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Abstract 

Modeling Multi-Agent Systems with Category Theory 
 

Jinzi Huang 

 

 

The rapidly growing complexity of integrating and monitoring computing systems is 

beyond the capabilities of even the most expert systems and software developers. The 

solution is systems must learn to monitor their own behaviors and conform to the 

requirements – a vision referred to as Autonomic Computing. Reactive Autonomic 

Systems Framework (RASF) is introduced for real-time reactive systems, which contain 

autonomic self-managing properties and are adaptive to their environments.  

The goal of this thesis is about modeling Multi-Agent Systems (MAS) with 

Category Theory (CAT).  MAS is introduced as the realization of Reactive Autonomic 

Systems, and Jadex is used as a representation of MAS approach. This thesis respects 

Belief-Desire-Intension (BDI) agent architecture, models the entire Multi-Agent Systems 

(MAS), zooms into individual intelligent agent, analyzes the relationships among agent 

plans, goals and beliefs, and provides a fully formal CAT representation on MAS 

structure. Furthermore, this thesis proposes a formalization of fault-tolerance property of 

MAS using CAT. 
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Chapter 1: Introduction  

 

 

This thesis is about modeling Multi-Agent Systems (MAS) with Category Theory (CAT). 

The work presented here is a part of a wide project about modeling and implementing 

Reactive Autonomic Systems using MAS and CAT. In this chapter, we will discuss the 

problems of complex software systems, context of research, motivations of using CAT as 

a formal method and tool to model MAS, research questions, and proposed approach.  

1.1. Problems Statement 

The rapidly growing complexity of integrating and monitoring computing systems, which 

are more and more large is beyond the capabilities of even the most expert systems and 

software developers. System and software complexity crisis is the main obstacle to 

further progress in IT industry, as the difficulty of managing complex and massive 

computing systems goes well beyond IT administrators‟ capabilities. Although current 

software engineering methodologies and programming language innovations have 

extended the size as well as complexity of computing systems, only relying on those two 

solutions will not get IT industry through the present software complexity crisis. The 

remaining option is: systems must learn to monitor their own behavior and conform to the 

requirements in conjunction with high-level guidance from humans – a vision referred to 

as autonomic computing [Hp01].  
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1.2. Context of Research 

Autonomic Computing. The term autonomic is derived from human autonomic nervous 

system that monitors heartbeat, blood pressure and body temperature without any 

conscious thought. This self-regulation and separation provides the ability for human 

beings to concentrate on high level objectives without managing specific details [HP01]. 

Similarly, autonomic computing is described as [Mur04]: The ability to manage 

computing enterprise through hardware and software that automatically and dynamically 

respond to the business requirements. This means self-healing, self-configuring, self-

optimizing, and self-protecting hardware and software that behave in accordance to 

defined service levels and policies. Just like the nervous system responds to the needs of 

the body, the autonomic computing system responds to the needs of the business. 

Therefore, IT professionals can focus on business oriented objectives instead of 

computing level tasks with implementation, configuration and maintenance details.  

The absence of a formal framework for autonomic systems based on a strong 

theoretical backbone has encouraged the authors of [KO08] to propose Reactive 

Autonomic Systems Framework.  

Multi-Agent System. A Multi-Agent System (MAS) is a software system possessing a 

number of autonomous agents that interact with one another and exchange messages 

through certain agent communication languages [Woo09]. Therefore, those agents 

require reactive, proactive, and social abilities, so that they can cooperate, coordinate, and 

negotiate with others through successful interactions. Agents are equipped with different 

beliefs, goals as well as motivations, and the MAS can achieve its goals, which are 

difficult to be reached by each individual agent.  
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Category Theory.  Category theory (CAT) is an area of study in mathematics that 

examines in an abstract way the properties of particular mathematical concepts, by 

formalizing them as collections of objects and arrows (morphisms). A category consists 

of the following components: 

o Objects: A, B, C, etc. 

o Morphisms: f, g, h, etc. 

o Domain and Codomain: For each arrow (morphism) f there are given objects:  

dom(f), cod(f) called the domain and codomain of f. We write: f: A → B to 

indicate that A = dom(f) and B = cod(f).b 

o Composition: Given arrows f: A → B and g: B → C, i.e. with: cod(f) = dom(g), 

there is a given arrow: g ◦ f: A → C, called the composite of f and g. 

o Identity: For each object A there is a given arrow 1A: A → A, called the identity 

arrow of A. 

These components are required to satisfy the following laws: 

o Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f, for all f : A → B, g : B → C, and h : C → D. 

o Unit: f ◦ 1A = f = 1B ◦ f, for all f: A → B. 

Reactive Autonomic Systems Framework. Reactive Autonomic Systems Framework 

(RASF) [KO08] was introduced to realize the vision of large-scale self-managing 

autonomic systems built from potentially very large numbers of highly autonomic and 

reactive, yet socially interactive, elements. To model, validate and implement the 

properties of RAS, new techniques have to be developed to add to existing formal 

methods and tools. RASF includes four basic components: RAS, MAS, CAT and Jadex, 

and consists of five stages as follows (Figure 1.1): 
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RAS

MAS

CAT

CAT

Jadex
 

Figure 0.1: Reactive autonomic systems framework: components and stages 

Stage 1: Using Category Theory (CAT) approach as a formal language to specify 

RAS‟ autonomic behavior. 

Stage 2: Using Multi-Agent Systems (MAS) to design and implement RAS. A Mapping 

from RAS to MAS aims at reducing the gap between the formal specification of RAS 

and its implementation. 

Stage 3: Applying CAT to formalize MAS’ autonomic behavior. 

Stage 4: Proving the isomorphism between the two categorical models mapped 

respectively from RAS and MAS. This step will guarantee that the autonomic 

behaviors of MAS translated from RAS are correct. 

Stage 5: Implementing the created MAS with Jadex.  

This thesis focuses on stage 3 “Modeling MAS to CAT”, whereas stages 2 and 5 have 

been implemented in [Sha11], stage 1 is described in [SERA 2009, SoMeT 2010, 

ASAP 2010], and stage 4 is the future work.  

 

1.3. Motivation 

Category Theory (CAT) has been introduced and used as a framework in many areas of 

computer science and software engineering fields [Fia98]. This framework offers a 

Stage 4 Stage 2 

Stage 5 

Stage 3 

The focus of this thesis 

Stage 1 
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structure for formalizing large specifications and provides composition primitives in both 

algebraic [Wir90] and temporal logic specification languages [FM92]. Category theory 

has a rich body of theory to reason about objects along with their relations (specifications 

as well as their interactions), and is abstract enough to capture a wide range of different 

specification languages. Moreover, with category theory and its own properties, 

automation can be achieved, for example, the composition of two specifications can be 

derived automatically.  

The motivation of using Category Theory (CAT) to model Multi-Agent Systems 

(MAS) and Reactive Autonomic Systems (RAS) in Reactive Autonomic Systems 

Framework (RASF) is that CAT is considered as a formal modeling method and powerful 

tool for abstracting from individual components to specifications and capturing the 

interactions and compositions among those components in a natural way, which cannot 

be done using some other semi-formal languages (i.e UML). By comparing the two 

CATs obtained respectively from RAS (stage 1) and MAS (stage 3), we can check the 

correctness of RAS transformation to MAS. Another important motivation of using CAT 

is category theory from mathematical point of view is the study of (abstract) algebras of 

functions, so using this theory allows us to focus on the morphisms or relationships 

among objects, instead of concentrating on objects‟ representations, which is suitable for 

agent-based systems, since communication among agents is a first-class concept [PB07].  

The motivation behind using MAS in RASF is mainly due to the fact that the MAS 

approach is well suited for autonomic computing systems because the ability of an 

autonomous agent can be easily mapped to self-managing behaviors in autonomic 

systems, where agents provide natural solutions to model autonomic components. In 
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addition, the ability of MAS to manage interactions among components explicitly and 

control them in a flexible way provides a solution for the distributed complexity [TC04]. 

Autonomic systems can adapt many features and properties from MAS, such as emergent 

behavior, automatic group formation, agent coordination, agent adaptation, virtual 

localization, knowledge mining, interfacing, and evolution [WH03]. 

1.4. Research Questions 

We are aiming to address the following research questions in this work: 

1. How can each agent be modeled with CAT? 

a. What are the components of each agent? 

b. How do we model each component with CAT? 

c. How do we model the relations among the components with CAT? 

2. How can MAS be modeled with CAT? 

a. What are objects and morphisms to be used to capture the transformation from 

MAS to CAT? 

b. Since agents and their communication can be classified into different types, how 

do we model these types with CAT? 

3. How can CAT represent MAS properties? 

1.5. Proposed Approach and Contribution 

Our goal of this thesis is to provide modeling assistance as a foundation for the graphical 

formalization of the MAS requirements (both functional and non-functional), their 

interrelations and change management within the MAS life cycle, in terms of Category 

theory. This goal can be distributed into the following objectives:  
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1. Modeling Agent with CAT [Chapter 3] 

a. Modeling agent‟s plans, goals, and beliefs with CAT 

b. Modeling relations between plans and goals, plans and beliefs, and goals and 

plans with CAT 

2. Modeling MAS with CAT [Chapter 3] 

a. Modeling relations between agents  

b. Applying Type Category in MAS 

3. Modeling robotic fault-tolerance with CAT [Chapter 4] 

Figure 1.2 illustrates the proposed approach of this thesis. 

 

Figure 0.2: The schema of the proposed approach 

  

Apply Type (2.b) 

Apply Type (2.b) 

Model plan (1.a) 

Model goal (1.a) 

Model belief (1.a) 

Model Agent with CAT (1) 

: Model the relations (1.b) 

Model MAS with CAT (2) 

Agent  

Agent  

Type CAT Model the relations (2.a) 

Built with 

Modeling robotic fault-tolerance (3) 

Chapter 3 

Chapter 4 

Case 

Study 
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1.6. Outline 

The thesis is organized as follows. In Chapter 2, we introduce the basic concepts of 

autonomic computing, multi-agent system, reactive autonomic system, category theory 

and description of a case study. Chapter 3 is the core of this thesis that presents the 

modeling of MAS by using CAT concepts, which includes mapping agent‟s plans, goals, 

and beliefs to our defined categories. We also prove some properties of the category 

representation. In Chapter 4, we introduce robotic case study, more specifically its fault-

tolerance property, and the corresponding modeling with the CAT concepts introduced in 

Chapter 3. In Chapter 5, we briefly review the related work on using category theory to 

formalizing multi-agent systems and conclude this thesis with a short summary of the 

presented work and an outline of future work directions.  
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Chapter 2: Background 

 

 

In this chapter, we will introduce the backgrounds concerning autonomic computing, 

reactive autonomic systems, category theory and multi-agent systems required to 

understand the remaining chapters of this thesis. In particular, we will use the definitions 

of autonomic computing and reactive autonomic systems framework [Mur04 KO08], 

introduce multi-agent systems and Jadex implementation environment [Woo09 PB07] and 

use category theory [Awo06] as formal modeling language. Interested readers can refer 

to [Mur04 KO08 Woo09 PB07 Awo06] for a more detailed discussion. 

2.1. Autonomic Computing 

Within the past three decades, the developments of computer hardware and software have 

grown at exponential rates as software requirements are getting more intricate. As a result, 

these phenomenal growths along with the advent of the Internet have led to a new age of 

accessibility - to people, systems, and most importantly, to information. These growths 

have also led to unprecedented levels of complexity. This complexity is derived from the 

following aspects: 

o The need to integrate several heterogeneous software environments into one 

cooperated computing system, and to extend trillions computing devices connected to 

the Internet. 
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o  The rapid stream of changing and conflicting demands at runtime requires timely 

along with decisive responses. 

o As the growing uncertainty of software environments due to unpredictable, diverse 

and interconnected computing systems, it is very difficult to anticipate and design 

interactions among the elements of those systems. 

The simultaneous explosion of information and integration of technology into 

everyday life has brought on new demands for how people manage and maintain 

computer systems. This brings difficulties to design, develop, and maintain software 

systems. Currently this volume of complexity is managed by highly skilled humans; but 

the demand for skilled IT personnel is already outstripping supply. From both economic 

and software development points of view, a solution for software system with self-

managing characteristics is urgently necessary.  

2.1.1. Autonomic Computing Definition  

IBM has introduced a new paradigm for the future of computing-- "autonomic 

computing" [Mur04]. The main idea behind autonomic computing is to shift the 

fundamental definition of the IT technology from one of purely computing to one defined 

by data. Access to data from both distributed and centralized sources will allow users to 

transparently access information when and where they need it. Furthermore, this new 

computing vision and paradigm will require changing the industry's focus on processing 

speed and storage to one of developing distributed systems that are largely self-managing, 

self-diagnostic, and transparent to the user. Autonomic computing is not a totally new 

technology, but a goal-oriented and holistic computing paradigm that aims at developing 

computer systems having a high degree of autonomy. Thus, autonomic computing is not 
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a conventional computer systems project, but a visionary approach that groups existing 

technologies together to achieve a common goal [SB02]. 

The term autonomic is derived from human autonomic nervous system that monitors 

heartbeat, blood pressure and body temperature without any conscious thought. This self-

regulation and separation provides the ability for human beings to concentrate on high 

level objectives without managing specific details 

Similarly, autonomic computing is described as [Mur04]: “The ability to manage 

computing enterprise through hardware and software devices that automatically and 

dynamically responds to the business requirements. This means developing and 

managing self-healing, self-configuring, self-configuring, self-optimising, and self-

protecting hardware and software systems so that they behave in accordance to defined 

service levels and policies. “Just like the nervous system responds to the needs of the 

body, the autonomic computing system responds to the needs of the business”. 

2.1.2. Autonomic Computing Characteristics 

The essence of autonomic computing systems is self-management that can be achieved 

by realizing self-configuration, self-healing, self-optimization and self-protection. 

o Self-Configuration [KD03]: Autonomic computing systems are able to configure 

themselves automatically according to high level policies representing business level 

objectives, which specify what is required instead of how they are implemented. For 

instance, after a new element joins, it automatically learns composition as well as 

configuration of the system and registers itself in terms of being used by other 

elements. 
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o Self-Healing [KD03]: Autonomic computing systems can detect, manage and repair 

bugs or failures in software as well as hardware systems. For example, a problem 

diagnosis component analyzes information from log files or monitors by using system 

knowledge, and then compares the diagnosis against system patches or alerts IT 

professionals. Finally, the system installs the appropriate patches followed by a 

suitable test.  

o Self-Optimization [KD03]: Autonomic computing systems are able to improve their 

operations and make themselves more efficient in performance or cost. For example, 

they can monitor, test and tune their parameters; they also can proactively upgrade 

their functions through finding, verifying, applying and validating the latest updates. 

o Self-Protection [KD03]: Autonomic computing systems can protect the whole system 

against malicious attacks and failures uncorrected by self-healing; they are also able to 

predict and anticipate problems according to early reports from sensors and react to avoid 

or mitigate them. 

IBM has addressed some benefits of Autonomic computing [IBM01]. In short-term, it 

will reduce dependence on human intervention to maintain complex systems 

accompanied by a substantial decrease in costs. In long-term it will allow individuals, 

organizations and businesses to collaborate on solving complex problems. 

2.2. Reactive Autonomic Systems (RAS) 

Reactive Autonomic System (RAS) was introduced by the authors of [KO08], which 

includes four tiered components: Reactive Autonomic Object (RAO), Reactive 

Autonomic Component (RAC), Reactive Autonomic Component Group (RACG) and 

Reactive Autonomic System (RAS), which are shown by a package diagram in Figure 2.1. 
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Since RASF is a layered framework, each tier only can communicate with the same tier 

or the tier immediately above or below. With this design methodology, the system 

obtains modularity, encapsulation, hierarchical decomposition and reusability. 

Additionally, autonomic behavior is implemented by the RAO Leaders (RAOL), RAC 

Supervisors (RACS), and RACG Managers (RACGM) at the RAC, RACG, as well as RAS 

tiers.  

RAS

RACG

RACGM RACS

RAC

RAORAORAOL

 

Figure 0.1: Reactive autonomic system package diagram 

RAO is Reactive Autonomic Object, which is modeled as a label transition system 

augmented with ports, time constraints, attributes, and logical assertion on those 

attributes [OQ08]. RAC is Reactive Autonomic Component, which includes 

synchronously communicated RAOs, and where one of the RAO is assigned as a leader 

(RAOL) for the remaining RAOs. RAOs are mainly responsible for reactive tasks, while 

RAOL works on autonomic tasks [KO08]. RACG is Reactive Autonomic Component 

Group, which is constructed by centralized or distributed RACs, and the communication 

between RACs has to be synchronous. RAC is the minimal reactive autonomic element, 

which can independently accomplish complete reactive tasks in the RAS meta-model. 

