal task output by modified EDF2ASC. 
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Visual Fixation Filtering and Isolation  

Visual Fixation Selection Scheme 

One of the advantages of consolidating large amounts of data records of the same 

type in MS Excel spreadsheets is the availability of powerful selection tools like 

Advanced Filters. This feature allows convenient filtering of tabulated data based on 

multiple criteria at a time. Each criterion can be set to match a specific value or a range of 

values in the respective table column. Therefore, in order to increase the number and 

variety of possible selection criteria, the fixations table needs to consolidate as many 

fixation-related details as possible at the risk of some redundancy. To that end, the author 

carried out the following additional consolidations to the tabulated fixation data as 

outlined in Fig. 14:  

 

Fig. 14. Addition of support columns to facilitate fixation filtering and isolation. Due to figure width 
constraints, the fixation table was split into two views: Top, Fixation Data and Bottom, New Fixation Data. 
The actual order of table columns can be deduced from displayed column letters. 
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1. Fixation trial time: Add a formula column to determine fixation start in trial 

time as follows: Number of milliseconds elapsed between trial start and fixation start 

(Fig. 14a). 

2. Fixation audio time: Add a formula column to determine fixation start in trial-

audio time as follows: Number of milliseconds elapsed between the start of the recording 

of trial audio and fixation start (Fig. 14b). 

3. Fixation Viewing Condition: Add a formula column to determine 

corresponding viewing condition by looking up the participant ID in a table listing all 

participants and their corresponding viewing conditions (Fig. 14c). 

4. Fixation Digit: Add three formula columns to determine handwritten digit ID, 

whether it is regular or irregular and its correct numeral label by looking up the image file 

name in a table containing handwritten digit details (Fig. 14d). 

5. Fixation-to-Verbal Lookup: In order to facilitate future matching with 

corresponding verbal identification data, add a formula column that concatenates 

participant ID and trial number. Add similar column in all verbal identification data 

tables. We refer to these as lookup columns (Fig. 14e). 

6. Fixation Verbal Answers: Add five formula columns that use the lookup 

columns to determine, for each fixation, the first verbal answer and whether it is correct, 

the second verbal answer and whether it is correct and whether the two answers are the 

same (Fig. 14f). 

7. Fixation Time Label: Add a formula column that uses the lookup columns and 

fixation audio time to determine the fixation's trial time label based on when the fixation 

starts relative to the two verbal responses: Before the first (bV1), during the first (V1), 

between the first and second (bV2), during the second (V2), or after the second (V2+) 

verbal responses (Fig. 14g). 
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8. Fixation Lapse: Add a formula column that uses the lookup columns, and 

fixation audio time to determine the fixation time lapse in milliseconds relative to the 

start of the respective verbal response. During analysis, an Advanced Filter can be 

applied by specifying a criterion on this column along with another criterion on the 

Fixation Time Label to select all fixations that occurred within a specific interval of a 

given verbal response. For example, criterion =bV1 along with criterion >-1000 selects 

all fixations that occurred within 1000 ms prior to the first verbal response; Criterion =V2 

along with criterion <100 selects all fixations, if any, that occurred during the first 100 

ms of the second verbal response and so on (Fig. 14h). 

Fixation Lapse data are of particular interest since they facilitate selection of 

fixations based on their temporal relation to the respective verbal answer. The visual 

fixations are now fully consolidated and ready for selection. 

Eye Movement Visualization Scheme 

An intuitive and commonly used eye movement visualization scheme displays 

trial fixations and saccades overlaid on top of the visual stimulus presented to the 

participant during that trial. Fixations are presented as dots or circles while saccades are 

represented by lines or arrows linking the fixations. In EyeLink Data Viewer (2010), this 

scheme is referred to as spatial overlay (Fig. 15b). Fixation duration is expressed by 

proportionately varying the circle's diameter while the circle's label displays other 

fixation data of interest.  

Since we are not interested in saccades or the order of fixations in the present 

study, MS Excel 2007 Bubble Charts can yield similar results for our purposes. Plot 

bubbles can be parameterized using four cell ranges for bubble x- and y- coordinates, 

widths (or areas) and labels corresponding to fixation coordinates, duration and start time 

respectively. A bubble chart can also have a background image that can be set manually 
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or programmatically. By formatting the chart's plot area properly the spatial overlay 

scheme is effectively reproduced (Fig. 15a).  

 

Fig. 15. Side-by-side comparison of (a) bubble chart and (b) Data Viewer’s spatial overlay showing visual 
fixation data from the same trial. Bubble and circle sizes are both proportional to fixation duration. Spatial 
overlay circles are also labelled with fixation duration in milliseconds while bubbles are labelled with 
fixation trial time in seconds. 

Selective Plotting of Visual Fixations 

To accelerate the process of visualizing a set of trial fixations, the author 

implemented a simple MS Excel VBA macro. In one common scenario the user picks a 

participant ID, viewing condition and handwritten digit criteria from the respective 

criterion drop-down lists. When a button is clicked, the macro applies the Advanced 

Filter set of criteria and copies resulting fixations over to the plot worksheet. At this point 

four Dynamic Named Range objects automatically expand or contract to span the newly 

selected fixation data. The bubble chart, whose data source points to these range objects, 

is updated and new bubbles are plotted according to the selected x- and y- coordinates, 
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fixation durations and fixation start times. Finally, the macro uses the specified digit ID 

and viewing condition to locate and set the corresponding image file as the chart's 

background image hence producing the effect of spatial overlay (Fig. 15a). In some 

scenarios, the user may wish to select fixations from multiple trials at a time. In this case, 

general statistics about the resulting trials and fixations may be of interest. To that end, 

the macro also calculates the number of unique participant Ids, the total row count and 

maximum duration in the selection results. Three worksheet cells are then used to report 

these statistics in the form of trial count, fixation count and duration of the longest 

fixation respectively. Given the potentially large number of selection criteria applied at a 

time, the macro parses the entire row of Advanced Filter criteria summarizing it into a 

more compact form in a forth worksheet cell. 

Development of Heat-Mapping Tool 

The use of fixation plots is restrictive in two important ways. First, plots fail to 

communicate the repetitiveness and combined duration of gaze when any more than a 

few fixations are displayed. This holds true in most cases since some image parts are 

often revisited while most receive little to no direct gaze. In a fixation plot, this yields a 

set of crowded and overlapping circles virtually hiding, instead of emphasizing, image 

regions of high importance. Second, fixation plots only communicate the parts of the 

image directly fixated, which represents a small fraction of the region actually perceived 

by the visual system. Therefore, in order to effectively communicate how much, how 

long and how often various parts of an image are perceived a visualization scheme must 

be able to combine and smooth fixation data in a biologically plausible manner.  

Creation of Fixation Heat Maps 

In the EyeLink Data Viewer Manual (2010) the process of creating a fixation map 
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(heat map) describes applying a 2D Gaussian at the location of each fixation then adding 

the results to the corresponding region of an internal map. The map is then normalized 

and applied to a colour or brightness scale to create the heat map. The Gaussian is set to a 

default standard deviation σ=1°, based on a 2°-foveal field of view, while the height of 

the Gaussian depends on the type of heat map selected by the user. In count-based heat 

maps, used to express the repetitiveness of gaze in various parts throughout a displayed 

stimulus, the Gaussian is described to be weighted equally at each fixation. In duration-

based heat maps, used to express the combined duration of gaze in various parts 

throughout a displayed stimulus, the Gaussian is described to be weighted by the duration 

of individual fixations. Caldara and Miellet (2011), describe a similar method for creating 

statistical fixation maps. Initially, each fixation is represented by a point with the same x- 

and y- coordinates and an intensity value proportional to the fixation duration. Then, a 

Gaussian convolution filter is applied on the intensity image resulting in the equivalent 

fixation heat map. The author used the MATLAB Image Processing Toolbox (2009) to 

implement a heat map-generating script that follows the same process and gives maps 

very similar to those generated using Data Viewer (Fig. 16).  

The script takes the following list of parameters:  

1. Fixation details: Three real-valued vectors of equal size describing duration, x- 

and y- coordinates of an arbitrary set of fixations. 

2. Image file paths: Two character arrays specifying (a) the location of the 

handwritten digit image to use as the heat map background and (b) the path to the output 

folder where the generated heat map will be saved. 

3. Heat map description: A character array describing the source of fixations 

including (a) the list of selection criteria and (b) a scalar value describing the number of 

trials from which the fixation set was obtained. 
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Fig. 16. Comparison of duration-based heat maps generated using: (a) Gaussian convolution and (b) SR 
Research Data Viewer on the same set of digit stimuli and visual fixations taken from all 6 participants in 
U-FG120 (see Fig. A22 for a larger version). 

The heat-mapping script proceeds as follows: 

1. Creation of fixation matrix: Use x- and y- coordinates of the set of fixations to 

obtain their respective subscripts into a 2D matrix of the same size as the digit image 

(1024×768). Then, set matrix values at these subscripts to one, for count-based heat 

maps, and to the duration of the respective fixation in milliseconds, for duration-based 

heat maps. Use function accumarray to handle overlapping fixations. 

2. Gaussian convolution: Create a two-dimensional Gaussian low-pass filter with 

σ=24 (number of pixels in 1°) using function fspecial. Then, perform convolution 

filtering using function imfilter and the Gaussian filter on the fixation matrix to obtain the 

filtered matrix. 

3. Creation of gaze map: Normalize the resulting matrix to the greyscale index 

range from black=0.0 to white=1.0. To impose an activity cut-off limit similar to the one 

used in Data Viewer, whereby the bottom 10 percent least perceived regions are ignored, 

suppress all greyscale indexes <0.1075.  

4. Creation of overlay heat map: Use a MATLAB toolbox that specializes in 
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image overlaying (SC) (Woodford 2007) and select the probability density theme that 

uses a hue-saturation-value-based (HSV) colour map. Using this colour theme, the gaze 

map channel is plotted in the foreground by modulating the hue while the handwritten 

digit image is plotted in the background by modulating the greyscale intensity. 

5. Heat map annotation: Prior to displaying and saving the heat map to the 

specified output path, the script annotates the heat map with the specified descriptive text, 

specified number of trials and an estimated peak value in the count- and duration- based 

heat maps (Fig. 17). 

 

Fig. 17. Duration-based heat map and annotation describing source and statistics of used visual fixations: 
Digit ID 1022 (MNIST no.1394) in Unsmoothed-FG0 with any first response and any second response from 
trial start to trial end based on 160 fixations in 8 trials. Region colour-coded in red received a combined 
gaze of 622.1ms (peak value). 
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The author steered away from the red-yellow-green colour scale used in Data 

Viewer (Fig. 16b) primarily because the orange and green shades, which convey very 

different levels of gaze activity, are hard to discern for people with partial colour 

blindness (of which the author is one.) This colour scale is also non-standard and the 

author found no corresponding colour map in MATLAB. 

Heat Maps and Gaze Span 

In addition to count- and duration- based heat maps, we are also interested in 

studying eye movement eccentricity across different criteria. To this end the script also 

calculates and returns the following scalar values as crude measures of gaze spatial span 

and fixation spread (here, heat map refers to the colour-coded parts of a heat map image):  

1. Filled heat map area: The filled area of the count- and duration- based heat 

maps: First, the indexed heat map image is converted into a black and white (binary) 

image. Second, the MATLAB Image Processing Toolbox function regionprops is used to 

determine the area of each connected region of the heat map image including any holes 

they may contain. Last, areas of individual regions are added to find the total filled area 

of the heat map in square pixels. 

2. Heat map bounding box area: The bounding box area of the count- and 

duration- based heat maps. To calculate the bounding box of a given heat map, the 

indexed heat map image is first convert into a binary image. Since a heat map may 

contain more than one connected region, the total bounding box of the binary image is 

determined by finding the indexes of the first and last rows and columns with a non-zero 

pixel. The resulting width and height are then multiplied to determine the heat map 

bounding box area in square pixels.  

3. Heat map standard deviation: The standard deviation of the two-dimensional 

fixation matrices used during the creation of the count- and duration- based heat maps. 
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Selective Heat Mapping of 
Visual Fixations 

In order to make use of the fixation filtering and selection features implemented 

in MS Excel, the author deployed the heat-mapping script in the form of an Excel add-in 

using MATLAB Builder EX (2009). This allows the use of selected fixation data in a 

worksheet to generate custom heat maps at the click of a button. When the user is done 

specifying fixation criteria, the Select Fixations button is pressed to apply filter criteria 

producing a new set of selected fixations. To generate the corresponding heat map, the 

user then clicks on the Heat Map button, which calls on the heat map add-in with the 

required parameters discussed before: (1) Selected fixation details, (2) paths to the digit 

image and heat map output folder, (3) a short description containing summary of criteria 

and number of selected trials. At this point the embedded MATLAB script generates, 

displays and writes the heat map to the output folder then returns heat map area and 

standard deviation statistics to the MS Excel add-in. The add-in then reports the statistics 

on the worksheet using six reserved cells. 

