
Modeling Multi-Agent Systems with Category Theory

Jinzi Huang

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Software Engineering) at

Concordia University

Montreal, Quebec, Canada

August 2011

© Jinzi Huang, 2011

ii

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Jinzi Huang

Entitled: Modeling Multi-Agent Systems with Category Theory

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 ______________________________________ Chair

 Dr. Volker Haarslev

 ______________________________________Examiner

 Dr. Mourad Debbabi

 ______________________________________ Examiner

 Dr. Yuhong Yan

 ______________________________________ Supervisor

 Dr. Olga Ormandjieva

______________________________________ Supervisor

 Dr. Jamal Bentahar

Approved by __

 Chair of Department or Graduate Program Director

__

 Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Date __

iii

Abstract

Modeling Multi-Agent Systems with Category Theory

Jinzi Huang

The rapidly growing complexity of integrating and monitoring computing systems is

beyond the capabilities of even the most expert systems and software developers. The

solution is systems must learn to monitor their own behaviors and conform to the

requirements – a vision referred to as Autonomic Computing. Reactive Autonomic

Systems Framework (RASF) is introduced for real-time reactive systems, which contain

autonomic self-managing properties and are adaptive to their environments.

The goal of this thesis is about modeling Multi-Agent Systems (MAS) with

Category Theory (CAT). MAS is introduced as the realization of Reactive Autonomic

Systems, and Jadex is used as a representation of MAS approach. This thesis respects

Belief-Desire-Intension (BDI) agent architecture, models the entire Multi-Agent Systems

(MAS), zooms into individual intelligent agent, analyzes the relationships among agent

plans, goals and beliefs, and provides a fully formal CAT representation on MAS

structure. Furthermore, this thesis proposes a formalization of fault-tolerance property of

MAS using CAT.

iv

Acknowledgments

I would first like to express my sincere thanks and appreciation to my supervisors: Dr.

Olga Ormandjieva and Dr. Jamal Bentahar, for their insight, thoughtful guidance and

constant encouragement throughout my study. This thesis would not have been possible

without their support and help.

I also would like to express my deep gratitude and respect to Dr. Stan Klasa,

whose technical advices and insight were invaluable to me. Thanks to the members of my

examination committee: Dr. Yuhong Yan and Dr. Mourad Debbabi, for their valuable

discussions and comments. Thanks to all my other professors for their help in these years.

My greatest appreciation and friendship goes to my closest friend, Cui Zhu, who

is always a great support in all my struggles and frustrations in my life and studies.

Last but not least, I am forever indebted to my great parents and David for their

understanding, endless patience and encouragement when it was most required. Without

them I could not have made it here.

v

Table of Contents

Abstract .. iii

List of Figures .. viii

List of Tables ... x

List of Abbreviations.. xi

Chapter 1: Introduction ... 1

1.1. Problems Statement .. 1

1.2. Context of Research ... 2

1.3. Motivation .. 4

1.4. Research Questions .. 6

1.5. Proposed Approach and Contribution .. 6

1.6. Outline .. 8

Chapter 2: Background ... 9

2.1. Autonomic Computing ... 9

2.1.1. Autonomic Computing Definition ... 10

2.1.2. Autonomic Computing Characteristics .. 11

2.2. Reactive Autonomic Systems (RAS) .. 12

2.3. Multi Agent Systems .. 14

2.3.1. Autonomous Agent .. 14

2.3.2. Multi-Agent Computing... 15

2.3.3. Agent Architecture ... 16

2.3.4. Jadex BDI Agent System ... 17

2.4. Category Theory ... 19

2.4.1. Definition of Category ... 20

2.4.2. Type Category .. 21

vi

2.4.3. Null Object in Category ... 22

2.4.4. PATH Category .. 23

2.5. From Autonomic Systems to Category Theory and Multi-Agent Systems 24

2.6. Case Study .. 31

Chapter 3: Modeling Multi-Agents System by Category Theory 34

3.1. Introduction .. 34

3.2. Representing Plans ... 34

3.2.1. Categorical Representation .. 34

3.2.2. Illustration .. 40

3.2.3. Properties ... 44

3.3. Representing Goals... 45

3.3.1. Categorical Representation .. 46

3.3.2. Illustration .. 48

3.3.3. Properties ... 50

3.4. Representing Beliefs ... 51

3.4.1. Categorical Representation .. 51

3.4.2. Illustration .. 53

3.4.3. Properties ... 56

3.5. Representing Agents ... 57

3.5.1. Introduction .. 57

3.5.2. Categorical Representation of Plan and Goal .. 57

3.5.3. Illustration of Plan and Goal .. 58

3.5.4. Categorical Representation of Plan and Belief .. 59

3.5.5. Illustration of Plan and Belief .. 59

3.5.6. Categorical Representation of Goal and Belief .. 60

3.5.7. Illustration of Goal and Belief ... 61

vii

3.5.8. Plan, Goal and Belief Together .. 62

3.6. Representing Multi-Agent Systems .. 64

3.6.1. Categorical Representation of MAS .. 65

3.6.2. Repository Agent ... 66

3.6.3. Repository Type ... 67

3.6.4. MAS and Repository Type ... 67

Chapter 4: Fault-Tolerance Properties in Multi-Agents System Categorical Model 70

4.1. A Categorical Model for Robotic Case Study .. 70

4.2. Fault-Tolerance ... 81

4.2.1. Fault-Tolerance Property- Restart The Same Agent .. 81

4.2.2. Robotic Case Study: Restart the Same Carry Agent .. 83

4.2.3. Fault-Tolerance Property- Takeover by Inclusion Agent 85

4.2.4. Robotic Case Study: Takeover Damaged Carry Agent by Inclusion Agent 86

Chapter 5: Related Work and Conclusions ... 93

5.1. Related Work and Significance of the Proposed Research ... 93

5.2. Conclusions .. 96

5.3. Contributions .. 97

5.4. Future Work .. 98

References ... 100

viii

List of Figures

Figure 1.1: Reactive autonomic systems framework: components and stages 4

Figure 1.2: The schema of the proposed approach ... 7

Figure 2.1: Reactive autonomic system package diagram .. 13

Figure 2.2: Jadex abstract architecture [PB07] ... 18

Figure 2.3: Type category example ... 22

Figure 2.4: Null Object in Category ... 23

Figure 2.5: Example of PATH Category ... 24

Figure 2.6: Reactive Autonomic System Project .. 25

Figure 2.7: An idea of mapping RAS to MAS .. 25

Figure 2.8: A MAS representation .. 26

Figure 2.9: Hierarchical agents ... 27

Figure 2.10: Agents local communication .. 28

Figure 2.11: Agents global communication .. 30

Figure 3.1: Representation of the Action category ... 35

Figure 3.2: Representation of the Plan category ... 36

Figure 3.3: Representation of the PLAN category.. 37

Figure 3.4: Representation of the sequence _action and refined _by _plan functors 39

Figure 3.5: Illustration for Plan, PLAN and Discrete-Time example 41

Figure 3.6: Self-update of PLAN .. 43

Figure 3.7: Representation of the GOAL category ... 46

Figure 3.8: Representation of the Dependency category .. 47

Figure 3.9: Representation of the assigned _dependency functor 47

ix

Figure 3.10: Self-update of GOAL ... 49

Figure 3.11: Representation of the FactSet category .. 52

Figure 3.12: Representation of the BELIEF category .. 52

Figure 3.13: Self-update of FactSet .. 54

Figure 3.14: Self-update of BELIEF ... 55

Figure 3.15: Functor plan _goal from PLAN to GOAL ... 58

Figure 3.16: Functor plan _belief from PLAN to BELIEF ... 60

Figure 3.17: Functor goal _belief from GOAL to BELIEF .. 62

Figure 3.18: Representation of the Agent category .. 63

Figure 3.19: MAS category example .. 66

Figure 3.20: MAS to Repository Type .. 68

Figure 4.1: Repository Type categories in case study ... 70

Figure 4.2: Type carry agent ... 71

Figure 4.3: Carry1 agent .. 73

Figure 4.4: Carry2 Agent ... 77

Figure 4.5: Fault-tolerance property- restart in agent A ... 83

Figure 4.6: Fault-tolerance property takeover by inclusion agent 86

Figure 4.7: Include in action in the case study.. 87

Figure 4.8: Include in plan in the case study .. 88

Figure 4.9: Include in PLAN in the case study ... 89

Figure 4.10: Include in GOAL in the case study .. 90

Figure 4.11: Include in BELIEF in case study .. 91

Figure 5.1: Reactive autonomic systems framework project with research coverage 97

x

List of Tables

Table 2.1: Agents local communication .. 28

Table 2.2: Agents global communication .. 30

Table 2.3: Detect and analyze ore mines use case .. 31

Table 2.4: Produce ore use case .. 32

Table 2.5: Delivery ore use case ... 33

Table 2.6: Recover damaged carry agent use case .. 33

Table 3.1: Additional Properties of F .. 69

Table 4.1: F Additional properties map Action1 to Action Type 74

Table 4.2: F Additional properties map Plan1_A to Plan Type ... 74

Table 4.3: F Additional properties map Plan1_B to Plan Type ... 75

Table 4.4: F Additional properties map PLAN1 to PLAN Type 75

Table 4.5: F Additional properties map GOAL1 to GOAL Type 76

Table 4.6: F Additional properties map BELIEF1 to BELIEF Type 76

Table 4.7: F Additional properties map Action2 to Action Type 78

Table 4.8: F Additional properties map Plan2_A to Plan Type ... 78

Table 4.9: F Additional properties map Plan2_B to Plan Type ... 79

Table 4.10: F Additional properties map Plan2_Move to Plan Type..................................... 79

Table 4.11: F Additional properties map PLAN2 to PLAN Type...................................... 80

Table 4.12: F Additional properties map BELIEF2 to BELIEF Type 81

xi

List of Abbreviations

RAS .. Reactive Autonomic System

RASF.. Reactive Autonomic System Framework

MAS .. Multi-Agent System

CAT ... Category Theory

RAO .. Reactive Autonomic Object

RAOL .. Reactive Autonomic Object Leader

RAC .. Reactive Autonomic Component

RACG .. Reactive Autonomic Component Group

RACS .. Reactive Autonomic Component Supervisor

RACGM .. Reactive Autonomic Component Group Manager

SS ... System Supervisor

GM .. Group Manager

BDI .. Belief-Desire-Intention

UML .. Unified Modeling Language

AML .. Agent Modeling Language

1

Chapter 1: Introduction

This thesis is about modeling Multi-Agent Systems (MAS) with Category Theory (CAT).

The work presented here is a part of a wide project about modeling and implementing

Reactive Autonomic Systems using MAS and CAT. In this chapter, we will discuss the

problems of complex software systems, context of research, motivations of using CAT as

a formal method and tool to model MAS, research questions, and proposed approach.

1.1. Problems Statement

The rapidly growing complexity of integrating and monitoring computing systems, which

are more and more large is beyond the capabilities of even the most expert systems and

software developers. System and software complexity crisis is the main obstacle to

further progress in IT industry, as the difficulty of managing complex and massive

computing systems goes well beyond IT administrators‟ capabilities. Although current

software engineering methodologies and programming language innovations have

extended the size as well as complexity of computing systems, only relying on those two

solutions will not get IT industry through the present software complexity crisis. The

remaining option is: systems must learn to monitor their own behavior and conform to the

requirements in conjunction with high-level guidance from humans – a vision referred to

as autonomic computing [Hp01].

2

1.2. Context of Research

Autonomic Computing. The term autonomic is derived from human autonomic nervous

system that monitors heartbeat, blood pressure and body temperature without any

conscious thought. This self-regulation and separation provides the ability for human

beings to concentrate on high level objectives without managing specific details [HP01].

Similarly, autonomic computing is described as [Mur04]: The ability to manage

computing enterprise through hardware and software that automatically and dynamically

respond to the business requirements. This means self-healing, self-configuring, self-

optimizing, and self-protecting hardware and software that behave in accordance to

defined service levels and policies. Just like the nervous system responds to the needs of

the body, the autonomic computing system responds to the needs of the business.

Therefore, IT professionals can focus on business oriented objectives instead of

computing level tasks with implementation, configuration and maintenance details.

The absence of a formal framework for autonomic systems based on a strong

theoretical backbone has encouraged the authors of [KO08] to propose Reactive

Autonomic Systems Framework.

Multi-Agent System. A Multi-Agent System (MAS) is a software system possessing a

number of autonomous agents that interact with one another and exchange messages

through certain agent communication languages [Woo09]. Therefore, those agents

require reactive, proactive, and social abilities, so that they can cooperate, coordinate, and

negotiate with others through successful interactions. Agents are equipped with different

beliefs, goals as well as motivations, and the MAS can achieve its goals, which are

difficult to be reached by each individual agent.

3

Category Theory. Category theory (CAT) is an area of study in mathematics that

examines in an abstract way the properties of particular mathematical concepts, by

formalizing them as collections of objects and arrows (morphisms). A category consists

of the following components:

o Objects: A, B, C, etc.

o Morphisms: f, g, h, etc.

o Domain and Codomain: For each arrow (morphism) f there are given objects:

dom(f), cod(f) called the domain and codomain of f. We write: f: A → B to

indicate that A = dom(f) and B = cod(f).b

o Composition: Given arrows f: A → B and g: B → C, i.e. with: cod(f) = dom(g),

there is a given arrow: g ◦ f: A → C, called the composite of f and g.

o Identity: For each object A there is a given arrow 1A: A → A, called the identity

arrow of A.

These components are required to satisfy the following laws:

o Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f, for all f : A → B, g : B → C, and h : C → D.

o Unit: f ◦ 1A = f = 1B ◦ f, for all f: A → B.

Reactive Autonomic Systems Framework. Reactive Autonomic Systems Framework

(RASF) [KO08] was introduced to realize the vision of large-scale self-managing

autonomic systems built from potentially very large numbers of highly autonomic and

reactive, yet socially interactive, elements. To model, validate and implement the

properties of RAS, new techniques have to be developed to add to existing formal

methods and tools. RASF includes four basic components: RAS, MAS, CAT and Jadex,

and consists of five stages as follows (Figure 1.1):

4

RAS

MAS

CAT

CAT

Jadex

Figure 0.1: Reactive autonomic systems framework: components and stages

Stage 1: Using Category Theory (CAT) approach as a formal language to specify

RAS‟ autonomic behavior.

Stage 2: Using Multi-Agent Systems (MAS) to design and implement RAS. A Mapping

from RAS to MAS aims at reducing the gap between the formal specification of RAS

and its implementation.

Stage 3: Applying CAT to formalize MAS’ autonomic behavior.

Stage 4: Proving the isomorphism between the two categorical models mapped

respectively from RAS and MAS. This step will guarantee that the autonomic

behaviors of MAS translated from RAS are correct.

Stage 5: Implementing the created MAS with Jadex.

This thesis focuses on stage 3 “Modeling MAS to CAT”, whereas stages 2 and 5 have

been implemented in [Sha11], stage 1 is described in [SERA 2009, SoMeT 2010,

ASAP 2010], and stage 4 is the future work.

1.3. Motivation

Category Theory (CAT) has been introduced and used as a framework in many areas of

computer science and software engineering fields [Fia98]. This framework offers a

Stage 4 Stage 2

Stage 5

Stage 3

The focus of this thesis

Stage 1

5

structure for formalizing large specifications and provides composition primitives in both

algebraic [Wir90] and temporal logic specification languages [FM92]. Category theory

has a rich body of theory to reason about objects along with their relations (specifications

as well as their interactions), and is abstract enough to capture a wide range of different

specification languages. Moreover, with category theory and its own properties,

automation can be achieved, for example, the composition of two specifications can be

derived automatically.

The motivation of using Category Theory (CAT) to model Multi-Agent Systems

(MAS) and Reactive Autonomic Systems (RAS) in Reactive Autonomic Systems

Framework (RASF) is that CAT is considered as a formal modeling method and powerful

tool for abstracting from individual components to specifications and capturing the

interactions and compositions among those components in a natural way, which cannot

be done using some other semi-formal languages (i.e UML). By comparing the two

CATs obtained respectively from RAS (stage 1) and MAS (stage 3), we can check the

correctness of RAS transformation to MAS. Another important motivation of using CAT

is category theory from mathematical point of view is the study of (abstract) algebras of

functions, so using this theory allows us to focus on the morphisms or relationships

among objects, instead of concentrating on objects‟ representations, which is suitable for

agent-based systems, since communication among agents is a first-class concept [PB07].

The motivation behind using MAS in RASF is mainly due to the fact that the MAS

approach is well suited for autonomic computing systems because the ability of an

autonomous agent can be easily mapped to self-managing behaviors in autonomic

systems, where agents provide natural solutions to model autonomic components. In

6

addition, the ability of MAS to manage interactions among components explicitly and

control them in a flexible way provides a solution for the distributed complexity [TC04].

Autonomic systems can adapt many features and properties from MAS, such as emergent

behavior, automatic group formation, agent coordination, agent adaptation, virtual

localization, knowledge mining, interfacing, and evolution [WH03].

1.4. Research Questions

We are aiming to address the following research questions in this work:

1. How can each agent be modeled with CAT?

a. What are the components of each agent?

b. How do we model each component with CAT?

c. How do we model the relations among the components with CAT?

2. How can MAS be modeled with CAT?

a. What are objects and morphisms to be used to capture the transformation from

MAS to CAT?

b. Since agents and their communication can be classified into different types, how

do we model these types with CAT?

3. How can CAT represent MAS properties?

1.5. Proposed Approach and Contribution

Our goal of this thesis is to provide modeling assistance as a foundation for the graphical

formalization of the MAS requirements (both functional and non-functional), their

interrelations and change management within the MAS life cycle, in terms of Category

theory. This goal can be distributed into the following objectives:

7

1. Modeling Agent with CAT [Chapter 3]

a. Modeling agent‟s plans, goals, and beliefs with CAT

b. Modeling relations between plans and goals, plans and beliefs, and goals and

plans with CAT

2. Modeling MAS with CAT [Chapter 3]

a. Modeling relations between agents

b. Applying Type Category in MAS

3. Modeling robotic fault-tolerance with CAT [Chapter 4]

Figure 1.2 illustrates the proposed approach of this thesis.

Figure 0.2: The schema of the proposed approach

Apply Type (2.b)

Apply Type (2.b)

Model plan (1.a)

Model goal (1.a)

Model belief (1.a)

Model Agent with CAT (1)

: Model the relations (1.b)

Model MAS with CAT (2)

Agent

Agent

Type CAT Model the relations (2.a)

Built with

Modeling robotic fault-tolerance (3)

Chapter 3

Chapter 4

Case

Study

8

1.6. Outline

The thesis is organized as follows. In Chapter 2, we introduce the basic concepts of

autonomic computing, multi-agent system, reactive autonomic system, category theory

and description of a case study. Chapter 3 is the core of this thesis that presents the

modeling of MAS by using CAT concepts, which includes mapping agent‟s plans, goals,

and beliefs to our defined categories. We also prove some properties of the category

representation. In Chapter 4, we introduce robotic case study, more specifically its fault-

tolerance property, and the corresponding modeling with the CAT concepts introduced in

Chapter 3. In Chapter 5, we briefly review the related work on using category theory to

formalizing multi-agent systems and conclude this thesis with a short summary of the

presented work and an outline of future work directions.