Each RACG has a special RAC acting as the group supervisor (RACS) and all other RAC 

within the same group are under its supervision. RAS is the entire system, and it includes 
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all the centralized or distributed RACSs with asynchronous communication. Within each 

RAS, a special RAC will be assigned as the system manager (RACGM). RAOL, RACS, and 

RACGM ensure autonomic tasks are done by intelligent control loops [KC03] modeled as 

labeled transition systems, where a set of states specifies their task status; a set of events 

introduces triggers from a state to another and a set of transitions representing states 

sequence under certain time constraints [KO08]. 

2.3. Multi Agent Systems 

The Multi-Agent System (MAS) approach is well suited for autonomic computing 

systems since agent-based computing is a natural way to model autonomic systems. In 

fact, the ability of an autonomous agent can be easily mapped to self-managing behaviors 

in autonomic systems. In addition, the ability of MAS to engineer interactions among 

components explicitly and control them in a flexible way supports a more distributed 

complexity [TC04]. Autonomic systems can adapt many features and properties from 

MAS, such as emergent behavior, automatic group formation, agent coordination, agent 

adaptation, virtual localization, knowledge mining, interfacing, and evolution [WH03]. 

In this section we will discuss agent and multi-agent systems, agent architecture, and 

Jadex (the agent-oriented programming applied to Beliefs, Desires, and Intentions (BDI 

model). 

2.3.1. Autonomous Agent 

An agent is defined as a computer system functioning within an environment, and is 

capable of performing independent autonomous actions in order to achieve its design 

objectives [Woo09]. Agents embody a stronger notion of autonomy than objects do in 

object-oriented paradigm, and in particular, they make decision for themselves whether 
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or not they need to perform an action requested by another agent. Moreover, agents are 

able to control their internal states and own behaviour; they experience environment 

through their sensors and act by effectors. 

An autonomous agent is an agent with the following properties [JS98]: 

o Reactive: the agent should perceive its environment and respond in a timely way to 

the environment changes; 

o Proactive: the agent should not simply respond to its environment but take initiatives 

and be capable to show opportunistic and goal-directed; 

o Social: the agent should be able to interact with other agents or users when 

appropriate to complete it and help others with their activities. 

2.3.2. Multi-Agent Computing 

A Multi-Agent System (MAS) is a software system possessing a number of autonomous 

agents that interact with one another and exchange messages through certain agent 

communication languages [Woo09]. Therefore, those agents are required to be reactive, 

proactive, and social, so that they are able to cooperate, coordinate, and negotiate with 

others. The agents act on behalf of users having different and maybe conflicting goals as 

well as motivations, and the MAS can achieve its goals, which are difficult to be reached 

by each individual agent. The characteristics of the MAS are [JS98]: 

o Each agent has incomplete information or capabilities for solving problems. 

o There is no global system control. 

o Data is decentralized. 

o Computation is asynchronous. 

The increasing interest in the MAS research is mainly justified by [JS98]:  
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o Solving problems that are too large for a centralized agent to solve because of 

resource limitations, performance bottlenecks, or single-point of failures. 

o Allowing for interconnection and interoperation of multiple existing legacy systems. 

o Solving problems in which data, expertise, or control is distributed. 

o Solving problems that can be naturally regarded as a society of autonomous 

interacting components or agents. 

2.3.3. Agent Architecture 

How the agent can be decomposed into a set of component modules and how these 

modules communicate with each other are specified by the agent architecture. According 

to [Woo09] three categories should be distinguished: 

o Deliberative agent architecture: an agent develops plans and makes decisions through 

logical reasoning and uses logical and mathematical representations of the 

environment. Belief-Desire-Intention (BDI) architecture is one of the main 

deliberative agent architectures. 

o Reactive agent architecture [WJ94]: an agent acts based on stimulus-response rules 

and it does not need to represent its environment logically. In this architecture, agents 

are able to take parts in interactions with their environment and respond to its changes. 

o Hybrid agent architecture: an agent is able to act both deliberatively and reactively. In 

this architecture, agent designers merge deliberative techniques through symbolic 

representations and reactive techniques through stimulus-response techniques, so 

agents can reacting to events without performing complex reasoning. 

The BDI architecture is a philosophical model for describing rational agents [104], 

and it contains specific denotation of Beliefs, Desires and Intentions. The architecture 
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addresses how Beliefs, Desires and Intentions are represented, updated, processed, and 

interact with one another. In the BDI architecture, agents with particular mental attitudes 

are able to choose appropriate actions based on their capabilities and internal states. 

Beliefs indicate the agent beliefs about its surroundings, which include the 

environment and other agents. The Beliefs also include inference rules, which allow 

acquiring new beliefs. However, unlike knowledge, beliefs may be not true.  

Desires are goals that agents would like to achieve, and they are the motivational 

state of those agents.  

Intentions are the targets of agents, and they indicate what the agents have chosen to 

do, which represent the deliberative state of those agents. In an implemented system 

(such as Jadex), the Intentions are described as executable plans, which include 

sequences of actions performed by an agent in order to achieve one or more desires.  

When new information arrives, agents can update their beliefs or desires. The new 

beliefs or desires are able to trigger certain actions, but only one intended action is 

selected as well as activated. After executing that action, the intentions of those agents 

are updated, and the new beliefs or desires are stored. 

2.3.4. Jadex BDI Agent System 

Jadex, a Java-based and FIPA-compliant agent environment, allows modeling goal-

oriented agents according to the BDI architecture. In the abstract Jadex architecture 

[PB07], an agent is able to communicate by sending and receiving messages. The 

received messages or goal events can trigger the internal reaction as well as deliberation 

mechanism of the agent, which dispatches those events to the plans selected from a plan 



18 

 

base. Running plans may access and modify a belief base, exchange messages with other 

agents, create new goals, and trigger internal events [PB07]. 

Jadex provides infrastructure allowing the use and exploitation of the BDI model in 

the context mainstream programming, by introducing beliefs, goals and plans as first 

class objects that can be created and manipulated inside the agent definition. In Jadex, 

agents have beliefs, which can be any kind of Java objects and are stored in a belief base. 

Goals represent the concrete motivations (e.g. states to be achieved) that influence an 

agent's behavior. To achieve its goals, the agent executes plans, which are java programs. 

The abstract architecture of a Jadex agent is depicted in Figure 2.2 [PB07]. 

 

Figure 0.2: Jadex abstract architecture [PB07] 

Belief: beliefs in Jadex are a set of facts that make up the knowledge of an agent. 

Unlike other BDI-based multi-agent systems, where beliefs are represented by certain 

kind of first-order predicate logic (e.g. Jason) or relational models (e.g. JACK), the 
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beliefs in Jadex is a storage of knowledge as a database for an agent. Those beliefs cannot 

support any inference mechanism.  

Goal: goals in Jadex are central concepts and not just a special type of event as in 

pure BDI-based multi-agent systems. Agents are goal-oriented, so they are able to engage 

into some actions for their goals until they are achieved, unreachable, or undesired. A 

goal lifecycle consists of the following states [PB05]: option, active, and suspended, 

which can distinguish between just adopted and actively pursued goals. When a goal is 

adopted, it becomes an option added to the desire structure, and application specific goal 

deliberation mechanisms are responsible for managing the state transitions of all adopted 

goals.  

Plan: plans are java procedures used to specify agents‟ actions towards achieving 

their goals. Jadex uses a plan-library approach to represent the agents‟ plans, which are 

predefined by developers. Those plans are specified in terms of handling events, 

achieving goals, and building action libraries for the agents.  

2.4. Category Theory  

In this thesis, category theory is used to specify and formalize MAS for autonomic 

systems. In this section, we provide an overview of this theory, which is needed to 

understand the rest of the thesis. Category theory has been introduced and used as a 

framework in many areas of computer science and software engineering fields [Fia98]. 

This framework offers a structure for formalizing large specifications and provides 

composition primitives in both algebraic [Wir90] and temporal logic specification 

languages [FM92]. Category theory has a rich body of theory to reason about structures 

(that is objects along with their relations) and is abstract enough to represent a wide range 



20 

 

of different specification languages. Moreover, automation may be achieved in category 

theory, for example, the composition of two specifications can be derived automatically. 

Category theory for software specification has adopted a correct by construction 

approach by which components are specified, proved, and composed in the way of 

preserving their properties [WE98].  From mathematical point of view, category theory is 

a study of (abstract) algebras of functions.  So using category theory helps us to focuses 

on the morphisms or relationships between objects, instead of concentrating on objects‟ 

representations. 

2.4.1. Definition of Category  

Definition 2.1 [Awo06]: A category consists of the following components: 

o Objects: A, B, C, etc. 

o Morphisms: f, g, h, etc. 

o Domain and Codomain: For each arrow f there are given objects:  dom(f), cod(f) 

called the domain and codomain of f. We write: f: A → B to indicate that A = dom(f) 

and B = cod(f). 

o Composition: Given arrows f: A → B and g: B → C, i.e. with: cod(f) = dom(g), there 

is a given arrow: g ◦ f: A → C, called the composite of f and g. 

o Identity:  For each object A there is a given arrow 1A: A → A, called the identity arrow 

of A.  

These components are required to satisfy the following laws: 

o Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f, for all f : A → B, g : B → C, h : C → D. 

o Unit: f ◦ 1A = f = 1B ◦ f, for all f: A → B. 
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Definition 2.2 [Awo06]: A functor F: C → D between categories C and D is a mapping 

of objects to objects along with morphisms to morphisms in the way of:  

1) F(f: A → B) = F(f) : F(A) → F(B); 2) F(g ◦ f) = F(g) ◦ F(f); 3) F(1A) = 1F(A). 

Definition 2.3 [Awo06]: in any category C, an arrow f: A → B is called an isomorphism 

if there is an arrow g: B → A in C such that g ◦ f =1A and f ◦ g =1B. Since inverses are 

unique, g =f
−1

. A is isomorphic to B: A≅B if there exists an isomorphism between them. 

Definition 2.4 [Awo06]: in any category C, an object is called initial object “I” if for any 

object “X” in C, there is a unique morphism I → X. 

Definition 2.5 [Awo06]: in any category C, an object is called terminal object “T” if for 

any object “X” in C, there is a unique morphism X → T. 

Definition 2.6 [Awo06]: the Category of sets is the category whose objects are sets. The 

arrows or morphisms between sets A and B are all functions from A to B. 

Definition 2.7 [Eas99]: discrete category is a category where the morphisms are only 

identity morphisms. For example, suppose X and Y are different objects in category C, 

morphism from X to X only can be X‟s identity morphism, and morphism from X to Y will 

not exists, which means: 

mor (X, X) = {idX} for all objects X, and 

mor (X, Y)= ∅ for all objects X≠ Y. 

2.4.2. Type Category 

Definition 2.8 Type is a category whose objects represent the object types denoted by 

ObjType(Type), and whose morphisms represent the morphism types denoted by 

MorType(Type). MyCategory is a category whose objects are denoted by 

Obj(MyCategory) and morphisms denoted by Mor(MyCategory). There is a functor F 
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from MyCategory to Type which maps each object of MyCategory to a type (an object of 

Type): F(Obj(MyCategory)) = ObjType(Type), and maps each morphism of MyCategory 

to a type (a morphism of Type): F(Mor(MyCategory)) = MorType(Type). 

A
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u
v

w

MyCategory

Type1
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TypeCategory

Type2

Type3

d

e

F

 

Figure 0.3: Type category example 

For example, in Figure 2.3, a type category called TypeCategory contains objects: 

typeA, typeB and typeC; type m morphisms: c and d, and type n morphisms: a, b and e.  

MyCategory contains objects: A, B, C and D, and morphisms: u, v, w, x and y. Functor F 

maps MyCategory objects and morphisms to types in TypeCategory: F(A) = Type1, F(B) 

= Type1, F(C) = Type2, F(D) = Type3, F(u) = e (type n), F(v) = b (type m), F(w) = d 

(type m), F(x) = a (type n) and F(y) = c (type m). 

2.4.3. Null Object in Category  

In Chapter 3, we use a special object, called ObjectNull to help category to catch 

exceptions. There is no difference between ObjectNull and other categories‟ objects, 

except that ObjectNull doesn‟t have any real meaning or content, and it doesn‟t have any 

relationship with other object.  ObjectNull and its identity morphism are useful for 

catching “non-useful” or “non-related” objects and morphisms from other categories 

through defined functor (relation).  

Figure 2.4 is an example of using ObjectNull. MyCategory A contains objects: A, B, C, 

D and ObjectNull, and morphisms: a, b, c, d and e. MyCategory B has objects: A, B, C and 
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ObjectNull, and morphisms: a, b and c. Functor H maps MyCategory A objects and 

morphisms to MyCategory B: H (A) = A, H (B) = B, H (C) = C, H (D) = ObjectNull, H 

(ObjectNull) = ObjectNull, H (a) = a, H (b) = b, H (c) = c, H (d) = id ObjectNull and H (e) = 

id ObjectNull. From this example, we can see MyCategory B contains all the objects and 

morphisms of MyCategory A, except object D and its related morphisms d and e.  
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Figure 0.4: Null Object in Category 

2.4.4. PATH Category  

Before we introduce the PATH category needed in the next chapter, we need to have 

some background knowledge about directed graphs. A directed graph G is a set O of 

objects called vertices or nodes, and a set A of ordered pairs of vertices are called arrows 

or directed edges [Mac71].  Every arrow diagram or directed graph can be interpreted as 

a category named PATH, whose morphisms are sequences (paths) of arrows. One can 

create a directed graph by drawing an arrow from x to y where x, y ∈ a same set X, which 

can be associated with the category denoted by PATH (X) or PATH [PS07]. The objects 

are elements in X and the morphisms are all sequences (paths) of adjacent arrows. This 

naturally defines a composition of arrows. This viewpoint leads to a general categorical 

semantics for relational structures. Vice versa, every category is a graphical structure 

(with nodes and arrows).  
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Figure 2.5 is an example of PATH. For morphisms (arrows) f: x → y, g: y → z and 

morphism k: x → z, if f, g and k are of the same type, then k is not considered as a direct 

arrow since k equals to the sequence (path) of consecutive arrows (f and g).  By the 

definition of PATH, the lengths of the sequences f and g are one, and the length of k is 

two. The existence of the identity arrow for each object will always be assumed by 

definition, and it can be interpreted as sequences of length zero.  

X

Y Z

f

g

k

 

Figure 0.5: Example of PATH Category 

2.5. From Autonomic Systems to Category Theory and Multi-

Agent Systems 

Implementing Reactive Autonomic System Framework (RASF) has led to propose a 

methodology including four basic components: RAS, MAS, CAT and Jadex, and consists 

of five stages (Figure 2.6): 

o CAT (category theory) approach will be used as a formal language to specify RAS‟ 

autonomic behaviour. 

o MAS (multi-agent systems) will be introduced to design and implement RAS. A 

Mapping from RAS to MAS will reduce the gap between the formal specification of 

RAS and its implementation. 

o CAT will be applied for formalizing MAS’ autonomic behaviour. 
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o Proving that the two categorical representations mapped from RAS and MAS are 

isomorphic. This step will guarantee the autonomic behaviours of RAS and MAS are 

the same. 

o At the end, an implementation with Jadex code will be created. 

RAS

MAS

CAT

CAT

Jadex
 

Figure 0.6: Reactive Autonomic System Project 

Figure 2.7 shows the general mapping from RAS to MAS: the elements within MAS 

are layered too, reactive autonomic system (RAS) is mapped to multi-agent system 

(MAS); reactive autonomic component group (RACG) is mapped to sub-multi-agent 

system (sub-MAS, which is a sub group of agents); reactive autonomic components 

(RAC) are mapped to agents; and reactive autonomic objects (RAO) are mapped to agents‟ 

plans, goals and beliefs. A MAS comprises centralized or distributed sub-MAS, which are 

differentiated by their responsibilities/goals/tasks. A sub-MAS contains agent(s), and the 

agents are grouped by common tasks/goals and differentiated by their individual roles. 

An agent includes various plans based on agents believes, goals, events and environments.   

Plan

AgentAgent

Sub-MASSub-MAS

MASMAS

RAO

RACRAC

RACGRACG

RASRAS

 

Figure 0.7: An idea of mapping RAS to MAS 
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Figure 2.8 is a package diagram of MAS which reflects the RAS hierarchy.  It exhibits 

a static global view of the overall system. The basic components for the system are: 

system manager agent, supervisor agent, and regular agent.  Interested readers can refer 

to [Sha11] for detailed discussion. 