Batch-Mode Selective Heat Mapping 

The suit of MS Excel VBA macros and MATLAB scripts implemented for 

consolidation, selection and heat mapping allows us to analyze fixations based on a wide 

range of selection criteria. Unavailable in EyeLink Data Viewer or any other analysis tool 

the author has come across, these criteria enable selection of fixations based on the 

identity of and time difference from the associated verbal responses. However, the sheer 

complexity of cognitive processes unfolding during the Verbal task suggests that any 

applicability to Pattern Recognition may require analysis of a wide range of selection 

criteria. Without the ability to automate the process of heat mapping based on several sets 

of selection criteria at a time, such exhaustive analysis comes at a great cost in error-

prone manual labour. Here, once again, the availability of versatile automation features in 
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the spreadsheet world opens new possibilities in the form of batch-mode heat mapping.  

To that end, the author implemented another VBA macro that uses a table of 

selection criteria to generate custom heat maps automatically one row at a time. When the 

heat maps to be generated have many criteria in common, as is often the case, the use of a 

spreadsheet also accelerates the creation of the selection table while minimizing room for 

error (Fig. 18).  

 

Fig. 18. A snippet of a batch-mode selection table. Due to figure width constraints the table was split into 
two views: Top, Advanced Filter columns where each row is set to produce count- and duration- based heat 
maps for a given participant based on a given handwritten digit using right-eye fixations during the six-
second trial period; Bottom, heat map statistics columns where each row shows the corresponding output 
heat map statistics; left to right: count-based heat map area, its bounding box area, its standard deviation, 
duration-based heat map area, its bounding box area, and its standard deviation. 

In addition to the Advanced Filter selection criteria, the selection table features a 

column specifying the output path where the generated heat maps will be stored. It also 

has six initially empty columns reserved for storing statistics returned by the embedded 

heat-mapping script. When the macro is done selecting fixations and generating the 

count- and duration- based heat maps corresponding to a row of criteria, it uses these free 
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fields to store corresponding heat map statistics before moving on to the next row. When 

the batch job completes and all rows have been processed, the selection table can serve an 

additional function: Table contents can now be archived along with selection tables from 

other batch jobs for the purpose of analyzing fixation spread across a wide range of 

viewing conditions and criteria. 

Analysis of Identification Response Data 

Before we delve into the analysis of identification response data, we reiterate the 

main purposes of the various experimental conditions used during data collection. The 

Manual task was introduced in order to evaluate the extent to which eye-tracking 

considerations such as large-scale digits, aliasing artefacts and double-prompt 

identification fundamentally affect the way participants identify handwritten digits. The 

five unsmoothed contrast conditions of the Verbal task, on the other hand, were added to 

explore the effect of luminance contrast changes on the eccentricity and spread of visual 

fixations. Last, the two smoothed conditions of the Verbal task were introduced in order 

to evaluate the effect of aliasing jaggies combined with changes in luminance contrast on 

the way participants identify handwritten digits and patterns of their visual fixations. Data 

collected under all seven Verbal task viewing conditions can also serve to explore 

Optimal Viewing guidelines for similar research in the future. Hence, the purpose of 

these experimental conditions is primarily to serve as references to evaluate the validity 

and reliability of collected data rather than to investigate a cause-effect relationship 

between a specific display parameter and a particular response measure. As such, the 

author is careful not to make any conclusive claims in the identification response analysis 

presented next. 
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Identification Rate and Response Time 

We start by evaluating the effect of contrast and smoothing on identification 

performance in Verbal task. 

Identification Rate across Viewing 
Conditions of Verbal Task 

Fig. 19 shows the correct identification rate for regular, irregular and all seventy-four 

digits across viewing conditions of the Verbal task. All viewing conditions show much 

higher identification rates for regular compared to irregular digits and slightly higher 

rates during second compared to first response. In Fig. 19a, the overall correct 

identification including both responses show very small variations across unsmoothed 

conditions with an important drop under smoothed viewing particularly for irregular 

digits. This is perhaps due to unintended distortions in the smoothing process (See Fig. 

A7-21). Fig. 19b shows no evidence of luminance contrast level affecting correct 

identification during the first verbal response with fluctuations possibly due to individual 

differences (see Fig. A26a). 

In Fig. 19c a peculiar pattern emerges whereby correct identification in second 

verbal responses shows a slight increase with decreasing luminance contrast. This is 

somewhat counterintuitive. A possible – albeit rather convoluted – explanation relates to 

the perceived task difficulty and confidence in first response. The fifty-four irregular 

digits may be challenging to pattern classifiers but, as results clearly indicate, most are 

quite recognizable by humans. As luminance contrast drops, however, participants 

become less confident with their first rushed response and may hence be less reluctant to 

change their answer when change is warranted. Although these small variations may be 

due to individual differences, it is worth noting that, in overall Verbal response, lower 

contrast conditions under smoothed (FG210) and unsmoothed (FG210, FG228) viewing 

show slightly better identification rate compared to counterparts in higher contrast 
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conditions. 

 

Fig. 19. Percentage of correct identification for regular, irregular and all 74 digits across viewing conditions 
of Verbal. Horizontal labels show viewing condition name and luminance contrast. Data based on: 8 
participants in U-FG0, 4 in U-FG120, 6 in U-FG180, 17 in U-FG210, 7 in U-FG228, 6 in S-FG0, and 5 in 
S-FG210. Empty verbal responses are considered incorrect and represent:  0.87%  in U-FG0, 2.08% in U-
FG120, 0.93% in U-FG180, 1.36%  in U-FG210, 0.93% in U-FG228, 1.23% in S-FG0 and 0.19% in S-
FG210 (see Fig. A25 for detailed response rate statistics).  



78 

 

Identification Speed across Viewing 
Conditions of Verbal Task 

Another identification performance metric is speed. Since participants were 

instructed to delay their second verbal response until they have heard the second prompt 

4.5 seconds into the trial, only the first verbal response time can be considered a valid 

measure of identification speed. Fig. 20a shows average first response time in seconds 

across viewing conditions while Fig. 20b presents the corresponding correct 

identification rate for reference purposes. Here, empty responses are excluded from 

analysis. Just like in identification rate data, response time data shows no clear 

relationship between display contrast and performance and variations are possibly due to 

individual differences (see Fig. A26b).  

One striking exception is the response time in the lowest contrast condition 

(F228) which shows a sharp drop (0.85 seconds) compared to the highest contrast 

condition (0.94 seconds) and the average of unsmoothed conditions (0.92 seconds). This 

is both counterintuitive and difficult to justify since the literature on contrast and visual 

perception reports slower reading and visual search speeds with decreasing luminance 

contrast (Ojanpää 2006; Legge and others 1997; Ojanpää and Näsänen 2003). 

Furthermore, this increase in identification speed is: (1) most pronounced for irregular 

digits, (2) comes at little cost in terms of correct identification rate, and (3) is too big to 

dismiss based on individual differences alone. 

A possible explanation may relate to an interaction between luminance contrast 

and aliasing artefacts. For instance, it is plausible that the presence of jaggies presents an 

important distraction in higher contrast conditions particularly for irregular digits and that 

such effect diminishes with decreasing contrast. This may also explain two additional 

observations:  (1) FG210 performance on irregular digits in the first response has a 

significantly higher correct identification rate (76.4% compared to 72.3%) with the same 
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response time compared to FG0 under unsmoothed viewing but not under smoothed 

viewing; (2) response time on irregular digits is slightly lower (faster) under smoothed 

viewing than in the same luminance contrast under unsmoothed viewing (0.98 and 0.97 

compared to 1.00 seconds). 

 

Fig. 20. (a) Average response time and (b) percentage of correct identification for manual response and 
first verbal response across all viewing conditions; horizontal labels show condition name and luminance 
contrast. Data based on: 61 participants in Manual, 8 in U-FG0, 4 in U-FG120, 6 in U-FG180, 17 in U-
FG210, 7 in U-FG228, 6 in S-FG0, and 5 in S-FG210. Empty first verbal responses (1.42%) are not 
counted. 
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Identification Performance in 
Manual and Verbal Tasks 

Data collected under the Manual task is a valuable metric to gage the extent to 

which Verbal task constraints like large-scale digits, aliasing artefacts and double-prompt 

identification interfere with the way participants identify handwritten digits. Given the 

relatively small differences in correct identification rates across contrast conditions, we 

focus our comparison on identification performance under the Manual task to the overall 

performance for first and second verbal responses under smoothed and unsmoothed 

viewing. Here, it is worth reiterating two additional differences between the two tasks. 

First, Manual task stimuli were obtained from the lower resolution MNIST database 

whereas Verbal task stimuli were derived from the NIST database; however, as we 

mentioned before, the two sets of digits are virtually indistinguishable under normal 

viewing size. Second, participants completed the Verbal task under one of the seven 

viewing conditions prior to undergoing the Manual task. Although when asked, most 

exclaimed that they did not realize the digits were the same in the two tasks, one cannot 

dismiss the possibility that familiarity may have affected task performance in some way.  

Having said that, Fig. 20 shows very strong evidence that identification speed is 

significantly higher under Manual task compared to either response under Verbal task for 

regular and irregular digits alike. This is hardly surprising since Verbal task digits are 

much larger than under normal viewing possibly forcing the visual system to execute 

some eye movements before the digit’s identity can be reached with some confidence. 

Fig. 21 shows that Manual task performance is also significantly higher in terms of 

correct identification rate for irregular digits compared to either response under Verbal 

task. When it comes to correct identification of regular digits, on the other hand, Manual 

task and unsmoothed conditions of the Verbal task are very similar. These results are a 

reassuring sign that despite important differences in some performance metrics, the 
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identification task remains fundamentally the same irrespective of eye-tracking design 

considerations.  

 

Fig. 21. Digit identification rate in Manual compared to those in first and second verbal responses under 
smoothed and unsmoothed conditions of Verbal. Data based on: 61 participants in Manual, 8 in U-FG0, 4 
in U-FG120, 6 in U-FG180, 17 in U-FG210, 7 in U-FG228, 6 in S-FG0, and 5 in S-FG210. Empty first 
verbal (1.42%) and empty second verbal (0.26%) responses are not counted. 

Digit Identifiability and Ambiguity 

As noted previously and supported by data analysed so far, many of the fifty-four 

digits that motivated this study are primarily irregular-ambiguous from a machine 

learning point of view and not for man. Identifying the irregular digits that were also 

challenging to participants may greatly help us focus our efforts on a smaller set of eye 

movement data of prime interest; hence, before we move on to the analysis of visual 

fixations, an evaluation of digit ambiguity and the lack thereof is in order. Next, we break 

down our evaluation into one of the following metrics: (1) Most and least identifiable 

digits – digits that were most and least correctly identified, (2) most misidentified digits 

in each numeral, (3) confusion pair digits – digits that best represent the most common 

confusion-error in each numeral, (4) most confusing digits – digits that were confused 

with the most numerals and (5) most re-identified digits – digits for which participants 
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changed their answer the most. For the exception of the last ambiguity category, we also 

present the corresponding ambiguous digits under Manual task for reference purposes. 

Given the relatively small differences in identification performance across contrast 

conditions, we focus our evaluation on ambiguity under Manual task, unsmoothed and 

smoothed viewing of Verbal task. Since regular digits are rarely misidentified, we 

exclude them from the evaluation and focus on presenting irregular digit statistics. 

Most and Least Identifiable 
Handwritten Digits 

We start the ambiguity evaluation with the most identifiable of digits. Table 1 

shows some of the most correctly identified irregular digits under Manual task and 

unsmoothed and smoothed conditions of Verbal task.  

Table 1. Most correctly identified irregulars and how they were identified in Manual, unsmoothed and 
smoothed conditions of Verbal. 