9

Chapter 2: Background

In this chapter, we will introduce the backgrounds concerning autonomic computing,

reactive autonomic systems, category theory and multi-agent systems required to

understand the remaining chapters of this thesis. In particular, we will use the definitions

of autonomic computing and reactive autonomic systems framework [Mur04 KO08],

introduce multi-agent systems and Jadex implementation environment [Woo09 PB07] and

use category theory [Awo06] as formal modeling language. Interested readers can refer

to [Mur04 KO08 Woo09 PB07 Awo06] for a more detailed discussion.

2.1. Autonomic Computing

Within the past three decades, the developments of computer hardware and software have

grown at exponential rates as software requirements are getting more intricate. As a result,

these phenomenal growths along with the advent of the Internet have led to a new age of

accessibility - to people, systems, and most importantly, to information. These growths

have also led to unprecedented levels of complexity. This complexity is derived from the

following aspects:

o The need to integrate several heterogeneous software environments into one

cooperated computing system, and to extend trillions computing devices connected to

the Internet.

10

o The rapid stream of changing and conflicting demands at runtime requires timely

along with decisive responses.

o As the growing uncertainty of software environments due to unpredictable, diverse

and interconnected computing systems, it is very difficult to anticipate and design

interactions among the elements of those systems.

The simultaneous explosion of information and integration of technology into

everyday life has brought on new demands for how people manage and maintain

computer systems. This brings difficulties to design, develop, and maintain software

systems. Currently this volume of complexity is managed by highly skilled humans; but

the demand for skilled IT personnel is already outstripping supply. From both economic

and software development points of view, a solution for software system with self-

managing characteristics is urgently necessary.

2.1.1. Autonomic Computing Definition

IBM has introduced a new paradigm for the future of computing-- "autonomic

computing" [Mur04]. The main idea behind autonomic computing is to shift the

fundamental definition of the IT technology from one of purely computing to one defined

by data. Access to data from both distributed and centralized sources will allow users to

transparently access information when and where they need it. Furthermore, this new

computing vision and paradigm will require changing the industry's focus on processing

speed and storage to one of developing distributed systems that are largely self-managing,

self-diagnostic, and transparent to the user. Autonomic computing is not a totally new

technology, but a goal-oriented and holistic computing paradigm that aims at developing

computer systems having a high degree of autonomy. Thus, autonomic computing is not

11

a conventional computer systems project, but a visionary approach that groups existing

technologies together to achieve a common goal [SB02].

The term autonomic is derived from human autonomic nervous system that monitors

heartbeat, blood pressure and body temperature without any conscious thought. This self-

regulation and separation provides the ability for human beings to concentrate on high

level objectives without managing specific details

Similarly, autonomic computing is described as [Mur04]: “The ability to manage

computing enterprise through hardware and software devices that automatically and

dynamically responds to the business requirements. This means developing and

managing self-healing, self-configuring, self-configuring, self-optimising, and self-

protecting hardware and software systems so that they behave in accordance to defined

service levels and policies. “Just like the nervous system responds to the needs of the

body, the autonomic computing system responds to the needs of the business”.

2.1.2. Autonomic Computing Characteristics

The essence of autonomic computing systems is self-management that can be achieved

by realizing self-configuration, self-healing, self-optimization and self-protection.

o Self-Configuration [KD03]: Autonomic computing systems are able to configure

themselves automatically according to high level policies representing business level

objectives, which specify what is required instead of how they are implemented. For

instance, after a new element joins, it automatically learns composition as well as

configuration of the system and registers itself in terms of being used by other

elements.

12

o Self-Healing [KD03]: Autonomic computing systems can detect, manage and repair

bugs or failures in software as well as hardware systems. For example, a problem

diagnosis component analyzes information from log files or monitors by using system

knowledge, and then compares the diagnosis against system patches or alerts IT

professionals. Finally, the system installs the appropriate patches followed by a

suitable test.

o Self-Optimization [KD03]: Autonomic computing systems are able to improve their

operations and make themselves more efficient in performance or cost. For example,

they can monitor, test and tune their parameters; they also can proactively upgrade

their functions through finding, verifying, applying and validating the latest updates.

o Self-Protection [KD03]: Autonomic computing systems can protect the whole system

against malicious attacks and failures uncorrected by self-healing; they are also able to

predict and anticipate problems according to early reports from sensors and react to avoid

or mitigate them.

IBM has addressed some benefits of Autonomic computing [IBM01]. In short-term, it

will reduce dependence on human intervention to maintain complex systems

accompanied by a substantial decrease in costs. In long-term it will allow individuals,

organizations and businesses to collaborate on solving complex problems.

2.2. Reactive Autonomic Systems (RAS)

Reactive Autonomic System (RAS) was introduced by the authors of [KO08], which

includes four tiered components: Reactive Autonomic Object (RAO), Reactive

Autonomic Component (RAC), Reactive Autonomic Component Group (RACG) and

Reactive Autonomic System (RAS), which are shown by a package diagram in Figure 2.1.

13

Since RASF is a layered framework, each tier only can communicate with the same tier

or the tier immediately above or below. With this design methodology, the system

obtains modularity, encapsulation, hierarchical decomposition and reusability.

Additionally, autonomic behavior is implemented by the RAO Leaders (RAOL), RAC

Supervisors (RACS), and RACG Managers (RACGM) at the RAC, RACG, as well as RAS

tiers.

RAS

RACG

RACGM RACS

RAC

RAORAORAOL

Figure 0.1: Reactive autonomic system package diagram

RAO is Reactive Autonomic Object, which is modeled as a label transition system

augmented with ports, time constraints, attributes, and logical assertion on those

attributes [OQ08]. RAC is Reactive Autonomic Component, which includes

synchronously communicated RAOs, and where one of the RAO is assigned as a leader

(RAOL) for the remaining RAOs. RAOs are mainly responsible for reactive tasks, while

RAOL works on autonomic tasks [KO08]. RACG is Reactive Autonomic Component

Group, which is constructed by centralized or distributed RACs, and the communication

between RACs has to be synchronous. RAC is the minimal reactive autonomic element,

which can independently accomplish complete reactive tasks in the RAS meta-model.

Each RACG has a special RAC acting as the group supervisor (RACS) and all other RAC

within the same group are under its supervision. RAS is the entire system, and it includes

14

all the centralized or distributed RACSs with asynchronous communication. Within each

RAS, a special RAC will be assigned as the system manager (RACGM). RAOL, RACS, and

RACGM ensure autonomic tasks are done by intelligent control loops [KC03] modeled as

labeled transition systems, where a set of states specifies their task status; a set of events

introduces triggers from a state to another and a set of transitions representing states

sequence under certain time constraints [KO08].

2.3. Multi Agent Systems

The Multi-Agent System (MAS) approach is well suited for autonomic computing

systems since agent-based computing is a natural way to model autonomic systems. In

fact, the ability of an autonomous agent can be easily mapped to self-managing behaviors

in autonomic systems. In addition, the ability of MAS to engineer interactions among

components explicitly and control them in a flexible way supports a more distributed

complexity [TC04]. Autonomic systems can adapt many features and properties from

MAS, such as emergent behavior, automatic group formation, agent coordination, agent

adaptation, virtual localization, knowledge mining, interfacing, and evolution [WH03].

In this section we will discuss agent and multi-agent systems, agent architecture, and

Jadex (the agent-oriented programming applied to Beliefs, Desires, and Intentions (BDI

model).

2.3.1. Autonomous Agent

An agent is defined as a computer system functioning within an environment, and is

capable of performing independent autonomous actions in order to achieve its design

objectives [Woo09]. Agents embody a stronger notion of autonomy than objects do in

object-oriented paradigm, and in particular, they make decision for themselves whether

15

or not they need to perform an action requested by another agent. Moreover, agents are

able to control their internal states and own behaviour; they experience environment

through their sensors and act by effectors.

An autonomous agent is an agent with the following properties [JS98]:

o Reactive: the agent should perceive its environment and respond in a timely way to

the environment changes;

o Proactive: the agent should not simply respond to its environment but take initiatives

and be capable to show opportunistic and goal-directed;

o Social: the agent should be able to interact with other agents or users when

appropriate to complete it and help others with their activities.

2.3.2. Multi-Agent Computing

A Multi-Agent System (MAS) is a software system possessing a number of autonomous

agents that interact with one another and exchange messages through certain agent

communication languages [Woo09]. Therefore, those agents are required to be reactive,

proactive, and social, so that they are able to cooperate, coordinate, and negotiate with

others. The agents act on behalf of users having different and maybe conflicting goals as

well as motivations, and the MAS can achieve its goals, which are difficult to be reached

by each individual agent. The characteristics of the MAS are [JS98]:

o Each agent has incomplete information or capabilities for solving problems.

o There is no global system control.

o Data is decentralized.

o Computation is asynchronous.

The increasing interest in the MAS research is mainly justified by [JS98]:

16

o Solving problems that are too large for a centralized agent to solve because of

resource limitations, performance bottlenecks, or single-point of failures.

o Allowing for interconnection and interoperation of multiple existing legacy systems.

o Solving problems in which data, expertise, or control is distributed.

o Solving problems that can be naturally regarded as a society of autonomous

interacting components or agents.

2.3.3. Agent Architecture

How the agent can be decomposed into a set of component modules and how these

modules communicate with each other are specified by the agent architecture. According

to [Woo09] three categories should be distinguished:

o Deliberative agent architecture: an agent develops plans and makes decisions through

logical reasoning and uses logical and mathematical representations of the

environment. Belief-Desire-Intention (BDI) architecture is one of the main

deliberative agent architectures.

o Reactive agent architecture [WJ94]: an agent acts based on stimulus-response rules

and it does not need to represent its environment logically. In this architecture, agents

are able to take parts in interactions with their environment and respond to its changes.

o Hybrid agent architecture: an agent is able to act both deliberatively and reactively. In

this architecture, agent designers merge deliberative techniques through symbolic

representations and reactive techniques through stimulus-response techniques, so

agents can reacting to events without performing complex reasoning.

The BDI architecture is a philosophical model for describing rational agents [104],

and it contains specific denotation of Beliefs, Desires and Intentions. The architecture

17

addresses how Beliefs, Desires and Intentions are represented, updated, processed, and

interact with one another. In the BDI architecture, agents with particular mental attitudes

are able to choose appropriate actions based on their capabilities and internal states.

Beliefs indicate the agent beliefs about its surroundings, which include the

environment and other agents. The Beliefs also include inference rules, which allow

acquiring new beliefs. However, unlike knowledge, beliefs may be not true.

Desires are goals that agents would like to achieve, and they are the motivational

state of those agents.

Intentions are the targets of agents, and they indicate what the agents have chosen to

do, which represent the deliberative state of those agents. In an implemented system

(such as Jadex), the Intentions are described as executable plans, which include

sequences of actions performed by an agent in order to achieve one or more desires.

When new information arrives, agents can update their beliefs or desires. The new

beliefs or desires are able to trigger certain actions, but only one intended action is

selected as well as activated. After executing that action, the intentions of those agents

are updated, and the new beliefs or desires are stored.

2.3.4. Jadex BDI Agent System

Jadex, a Java-based and FIPA-compliant agent environment, allows modeling goal-

oriented agents according to the BDI architecture. In the abstract Jadex architecture

[PB07], an agent is able to communicate by sending and receiving messages. The

received messages or goal events can trigger the internal reaction as well as deliberation

mechanism of the agent, which dispatches those events to the plans selected from a plan

18

base. Running plans may access and modify a belief base, exchange messages with other

agents, create new goals, and trigger internal events [PB07].

Jadex provides infrastructure allowing the use and exploitation of the BDI model in

the context mainstream programming, by introducing beliefs, goals and plans as first

class objects that can be created and manipulated inside the agent definition. In Jadex,

agents have beliefs, which can be any kind of Java objects and are stored in a belief base.

Goals represent the concrete motivations (e.g. states to be achieved) that influence an

agent's behavior. To achieve its goals, the agent executes plans, which are java programs.

The abstract architecture of a Jadex agent is depicted in Figure 2.2 [PB07].

Figure 0.2: Jadex abstract architecture [PB07]

Belief: beliefs in Jadex are a set of facts that make up the knowledge of an agent.

Unlike other BDI-based multi-agent systems, where beliefs are represented by certain

kind of first-order predicate logic (e.g. Jason) or relational models (e.g. JACK), the

19

beliefs in Jadex is a storage of knowledge as a database for an agent. Those beliefs cannot

support any inference mechanism.

Goal: goals in Jadex are central concepts and not just a special type of event as in

pure BDI-based multi-agent systems. Agents are goal-oriented, so they are able to engage

into some actions for their goals until they are achieved, unreachable, or undesired. A

goal lifecycle consists of the following states [PB05]: option, active, and suspended,

which can distinguish between just adopted and actively pursued goals. When a goal is

adopted, it becomes an option added to the desire structure, and application specific goal

deliberation mechanisms are responsible for managing the state transitions of all adopted

goals.

Plan: plans are java procedures used to specify agents‟ actions towards achieving

their goals. Jadex uses a plan-library approach to represent the agents‟ plans, which are

predefined by developers. Those plans are specified in terms of handling events,

achieving goals, and building action libraries for the agents.

2.4. Category Theory

In this thesis, category theory is used to specify and formalize MAS for autonomic

systems. In this section, we provide an overview of this theory, which is needed to

understand the rest of the thesis. Category theory has been introduced and used as a

framework in many areas of computer science and software engineering fields [Fia98].

This framework offers a structure for formalizing large specifications and provides

composition primitives in both algebraic [Wir90] and temporal logic specification

languages [FM92]. Category theory has a rich body of theory to reason about structures

(that is objects along with their relations) and is abstract enough to represent a wide range

20

of different specification languages. Moreover, automation may be achieved in category

theory, for example, the composition of two specifications can be derived automatically.

Category theory for software specification has adopted a correct by construction

approach by which components are specified, proved, and composed in the way of

preserving their properties [WE98]. From mathematical point of view, category theory is

a study of (abstract) algebras of functions. So using category theory helps us to focuses

on the morphisms or relationships between objects, instead of concentrating on objects‟

representations.

2.4.1. Definition of Category

Definition 2.1 [Awo06]: A category consists of the following components:

o Objects: A, B, C, etc.

o Morphisms: f, g, h, etc.

o Domain and Codomain: For each arrow f there are given objects: dom(f), cod(f)

called the domain and codomain of f. We write: f: A → B to indicate that A = dom(f)

and B = cod(f).

o Composition: Given arrows f: A → B and g: B → C, i.e. with: cod(f) = dom(g), there

is a given arrow: g ◦ f: A → C, called the composite of f and g.

o Identity: For each object A there is a given arrow 1A: A → A, called the identity arrow

of A.

These components are required to satisfy the following laws:

o Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f, for all f : A → B, g : B → C, h : C → D.

o Unit: f ◦ 1A = f = 1B ◦ f, for all f: A → B.

21

Definition 2.2 [Awo06]: A functor F: C → D between categories C and D is a mapping

of objects to objects along with morphisms to morphisms in the way of:

1) F(f: A → B) = F(f) : F(A) → F(B); 2) F(g ◦ f) = F(g) ◦ F(f); 3) F(1A) = 1F(A).

Definition 2.3 [Awo06]: in any category C, an arrow f: A → B is called an isomorphism

if there is an arrow g: B → A in C such that g ◦ f =1A and f ◦ g =1B. Since inverses are

unique, g =f
−1

. A is isomorphic to B: A≅B if there exists an isomorphism between them.

Definition 2.4 [Awo06]: in any category C, an object is called initial object “I” if for any

object “X” in C, there is a unique morphism I → X.

Definition 2.5 [Awo06]: in any category C, an object is called terminal object “T” if for

any object “X” in C, there is a unique morphism X → T.

Definition 2.6 [Awo06]: the Category of sets is the category whose objects are sets. The

arrows or morphisms between sets A and B are all functions from A to B.

Definition 2.7 [Eas99]: discrete category is a category where the morphisms are only

identity morphisms. For example, suppose X and Y are different objects in category C,

morphism from X to X only can be X‟s identity morphism, and morphism from X to Y will

not exists, which means:

mor (X, X) = {idX} for all objects X, and

mor (X, Y)= ∅ for all objects X≠ Y.

2.4.2. Type Category

Definition 2.8 Type is a category whose objects represent the object types denoted by

ObjType(Type), and whose morphisms represent the morphism types denoted by

MorType(Type). MyCategory is a category whose objects are denoted by

Obj(MyCategory) and morphisms denoted by Mor(MyCategory). There is a functor F

22

from MyCategory to Type which maps each object of MyCategory to a type (an object of

Type): F(Obj(MyCategory)) = ObjType(Type), and maps each morphism of MyCategory

to a type (a morphism of Type): F(Mor(MyCategory)) = MorType(Type).

A

B

C
Dx

y

u
v

w

MyCategory

Type1

c

a

b

TypeCategory

Type2

Type3

d

e

F

Figure 0.3: Type category example

For example, in Figure 2.3, a type category called TypeCategory contains objects:

typeA, typeB and typeC; type m morphisms: c and d, and type n morphisms: a, b and e.

MyCategory contains objects: A, B, C and D, and morphisms: u, v, w, x and y. Functor F

maps MyCategory objects and morphisms to types in TypeCategory: F(A) = Type1, F(B)

= Type1, F(C) = Type2, F(D) = Type3, F(u) = e (type n), F(v) = b (type m), F(w) = d

(type m), F(x) = a (type n) and F(y) = c (type m).

2.4.3. Null Object in Category

In Chapter 3, we use a special object, called ObjectNull to help category to catch

exceptions. There is no difference between ObjectNull and other categories‟ objects,

except that ObjectNull doesn‟t have any real meaning or content, and it doesn‟t have any

relationship with other object. ObjectNull and its identity morphism are useful for

catching “non-useful” or “non-related” objects and morphisms from other categories

through defined functor (relation).

Figure 2.4 is an example of using ObjectNull. MyCategory A contains objects: A, B, C,

D and ObjectNull, and morphisms: a, b, c, d and e. MyCategory B has objects: A, B, C and

23

ObjectNull, and morphisms: a, b and c. Functor H maps MyCategory A objects and

morphisms to MyCategory B: H (A) = A, H (B) = B, H (C) = C, H (D) = ObjectNull, H

(ObjectNull) = ObjectNull, H (a) = a, H (b) = b, H (c) = c, H (d) = id ObjectNull and H (e) =

id ObjectNull. From this example, we can see MyCategory B contains all the objects and

morphisms of MyCategory A, except object D and its related morphisms d and e.

A

B

C
Db

d

a
e

c

MyCategory A

A

B

C

ObjectNull

b

a

c

H

MyCategory B

ObjectNull

Figure 0.4: Null Object in Category

2.4.4. PATH Category

Before we introduce the PATH category needed in the next chapter, we need to have

some background knowledge about directed graphs. A directed graph G is a set O of

objects called vertices or nodes, and a set A of ordered pairs of vertices are called arrows

or directed edges [Mac71]. Every arrow diagram or directed graph can be interpreted as

a category named PATH, whose morphisms are sequences (paths) of arrows. One can

create a directed graph by drawing an arrow from x to y where x, y ∈ a same set X, which

can be associated with the category denoted by PATH (X) or PATH [PS07]. The objects

are elements in X and the morphisms are all sequences (paths) of adjacent arrows. This

naturally defines a composition of arrows. This viewpoint leads to a general categorical

semantics for relational structures. Vice versa, every category is a graphical structure

(with nodes and arrows).