System manager agent is the most essential part that acts as a brain for the overall 

system. It governs and manages the entire system, and has the most global view which 

allows it to control and monitor any other agent within the system. It guarantees that the 

whole system is running correctly.  

Supervisor agent exists within each multi-agent group – sub-MAS. It is the group 

leader that manages the group. It plays a similar role as the system manager agent, but 

with limited power and localized view of the entire system.  

Regular agent is the worker within multi-agent society. Unlike supervisor agent or 

system manager agent, worker agents perform actual jobs, obey orders and report events.  

Each agent in this package has goals, beliefs and plans components. We chose Jadex 

BDI architecture to model and specify agents as discussed earlier in this chapter.  

MAS

Sub-MAS
System 

Manager Agent Supervisor Agent

PlansGoals

Agent

Goals

Beliefs

Plans Beliefs

 

Figure 0.8: A MAS representation 
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Agents communicate with each other in order to work together to perform different 

tasks. Agents are hierarchical (Figure 2.9): regular agents are in the bottom level, and 

system manager agent is in the up level. Agents can only communicate with the agents in 

the same level or the level directly below or above. In this case, system manager agent 

can only converse with supervisor agents, regular agents are only able to communicate 

with supervisor agents, and supervisor agents have the ability to send messages to both 

system manager agent and regular agents. This design strategy reduces the coupling 

between agents‟ communications, and assigns system with modularity, encapsulation, 

hierarchical decomposition and reusability. 

System 
manager 

agnet

Regular agents

Supervisor agnets

 

Figure 0.9: Hierarchical agents 

In autonomic computing multi-agents system (ACMAS), there are two different 

communication types: local communication and global communication. Local 

communication happens only within a group (sub-multi agent system). Inside a group, 

regular agents communicate with each other to cooperate. If communication issues 

happen between regular agents, error report messages will be sent to supervisor agent by 

concerned regular agents. Based on its beliefs, the supervisor agent will make a decision 

and send messages back to the regular agents. For example, Table 2.1 and Figure 2.10 

represent a local communication use case. 
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Use Case  Agents A requests  Agents B to work together in a same group 

Scenario Step Action 

 1 Agent A sends a request to ask for Agent B‟s help on 

performing a task together 

 2 Agent B refuses to make an agreement with Agent A 

because it is busy on working on its own task 

 3 Both Agent A and Agent B send reports with explanations 

to their Supervisor Agent 

 4 Supervisor Agent sends back its decision to Agent A and 

Agent B, which is Agent B has to abandon its current job 

and work together with Agent A 

Post 

condition 

After Agent A and Agent B receive the decision from Supervisor 

Agent, they will start working together 

Table 0.1: Agents local communication 

Sub-MAS

Agent A Agent B

1

4 4

Supervisor 
Agent 

Agent C

3
3

2

 

Figure 0.10: Agents local communication 

The second case is global communication, which happens between different sub-

multi agent systems (subMAS). Regular agents are forbidden to communication with 
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other groups‟ agents, unless there are some well-defined pre-conditions that clearly 

address situations in which regular agents can have global communication. For example 

Agent A and Agent B are regular agents, and they are from two different sub-multi agent 

groups. In general, they should not able to communicate with each other, but in order to 

avoid collision, they have ability to contact each other when they are too close. 

Supervisor agents have ability to communicate with other supervisor agents, and system 

manager agent, but they are not allowed to have contacts with regular agents, which are 

in different groups, except there are some well-defined exceptional situations. System 

manager agent has the ability to get in touch with supervisor agents. For example, Table 

2.2 and Figure 2.11 represent a global communication use case.  

 

Use Case  Agents A requests to work with Agents B who is from different 

groups 

Pre-condition Regular Agent A needs to work with Agent B, but they belong to 

two different groups and their communications are limited. 

Scenario Step Action 

 1 Agent A reports “working with Agent B” request to its 

own Supervisor Agent SA 

 2 Supervisor Agent SA accepts Agent A‟s and negotiates 

with Agent B‟s Supervisor Agent SB 

 3 Supervisor Agent SB accepts Supervisor Agent SA‟s 

request  

 4 Supervisor Agent SA sends decided message to Agent A  



30 

 

 5 Supervisor Agent SB sends decided message to Agent B 

Exception Step 3 Supervisor Agent SA and SB cannot make a decision 

Exception  Steps  

3.1  Supervisor Agent SA and SB inform the 

system manager agent the situation  

3.2 System Manager Agent proposes a solution 

and delegates it back to Supervisor Agents 

SA and SB 

Post-

condition 

Agent A and Agent B will either have communication ability and 

start to work together or perform other actions based on the 

decision message 

Table 0.2: Agents global communication 

MAS

System 
Manager 

Agent

Sub-MAS 1

Supervisor 
Agent SA

Agent A

Sub-MAS 2

Supervisor 
Agent SB

Agent B

1

2

3.1 3.1

3.2 3.2

4 5

3

 

Figure 0.11: Agents global communication 
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2.6. Case Study 

In Chapter 4, we will model a fault-tolerance property with CAT, and this property is 

based on a robotic case study “Marsworld” [Fer99]. This case study describes a group of 

agents (which are robot in this case) cooperation together to accomplish ore exploitation 

goal on the Mars planet. Based on different rolls, agents are classified into three major 

types: sentry agent, production agent, and carry agent. In order to match the design of 

RASF and better illustrate our approach, we added two more types: system manager agent 

and group supervisor agent. System manager agent directly receives commands from 

earth and assigns the orders to different group supervisor agents. Group supervisor 

agents will ask sentry agents start searching ore mine by the given location. The detailed 

scenarios are described as following use cases (Table 2.3, 2.4, 2.5, and 2.6): 

Use Case  Detect and analyze ore mines 

Description Sentry agents have a sensor to detect and analyze ore mines, 

and they will inform production agents the valid ore location. 

Goal Sentry agents detect and analyze ore mines successfully. 

Actors Sentry agents 

Pre-conditions Sentry Agents are functional. 

Main Scenario 1. Group supervisor agent calls Sentry Agents for searching 

and analyzing ore mines. 

2. Sentry agents move around and looking for ores. 

3. Sentry agents analyze found ores. 

4. Sentry agents call Production Agent to produce ores which 

are exploitable. 

Post-condition Amount of ores is delivered to base station. 

Table 0.3: Detect and analyze ore mines use case 
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Use Case  Produce ore 

Description Production agents start performing produce ores task after 

receive messages from Sentry agents, and they will call carry 

agents to transport the produced ore to home base. 

Goal Production agents produce ore successfully. 

Actors Production agents 

Preconditions Sentry agents have detected ore mines and analyzed the mines 

are exploitable. 

Main Scenario 1. Production agents receive calls from sentry agents. 

2. Production agents move to the mine location and start 

producing ores. 

Post-condition Amount of ores is produced by Production Agents. 

Table 0.4: Produce ore use case 

 

Use Case  Delivery ore 

Description Carry agents start performing delivery ores task after receive 

calls   from production agents, which contain the location and 

amount of the ore mines. 

Goal Carry agents delivery Ore successfully 

Actors Carry agent 

Pre-conditions Amount of ores is produced by production agents. 

Main Scenario 1. Carry Agents receive calls from production agents. 

2. Carry Agents move to the mine location and start delivery 
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ores to base. 

Post-condition Amount of ores is delivered to base station. 

Table 0.5: Delivery ore use case 

 

Use Case Recover damaged carry agent 

Description Carry agent “Carry1” is demanded, but the fault-tolerant 

property [Fau11] enables the system won‟t be affected by the 

failure. 

Goal System continue operating properly 

Actors Carry agents from the same group: “Carry1” and “Carry2” 

The group supervisor agent: Supervisor 

Pre-conditions Carry1 does not perform its tasks correctly 

Main Scenario 1. Supervisor sends messages to Carry1 and asks it to restart 

from its default stage 

2. Carry1 reboots itself. 

Exceptions 2. Carry1 doesn‟t have any reactions to Supervisor‟s message 

2.1 Supervisor communicates with carry agent Carry2 in the 

same group and asks Carry2 to take-over the duties of 

Carry1.   

Post-condition Carry1 is restarted, or take over by Carry2 

Table 0.6: Recover damaged carry agent use case 

  



34 

 

Chapter 3: Modeling Multi-Agents System by 

Category Theory 

 

3.1. Introduction 

In this chapter, we will introduce categorical modeling of multi-agent systems. We will 

zoom into agent‟s structure, and represent its main concepts: plans, goals and beliefs, and 

their relationships via category theory.  At the end we will zoom out to the level of entire 

multi-agent system, and represent it by using category theory constructs.  The multi-agent 

systems definition is taken from [Woo09] [Syc98] and [WJ95] adapted to the context of 

Agent programming language: Jadex. 

3.2. Representing Plans  

Plans represent the agent‟s means to act on the requests initiated by other agents or from 

its environment, and one single plan is abstracted as a sequence of actions. Therefore, 

plans of an agent are collections of sequences of actions, which are performed in a 

discrete time [Woo09]. This section provides category definitions of Action, Plan, PLAN, 

Discrete-Time and their relations. Using these definitions, we will formalize agent‟s plans 

by category theory, and capture the behavior and properties of agent‟s plans and actions.  

3.2.1. Categorical Representation  

We will define a category, which includes all the needed actions for an agent to perform 

its plans as follow: 
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Definition 3.2.1 Action is a discrete category whose objects are “actions” denoted by 

Act1, Act2…, and the only morphisms are identity morphisms.   

In this thesis, “actions” are defined as an abstraction of agents‟ reaction to the 

environment events. Figure 3.1 is an example of Action category, where the identity 

morphisms are not displayed 

Act1  

Act2    

Act3

Action 

 

Figure 0.1: Representation of the Action category 

Within an agent, a plan represents agent‟s behaviour, and we abstract a plan as a 

category Plan defined as follows.  

Definition 3.2.2 Plan is a category that represents one plan whose objects are “actions” 

denoted by Act1, Act2… and morphisms are named “before” [OMG]. Morphism “before” 

models the partial order between the actions. A sequence of actions can be understood as 

a path in category theory [Mac71] [Pfa05] [PS07](see Chapter 2), and only paths of 

length equal or less than one are considered as morphisms. Inside Plan, we define a 

special object, denoted as ActNull (chapter 2). An ActNull means a null action, and it 

doesn’t have any morphism from or to other actions. In this definition, ActNull is used for 

catching exceptions (detailed example will be given latter).  

Figure 3.2 shows a simple example (The identity morphisms are not displayed) with 

actions: Act1 Act2 and Act3, and morphisms f: Act1   Act2 and g: Act2   Act3, which 

models the timing dominance hierarchy: Act1 occurs earlier than Act2 and Act2 occurs 

earlier than Act3. In the figure, <morphisms name> :: <type> indicates the type of the 

morphism. For instance, morphisms f::before and g::before means f and g are of type 
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before. From the meaning of “before” (definition 3.2.2) there should exist a morphism 

k::before such that k: Act1   Act3 meaning Act1 occurs earlier than Act3. In PATH 

category (Chapter2), the morphisms f and g are “direct arrows” with sequences (paths) of 

length one. The morphism k from Act1 to Act3 is not a “direct arrow” but a path (or 

sequence) Act1   Act2   Act3 with length two. Based on definition 3.2.2, k will not be 

shown within Plan category.  

Act1  

Act2    

Act3

f

g

k

Act1  

Act2    

Act3

f

g

Plan

f and g :: before

ActNull 

f, g and k :: before

 

Figure 0.2: Representation of the Plan category 

More formally, suppose Act1 starts at time t1, Act2 starts at time t2, and Act3 starts at 

time t3, where t1, t2 and t3 are integers. Morphism “before” indicates: t1 is less than t2, and 

t2 is less than t3. There is a composition operation on morphisms, f::before Act1 Act2 and 

g::before Act2 Act3 are morphisms, then g o f::before Act1 Act3, the composition of f 

and g of type before is meaningful: Act1 is performed earlier than Act3. Plan satisfies 

Associativity and Unit laws (see Chapter 2). Therefore, the validity of the category Plan is 

proved. 

Each Plan is built by a sequence of actions (actions can be repeated by having 

morphism of type “before” to itself), and the sequence represents a plan. So we say a 

Plan stands for one plan of an agent. The first action of the sequence, named trigger 

action, represents the action of receiving “trigger event messages”. The received 

messages can be sent from internal or external source. Internal messages are those sent 
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from the owner of the plan, and external messages are those sent from other agents or the 

environment. So when we say a plan is started, we mean the trigger action of this plan 

has been performed.  

Within an agent, we need a category to abstract all the plans and their partial orders. We 

call this category PLAN and we define it as follows. 

Definition 3.2.3 PLAN is a category whose objects are plans denoted by Plan1, Plan2… 

and morphisms are “before” [OMG], which model the partial order between plans. This 

partial order can be understood as a path in category theory [Mac71] [Pfa05] [PS07] 

(see Chapter2), and only paths of length equal or less than one are considered as 

validated morphisms. Inside PLAN, we define a special object, called PlanNull. A PlanNull 

means a null object, and it doesn’t have any morphism from or to other plans.  

In this definition, PlanNull is used for catching exceptions. Figure 3.3 depicts an 

example of PLAN, morphisms m::before: Plan1 → Plan2 and n::before: Plan2 → Plan3 

stand for Plan1 is triggered earlier than Plan2, and Plan2 is triggered earlier than Plan3. 

Similar to “Plan category” (Figure 2.2), any “non-direct arrows” or paths with length 

greater than one are not included in PLAN. Suppose Plan1 is trigged at time t4, Plan2 is 

trigged at time t5 and Plan3 is trigged at time t6, where t4, t5 and t6 are integers, then we 

have t4 is less than t5, and t5 is less than t6.  

PLAN

Plan1

Plan2

Plan3

m and n :: “before”

m
n

PlanNull 

 

Figure 0.3: Representation of the PLAN category 
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There is a composition operation on morphisms: from m::before: Plan1 Plan2 and 

n::before: Plan2→Plan3, we have morphism n o m::before: plan1  plan3. The 

composition of m and n is meaningful as if captures the fact that Plan1 is triggered earlier 

than Plan3. PLAN satisfies Associativity and Unit laws (see Chapter 2). Therefore, the 

validity of the category PLAN is proved. 

We will abstract the relations between categories: Action, Plan and PLAN as functors: 

sequence _action, refined _by _plan, and self _PLAN. 

Definition 3.2.4 sequence _action is a functor from Action (the category of isolated 

actions) to Plan (the category of sequenced actions). It provides a rule mapping all the 

“actions” of Action to “actions” of Plan, and all the identity morphisms of Action to 

identity morphisms of Plan.  

Definition 3.2.5 refined _by _plan is a functor from Plan to PLAN (the category of 

plans). The functor “refined _by _plan” means actions in Plan are used to complete or 

build plans in PLAN. It provides a rule that maps all the “actions” of Plan to “plans” of 

PLAN, and all the morphisms (include identity) of Plan to identity morphisms of PLAN. 

Figure 3.4 illustrates the defined categories: Action, Plan and PLAN, and functors F, 

G:: sequence _action and P, Q:: refined _by _plan. Note that, one agent has one Action, 

one PLAN and at least one Plan categories. Identity morphisms are not displayed in the 

figure. 
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Act1  

Act2    

Act3

Action 

F

G

P

Q

F and G: sequence _action 

P and Q: refined _by _plan

Act1  

Act2    

Act3

b

PlanA

a and b ::“before”

a

ActNull 

Act4 Act3    

PlanB

c ::“before”

c

ActNull 

Act4   

PLAN

Plan1
Plan2

u ::“before”

u

PlanNull 

 

Figure 0.4: Representation of the sequence _action and refined _by _plan functors 

Functor F:: sequence _action provides a rule that maps objects: Act1, Act2, Act3 and 

Act4 of Action to objects Act1, Act2, Act3 and ActNull of PlanA; functor G:: sequence 

_action maps objects: Act4, Act3, Act2 and Act3 of Action to objects Act4, Act3, and ActNull 

of PlanB.  

Functor P:: refined _by _plan provides a rule that maps objects: Act1, Act2 and Act3 

of PlanA to object Plan1 of PLAN and morphisms: a, b and identity of PlanA to Plan1‟s 

identity morphism (idplan1) of PLAN; Q:: refined _by _plan maps objects: Act4 and Act3 

of PlanB to object Plan2 of PLAN and morphisms: c and identity of PlanB to Plan2‟s 

identity morphism (idplan2) of PLAN. 