Manual 
MNIST no.  #4206 #3781 #6560 #248 #1183 #1983 #1045 #1879 #4880 #2897 #4762 #2940 

Numeral 2 4 4 4 6 6 6 8 8 8 9 9 
Response 2 4 4 4 6 6 6 8 8 8 9 9 
Correct C C C C C C C C C C C C 
Correct% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 Verbal (Unsmoothed) 
MNIST no. #2714 #4206 #3942 #6560 #3781 #1183 #1045 #1040 #1879 #3024 #2897 #4880 

Numeral 0 2 4 4 4 6 6 7 8 8 8 8 
Response 0 2 4 4 4 6 6 7 8 8 8 8 
Correct C C C C C C C C C C C C 
Correct% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 Verbal (Smoothed) 
MNIST no. #2714 #4206 #3942 #248 #1183 #1983 #2136 #1015 #1040 #3226 #8409 #2897 

Numeral 0 2 4 4 6 6 6 6 7 7 8 8 
Response 0 2 4 4 6 6 6 6 7 7 8 8 
Correct C C C C C C C C C C C C 
Correct% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Notes: Sorted by numeral. Data based on: 61 participants in Manual, 42 in unsmoothed and 11 in 
smoothed. Top left, In Manual task, digit #4206 is a 2 and was identified correctly in all responses. See Fig. 
A27 and tables A1-3for further details 



83 

 

All of the above digits were identified correctly by all participants under different tasks. 

A complete listing of all digits and their identifiability can be found in appendix tables 

A1-3. 

The identifiable nature of table 1-digits and their recurrence across tasks is hardly 

surprising. One exception is zero-digit no.2714 (MNIST sequence number), which has 

perfect identification under unsmoothed and smoothed Verbal conditions alike but was 

misidentified in about 10% of responses under the Manual task as we see shortly.  

In the category of least identifiable digits, on the other hand, table 2 shows some 

important differences in the ten most misidentified digits across tasks in terms of both 

extent and order of ambiguity.  

Table 2. Most incorrectly identified irregulars and how they were most commonly misidentified in Manual, 
unsmoothed and smoothed conditions of Verbal. 

Manual 
MNIST no. #5655 #8377 #4741 #2131 #2655 #9730 #9506 #3423 #1261 #1902 

Numeral 7 1 3 4 6 5 7 6 7 9 
Response 2 6 5 9 1 6 2 0 1 4 
Response% 95% 57% 82% 75% 54% 72% 66% 61% 51% 48% 
Incorrect% 95% 87% 82% 77% 77% 72% 67% 62% 52% 52% 

Verbal (Unsmoothed) 
MNIST no. #948 #9730 #5655 #1261 #1394 #2463 #1902 #3423 #2655 #2598 

Numeral 8 5 7 7 5 2 9 6 6 5 
Response 9 6 2 1 6 0 4 0 1 3 
Response% 99% 96% 92% 91% 27% 65% 76% 60% 53% 56% 
Incorrect% 99% 98% 94% 91% 87% 87% 80% 63% 61% 59% 

Verbal (Smoothed) 
MNIST no. #2463 #9730 #948 #1261 #9665 #2655 #1394 #4177 #583 #1233 

Numeral 2 5 8 7 2 6 5 2 8 9 
Response 0 6 9 1 7 1 1 8 6 4 
Response% 100% 100% 100% 100% 95% 91% 41% 45% 62% 82% 
Incorrect% 100% 100% 100% 100% 100% 95% 95% 90% 86% 82% 

Notes: Sorted by identifiability in ascending order. Empty responses are ignored. Data based on: 61 
participants in Manual, 42 in unsmoothed and 11 in smoothed. Top left, in Manual task, digit #5655 
represents a 7 but was mistaken for a 2 in 95% of responses. See Fig. A28 and tables A1-3 for further 
details. 
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Eight-digit no.948, for instance, was misidentified in almost all verbal responses but only 

41% of Manual task responses. Two-digit no.2463 is another good example; misidentified 

in 87% of unsmoothed and 100% of smoothed verbal responses it is incorrectly identified 

in only 16% of Manual task responses. Furthermore, while the most common 

misidentification for no. 2463 is 0 in Verbal task (65% of responses), it is 8 in Manual 

task (11% of responses). While such discrepancies may be due to differences between 

MNIST and NIST databases, a more likely explanation lies in differences relating to 

display scale between Manual task and Verbal task as shown in Fig. 22.  

 
Fig. 22. Discrepancies in identification for three irregular digits under Manual and Verbal: (a) A 0 which 
has perfect identification under unsmoothed and smoothed Verbal conditions alike but was misidentified in 
about 10% of responses under the Manual task; (b) a 2 is misidentified in 87% of unsmoothed and 100% of 
smoothed verbal responses but only 16% of Manual task responses; (c) an 8 was misidentified in almost all 
verbal responses but only 41% of Manual task responses. 
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In all three cases, the visual system seems more likely to perceive loop-like features at 

small scale than at large scale. A plausible justification for such bias relates to the way 

the visual system may be dealing with ambiguity at different scales: At small scale, the 

visual system is more likely to assume that features like loop holes are present but are 

simply hard to discern due to perceived lack of detail; hence, it is more likely to 

compensate for ostensibly missing features than at very large scale. 

In the category of least identifiable digits by numeral, the commonalities across 

tasks are more pronounced as can be seen in table 3.  

Table 3. Most incorrectly identified irregulars by numeral and how they were most commonly misidentified 
in Manual, unsmoothed and smoothed conditions of Verbal. 

Numeral 0 1 2 3 4 5 6 7 8 9 

Manual 
MNIST no. #2714 #8377 #4177 #4741 #2131 #9730 #2655 #5655 #948 #1902 

Response 8 6 8 5 9 6 1 2 9 4 
Response% 8% 57% 15% 82% 75% 72% 54% 95% 41% 48% 
Incorrect% 10% 87% 36% 82% 77% 72% 77% 95% 41% 52% 

Verbal (Unsmoothed) 
MNIST no. #1622 #8377 #2463 #4741 #2131 #9730 #3423 #5655 #948 #1902 

Response 6 6 0 5 9 6 0 2 9 4 
Response% 17% 33% 65% 22% 26% 96% 60% 92% 99% 76% 
Incorrect% 17% 51% 87% 25% 27% 98% 63% 94% 99% 80% 

Verbal (Smoothed) 
MNIST no. #1622 #8377 #2463 #4741 #9793 #9730 #2655 #1261 #948 #1233 

Response 6 6 0 5 9 6 1 1 9 4 
Response% 23% 41% 100% 48% 45% 100% 91% 100% 100% 82% 
Incorrect% 27% 45% 100% 57% 45% 100% 95% 100% 100% 82% 

Notes: Sorted by numeral in ascending order. Data based on: 61 participants in Manual, 42 in unsmoothed 
and 11 in smoothed. Empty responses are ignored. Top left, in Manual task, digit #2714 is a 0 and was 
identified otherwise in 10% of responses and as an 8 in 8% of responses. See Fig. A29 for further details. 

Nevertheless, there are some important discrepancies particularly in terms of the extent of 

digit ambiguity. However, error variations in digit nos.: 2714, 8377, 2463, 4741, 2131, 
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9730, 948 and 1902 (representing numerals: 0, 1, 2, 3, 4, 5, 8 and 9 respectively) can all 

be explained in terms of a decreased perception of loop-like features at large display 

scale. 

Most Common Confusion Pairs 

Another way to consider ambiguity is based on the most common error in all 

digits of a given numeral rather than in each digit on its own. We refer to ordered pairs of 

the form (numeral, error) as confusion pairs and present them in table 4 in descending 

order of error. For instance, in Manual task, irregular 3s were most often confused with 

numeral 5. Confusion pair (3-5) represents 41% of responses on irregular 3s all of which 

occurred on digit no.4741. 

Table 4. Most common confusion in each numeral and the irregular digit that best represents that confusion 
in Manual, unsmoothed and smoothed conditions of Verbal. 

Manual 
Numeral 3 1 7 5 9 4 6 2 8 0 
Response 5 6 2 6 4 9 0 7 9 8 
Confusion% 41% 35% 32% 14% 11% 10% 8% 7% 5% 4% 
MNIST no. #4741 #8377 #5655 #9730 #1902 #2131 #3423 #9665 #948 #2714 

Digit% 100% 55% 49% 100% 73% 96% 95% 65% 100% 100% 

Verbal (Unsmoothed) 
Numeral 7 9 5 1 2 8 3 0 6 4 
Response 2 4 6 6 0 9 5 6 0 9 
Confusion% 27% 25% 24% 17% 13% 13% 11% 8% 8% 4% 
MNIST no. #5655 #1902 #9730 #8377 #2463 #948 #4741 #1622 #3423 #2131 

Digit% 58% 50% 79% 63% 100% 85% 100% 100% 93% 84% 

Verbal (Smoothed) 
Numeral 9 2 5 3 7 1 6 8 0 4 
Response 4 7 6 5 2 6 1 9 6 9 
Confusion% 37% 25% 24% 23% 20% 18% 15% 12% 11% 6% 
MNIST no. #1233 #9665 #9730 #4741 #5655 #8377 #2655 #948 #1622 #9793 

Digit% 37% 75% 85% 100% 54% 75% 77% 92% 100% 91% 

Notes: Sorted by identifiability in ascending order. Empty responses are ignored. Data based on: 61 
participants in Manual, 42 in unsmoothed and 11 in smoothed. Top left, in Manual task, irregular 3s were 
most often confused with 5; confusion 3-5 represents 41% of responses on irregular 3s all of which 
occurred on digit #4741. See Fig. A30 for further details. 
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Most Confusing Handwritten Digits 

Digits that were misidentified-confused with the most numerals are presented in 

table 5. In this category, a number of error patterns are quite striking across tasks and 

merit a closer look: In all but two digits at least one response can only be considered 

plausible if the visual system identified the digit after flipping it upside-down or sideways 

(flip-identification). The following digits were clearly flip-identified: 2655(2, 7), 4177(5, 

9), 3809(5), 1394(6, 7), 4498(4, 9) and 9680(2). Although the data in table 5 and tables 

A1-3 suggests that significant flip-identification occurred only on digits that are 

legitimately ambiguous, it does expose a flaw in experiment design under both tasks: 

Participants were not informed that all digits were going to be presented right side up. 

Table 5. Irregulars that were confused with the most numerals in Manual, unsmoothed and smoothed 
conditions of Verbal. 

Manual 
MNIST no. #2655 #4177 #3809 #1394 

Numeral 6 2 7 5 
Response 1 7 2 4 0 8 7 5 9 2 1 5 8 1 7 
Response % 54% 10% 7% 3% 3% 15% 11% 5% 3% 33% 5% 3% 16% 5% 3% 
Incorrect% 77% 34% 41% 25% 

Verbal (Unsmoothed) 
MNIST no. #1394 #2655 #4498 

Numeral 5 6 8 
Response 6 1 () 2 0 8 7 1 () 0 7 7 9 4 () 
Response % 23% 20% 17% 14% 7% 5% 4% 50% 6% 4% 2% 20% 17% 4% 4% 
Incorrect% 89% 62% 44% 

Verbal (Smoothed) 
MNIST no. #1394 #583 #4177 #9680 #5655 

Numeral 5 8 2 6 7 
Response 1 7 6 2 6 2 7 8 7 () 1 2 4 2 1 
Response % 11% 6% 5% 2% 16% 4% 2% 11% 8% 2% 7% 2% 2% 17% 2% 
Incorrect% 24% 22% 21% 12% 19% 

Notes: Sorted by most confusing. Responses occurring only once are ignored. Empty responses are 
considered and are denoted using ( ). Data based on: 61 participants in Manual, 42 in unsmoothed and 11 in 
smoothed. Top left, in Manual task, digit #2655 is confused with five numerals: 1, 7, 2, 4 and 0; the digit is 
misidentified in 77% of all responses and 1 represents 54% of responses on this digit. See Fig. A31 and 
tables A1-3 for further details. 
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Most Re-identified Handwritten 
Digits during Verbal Task 

As discussed on p. 36 above, the double-prompt design of the Verbal task was 

based on the assumption that collected visual fixations not only reflect the most 

informative features of a digit but that they may also correlate with the numeral the visual 

system is considering and hence the verbal response about to be given. In order to 

evaluate this assumption, and to make better use of collected data, identifying ambiguous 

digits of a new type may be particularly helpful; hence, our last ambiguity category is of 

digits for which participants changed their verbal answer the most. Table 6 shows the 

most ambiguous digits based on their most common re-identification in descending order. 

For instance, digit no.4370 has been re-identified as a 4 and a 9 in 37% of trials, more 

frequently than any re-identification in any digit under unsmoothed viewing. In the next 

section, the author uses these digits to focus the analysis of visual fixation data on a 

smaller set of trials, verbal responses and corresponding fixations. 

Table 6. Irregulars that were re-identified the most in unsmoothed and smoothed conditions of Verbal 
based on their most common re-identification pair. 