24

Figure 2.5 is an example of PATH. For morphisms (arrows) f: x → y, g: y → z and

morphism k: x → z, if f, g and k are of the same type, then k is not considered as a direct

arrow since k equals to the sequence (path) of consecutive arrows (f and g). By the

definition of PATH, the lengths of the sequences f and g are one, and the length of k is

two. The existence of the identity arrow for each object will always be assumed by

definition, and it can be interpreted as sequences of length zero.

X

Y Z

f

g

k

Figure 0.5: Example of PATH Category

2.5. From Autonomic Systems to Category Theory and Multi-

Agent Systems

Implementing Reactive Autonomic System Framework (RASF) has led to propose a

methodology including four basic components: RAS, MAS, CAT and Jadex, and consists

of five stages (Figure 2.6):

o CAT (category theory) approach will be used as a formal language to specify RAS‟

autonomic behaviour.

o MAS (multi-agent systems) will be introduced to design and implement RAS. A

Mapping from RAS to MAS will reduce the gap between the formal specification of

RAS and its implementation.

o CAT will be applied for formalizing MAS’ autonomic behaviour.

25

o Proving that the two categorical representations mapped from RAS and MAS are

isomorphic. This step will guarantee the autonomic behaviours of RAS and MAS are

the same.

o At the end, an implementation with Jadex code will be created.

RAS

MAS

CAT

CAT

Jadex

Figure 0.6: Reactive Autonomic System Project

Figure 2.7 shows the general mapping from RAS to MAS: the elements within MAS

are layered too, reactive autonomic system (RAS) is mapped to multi-agent system

(MAS); reactive autonomic component group (RACG) is mapped to sub-multi-agent

system (sub-MAS, which is a sub group of agents); reactive autonomic components

(RAC) are mapped to agents; and reactive autonomic objects (RAO) are mapped to agents‟

plans, goals and beliefs. A MAS comprises centralized or distributed sub-MAS, which are

differentiated by their responsibilities/goals/tasks. A sub-MAS contains agent(s), and the

agents are grouped by common tasks/goals and differentiated by their individual roles.

An agent includes various plans based on agents believes, goals, events and environments.

Plan

AgentAgent

Sub-MASSub-MAS

MASMAS

RAO

RACRAC

RACGRACG

RASRAS

Figure 0.7: An idea of mapping RAS to MAS

26

Figure 2.8 is a package diagram of MAS which reflects the RAS hierarchy. It exhibits

a static global view of the overall system. The basic components for the system are:

system manager agent, supervisor agent, and regular agent. Interested readers can refer

to [Sha11] for detailed discussion.

System manager agent is the most essential part that acts as a brain for the overall

system. It governs and manages the entire system, and has the most global view which

allows it to control and monitor any other agent within the system. It guarantees that the

whole system is running correctly.

Supervisor agent exists within each multi-agent group – sub-MAS. It is the group

leader that manages the group. It plays a similar role as the system manager agent, but

with limited power and localized view of the entire system.

Regular agent is the worker within multi-agent society. Unlike supervisor agent or

system manager agent, worker agents perform actual jobs, obey orders and report events.

Each agent in this package has goals, beliefs and plans components. We chose Jadex

BDI architecture to model and specify agents as discussed earlier in this chapter.

MAS

Sub-MAS
System

Manager Agent Supervisor Agent

PlansGoals

Agent

Goals

Beliefs

Plans Beliefs

Figure 0.8: A MAS representation

27

Agents communicate with each other in order to work together to perform different

tasks. Agents are hierarchical (Figure 2.9): regular agents are in the bottom level, and

system manager agent is in the up level. Agents can only communicate with the agents in

the same level or the level directly below or above. In this case, system manager agent

can only converse with supervisor agents, regular agents are only able to communicate

with supervisor agents, and supervisor agents have the ability to send messages to both

system manager agent and regular agents. This design strategy reduces the coupling

between agents‟ communications, and assigns system with modularity, encapsulation,

hierarchical decomposition and reusability.

System
manager

agnet

Regular agents

Supervisor agnets

Figure 0.9: Hierarchical agents

In autonomic computing multi-agents system (ACMAS), there are two different

communication types: local communication and global communication. Local

communication happens only within a group (sub-multi agent system). Inside a group,

regular agents communicate with each other to cooperate. If communication issues

happen between regular agents, error report messages will be sent to supervisor agent by

concerned regular agents. Based on its beliefs, the supervisor agent will make a decision

and send messages back to the regular agents. For example, Table 2.1 and Figure 2.10

represent a local communication use case.

28

Use Case Agents A requests Agents B to work together in a same group

Scenario Step Action

 1 Agent A sends a request to ask for Agent B‟s help on

performing a task together

 2 Agent B refuses to make an agreement with Agent A

because it is busy on working on its own task

 3 Both Agent A and Agent B send reports with explanations

to their Supervisor Agent

 4 Supervisor Agent sends back its decision to Agent A and

Agent B, which is Agent B has to abandon its current job

and work together with Agent A

Post

condition

After Agent A and Agent B receive the decision from Supervisor

Agent, they will start working together

Table 0.1: Agents local communication

Sub-MAS

Agent A Agent B

1

4 4

Supervisor
Agent

Agent C

3
3

2

Figure 0.10: Agents local communication

The second case is global communication, which happens between different sub-

multi agent systems (subMAS). Regular agents are forbidden to communication with

29

other groups‟ agents, unless there are some well-defined pre-conditions that clearly

address situations in which regular agents can have global communication. For example

Agent A and Agent B are regular agents, and they are from two different sub-multi agent

groups. In general, they should not able to communicate with each other, but in order to

avoid collision, they have ability to contact each other when they are too close.

Supervisor agents have ability to communicate with other supervisor agents, and system

manager agent, but they are not allowed to have contacts with regular agents, which are

in different groups, except there are some well-defined exceptional situations. System

manager agent has the ability to get in touch with supervisor agents. For example, Table

2.2 and Figure 2.11 represent a global communication use case.

Use Case Agents A requests to work with Agents B who is from different

groups

Pre-condition Regular Agent A needs to work with Agent B, but they belong to

two different groups and their communications are limited.

Scenario Step Action

 1 Agent A reports “working with Agent B” request to its

own Supervisor Agent SA

 2 Supervisor Agent SA accepts Agent A‟s and negotiates

with Agent B‟s Supervisor Agent SB

 3 Supervisor Agent SB accepts Supervisor Agent SA‟s

request

 4 Supervisor Agent SA sends decided message to Agent A

30

 5 Supervisor Agent SB sends decided message to Agent B

Exception Step 3 Supervisor Agent SA and SB cannot make a decision

Exception Steps

3.1 Supervisor Agent SA and SB inform the

system manager agent the situation

3.2 System Manager Agent proposes a solution

and delegates it back to Supervisor Agents

SA and SB

Post-

condition

Agent A and Agent B will either have communication ability and

start to work together or perform other actions based on the

decision message

Table 0.2: Agents global communication

MAS

System
Manager

Agent

Sub-MAS 1

Supervisor
Agent SA

Agent A

Sub-MAS 2

Supervisor
Agent SB

Agent B

1

2

3.1 3.1

3.2 3.2

4 5

3

Figure 0.11: Agents global communication

31

2.6. Case Study

In Chapter 4, we will model a fault-tolerance property with CAT, and this property is

based on a robotic case study “Marsworld” [Fer99]. This case study describes a group of

agents (which are robot in this case) cooperation together to accomplish ore exploitation

goal on the Mars planet. Based on different rolls, agents are classified into three major

types: sentry agent, production agent, and carry agent. In order to match the design of

RASF and better illustrate our approach, we added two more types: system manager agent

and group supervisor agent. System manager agent directly receives commands from

earth and assigns the orders to different group supervisor agents. Group supervisor

agents will ask sentry agents start searching ore mine by the given location. The detailed

scenarios are described as following use cases (Table 2.3, 2.4, 2.5, and 2.6):

Use Case Detect and analyze ore mines

Description Sentry agents have a sensor to detect and analyze ore mines,

and they will inform production agents the valid ore location.

Goal Sentry agents detect and analyze ore mines successfully.

Actors Sentry agents

Pre-conditions Sentry Agents are functional.

Main Scenario 1. Group supervisor agent calls Sentry Agents for searching

and analyzing ore mines.

2. Sentry agents move around and looking for ores.

3. Sentry agents analyze found ores.

4. Sentry agents call Production Agent to produce ores which

are exploitable.

Post-condition Amount of ores is delivered to base station.

Table 0.3: Detect and analyze ore mines use case

32

Use Case Produce ore

Description Production agents start performing produce ores task after

receive messages from Sentry agents, and they will call carry

agents to transport the produced ore to home base.

Goal Production agents produce ore successfully.

Actors Production agents

Preconditions Sentry agents have detected ore mines and analyzed the mines

are exploitable.

Main Scenario 1. Production agents receive calls from sentry agents.

2. Production agents move to the mine location and start

producing ores.

Post-condition Amount of ores is produced by Production Agents.

Table 0.4: Produce ore use case

Use Case Delivery ore

Description Carry agents start performing delivery ores task after receive

calls from production agents, which contain the location and

amount of the ore mines.

Goal Carry agents delivery Ore successfully

Actors Carry agent

Pre-conditions Amount of ores is produced by production agents.

Main Scenario 1. Carry Agents receive calls from production agents.

2. Carry Agents move to the mine location and start delivery

33

ores to base.

Post-condition Amount of ores is delivered to base station.

Table 0.5: Delivery ore use case

Use Case Recover damaged carry agent

Description Carry agent “Carry1” is demanded, but the fault-tolerant

property [Fau11] enables the system won‟t be affected by the

failure.

Goal System continue operating properly

Actors Carry agents from the same group: “Carry1” and “Carry2”

The group supervisor agent: Supervisor

Pre-conditions Carry1 does not perform its tasks correctly

Main Scenario 1. Supervisor sends messages to Carry1 and asks it to restart

from its default stage

2. Carry1 reboots itself.

Exceptions 2. Carry1 doesn‟t have any reactions to Supervisor‟s message

2.1 Supervisor communicates with carry agent Carry2 in the

same group and asks Carry2 to take-over the duties of

Carry1.

Post-condition Carry1 is restarted, or take over by Carry2

Table 0.6: Recover damaged carry agent use case

34

Chapter 3: Modeling Multi-Agents System by

Category Theory

3.1. Introduction

In this chapter, we will introduce categorical modeling of multi-agent systems. We will

zoom into agent‟s structure, and represent its main concepts: plans, goals and beliefs, and

their relationships via category theory. At the end we will zoom out to the level of entire

multi-agent system, and represent it by using category theory constructs. The multi-agent

systems definition is taken from [Woo09] [Syc98] and [WJ95] adapted to the context of

Agent programming language: Jadex.

3.2. Representing Plans

Plans represent the agent‟s means to act on the requests initiated by other agents or from

its environment, and one single plan is abstracted as a sequence of actions. Therefore,

plans of an agent are collections of sequences of actions, which are performed in a

discrete time [Woo09]. This section provides category definitions of Action, Plan, PLAN,

Discrete-Time and their relations. Using these definitions, we will formalize agent‟s plans

by category theory, and capture the behavior and properties of agent‟s plans and actions.

3.2.1. Categorical Representation

We will define a category, which includes all the needed actions for an agent to perform

its plans as follow:

35

Definition 3.2.1 Action is a discrete category whose objects are “actions” denoted by

Act1, Act2…, and the only morphisms are identity morphisms.

In this thesis, “actions” are defined as an abstraction of agents‟ reaction to the

environment events. Figure 3.1 is an example of Action category, where the identity

morphisms are not displayed

Act1

Act2

Act3

Action

Figure 0.1: Representation of the Action category

Within an agent, a plan represents agent‟s behaviour, and we abstract a plan as a

category Plan defined as follows.

Definition 3.2.2 Plan is a category that represents one plan whose objects are “actions”

denoted by Act1, Act2… and morphisms are named “before” [OMG]. Morphism “before”

models the partial order between the actions. A sequence of actions can be understood as

a path in category theory [Mac71] [Pfa05] [PS07](see Chapter 2), and only paths of

length equal or less than one are considered as morphisms. Inside Plan, we define a

special object, denoted as ActNull (chapter 2). An ActNull means a null action, and it

doesn’t have any morphism from or to other actions. In this definition, ActNull is used for

catching exceptions (detailed example will be given latter).

Figure 3.2 shows a simple example (The identity morphisms are not displayed) with

actions: Act1 Act2 and Act3, and morphisms f: Act1 Act2 and g: Act2 Act3, which

models the timing dominance hierarchy: Act1 occurs earlier than Act2 and Act2 occurs

earlier than Act3. In the figure, <morphisms name> :: <type> indicates the type of the

morphism. For instance, morphisms f::before and g::before means f and g are of type

36

before. From the meaning of “before” (definition 3.2.2) there should exist a morphism

k::before such that k: Act1 Act3 meaning Act1 occurs earlier than Act3. In PATH

category (Chapter2), the morphisms f and g are “direct arrows” with sequences (paths) of

length one. The morphism k from Act1 to Act3 is not a “direct arrow” but a path (or

sequence) Act1 Act2 Act3 with length two. Based on definition 3.2.2, k will not be

shown within Plan category.

Act1

Act2

Act3

f

g

k

Act1

Act2

Act3

f

g

Plan

f and g :: before

ActNull

f, g and k :: before

Figure 0.2: Representation of the Plan category

More formally, suppose Act1 starts at time t1, Act2 starts at time t2, and Act3 starts at

time t3, where t1, t2 and t3 are integers. Morphism “before” indicates: t1 is less than t2, and

t2 is less than t3. There is a composition operation on morphisms, f::before Act1 Act2 and

g::before Act2 Act3 are morphisms, then g o f::before Act1 Act3, the composition of f

and g of type before is meaningful: Act1 is performed earlier than Act3. Plan satisfies

Associativity and Unit laws (see Chapter 2). Therefore, the validity of the category Plan is

proved.

Each Plan is built by a sequence of actions (actions can be repeated by having

morphism of type “before” to itself), and the sequence represents a plan. So we say a

Plan stands for one plan of an agent. The first action of the sequence, named trigger

action, represents the action of receiving “trigger event messages”. The received

messages can be sent from internal or external source. Internal messages are those sent

37

from the owner of the plan, and external messages are those sent from other agents or the

environment. So when we say a plan is started, we mean the trigger action of this plan

has been performed.

Within an agent, we need a category to abstract all the plans and their partial orders. We

call this category PLAN and we define it as follows.

Definition 3.2.3 PLAN is a category whose objects are plans denoted by Plan1, Plan2…

and morphisms are “before” [OMG], which model the partial order between plans. This

partial order can be understood as a path in category theory [Mac71] [Pfa05] [PS07]

(see Chapter2), and only paths of length equal or less than one are considered as

validated morphisms. Inside PLAN, we define a special object, called PlanNull. A PlanNull

means a null object, and it doesn’t have any morphism from or to other plans.

In this definition, PlanNull is used for catching exceptions. Figure 3.3 depicts an

example of PLAN, morphisms m::before: Plan1 → Plan2 and n::before: Plan2 → Plan3

stand for Plan1 is triggered earlier than Plan2, and Plan2 is triggered earlier than Plan3.

Similar to “Plan category” (Figure 2.2), any “non-direct arrows” or paths with length

greater than one are not included in PLAN. Suppose Plan1 is trigged at time t4, Plan2 is

trigged at time t5 and Plan3 is trigged at time t6, where t4, t5 and t6 are integers, then we

have t4 is less than t5, and t5 is less than t6.

PLAN

Plan1

Plan2

Plan3

m and n :: “before”

m
n

PlanNull

Figure 0.3: Representation of the PLAN category

38

There is a composition operation on morphisms: from m::before: Plan1 Plan2 and

n::before: Plan2→Plan3, we have morphism n o m::before: plan1 plan3. The

composition of m and n is meaningful as if captures the fact that Plan1 is triggered earlier

than Plan3. PLAN satisfies Associativity and Unit laws (see Chapter 2). Therefore, the

validity of the category PLAN is proved.

We will abstract the relations between categories: Action, Plan and PLAN as functors:

sequence _action, refined _by _plan, and self _PLAN.

Definition 3.2.4 sequence _action is a functor from Action (the category of isolated

actions) to Plan (the category of sequenced actions). It provides a rule mapping all the

“actions” of Action to “actions” of Plan, and all the identity morphisms of Action to

identity morphisms of Plan.

Definition 3.2.5 refined _by _plan is a functor from Plan to PLAN (the category of

plans). The functor “refined _by _plan” means actions in Plan are used to complete or

build plans in PLAN. It provides a rule that maps all the “actions” of Plan to “plans” of

PLAN, and all the morphisms (include identity) of Plan to identity morphisms of PLAN.

Figure 3.4 illustrates the defined categories: Action, Plan and PLAN, and functors F,

G:: sequence _action and P, Q:: refined _by _plan. Note that, one agent has one Action,

one PLAN and at least one Plan categories. Identity morphisms are not displayed in the

figure.

39

Act1

Act2

Act3

Action

F

G

P

Q

F and G: sequence _action

P and Q: refined _by _plan

Act1

Act2

Act3

b

PlanA

a and b ::“before”

a

ActNull

Act4 Act3

PlanB

c ::“before”

c

ActNull

Act4

PLAN

Plan1
Plan2

u ::“before”

u

PlanNull

Figure 0.4: Representation of the sequence _action and refined _by _plan functors

Functor F:: sequence _action provides a rule that maps objects: Act1, Act2, Act3 and

Act4 of Action to objects Act1, Act2, Act3 and ActNull of PlanA; functor G:: sequence

_action maps objects: Act4, Act3, Act2 and Act3 of Action to objects Act4, Act3, and ActNull

of PlanB.

Functor P:: refined _by _plan provides a rule that maps objects: Act1, Act2 and Act3

of PlanA to object Plan1 of PLAN and morphisms: a, b and identity of PlanA to Plan1‟s

identity morphism (idplan1) of PLAN; Q:: refined _by _plan maps objects: Act4 and Act3

of PlanB to object Plan2 of PLAN and morphisms: c and identity of PlanB to Plan2‟s

identity morphism (idplan2) of PLAN.

Definition 3.2.6 self _PLAN is a functor from PLAN to itself (within the same agent),

which maps plans (objects) of PLAN to plans (objects) of PLAN, and transforms

morphisms of PLAN to morphisms of PLAN.

Since agent‟s beliefs are dynamic and changeable, pre-conditions for plans can be

various. Some plans may not be achievable anymore after their pre-conditions are

changed. We suppose PLAN’ is the new category after PLAN is translated by self

40

_PLAN functor. The functor maps achievable plans in PLAN to plans in PLAN’; maps

non-achievable plans in PLAN to PlanNull in PLAN’; maps PlanNull in PLAN to PlanNull

in PLAN’; maps morphisms “before” from achievable plans to achievable plans in PLAN

to morphisms “before” in PLAN’; maps morphisms “before” from achievable plans to

non-achievable plans, or non-achievable plans to achievable plans, or non-achievable

plans to non-achievable plans in PLAN to identity morphism of PlanNull in PLAN’.