Definition 3.2.6 self _PLAN is a functor from PLAN to itself (within the same agent), 

which maps plans (objects) of PLAN to plans (objects) of PLAN, and transforms 

morphisms of PLAN to morphisms of PLAN.  

Since agent‟s beliefs are dynamic and changeable, pre-conditions for plans can be 

various. Some plans may not be achievable anymore after their pre-conditions are 

changed. We suppose PLAN’ is the new category after PLAN is translated by self 
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_PLAN functor. The functor maps achievable plans in PLAN to plans in PLAN’; maps 

non-achievable plans in PLAN to PlanNull in PLAN’; maps PlanNull in PLAN to PlanNull 

in PLAN’; maps morphisms “before” from achievable plans to achievable plans in PLAN 

to morphisms “before” in PLAN’; maps morphisms “before” from achievable plans to 

non-achievable plans, or non-achievable plans to achievable plans, or non-achievable 

plans to non-achievable plans in PLAN to identity morphism of PlanNull in PLAN’. 

Additionally, if the non-achievable plan is between two achievable plans, a new 

morphism (“before”) will be created to link these achievable plans in PLAN’. 

Definition 3.2.7 Discrete-Time is a category whose objects are abstracting time unit 

represented as integers and morphisms are of type “less than” denoted as “<”. 

Definition 3.2.8 timing _action is a functor from Plan to Discrete-Time, which maps 

objects (actions) of Plan to objects (time unit expressed as integers) of Discrete-Time, 

and maps morphisms of Plan (before) to morphisms “(<)” of Discrete-Time.  

Definition 3.2.9 timing _plan is a functor from PLAN to Discrete-Time, which maps 

objects (plans) of PLAN to objects (time unit expressed as integers) of Discrete-Time, 

and maps morphisms of PLAN (before) to morphisms “(<)” of Discrete-Time.  

3.2.2. Illustration 

The following figures show examples of representing the categories defined above. 

Figure 3.5 illustrates the definitions: 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.7, 3.2.8, and 3.2.9, 

and Figure 3.6 illustrates the definition 3.2.6. 

Figure 3.5 depicts a view of the categories Action, PlanA, PlanB, PLAN, Discrete-Time, 

and their relations (functors): sequence _action, refined _by _plan, timing _action and 

timing _plan.  
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Act1  

Act2    

Act3

Action F
G

P

F and G:: sequence _action 

P and Q:: refined _by _plan

X and Y:: timing _action 

Z:: timing _plan 

PLAN
Plan1

Plan2

u ::“before”

u
PlanNull 

Act1  

Act2    

Act3

b

PlanA

a and b ::“before”

a

ActNull 

Act4 Act3    

PlanB

c ::“before”

c

ActNull Act4   

Discrete-Time

time1   

time3    

 time4

time2
m

n

o

p

m, n, o and p ::“< ”X

Z

Y

Q

time5   

 

Figure 0.5: Illustration for Plan, PLAN and Discrete-Time example 

Action, PlanA, PlanB, PLAN, sequence _action, and refined _by _plan have been 

described in Figure 3.4. Discrete-Time includes objects: time1, time2, time3, time4 and 

time5, and morphisms: m, n, o, and p are of type “<”. Functor timing _action gives a rule 

of mapping objects: Act1, Act2 and Act3 of PlanA to objects: time1, time2 and time3 of 

Discrete-Time, and mapping morphisms: a and b of PlanA to morphisms: m and n of 

Discrete-Time.  Similar to PlanA with functor TA, PlanB‟s objects and morphism: Act4, 

Act3 and c can be mapped to time4, time3 and p in Discrete-Time. Functor timing _plan 

gives a rule of mapping objects: Plan1 and Plan2 of PLAN to objects: time1 and time4 of 

Discrete-Time, and mapping morphism: u of PLAN to morphism: o of Discrete-Time. 

 “sequence _action” representation (F and G) 

F (Act1) = PlanA. Act1 

F (Act2) = PlanA. Act2 

F (Act3) = PlanA. Act3 
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G (Act4) = PlanB. Act4 

G (Act3) = PlanB. Act3 

 “refined _by _plan” representation (P and Q) 

P (PlanA. Act1) = plan1 

P (PlanA. Act2) = plan2 

P (PlanA. Act3) = plan2 

P (< a >) = < id plan1 > 

P (< b >) = < id plan1 > 

Q (PlanB. Act4) = plan2 

Q (PlanB. Act3) = plan2 

Q (< c >) = < id plan2 > 

The above illustration shows that Act1, Act2 and Act3 form a sequence of actions of 

plan1, and Act4 and Act3 form a sequence of actions in plan2. Act1 and Act4 are the trigger 

actions (definition 3.2.2) of plan1 and plan2. Morphisms “a, b and c” indicate that Act1 

occurs earlier than Act2, Act2 occurs earlier than Act3, and Act4 occurs earlier than Act3. 

They are mapped to identity morphisms for plan1 and plan2. 

 “timing _action” representation (X and Y) 

X (PlanA. Act1) = time1 

X (PlanA. Act2) = time2 

X (PlanA. Act3) = time3 

X (< a >) = < m > 

X (< b >) = < n > 

Y (PlanB. Act4) = time4 
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Y (PlanB. Act3) = time5 

Y (< c >) = < p > 

The above illustration shows that in PlanA, Act1 is performed at time time1, Act2 is 

time2, and Act3 is time3, and PlanA‟s morphisms “m and n” indicate that time1 is less than 

time2 and time2 is less than time3.  In PlanB, Act4 and Act3 are respectively performed at 

time time4 and time5, and PlanB‟s morphism “p” indicates that time4 is less than time5. 

Relation “less than” is denoted by “<” in Discrete-Time. 

 “timing _plan” representation (Z) 

Z (plan1) = time1 

Z (plan2) = time4 

Z (< u >) = < o > 

The above illustration shows that plan1 is triggered at time1, and plan2 is triggered at 

time4. In Figure 3.6, there are categories PLAN and PLAN’, and a functor “self _PLAN”. 

PLAN represents agent‟s default plans and their relations; PLAN’ represents the same 

agent‟s plans and their relations after one un-achievable plan has been removed. Functor 

“self _PLAN” provides a way of updating PLAN‟s objects and morphisms to PLAN’.  

PLAN’

Plan1

Plan2

m ::“before”

m

PlanNull 

PLAN

Plan1

Plan2

Plan3

m and n ::“before”

m
n

PlanNull 

SP

SP:: self _PLAN 
 

Figure 0.6: Self-update of PLAN 
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PLAN includes objects: Plan1, Plan2, Plan3 and PlanNull, and morphisms “m and n”. 

PLAN’ contains objects: Plan1, Plan2 and PlanNull, and morphism “m” from plan1 to 

Plan2. 

 “self _PLAN” representation (SP):  

SP (Plan1) = Plan1 

SP (Plan2) = Plan2 

SP (Plan3) = PlanNull 

SP (PlanNull) = PlanNull 

SP (< m >) = < m > 

SP (< n >) = < idPlanNull > 

The above example shows that Plan3 is not achievable anymore for some reasons, 

such as agent‟s beliefs are changed. Functor self _PLAN provides agent‟s PLAN a way to 

self-updating (removing un-achievable plans). It keeps objects: Plan1, Plan2 and PlanNull 

in PLAN’, and maps the non-achievable plan Plan3 to PlanNull in PLAN’. It keeps 

morphism “m” between achievable plans Plan1 → Plan2, from PLAN to PLAN’, and 

maps morphism “n” from an achievable plan to a non-achievable plan: Plan2 → Plan3 to 

PlanNull identity morphism of PLAN’. 

3.2.3. Properties 

The category modeling in this section captures some important properties of multi-agent 

systems such as action sequentiality and plan self-updating. 

Functor timing _action is a structure-preserving mapping of the actions. Their 

sequential order relations (which are captured by the morphism “before”) in Plan can be 

mapped into the time objects and their relations “<” in Discrete-Time. Functor timing 
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_plan is a structure-preserving mapping of the plans. Their sequential order (captured by 

the morphism “before”) in PLAN can be mapped into the time objects and their relations 

“<” in Discrete-Time. With this property, we are able to prove that a plan starts at the 

same time that its first action (triggering action) is performed, and all the following 

actions of this plan occur later in time. Let us take the example in Figure 3.5: 

Z (plan1) = Z (P (PlanA. Act1)) = X ((PlanA.Act1)) 

Z (plan2) = Z (Q (PlanB.Act4)) = Y ((PlanB.Act4)) 

Z (plan1) < X ((PlanA. Act2)) 

Z (plan1) < X ((PlanA. Act3)) 

Z (plan1) < Y ((PlanB. Act3)) 

Functor self _PLAN gives an agent the ability to update its plans, and provides a way 

for PLAN to remove its un-achievable plans. As mentioned earlier, plans may not be 

achievable anymore if their pre-conditions are changed. The achievable plans will be kept 

as plans in agent‟s PLAN’, and the non-achievable ones will be thrown to the exception 

catcher, the PlanNull in PLAN’. 

Using category theory, the properties are verified by construction of categories Action 

Plan, PLAN and Discrete-Time, and functors: sequence _action, refined _by _plan, 

timing _action, timing _plan and self _PLAN. 

3.3. Representing Goals  

Goals make up the agent‟s motivational stance and are the driving forces for its actions. 

Therefore, the representation and handing of goals is one of the main features of agents. 

In fact, each agent has a set of goals which are dispatched by plans [PB07].  This section 
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provides categorical definitions for “GOAL” and “Dependencys”, and their relations.  

With these definitions, we are able to formalize agent‟s goals and classify them in 

different levels of priority. 

3.3.1. Categorical Representation  

Definition 3.3.1 GOAL is a category whose objects are goals and morphisms are 

“depends”.  The definition of “depends” can be the domain of this morphism has higher 

or the same priority level than the co-domain. Inside every GOAL, there is a special goal, 

denoted by GoalNull. A GoalNull stands for an empty object with no morphism from or to 

other goals.  

GOAL

Goal1

Goal2

Goal3

f and g ::“depends”

f
g

GoalNull 

 

Figure 0.7: Representation of the GOAL category 

GoalNull is used to capture exceptions. Figure 3.7 is an example of GOAL, 

morphisms:  f: goal1   goal2 and g: goal2   goal3 mean goal1 has higher or the same 

priority level than goal2, and goal2 has higher or the same priority level than goal3. 

Morphism g o f: goal1 goal3, the composition of f and g has a correct meaning: goal1 has 

higher or the same priority level than goal3. Thus, GOAL satisfies Associativity and Unit 

laws (see Chapter 2). Therefore, the validity of the category GOAL is proved. 

Definition 3.3.2 Dependency is a category whose objects are integers such as “1”, “0”, 

“-1” and “unsigned”, and morphisms are bigger or equal to, denoted as “≥”. Object 

“unsigned” doesn’t have any relations (morphisms) with other objects. 
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Dependency

intA

a, b, c, d and e ::“≥ ”

a
b

e

d c

Unsigned

intB

intC

 

Figure 0.8: Representation of the Dependency category 

Figure 3.8 illustrates an example of Dependency, which includes objects: “1, 0, -1, and 

unsigned” and morphisms: “a, b, c, d and e”. The composition of morphisms is 

meaningful, for example e o d:: “≥”: 1   -1, the composition of f and g means that 1 is 

“≥” than -1. Dependency satisfies Associativity and Unit laws, from which the validity of 

the category Dependency follows. 

Dependency category is used to set up the order of importance or urgency of different 

goals. Goals are depended by other goals need to be performed earlier. 

Definition 3.3.3 assigned _dependency is a functor from GOAL to Dependency. Functor 

“assigned _dependency” models the fact that objects (goals) in GOAL can be assigned 

to corresponding order in Dependency. And the morphisms in GOAL can be mapped to 

morphisms (“≥”) in category Dependency. 

AP 

Priority 

1

0

-1

a, b, c, d and e :: “≥ ”

a
b

e

d c

Unsigned

GOAL

Goal1

Goal2

Goal3

f and g :: “depends”

f
g

GoalNull 

 

Figure 0.9: Representation of the assigned _depends functor 
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Figure 3.9 depicts an example of assigned _dependency, which provides a rule 

mapping all the objects (Goal1, Goal2, Goal3, and GoalNull) of GOAL to objects (1, 0, 0 

and unsigned) of Dependency, and also mapping all the morphisms (f and g) of GOAL to 

morphisms (d and b) of Dependency. 

Definition 3.3.4 self _GOAL is a functor from GOAL to itself (similar to self _PLAN). 

Since agent‟s beliefs are dynamic and changeable, based on different beliefs, some goals 

may not be achievable any more. We suppose GOAL’ is the new category after GOAL is 

translated by this functor. The functor maps achievable goals in GOAL to goals in 

GOAL’; maps non-achievable goals in GOAL to GoalNull in GOAL’; maps GoalNull in 

GOAL to GoalNull in GOAL’; maps morphisms “higher _ dependency” from achievable 

goal to achievable goal in GOAL to morphisms “higher _ dependency” in GOAL’; maps 

morphisms “higher _ dependency” from achievable goal to non-achievable goal, or non-

achievable goal to achievable goal, or non-achievable goal to non-achievable goal in 

GOAL to identity morphism of GoalNull in GOAL’. Additionally, if the non-achievable 

goal is between two achievable goals, a new morphism (“higher _ dependency”) will be 

created to link these achievable goals in GOAL’. 

3.3.2. Illustration 

In this section, we will give some examples of representing the above defined categories. 

Figure 3.9 illustrates the Definitions: 3.3.1, 3.3.2, and 3.3.3, and Figure 3.10 illustrates 

the Definition 3.3.4. 

In Figure 3.9 there are two categories GOAL and Dependency, and one functor “assigned 

_ dependency”. GOAL has objects: Goal1, Goal2, Goal3, and GoalNull, and morphisms: f 
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and g. Dependency contains objects: 1, 0, -1 and unsigned, and morphisms: a, b, c, d, and 

e.  

  “assigned _ dependency” representation (AD) 

AD (Goal1) = 1 

AD (Goal2) = 0 

AD (Goal3) = 0 

AD (GoalNull) = unsigned 

AD (< f >) = < d > 

AD (<g>) = < b > 

The above illustration encodes the following information: Goal1 depends on Goal2 

and Goal2 depends on Goal3, GoalNull is unknown (object “unsigned”). The morphisms f 

indicates that Goal1‟s priority level in Dependency is bigger than Goal2‟s, and Goal2„s 

priority level in Dependency is equal to Goal3‟s. 

In Figure 3.10, there are two categories GOAL and GOAL’, and a functor “self _GOAL”. 

GOAL has objects: Goal1, Goal2, Goal3 and GoalNull, and morphisms f: Goal1 → Goal2, 

and g: Goal2 → Goal3. GOAL’ contains objects: Goal1, Goal2 and GoalNull, and 

morphisms f: Goal1 → Goal2. 

GOAL’

Goal1

Goal2

f :: “depends”

f

GoalNull 

GOAL

Goal1

Goal2

Goal3

f and g ::“depends”

f
g

GoalNull 

self _GOAL 

(SG)

 

Figure 0.10: Self-update of GOAL 
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 “self _GOAL” representation (SG):  

SG (Goal1) = Goal1 

SG (Goal2) = Goal2 

SG (Goal3) = GoalNull 

SG (GoalNull) = GoalNull 

SG (< f >) = < f > 

SG (< g >) = < idGoalNull > 

The above example shows that Goal3 cannot be achieved anymore for some reasons, 

such as agent‟s beliefs are changed. Functor self _GOAL provides a rule to remove the 

unachievable goal; it keeps achievable goals: Goal1 and Goal2 in GOAL’, and maps the 

non-achievable goal Goal3 to GoalNull in GOAL’. It also maps the morphism “f” between 

achievable goals: goal1 → goal2 to the same morphism in GOAL’, and morphism “g” 

from achievable goal to non-achievable goal: goal2 → goal3 to GoalNull‟s identity 

morphism in GOAL’. 

3.3.3. Properties 

The category modeling in this section captures some important properties of multi-agent 

systems such as goal dependency and goal self-updating.  

Goals can be classified into different levels of dependency by categories GOAL and 

Dependency and their functor assigned _ dependency. Each goal has one corresponding 

level of dependency, which is denoted by Dependency objects: “1”, “0”, “-1” or 

“unsigned”. Goals are depended by others should start first.  