Verbal (Unsmoothed) 
MNIST no. #4370 #2131 #1233 #2036 #2598 #9506 #3809 #9665 #1622 

Numeral 9 4 9 5 5 7 7 2 0 
Re-ID Pair 4,9 4,9 4,9 3,5 3,5 7,2 2,7 2,7 0,6 
Re-ID Pair% 37% 29% 29% 26% 24% 22% 21% 19% 19% 

Verbal (Smoothed) 
MNIST no. #4370 #1902 #2036 #1622 #2598 #5655 #9793 #3423 #9506 

Numeral 9 9 5 0 5 7 4 6 7 
Re-ID Pair 4,9 4,9 3,5 0,6 3,5 2,7 4,9 0,6 2,7 
Re-ID Pair% 55% 45% 45% 45% 45% 45% 36% 27% 27% 

 Notes: Sorted by most re-identified. Trials with an empty response are ignored. Data based on: 42 
participants in unsmoothed and 11 in smoothed. Top left, in unsmoothed conditions of Verbal, digit #4370 
is a 9 and is identified as 4 and 9 in 37% of trials (regardless of order). See Fig. A32 for further details. 
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Concluding Remarks 

1. Despite significant differences between Manual task and Verbal task, our 

results also suggest some striking similarities particularly with unsmoothed conditions in 

terms of: (1) identification rates of regular digits, (2) most identifiable digits and (3) most 

misidentified digits by numeral. Based on these observations, the author concludes that 

the identification task remains fundamentally the same irrespective of eye-tracking 

considerations like double-prompt identification and large-scale digits. 

2. Comparative analysis of identification performance suggests striking 

similarities across different contrast conditions of the Verbal task when it comes to 

identification rate of regular and irregular digits alike with the most significant 

differences emerging in response time for irregular digits under the lowest contrast 

condition. This may be due to a decrease in the distracting effect of spatial aliasing with 

decreasing luminance contrast but it may also be due to individual variations among 

participants.  

3. Although lower contrast conditions do show a slight increase in identification 

rate over higher contrast conditions, fluctuations in both identification rate and response 

time prevent the author from making recommendations as to Optimal Viewing guidelines 

for future research. A more rigorous experiment using within-subject design and 

specifically tailored to studying the effect of luminance contrast on identification 

response in similar tasks is recommended to that end. 

4. Comparative analysis of identification performance shows significant 

difference in identification rate between smoothed and unsmoothed conditions suggesting 

that a more nuanced smoothing scheme should be explored in future research. 

5. Comparative analysis of the most misidentified digits in Manual and Verbal 

tasks, suggests that the visual system is more likely to perceive loop-like features at small 

scale than at very large scale.  
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6. Analysis of the most confusing digits suggests that significant flip-

identification occurred on a handful of irregular digits. This may be avoided in future 

studies by advising participants that digits (or characters) will be presented right side up. 

Analysis of Visual Response Data 

Gaze Span across Viewing Conditions of 
Verbal Task 

Although the heat map bounding box statistics calculated by the heat-mapping 

script (see pp. 72-75 above) are a crude approximation of gaze span, the 10% low activity 

cut-off imposed during heat map creation adds to the robustness of this measure by 

eliminating outliers (i.e. regions receiving low gaze frequency or short gaze duration). 

Given the absence of a general-purpose technique to quantify the differences among 

arbitrary sets of visual fixations, the author relied on heat map bounding box areas (Fig. 

23) in order to evaluate gaze span variation across viewing conditions and digit types.  

  
Fig. 23. Digit and heat map bounding boxes. The dark blue, white and red squares represent the bounding 
boxes of the digit, its count-based heat map and duration-based heat map respectively. Data based on 14 
fixations in one trial in U-FG210. 
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To that end, count- and duration- based heat maps were generated for each of the 

3883 trials of the Verbal task individually using the batch-mode heat-mapping scheme 

described on p. 73 above. The count- and duration-based bounding box areas returned by 

the heat-mapping script are used along with the trial digit’s bounding box area to 

determine the gaze span: 

 

Trial gaze spatial span are averaged for regular and irregular digits in each viewing 

condition as shown in Fig. 24.  

 

Fig. 24. Gaze spatial span in regular and irregular digits across viewing conditions of Verbal. For each trial, 
count-based and duration-based heat maps are generated and their bounding box areas are calculated. Gaze 
spatial span is defined as the ratio of heat map bounding box area to digit bounding box area averaged over 
a given set of trials. Here, gaze spatial span is shown for regular and irregular digits across viewing 
condition using (a) count-based and (b) duration-based heat maps. Horizontal labels show condition name 
and luminance contrast. Data based on: 42 participants in unsmoothed and 11 in smoothed. 
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Although the average of lower contrast conditions under unsmoothed viewing (FG210 

and FG228) and smoothed viewing (FG210) is greater than in higher contrast conditions, 

the results show no clear relationship between luminance contrast and gaze span. 

Moreover, a quick visual examination of generated maps shows sweeping variations in 

terms of both gaze pattern and span among participants within and across viewing 

conditions (see Fig. A24). A more striking observation is the lack of a clear relationship 

between digit type (i.e. regular-irregular) and gaze span. Since an important number of 

irregular digits have been shown to be quite challenging to participants, one would expect 

the visual system to examine a larger set of features before it can arrive at a conclusive 

identification.  

Before we can address this discrepancy, a closer look at the two heat map types is 

in order. As results in Fig. 24 show, on average, count-based maps span a greater area 

than duration-based maps. Upon visual examination of generated trial heat maps one can 

quickly surmise that the two trial maps mostly overlap with duration-based generally 

spanning a sub-region of count-based heat maps (see Fig. A23). To put it differently, 

regions that receive enough gaze duration to be colour-coded in the duration-based map 

are almost always fixated frequently enough to make it into the count-based map too. The 

inverse, however, is not as likely: A few regions that are fixated frequently enough to 

make it into the count-based map are not fixated long enough to make it into the duration-

based map. Since it is plausible to assume that more challenging or informative digit 

features fall into the former category, we may be able to approximate their percentage 

simply by calculating the ratio of duration-based gaze span to count-based gaze span. 

Results in Fig. 25 seem to support this notion: Even though the portion of an irregular 

digit that receives significant gaze may not be bigger than that in regular digits, more of it 

is challenging-informative than in the latter. Although the variations are quite small, (3-
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6%) they are perhaps so due to the relatively low 10% activity cut-off used during heat 

map generation. The author leaves the manipulation of this parameter as a suggestion for 

further inquiry into determination of regions of interest. 

 

Fig. 25. Ratio of duration-based to count-based gaze span based on data from Fig. 24. 

Visual Fixation Selection Criteria 

Viewing Conditions Selection Criteria 

After a comparative analysis between the seven viewing conditions of the Verbal 

task based on a number of metrics in verbal identification and visual response data, the 

author finds no evidence suggesting that change in luminance contrast affects task 

performance fundamentally and most differences can be attributed to individual 

variations. Comparison between smoothed and unsmoothed conditions, on the other 

hand, shows important differences when it comes to correct identification rate 

particularly in irregular digits (see p.76 above). As noted earlier, these differences are 

probably due to distortions during smoothing. Hence, while the author sees no basis for 

restricting analysis of gaze to individual contrast conditions, we opt to combine visual 

fixation data collected under smoothing conditions separately. An added advantage to this 

approach is that it allows us to evaluate the effect of smoothing distortions on gaze 
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activity in the same digit. 

Selection Criteria for Trials 
and Periods of Interest 

As we discussed before, the double-prompt design of the Verbal task was based 

on the assumption that collected visual fixations not only reflect the most informative 

features of a digit but that they may also correlate with the numeral the visual system is 

considering and hence the verbal response about to be given. Although this assumption 

remains to be demonstrated, a crucial advantage of comparing visual fixations within trial 

is the possibility of controlling for the big gaze variations observed across participants 

(see Fig. A24). Moreover, when the selection is made in trials where digits were re-

identified, a comparison of resulting heat maps may expose not only informative features 

correlating with each answer but also features that are likely related to the change in 

answer.  

In order to evaluate the above statements, the author selected and compared visual 

fixations based on the following selection template:  

1. Select a commonly re-identified digit and identify its most common re-

identification pair from table 6.  

2. Select all trials on this digit in all contrast conditions under unsmoothed or 

smoothed viewing where the verbal responses correspond to the re-identification pair. 

3. Select all fixations that started within one second prior to the onset of the 

verbal response that matches one of the answers in the re-identification pair. 

4. Select another set of fixations that started within one second prior to the onset 

of the verbal response that matches the other answer in the re-identification pair.  

5. Generate duration-based heat maps for the two sets of fixations. 

6. Compare and contrast the two heat maps to identify features of interest.  
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Steps 3 and 4 in the above template are made possible thanks to selection criteria 

Fixation Time Label and Fixation Lapse introduced on p. 64 above. For instance, to carry 

out the following selection:  

Select all right-eye fixations in all trials under unsmoothed viewing where digit 
no.4370 was identified as 4 then 9 or 9 then 4 and where the fixation started 
within the 1000-ms period preceding onset of response 4. 

We use the Advanced Filter criteria outlined in Fig. 26.  

 
Fig. 26. Fixation selection in re-identified digits: (a) A set of Advanced Filter criteria are used to select all 
right-eye fixations in all trials under unsmoothed viewing where digit ID 1052 (MNIST no.4370) was 
identified as 4 then 9 or 9 then 4 from fixation table in (b) where fixation started within the 1000-ms period 
preceding onset of first or second response 4.  

Gaze during Re-Identification 

We proceed with a comparison of visual fixations in the most re-identified digits 

of the Verbal task using the above scheme. To facilitate discussion flow, we keep the size 

of heat map illustrations in this section to a minimum and leave the full-page versions to 

the appendix (see Fig. A33-39). To simplify the comparison, we present the duration-

based heat maps only. 
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Gaze during Zero-Six Re-Identification 

Fig. 27 presents a comparison between gaze preceding verbal response in trials 

where a 0 (digit no.1622) was identified as 0 and 6 under unsmoothed and smoothed 

viewing. In both cases, the heat maps convey that much of the gaze time is spent on 

repeated attempts probing for missing features along a loop-completing path more 

consistent with the upcoming verbal response.  

 

Fig. 27. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of 0-digit no.1622 as 0 and 6. Heat maps were generated based on: (a) 17 fixations in 6 trials, 
(b) 21 fixations in 8 trials, (c) 16 fixations in 5 trials, and (d) 16 fixations in 5 trials (see Fig. A33 for a full-
page version). 

Gaze during Two-Seven Re-Identification 

Fig. 28 presents a comparison between gaze preceding verbal response in trials 

where a 7 (digit no.9506) was identified as 2 and 7 under unsmoothed and smoothed 

viewing. Here, the results show more subtle differences than in Fig. 27 and merit closer 

attention to the shape and placement of colour-coded regions particularly near potential 

curvatures, which distinguish 2 from 7. Indeed, both unsmoothed and smoothed 2-maps 

(Fig. 28a,c) show significantly more gaze at the inside of the top corner and less overlap 

with digit strokes than their counterpart 7-maps (Fig. 28b,d). In contrast, the highest gaze 

patches in the 7-maps overlap and parallel the vertical stroke. This seems plausible and 
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suggests that in order to confirm curvatures – here consistent with a 2 – examining the 

edges of a stroke may be more conclusive than examining the stroke itself which may be 

better suited to confirming stroke continuation or girth variation – here consistent with a 

7. This also explains the placement of the high-gaze patch inside the bottom corner in the 

smoothed 2-map (Fig. 28c). 

 

Fig. 28. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of 7-digit no. 9506 as 2 and 7. Heat maps were generated based on: (a) 25 fixations in 10 
trials, (b) 26 fixations in 10 trials, (c) 6 fixations in 3 trials, and (d) 7 fixations in 3 trials (see Fig. A34 for a 
full-page version). 

Fig. 29 presents a comparison between gaze preceding verbal response in trials 

where a 2 (digit no.9665) and a 7 (digit no.3809) were each identified as 2 and 7 under 

unsmoothed conditions. Here, a similar pattern to that observed in Fig. 28 is evident: The 

2-maps (Fig. 29a,c) show much higher gaze at the contours of the top curve-like feature 

than the 7-maps (Fig. 29b,d). Moreover, the first 2-map (Fig. 29a) shows a high-gaze 

patch right at the inside of the bottom loop-like feature – consistent with a 2 – On the 

other hand, the first 7-map (Fig. 29b) shows central gaze activity overlapping and 

paralleling a potential horizontal stroke consistent with a 7. In both 7-maps (Fig. 29b,d) a 
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high-gaze patch seems to get very close to the loop-like feature at the bottom of the digit 

without actually reaching it.  