Additionally, if the non-achievable plan is between two achievable plans, a new

morphism (“before”) will be created to link these achievable plans in PLAN’.

Definition 3.2.7 Discrete-Time is a category whose objects are abstracting time unit

represented as integers and morphisms are of type “less than” denoted as “<”.

Definition 3.2.8 timing _action is a functor from Plan to Discrete-Time, which maps

objects (actions) of Plan to objects (time unit expressed as integers) of Discrete-Time,

and maps morphisms of Plan (before) to morphisms “(<)” of Discrete-Time.

Definition 3.2.9 timing _plan is a functor from PLAN to Discrete-Time, which maps

objects (plans) of PLAN to objects (time unit expressed as integers) of Discrete-Time,

and maps morphisms of PLAN (before) to morphisms “(<)” of Discrete-Time.

3.2.2. Illustration

The following figures show examples of representing the categories defined above.

Figure 3.5 illustrates the definitions: 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.7, 3.2.8, and 3.2.9,

and Figure 3.6 illustrates the definition 3.2.6.

Figure 3.5 depicts a view of the categories Action, PlanA, PlanB, PLAN, Discrete-Time,

and their relations (functors): sequence _action, refined _by _plan, timing _action and

timing _plan.

41

Act1

Act2

Act3

Action F
G

P

F and G:: sequence _action

P and Q:: refined _by _plan

X and Y:: timing _action

Z:: timing _plan

PLAN
Plan1

Plan2

u ::“before”

u
PlanNull

Act1

Act2

Act3

b

PlanA

a and b ::“before”

a

ActNull

Act4 Act3

PlanB

c ::“before”

c

ActNull Act4

Discrete-Time

time1

time3

 time4

time2
m

n

o

p

m, n, o and p ::“< ”X

Z

Y

Q

time5

Figure 0.5: Illustration for Plan, PLAN and Discrete-Time example

Action, PlanA, PlanB, PLAN, sequence _action, and refined _by _plan have been

described in Figure 3.4. Discrete-Time includes objects: time1, time2, time3, time4 and

time5, and morphisms: m, n, o, and p are of type “<”. Functor timing _action gives a rule

of mapping objects: Act1, Act2 and Act3 of PlanA to objects: time1, time2 and time3 of

Discrete-Time, and mapping morphisms: a and b of PlanA to morphisms: m and n of

Discrete-Time. Similar to PlanA with functor TA, PlanB‟s objects and morphism: Act4,

Act3 and c can be mapped to time4, time3 and p in Discrete-Time. Functor timing _plan

gives a rule of mapping objects: Plan1 and Plan2 of PLAN to objects: time1 and time4 of

Discrete-Time, and mapping morphism: u of PLAN to morphism: o of Discrete-Time.

 “sequence _action” representation (F and G)

F (Act1) = PlanA. Act1

F (Act2) = PlanA. Act2

F (Act3) = PlanA. Act3

42

G (Act4) = PlanB. Act4

G (Act3) = PlanB. Act3

 “refined _by _plan” representation (P and Q)

P (PlanA. Act1) = plan1

P (PlanA. Act2) = plan2

P (PlanA. Act3) = plan2

P (< a >) = < id plan1 >

P (< b >) = < id plan1 >

Q (PlanB. Act4) = plan2

Q (PlanB. Act3) = plan2

Q (< c >) = < id plan2 >

The above illustration shows that Act1, Act2 and Act3 form a sequence of actions of

plan1, and Act4 and Act3 form a sequence of actions in plan2. Act1 and Act4 are the trigger

actions (definition 3.2.2) of plan1 and plan2. Morphisms “a, b and c” indicate that Act1

occurs earlier than Act2, Act2 occurs earlier than Act3, and Act4 occurs earlier than Act3.

They are mapped to identity morphisms for plan1 and plan2.

 “timing _action” representation (X and Y)

X (PlanA. Act1) = time1

X (PlanA. Act2) = time2

X (PlanA. Act3) = time3

X (< a >) = < m >

X (< b >) = < n >

Y (PlanB. Act4) = time4

43

Y (PlanB. Act3) = time5

Y (< c >) = < p >

The above illustration shows that in PlanA, Act1 is performed at time time1, Act2 is

time2, and Act3 is time3, and PlanA‟s morphisms “m and n” indicate that time1 is less than

time2 and time2 is less than time3. In PlanB, Act4 and Act3 are respectively performed at

time time4 and time5, and PlanB‟s morphism “p” indicates that time4 is less than time5.

Relation “less than” is denoted by “<” in Discrete-Time.

 “timing _plan” representation (Z)

Z (plan1) = time1

Z (plan2) = time4

Z (< u >) = < o >

The above illustration shows that plan1 is triggered at time1, and plan2 is triggered at

time4. In Figure 3.6, there are categories PLAN and PLAN’, and a functor “self _PLAN”.

PLAN represents agent‟s default plans and their relations; PLAN’ represents the same

agent‟s plans and their relations after one un-achievable plan has been removed. Functor

“self _PLAN” provides a way of updating PLAN‟s objects and morphisms to PLAN’.

PLAN’

Plan1

Plan2

m ::“before”

m

PlanNull

PLAN

Plan1

Plan2

Plan3

m and n ::“before”

m
n

PlanNull

SP

SP:: self _PLAN

Figure 0.6: Self-update of PLAN

44

PLAN includes objects: Plan1, Plan2, Plan3 and PlanNull, and morphisms “m and n”.

PLAN’ contains objects: Plan1, Plan2 and PlanNull, and morphism “m” from plan1 to

Plan2.

 “self _PLAN” representation (SP):

SP (Plan1) = Plan1

SP (Plan2) = Plan2

SP (Plan3) = PlanNull

SP (PlanNull) = PlanNull

SP (< m >) = < m >

SP (< n >) = < idPlanNull >

The above example shows that Plan3 is not achievable anymore for some reasons,

such as agent‟s beliefs are changed. Functor self _PLAN provides agent‟s PLAN a way to

self-updating (removing un-achievable plans). It keeps objects: Plan1, Plan2 and PlanNull

in PLAN’, and maps the non-achievable plan Plan3 to PlanNull in PLAN’. It keeps

morphism “m” between achievable plans Plan1 → Plan2, from PLAN to PLAN’, and

maps morphism “n” from an achievable plan to a non-achievable plan: Plan2 → Plan3 to

PlanNull identity morphism of PLAN’.

3.2.3. Properties

The category modeling in this section captures some important properties of multi-agent

systems such as action sequentiality and plan self-updating.

Functor timing _action is a structure-preserving mapping of the actions. Their

sequential order relations (which are captured by the morphism “before”) in Plan can be

mapped into the time objects and their relations “<” in Discrete-Time. Functor timing

45

_plan is a structure-preserving mapping of the plans. Their sequential order (captured by

the morphism “before”) in PLAN can be mapped into the time objects and their relations

“<” in Discrete-Time. With this property, we are able to prove that a plan starts at the

same time that its first action (triggering action) is performed, and all the following

actions of this plan occur later in time. Let us take the example in Figure 3.5:

Z (plan1) = Z (P (PlanA. Act1)) = X ((PlanA.Act1))

Z (plan2) = Z (Q (PlanB.Act4)) = Y ((PlanB.Act4))

Z (plan1) < X ((PlanA. Act2))

Z (plan1) < X ((PlanA. Act3))

Z (plan1) < Y ((PlanB. Act3))

Functor self _PLAN gives an agent the ability to update its plans, and provides a way

for PLAN to remove its un-achievable plans. As mentioned earlier, plans may not be

achievable anymore if their pre-conditions are changed. The achievable plans will be kept

as plans in agent‟s PLAN’, and the non-achievable ones will be thrown to the exception

catcher, the PlanNull in PLAN’.

Using category theory, the properties are verified by construction of categories Action

Plan, PLAN and Discrete-Time, and functors: sequence _action, refined _by _plan,

timing _action, timing _plan and self _PLAN.

3.3. Representing Goals

Goals make up the agent‟s motivational stance and are the driving forces for its actions.

Therefore, the representation and handing of goals is one of the main features of agents.

In fact, each agent has a set of goals which are dispatched by plans [PB07]. This section

46

provides categorical definitions for “GOAL” and “Dependencys”, and their relations.

With these definitions, we are able to formalize agent‟s goals and classify them in

different levels of priority.

3.3.1. Categorical Representation

Definition 3.3.1 GOAL is a category whose objects are goals and morphisms are

“depends”. The definition of “depends” can be the domain of this morphism has higher

or the same priority level than the co-domain. Inside every GOAL, there is a special goal,

denoted by GoalNull. A GoalNull stands for an empty object with no morphism from or to

other goals.

GOAL

Goal1

Goal2

Goal3

f and g ::“depends”

f
g

GoalNull

Figure 0.7: Representation of the GOAL category

GoalNull is used to capture exceptions. Figure 3.7 is an example of GOAL,

morphisms: f: goal1 goal2 and g: goal2 goal3 mean goal1 has higher or the same

priority level than goal2, and goal2 has higher or the same priority level than goal3.

Morphism g o f: goal1 goal3, the composition of f and g has a correct meaning: goal1 has

higher or the same priority level than goal3. Thus, GOAL satisfies Associativity and Unit

laws (see Chapter 2). Therefore, the validity of the category GOAL is proved.

Definition 3.3.2 Dependency is a category whose objects are integers such as “1”, “0”,

“-1” and “unsigned”, and morphisms are bigger or equal to, denoted as “≥”. Object

“unsigned” doesn’t have any relations (morphisms) with other objects.

47

Dependency

intA

a, b, c, d and e ::“≥ ”

a
b

e

d c

Unsigned

intB

intC

Figure 0.8: Representation of the Dependency category

Figure 3.8 illustrates an example of Dependency, which includes objects: “1, 0, -1, and

unsigned” and morphisms: “a, b, c, d and e”. The composition of morphisms is

meaningful, for example e o d:: “≥”: 1 -1, the composition of f and g means that 1 is

“≥” than -1. Dependency satisfies Associativity and Unit laws, from which the validity of

the category Dependency follows.

Dependency category is used to set up the order of importance or urgency of different

goals. Goals are depended by other goals need to be performed earlier.

Definition 3.3.3 assigned _dependency is a functor from GOAL to Dependency. Functor

“assigned _dependency” models the fact that objects (goals) in GOAL can be assigned

to corresponding order in Dependency. And the morphisms in GOAL can be mapped to

morphisms (“≥”) in category Dependency.

AP

Priority

1

0

-1

a, b, c, d and e :: “≥ ”

a
b

e

d c

Unsigned

GOAL

Goal1

Goal2

Goal3

f and g :: “depends”

f
g

GoalNull

Figure 0.9: Representation of the assigned _depends functor

48

Figure 3.9 depicts an example of assigned _dependency, which provides a rule

mapping all the objects (Goal1, Goal2, Goal3, and GoalNull) of GOAL to objects (1, 0, 0

and unsigned) of Dependency, and also mapping all the morphisms (f and g) of GOAL to

morphisms (d and b) of Dependency.

Definition 3.3.4 self _GOAL is a functor from GOAL to itself (similar to self _PLAN).

Since agent‟s beliefs are dynamic and changeable, based on different beliefs, some goals

may not be achievable any more. We suppose GOAL’ is the new category after GOAL is

translated by this functor. The functor maps achievable goals in GOAL to goals in

GOAL’; maps non-achievable goals in GOAL to GoalNull in GOAL’; maps GoalNull in

GOAL to GoalNull in GOAL’; maps morphisms “higher _ dependency” from achievable

goal to achievable goal in GOAL to morphisms “higher _ dependency” in GOAL’; maps

morphisms “higher _ dependency” from achievable goal to non-achievable goal, or non-

achievable goal to achievable goal, or non-achievable goal to non-achievable goal in

GOAL to identity morphism of GoalNull in GOAL’. Additionally, if the non-achievable

goal is between two achievable goals, a new morphism (“higher _ dependency”) will be

created to link these achievable goals in GOAL’.

3.3.2. Illustration

In this section, we will give some examples of representing the above defined categories.

Figure 3.9 illustrates the Definitions: 3.3.1, 3.3.2, and 3.3.3, and Figure 3.10 illustrates

the Definition 3.3.4.

In Figure 3.9 there are two categories GOAL and Dependency, and one functor “assigned

_ dependency”. GOAL has objects: Goal1, Goal2, Goal3, and GoalNull, and morphisms: f

49

and g. Dependency contains objects: 1, 0, -1 and unsigned, and morphisms: a, b, c, d, and

e.

 “assigned _ dependency” representation (AD)

AD (Goal1) = 1

AD (Goal2) = 0

AD (Goal3) = 0

AD (GoalNull) = unsigned

AD (< f >) = < d >

AD (<g>) = < b >

The above illustration encodes the following information: Goal1 depends on Goal2

and Goal2 depends on Goal3, GoalNull is unknown (object “unsigned”). The morphisms f

indicates that Goal1‟s priority level in Dependency is bigger than Goal2‟s, and Goal2„s

priority level in Dependency is equal to Goal3‟s.

In Figure 3.10, there are two categories GOAL and GOAL’, and a functor “self _GOAL”.

GOAL has objects: Goal1, Goal2, Goal3 and GoalNull, and morphisms f: Goal1 → Goal2,

and g: Goal2 → Goal3. GOAL’ contains objects: Goal1, Goal2 and GoalNull, and

morphisms f: Goal1 → Goal2.

GOAL’

Goal1

Goal2

f :: “depends”

f

GoalNull

GOAL

Goal1

Goal2

Goal3

f and g ::“depends”

f
g

GoalNull

self _GOAL

(SG)

Figure 0.10: Self-update of GOAL

50

 “self _GOAL” representation (SG):

SG (Goal1) = Goal1

SG (Goal2) = Goal2

SG (Goal3) = GoalNull

SG (GoalNull) = GoalNull

SG (< f >) = < f >

SG (< g >) = < idGoalNull >

The above example shows that Goal3 cannot be achieved anymore for some reasons,

such as agent‟s beliefs are changed. Functor self _GOAL provides a rule to remove the

unachievable goal; it keeps achievable goals: Goal1 and Goal2 in GOAL’, and maps the

non-achievable goal Goal3 to GoalNull in GOAL’. It also maps the morphism “f” between

achievable goals: goal1 → goal2 to the same morphism in GOAL’, and morphism “g”

from achievable goal to non-achievable goal: goal2 → goal3 to GoalNull‟s identity

morphism in GOAL’.

3.3.3. Properties

The category modeling in this section captures some important properties of multi-agent

systems such as goal dependency and goal self-updating.

Goals can be classified into different levels of dependency by categories GOAL and

Dependency and their functor assigned _ dependency. Each goal has one corresponding

level of dependency, which is denoted by Dependency objects: “1”, “0”, “-1” or

“unsigned”. Goals are depended by others should start first.

Functor self _GOAL gives the agent an ability to update its goals. It provides a way

for GOAL to re-define (remove) its unachievable goals. As mentioned earlier in this

51

section, goals may not be achievable anymore for some reasons, such as environments

are changed. The achievable goals will be kept as the same goals in agent‟s GOAL’ and

the unachievable goals will be trapped into GoalNull in GOAL’.

Using category theory, the properties are verified by construction of categories GOAL

and Dependency, and functors assigned _ dependency and self _GOAL.

3.4. Representing Beliefs

Beliefs represent agent‟s knowledge or information about environment and itself. Beliefs

are built from different information called facts, which are organized into different sets

denoted as fact sets. This section provides definitions for “BELIEF” and “FactSet”

categories, and their relations. With these definitions, we are able to formalize agent‟s

beliefs and guarantee they are consistent within a single agent and in a group of agents

(i.e. the system).

3.4.1. Categorical Representation

Definition 3.4.1 FactSet is a discrete category where objects are “facts” and the only

morphisms are identity morphisms. The facts are information or knowledge about the

agent’s environments and system. Based on different usage, facts are classified into

different FactSet categories. Two special FactSets categories need to be introduced:

FactSetBase and FactSetNull. FactSetBase includes all the facts every other FactSet has, and

FactSetNull contains no facts at all or it‟s an empty set (see Figure 3.11 as an example).

Inside FactSet (includes FactSetBase, except FactSetNull), we define a special object,

denoted as FactNull. FactNull is a null fact, which doesn‟t have morphisms. It is used for

catching exceptions (see Figure 3.13).

52

FactSet1

Apple Banana

Orange

FactSet2

Red Yellow

GreenBlue
FactSetBase

Red

Yellow

Green

Blue

Apple
Banana

Orange FactNull

FactNull

FactNull

FactSetNull

Figure 0.11: Representation of the FactSet category

Definition 3.4.2 BELIEF is a category of Sets [Mac71], whose objects are categories

FactSets (one FactSetBase and one FactSetNull are included as default), and the

morphisms are “subset _of”. Any FactSet is a subset of FactSetBase, and more formally,

every fact within FactSet can be found in FactSetBase. Similarly, FactSetNull has “subset

_of” relations to every FactSet. Using the definitions of initial and terminal objects

[Mac71], NullSet is the initial object and BaseSet is the terminal object in BELIEF.

BELIEF

FactSet1

FactSet2

FactSet3

FactSetBase

FactSetNull

u v w

x y z

 u, v, w, x, y, and z ::“subset _of”

Figure 0.12: Representation of the BELIEF category

The BELIEF represents an Eiffel‟s inheritance structure, for example, in Figure 3.12

BELIEF has objects: FactSet1, FactSet2 and FactSet3 also FactSetBase and FactSetNull as

default. It has morphisms u: FactSet1 FactSetBase, v: FactSet2 FactSetBase, w:

FactSet3 FactSetBase, x: FactSetNull FactSet1, y: FactSetNull FactSet2 and z:

53

FactSetNull FactSet3. This structure guarantees data‟s consistence because one agent

has only one FactSetBase, and all other fact sets are subset of FactSetBase.

Definition 3.4.3 self _FactSet (SF) is a functor from FactSet to itself. Since agent‟s

beliefs‟ facts are dynamic and changeable, some facts may not be true or exist anymore.

We suppose FactSet’ is the new category after FactSet is translated by this functor. The

functor maps non-changed facts in FactSet to facts in FactSet’; maps useless facts in

FactSet to FactNull in FactSet’; and maps FactNull in FactSet to FactNull in FactSet’.

Definition 3.4.4 self _BELIEF (SB) is a functor from BELIEF to itself. Since agent‟s

fact sets are dynamic and changeable, some FactSets may need to be deleted. We suppose

BELIEF’ is the new category after BELIEF is translated by this functor. The functor

maps non-changed FactSets in BELIEF to FactSets in BELIEF’; maps useless FactSets

in BELIEF to NullSet in BELIEF’; maps FactSetNull in BELIEF to FactSetNull in

BELIEF’; maps FactSetBase in BELIEF to FactSetBase in BELIEF’; keeps morphisms

from non-changed FactSets to FactSetBase in BELIEF as in BELIEF’; keeps morphisms

from FactSetNull to non-changed in BELIEF as in BELIEF’; maps morphisms related to

useless FactSets in BELIEF to identity morphism of FactSetNull in BELIEF’.