Functor self _GOAL gives the agent an ability to update its goals. It provides a way 

for GOAL to re-define (remove) its unachievable goals. As mentioned earlier in this 
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section, goals may not be achievable anymore for some reasons, such as environments 

are changed. The achievable goals will be kept as the same goals in agent‟s GOAL’ and 

the unachievable goals will be trapped into GoalNull in GOAL’.       

Using category theory, the properties are verified by construction of categories GOAL 

and Dependency, and functors assigned _ dependency and self _GOAL. 

3.4. Representing Beliefs 

Beliefs represent agent‟s knowledge or information about environment and itself. Beliefs 

are built from different information called facts, which are organized into different sets 

denoted as fact sets. This section provides definitions for “BELIEF” and “FactSet” 

categories, and their relations. With these definitions, we are able to formalize agent‟s 

beliefs and guarantee they are consistent within a single agent and in a group of agents 

(i.e. the system).  

3.4.1. Categorical Representation  

Definition 3.4.1 FactSet is a discrete category where objects are “facts” and the only 

morphisms are identity morphisms.  The facts are information or knowledge about the 

agent’s environments and system. Based on different usage, facts are classified into 

different FactSet categories. Two special FactSets categories need to be introduced: 

FactSetBase and FactSetNull. FactSetBase includes all the facts every other FactSet has, and 

FactSetNull contains no facts at all or it‟s an empty set (see Figure 3.11 as an example). 

Inside FactSet (includes FactSetBase, except FactSetNull), we define a special object, 

denoted as FactNull. FactNull is a null fact, which doesn‟t have morphisms. It is used for 

catching exceptions (see Figure 3.13). 
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FactSet1

Apple Banana

Orange

FactSet2

Red Yellow

GreenBlue
FactSetBase

Red

Yellow

Green

Blue

Apple
Banana

Orange FactNull 

FactNull 

FactNull 

FactSetNull

 

Figure 0.11: Representation of the FactSet category 

Definition 3.4.2 BELIEF is a category of Sets [Mac71], whose objects are categories 

FactSets (one FactSetBase and one FactSetNull are included as default), and the 

morphisms are “subset _of”. Any FactSet is a subset of FactSetBase, and more formally, 

every fact within FactSet can be found in FactSetBase. Similarly, FactSetNull has “subset 

_of” relations to every FactSet. Using the definitions of initial and terminal objects 

[Mac71], NullSet is the initial object and BaseSet is the terminal object in BELIEF.  

BELIEF

FactSet1

FactSet2

FactSet3

FactSetBase

FactSetNull

u v w

x y z

 u, v, w, x, y, and z ::“subset _of”
 

Figure 0.12: Representation of the BELIEF category 

The BELIEF represents an Eiffel‟s inheritance structure, for example, in Figure 3.12 

BELIEF has objects: FactSet1, FactSet2 and FactSet3 also FactSetBase and FactSetNull as 

default. It has morphisms u: FactSet1  FactSetBase, v: FactSet2  FactSetBase, w: 

FactSet3  FactSetBase, x: FactSetNull   FactSet1, y: FactSetNull   FactSet2 and z: 
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FactSetNull   FactSet3. This structure guarantees data‟s consistence because one agent 

has only one FactSetBase, and all other fact sets are subset of FactSetBase. 

Definition 3.4.3 self _FactSet (SF) is a functor from FactSet to itself. Since agent‟s 

beliefs‟ facts are dynamic and changeable, some facts may not be true or exist anymore. 

We suppose FactSet’ is the new category after FactSet is translated by this functor. The 

functor maps non-changed facts in FactSet to facts in FactSet’; maps useless facts in 

FactSet to FactNull in FactSet’; and maps FactNull in FactSet to FactNull in FactSet’. 

Definition 3.4.4 self _BELIEF (SB) is a functor from BELIEF to itself. Since agent‟s 

fact sets are dynamic and changeable, some FactSets may need to be deleted. We suppose 

BELIEF’ is the new category after BELIEF is translated by this functor. The functor 

maps non-changed FactSets in BELIEF to FactSets in BELIEF’; maps useless FactSets 

in BELIEF to NullSet in BELIEF’; maps FactSetNull in BELIEF to FactSetNull in 

BELIEF’; maps FactSetBase in BELIEF to FactSetBase in BELIEF’; keeps morphisms 

from non-changed FactSets to FactSetBase in BELIEF as in BELIEF’; keeps morphisms 

from FactSetNull to non-changed in BELIEF as in BELIEF’; maps morphisms related to 

useless FactSets in BELIEF to identity morphism of FactSetNull in BELIEF’. 

3.4.2. Illustration 

In the following, we show examples of representing the defined category. Figure 3.13 

illustrates Definitions: 3.4.1 and 3.4.3, and Figure 3.14 illustrates Definitions: 3.4.2 and 

3.4.4. 

Figure 3.13 is an example of updating FactSet2 to FactSet2’. FactSet2 includes 

objects: Red, Yellow, Blue, Green and FactNull. FactSet2’ contains objects: Red, Yellow, 

Blue and FactNull. 
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FactSet2

Red Yellow

GreenBlue

FactNull 

FactSet2’

Red Yellow

Blue

FactNull 

SF: self _FactSet 

SF

 

Figure 0.13: Self-update of FactSet 

  “self _FactSet” representation (SF):  

SF (Red) = Red 

SF (Yellow) = Yellow 

SF (Blue) = Blue 

SF (Green) = FactNull 

SF (FactNull) = FactNull 

The above example shows that Green will not be considered as a fact of FactSet2. 

Functor SF (self _FactSet) provides a way to self-updating (removing useless fact). It 

keeps objects (facts):  Red, Yellow, Blue and FactNull, and moves the useless facts Green 

to FactNull in FactSet2’. 

In Figure 3.14, there are two categories BELIEF and BELIEF’, and a functor “self 

_BELIEF”. BELIEF has objects: FactSet1, FactSet2, FactSet3, FactSetBase and 

FactSetNull, and morphisms u: FactSet1  FactSetBase, v: FactSet2  FactSetBase, w: 

FactSet3   FactSetBase, x: FactSetNull   FactSet1, y: FactSetNull   FactSet2 and z: 

FactSetNull  FactSet3. BELIEF’ contains four objects: FactSet1, FactSet3, FactSetBase 

and FactSetNull, and morphisms u: FactSet1  FactSetBase, w: FactSet3  FactSetBase, x:  

FactSetNull  FactSet1, and z: FactSetNull   FactSet3. 
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BELIEF

FactSet1

FactSet2

FactSet3

FactSetBase

FactSetNull

u v w

x y z

 u, v, w, x, y, and z :: “subset _of”

BELIEF’

FactSet1 FactSet3

FactSetBase

FactSetNull

u w

x z

 u, v, x, and z :: “subset _of”

SB: self _BELIEF 

SB

 

Figure 0.14: Self-update of BELIEF 

  “self _BELIEF” representation (SB):  

SB (FactSet1) = FactSet1 

SB (FactSet2) = FactSetNull 

SB (FactSet3) = FactSet3 

SB (FactSetBase) = FactSetBase 

SB (FactSetNull) = FactSetNull 

SB (< u >) = < u > 

SB (< w >) = < w > 

SB (< x >) = < x > 

SB (< z >) = < z > 

SB (<v >) = < idFactSetNull > 

SB (< y >) = < idFactSetNull > 

The above example shows that FactSet3 will not be used anymore for some reasons, 

such as agent‟s beliefs are changed. Functor self _BELIEF provides the agent a way to 

self-updating (removing) FactSet3; it keeps useable factSets as they are: FactSet1 and 
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FactSet3, and maps the useless factSets FactSet2 to FactSetNull in BELIEF’. It also keeps 

morphisms u: FactSet1 → FactSetBase, w: FactSet3 → FactSetBase, x: FactSetNull → 

FactSet1, and z: FactSetNull → FactSet3 as they are from BELIEF to BELIEF’, and maps 

morphisms v: FactSet2 → FactSetBase and y: FactSetNull → FactSet2 to PlanNull identity 

morphism of BELIEF’. 

3.4.3. Properties 

The category modeling in this section captures some of the important properties of multi-

agent systems such as data-consistency and belief self-updating.  

The category structure BELIEF shows that every FactSet in the same BELIEF must 

have a subset relationship to FactSetBase, which is the terminal object of BELIEF. Based 

on the definitions of terminal object in category (Chapter 2), all the elements (facts) 

within each object (FactSet) should be found in FactSetBase of the same BELIEF, and any 

change of data will cause the same change to BaseFact and related FactSet(s). 

Functor self _FactSet gives an agent the ability to update its facts, and provides a way 

for FactSet to re-define its facts. As we have mentioned above, facts may become not 

usable anymore given that the environments are changed. These usable facts will be kept 

as in agent‟s FactSet, and the non-usable facts will be mapped into to the FactNull in 

FactSet.       

Functor self _BELIEF gives an agent the ability to update its factSets, and provides a 

way for BELIEF to re-define its factSets. As we have mentioned above, factSet may 

become not usable anymore. These usable factSets will be kept as in agent‟s BELIEF, 

and the non-usable factSets will be mapped into to the FactSetNull in BELEF.   
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Using category theory, the properties are verified by construction of categories 

FactSet, BELIEF and functors self _FactSet and self _BELIEF. 

3.5. Representing Agents  

3.5.1. Introduction 

An agent is a computer system that is situated in an environment, and designed to 

perform autonomous actions in this environment in order to meet its objectives [WJ95]. 

In this section, we will introduce some definitions, which will be used to represent agent 

by category theory. PLAN, GOAL and BELIEF are categories as defined in Sections 3.2, 

3.3 and 3.4, and the objective of this section is to relate them together. 

3.5.2.  Categorical Representation of Plan and Goal 

Goals represent the concrete motivations that influence an agent‟s behavior. The concrete 

actions an agent may carry out to reach its goals are described in plans. A plan is a 

procedural recipe describing the actions to take in order to achieve a goal. In BDI systems, 

each plan must dispatch a goal, but the goal can be a null object. Basically, in an agent, 

the plans have to dispatch relevant goals. 

Definition 3.5.1 plan _goal (PG) is a functor from PLAN (definition 3.2.3) to GOAL 

(definition 3.3.1). The functor “plan _goal” captures the fact that every plan from PLAN 

category dispatches a goal from GOAL category. Every object (Plan) in PLAN can be 

mapped to one object (Goal) in GOAL, and morphisms “before” in PLAN can be 

mapped to morphisms “depends” in GOAL.  

The plan _goal functor grantees that: one plan can only dispatch one corresponding 

goal, and different plans can dispatch a same goal. 
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3.5.3. Illustration of Plan and Goal 

Figure 3.15 illustrates the above category definitions. Two categories: PLAN and GOAL, 

and one functor: “plan _goal” are represented. PLAN has five objects: Plan1, Plan2, 

Plan3 Plan4 and PlanNull, and morphisms a: Plan1 → Plan2, b: Plan4 → Plan2, and c: 

Plan2 → Plan3. GOAL has four objects: Goal1, Goal2, Goal3 and GoalNull, and morphisms 

g: Goal1 → Goal2 and k: Goal2 → Goal3. 

PLAN

Plan1

Plan2

Plan3

a, b and c :: “before”

a

c

PlanNull 

Plan4

b

GOAL

Goal1

Goal2
Goal3

g and k :: “depends”

GoalNull 

g

k

PG

(plan _goal)

 

Figure 0.15: Functor plan _goal from PLAN to GOAL 

 “plan _goal” representation (PG)     

PG (Plan1) = Goal1 

PG (Plan2) = Goal2 

PG (Plan3) = Goal3 

PG (Plan4) = Goal1 

PG (PlanNull) = GoalNull 

PG (< a >) = < g > 

PG (< b >) = < g > 

PG (c >) = < k > 

This illustration shows PLAN’s objects: Plan1 and Plan4 are mapped to the same goal 

Goal1 of GOAL, Plan2, Plan3 and PlanNull are mapped to goals Goal2, Goal3 and GoalNull 

of GOAL. It also shows PLAN’s morphisms: a and b are mapped to the same morphism x 
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of GOAL, c is mapped to morphism y of GOAL. From this example, we can see that 

functor plan _goal represents higher priority goal‟s plan (such as Goal1 and Plan1) must 

be performed earlier than lower priority goal‟s plan (such as Goal2 and Plan2).  

3.5.4. Categorical Representation of Plan and Belief 

Beliefs represent the agent‟s knowledge about its environment and itself. They are stored 

in a belief category, and can be accessed and modified from agent‟s plans through some 

fact set interface. Beliefs and plans have been defined as BELIEF and PLAN categories, 

and this section we will introduce a functor to communicate them together.  

Definition 3.5.2 plan _belief (PB) is a functor from PLAN (definition 3.2.3) to BELIEF 

(definition 3.4.2). The functor “plan _belief” means agent plans have access to read or 

write facts from agent’s BELIEF. 

Suppose there are categories PLAN and BELIEF, and a “plan _belief” functor PB: 

PLAN   BELIEF, then every “plan” in PLAN can be mapped to one “FactSet” (can be 

FactSetBase or FactSetNull) in BELIEF, and all the morphisms in PLAN are mapped to 

identity morphism of FactSetNull in BELIEF.  

In conclusion, “plan _belief” functor formalizes the communication from plans to 

beliefs. Through this functor, we are able to read and write facts in the agent plans from 

its belief‟s factSet.  

3.5.5. Illustration of Plan and Belief 

This section illustrates the above category definitions. In Figure 3.16 there are two 

categories: PLAN and BELIEF, and one functor: “plan _belief”. PLAN has objects: 

Plan1, Plan2, Plan3, Plan4 and PlanNull, and morphisms a: Plan1 → Plan2, b: Plan4 → 

Plan2, and c: Plan2 → Plan3. BELIEF has objects: FactSet1, FactSet2, FactSet3, 
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FactSetBase and FactSetNull, and morphisms u: FactSet1  FactSetBase, v: FactSet2  

FactSetBase, w: FactSet3  FactSetBase, x: FactSetNull  FactSet1, y: FactSetNull  FactSet2, 

z: FactSetNull   FactSet3, m: FactSet4   FactSetBase, n: FactSet5   FactSetBase, o: 

FactSetNull  FactSet4 and p: FactSetNull  FactSet5. 

PLAN

Plan1

Plan2

Plan3

a, b and c :: “before”

a

c

PlanNull 

Plan4

b

BELIEF

FactSet1 FactSet2 FactSet3

FactSetBase

FactSetNull

u 
v

w

x

y

z

PB

plan _belief

FactSet4 FactSet5

m n

o p

 u, v, w, x, y, z, m, n, o and p :: “subset _of”

 

Figure 0.16: Functor plan _belief from PLAN to BELIEF 

  “plan _belief” representation (PB)               

PB (Plan1) = FactSet1 

PB (Plan2) = FactSet2 

PB (Plan3) = FactSetBase 

PB (Plan4) = FactSet3 

PB (PlanNull) = FactSetNull 

PB (< a >) = < idFactSetNull > 

PB (< b >) = < idFactSetNull > 

PB (< c >) = < idFactSetNull > 

With functor “plan _belief” plans are able to access factSets, which are defined as 

categories containing information or knowledge of the agent‟s environment. By using 

category, the property “one plan can only access to one factset” can be captured. 

3.5.6. Categorical Representation of Goal and Belief 
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Beliefs represent the agent‟s knowledge about its environment and itself. They are stored 

in a belief base set, and can be accessed from goals by using some fact set interface. 

Beliefs can be read as pre-conditions by goals, so that the agent is able to justify if the 

goal is achievable or not. Goals and fact set have been defined as GOAL and BELIEF as 

categories, and this section will introduce a functor to communicate them together.  

Definition 3.5.3 goal _belief (GB) is a functor from GOAL (Definition 3.3.1) to BELIEF 

(definition 3.4.2). It means every goal has an access to read facts or knowledge from 

agent beliefs. If there are categories GOAL and BELIEF, and a “goal _belief” functor 

GB: GOAL → BELIEF, then every object “Goal” in GOAL will be mapped to an object 

“FactSet” in BELIEF, and morphisms “depends” in GOAL will be mapped to identity 

morphism of FactSetNull in BELIEF. The “goal _belief” functor formalizes the 

communication from goals to beliefs. Through this functor, goals are able to read data 

from beliefs and justify if they are able to be accomplished.  