 

Fig. 29. Four duration –based heat maps showing gaze density during 1-second period preceding verbal 
identification of 2-digit no.9665 (left) and 7-digit no.3809 (right) as 2 and 7. Heat maps were generated 
based on: (a) 26 fixations in 8 trials, (b) 23 fixations in 8 trials, (c) 22 fixations in 9 trials, and (d) 23 
fixations in 9 trials (see Fig. A35 for a full-page version). 

Gaze during Three-Five Re-Identification 

Fig. 30 presents a comparison between gaze preceding verbal response in trials 

where a 5 (digit no. 2036) was identified as 3 and 5 under unsmoothed and smoothed 

viewing. The 3-maps (Fig. 30a,c) show much higher gaze inside the top left corner – 

more consistent with a 3 – than counterpart 5-maps (Fig. 30b,d). The 5-maps, on the 

other hand, show more gaze inside the top right corner – more consistent with a 5. 

However, gaze density at the top left corner in 3-maps is a lot higher than at the top right 

corner in 5-maps. This is quite plausible subjectively since the digit as a whole does look 

more like a 5 than a 3. To confirm this we look at the identification rate of this digit in 

tables A2 and A3. Under unsmoothed conditions, this digit is identified as a 5 in 63% of 

responses, and as a 3 in 35% while under smoothed conditions, it is identified as a 5 in 

68% of responses and a 3 in 32%. This suggests that the amount of gaze needed to 

examine features may relate not only to their informative value but also to the difficulty 
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in reconciling them, or the digit as a whole, with a given numeral. 

 

Fig. 30. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of 5-digit no. 2036 as 3and 5. Heat maps were generated based on: (a) 27 fixations in 11 
trials, (b) 32 fixations in 11 trials, (c) 14 fixations in 5 trials, and (d) 15 fixations in 5 trials (see Fig. A36 
for a full-page version). 

Fig. 31shows a comparison between gaze preceding verbal response in trials 

where a 5 (digit no. 2598) was identified as 3 and 5 under unsmoothed and smoothed 

viewing. Under unsmoothed viewing (Fig. 31a,b), heat maps show little difference in 

terms of which features received gaze; instead, the 5-map (Fig. 31b) shows more gaze at 

the inside of the central corner than the 3-map (Fig. 31a) conveying more difficulty in 

reconciling this feature with a 5 than a 3. Indeed, this is also consistent with the overall 

identification rate for this digit in unsmoothed conditions where identification as 3 is 

more common than 5 (55% and 40%). Under smoothed viewing (Fig. 31c,d), heat maps 

show one crucial difference in gaze; namely, while the high-gaze patch remains between 

the top horizontal stroke and the slanted stroke in the 5-map (Fig. 31d), it decisively 

overlaps the top stroke in the 3-map (Fig. 31c). This conveys repeated attempts to 

confirm that the top stroke stretches to meet the top of the slanted stroke in a way 

consistent with a 3. 
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Fig. 31. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of 5-digit no. 2598 as 3 and 5. Heat maps were generated based on: (a) 26 fixations in 10 
trials, (b) 25 fixations in 10 trials, (c) 11 fixations in 5 trials, and (d) 13 fixations in 5 trials (see Fig. A37 
for a full-page version). 

Gaze during Four-Nine Re-Identification 

Fig. 32 shows a comparison between gaze preceding verbal response in trials 

where two 9s (digit nos.1233 and 1902), and a 4 (digit no.2131) were each identified as 4 

and 9 under either unsmoothed or smoothed viewing.  

 

Fig. 32. Six duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of 9-digit no.1233 (left), 9-digit no.1902 (centre) and 4-digit no.2131 (right) as 4 and 9. Heat 
maps were generated based on: (a) 26 fixations in 12 trials, (b) 27 fixations in 12 trials, (c) 10 fixations in 5 
trials, (d) 9 fixations in 5 trials, (e) 26 fixations in 12 trials, and (f) 36 fixations in 12 trials (see Fig. A38 for 
a full-page version). 

A striking commonality emerges in shape and placement of the high-gaze patch in all 
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three digits; namely, while the patch is located at roughly the same place in each digit, it 

is both more elongated and has less overlap with the target stroke in 9-maps (Fig. 32b,d,f) 

than in 4-maps (Fig. 32a,c,e). As observed before, this conveys repeated confirmations of 

curvature. Moreover, the fact that the patch is located in the same place in each digit 

suggests that the most decisive aspect during identification is whether the same feature 

happens to be more of a corner than a curve, consistent with a 4, or the inverse, consistent 

with a 9. Another pattern of interest emerges in 9-maps in Fig. 32b,f, where more gaze is 

present at the top of the digit than in counterpart 4-maps (Fig. 32a,e). This seems to 

convey repeated probing for missing loop features consistent with a 9. 

 

Fig. 33 shows a comparison between gaze preceding verbal response in trials 

where a 9 (digit no.4370) was identified as 4 and 9 under unsmoothed and smoothed 

viewing.  

 

Fig. 33. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of 9-digit no.4370 as 4 and 9. Heat maps were generated based on: (a) 40 fixations in 15 
trials, (b) 41 fixations in 15 trials, (c) 16 fixations in 6 trials, and (d) 14 fixations in 6 trials (see Fig. A39 
for a full-page version). 
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Here, 9-maps (Fig. 33b,d) show a gaze pattern that is very consistent with our last 

observation; namely, in both heat maps, gaze density is very high at the top of the digit 

compared to counterpart 4-maps (Fig. 33a,c). This conveys a number of attempts to 

confirm a closed loop consistent with a 9. Under unsmoothed viewing (Fig. 33a,b), the 

high-gaze patches are located at roughly the same place reminiscent of Fig. 32. Here, 

however, the 9-patch overlaps and parallels the target stroke conveying a number of 

attempts to confirm that it is straight rather than curved or angled – a straight line here is 

more consistent with a 9 than a 4. The unsmoothed 4-patch, on the other hand, crosses the 

target stroke conveying repeated attempts to confirm a point feature such as a corner, 

hence consistent with a 4. The lack of analogous gaze pattern under smoothed viewing 

(Fig. 33c,d) suggests that the smoothing process may have affected the way the digit was 

perceived. Indeed, the most obvious distortion is the disappearance of the small 

horizontal tip at the top end of the digit making identification as 9 less plausible. This is 

consistent with overall correct identification of this digit in smoothed (36%) compared to 

unsmoothed (70%) conditions. It also accounts for the higher gaze activity at the top of 

the smoothed 9-map (Fig. 33d) compared to its unsmoothed counterpart (Fig. 33b): 

Reconciling the top of the digit with a 9-loop is more challenging in the smoothed 9 

hence requiring a bigger share of gaze. 

Concluding Remarks 

In summary, analysis of visual fixations in the most re-identified digits of the 

Verbal task provides evidence suggesting the following: 

1. Gaze duration density strongly correlates with informative features especially 

when feature characteristics are difficult to determine. 

2. When identification is consistent with the presence of a loop, repeated attempts 

and long gaze can be observed probing for features that complete the loop in a way that is 
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consistent with the verbal identification (Fig. 27, Fig. 32b,f, Fig. 33b,d). 

3. When identification is consistent with the presence of a curvature, repeated 

attempts and long gaze can be observed along the edge of the target stroke rather than the 

stroke itself (Fig. 28a,c, Fig. 29c, Fig. 32b,d,f). Moreover, when the curve resembles a 

corner, the gaze becomes more concentrated. (Fig. 28a,c, Fig. 29c). 

4. When identification is consistent with the presence of a corner, high gaze 

density can be observed only when the digit is difficult to reconcile with the verbal 

answer. Moreover, gaze is more likely to overlap the target stroke than in the case of a 

curve (Fig. 30a,c, Fig. 32a,c,e, Fig. 33a). 

5. When identification is consistent with the presence of a straight stroke or 

variations in the girth of the stroke, repeated attempts and long gaze can be observed 

along the stroke itself (Fig. 28b,d, Fig. 29b, Fig. 33b). 

In conclusion, much of the gaze activity preceding verbal response in re-identified 

digits seems to target features consistent with the verbal response about to be given. 

Hence, the strategy appears to be predominantly of confirmation rather than exploration. 

Although an examination of visual fixations during the entire trial and in other digits is in 

order before further claims can be made, this suggests that the visual system hypothesizes 

the identity of the digit prior to fixating particular features, which implies that extra-

foveal vision plays a crucial role in guiding the observed visual response. This 

preliminary observation is consistent with a number of studies on eye movement during 

image recognition presented in the literature review (Maw and Pomplun 2004; Brandt 

and Stark 1997; Chernyak and Stark 2001; Stark and Choi 1996; Privitera and Stark 

2000; Noton and Stark 1971). As far as applicability to Pattern Recognition is concerned, 

preliminary results are consistent with a number of premises upon which our approach 

rests; namely, that visual fixations not only correlate with the informative-disambiguating 
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value of features fixated but that they also reflect the numeral the visual system is 

hypothesizing.  

Comparative analysis of gaze spatial span across Verbal task viewing conditions 

yielded the following observations:  

1. Although the average of lower contrast conditions under unsmoothed viewing 

and smoothed viewing is greater than in higher contrast conditions, the results show no 

clear relationship between luminance contrast and gaze span. This is perhaps largely due 

to sweeping variations both in terms of gaze pattern and span among participants within 

and across viewing conditions. 

2. The average portion of an irregular digit that receives significant gaze may or 

may not be bigger than in the case of a regular digit depending on viewing condition and 

individual variations. However, irregular digits yield a higher duration-based to count-

based gaze span ratio than regular digits. This is consistent with the intuitive notion that 

irregular digits have a higher portion of challenging-informative features than regular 

digits. 
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CHAPTER 5 

CONCLUSIONS AND FURTHER INQUIRY 

Summary and Preliminary Results 

In this thesis, the author evaluated a novel approach that explores the use of 

human visual fixations and identification data in order to identify features of interest for 

Pattern Recognition applications. We selected handwritten digit recognition as a 

prototype application and used seventy-four digit images from the NIST database as 

stimuli. Fifty-four of these digits were reported to be particularly problematic for a 

variety of classifiers in the literature. The other twenty look very prototypical and were 

used as a reference. In the data collection stage, sixty participants were asked to verbally 

identify each handwritten digit twice at very large scale under one of seven different 

contrast and smoothing conditions (Verbal task). Both verbal responses and visual 

fixations were recorded during the course of the identification task for further analysis. 

Participants were then asked to identify the same digits manually under normal viewing 

for reference purposes (Manual task). Below, we summarize the outcome of this study. 

Development of Software Tools 

The author developed the following software tools to select, modify and present 

handwritten digit stimuli for use during data collection:  

1. A script to match MNIST handwritten digit images into the NIST database 

using MATLAB Image Processing Toolbox. 

2. An image scaling and smoothing script to reduce spatial aliasing in large-scale 
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NIST handwritten digits using MATLAB Image Processing Toolbox. 

3. The two handwritten digit identification tasks using SR Research Experiment 

Builder. 

The author developed the following suit of software tools to facilitate analysis of 

verbal, manual and visual response data: 

1. Verbal response isolation and labelling tool combining amplitude, zero-

crossing rate and ESACF heuristics using MATLAB and VOICEBOX. 

2. A modified version of SR Research’s C-based EDF2ASC to import visual 

fixations and trial details from all EDF files into MS Excel format. 

3. A suit of MS Excel VBA macros to consolidate manual, verbal and visual 

response data into a single MS Excel workbook for convenient access. 

4. Two MS Excel VBA macros to select and visualize visual fixations. 

5. A MATLAB script using Image Processing Toolbox Gaussian convolution to 

create count- and duration- based fixation heat maps from an arbitrary set of visual 

fixations. 

6. An MS Excel Add-on to embed the MATLAB heat-mapping functionality into 

an MS Excel macro-enabled workbook. 

Results in Identification Performance 

In addition to the identification rate data and digit ambiguity ranking (see tables 

A1-3 and Fig. A27-32), the analysis of handwritten digit identification performance 

yielded the following preliminary results: 

1. Despite significant differences between identifying handwritten digits under 

unconstrained identification in normal viewing (Manual task) and double-prompt 

identification in large-scale viewing (Verbal task), results show some crucial similarities 

suggesting that the identification task remained fundamentally the same. 
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2. Comparative analysis of identification performance suggests striking 

similarities across contrast conditions of the Verbal task when it comes to correct 

identification rate with the most significant differences emerging in identification 

response time for irregular digits under the lowest contrast condition (Michelson contrast 

=5%). This may be due to a decrease in the distracting effect of spatial aliasing with 

decreasing luminance contrast.  