3.4.2. Illustration

In the following, we show examples of representing the defined category. Figure 3.13

illustrates Definitions: 3.4.1 and 3.4.3, and Figure 3.14 illustrates Definitions: 3.4.2 and

3.4.4.

Figure 3.13 is an example of updating FactSet2 to FactSet2’. FactSet2 includes

objects: Red, Yellow, Blue, Green and FactNull. FactSet2’ contains objects: Red, Yellow,

Blue and FactNull.

54

FactSet2

Red Yellow

GreenBlue

FactNull

FactSet2’

Red Yellow

Blue

FactNull

SF: self _FactSet

SF

Figure 0.13: Self-update of FactSet

 “self _FactSet” representation (SF):

SF (Red) = Red

SF (Yellow) = Yellow

SF (Blue) = Blue

SF (Green) = FactNull

SF (FactNull) = FactNull

The above example shows that Green will not be considered as a fact of FactSet2.

Functor SF (self _FactSet) provides a way to self-updating (removing useless fact). It

keeps objects (facts): Red, Yellow, Blue and FactNull, and moves the useless facts Green

to FactNull in FactSet2’.

In Figure 3.14, there are two categories BELIEF and BELIEF’, and a functor “self

_BELIEF”. BELIEF has objects: FactSet1, FactSet2, FactSet3, FactSetBase and

FactSetNull, and morphisms u: FactSet1 FactSetBase, v: FactSet2 FactSetBase, w:

FactSet3 FactSetBase, x: FactSetNull FactSet1, y: FactSetNull FactSet2 and z:

FactSetNull FactSet3. BELIEF’ contains four objects: FactSet1, FactSet3, FactSetBase

and FactSetNull, and morphisms u: FactSet1 FactSetBase, w: FactSet3 FactSetBase, x:

FactSetNull FactSet1, and z: FactSetNull FactSet3.

55

BELIEF

FactSet1

FactSet2

FactSet3

FactSetBase

FactSetNull

u v w

x y z

 u, v, w, x, y, and z :: “subset _of”

BELIEF’

FactSet1 FactSet3

FactSetBase

FactSetNull

u w

x z

 u, v, x, and z :: “subset _of”

SB: self _BELIEF

SB

Figure 0.14: Self-update of BELIEF

 “self _BELIEF” representation (SB):

SB (FactSet1) = FactSet1

SB (FactSet2) = FactSetNull

SB (FactSet3) = FactSet3

SB (FactSetBase) = FactSetBase

SB (FactSetNull) = FactSetNull

SB (< u >) = < u >

SB (< w >) = < w >

SB (< x >) = < x >

SB (< z >) = < z >

SB (<v >) = < idFactSetNull >

SB (< y >) = < idFactSetNull >

The above example shows that FactSet3 will not be used anymore for some reasons,

such as agent‟s beliefs are changed. Functor self _BELIEF provides the agent a way to

self-updating (removing) FactSet3; it keeps useable factSets as they are: FactSet1 and

56

FactSet3, and maps the useless factSets FactSet2 to FactSetNull in BELIEF’. It also keeps

morphisms u: FactSet1 → FactSetBase, w: FactSet3 → FactSetBase, x: FactSetNull →

FactSet1, and z: FactSetNull → FactSet3 as they are from BELIEF to BELIEF’, and maps

morphisms v: FactSet2 → FactSetBase and y: FactSetNull → FactSet2 to PlanNull identity

morphism of BELIEF’.

3.4.3. Properties

The category modeling in this section captures some of the important properties of multi-

agent systems such as data-consistency and belief self-updating.

The category structure BELIEF shows that every FactSet in the same BELIEF must

have a subset relationship to FactSetBase, which is the terminal object of BELIEF. Based

on the definitions of terminal object in category (Chapter 2), all the elements (facts)

within each object (FactSet) should be found in FactSetBase of the same BELIEF, and any

change of data will cause the same change to BaseFact and related FactSet(s).

Functor self _FactSet gives an agent the ability to update its facts, and provides a way

for FactSet to re-define its facts. As we have mentioned above, facts may become not

usable anymore given that the environments are changed. These usable facts will be kept

as in agent‟s FactSet, and the non-usable facts will be mapped into to the FactNull in

FactSet.

Functor self _BELIEF gives an agent the ability to update its factSets, and provides a

way for BELIEF to re-define its factSets. As we have mentioned above, factSet may

become not usable anymore. These usable factSets will be kept as in agent‟s BELIEF,

and the non-usable factSets will be mapped into to the FactSetNull in BELEF.

57

Using category theory, the properties are verified by construction of categories

FactSet, BELIEF and functors self _FactSet and self _BELIEF.

3.5. Representing Agents

3.5.1. Introduction

An agent is a computer system that is situated in an environment, and designed to

perform autonomous actions in this environment in order to meet its objectives [WJ95].

In this section, we will introduce some definitions, which will be used to represent agent

by category theory. PLAN, GOAL and BELIEF are categories as defined in Sections 3.2,

3.3 and 3.4, and the objective of this section is to relate them together.

3.5.2. Categorical Representation of Plan and Goal

Goals represent the concrete motivations that influence an agent‟s behavior. The concrete

actions an agent may carry out to reach its goals are described in plans. A plan is a

procedural recipe describing the actions to take in order to achieve a goal. In BDI systems,

each plan must dispatch a goal, but the goal can be a null object. Basically, in an agent,

the plans have to dispatch relevant goals.

Definition 3.5.1 plan _goal (PG) is a functor from PLAN (definition 3.2.3) to GOAL

(definition 3.3.1). The functor “plan _goal” captures the fact that every plan from PLAN

category dispatches a goal from GOAL category. Every object (Plan) in PLAN can be

mapped to one object (Goal) in GOAL, and morphisms “before” in PLAN can be

mapped to morphisms “depends” in GOAL.

The plan _goal functor grantees that: one plan can only dispatch one corresponding

goal, and different plans can dispatch a same goal.

58

3.5.3. Illustration of Plan and Goal

Figure 3.15 illustrates the above category definitions. Two categories: PLAN and GOAL,

and one functor: “plan _goal” are represented. PLAN has five objects: Plan1, Plan2,

Plan3 Plan4 and PlanNull, and morphisms a: Plan1 → Plan2, b: Plan4 → Plan2, and c:

Plan2 → Plan3. GOAL has four objects: Goal1, Goal2, Goal3 and GoalNull, and morphisms

g: Goal1 → Goal2 and k: Goal2 → Goal3.

PLAN

Plan1

Plan2

Plan3

a, b and c :: “before”

a

c

PlanNull

Plan4

b

GOAL

Goal1

Goal2
Goal3

g and k :: “depends”

GoalNull

g

k

PG

(plan _goal)

Figure 0.15: Functor plan _goal from PLAN to GOAL

 “plan _goal” representation (PG)

PG (Plan1) = Goal1

PG (Plan2) = Goal2

PG (Plan3) = Goal3

PG (Plan4) = Goal1

PG (PlanNull) = GoalNull

PG (< a >) = < g >

PG (< b >) = < g >

PG (c >) = < k >

This illustration shows PLAN’s objects: Plan1 and Plan4 are mapped to the same goal

Goal1 of GOAL, Plan2, Plan3 and PlanNull are mapped to goals Goal2, Goal3 and GoalNull

of GOAL. It also shows PLAN’s morphisms: a and b are mapped to the same morphism x

59

of GOAL, c is mapped to morphism y of GOAL. From this example, we can see that

functor plan _goal represents higher priority goal‟s plan (such as Goal1 and Plan1) must

be performed earlier than lower priority goal‟s plan (such as Goal2 and Plan2).

3.5.4. Categorical Representation of Plan and Belief

Beliefs represent the agent‟s knowledge about its environment and itself. They are stored

in a belief category, and can be accessed and modified from agent‟s plans through some

fact set interface. Beliefs and plans have been defined as BELIEF and PLAN categories,

and this section we will introduce a functor to communicate them together.

Definition 3.5.2 plan _belief (PB) is a functor from PLAN (definition 3.2.3) to BELIEF

(definition 3.4.2). The functor “plan _belief” means agent plans have access to read or

write facts from agent’s BELIEF.

Suppose there are categories PLAN and BELIEF, and a “plan _belief” functor PB:

PLAN BELIEF, then every “plan” in PLAN can be mapped to one “FactSet” (can be

FactSetBase or FactSetNull) in BELIEF, and all the morphisms in PLAN are mapped to

identity morphism of FactSetNull in BELIEF.

In conclusion, “plan _belief” functor formalizes the communication from plans to

beliefs. Through this functor, we are able to read and write facts in the agent plans from

its belief‟s factSet.

3.5.5. Illustration of Plan and Belief

This section illustrates the above category definitions. In Figure 3.16 there are two

categories: PLAN and BELIEF, and one functor: “plan _belief”. PLAN has objects:

Plan1, Plan2, Plan3, Plan4 and PlanNull, and morphisms a: Plan1 → Plan2, b: Plan4 →

Plan2, and c: Plan2 → Plan3. BELIEF has objects: FactSet1, FactSet2, FactSet3,

60

FactSetBase and FactSetNull, and morphisms u: FactSet1 FactSetBase, v: FactSet2

FactSetBase, w: FactSet3 FactSetBase, x: FactSetNull FactSet1, y: FactSetNull FactSet2,

z: FactSetNull FactSet3, m: FactSet4 FactSetBase, n: FactSet5 FactSetBase, o:

FactSetNull FactSet4 and p: FactSetNull FactSet5.

PLAN

Plan1

Plan2

Plan3

a, b and c :: “before”

a

c

PlanNull

Plan4

b

BELIEF

FactSet1 FactSet2 FactSet3

FactSetBase

FactSetNull

u
v

w

x

y

z

PB

plan _belief

FactSet4 FactSet5

m n

o p

 u, v, w, x, y, z, m, n, o and p :: “subset _of”

Figure 0.16: Functor plan _belief from PLAN to BELIEF

 “plan _belief” representation (PB)

PB (Plan1) = FactSet1

PB (Plan2) = FactSet2

PB (Plan3) = FactSetBase

PB (Plan4) = FactSet3

PB (PlanNull) = FactSetNull

PB (< a >) = < idFactSetNull >

PB (< b >) = < idFactSetNull >

PB (< c >) = < idFactSetNull >

With functor “plan _belief” plans are able to access factSets, which are defined as

categories containing information or knowledge of the agent‟s environment. By using

category, the property “one plan can only access to one factset” can be captured.

3.5.6. Categorical Representation of Goal and Belief

61

Beliefs represent the agent‟s knowledge about its environment and itself. They are stored

in a belief base set, and can be accessed from goals by using some fact set interface.

Beliefs can be read as pre-conditions by goals, so that the agent is able to justify if the

goal is achievable or not. Goals and fact set have been defined as GOAL and BELIEF as

categories, and this section will introduce a functor to communicate them together.

Definition 3.5.3 goal _belief (GB) is a functor from GOAL (Definition 3.3.1) to BELIEF

(definition 3.4.2). It means every goal has an access to read facts or knowledge from

agent beliefs. If there are categories GOAL and BELIEF, and a “goal _belief” functor

GB: GOAL → BELIEF, then every object “Goal” in GOAL will be mapped to an object

“FactSet” in BELIEF, and morphisms “depends” in GOAL will be mapped to identity

morphism of FactSetNull in BELIEF. The “goal _belief” functor formalizes the

communication from goals to beliefs. Through this functor, goals are able to read data

from beliefs and justify if they are able to be accomplished.

3.5.7. Illustration of Goal and Belief

In the following, we show examples of representing the above defined category

definitions. In Figure 3.17 there are two categories: GOAL and BELIEF, and functors:

“goal _belief”. GOAL has three objects: Goal1, Goal2 and Goal3, and morphisms k: Goal1

→ Goal2 and g: Goal2 → Goal3. BELIEF has objects: FactSet1, FactSet2, FactSet3,

FactSetBase and FactSetNull, and morphisms u: FactSet1 FactSetBase, v: FactSet2

FactSetBase, w: FactSet3 FactSetBase, x: FactSetNull FactSet1, y: FactSetNull FactSet2,

z: FactSetNull FactSet3, m: FactSet4 FactSetBase, n: FactSet5 FactSetBase, o:

FactSetNull FactSet4 and p: FactSetNull FactSet5.

62

GOAL

Goal1

Goal2
Goal3

k and g :: “depends”

GoalNull

k

g

GB

goal _belief

BELIEF

FactSet1 FactSet2 FactSet3

FactSetBase

FactSetNull

u
v

w

x

y

z

 u, v, w, x, y, z, m, n, o and p :: “subset _of”

FactSet4 FactSet5

m n

o p

Figure 0.17: Functor goal _belief from GOAL to BELIEF

 “goal _belief” representation (GB)

GB (Goal1) = FactSet5

GB (Goal2) = FactSet2

GB (Goal3) = FactSet4

GB (< k >) = < idFactSetNull >

GB (< g >) = < idFactSetNull >

GOAL and BELIEF are communicating using functor “goal _belief”. Goals are able

to access to belief‟s factSets, which are defined as categories containing information or

knowledge of the agent‟s environment. After having access to their corresponding

factSets, goals will update themselves to achievable or non-achievable through “self

_GOAL” functor. By using category, the property “one goal can only access to one factset”

can be captured.

3.5.8. Plan, Goal and Belief Together

The definitions of functors “plan _goal” “plan _belief” and “goal _belief” have been

given on the previous sections, and these functors make plans, goals and beliefs

communicate.

63

Agent in Category Representation:

An agent can be represented by categories: Action, Plan, PLAN, GOAL, BELIEF and

FactSet, and functors: “plan _goal” “plan _belief” “goal _belief”, “refined _by _plan”

and “sequence _action”.

Action

Plan1

PLAN BELIEF

GOAL

FactSet1

Plan2 Plann

FactSet2

FactSetn

zoom in

Agent

PB

PG GB

X Y Z

A
B

C

X, Y, Z:: sequence _action

A, B, C:: refine _by _plan

PG:: plan _goal

PB:: plan _belief

GB:: goal _belief

Figure 0.18: Representation of the Agent category

The Figure 3.18 shows that after a plan in PLAN is triggered, it will dispatch a

corresponding goal from GOAL through “plan _goal” functor. Then this goal

communicates with its related factSet from BELIEF, which helps justify if the goal is

achievable. If the goal is not achievable, functor “self _Goal” helps the goal update itself

so that it removes non-achievable goal from GOAL, and functor “self _Plan” helps the

plan update itself so that it removes non-achievable plan from PLAN. If the goal is

achievable, plan will be performed continually. Based on different cases, the plan has

ability to read or write fact values through BELIEF‟s factSet.

Agent Properties in Category Representation:

64

Each agent has only one FactSetBase in BELIEF, and every FactSets is used as a

subset of FactSetBase, and this design guarantees the consistency of agent‟s data

information and knowledge (see Section 3.4.3).

Each agent‟s goal has a relationship with Dependency category (Definition 3.3.2), by

which agent‟s goals are classified as different levels of priority. Dependency guides the

agent to decide which goal should be worked on first if multiple plans are triggered at the

same time (see Section 3.3.4).

Each agent‟s action and plan have a relationship with Discrete Time category.

Discrete Time is extremely useful to guarantee that actions of Plan and plans of PLAN

occur in correct time order (see Section 3.2.4).

PLAN, GOAL, BELIEF and FactSet have “self _*” functors, which allow each

category to have ability to update (i.e. remove) their objects, For example, remove

unreached goals from GOAL, or remove unachievable plans in PLAN.

3.6. Representing Multi-Agent Systems

We have defined agent‟s plans, goals, beliefs and their relationships by category theory

representation. In this section, we use category theory to represent multi-agent systems. A

system is called multi-agent system (MAS) if there are multiple intelligent agents

interacting to each other. The interactions can be described as external trigger event

messages passing. Agent‟s plan is defined as a sequence of actions (see Section 3.2), and

the first action is to receive trigger event messages. The trigger event messages can be

internal or external messages where the internal messages are sent by the agent itself and

the external ones are sent by other agents.

65

3.6.1. Categorical Representation of MAS

MAS is a category whose objects are “agents” and morphisms are “communicate”. The

meaning of “communicate” is that one agent has activities of conveying information to

another agent, and “communicate” can be differentiated by types. For example, from

objects Agent1 to Agent2 there is a “communicate” morphism f: Agent1 → Agent2, which

represents the fact that Agent2 is receiving trigger message(s) from Agent1. In other words,

Agent2 has a plan trigged by Agent1. Composition operation is satisfied. Suppose Agent3 is

another object in the same MAS and a morphism g: Agent2 Agent3, then morphism g o f:

Agent1 Agent3 is the composition of f and g, which represents the fact that Agent1 is able

to communicate with Agent3. MAS category also satisfies Associativity and Unit lows.

MAS is stated as a valid category by the above axioms. Using this category, we are able

to have an overall idea about agents‟ relationships in a system, such as which agents have

the ability to communicate directly, which agents need other agents to delegate messages,

and which type of communication is taking place between agents.

We can use our RAS [OK06] [KO08] based multi-agent system as an instance.

System manager agent is the most essential part that acts as a brain for the overall system.

It governs the entire system in terms of monitoring and controlling the other agents‟

actions. This agent also has the most global view, which allows it to communicate with

any other agent whining the system. It guarantees the overall system running correctly.

Supervisor agent exists within each group. It is the group leader that manages the group.

It plays a similar role to the system manager’s role, but with limited power and localized

view of the entire system. Within multi-agent society, worker agents are the mass. Unlike

supervisor agent or system manager agent, they perform actual works, obey orders and

66

report events. Since RAS based multi-agent system is a layered framework, each tier only

can communicate with the same tier or the tier immediately above or below.

MAS

d

a c

e i

SystemManager

Supervisor 1 Supervisor 2

Worker 1 Worker 2 Worker 3 Worker 4

f g h

l

j

k

a, b and c :: communicate. TA

d :: communicate. TB

e, f and g :: communicate. TC

h and i :: communicate. TD

l :: communicate. TE

j and k :: communicate. TF

b

Figure 0.19: MAS category example

Figure 3.19 is a category representation for a multi-agent system, which models a

RAS. It exhibits a high abstract view of the overall system. The basic component objects

for the system are: system manager agent, supervisor agent and worker agent, and basic

communication types are: TA between system manager and supervisors, TB between

supervisor1 and supervisor2, TC between supervisor1 and its works, TD between

supervisor2 and its works, TE between work1 and work2, and TF between work3 and work4.

3.6.2. Repository Agent

Within each RAS-based multi agent system, there exists one special agent. This agent is

used to store the entire multi agent system information and it is in a position as a system

persistent storage. Repository agent contains copies of every agent‟s information, such as

goals, plans and beliefs.

67

3.6.3. Repository Type

Repository Type is a type category (see Chapter 2) whose objects are categories that

represent the types of agents, and whose morphisms are “communicate”, which

represents the types of communication channels from agents to agents. For example, one

Repository Type includes objects Type1 and Type2 and morphism f: Type1 → Type2. It

means agents can be of Type1 or Type2, and agents of Type2 have channels that are open

to agents of Type1. In other words, agents of Type1 have the ability to access to or

communicate with agents of Type2. Since there is no morphism Type2 → Type1, agents of

Type2 do not have the ability to access to or communicate with agents of Type1.