3.5.7. Illustration of Goal and Belief 

In the following, we show examples of representing the above defined category 

definitions. In Figure 3.17 there are two categories: GOAL and BELIEF, and functors: 

“goal _belief”. GOAL has three objects: Goal1, Goal2 and Goal3, and morphisms k: Goal1 

→ Goal2 and g: Goal2 → Goal3. BELIEF has objects: FactSet1, FactSet2, FactSet3, 

FactSetBase and FactSetNull, and morphisms u: FactSet1  FactSetBase, v: FactSet2  

FactSetBase, w: FactSet3  FactSetBase, x: FactSetNull  FactSet1, y: FactSetNull  FactSet2, 

z: FactSetNull   FactSet3, m: FactSet4   FactSetBase, n: FactSet5   FactSetBase, o: 

FactSetNull  FactSet4 and p: FactSetNull  FactSet5. 
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GOAL

Goal1

Goal2
Goal3

k and g :: “depends”

GoalNull 

k

g

GB

goal _belief

BELIEF

FactSet1 FactSet2 FactSet3

FactSetBase

FactSetNull

u 
v

w

x

y

z

 u, v, w, x, y, z, m, n, o and p :: “subset _of”

FactSet4 FactSet5

m n

o p

 

Figure 0.17: Functor goal _belief from GOAL to BELIEF 

 “goal _belief” representation (GB)     

GB (Goal1) = FactSet5 

GB (Goal2) = FactSet2 

GB (Goal3) = FactSet4 

GB (< k >) = < idFactSetNull > 

GB (< g >) = < idFactSetNull > 

GOAL and BELIEF are communicating using functor “goal _belief”. Goals are able 

to access to belief‟s factSets, which are defined as categories containing information or 

knowledge of the agent‟s environment. After having access to their corresponding 

factSets, goals will update themselves to achievable or non-achievable through “self 

_GOAL” functor. By using category, the property “one goal can only access to one factset” 

can be captured.  

3.5.8. Plan, Goal and Belief Together 

The definitions of functors “plan _goal” “plan _belief” and “goal _belief” have been 

given on the previous sections, and these functors make plans, goals and beliefs 

communicate.  
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Agent in Category Representation:  

An agent can be represented by categories: Action, Plan, PLAN, GOAL, BELIEF and 

FactSet, and functors: “plan _goal” “plan _belief” “goal _belief”, “refined _by _plan” 

and “sequence _action”.  

Action

Plan1

PLAN BELIEF

GOAL

FactSet1

Plan2 Plann

FactSet2

FactSetn

zoom in

Agent

PB

PG GB

X Y Z

A
B

C

X, Y, Z:: sequence _action 

A, B, C:: refine _by  _plan 

PG:: plan _goal 

PB:: plan _belief 

GB:: goal _belief 
 

Figure 0.18: Representation of the Agent category 

The Figure 3.18 shows that after a plan in PLAN is triggered, it will dispatch a 

corresponding goal from GOAL through “plan _goal” functor. Then this goal 

communicates with its related factSet from BELIEF, which helps justify if the goal is 

achievable. If the goal is not achievable, functor “self _Goal” helps the goal update itself 

so that it removes non-achievable goal from GOAL, and functor “self _Plan” helps the 

plan update itself so that it removes non-achievable plan from PLAN. If the goal is 

achievable, plan will be performed continually. Based on different cases, the plan has 

ability to read or write fact values through BELIEF‟s factSet. 

Agent Properties in Category Representation: 
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Each agent has only one FactSetBase in BELIEF, and every FactSets is used as a 

subset of FactSetBase, and this design guarantees the consistency of agent‟s data 

information and knowledge (see Section 3.4.3).  

Each agent‟s goal has a relationship with Dependency category (Definition 3.3.2), by 

which agent‟s goals are classified as different levels of priority. Dependency guides the 

agent to decide which goal should be worked on first if multiple plans are triggered at the 

same time (see Section 3.3.4).   

Each agent‟s action and plan have a relationship with Discrete Time category. 

Discrete Time is extremely useful to guarantee that actions of Plan and plans of PLAN 

occur in correct time order (see Section 3.2.4). 

PLAN, GOAL, BELIEF and FactSet have “self _*” functors, which allow each 

category to have ability to update (i.e. remove) their objects, For example, remove 

unreached goals from GOAL, or remove unachievable plans in PLAN. 

 

3.6. Representing Multi-Agent Systems 

We have defined agent‟s plans, goals, beliefs and their relationships by category theory 

representation. In this section, we use category theory to represent multi-agent systems. A 

system is called multi-agent system (MAS) if there are multiple intelligent agents 

interacting to each other. The interactions can be described as external trigger event 

messages passing. Agent‟s plan is defined as a sequence of actions (see Section 3.2), and 

the first action is to receive trigger event messages. The trigger event messages can be 

internal or external messages where the internal messages are sent by the agent itself and 

the external ones are sent by other agents.   
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3.6.1. Categorical Representation of MAS 

MAS is a category whose objects are “agents” and morphisms are “communicate”. The 

meaning of “communicate” is that one agent has activities of conveying information to 

another agent, and “communicate” can be differentiated by types. For example, from 

objects Agent1 to Agent2 there is a “communicate” morphism f: Agent1 → Agent2, which 

represents the fact that Agent2 is receiving trigger message(s) from Agent1. In other words, 

Agent2 has a plan trigged by Agent1. Composition operation is satisfied. Suppose Agent3 is 

another object in the same MAS and a morphism g: Agent2 Agent3, then morphism g o f: 

Agent1 Agent3 is the composition of f and g, which represents the fact that Agent1 is able 

to communicate with Agent3. MAS category also satisfies Associativity and Unit lows. 

MAS is stated as a valid category by the above axioms. Using this category, we are able 

to have an overall idea about agents‟ relationships in a system, such as which agents have 

the ability to communicate directly, which agents need other agents to delegate messages, 

and which type of communication is taking place between agents.  

We can use our RAS [OK06] [KO08] based multi-agent system as an instance. 

System manager agent is the most essential part that acts as a brain for the overall system. 

It governs the entire system in terms of monitoring and controlling the other agents‟ 

actions. This agent also has the most global view, which allows it to communicate with 

any other agent whining the system. It guarantees the overall system running correctly. 

Supervisor agent exists within each group. It is the group leader that manages the group. 

It plays a similar role to the system manager’s role, but with limited power and localized 

view of the entire system. Within multi-agent society, worker agents are the mass. Unlike 

supervisor agent or system manager agent, they perform actual works, obey orders and 
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report events. Since RAS based multi-agent system is a layered framework, each tier only 

can communicate with the same tier or the tier immediately above or below.  

MAS

d

a c

e i

SystemManager

Supervisor 1 Supervisor 2

Worker 1 Worker 2 Worker 3 Worker 4

f g h

l

j

k

a, b and c :: communicate. TA

d :: communicate. TB

e, f and g :: communicate. TC

h and i :: communicate. TD

l :: communicate. TE

j and k :: communicate. TF

b

 

Figure 0.19: MAS category example 

Figure 3.19 is a category representation for a multi-agent system, which models a 

RAS.  It exhibits a high abstract view of the overall system. The basic component objects 

for the system are: system manager agent, supervisor agent and worker agent, and basic 

communication types are: TA between system manager and supervisors, TB between 

supervisor1 and supervisor2, TC between supervisor1 and its works, TD between 

supervisor2 and its works, TE between work1 and work2, and TF between work3 and work4.  

3.6.2. Repository Agent  

Within each RAS-based multi agent system, there exists one special agent. This agent is 

used to store the entire multi agent system information and it is in a position as a system 

persistent storage. Repository agent contains copies of every agent‟s information, such as 

goals, plans and beliefs.  



67 

 

3.6.3. Repository Type  

Repository Type is a type category (see Chapter 2) whose objects are categories that 

represent the types of agents, and whose morphisms are “communicate”, which 

represents the types of communication channels from agents to agents. For example, one 

Repository Type includes objects Type1 and Type2 and morphism f: Type1 → Type2. It 

means agents can be of Type1 or Type2, and agents of Type2 have channels that are open 

to agents of Type1. In other words, agents of Type1 have the ability to access to or 

communicate with agents of Type2. Since there is no morphism Type2 → Type1, agents of 

Type2 do not have the ability to access to or communicate with agents of Type1. 

Zoom into each category, it includes objects: ActionType, PlanType, PLANType, 

GOALType, FactSetType and BELIEFType. *Type’s objects represent the types of objects 

of agents‟ Action, Plan, PLAN, GOAL, FactSet and BELIEF, and *Type’s morphisms 

represent the types of morphisms between objects within Action, Plan, PLAN, GOAL, 

FactSet and BELIEF.  

3.6.4. MAS and Repository Type 

From MAS to Repository Type, there exists a functor (F) with some additional 

properties. In general a functor only maps objects to objects, and morphisms to 

morphisms, but since each object is defined as a category in this thesis, we need this 

functor with a special property to zoom into each object and do a mapping too. F maps 

every object (agent) of MAS to object (category) of Repository Type, and it also maps 

every morphism (communicate) to morphism (communicate type). The additional 

properties of F describe relations between MAS and Repository Type objects, which are 

shown in the following example (Figure 3.20) and represented by Table 3.1. 
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FactSet1 FactSet2

FactSetn

zoom in

Agent A

PB

PG GB

X
Y

Z

A
B

C

X, Y, Z:: sequence _action 

A, B, C::refine _by  _plan 

PG::plan _goal 

PB::plan _belief 

GB: goal _belief 

f and g ::“before”

Plan2

Act1 Act3

gAct2
f

Agent B

...

Agent C

...

MAS

GOAL

...

BELIEF

...

PLAN

...

Plan1

...
Plann

...

Action

...

K

G

H

K, G and H :: “Communicate”

FactSet1 FactSet2

FactSetn

zoom in

Type X

Plan Type

ActType1 ActType2

n

m

Repository Type 

Type Y

...

ActType3

o

m, n and o ::“before”

PLAN Type

...

BELIEF Type

...

Action Type

...

GOAL Type

...
P

Q

P and Q ::“Communicate Type A”

F

Figure 0.20: MAS to Repository Type  

Suppose MAS (M) has three objects (agents): Agent A, Agent B and Agent C, and 

morphisms (communicate): K: A →B, G: A→ C and H: C→ A (Figure 3.20). Repository 

Type (RT) has two objects (types of agent) Type X and Type Y, and morphism (types of 

morphisms) P: Type X→ Type Y and Q: Type Y→ Type X. As we have defined: Agent A, 

Agent B and Agent C are agents specified using Action, Plan, PLAN, GOAL, FactSet 

and BELIEF categories. In addition, F provides a rule to transfer objects and morphisms 

within Agent A, Agent B and Agent C’ s Action, Plan, PLAN, GOAL and BELIEF to 

objects and morphisms within Type X and Type Y‟s ActionType, PlanType, PLANType, 

GOALType and BELIEFType. Here we will only show Agent A‟s Plan2 in Table 3.1 and 

more details will be given in Chapter 4, Section 4.2.   

 Rep Type Counter 

MAS Type X Type Y 

Agen

t A 

Plan Type … … 

Plan2 ActType1 ActType2 ActType3 m n o … … … …  

Act1 1 0 0 0 0 0     1 
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Act2 0 1 0 0 0 0     1 

Act3 0 1 0 0 0 0     1 

F 0 0 0 1 0 0     1 

G 0 0 0 0 1 0     1 

Table 0.1: Additional properties of F 

The left side of Table 3.1 shows objects and morphisms of each Agent A‟s categories 

in MAS. For example, Act1 means action object Act1 of Agent A‟s Plan2 category; and f 

means before morphism: Act1 → Act2 of Agent A‟s Plan2 category. In the middle, the 

table shows objects and morphisms of each type Agent‟s categories in Repository Type. 

We use “1” if there is a match from object or morphism to a type; otherwise “0” is 

marked. On the right side, counter represents the sum of marked numbers in the same 

row. Counter equals to “1” is the only acceptable result, which shows that one object or 

morphism is only allowed to be of one type.  
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Chapter 4: Fault-Tolerance Properties in Multi-

Agents System Categorical Model 

 

 

In this chapter, we will introduce some Fault-Tolerance properties with category theory 

for multi-agent systems, which have been defined and illustrated in Chapter 3. We use the 

robotic case study discussed in Chapter 2.  

4.1. A Categorical Model for Robotic Case Study  

In this chapter, the following agents from the robotic case study will be used to represent 

fault-tolerance properties. They are repository agent Repository, and repository type, 

Repository Type, supervisor agent Supervisor, and carry agents Carry1 and Carry2. 

P

Q

S, T, P and Q ::“Communicate”

Repository Type 

Type Supervisor

Plan Type

...

PLAN Type

...

BELIEF Type

...

Action Type

...

GOAL Type

...

Type Carry

Plan Type

...

PLAN Type

...

BELIEF Type

...

Action Type

...

GOAL Type

...

S T

 

Figure 0.1: Repository Type categories in case study 

Repository Type has objects that represent agent types, such as Supervisor and Carry. 

It also has “communicate” morphisms that represent communication channels from one 

type of agent to another, such as Carry → Supervisor, Supervisor → Carry, Supervisor 
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→ Supervisor and Carry → Carry. Each object (type of agent) within Repository Type 

contains five type categories: ActionType, PlanType, PLANType, GOALType and 

BELIEFType (see Chapter 3 for the definition of type category). Figure 4.1 illustrates 

these categories.   

Figure 4.2 shows an example of Type Carry. Action Type contains objects 

representing the following actions: ActTrigger, ActMove, ActLoad, and ActUnload. Plan Type 

includes objects representing the following actions: ActTrigger, ActMove, ActLoad, and 

ActUnload, and morphisms a: ActTrigger → ActMove, b: ActMove → ActLoad, c: ActLoad → 

ActMove, d: ActMove → ActUnload, and e: ActTrigger → ActUnload. PLAN Type includes objects 

representing the following plans: PlanCarryOre and PlanMove, and morphisms f: PlanCarryOre 

→ PlanCarryOre and g: PlanMove → PlanMove. GOAL Type contains objects representing the 

following goals: GoalCarryOre and GoalMove, and morphisms m: GoalCarryOre → GoalCarryOre 

and n: GoalMove → GoalMove. BELIEF Type includes objects representing the following 

fact sets: FactSetCarryOre, FactSetMoveArea, FactSetBase and FactSetNull, and morphisms h: 

FactSetCarryOre → FactSetBase, i: FactSetNull → FactSetCarryOre, j: FactSetMoveArea → 

FactSetBase, and k: FactSetNull → FactSetMoveArea. 

Action Type

ActTrigger

ActMove

ActLoad

ActUnload

PLAN Type

PlanCarryOre PlanMove

f g

f and g :: “before”

Type Carry

GOAL Type

GoalCarryOre GoalMove

m n

m and n ::“depends”

Plan Type

ActTrigger

a, b, c,d  and e :: “before”

ActMove

ActLoad

ActUnload

a b

c

d

e

BELIEF Type

FactSetCarryOre

h, i, j,  and k ::“subset _of”

FactSetMoveArea

FactSetNull

FactSetBaseh

i

j

k

o l

 

Figure 0.2: Type carry agent 
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Repository Agent stores copies of each agent‟s categories, which are useful for 

restarting damaged agents (This aspect is detailed in Section 4.3). 

Carry1 (Figure 4.3) is defined by objects which are categories: Action1, Plan1_A, Plan1_B, 

PLAN1, GOAL1, FactSet1_A, FactSet1_B and BELIEF1, and morphisms “sequence 

_action”, “refined _by _plan”, “plan _goal”, “goal _ belief” and “plan _belief”. Where 

Action1 has the objects: ActStartCarry, ActLoadOre, ActMoveToTargetA, ActMoveToTargetB and 

ActMoveToBase. Plan1_A has the objects: ActStartCarry, ActLoadOre, ActMoveToTargetA, ActMoveToBase 

and ActNull, and morphisms: l1_A: ActStartCarry → ActMoveToTargetA, s1_A: ActMoveToTargetA → 

ActLoadOre and t1_A: ActLoadOre → ActMoveToBase. Plan1_B has the objects: ActStartCarry, 

ActLoadOre, ActMoveToTargetB, ActMoveToBase and ActNull, and morphisms: l1_B: ActStartCarry → 

ActMoveToTargetB, s1_B: ActMoveToTargetB → ActLoadOre and t1_B: ActLoadOre → ActMoveToBase. 