3. Although lower contrast conditions of the Verbal task do show a slight 

increase in identification rate over higher contrast conditions, fluctuations in both 

identification rate and response time prevent the author from making recommendations as 

to Optimal Viewing guidelines for future research.  

4. Comparative analysis of identification performance in Verbal task shows 

significant differences in correct identification rate between smoothed and unsmoothed 

conditions suggesting that a more nuanced smoothing scheme should be explored in 

future research. 

5. Comparative analysis of the most misidentified digits in Manual and Verbal 

tasks, suggests that the visual system is more likely to perceive loop-like features at small 

scale than at very large scale.  

6. Analysis of the most confusing digits suggests that significant flip-

identification occurred on a handful of irregular digits. This may be avoided in future 

studies by advising participants that handwritten digits (or characters) will be presented 

right side up. 

Results in Gaze Spatial Span 

Comparative analysis of gaze spatial span across Verbal task viewing conditions 

yielded the following observations:  

1. Although the average of lower contrast conditions under unsmoothed viewing 
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and smoothed viewing is greater than counterparts in higher contrast conditions, the 

results show no clear relationship between luminance contrast and gaze span. This is 

perhaps largely due to great variations in both gaze pattern and gaze span among 

participants within and across viewing conditions. 

2. The average portion of an irregular digit that receives significant gaze may or 

may not be bigger than in the case of a regular digit depending on viewing condition and 

individual variations. However, irregular digits yield a higher duration-based to count-

based gaze span ratio than regular digits. This is consistent with the intuitive notion that 

irregular digits have a higher portion of challenging-informative features than regular 

digits. 

Results in Gaze during Re-Identification 

In the latter part of the analysis stage, a smaller set of ambiguous digits were 

identified based on how often participants changed their minds about the numeral they 

represent. We referred to these as the most re-identified digits. For each of these digits, 

visual fixations preceding a given response were combined into a single fixation heat 

map (see Fig. A33-39). Analysis of the resulting heat maps yielded the following 

preliminary results: 

1. Gaze duration density strongly correlates with informative features especially 

when feature characteristics are difficult to determine. 

2. When identification is consistent with the presence of a loop, repeated attempts 

and long gaze can be observed probing for features that complete the loop in a way that is 

consistent with the verbal response. 

3. When identification is consistent with the presence of a curvature, repeated 

attempts and long gaze can be observed along the edge of the target stroke rather than the 

stroke itself. Moreover, when the curve resembles a corner, the gaze becomes more 
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concentrated. 

4. When identification is consistent with the presence of a corner, high gaze 

density can be observed only when the digit is difficult to reconcile with the numeral. 

Moreover, gaze is more likely to overlap the target stroke than in the case of a curve. 

5. When identification is consistent with the presence of a straight stroke or 

variations in the girth of the stroke, repeated attempts and long gaze can be observed 

along the stroke itself. 

In conclusion, most gaze activity preceding verbal response in re-identified digits 

seems to target features consistent with the verbal response about to be given. Hence, the 

strategy appears to be predominantly of confirmation rather than exploration. This 

suggests that the visual system hypothesizes the identity of the digit prior to fixating 

particular features. This is consistent with research findings on eye movement during 

image recognition from Noton and Stark (1971) to Maw and Pomplun (2004).  

As far as applicability to Pattern Recognition is concerned, results are consistent 

with the principle premise upon which our approach rests; namely, that visual fixations 

not only correlate with the informative-disambiguating value of features fixated but that 

they also reflect the numeral the visual system is hypothesizing. Therefore, data collected 

using this approach represents a promising and hitherto untapped potential in the training 

of handwriting classifiers.  

Suggestions for Further Inquiry 

In this thesis, the author analysed a small fraction of the visual response data 

recorded during data collection with much of the analysis left for future research. Below, 

we make a number of suggestions for such inquiries: 

1. During analysis of gaze spatial span, the author used the ratio of the duration-

based heat-map bounding box to the count-based heat-map bounding box as a measure of 
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the challenging-informative portion of handwritten digit regions that received gaze. A 

possible inquiry aiming to quantify digit ambiguity may explore manipulating the low 

activity cut-off threshold used during heat map generation to produce better 

approximation of the challenging portion of a digit and evaluate the accuracy of this 

measure by correlating it to digit identification rate. The same approach could be used to 

determine digit regions and features of higher interest. 

2. During analysis of gaze spatial span across contrast conditions, the author used 

full-trial fixations and concluded that luminance contrast has no clear effect on gaze span. 

An alternative approach may be to use fixations that started during the bV1 trial period 

(i.e. preceding the first verbal response) instead. 

3. In a study on eye movement during recognition of actor faces, Maw and 

Pomplun (2004) proposed that the moment of recognition may be indicated by a 

participant’s dilated pupils. A possible inquiry could use the pupil size data in our EDF 

files along with verbal response time data to evaluate this observation in the context of 

handwritten digit identification. 

4. A possible inquiry into the use of eye movement to improve performance in 

handwritten digit recognition applications may use our visual fixation database to train a 

selective attention recognition scheme similar to that proposed by Salah, Alpaydin, and 

Akarun (2001) to train handwritten digit classifiers using a combined top-down-bottom-

up scheme similar to the one used in Peters and Itti (2007). 
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Fig. A1. Verbal task storyboard in Experiment Builder: (a) Main sequence, (b) trial data source and 
randomization and (c) trial record sequence. 
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Fig. A2. Manual task storyboard in Experiment Builder. Top, Task introduction slide; bottom, trial 
sequence with mouse cursor pointing to total number of trials and how they are split in practice and test 
blocks. 
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Fig. A3. Session data folder and files for the same participant under (a) Verbal task and (b) Manual task. 
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Fig. A4. Participant consent form. 
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Fig. A5. Participant debriefing sheet. 
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Fig. A6. Overview of verbal response isolation tool. (a) Shows trial audio with excessive breathing noise 
and the three main heuristics used to isolate verbal responses; top to bottom: Audio-recording view, 
amplitude view, zero-crossing rate view and enhanced correlogram (ESACF) view; (b) and (c) show how 
trial periods selected using ESACF complements those selected using zero-crossing rate allowing accurate 
determination of verbal responses as shown in isolation labels 3 and 2 respectively. 
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Fig. A7. Verbal and Manual task zeros. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 
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Fig. A8. Verbal and Manual task ones. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 
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Fig. A9. Verbal and Manual task twos. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 
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Fig. A10. Verbal and Manual task threes. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 
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Fig. A11. Verbal and Manual task fours I. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 
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Fig. A12. Verbal and Manual task fours II. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, 
Unsmoothed-FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 
and Manual. 
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Fig. A13. Verbal and Manual task fives. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 



131 

 

 
Fig. A14. Verbal and Manual task sixes I. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 
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Fig. A15. Verbal and Manual task sixes II. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, 
Unsmoothed-FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 
and Manual. 
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Fig. A16. Verbal and Manual task sevens I. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, 
Unsmoothed-FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 
and Manual. 
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Fig. A17. Verbal and Manual task sevens II. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, 
Unsmoothed-FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 
and Manual. 
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Fig. A18. Verbal and Manual task eights I. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, 
Unsmoothed-FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 
and Manual. 
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Fig. A19. Verbal and Manual task eights II. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, 
Unsmoothed-FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 
and Manual. 



137 

 

 
Fig. A20. Verbal and Manual task nines I. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, Unsmoothed-
FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 and Manual. 
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Fig. A21. Verbal and Manual task nines II. Top to bottom: Unsmoothed-FG0, Smoothed-FG0, 
Unsmoothed-FG120, Unsmoothed-FG180, Unsmoothed-FG210, Smoothed-FG210, Unsmoothed-FG228 
and Manual. 
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Fig. A22. Side-by-side comparison of duration-based heat maps generated using: (a) Gaussian convolution 
and (b) SR Research Data Viewer on the same set of digit stimuli and visual fixations taken from all 
participants in Unsmoothed-FG120. 
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Fig. A23. Side-by-side comparison between count-based (left) and corresponding duration-based (right) 
heatmaps each representing gaze during a full-trial period in Verbal task.  
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Fig. A24. A random asortment of duration-based heat maps each representing gaze during full-trial period 
within and across viewing conditions of Verbal task. 
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Fig. A25. Response rate across viewing conditions in Verbal task 
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Fig. A26. Individual variations among 17 participants under Unsmoothed-FG210 in (a) average correct 
identification for irregular digits and (b) average response time for irregular digits. 
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Fig. A27. Most correctly identified irregulars and how they were identified in (a) Manual, (b) unsmoothed 
conditions of Verbal and (c) smoothed conditions of Verbal. Chart labels read from bottom to top: (1) 
Percentage of a response, (2) digit index in MNIST, (3) correct numeral, (4) numeral in response and (5) 
whether the response is correct (C). Top left, In Manual task, digit 4206ts (testing database) is a 4 and was 
identified as such in all responses. Data based on: 61 participants in Manual, 42 in unsmoothed and 11 in 
smoothed. 
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Fig. A28. Most incorrectly identified irregulars and how they were identified in (a) Manual, (b) 
unsmoothed conditions of Verbal and (c) smoothed conditions of Verbal. Chart labels read from bottom to 
top: (1) Percentage of each response, (2) percentage of incorrect responses, (3) digit index in MNIST, (4) 
correct numeral, (5) numeral in each response, and (6) whether a response is correct (C). Top left, In 
Manual task, digit 5655ts represents a 7 but was mistaken for a 2 in 95% of responses. Responses occurring 
only once are hidden. Empty responses ignored. Based on: 61 participants (Manual), 42 (unsmoothed) and 
11 smoothed. 
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Fig. A29. Most incorrectly identified irregulars by numeral in (a) Manual, (b) unsmoothed conditions of 
Verbal and (c) smoothed conditions of Verbal. Chart labels read from bottom to top: (1) Percentage of each 
response, (2) correct numeral, (3) percentage of incorrect responses, (4) digit index in MNIST, (5) numeral 
in each response, and (6) whether a response is correct (C). Responses occurring only once are hidden. 
Empty responses ignored. Top left, In Manual task, digit 2714ts is a 0 and was identified otherwise in 9.8% 
of responses and as an 8 in 8% of responses. Data based on: 61 participants in Manual, 42 in unsmoothed 
and 11 in smoothed. 
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Fig. A30. Most common confusion for each numeral among irregulars in (a) Manual, (b) unsmoothed conditions of 
Verbal and (c) smoothed conditions of Verbal. Chart labels read from bottom to top: (1) Percentage of each digit-
response pair in numeral, (2) correct numeral, (3) most common error in numeral, (4) percentage of most common 
error in numeral, and (5) digit index in MNIST. Digits accounting for <1% of responses in a given numeral are 
hidden. Empty responses are ignored. Top left, In Manual task, irregular 3s were most often confused with 5. 3-5 
confusion represents 41% of responses in irregular 3s all of which occurred on digit 4741ts. Data based on: 61 
participants in Manual, 42 in unsmoothed and 11 in smoothed. 
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Fig. A31. Irregulars that are confused with the most numerals in (a) Manual, (b) unsmoothed conditions of 
Verbal and (c) smoothed conditions of Verbal. Chart labels read from bottom to top: (1) Percentage of each 
response, (2) correct numeral, (3) digit index in MNIST, (4) percentage of incorrect responses, and (5) 
numeral in each response. Responses occurring only once ignored. Empty responses considered. Top left, 
In Manual task, digit 2655ts is confused with five numerals: 1, 7, 2, 4 and 0; the digit is confused in 77% of 
all responses and 1 represents 54% of responses on this digit. Data based on: 61 participants in Manual, 42 
in unsmoothed and 11 in smoothed. 
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Fig. A32. Irregulars that were re-identified the most in (a) unsmoothed and (b) smoothed conditions of Verbal. Chart 
labels read from bottom to top: (1) Percentage of each response pair, (2) correct numeral, (3) digit index in MNIST, 
(4) percentage of response pairs, and (5) response pairs. Trials with an empty response are ignored. Top left, in 
unsmoothed conditions of Verbal, digit 4370ts is a 9 and is identified as a 4 then re-identified as 9 in 37% of trials. 
Data based on: 42 participants in unsmoothed and 11 in smoothed. 
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Table A1. Irregular digits in ascending order of identifiability in Manual task. 