Zoom into each category, it includes objects: ActionType, PlanType, PLANType,

GOALType, FactSetType and BELIEFType. *Type’s objects represent the types of objects

of agents‟ Action, Plan, PLAN, GOAL, FactSet and BELIEF, and *Type’s morphisms

represent the types of morphisms between objects within Action, Plan, PLAN, GOAL,

FactSet and BELIEF.

3.6.4. MAS and Repository Type

From MAS to Repository Type, there exists a functor (F) with some additional

properties. In general a functor only maps objects to objects, and morphisms to

morphisms, but since each object is defined as a category in this thesis, we need this

functor with a special property to zoom into each object and do a mapping too. F maps

every object (agent) of MAS to object (category) of Repository Type, and it also maps

every morphism (communicate) to morphism (communicate type). The additional

properties of F describe relations between MAS and Repository Type objects, which are

shown in the following example (Figure 3.20) and represented by Table 3.1.

68

FactSet1 FactSet2

FactSetn

zoom in

Agent A

PB

PG GB

X
Y

Z

A
B

C

X, Y, Z:: sequence _action

A, B, C::refine _by _plan

PG::plan _goal

PB::plan _belief

GB: goal _belief

f and g ::“before”

Plan2

Act1 Act3

gAct2
f

Agent B

...

Agent C

...

MAS

GOAL

...

BELIEF

...

PLAN

...

Plan1

...
Plann

...

Action

...

K

G

H

K, G and H :: “Communicate”

FactSet1 FactSet2

FactSetn

zoom in

Type X

Plan Type

ActType1 ActType2

n

m

Repository Type

Type Y

...

ActType3

o

m, n and o ::“before”

PLAN Type

...

BELIEF Type

...

Action Type

...

GOAL Type

...
P

Q

P and Q ::“Communicate Type A”

F

Figure 0.20: MAS to Repository Type

Suppose MAS (M) has three objects (agents): Agent A, Agent B and Agent C, and

morphisms (communicate): K: A →B, G: A→ C and H: C→ A (Figure 3.20). Repository

Type (RT) has two objects (types of agent) Type X and Type Y, and morphism (types of

morphisms) P: Type X→ Type Y and Q: Type Y→ Type X. As we have defined: Agent A,

Agent B and Agent C are agents specified using Action, Plan, PLAN, GOAL, FactSet

and BELIEF categories. In addition, F provides a rule to transfer objects and morphisms

within Agent A, Agent B and Agent C’ s Action, Plan, PLAN, GOAL and BELIEF to

objects and morphisms within Type X and Type Y‟s ActionType, PlanType, PLANType,

GOALType and BELIEFType. Here we will only show Agent A‟s Plan2 in Table 3.1 and

more details will be given in Chapter 4, Section 4.2.

 Rep Type Counter

MAS Type X Type Y

Agen

t A

Plan Type … …

Plan2 ActType1 ActType2 ActType3 m n o … … … …

Act1 1 0 0 0 0 0 1

69

Act2 0 1 0 0 0 0 1

Act3 0 1 0 0 0 0 1

F 0 0 0 1 0 0 1

G 0 0 0 0 1 0 1

Table 0.1: Additional properties of F

The left side of Table 3.1 shows objects and morphisms of each Agent A‟s categories

in MAS. For example, Act1 means action object Act1 of Agent A‟s Plan2 category; and f

means before morphism: Act1 → Act2 of Agent A‟s Plan2 category. In the middle, the

table shows objects and morphisms of each type Agent‟s categories in Repository Type.

We use “1” if there is a match from object or morphism to a type; otherwise “0” is

marked. On the right side, counter represents the sum of marked numbers in the same

row. Counter equals to “1” is the only acceptable result, which shows that one object or

morphism is only allowed to be of one type.

70

Chapter 4: Fault-Tolerance Properties in Multi-

Agents System Categorical Model

In this chapter, we will introduce some Fault-Tolerance properties with category theory

for multi-agent systems, which have been defined and illustrated in Chapter 3. We use the

robotic case study discussed in Chapter 2.

4.1. A Categorical Model for Robotic Case Study

In this chapter, the following agents from the robotic case study will be used to represent

fault-tolerance properties. They are repository agent Repository, and repository type,

Repository Type, supervisor agent Supervisor, and carry agents Carry1 and Carry2.

P

Q

S, T, P and Q ::“Communicate”

Repository Type

Type Supervisor

Plan Type

...

PLAN Type

...

BELIEF Type

...

Action Type

...

GOAL Type

...

Type Carry

Plan Type

...

PLAN Type

...

BELIEF Type

...

Action Type

...

GOAL Type

...

S T

Figure 0.1: Repository Type categories in case study

Repository Type has objects that represent agent types, such as Supervisor and Carry.

It also has “communicate” morphisms that represent communication channels from one

type of agent to another, such as Carry → Supervisor, Supervisor → Carry, Supervisor

71

→ Supervisor and Carry → Carry. Each object (type of agent) within Repository Type

contains five type categories: ActionType, PlanType, PLANType, GOALType and

BELIEFType (see Chapter 3 for the definition of type category). Figure 4.1 illustrates

these categories.

Figure 4.2 shows an example of Type Carry. Action Type contains objects

representing the following actions: ActTrigger, ActMove, ActLoad, and ActUnload. Plan Type

includes objects representing the following actions: ActTrigger, ActMove, ActLoad, and

ActUnload, and morphisms a: ActTrigger → ActMove, b: ActMove → ActLoad, c: ActLoad →

ActMove, d: ActMove → ActUnload, and e: ActTrigger → ActUnload. PLAN Type includes objects

representing the following plans: PlanCarryOre and PlanMove, and morphisms f: PlanCarryOre

→ PlanCarryOre and g: PlanMove → PlanMove. GOAL Type contains objects representing the

following goals: GoalCarryOre and GoalMove, and morphisms m: GoalCarryOre → GoalCarryOre

and n: GoalMove → GoalMove. BELIEF Type includes objects representing the following

fact sets: FactSetCarryOre, FactSetMoveArea, FactSetBase and FactSetNull, and morphisms h:

FactSetCarryOre → FactSetBase, i: FactSetNull → FactSetCarryOre, j: FactSetMoveArea →

FactSetBase, and k: FactSetNull → FactSetMoveArea.

Action Type

ActTrigger

ActMove

ActLoad

ActUnload

PLAN Type

PlanCarryOre PlanMove

f g

f and g :: “before”

Type Carry

GOAL Type

GoalCarryOre GoalMove

m n

m and n ::“depends”

Plan Type

ActTrigger

a, b, c,d and e :: “before”

ActMove

ActLoad

ActUnload

a b

c

d

e

BELIEF Type

FactSetCarryOre

h, i, j, and k ::“subset _of”

FactSetMoveArea

FactSetNull

FactSetBaseh

i

j

k

o l

Figure 0.2: Type carry agent

72

Repository Agent stores copies of each agent‟s categories, which are useful for

restarting damaged agents (This aspect is detailed in Section 4.3).

Carry1 (Figure 4.3) is defined by objects which are categories: Action1, Plan1_A, Plan1_B,

PLAN1, GOAL1, FactSet1_A, FactSet1_B and BELIEF1, and morphisms “sequence

_action”, “refined _by _plan”, “plan _goal”, “goal _ belief” and “plan _belief”. Where

Action1 has the objects: ActStartCarry, ActLoadOre, ActMoveToTargetA, ActMoveToTargetB and

ActMoveToBase. Plan1_A has the objects: ActStartCarry, ActLoadOre, ActMoveToTargetA, ActMoveToBase

and ActNull, and morphisms: l1_A: ActStartCarry → ActMoveToTargetA, s1_A: ActMoveToTargetA →

ActLoadOre and t1_A: ActLoadOre → ActMoveToBase. Plan1_B has the objects: ActStartCarry,

ActLoadOre, ActMoveToTargetB, ActMoveToBase and ActNull, and morphisms: l1_B: ActStartCarry →

ActMoveToTargetB, s1_B: ActMoveToTargetB → ActLoadOre and t1_B: ActLoadOre → ActMoveToBase.

PLAN1 includes the objects: PlanCarryOreFromTargetA and PlanCarryOreFromTargetB, and

morphisms: p1: PlanCarryOreFromTargetA → PlanCarryOreFromTargetA, o1: PlanCarryOreFromTargetA →

PlanCarryOreFromTargetB and q1: PlanCarryOreFromTargetB → PlanCarryOreFromTargetB. GOAL1

contains the objects: GoalCarryOreFromTargetA and GoalCarryOreFromTargetB, and morphisms: i1:

GoalCarryOreFromTargetA → GoalCarryOreFromTargetA, k1: GoalCarryOreFromTargetA →

GoalCarryOreFromTargetB and j1: GoalCarryOreFromTargetB → GoalCarryOreFromTargetB. BELIEF1

contains objects: FactSet1_A, FactSet1_B, FactSetBase and FactSetNull. It also has the

morphisms u1: FactSet1_A → FactSetBase, v1: FactSet1_B → FactSetBase, x1: FactSetNull →

FactSet1_A and y1: FactSetNull → FactSet1_B. “Zoom In” is not a functor, it substitutes the

objects FactSet1_A and FactSet1_B in BELIEF1 with their corresponding content.

FactSet1_A contains objects: targetALocation, baseLocation, targetAOreAmount and

73

FactNull. FactSet1_B contains objects: targetBLocation, baseLocation, targetBOreAmount

and FactNull.

Figure 0.3: Carry1 agent

With functor (F) and its additional properties (See Section 3.6.4 in Chapter 3) objects

in Action1, Plan1_A, Plan1_B, PLAN1, GOAL1 and BELIEF can be one to one mapped to

Type Carry’s objects in Action Type, Plan Type, PLAN Type, GOAL Type and BELIEF

Type. Morphisms within Action1, Plan1_A, Plan1_B, PLAN1, GOAL1 and BELIEF can be

one to one mapped to Type Carry’s objects in Action Type, Plan Type, PLAN Type,

GOAL Type and BELIEF Type (See Tables 4.1 to 4.6).

 Rep Type Counter

MAS Type Carry

Carry1 (Agent) Action Type

Carry1

TargetALocation

BaseLocation

TargetAOreAmount

FactSet1_A

FactNull

TargetBLocation

BaseLocation

TargetBOreAmount

FactSet1_B

Plan 1_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA
ActLoadOre

ActMoveToBase

l1_A s1_A

t1_AActNull

PLAN1

PlanCarryOreFromTargetA

p1 q1

p1, q1 and o1:: “before”

PlanCarryOreFromTargetA

o1

PlanNull

Plan 1_B

ActStartCarry

l1_B, s1_B and t1_B :: “before”

ActMoveToTargetB
ActLoadOre

ActMoveToBase

l1_B s1_B

t1_B
ActNull

GOAL1

i1, j1 and k1 :: “high_ priority”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k1

GOALNull

BELIEF1

u1, v1, x1 and y1 :: “subset _of”

FactSetNull

FactSetBaseu1

x1

v1

y1

FactSet1_A FactSet1_B

Zoom In Zoom In

SA1_A

SA1_B

RBP1_A

RBP1_B

PG1

GB1PB1

SA1_A and SA1_B :: sequence _action; RBP1_A and RBP1_B:: refined _by _plan;

PG1:: plan _goal; GB1:: goal _belief; PB1:: plan _belief

ActStartCarry

ActMoveToTargetA
ActLoadOre

ActMoveToBase

Action1

ActMoveToTargetB FactNull

depends

74

Action1 ActTrigger ActMove ActLoad ActUnload

ActStartCarry 1 0 0 0 1

ActLoadOre 0 0 1 0 1

ActMoveToTarget 0 1 0 0 1

ActMoveToBase 0 1 0 0 1

Table 0.1: F Additional properties map Action1 to Action Type

 Rep Index Counter

MAS Type Carry

Carry1 Plan Type

Plan1-A ActTrigger ActMove ActLoad ActUnload a b c d e

ActStartCarry 1 0 0 0 0 0 0 0 0 1

ActLoadOre 0 0 1 0 0 0 0 0 0 1

ActMoveToTargetA 0 1 0 0 0 0 0 0 0 1

ActMoveToBase 0 1 0 0 0 0 0 0 0 1

l1_A 0 0 0 0 1 0 0 0 0 1

s1_A 0 0 0 0 0 1 0 0 0 1

t1_A 0 0 0 0 0 0 1 0 0 1

Table 0.2: F Additional properties map Plan1_A to Plan Type

 Rep Index Counter

MAS Type Carry

Carry1 Plan Type

Plan1-B ActTrigger ActMove ActLoad ActUnload a b c d e

75

ActStartCarry 1 0 0 0 0 0 0 0 0 1

ActLoadOre 0 0 1 0 0 0 0 0 0 1

ActMoveToTargetB 0 1 0 0 0 0 0 0 0 1

ActMoveToBase 0 1 0 0 0 0 0 0 0 1

l1_B 0 0 0 0 1 0 0 0 0 1

s1_B 0 0 0 0 0 1 0 0 0 1

t1_B 0 0 0 0 0 0 1 0 0 1

Table 0.3: F Additional properties map Plan1_B to Plan Type

 Rep Index Counter

MAS Type Carry

Carry1 PLAN Type

PLAN1 PlanCarryOre PlanMove f g o

PlanCarryOreFromTargetA 1 0 0 0 0 1

PlanCarryOreFromTargetB 1 0 0 0 0 1

p1 0 0 1 0 0 1

q1 0 0 1 0 0 1

o1 0 0 1 0 0 1

Table 0.4: F Additional properties map PLAN1 to PLAN Type

 Rep Index Counter

MAS Type Carry

Carry1 GOAL Type

GOAL1 GoalCarryOre GoalMove m n l

76

GoalCarryOreFromTargetA 1 0 0 0 0 1

GoalCarryOreFromTargetB 1 0 0 0 0 1

k1 0 0 1 0 0 1

Table 0.5: F Additional properties map GOAL1 to GOAL Type

 Rep Index Counter

MAS Type Carry

Carry1 BELIEF Type

BELIEF1 FactSetCarryOre FactSetMoveArea FactSetBase FactSetNull h i j k

FactSetBase 0 0 1 0 0 0 0 0 1

FactSetNull 0 0 0 1 0 0 0 0 1

FactSet1_A 1 0 0 0 0 0 0 0 1

FactSet1_B 1 0 0 0 0 0 0 0 1

u1 0 0 0 0 1 0 0 0 0

v1 0 0 0 0 1 0 0 0 1

x1 0 0 0 0 0 1 0 0 1

y1 0 0 0 0 0 1 0 0 1

Table 0.6: F Additional properties map BELIEF1 to BELIEF Type

Similar to Carry1, Carry2 is defined by categories: Action2, Plan2_A, Plan2_B,

Plan2_move, PLAN2, GOAL2, FactSet2_A, FactSet2_B, FactSet2_Move and BELIEF2, and

morphisms “sequence _action”, “refined _by _plan”, “plan _goal”, “goal _ belief” and

“plan _belief” (see Figure 4.4).

With functor (F) and its additional properties (see Section 3.6.4), objects in Action2,

Plan2_A, Plan2_B, Plan2_move, PLAN2, GOAL2 and BELIEF2 can be one to one mapped to

77

Type Carry’s objects in Action Type, Plan Type, PLAN Type, GOAL Type and BELIEF

Type. Morphisms within Action2, Plan2_A, Plan2_B, Plan2_move, PLAN2, GOAL2 and

BELIEF2 can be one to one mapped to Type Carry’s objects in Action Type, Plan Type,

PLAN Type, GOAL Type and BELIEF Type (See table 4.7 to table 4.13)

Carry2

TargetALocation

BaseLocation

TargetAOreAmount

FactSet2_A

FactSetNull

Plan 2_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA ActLoadOre

ActMoveToBase

l2_A s2_A

t2_A

ActNull

PLAN2

PlanCarryOreFromTargetA

p2 q2

p2, q2 , o2 , m2 and n2 :: “before”

PlanCarryOreFromTargetA

o2

PlanNull

Plan 2_B

ActStartCarry

l2_B, s2_B and t2_B :: “before”

ActMoveToTargetB ActLoadOre

ActMoveToBase

l2_B s2_B

ActNull

GOAL2

r2 and k2 :: “depends”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k2

GOALNull

BELIEF2

u2, v2, x2, y2, w2 and z2 :: “subset _of”

FactSetNull

FactSetBaseu2

x2

v2

y2

FactSet1_B

Zoom In
Zoom In

SA2_A

SA2_B

RBP2_A

RBP2_B

PG2

GB2PB2

SA2_A, SA2_B and SA2_Move:: sequence _action; RBP2_A, RBP2_B and RBP2_Move:: refined _by _plan;