PLAN1 includes the objects: PlanCarryOreFromTargetA and PlanCarryOreFromTargetB, and 

morphisms: p1: PlanCarryOreFromTargetA → PlanCarryOreFromTargetA, o1: PlanCarryOreFromTargetA → 

PlanCarryOreFromTargetB and q1: PlanCarryOreFromTargetB → PlanCarryOreFromTargetB. GOAL1 

contains the objects: GoalCarryOreFromTargetA and GoalCarryOreFromTargetB, and morphisms: i1: 

GoalCarryOreFromTargetA → GoalCarryOreFromTargetA, k1: GoalCarryOreFromTargetA → 

GoalCarryOreFromTargetB and j1: GoalCarryOreFromTargetB → GoalCarryOreFromTargetB. BELIEF1 

contains objects: FactSet1_A, FactSet1_B, FactSetBase and FactSetNull. It also has the 

morphisms u1: FactSet1_A → FactSetBase, v1: FactSet1_B → FactSetBase, x1: FactSetNull → 

FactSet1_A and y1: FactSetNull → FactSet1_B. “Zoom In” is not a functor, it substitutes the 

objects FactSet1_A and FactSet1_B in BELIEF1 with their corresponding content. 

FactSet1_A contains objects: targetALocation, baseLocation, targetAOreAmount and 
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FactNull. FactSet1_B contains objects: targetBLocation, baseLocation, targetBOreAmount 

and FactNull. 

 

Figure 0.3: Carry1 agent 

With functor (F) and its additional properties (See Section 3.6.4 in Chapter 3) objects 

in Action1, Plan1_A, Plan1_B, PLAN1, GOAL1 and BELIEF can be one to one mapped to 

Type Carry’s objects in Action Type, Plan Type, PLAN Type, GOAL Type and BELIEF 

Type. Morphisms within Action1, Plan1_A, Plan1_B, PLAN1, GOAL1 and BELIEF can be 

one to one mapped to Type Carry’s objects in Action Type, Plan Type, PLAN Type, 

GOAL Type and BELIEF Type (See Tables 4.1 to 4.6).  

 Rep Type Counter 

MAS Type Carry  

Carry1 (Agent) Action Type 

Carry1

TargetALocation

BaseLocation

TargetAOreAmount

FactSet1_A

FactNull 

TargetBLocation

BaseLocation

TargetBOreAmount

FactSet1_B

Plan 1_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA
ActLoadOre

ActMoveToBase

l1_A s1_A

t1_AActNull 

PLAN1

PlanCarryOreFromTargetA

p1 q1

p1, q1 and o1:: “before”

PlanCarryOreFromTargetA

o1

PlanNull 

Plan 1_B

ActStartCarry

l1_B, s1_B and t1_B :: “before”

ActMoveToTargetB
ActLoadOre

ActMoveToBase

l1_B s1_B

t1_B
ActNull 

GOAL1

i1, j1 and k1 :: “high_ priority”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k1

GOALNull 

BELIEF1

u1, v1, x1  and y1 :: “subset _of”

FactSetNull

FactSetBaseu1

x1

v1

y1

FactSet1_A FactSet1_B

Zoom In Zoom In

SA1_A

SA1_B

RBP1_A

RBP1_B

PG1

GB1PB1

SA1_A and SA1_B :: sequence _action; RBP1_A and RBP1_B:: refined _by  _plan; 

PG1:: plan _goal; GB1:: goal _belief; PB1:: plan _belief

ActStartCarry

ActMoveToTargetA
ActLoadOre

ActMoveToBase

Action1

ActMoveToTargetB FactNull 

depends 
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Action1 ActTrigger ActMove ActLoad ActUnload 

ActStartCarry 1 0 0 0 1 

ActLoadOre 0 0 1 0 1 

ActMoveToTarget 0 1 0 0 1 

ActMoveToBase 0 1 0 0 1 

Table 0.1: F Additional properties map Action1 to Action Type 

 

 Rep Index Counter 

MAS Type Carry 

Carry1  Plan Type 

Plan1-A ActTrigger ActMove ActLoad ActUnload a b c d e  

ActStartCarry 1 0 0 0 0 0 0 0 0 1 

ActLoadOre 0 0 1 0 0 0 0 0 0 1 

ActMoveToTargetA 0 1 0 0 0 0 0 0 0 1 

ActMoveToBase 0 1 0 0 0 0 0 0 0 1 

l1_A 0 0 0 0 1 0 0 0 0 1 

s1_A 0 0 0 0 0 1 0 0 0 1 

t1_A 0 0 0 0 0 0 1 0 0 1 

Table 0.2: F Additional properties map Plan1_A to Plan Type 

 

 Rep Index Counter 

MAS Type Carry 

Carry1  Plan Type 

Plan1-B ActTrigger ActMove ActLoad ActUnload a b c d e  
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ActStartCarry 1 0 0 0 0 0 0 0 0 1 

ActLoadOre 0 0 1 0 0 0 0 0 0 1 

ActMoveToTargetB 0 1 0 0 0 0 0 0 0 1 

ActMoveToBase 0 1 0 0 0 0 0 0 0 1 

l1_B 0 0 0 0 1 0 0 0 0 1 

s1_B 0 0 0 0 0 1 0 0 0 1 

t1_B 0 0 0 0 0 0 1 0 0 1 

Table 0.3: F Additional properties map Plan1_B to Plan Type 

 

 

 Rep Index Counter 

MAS Type Carry  

Carry1  PLAN Type 

PLAN1 PlanCarryOre PlanMove f g o  

PlanCarryOreFromTargetA 1 0 0 0 0 1 

PlanCarryOreFromTargetB 1 0 0 0 0 1 

p1 0 0 1 0 0 1 

q1 0 0 1 0 0 1 

o1 0 0 1 0 0 1 

Table 0.4: F Additional properties map PLAN1 to PLAN Type 

 

 Rep Index Counter 

MAS Type Carry  

Carry1  GOAL Type 

GOAL1 GoalCarryOre GoalMove m n l  
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GoalCarryOreFromTargetA 1 0 0 0 0 1 

GoalCarryOreFromTargetB 1 0 0 0 0 1 

k1 0 0 1 0 0 1 

Table 0.5: F Additional properties map GOAL1 to GOAL Type 

 

 Rep Index Counter 

MAS Type Carry 

Carry1 BELIEF Type 

BELIEF1 FactSetCarryOre FactSetMoveArea FactSetBase FactSetNull h i j k  

FactSetBase 0 0 1 0 0 0 0 0 1 

FactSetNull 0 0 0 1 0 0 0 0 1 

FactSet1_A 1 0 0 0 0 0 0 0 1 

FactSet1_B 1 0 0 0 0 0 0 0 1 

u1 0 0 0 0 1 0 0 0 0 

v1 0 0 0 0 1 0 0 0 1 

x1 0 0 0 0 0 1 0 0 1 

y1 0 0 0 0 0 1 0 0 1 

Table 0.6: F Additional properties map BELIEF1 to BELIEF Type 

Similar to Carry1, Carry2 is defined by categories: Action2, Plan2_A, Plan2_B, 

Plan2_move, PLAN2, GOAL2, FactSet2_A, FactSet2_B, FactSet2_Move and BELIEF2, and 

morphisms “sequence _action”, “refined _by _plan”, “plan _goal”, “goal _ belief” and 

“plan _belief” (see Figure 4.4).  

With functor (F) and its additional properties (see Section 3.6.4), objects in Action2, 

Plan2_A, Plan2_B, Plan2_move, PLAN2, GOAL2 and BELIEF2 can be one to one mapped to 
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Type Carry’s objects in Action Type, Plan Type, PLAN Type, GOAL Type and BELIEF 

Type. Morphisms within Action2, Plan2_A, Plan2_B, Plan2_move, PLAN2, GOAL2 and 

BELIEF2 can be one to one mapped to Type Carry’s objects in Action Type, Plan Type, 

PLAN Type, GOAL Type and BELIEF Type (See table 4.7 to table 4.13) 

Carry2

TargetALocation

BaseLocation

TargetAOreAmount

FactSet2_A

FactSetNull 

Plan 2_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA ActLoadOre

ActMoveToBase

l2_A s2_A

t2_A

ActNull 

PLAN2

PlanCarryOreFromTargetA

p2 q2

p2, q2 , o2 ,  m2 and n2 :: “before”

PlanCarryOreFromTargetA

o2

PlanNull 

Plan 2_B

ActStartCarry

l2_B, s2_B and t2_B :: “before”

ActMoveToTargetB ActLoadOre

ActMoveToBase

l2_B s2_B

ActNull 

GOAL2

r2 and k2 :: “depends”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k2

GOALNull 

BELIEF2

u2, v2, x2, y2, w2 and z2 :: “subset _of”

FactSetNull

FactSetBaseu2

x2

v2

y2

FactSet1_B

Zoom In
Zoom In

SA2_A

SA2_B

RBP2_A

RBP2_B

PG2

GB2PB2

SA2_A, SA2_B and SA2_Move:: sequence _action; RBP2_A, RBP2_B and RBP2_Move:: refined _by  _plan; 

PG2:: plan _goal; GB2:: goal _belief; PB2:: plan _belief

t2_B

Plan 2_move

l1_Move :: “before”

l2_move
ActNull 

ActStartMove ActtMoveAround

SA2_Move

PlanMoveAround
n2

GoalMoveAround

m2

r2

FactSet2_A FactSet2_Move

w2

z2

TargetBLocation

BaseLocation

TargetBOreAmount

FactSet2_B

FactSetNull 

MovingArea

FactSet2_Move

Zoom In

RBP2_Move

ActStartCarry

ActMoveToTargetAActLoadOre

ActMoveToBase

Action2

ActMoveToTargetB ActStartMove

ActtMoveAround

ActUnloadOre

h2_A

ActUnloadOre

 

Figure 0.4: Carry2 Agent 

 Rep Index Counter 

MAS Typed Carry  

Carry2  Action Type 

Action2 ActTrigger ActMove ActLoad ActUnload 

ActStartCarry 1 0 0 0 1 

ActLoadOre 0 0 1 0 1 
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ActMoveToTarget 0 1 0 0 1 

ActMoveToBase 0 1 0 0 1 

ActStartMove 1 0 0 0 1 

ActMoveAround 0 1 0 0 1 

ActUnloadOre 0 0 0 1 0 

Table 0.7: F Additional properties map Action2 to Action Type 

 

 Rep Index Counter 

MAS Type Carry 

Carry2  Plan Type 

Plan12-A ActTrigger ActMove ActLoad ActUnload a b c d e  

ActStartCarry 0 1 0 0 0 0 0 0 0 1 

ActLoadOre 1 0 0 0 0 0 0 0 0 1 

ActMoveToTargetA 1 0 0 0 0 0 0 0 0 1 

ActMoveToBase 0 1 0 0 0 0 0 0 0 1 

ActUnloadOre 0 0 0 1 0 0 0 0 0 1 

l2_A 0 0 0 0 1 0 0 0 0 1 

s2_A 0 0 0 0 0 1 0 0 0 1 

t2_A 0 0 0 0 0 0 1 0 0 1 

h2_A 0 0 0 0 0 0 0 1 0 1 

Table 0.8: F Additional properties map Plan2_A to Plan Type 

 

 Rep Index Counter 

MAS Type Carry 
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Carry2  Plan Type 

Plan2-B ActTrigger ActMove ActLoad ActUnload a b c d e  

ActStartCarry 0 1 0 0 0 0 0 0 0 1 

ActLoadOre 1 0 0 0 0 0 0 0 0 1 

ActMoveToTargetB 1 0 0 0 0 0 0 0 0 1 

ActMoveToBase 0 0 0 1 0 0 0 0 0 1 

l2_B 0 0 0 0 1 0 0 0 0 1 

s2_B 0 0 0 0 0 1 0 0 0 1 

t2_B 0 0 0 0 0 0 1 0 0 1 

Table 0.9: F Additional properties map Plan2_B to Plan Type 

 

 Rep Index Counter 

MAS Type Carry 

Carry2  Plan Type 

Plan2-Move ActTrigger ActMove ActLoad ActUnload a b c d e  

ActStartMove 1 1 0 0 0 0 0 0 0 1 

ActMoveAround 0 1 0 0 0 0 0 0 0 1 

l2_Move 0 0 0 0 1 0 0 0 0 1 

Table 0.10: F Additional properties map Plan2_Move to Plan Type 

 

 Rep Index Counter 

MAS Type Carry  

Carry2  PLAN Type 

PLAN2 PlanCarryOre PlanMove f g o  
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PlanCarryOreFromTargetA 1 0 0 0 0 1 

PlanCarryOreFromTargetB 1 0 0 0 0 1 

PlanMoveAround 0 1 0 0 0 1 

p2 0 0 1 0 0 1 

q2 0 0 1 0 0 1 

o2 0 0 1 0 0 1 

m2 0 0 0 0 1 1 

n2 0 0 0 1 0 1 

Table 0.11: F Additional properties map PLAN2 to PLAN Type 

 

 Rep Index Counter 

MAS Type Carry 

Carry2  BELIEF Type 

BELIEF2 FactSetCarryOre FactSetMoveArea FactSetBase FactSetNull h i j k  

FactSetBase 0 0 1 0 0 0 0 0 1 

FactSetNull 0 0 0 1 0 0 0 0 1 

FactSet2_A 1 0 0 0 0 0 0 0 1 

FactSet2_B 1 0 0 0 0 0 0 0 1 

FactSet2_Move 0 1 0 0 0 0 0 0 1 

u1 0 1 0 0 0 0 0 0 1 

v1 0 0 0 0 1 0 0 0 1 

x1 0 0 0 0 0 1 0 0 1 

y1 0 0 0 0 0 1 0 0 1 

w1 0 0 0 0 0 0 1 0 1 
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z1 0 0 0 0 0 0 0 1 1 

Table 0.12: F Additional properties map BELIEF2 to BELIEF Type 

4.2. Fault-Tolerance  

As addressed in [KD03], autonomic systems have the following important self-

managing characteristics: a) self-configuration: the ability of configuring system 

automatically according to the changing of environment; b) self-healing: the ability of 

detecting, managing and repairing bugs or failures in software as well as hardware 

systems; c) self-optimization: the ability of improving system operations and make 

themselves more efficient in performance or cost; and d) self-protection: the ability of 

protecting the whole system against malicious attacks and failures uncorrected by self-

healing. This thesis uses fault-tolerance as a mechanism in order to model self-healing 

property with category theory.  Fault-tolerance is defined as a property enables a system 

to continue operating properly in the event of the failure of (or one or more faults within) 

some of its components. The following sections take case study “Marsworld” and use 

case “recover damaged carry agent” (see Chapter 2) to illustrate the fault-tolerance 

properties: restarting and taking over, and using category theory to as a formal model. 

4.2.1. Fault-Tolerance Property- Restart The Same Agent 

In a multi-agent system, if an agent is not functional, the first basic solution to recover the 

system is restarting this agent. Before showing how this solution can be modeled in CAT, 

we recall the following concept:  

Isomorphism [Mac71]: An isomorphism T: C→B of categories is a functor T from C to 

B， which is a bijection, both on objects and on morphisms. In other words, a function 
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T: C→B is an isomorphism if and only if there is a functor S: C→B for which both 

composites (S o T) and (T o S) are identity functors. 

Definition 4.1 Restart:  An agent can be restarted, if and only if this agent’s categories 

Action, Plan, PLAN, GOAL, FactSet and BELIEF are isomorphic to repository agent’s 

categories. These categories within repository exist as default before the agent is created, 

and can be updated during system runtime. If this agent is restart-able, its supervisor 

agent will recreate the agent, otherwise, the agent‟s stored categories will be removed 

from the repository by the supervisor agent. We write isomorphism (A, B) == TRUE to 

indicate that category A is isomorphic to category B, otherwise we use isomorphism (A, 

B) == FALSE. 

As we have defined in Chapter 3, each category Plan, PLAN, GOAL, FactSet and 

BELIEF has a self _functor, which models the agent ability to update itself, such as 

removing objects and morphisms. If all of the agent‟s current (or up to date) categories 

are isomorphic to their corresponding repository agent‟s categories, then this agent can be 

restarted. For example (Figure 4.5): Agent A includes Plan’, PLAN’, GOAL, FactSet 

and BELIEF, where Plan’ and PLAN’ are updated from Plan and PLAN, and GOAL, 

FactSet and BELIEF are the same as default. Inside repository there are categories 

AgentA.Plan, AgentA.PLAN, AgentA.GOAL, AgentA.FactSet and AgentA.BELIEF. 
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Agent.BELIEF
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Agent. FactSet

 

Figure 0.5: Fault-tolerance property- restart in agent A 

From Definition 4.1, the following C-like statements check if agent A is able to be 

restarted. 

if (isomorphism (Action, AgentA.Action) == TRUE 

&& isomorphism (Plan’, AgentA.Plan) == TRUE 

&& isomorphism (PLAN’, AgentA.PLAN) == TRUE 

&& isomorphism (GOAL, AgentA.GOAL) == TRUE 

&& isomorphism (FactSet, AgentA.FactSet) == TRUE 

&& isomorphism (BELIEF, AgentA.BELIEF) == TRUE) 

then   Agent can be restarted 

else  Agent cannot be restarted 

4.2.2. Robotic Case Study: Restart the Same Carry Agent  

In this section we will present the implementation of fault-tolerance in the robotic case 

study by using restart property. The detailed scenario of replacing damaged carry agent is 

described in section 2.6.  In the robotic case study, there is an agent called Carry1 that 

does not perform its tasks correctly. Its supervisor agent will try to restart Carry1 from its 
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default stage. The supervisor agent needs to communicate with both Carry1 and 

repository agent and checks if Carry1 satisfies the conditions of Definitions 4.1. 

a) Isomorphism in Action  

Action1 is defined as an Action category (Chapter 3, Definition 3.2.1) of Carry1. 