Manual 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

  #5655   c           
  7 2 7           
  95.1% 95% 5%           
  #8377 c             
  1 1 5 6 7 8     
  86.9% 13% 2% 57% 2% 26%     
  #4741 c             
  3 3 5           
  82.0% 18% 82%           
  #2655         c     
  6 0 1 2 4 6 7   
  77.% 3% 54% 7% 3% 23% 10%   
  #2131   c           
  4 3 4 9         
  77.0% 2% 23% 75%         
  #9730 c             
  5 5 6           
  72.1% 28% 72%           
  #9506     c         
  7 2 4 7         
  67.2% 66% 2% 33%         
  #3423     c         
  6 0 1 6         
  62.3% 61% 2% 38%         
  #1261     c         
  7 1 4 7         
  52.5% 51% 2% 48%         
  #1902         c     
  9 3 4 6 7 9     
  52.5% 2% 48% 2% 2% 48%     
  #6784   c           
  1 0 1 2 5 6 9   
  47.5% 2% 52% 2% 2% 41% 2%   
  #3809       c       
  7 1 2 5 7       
  41.0% 5% 33% 3% 59%       
  #948 c             
  8 8 9           
  41.0% 59% 41%           
  #4177   c           
  2 0 2 5 7 8 9   
  36.1% 2% 64% 5% 11% 15% 3%   
  #1394     c         
  5 1 2 5 7 8     
  26.2% 5% 2% 74% 3% 16% 
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Table A1-Continued 

 

Manual 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

 
 
 
 #9665 c             
  2 2 7           
  21.3% 79% 21%           
  #2928   c           
  3 2 3 5 9       
  18.0% 11% 82% 2% 5%       
  #2463     c         
  2 0 1 2 8       
  16.4% 3% 2% 84% 11%       
  #1233   c           
  9 4 9           
  14.8% 15% 85%           
  #9680     c         
  6 1 2 6 7       
  14.8% 5% 8% 85% 2%       
  #2036     c         
  5 3 4 5         
  11.5% 10% 2% 89%         
  #2598     c         
  5 2 3 5         
  9.8% 2% 8% 90%         
  #2714 c             
  0 0 2 8         
  9.8% 90% 2% 8%         
  #1901   c           
  1 0 1 6 7       
  9.8% 2% 90% 7% 2%       
  #9531   c           
  9 8 9           
  8.2% 8% 92%           
  #1015     c         
  6 0 5 6         
  4.9% 2% 3% 95%         
  #9793 c             
  4 4 7 9         
  4.9% 95% 2% 3%         
  #3024   c           
  8 1 8 9         
  3.3% 2% 97% 2%         
  #1550   c           
  4 1 4 6         
  3.3% 2% 97% 2%         
  #4498     c         
  8 4 7 8         

 
3.3% 2% 2% 97%         
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Table A1-Continued 

 

Manual 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

   
#675   c           

  5 3 5           
  3.3% 3% 97%           
  #4370   c           
  9 4 9           
  3.3% 3% 97%           
  #1040   c           
  7 4 7 8         
  3.3% 2% 97% 2%         
  #3226   c           
  7 1 7           
  1.6% 2% 98%           
  #1622 c             
  0 0 6           
  1.6% 98% 2%           
  #8095 c             
  2 2 5           
  1.6% 98% 2%           
  #6626   c           
  8 2 8           
  1.6% 2% 98%           
  #2136   c           
  6 4 6           
  1.6% 2% 98%           
  #583   c           
  8 6 8           
  1.6% 2% 98%           
  #8409   c           
  8 5 8           
  1.6% 2% 98%           
  #1113 c             
  4 4 6           
  1.6% 98% 2%           
  #3942   c           
  4 1 4           
  1.6% 2% 98%           
  #2897 c             
  8 8             
  0.0% 100%             
  #3781 c             
  4 4             
  0.0% 100%             
  #1983 c             
  6 6             
  0.0% 100%             
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Table A1-Continued 

 

Manual 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

 
 
  

 
#248 c             

  4 4             
  0.0% 100%             
  #4880 c             
  8 8             
  0.0% 100%             
  #1045 c             
  6 6             
  0.0% 100%             
  #1879 c             
  8 8             
  0.0% 100%             
  #2940 c             
  9 9             
  0.0% 100%             
  #6560 c             
  4 4             
  0.0% 100%             
  #4206 c             
  2 2             
  0.0% 100%             
  #4762 c             
  9 9             
  0.0% 100%             
  #1183 c             
  6 6             
  0.0% 100%             

Notes: Data based on 61 participants. 
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Table A2. Irregular digits in ascending order of identifiability in unsmoothed conditions of Verbal task. 

Unsmoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

  #948   c           
  8 9 8           
  98.8% 99% 1%           
  #9730   c           
  5 6 5 2         
  97.6% 96% 2% 1%         
  #5655   c           
  7 2 7 9         
  94.% 92% 6% 2%         
  #1261   c           
  7 1 7           
  91.5% 91% 9%           
  #1394         c     
  5 6 1 () 2 5 0 8 
  89.3% 23% 20% 17% 14% 11% 7% 5% 
  #2463     c         
  2 0 8 2 9       
  86.6% 65% 21% 13% 1%       
  #1902   c           
  9 4 9 () 6 8 3   
  81.% 74% 19% 2% 2% 1% 1%   
  #2655   c           
  6 1 6 () 0 7 5   
  63.4% 50% 37% 6% 4% 2% 1%   
  #3423   c           
  6 0 6 8         
  63.1% 60% 37% 4%         
  #2598   c           
  5 3 5 2 ()       
  59.8% 55% 40% 4% 1%       
  #8377 c             
  1 1 6 5 8 0     
  51.2% 49% 33% 10% 7% 1%     
  #9506 c             
  7 7 2           
  48.8% 51% 49%           
  #4498 c             
  8 8 7 9 () 4 0   
  45.1% 55% 20% 17% 4% 4% 1%   
  #9680 c             
  6 6 2 () 1 4 0 7 
  42.9% 57% 25% 8% 4% 4% 1% 1% 
  #9665 c             
  2 2 7 6         
  40.5% 60% 39% 1%         
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Table A2-Continued 

 

Unsmoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

 
 
 
 
 
 
 
 
 #1233 c             
  9 9 4           
  38.1% 62% 38%   

 
      

 
#2036 c             

  5 5 3 6         
  36.9% 63% 35% 2%         
  #6784 c             
  1 1 6 0 2 ()     
  36.6% 63% 18% 10% 5% 4%     
  #4177 c             
  2 2 4 () 7 8 1   
  35.7% 64% 12% 10% 7% 6% 1%   
  #583 c             
  8 8 6 2 () 3     
  31.7% 68% 20% 7% 4% 1%     
  #4370 c             
  9 9 4           
  30.5% 70% 30%           
  #2131 c             
  4 4 9 2         
  26.8% 73% 26% 1%         
  #4741 c             
  3 3 5 6 ()       
  25.6% 74% 22% 2% 1%       
  #675 c             
  5 5 3           
  20.7% 79% 21%           
  #1901 c             
  1 1 2 () 7 4 6 0 
  20.7% 79% 10% 4% 2% 2% 1% 1% 
  #3809 c             
  7 7 2 1         
  20.2% 80% 18% 2%         
  #1622 c             
  0 0 6 ()         
  17.9% 82% 17% 1%         
  #2928 c             
  3 3 () 2 7 4     
  7.3% 93% 2% 2% 1% 1%     
  #4762 c             
  9 9 4           
  6.0% 94% 6%           
  #8095 c             
  2 2 9 1         
  2.4% 98% 1% 1%         
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Table A2-Continued 

 

Unsmoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

  
 

#9793 c             
  4 4 9           
  4.8% 95% 5%           
  #1983 c             
  6 6 2           
  2.4% 98% 2%           
  #1015 c             
  6 6 3           
  1.2% 99% 1%           
  #248 c             
  4 4 2           
  1.2% 99% 1%           
  #1550 c             
  4 4 ()           
  1.2% 99% 1%           
  #6626 c             
  8 8 6           
  1.2% 99% 1%           
  #3226 c             
  7 7 1           
  1.2% 99% 1%           
  #1113 c             
  4 4 6           
  1.2% 99% 1%           
  #2940 c             
  9 9 2           
  1.2% 99% 1%           
  #2136 c             
  6 6 1           
  1.2% 99% 1%           
  #9531 c             
  9 9 8           
  1.2% 99% 1%           
  #1045 c             
  6 6             
  0.0% 100%             
  #4880 c             
  8 8             
  0.0% 100%             
  #1040 c             
  7 7             
  0.0% 100%             
  #3781 c             
  4 4             
  0.0% 100%             
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Table A2-Continued 

 

Unsmoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

 
 
 
 
 
 
  #8409 c             
  8 8             
  0.0% 100%             
  #2714 c             
  0 0             
  0.0% 100%             
  #4206 c             
  2 2             
  0.0% 100%             
  #1879 c             
  8 8             
  0.0% 100%             
  #1183 c             
  6 6             
  0.0% 100%             
  #3024 c             
  8 8             
  0.0% 100%             
  #2897 c             
  8 8             
  0.0% 100%             
  #3942 c             
  4 4             
  0.0% 100%             
  #6560 c             
  4 4             
  0.0% 100%             

Notes: Data based on 42 participants. Top left, digit #8409 is an 8 and was identified as such (C) in all 
responses.
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Table A3. Irregular digits in ascending order of identifiability in smoothed conditions of Verbal task. 

Smoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

  #9730               
  5 6             
  100.0% 100%             
  #2463               
  2 0             
  100.0% 100%             
  #9665               
  2 7 3           
  100.0% 95% 5%           
  #1261               
  7 1             
  100.0% 100%             
  #948               
  8 9             
  100.0% 100%             
  #1394         c     
  5 1 7 6 2 5 4   
  95.5% 41% 23% 18% 9% 5% 5%   
  #2655   c           
  6 1 6 4         
  95.5% 91% 5% 5%         
  #4177       c       
  2 8 7 () 2 4 6   
  90.9% 41% 32% 9% 9% 5% 5%   
  #583     c         
  8 6 2 8 7 ()     
  86.4% 59% 14% 14% 9% 5%     
  #1233   c           
  9 4 9           
  81.8% 82% 18%           
  #1902   c           
  9 4 9           
  77.3% 77% 23%           
  #5655   c           
  7 2 7 1         
  72.7% 64% 27% 9%         
  #4370   c           
  9 4 9           
  63.6% 64% 36%           
  #4741   c           
  3 5 3 1 () 2     
  59.1% 45% 41% 5% 5% 5%     
  #3423   c           
  6 0 6           
  54.5% 55% 45%           
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Table A3-Continued 

 

Smoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

 
 
 
 
 
 
 
  
 #9680 c             
  6 6 1 4 2 3     
  50.0% 50% 27% 9% 9% 5%     
  #8377 c             
  1 1 6 8         
  45.5% 55% 41% 5%         
  #9793 c             
  4 4 9           
  45.5% 55% 45%           
  #9506 c             
  7 7 2 8         
  36.4% 64% 32% 5%         
  #4498 c             
  8 8 7 9         
  31.8% 68% 27% 5%         
  #6626 c             
  8 8 6 4 () 9     
  31.8% 68% 14% 9% 5% 5%     
  #2036 c             
  5 5 3           
  31.8% 68% 32%           
  #2598 c             
  5 5 3           
  31.8% 68% 32%           
  #1622 c             
  0 0 6 4         
  27.3% 73% 23% 5%         
  #2928 c             
  3 3 () 8 7       
  27.3% 73% 14% 9% 5%       
  #3809 c             
  7 7 2           
  22.7% 77% 23%           
  #8095 c             
  2 2 1           
  18.2% 82% 18%           
  #9531 c             
  9 9 8           
  13.6% 86% 14%           
  #6784 c             
  1 1 6           
  13.6% 86% 14%           
  #675 c             
  5 5 3           
  13.6% 86% 14%           
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Table A3-Continued 

 

Smoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

   
#1901 c             

  1 1 4           
  9.1% 91% 9%           
  #1045 c             
  6 6 ()           
  4.5% 95% 5%           
  #1550 c             
  4 4 8           
  4.5% 95% 5%           
  #2131 c             
  4 4 9           
  4.5% 95% 5%           
  #1113 c             
  4 4 0           
  4.5% 95% 5%           
  #3024 c             
  8 8 7           
  4.5% 95% 5%           
  #6560 c             
  4 4 7           
  4.5% 95% 5%           
  #3781 c             
  4 4 5           
  4.5% 95% 5%           
  #2897 c             
  8 8             
  0.0% 100%             
  #1183 c             
  6 6             
  0.0% 100%             
  #3226 c             
  7 7             
  0.0% 100%             
  #8409 c             
  8 8             
  0.0% 100%             
  #1879 c             
  8 8             
  0.0% 100%             
  #1983 c             
  6 6             
  0.0% 100%             
  #248 c             
  4 4             
  0.0% 100%             
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Table A3-Continued 

 

Smoothed Verbal 
MNIST no. 
Numeral 
Total Incorrect% 

Digit Identifiability 
 
Response 
Response% 

  
 