PG2:: plan _goal; GB2:: goal _belief; PB2:: plan _belief

t2_B

Plan 2_move

l1_Move :: “before”

l2_move
ActNull

ActStartMove ActtMoveAround

SA2_Move

PlanMoveAround
n2

GoalMoveAround

m2

r2

FactSet2_A FactSet2_Move

w2

z2

TargetBLocation

BaseLocation

TargetBOreAmount

FactSet2_B

FactSetNull

MovingArea

FactSet2_Move

Zoom In

RBP2_Move

ActStartCarry

ActMoveToTargetAActLoadOre

ActMoveToBase

Action2

ActMoveToTargetB ActStartMove

ActtMoveAround

ActUnloadOre

h2_A

ActUnloadOre

Figure 0.4: Carry2 Agent

 Rep Index Counter

MAS Typed Carry

Carry2 Action Type

Action2 ActTrigger ActMove ActLoad ActUnload

ActStartCarry 1 0 0 0 1

ActLoadOre 0 0 1 0 1

78

ActMoveToTarget 0 1 0 0 1

ActMoveToBase 0 1 0 0 1

ActStartMove 1 0 0 0 1

ActMoveAround 0 1 0 0 1

ActUnloadOre 0 0 0 1 0

Table 0.7: F Additional properties map Action2 to Action Type

 Rep Index Counter

MAS Type Carry

Carry2 Plan Type

Plan12-A ActTrigger ActMove ActLoad ActUnload a b c d e

ActStartCarry 0 1 0 0 0 0 0 0 0 1

ActLoadOre 1 0 0 0 0 0 0 0 0 1

ActMoveToTargetA 1 0 0 0 0 0 0 0 0 1

ActMoveToBase 0 1 0 0 0 0 0 0 0 1

ActUnloadOre 0 0 0 1 0 0 0 0 0 1

l2_A 0 0 0 0 1 0 0 0 0 1

s2_A 0 0 0 0 0 1 0 0 0 1

t2_A 0 0 0 0 0 0 1 0 0 1

h2_A 0 0 0 0 0 0 0 1 0 1

Table 0.8: F Additional properties map Plan2_A to Plan Type

 Rep Index Counter

MAS Type Carry

79

Carry2 Plan Type

Plan2-B ActTrigger ActMove ActLoad ActUnload a b c d e

ActStartCarry 0 1 0 0 0 0 0 0 0 1

ActLoadOre 1 0 0 0 0 0 0 0 0 1

ActMoveToTargetB 1 0 0 0 0 0 0 0 0 1

ActMoveToBase 0 0 0 1 0 0 0 0 0 1

l2_B 0 0 0 0 1 0 0 0 0 1

s2_B 0 0 0 0 0 1 0 0 0 1

t2_B 0 0 0 0 0 0 1 0 0 1

Table 0.9: F Additional properties map Plan2_B to Plan Type

 Rep Index Counter

MAS Type Carry

Carry2 Plan Type

Plan2-Move ActTrigger ActMove ActLoad ActUnload a b c d e

ActStartMove 1 1 0 0 0 0 0 0 0 1

ActMoveAround 0 1 0 0 0 0 0 0 0 1

l2_Move 0 0 0 0 1 0 0 0 0 1

Table 0.10: F Additional properties map Plan2_Move to Plan Type

 Rep Index Counter

MAS Type Carry

Carry2 PLAN Type

PLAN2 PlanCarryOre PlanMove f g o

80

PlanCarryOreFromTargetA 1 0 0 0 0 1

PlanCarryOreFromTargetB 1 0 0 0 0 1

PlanMoveAround 0 1 0 0 0 1

p2 0 0 1 0 0 1

q2 0 0 1 0 0 1

o2 0 0 1 0 0 1

m2 0 0 0 0 1 1

n2 0 0 0 1 0 1

Table 0.11: F Additional properties map PLAN2 to PLAN Type

 Rep Index Counter

MAS Type Carry

Carry2 BELIEF Type

BELIEF2 FactSetCarryOre FactSetMoveArea FactSetBase FactSetNull h i j k

FactSetBase 0 0 1 0 0 0 0 0 1

FactSetNull 0 0 0 1 0 0 0 0 1

FactSet2_A 1 0 0 0 0 0 0 0 1

FactSet2_B 1 0 0 0 0 0 0 0 1

FactSet2_Move 0 1 0 0 0 0 0 0 1

u1 0 1 0 0 0 0 0 0 1

v1 0 0 0 0 1 0 0 0 1

x1 0 0 0 0 0 1 0 0 1

y1 0 0 0 0 0 1 0 0 1

w1 0 0 0 0 0 0 1 0 1

81

z1 0 0 0 0 0 0 0 1 1

Table 0.12: F Additional properties map BELIEF2 to BELIEF Type

4.2. Fault-Tolerance

As addressed in [KD03], autonomic systems have the following important self-

managing characteristics: a) self-configuration: the ability of configuring system

automatically according to the changing of environment; b) self-healing: the ability of

detecting, managing and repairing bugs or failures in software as well as hardware

systems; c) self-optimization: the ability of improving system operations and make

themselves more efficient in performance or cost; and d) self-protection: the ability of

protecting the whole system against malicious attacks and failures uncorrected by self-

healing. This thesis uses fault-tolerance as a mechanism in order to model self-healing

property with category theory. Fault-tolerance is defined as a property enables a system

to continue operating properly in the event of the failure of (or one or more faults within)

some of its components. The following sections take case study “Marsworld” and use

case “recover damaged carry agent” (see Chapter 2) to illustrate the fault-tolerance

properties: restarting and taking over, and using category theory to as a formal model.

4.2.1. Fault-Tolerance Property- Restart The Same Agent

In a multi-agent system, if an agent is not functional, the first basic solution to recover the

system is restarting this agent. Before showing how this solution can be modeled in CAT,

we recall the following concept:

Isomorphism [Mac71]: An isomorphism T: C→B of categories is a functor T from C to

B， which is a bijection, both on objects and on morphisms. In other words, a function

82

T: C→B is an isomorphism if and only if there is a functor S: C→B for which both

composites (S o T) and (T o S) are identity functors.

Definition 4.1 Restart: An agent can be restarted, if and only if this agent’s categories

Action, Plan, PLAN, GOAL, FactSet and BELIEF are isomorphic to repository agent’s

categories. These categories within repository exist as default before the agent is created,

and can be updated during system runtime. If this agent is restart-able, its supervisor

agent will recreate the agent, otherwise, the agent‟s stored categories will be removed

from the repository by the supervisor agent. We write isomorphism (A, B) == TRUE to

indicate that category A is isomorphic to category B, otherwise we use isomorphism (A,

B) == FALSE.

As we have defined in Chapter 3, each category Plan, PLAN, GOAL, FactSet and

BELIEF has a self _functor, which models the agent ability to update itself, such as

removing objects and morphisms. If all of the agent‟s current (or up to date) categories

are isomorphic to their corresponding repository agent‟s categories, then this agent can be

restarted. For example (Figure 4.5): Agent A includes Plan’, PLAN’, GOAL, FactSet

and BELIEF, where Plan’ and PLAN’ are updated from Plan and PLAN, and GOAL,

FactSet and BELIEF are the same as default. Inside repository there are categories

AgentA.Plan, AgentA.PLAN, AgentA.GOAL, AgentA.FactSet and AgentA.BELIEF.

83

Action

Plan

PLAN

GOAL

BELIEF

Agent A before

Action

Plan’

PLAN’

GOAL

BELIEF

Agent A now

FactSet FactSet

Agent. Action

Agent. Plan

Agent. PLAN

Agent. GOAL

Agent.BELIEF

Repository

Agent. FactSet

Figure 0.5: Fault-tolerance property- restart in agent A

From Definition 4.1, the following C-like statements check if agent A is able to be

restarted.

if (isomorphism (Action, AgentA.Action) == TRUE

&& isomorphism (Plan’, AgentA.Plan) == TRUE

&& isomorphism (PLAN’, AgentA.PLAN) == TRUE

&& isomorphism (GOAL, AgentA.GOAL) == TRUE

&& isomorphism (FactSet, AgentA.FactSet) == TRUE

&& isomorphism (BELIEF, AgentA.BELIEF) == TRUE)

then Agent can be restarted

else Agent cannot be restarted

4.2.2. Robotic Case Study: Restart the Same Carry Agent

In this section we will present the implementation of fault-tolerance in the robotic case

study by using restart property. The detailed scenario of replacing damaged carry agent is

described in section 2.6. In the robotic case study, there is an agent called Carry1 that

does not perform its tasks correctly. Its supervisor agent will try to restart Carry1 from its

84

default stage. The supervisor agent needs to communicate with both Carry1 and

repository agent and checks if Carry1 satisfies the conditions of Definitions 4.1.

a) Isomorphism in Action

Action1 is defined as an Action category (Chapter 3, Definition 3.2.1) of Carry1.

Carry1.Action is defined as information storage for Carry1‟s Action in repository.

Suppose Carry1.Action includes exactly the same objects as in Action1, then we have

isomorphism (Action1, Carry1.Action) == TRUE

b) Isomorphism in Plan

Plan1 is defined as a Plan category (Chapter 3, Definition 3.2.3) of Carry1.

Carry1.Plan is defined as information storage for Carry1‟s Plan in repository. Suppose

Carry1.Plan includes exactly the same objects and morphisms as in Action1, then

isomorphism (Plan1, Carry1.Plan) == TRUE

By using the same assumption as a) and b), we can have

c) Isomorphism in PLAN: isomorphism (PLAN1, Carry1.PLAN) == TRUE

d) Isomorphism in GOAL: isomorphism (GOAL1, Carry1.GOAL) == TRUE

e) Isomorphism in FactSet: isomorphism (FactSet1, Carry1.FactSet) == TRUE

f) Isomorphism in BELIEF: isomorphism (BELIEF1, Carry1.BELIEF) == TRUE

With above (a ~ f) conditions, Carry1 can be restart/recreated by its supervisor agent.

But Suppose Carry1 doesn‟t satisfy one of the (a ~ f) conditions, for example,

BELIEF1 has more objects than Carry1.BELIEF, or Plan1 contains less morphisms than

Carry1.Plan, then by definition of isomorphism,

isomorphism (BELIEF1, Carry1.BELIEF) == False, or

85

isomorphism (Plan1, Carry1.Plan) == False.

This means Carry1 cannot be restarted or recreated by its supervisor agent.

4.2.3. Fault-Tolerance Property- Takeover by Inclusion Agent

If the damaged agent cannot be replaced by an equivalent agent, the supervisor agent will

try to find an inclusion agent (Definition 4.3) to takeover (definition 4.4) the damaged

agent.

Definition 4.2 Include: Let C1 and C2 be two categories. C2 is said to be included in C1 if

and only if 1) C1 includes the same object and morphism types as C2 does; 2) C1 contains

at least the same number of objects of each type as C2 does; and 3) C1 includes at least

the same number of morphisms for each object as C2 does.

We use include (C1, C2) == TRUE to denote that category C1 includes C2, and

include (C1, C2) == FALSE to denote the negation.

Definition 4.3 Inclusion Agent: Let A and B be two agents. If all the following

categories: Action, Plan, PLAN, GOAL, FactSet, and BELIEF defined in A include B’s

Action, Plan, PLAN, GOAL, FactSet, and BELIEF, we say agent A is an Inclusion

Agent of agent B.

We use IncAgent (A, B) == TRUE to denote that agent A is an inclusion agent of

agent B, otherwise, we write IncAgent (A, B) == FALSE.

Definition 4.4 Takeover: An agent A can take over (i.e. replace) an agent B if and only if

IncAgent (A, B) == TRUE.

For example (Figure 4.6): Agent A includes Action_ A, Plan_ A, PLAN_ A, GOAL_

A, and BELIEF_ A. Agent B includes Action_ B, Plan_ B, PLAN_ B, GOAL_ B and

BELIEF_ B.

86

Action_A

Plan_A

PLAN_A

GOAL_A

BELIEF_A

Agent A

Action_B

Plan_B

PLAN_B

GOAL_B

BELIEF_B

Agent B

Figure 0.6: Fault-tolerance property takeover by inclusion agent

From Definitions 4.2, 4.3 and 4.4, the following statements check if agent A can be

taken over (i.e. replaced) by agent B (we user take_over (Agnet X, Agent Y) to denote

Agent X can be taken over by Agent Y).

IncAgent (Agent B, Agent A) ==

 (include (Action_B, Action_A)

&& include (Plan_B, Plan _A)

&& include (PLAN_B, PLAN _A)

&& include (GOAL_B, GOAL _A)

&& include (BELIEF_B, BELIEF _A))

if (IncAgent (Agent B, Agent A))

then take_over (Agent A, Agent B)

else take_over (Agent A, Agent B)

4.2.4. Robotic Case Study: Takeover Damaged Carry Agent by Inclusion

Agent

87

In this section we will present the implementation of fault-tolerance in the robotic case

study by using takeover property. The detailed scenario of replacing damaged carry agent

is described in section 2.6. In this specific configuration of the robotic multi agent system,

there is a damaged agent called Carry1. If Carry1 cannot be restarted and there is no

equivalent agent to substitute it, then its supervisor agent will communicate with other

agents in its group to try to find an agent to take-over the duties of Carry1.

a) Include in Action

Action1 is defined as an Action category (Chapter 3, definition 3.2.9) of Carry1. It has

three types of objects: ActTrigger, ActMove and ActLoad. And its objects ActStartCarry of type ActTrigger,

ActMoveToTargetA, ActMoveToTargetB and ActMoveToBase of type ActMove, and ActLoadOre of type ActLoad

(Table 4.1).

Action2 is defined as an Action category of Carry2, and it contains three types of

objects: ActTrigger, ActMove, ActLoad and ActUnload. Action2 contains objects: ActStartCarry and

ActStartMove of type ActTrigger, ActMoveToTargetA, ActMoveToTargetB, ActMoveToBase and ActMoveAround of type

ActMove, ActLoadOre of type ActLoad and ActUnloadOre of type ActUnload (Table 4.6) (See Figure 4.6

Include in Action in Case Study).

ActStartCarry

ActMoveToTargetAActLoadOre

ActMoveToBase

Action2

ActMoveToTargetB ActStartMove

ActtMoveAround

ActStartCarry

ActMoveToTargetA
ActLoadOre

ActMoveToBase

Action1

ActMoveToTargetB

ActUnloadOre

Figure 0.7: Include in action in the case study

Action2 includes Action1. Action2 contains all the three types of objects as in Action1

(ActTrigger, ActMove and ActLoad), and Action2 contains the same number of objects of each type

as in Action1 (ActStartCarry, ActStartMove, ActMoveToTargetA, ActMoveToTargetB, ActMoveToBase, ActMoveAround,

ActLoadOre and ActUnloadOre).

88

b) Include in Plan

Plan1_A is defined as a Plan category (Chapter 3, Definition 3.2.1) of Carry1. It has three

types of objects: ActTrigger, ActMove and ActLoad, and one type of morphism: before. Plan1_A

And its objects ActStartCarry of type ActTrigger, ActMoveToTargetA and ActMoveToBase of type ActMove,

and ActLoadOre of type ActLoad. Plan1_A contains morphisms l1_A: ActStartCarry → ActMoveToTargetA,

s1_A: ActMoveToTargetA → ActLoadOre and t1_A: ActLoadOre → ActMoveToBase (Table 4.2).

Plan2_A is defined as a Plan category of Carry2, and it has three types of objects:

ActTrigger, ActMove, ActLoad and ActUnload, and one type of morphism: before. Plan2_A contains

objects: ActStartCarry of type ActTrigger, ActMoveToTargetA and ActMoveToBase of type ActMove, ActLoadOre of

type ActLoad, and ActUnloadOre of type ActUnload. Plan2_A contains morphisms: l2_A: ActStartCarry →

ActMoveToTargetA, s2_A: ActMoveToTargetA → ActLoadOre, t2_A: ActLoadOre → ActMoveToBase and h2_A:

ActMoveToBase → ActUnloadOre, (Table 4.7). Figure 4.8 illustrates this case.

Plan 2_B

ActStartCarry

l2_B, s2_B and t2_B :: “before”

ActMoveToTargetB ActLoadOre

ActMoveToBase

l2_B s2_B

ActNull
t2_B

Plan 2_move

l2_move
ActNull

ActStartMove ActtMoveAround

l1_Move :: “before”

Plan 1_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA
ActLoadOre

ActMoveToBase

l1_A s1_A

t1_AActNull

Plan 1_B

ActStartCarry

l1_B, s1_B and t1_B :: “before”

ActMoveToTargetB
ActLoadOre

ActMoveToBase

l1_B s1_B

t1_B
ActNull

Plan 2_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA ActLoadOre

ActMoveToBase

l2_A s2_A

t2_A

ActNull

ActUnloadOre

h2_A

Figure 0.8: Include in plan in the case study

Plan2_A includes Plan1_A. Plan2_A contains all the three types of objects as in Plan1_A

(ActTrigger, ActMove and ActLoad), and Plan2_A contains same number of objects of each type as

in Plan1_A (ActStartCarry, ActStartMove, ActMoveToTargetA, ActMoveToBase and ActLoadOre). Plan2_A contains

all the types of morphisms as in Plan1_A (before), and Plan2_A has the same number of

89

corresponding morphisms as in Plan1_A (ActStartCarry → ActMoveToTargetA, ActMoveToTargetA →

ActLoadOre and ActLoadOre → ActMoveToBase). Similar to Plan1_A and Plan2_A, Plan2_B includes

Plan1_B Plan2_B.

c) Include in PLAN

PLAN1 is defined as a PLAN category (Chapter 3, Definition 3.2.2) of Carry1. It has one

type of objects: PlanCarryOre, and one type of morphism: before. PLAN1 contains objects:

PlanCarryOreFromTargetA and PlanCarryOreFromTargetB of type PlanCarryOre. PLAN1 contains

morphisms: p1: PlanCarryOreFromTargetA → PlanCarryOreFromTargetA (carryOreFromTargetA can

be repeated), q1: PlanCarryOreFromTargetB → PlanCarryOreFromTargetB (carryOreFromTargetB

can be repeated) and o1: PlanCarryOreFromTargetA → PlanCarryOreFromTargetB (Table 4.3).

PLAN2 is defined as a PLAN category of Carry2, and it has two types of objects:

PlanCarryOre and PlanMove, and one type of morphism: before. PLAN2 contains objects:

PlanCarryOreFromTargetA, PlanCarryOreFromTargetB and PlanMoveAround. PLAN2 contains morphisms

p2: PlanCarryOreFromTargetA → PlanCarryOreFromTargetA, q2: PlanCarryOreFromTargetB →

PlanCarryOreFromTargetB, o2: PlanCarryOreFromTargetA → PlanCarryOreFromTargetB m2:

PlanCarryOreFromTargetB → PlanMoveAround and n2: PlanMoveAround → PlanMoveAround (Table 4.8).

Figure 4.9 illustrates this case.

PLAN2

PlanCarryOreFromTargetA

p2 q2

p2, q2 , o2 , m2 and n2 :: “before”

PlanCarryOreFromTargetA

o2

PlanNull

PlanMoveAround
n2 m2

PLAN1

PlanCarryOreFromTargetA

p1 q1

p1, q1 and o1 :: “before”

PlanCarryOreFromTargetA

o1

PlanNull

Figure 0.9: Include in PLAN in the case study

PLAN2 includes PLAN1. PLAN2 contains all the types of objects as in PLAN1

(PlanCarryOre), and PLAN2 contains the same number of objects of each type as in PLAN1

90

(PlanCarryOreFromTargetA and PlanCarryOreFromTargetB). PLAN2 contains all the types of

morphisms as in PLAN1 (before), and PLAN2 contains the same number of corresponding

morphisms as in PLAN1 (PlanCarryOreFromTargetA → PlanCarryOreFromTargetA,

PlanCarryOreFromTargetA → PlanCarryOreFromTargetB and PlanCarryOreFromTargetB →

PlanCarryOreFromTargetB).

d) Include in GOAL

GOAL1 is defined as a GOAL category (Chapter 3, Definition 3.3.1) of Carry1. It has one

type of objects: GoalCarryOre, and one type of morphism: higher _priority. GOAL1

contains objects: GoalCarryOreFromTargetA and GoalCarryOreFromTargetB of type GoalCarryOre.

GOAL1 contains morphisms: GoalCarryOreFromTargetA → GoalCarryOreFromTargetB (Table 4.4).

GOAL2 is defined as a GOAL category of Carry2, and it has two types of objects:

GoalCarryOre and GoalMove, and one type of morphism: depends. GOAL2 contains objects:

GoalCarryOreFromTargetA, GoalCarryOreFromTargetB and GoalMoveAround. GOAL2 contains

morphisms: GoalCarryOreFromTargetA → GoalCarryOreFromTargetB and GoalCarryOreFromTargetB →

GoalMoveAround (Table 4.10). Figure 4.10 illustrates this case.

GOAL1

i1 j1

i1, j1 and k1 :: “depends”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k1

GOALNull
GOAL2

r2 and k2 :: “depends”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k2

GOALNull GoalMoveAround

r2

Figure 0.10: Include in GOAL in the case study

GOAL2 includes GOAL1. In definition 4.2, GOAL2 contains all the types of objects as

in GOAL1 (GoalCarryOreGoal), and GOAL2 contains the same number of objects of each

type as in GOAL1 (GoalCarryOreFromTargetA and GoalCarryOreFromTargetB). GOAL2 contains all

91

the types of morphisms as in GOAL1 (depends), and GOAL2 contains the same number of

corresponding morphisms as in GOAL1 (GoalCarryOreFromTargetA → GoalCarryOreFromTargetB).

e) Include in BELIEF

BELIEF1 is defined as a BELIEF category (Chapter 3, Definition 3.4.2) of Carry1. It has

three types of objects: FactSetCarryOre, FactSetBase and FactSetNull, and one type of

morphism: subset _of. BELIEF1 contains objects: FactSet1_A and FactSet1_B of type

FactSetCarryOre, FactSetBase of type FactSetBase, and FactSetNull of type FactSet1_B.