 
 
 
 
 #2136 c             
  6 6             
  0.0% 100%             
  #4880 c             
  8 8             
  0.0% 100%             
  #2940 c             
  9 9             
  0.0% 100%             
  #2714 c             
  0 0             
  0.0% 100%             
  #3942 c             
  4 4             
  0.0% 100%             
  #1015 c             
  6 6             
  0.0% 100%             
  #4762 c             
  9 9             
  0.0% 100%             
  #1040 c             
  7 7             
  0.0% 100%             
  #4206 c             
  2 2             
  0.0% 100%             

Notes: Data based on 11 participants. Top left, digit #2136 is a 6 and was correctly identified in all 
responses.
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Fig. A33. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of NIST image 0-#010030 (MNIST no. 1622) as 0(top) and 6(bottom). Heat maps were 
generated based on: (a) 17 fixations in 6 trials, (b) 16 fixations in 5 trials, (c) 21 fixations in 8 trials, and (d) 
16 fixations in 5 trials. 
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Fig. A34. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of NIST image 7-#320036 (MNIST #9506) as 2(top) and 7(bottom). Heat maps were 
generated based on: (a) 25 fixations in 10 trials, (b) 6 fixations in 3 trials, (c) 26 fixations in 10 trials, and 
(d) 7 fixations in 3 trials. 
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Fig. A35. Four duration –based heat maps showing gaze density during 1-second period preceding verbal 
identification of NIST images (a) 2-#067322 and  (b) 7-#026696  (MNIST #9665 and #3809) as 2(top) and 
7(bottom). Heat maps were generated based on: (a) 26 fixations in 8 trials, (b) 22 fixations in 9 trials, (c) 23 
fixations in 8 trials, and (d) 23 fixations in 9 trials. 
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Fig. A36. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of NIST image 5-055771 (MNIST #2036) as 3(top) and 5(bottom). Heat maps were generated 
based on: (a) 27 fixations in 11 trials, (b) 14 fixations in 5 trials, (c) 32 fixations in 11 trials, and (d) 15 
fixations in 5 trials. 
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Fig. A37. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of NIST image 5-#032654 (MNIST #2598) as 3(top) and 5(bottom). Heat maps were 
generated based on: (a) 26 fixations in 10 trials, (b) 11 fixations in 5 trials, (c) 25 fixations in 10 trials, and 
(d) 13 fixations in 5 trials. 
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Fig. A38. Six duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of NIST images 9-#025422, 9-#021018 and 4-#035302 (MNIST #1233, #1902 and #2131) as 
4 (top) and 9 (bottom). Heat maps were generated based on: (a) 26 fixations in 12 trials, (b) 10 fixations in 
5 trials, (c) 26 fixations in 12 trials, (d) 27 fixations in 12 trials, (e) 9 fixations in 5 trials, and (f) 36 
fixations in 12 trials. 
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Fig. A39. Four duration-based heat maps showing gaze density during 1-second period preceding verbal 
identification of NIST image 9-#014734 (MNIST #4370) as 4 (top) and 9 (bottom). Heat maps were 
generated based on: (a) 40 fixations in 15 trials, (b) 16 fixations in 6 trials, (c) 41 fixations in 15 trials, and 
(d) 14 fixations in 6 trials.
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GLOSSARY 

aliasing. See spatial aliasing. 

answer. See verbal answer. 

anti-aliasing. Refers to the process of minimizing the perceived effect of distortions and 
artefacts associated with aliasing. This can be achieved by using a low-pass filter 
to remove image components with spatial frequencies that are too high to be 
sampled accurately. 

ASC. Refers to a file extension used to store eye movement data after its conversion into 
ASCII-plain text format. 

BG. Background (of an image). 

binary image. A type of image where pixel values are set to black or white.  

bottom-up or BU. Refers to bottom-up approaches in image analysis and pattern 
recognition whereby low-level features like colour, contrast and orientation guide 
the analysis or task execution. 

bottom-up visual saliency. Refers to a number of image processing or mathematical 
techniques used to calculate an importance map of a visual medium based on low-
level features such as colour, contrast and orientation. 

bounding box. The smallest rectangular enclosure within which all points of a given 
image element can fit. 

bV1. Occurring before first verbal response. 

bV2. Occurring before second verbal response. 

C or c. Correct numeral; response with correct numeral. 

confusion pair. Refers to an ordered pair of numerals: the first, represented by a set of 
handwritten digits, and the second being the most common identification response 
error on those digits by a group of participants. 

correct numeral or correct numeral label. The Arabic numeral that a handwritten digit 
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actually represents; refers to the label of a handwritten digit as specified in the 
MNIST database. 

Data Viewer. An SR Research program to visualize and analyse EDF files. 

digit no. Refers to the corresponding MNIST sequence number of the handwritten digit 
in question regardless of whether the digit was obtained from the MNIST 
database or the NIST database. 

double-prompt identification. Refers to prompting the participant to call out the 
displayed handwritten digit twice during a Verbal task trial. 

EDF. Binary eye movement data file generated by experiments created using Experiment 
Builder. 

empty or missing response. Refers to failure of participant to provide a response within 
an expected period. In Verbal task, an empty response occurs every time a 
participant fails to identify a handwritten digit after each prompt in a given trial. 

ESACF. Enhanced summary autocorrelation function. 

Experiment Builder. A graphical environment made by SR Research to create 
experiments that run on the eye-tracking hardware used in this study. 

eye movement. Voluntary or involuntary movement of the eyes to acquire, fixate and 
track visual stimuli or parts thereof. It includes a wide range of parameters 
relating to changes in eye gaze and orientation and is typically made up of an 
alternating sequence of saccades and visual fixations. 

eye tracker. An eye-tracking device. 

eye tracking. The process of measuring eye gaze and orientation typically using the 
pupil’s infra-red reflection. 

FG. Foreground (of an image) 

FG0. Verbal task viewing condition where the foreground-handwritten digit colour is 
RGB(0,0,0) and the background colour is set to RGB(240,240,240). 

FG120. Verbal task viewing condition where the foreground-handwritten digit colour is 
RGB(120,120,120) and the background colour is set to RGB(240,240,240). 

FG180. Verbal task viewing condition where the foreground-handwritten digit colour is 
RGB(180,180,180) and the background colour is set to RGB(240,240,240). 

FG210. Verbal task viewing condition where the foreground-handwritten digit colour is 
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RGB(210,210,210) and the background colour is set to RGB(240,240,240). 

FG228. Verbal task viewing condition where the foreground-handwritten digit colour is 
RGB(228,228,228) and the background colour is set to RGB(240,240,240). 

fixate. To carry out one or more visual fixations. 

fixation. See visual fixation. 

foveate. To maintain visual gaze on an object or feature such that its image is projected 
onto the foveal region – the region with the highest visual acuity – of the retina. 

gaze span or gaze spatial span. Pixels of a visual stimulus spanned by a set of fixations; 
may also refer to an approximation of this given by the size of the bounding box 
of the fixations heat map relative to the size of the bounding box of the displayed 
handwritten digit as follows: 

 

greyscale image. A type of image where pixel values are set to a shade of grey 

handwritten digit. An instance of an Arabic numeral written by hand. 

heat map, fixation map or fixation heat map. Colour-coded probability density map 
representing the average share of gaze that various parts of a given image receive; 
may also refer to this overlaid on top of the corresponding visual stimulus. 

Identifiability. Refers to the degree to which a handwritten digit is identifiable usually 
expressed in terms of percentage of correct identification. 

identifiable or most identifiable. Refers to a handwritten digit that was correctly 
identified by participants during an identification condition or task. 

identification rate or correct identification rate. Refers to the ratio of count of correct 
responses to the total count of all responses by a given set of participants on a 
given set of handwritten digits in the Manual task or the Verbal task. 

identification response. Refers to participant response (manual or verbal) specifying the 
numeral that a handwritten digit represents in the Manual task or the Verbal task. 

jaggies. Aliasing artefacts occurring in raster images whereby smooth lines look rough, 
pixelated or stair-like. 

low-level feature. See bottom-up.   
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luminance contrast. See Michelson contrast ratio. 

macro. A scripting language-based program typically used to automate a set of 
operations inside another software program that would otherwise involve a 
significant amount of manual work. 

main experiment. Refers to experiment design used for main data collection following a 
smaller-scale pilot experiment. 

Manual or Manual task. Refers to our digit identification experiment whereby 
participants are instructed to identify an MNIST handwritten digit using the 
numeral keys of a keyboard. 

Michelson contrast ratio. The ratio of the spread to the sum of two luminance values of 
interest like the luminance of text foreground and background: 

  

misidentification. Refers to the incorrect identification of a stimulus in an identification 
task. 

MNIST. Modified NIST. 

MNIST database. A database of handwritten digit images derived from the larger NIST 
database. 

NIST. National Institute of Standards and Technology. 

NIST database. Refers to a large set of handwritten digit images found in one of the 
databases maintained by the National Institute of Standards and Technology. 

non-empty response. See empty response. 

numeral. One of ten Arabic numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 

Optimal Viewing or Optimal Viewing guidelines. Here refers to guidelines that, when 
used to display a class of visual stimuli, yield eye movement data that are most 
suitable for pattern recognition applications.  

pattern classifier. A machine learning agent or software that can assign a classification 
or label to a given input value. 

pilot, pilot experiment or pilot testing. A smaller-scale preliminary experiment intended 
to uncover design flows and refine experiment parameters prior to the main 
experiment. 
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PNG. Portable Network Graphics; an image file format. 

raster image. A graphical representation using a rectangular grid of pixels and pixel 
values to store and display images; bitmap image. 

re-identification. Refers to the state – or an instance thereof – of a participant identifying 
a handwritten digit as one numeral then identifying it as a different numeral 
during the same trial in the Verbal task. 

response rate. Refers to the average number of responses per prompt in Verbal task 
where a participant is prompted for a response twice in each trial. 

Results File. A plain text output file generated by an executable created using SR 
Research Experiment Builder. It may contain select experiment data like key 
presses and trial-specific parameters. 

ROI. Region of interest (of gaze). 

saccade. A fast shift in eye gaze position. 

smoothed. Refers to images used in some viewing conditions of the Verbal task whereby 
a special image processing filter is used to eliminate jaggies and spatial aliasing 
along the contours of the original unsmoothed NIST handwritten digit image. 

spatial aliasing. Refers to distortions or artefacts that result when a visual signal 
reconstructed from discrete samples is different from the continuous signal 
originally sampled. 

string editing. Refers to the use of character strings in information theory to represent 
and compare two sets of data. 

subsampling or downsampling. Refers to the process of reducing the number of 
samples in an image producing a modified image with less details and lower 
resolution.  

task session. Refers to a single participation in one of the two identification tasks. 

top-down (TD). Refers to top-down approaches in image analysis and pattern 
recognition whereby high-level functions like context awareness and task 
familiarity guide the analysis or task execution. 

top-down selective attention. Refers to the use of high-level functions like context 
awareness and task familiarity to determine image parts to receive closer analysis. 

trial or experiment trial. A single experiment unit such as the identification of a single 
handwritten digit in an experiment using seventy-four such digits. 



174 

 

true numeral label.  See correct numeral. 

tr. Training database; a suffix that refers to handwritten digits from NIST or MNIST 
training databases. 

ts. Testing database; a suffix that refers to handwritten digits from the NIST or MNIST 
testing databases. 

Unsmoothed. See smoothed  

V1. First verbal response or occurring during first verbal response. 

V2. Second verbal response or occurring during second verbal response. 

V2+. Occurring after second verbal response. 

VAD. Voice activity detection. 

VBA. Visual Basic for Applications. A scripting language to program MS Excel macros 

Verbal or Verbal task. Refers to our eye-tracking experiment whereby participants are 
instructed to identify a NIST handwritten digit verbally into a microphone while 
their visual fixations are being recorded. 

verbal answer. Refers to the actual numeral given in a verbal response of Verbal task. 

Verbal task viewing condition. Refers to one of seven display conditions in the Verbal 
task whereby an image of a handwritten digit covers the entire display and its 
luminance contrast and aliasing may be manipulated. 

Vision Science. The study of visual perception and the visual system from perspectives 
ranging from cognitive psychology and neuroscience to computer science and 
psychophysics. 

visual fixation. Refers to the maintaining of visual gaze – or an instance thereof – on a 
single location such that its image is projected onto the foveal region – the region 
with the highest visual acuity – of the retina. 

XLS. Standard file extension for Microsoft Excel spreadsheet documents. 

XLSM. File extension for Microsoft Excel macro-enabled workbooks. 
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