BELIEF1 contains morphisms: u1: FactSet1_A → FactSetBase, v1: FactSet1_B →

FactSetBase, x1: FactSetNull → FactSet1_A, and y1: FactSetNull → FactSet1_B (Table 4.5).

BELIEF2 is defined as a BELIEF category of Carry2. It has four types of objects:

FactSetCarryOre, FactSetMoveArea, FactSeBase and FactSetNull, and one type of morphism:

subset _of. BELIEF2 contains objects: FactSet2_A and FactSet2_B of type FactSetCarryOre,

FactSetMove of type FactSetMoveArea, FactSeBase of type FactSeBase, and FactSetNull of type

FactSetNull. BELIEF2 contains morphisms: u2: FactSet2_A → FactSetBase, v2: FactSet2_B

→ FactSetBase, w2: FactSetMove → FactSetBase, x2: FactSetNull → FactSet2_A, y2: FactSetNull

→ FactSet2_B and z2: FactSetNull → FactSetMove (Table 4.10). Figure 4.11 illustrates this

case.

BELIEF1

u1, v1, x1 and y1 :: “subset _of”

FactSetNull

FactSetBaseu1

x1

v1

y1

FactSet1_A FactSet1_B

BELIEF2

u2, v2, x2, y2, w2 and z2 ::“subset _of”

FactSetNull

FactSetBaseu2

x2

v2

y2

FactSet1_B
FactSet2_A FactSet2_Move

w2

z2

Figure 0.11: Include in BELIEF in case study

92

BELIEF2 includes BELIEF1. BELIEF2 contains all the types of objects as in

BELIEF1 (FactSetCarryOre, FactSetBase and FactSetNull), and BELIEF2 contains the same

number of objects of each type as in BELIEF1 (FactSet1_A, FactSet1_B, FactSetBase and

FactSetNull). BELIEF2 contains all the types of morphisms as in BELIEF1 (subset _of),

and BELIEF2 contains the same number of corresponding morphisms as in BELIEF1

(FactSetNull → FactSet1_A, FactSetNull → FactSet1_B, FactSet1_A → FactSetBase and

FactSet1_B → FactSetBase).

With above (a ~ e) conditions, and by Definition 4.3, Carry2 is an Inclusion Agent of

Carry1, and Carry2 is able to take-over Carry1. But Suppose Carry2 doesn‟t satisfy one of

the (a ~ e) conditions, then it will not be an Inclusion Agent of Carry1 and it will not be

able to take-over Carry1. For example, GOAL2 does not have object type GoalCarryOre, or

GOAL2 does not have object carryOreFromTargetAGoal, or GOAL2 does not have higher

_dependency morphism: GoalCarryOreFromTargetA → GoalCarryOreFromTargetB, then by Definition

4.2, GOAL2 doesn‟t include GOAL1 and Carry2 is not an Inclusion Agent of Carry1, this

means the tasks of Carry1 cannot be taken by Carry2.

93

Chapter 5: Related Work and Conclusions

In this chapter, we discuss the related work on using category theory to formalize multi-

agent systems, list the contributions and conclude the thesis by outlining the future work

directions.

5.1. Related Work and Significance of the Proposed Research

Category theory has been used as a formal model in computer science and software

engineering for many years, and some of the related work can be summarized as follows:

In [GV79], the authors have applied the category theory as a conceptual tool to model

general systems through the abstract representation of systems, which take objects,

systems, interconnection, and behavior as a basis. The authors present a Behavioral

Theorem, stating that the behavior of an interconnection between objects can be

considered as the behaviors of individual objects; they also indicate that the notion of

autonomy, interaction, cooperation, and self-organization are relevant to their study.

In [Hil93], the author has introduced architecture for system configuration that is

independent of various approaches of system specification, design, and coding. The

architecture focused on configuring those systems from reusable modules at any stage

during system development. The module is precisely defined as an instance of a textual

specification, and the configuration takes place in a mathematical framework that is

based on category theory.

94

In [JD01], the author have illustrated how to use category theory as a meta-ontology

for information systems research through some examples, which include system

specification, definitions of views along with their updates, and system interoperations.

The related work has stayed that Category Theory (CAT) has more advantages on

formalizing complex systems than other theory or modeling languages.

Domain theory is introduced as a study of special kinds of partially ordered sets (or

posets) in mathematics, these sets are called domains. A partially ordered set (poset)

formalizes and generalizes the intuitive concept of an ordering, sequencing, or

arrangement of the elements of a set. “Partially order” means not every pair of elements

need be related: for some pairs, it may be that neither element precedes the other in the

same poset [AJ94]. In comparison to category theory, it has a limitation of not being

expressive enough to capture relations between posets， such as “depends on”, since

dependency is not a ordering, sequencing, or arrangement relation. Domain theory cannot

be used to model self-relationships of elements within a poset, which is well defined in

category theory as identity morphism. Moreover, with category theory and its own

properties, automation can be achieved, for example, the composition of two

specifications can be derived automatically, and this is not addressed in the domain

theory.

Logics, such as first order logic, has been used to modeling multi-agent systems

[Woo09]. In comparison to category theory, instead of capturing the structure and

properties, it models the reasoning of properties that are shared by objects.

Few research papers toward modeling MAS with CAT, and they can be summarized

as follows:

95

In [Pfa05], the author has introduced a MAS category. In that category the objects are

agents and the morphisms represent all kinds of relations between the agents.

In [PS07], the author has also introduced typed category into multi-agent systems,

and instead of defining a category with agent types as objects and communication types

as morphisms as we did in Chapter 3, he applied sets of agent types and sets of

communication types as the objects in one category, and agent types and communication

types are generated by using two Push-out category approach [Mac71], called Double

Push Approach (DPA). This approach provided a way to related agents with types, and

communication with types, but didn‟t address the relationship between agent types and

communication types.

In [CG06], the authors have introduced an Agent Modeling Language (AML) along

with a demonstration on how AML can be applied to efficiently, accurately, and

comprehensively model the Prospecting Asteroid Mission (PAM) [RT07] system. A

selection of the AML models that specify the PAM domain, goals, architecture, as well as

behaviors are also presented in this paper. However, this language lacks theoretical

foundations, which makes proving the isomorphism of two different models relative to

two equivalent systems practically impossible.

In terms of modeling and formalizing multi-agent systems using category theory, only

a very high abstract level has been considered, such as modeling the whole system as a

category, where agents are objects and communications [Pfa05] [PS07]. To our best

knowledge, no work has considered the refinement of the categorical representation of

agents into components using the BDI model of agents and the interaction between these

components in the definition of agent architecture, as it was described in this thesis. In

96

fact, accounting for agent architecture in the categorical representation of MAS by

zooming into single agent and analyzing the relationships among agent plans, goals and

beliefs allows capturing the core of multi-agent systems and thus providing a fully formal

representation on both the multi-agent system structure and autonomic computing

properties. Furthermore, no previous work has considered the formalization of fault-

tolerance property of multi-agent systems using category theory as it as described in

Chapter 4. This property modeling work shows our research can be adapted to

implementation level in IT industry easily.

5.2. Conclusions

This thesis begins with an introduction and brief dissuasion of software complexities in

integrating and managing computing systems, follows with a comprehensive view for the

autonomic computing paradigm, an introduction of the agent-based computing

technology and a background for the category theory. We carry on with previous works

on reactive autonomic systems framework (RASF) [KO08], and implement category

theory (CAT) as a formal method to specify and model multi-agent system (MAS) in

RASF. We have proposed our approach with the purpose of providing solutions for the

following research questions:

1. How can each agent be modeled with CAT?

a. What are the components of each agent?

b. How do we model each component with CAT?

c. How do we model the relations among the components with CAT?

2. How can MAS be modeled with CAT?

97

a. What are objects and morphisms to be used to capture the transformation from

MAS to CAT?

b. Since agents and their communication can be classified into different types, how

do we model these types with CAT?

3. How can CAT represent MAS properties?

The highlighted part of RASF project diagram depicted in Figure 5.1 was

accomplished via this thesis.

RAS

MAS

CAT

CAT

Jadex

Figure 0.1: Reactive autonomic systems framework project with research coverage

5.3. Contributions

This thesis proposed a formal modeling of multi-agent systems (MAS) with category

theory (CAT). This formal transformation helps us to focuses on the morphisms or

relationships between objects i.e. as agents, rather than concentrates on these objects‟

representations. Moreover, besides mapping the overall MAS system into CAT, we are

the first one in the related research field, to zoom into each agent, and model each

internal component (such as plan) into CAT. This way guaranties our work is a fully

CAT module. The main contributions of this thesis are listed below:

1. Modeling Agent with CAT [Chapter 3]

a. Modeling agent‟s plans, goals, and beliefs with CAT

98

b. Modeling relations between plans and goals, plans and beliefs, and goals and

plans with CAT

2. Modeling MAS with CAT [Chapter 3]

a. Modeling relations between agents

b. Applying Type Category in MAS

3. Modeling robotic fault-tolerance with CAT [Chapter 4]

5.4. Future Work

This thesis is about the formalizing Multi-agent systems with Category theory, which

brings us several related research opportunities. The flowing listed topics could be

considered as the future work:

1. We can work on implement CAT by using Extensible Markup Language (XML).

XML is machine readable language that has a high adaptability to many different

environments and platforms. Adding CAT XML codes inside systems will improve

the system efficiency since it‟s simple, easy to modify and most modem

programming languages have the ability to understand XML.

2. We can work on developing a model transformation tool to automatically transfer

MAS based XML [Sha11] to CAT based XML, with which, the mapping from MAS

to CAT can be done by system-self.

3. We can work on modeling other self-managing properties with CAT. This thesis

modeled fault-tolerance property with CAT. By the definition of autonomic systems,

99

there are more self-managing properties, such as self-configuration and self-

optimization need to be modeled. This future work will be an extension of this thesis.

4. We can also work on other Reactive Autonomic Systems Framework (RASF)

projects, such as modeling Reactive Autonomic Systems (RAS) to CAT, or proving

of MAS based CAT model is isomorphism to RAS based CAT model.

100

References

[KO08] Heng Kuang and Olga Ormandjieva. Self-Monitoring of Non-Functional

Requirement in Reactive Autonomic System Framework: A Multi-Agent Systems

Approach. Third International Multi-Conference on Computing in the Global

Information Technology (ICCGI‟08).

[KO09] Heng Kuang, Olga Ormandjieva, Stan Klasa, N. Khurshid, and J.Bentahar,

Towards specifying reactive autonomic systems with a categorical approach: a

case study. Studies in Computational Intelligence, Volume 253/2009, Springer

Berlin/Heidelberg, November 2009, 119-134.

[Hp01] P. Horn, “Autonomic Computing: IBM Perspective on the State of Information

Technology”, Presented at AGENDA 2001, IBM T. J. Watson Labs, October

2001.

[Sha11] Nassir Shafiel-Dizaji, “Multi-Agent Approach To Modeling And Implementing

Fault-Tolerance in Reactive Autonomic Systems”, Master Thesis of Concordia

University, 2011.

[Mur04] Murch, R. “Autonomic Computing”. IBM Press, 2004.

[TC04] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O.

Kephart, and S. R. White, “A Multi-Agent Systems Approach to Autonomic

Computing”, Proceedings of the 3rd International Joint Conference on

Autonomous Agents and Multi-Agent Systems, July 2004, Page 464 – 471.

101

[WH03] T. D. Wolf and T. Holvoet, “Towards Autonomic Computing: Agent-Based

Modeling, Dynamical Systems Analysis, and Decentralised Control”, Proceedings

of the 1st International Workshop on Autonomic Computing Principles and

Architectures, August 2003, Page 470 – 479.

[Fia98] Jose Luiz Fiadeiro. Categories for Software Engineering. Springer Berlin

Heidelberg New York. ACM Computing Classification, 1998.

[Wir90] M. Wirsing, Algebraic Specification, Handbook of Theoretical Computer

Science, Volume B, Elsevier and MIT Press, July 1990, Page 675 – 788.

[FM92] J. Fiadeiro and T. Maibaum, Temporal Theories as Modularisation Units for

Concurrent System Specification, Formal Aspects of Computing, Volume 4, No. 3,

May 1992, Page 239 – 272.

[OQ08] O. Ormandjieva and J. Quiroz, “Methodology for Automatic Generation of

Exhaustive Behavioral Models in Reactive Autonomic Systems”, Proceedings of

the International Conference on Software Engineering Theory and Practice,

Orlando, FL, USA, July 2008, Page 95 – 104.

[KC03] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing”,

Computer, Volume 36, No. 1, IEEE Computer Society Press, Los Alamitos, CA,

USA, January 2003, Page 41 – 50.

[KB10] HengKuang, Jamal Bentahar, Olga Ormandjieva, Nassir Shafieidizaji and Stan

Klasa. Formal Specification of Substitutability Property for Fault-Tolerance in

Reactive Autonomic Systems. V 9th International Conference on Software

Methodologies, Tools and Techniques (SoMeT'2010), Yokohama, Japan, Sept. 29

to Oct. 1st, 2010.

102

[NO10] Noorulain Khurshid, Olga Ormandjieva, Stan Klasa. Towards a Tool Support for

Specifying Complex Software Systems by Categorical Modeling Language. Book

Chapter in Studies in Computational Intelligence, LNCS, 2010.

 [OK06] O. Ormandjieva, H. Kuangabd E. Vassev, Reliability Self-Assessment in

Reactive Autonomic Systems: Autonomic System-Time Reactive Model Approach.

International Transactions on Systems Science and Applications, Volume 2, No. 1,

September 2006, Page 99-104.

[WJ95] Wooldridge, M. and Jennings, N. R. Intelligent agents: Theory and

practice. The knowledge Engineering Review, 10(2):115-152.(1995).

[Woo09] Michael Wooldridge. An Introduction to Multi Agent Systems. John Wiley &

Sons, 2009

[Syc98] K. P. Sycara.“Multi Agent Systems”, AI Magazine, Volume 19, No. 2, July 1998,

Page 79 – 92.

[PB07] Alexander Pokahr and Lars Braubach. Jadex User Guide. Distributed Systems

Group, University of Hamburg, Germany. (2007)

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer–Verlag:

New York, Heidelberg, Berlin. (1971).

[Eas99] Steve Easterbrook. An introduction to Category Theory for Software Engineers.

http://www.cs.toronto.edu/~sme/presentations/cat101.pdf/, 1999, Page 5–13.

 [AWO06] S. Awodey. Category Theory. Oxford University Press, July 2006.

[OMG] Object Management Group (OMG); Object Constraint Language OMG

Available Specification Version 2.0, May 2006

103

[Pfa05] Jochen Pfalzgraf. On Categorical and Logical Modeling in Multiagent Systems.

In George E. Lasker and D.M. Dubois, editors, Anticipative and Predictive

Models in Systems Science, volume 1. IIAS, 2005.

[PS07] Jochen Pfalzgraf, Thomas Soboll. On a General Notion of Transformationfor

Multiagent Systems. Integrated Design and Process Technology, IDPT-2007

Printed in the United States of America, June, 2007.

 [WE98] V. Wiels and S. Easterbrook, Management of Evolving Specifications Using

Category Theory, Proceedings of the 13th IEEE International Conference on

Automated Software Engineering, October 1998, Page 12 – 21.

[Awo06] S. Awodey, Category Theory, Oxford University Press, July 2006.

 [JS98] N. R. Jennings, K. P. Sycara, M. Wooldridge, “A Roadmap of Agent Research

and Development”, International Journal of Autonomous Agents and Multi-Agent

Systems, Volume 1, Issue 1, July 1998, Page 7 – 38.

[Kps98] K. P. Sycara, “Multi Agent Systems”, AI Magazine, Volume 19, No. 2, July 1998,

Page 79 – 92.

[WJ94] M. Wooldridge and N. R. Jennings, “Agent Theories, Architectures, and

Languages: a Survey”, Proceedings of the Workshop on Agent Theories,

Architectures, and Languages on Intelligent Agents, August 1994, Page 1 – 39.

[PB05] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: a BDI Reasoning Engine”,

Multi-Agent Programming, Springer, September 2005, Page 149 – 174.

 [SB02] R. Sterritt, D. Bustard, “Towards Autonomic Computing: Effective Event

Management”, Proceedings of the 27th Annual NASA Goddard/IEEE Software

Engineering Workshop, December 2002, Page 40 – 47.

104

[KD03] J. O. Kephart, D. M. Chess, “The Vision of Autonomic Computing”, Computer,

Volume 36, No. 1, January 2003, Page 41 – 50.

[SI07] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu, “Towards a Real-Time

Reference Architecture for Autonomic Systems”, Proceedings of the International

Workshop on Software Engineering for Adaptive and Self-Managing Systems,

May 2007, Page 10 – 19.

[IBM01] IBM Autonomic Computing Website.

http://www.research.ibm.com/autonomic/overview/

[Fau11] Fault-tolerant systems. http://en.wikipedia.org/wiki/Fault-tolerant_system

[GV79] J. A. Goguen and F. J. Verela, “Systems and Distinctions, Duality and

Complementarity”, International Journal of General Systems, Volume 5, No. 1,

January 1979, Page 31 – 43.

[Hil93] G. Hill, “Category Theory for the Configuration of Complex Systems”,

Proceedings of the 3rd International Conference on Methodology and Software

Technology, June 1993, Page 193 – 200.

[JD01] M. Johnson and C. N. G. Dampney, “On Category Theory as a (meta) Ontology

for Information Systems Research”, Proceedings of the International Conference

on Formal Ontology in Information Systems, October 2001, Page 59 – 69.

[CG06] R. Cervenka, D. Greenwood, and I. Trencansky, “The AML Approach to

Modeling Autonomic Systems”, Proceedings of the 2nd International Conference

on Autonomic and Autonomous Systems, July 2006, Page 29 – 34.

[RT04] P. E. Clark, M. L. Rilee, W. Truszkowski, G. Marr, S. A. Curtis, C. Y. Cheung,

and M. Rudisill, “PAM: Biologically Inspired Engineering and Exploration

http://www.research.ibm.com/autonomic/overview/

105

Mission Concept, Components, and Requirements for Asteroid Population

Survey”, Proceedings of the 55th International Astronautical Congress, October

2004, IAC-04-Q5.07.

[Fer99] J. Ferber, “Multi-agent systems: an introduction to distributed artificial

intelligence”. Addison-Wesley, 1999.

[AJ94] S. Abramsky, A. Jung (1994). "Domain theory". In S. Abramsky, D. M. Gabbay,

T. S. E. Maibaum, editors, (PDF). Handbook of Logic in Computer Science. III.

Oxford University Press. ISBN 0-19-853762-X. Retrieved 2007-10-13.