Carry1.Action is defined as information storage for Carry1‟s Action in repository. 

Suppose Carry1.Action includes exactly the same objects as in Action1, then we have 

isomorphism (Action1, Carry1.Action) == TRUE 

 

b) Isomorphism in Plan  

Plan1 is defined as a Plan category (Chapter 3, Definition 3.2.3) of Carry1. 

Carry1.Plan is defined as information storage for Carry1‟s Plan in repository. Suppose 

Carry1.Plan includes exactly the same objects and morphisms as in Action1, then  

isomorphism (Plan1, Carry1.Plan) == TRUE 

By using the same assumption as a) and b), we can have 

c) Isomorphism in PLAN: isomorphism (PLAN1, Carry1.PLAN) == TRUE 

d) Isomorphism in GOAL: isomorphism (GOAL1, Carry1.GOAL) == TRUE 

e) Isomorphism in FactSet:  isomorphism (FactSet1, Carry1.FactSet) == TRUE 

f) Isomorphism in BELIEF:  isomorphism (BELIEF1, Carry1.BELIEF) == TRUE 

With above (a ~ f) conditions, Carry1 can be restart/recreated by its supervisor agent.  

But Suppose Carry1 doesn‟t satisfy one of the (a ~ f) conditions, for example, 

BELIEF1 has more objects than Carry1.BELIEF, or Plan1 contains less morphisms than 

Carry1.Plan, then by definition of isomorphism,  

isomorphism (BELIEF1, Carry1.BELIEF) == False, or 
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isomorphism (Plan1, Carry1.Plan) == False.  

This means Carry1 cannot be restarted or recreated by its supervisor agent. 

4.2.3. Fault-Tolerance Property- Takeover by Inclusion Agent  

If the damaged agent cannot be replaced by an equivalent agent, the supervisor agent will 

try to find an inclusion agent (Definition 4.3) to takeover (definition 4.4) the damaged 

agent.  

Definition 4.2 Include: Let C1 and C2 be two categories. C2 is said to be included in C1 if 

and only if 1) C1 includes the same object and morphism types as C2 does; 2) C1 contains 

at least the same number of objects of each type as C2 does; and 3) C1 includes at least 

the same number of morphisms for each object as C2 does.   

We use include (C1, C2) == TRUE to denote that category C1 includes C2, and 

include (C1, C2) == FALSE to denote the negation. 

Definition 4.3 Inclusion Agent: Let A and B be two agents. If all the following 

categories: Action, Plan, PLAN, GOAL, FactSet, and BELIEF defined in A include B’s 

Action, Plan, PLAN, GOAL, FactSet, and BELIEF, we say agent A is an Inclusion 

Agent of agent B. 

We use IncAgent (A, B) == TRUE to denote that agent A is an inclusion agent of 

agent B, otherwise, we write  IncAgent (A, B) == FALSE. 

Definition 4.4 Takeover: An agent A can take over (i.e. replace) an agent B if and only if 

IncAgent (A, B) == TRUE.   

For example (Figure 4.6): Agent A includes Action_ A, Plan_ A, PLAN_ A, GOAL_ 

A, and BELIEF_ A. Agent B includes Action_ B, Plan_ B, PLAN_ B, GOAL_ B and 

BELIEF_ B. 
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Figure 0.6: Fault-tolerance property takeover by inclusion agent 

From Definitions 4.2, 4.3 and 4.4, the following statements check if agent A can be 

taken over (i.e. replaced) by agent B (we user take_over (Agnet X, Agent Y) to denote 

Agent X can be taken over by Agent Y). 

IncAgent (Agent B, Agent A) == 

 (include (Action_B, Action_A)  

&& include (Plan_B, Plan _A) 

&&  include (PLAN_B, PLAN _A) 

&&  include (GOAL_B, GOAL _A) 

&& include (BELIEF_B, BELIEF _A)) 

if (IncAgent (Agent B, Agent A)) 

then take_over (Agent A, Agent B) 

else take_over (Agent A, Agent B) 

4.2.4. Robotic Case Study: Takeover Damaged Carry Agent by Inclusion 

Agent 
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In this section we will present the implementation of fault-tolerance in the robotic case 

study by using takeover property. The detailed scenario of replacing damaged carry agent 

is described in section 2.6. In this specific configuration of the robotic multi agent system, 

there is a damaged agent called Carry1. If Carry1 cannot be restarted and there is no 

equivalent agent to substitute it, then its supervisor agent will communicate with other 

agents in its group to try to find an agent to take-over the duties of Carry1.   

a) Include in Action  

Action1 is defined as an Action category (Chapter 3, definition 3.2.9) of Carry1. It has 

three types of objects: ActTrigger, ActMove and ActLoad.  And its objects ActStartCarry of type ActTrigger, 

ActMoveToTargetA, ActMoveToTargetB and ActMoveToBase of type ActMove, and ActLoadOre of type ActLoad 

(Table 4.1).  

Action2 is defined as an Action category of Carry2, and it contains three types of 

objects: ActTrigger, ActMove, ActLoad and ActUnload. Action2 contains objects: ActStartCarry and 

ActStartMove of type ActTrigger, ActMoveToTargetA, ActMoveToTargetB, ActMoveToBase and ActMoveAround of type 

ActMove, ActLoadOre of type ActLoad and ActUnloadOre of type ActUnload (Table 4.6) (See Figure 4.6 

Include in Action in Case Study). 

ActStartCarry

ActMoveToTargetAActLoadOre

ActMoveToBase

Action2

ActMoveToTargetB ActStartMove

ActtMoveAround

ActStartCarry

ActMoveToTargetA
ActLoadOre

ActMoveToBase

Action1

ActMoveToTargetB

ActUnloadOre 

 

Figure 0.7: Include in action in the case study 

Action2 includes Action1. Action2 contains all the three types of objects as in Action1 

(ActTrigger, ActMove and ActLoad), and Action2 contains the same number of objects of each type 

as in Action1 (ActStartCarry, ActStartMove, ActMoveToTargetA, ActMoveToTargetB, ActMoveToBase,  ActMoveAround, 

ActLoadOre and ActUnloadOre).  
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b) Include in Plan  

Plan1_A is defined as a Plan category (Chapter 3, Definition 3.2.1) of Carry1. It has three 

types of objects: ActTrigger, ActMove and ActLoad, and one type of morphism: before. Plan1_A 

And its objects ActStartCarry of type ActTrigger, ActMoveToTargetA and ActMoveToBase of type ActMove, 

and ActLoadOre of type ActLoad. Plan1_A contains morphisms l1_A: ActStartCarry → ActMoveToTargetA, 

s1_A: ActMoveToTargetA → ActLoadOre and t1_A: ActLoadOre → ActMoveToBase (Table 4.2). 

Plan2_A is defined as a Plan category of Carry2, and it has three types of objects: 

ActTrigger, ActMove, ActLoad and ActUnload, and one type of morphism: before. Plan2_A contains 

objects: ActStartCarry of type ActTrigger, ActMoveToTargetA and ActMoveToBase of type ActMove, ActLoadOre of 

type ActLoad, and ActUnloadOre of type ActUnload. Plan2_A contains morphisms: l2_A: ActStartCarry → 

ActMoveToTargetA, s2_A: ActMoveToTargetA → ActLoadOre, t2_A: ActLoadOre → ActMoveToBase and h2_A: 

ActMoveToBase → ActUnloadOre, (Table 4.7). Figure 4.8 illustrates this case. 

Plan 2_B

ActStartCarry

l2_B, s2_B and t2_B :: “before”

ActMoveToTargetB ActLoadOre

ActMoveToBase

l2_B s2_B

ActNull 
t2_B

Plan 2_move

l2_move
ActNull 

ActStartMove ActtMoveAround

l1_Move :: “before”

Plan 1_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA
ActLoadOre

ActMoveToBase

l1_A s1_A

t1_AActNull 

Plan 1_B

ActStartCarry

l1_B, s1_B and t1_B :: “before”

ActMoveToTargetB
ActLoadOre

ActMoveToBase

l1_B s1_B

t1_B
ActNull 

Plan 2_A

ActStartCarry

l1_A, s1_A and t1_A :: “before”

ActMoveToTargetA ActLoadOre

ActMoveToBase

l2_A s2_A

t2_A

ActNull 

ActUnloadOre

h2_A

 

Figure 0.8: Include in plan in the case study 

Plan2_A includes Plan1_A. Plan2_A contains all the three types of objects as in Plan1_A 

(ActTrigger, ActMove and ActLoad), and Plan2_A contains same number of objects of each type as 

in Plan1_A (ActStartCarry, ActStartMove, ActMoveToTargetA, ActMoveToBase and ActLoadOre). Plan2_A contains 

all the types of morphisms as in Plan1_A (before), and Plan2_A has the same number of 
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corresponding morphisms as in Plan1_A (ActStartCarry → ActMoveToTargetA, ActMoveToTargetA → 

ActLoadOre and ActLoadOre → ActMoveToBase). Similar to Plan1_A and Plan2_A, Plan2_B includes 

Plan1_B Plan2_B. 

c) Include in PLAN  

PLAN1 is defined as a PLAN category (Chapter 3, Definition 3.2.2) of Carry1. It has one 

type of objects: PlanCarryOre, and one type of morphism: before. PLAN1 contains objects: 

PlanCarryOreFromTargetA and PlanCarryOreFromTargetB of type PlanCarryOre. PLAN1 contains 

morphisms: p1: PlanCarryOreFromTargetA → PlanCarryOreFromTargetA (carryOreFromTargetA can 

be repeated), q1: PlanCarryOreFromTargetB → PlanCarryOreFromTargetB (carryOreFromTargetB 

can be repeated) and o1: PlanCarryOreFromTargetA → PlanCarryOreFromTargetB (Table 4.3). 

PLAN2 is defined as a PLAN category of Carry2, and it has two types of objects: 

PlanCarryOre and PlanMove, and one type of morphism: before. PLAN2 contains objects: 

PlanCarryOreFromTargetA, PlanCarryOreFromTargetB and PlanMoveAround. PLAN2 contains morphisms 

p2: PlanCarryOreFromTargetA → PlanCarryOreFromTargetA, q2: PlanCarryOreFromTargetB → 

PlanCarryOreFromTargetB, o2: PlanCarryOreFromTargetA → PlanCarryOreFromTargetB m2: 

PlanCarryOreFromTargetB → PlanMoveAround and n2: PlanMoveAround → PlanMoveAround (Table 4.8). 

Figure 4.9 illustrates this case. 

PLAN2

PlanCarryOreFromTargetA

p2 q2

p2, q2 , o2 ,  m2 and n2 :: “before”

PlanCarryOreFromTargetA

o2

PlanNull 

PlanMoveAround
n2 m2

PLAN1

PlanCarryOreFromTargetA

p1 q1

p1, q1 and o1 :: “before”

PlanCarryOreFromTargetA

o1

PlanNull 

 

Figure 0.9: Include in PLAN in the case study 

PLAN2 includes PLAN1. PLAN2 contains all the types of objects as in PLAN1 

(PlanCarryOre), and PLAN2 contains the same number of objects of each type as in PLAN1 
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(PlanCarryOreFromTargetA and PlanCarryOreFromTargetB). PLAN2 contains all the types of 

morphisms as in PLAN1 (before), and PLAN2 contains the same number of corresponding 

morphisms as in PLAN1 (PlanCarryOreFromTargetA → PlanCarryOreFromTargetA, 

PlanCarryOreFromTargetA → PlanCarryOreFromTargetB and PlanCarryOreFromTargetB → 

PlanCarryOreFromTargetB). 

d) Include in GOAL  

GOAL1 is defined as a GOAL category (Chapter 3, Definition 3.3.1) of Carry1. It has one 

type of objects: GoalCarryOre, and one type of morphism: higher _priority. GOAL1 

contains objects: GoalCarryOreFromTargetA and GoalCarryOreFromTargetB of type GoalCarryOre. 

GOAL1 contains morphisms: GoalCarryOreFromTargetA → GoalCarryOreFromTargetB (Table 4.4). 

GOAL2 is defined as a GOAL category of Carry2, and it has two types of objects: 

GoalCarryOre and GoalMove, and one type of morphism: depends. GOAL2 contains objects: 

GoalCarryOreFromTargetA, GoalCarryOreFromTargetB and GoalMoveAround.  GOAL2 contains 

morphisms: GoalCarryOreFromTargetA → GoalCarryOreFromTargetB and GoalCarryOreFromTargetB → 

GoalMoveAround (Table 4.10). Figure 4.10 illustrates this case. 

GOAL1

i1 j1

i1, j1 and k1 :: “depends”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k1

GOALNull 
GOAL2

r2 and k2 :: “depends”

GoalCarryOreFromTargetA GoalCarryOreFromTargetB

k2

GOALNull GoalMoveAround

r2

 

Figure 0.10: Include in GOAL in the case study 

GOAL2 includes GOAL1. In definition 4.2, GOAL2 contains all the types of objects as 

in GOAL1 (GoalCarryOreGoal), and GOAL2 contains the same number of objects of each 

type as in GOAL1 (GoalCarryOreFromTargetA and GoalCarryOreFromTargetB). GOAL2 contains all 
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the types of morphisms as in GOAL1 (depends), and GOAL2 contains the same number of 

corresponding morphisms as in GOAL1 (GoalCarryOreFromTargetA → GoalCarryOreFromTargetB). 

e) Include in BELIEF  

BELIEF1 is defined as a BELIEF category (Chapter 3, Definition 3.4.2) of Carry1. It has 

three types of objects: FactSetCarryOre, FactSetBase and FactSetNull, and one type of 

morphism: subset _of. BELIEF1 contains objects: FactSet1_A and FactSet1_B of type 

FactSetCarryOre, FactSetBase of type FactSetBase, and FactSetNull of type FactSet1_B. 

BELIEF1 contains morphisms: u1: FactSet1_A → FactSetBase, v1: FactSet1_B → 

FactSetBase, x1: FactSetNull → FactSet1_A, and y1: FactSetNull → FactSet1_B (Table 4.5). 

BELIEF2 is defined as a BELIEF category of Carry2. It has four types of objects: 

FactSetCarryOre, FactSetMoveArea, FactSeBase and FactSetNull, and one type of morphism: 

subset _of. BELIEF2 contains objects: FactSet2_A and FactSet2_B of type FactSetCarryOre, 

FactSetMove of type FactSetMoveArea, FactSeBase of type FactSeBase, and FactSetNull of type 

FactSetNull. BELIEF2 contains morphisms: u2: FactSet2_A → FactSetBase, v2: FactSet2_B 

→ FactSetBase, w2: FactSetMove → FactSetBase, x2: FactSetNull → FactSet2_A, y2: FactSetNull 

→ FactSet2_B and z2: FactSetNull → FactSetMove (Table 4.10). Figure 4.11 illustrates this 

case. 

BELIEF1

u1, v1, x1  and y1 :: “subset _of”

FactSetNull

FactSetBaseu1

x1

v1

y1

FactSet1_A FactSet1_B

BELIEF2

u2, v2, x2, y2, w2 and z2 ::“subset _of”

FactSetNull

FactSetBaseu2

x2

v2

y2

FactSet1_B
FactSet2_A FactSet2_Move

w2

z2

 

Figure 0.11: Include in BELIEF in case study 
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BELIEF2 includes BELIEF1. BELIEF2 contains all the types of objects as in 

BELIEF1 (FactSetCarryOre, FactSetBase and FactSetNull), and BELIEF2 contains the same 

number of objects of each type as in BELIEF1 (FactSet1_A, FactSet1_B, FactSetBase and 

FactSetNull). BELIEF2 contains all the types of morphisms as in BELIEF1 (subset _of), 

and BELIEF2 contains the same number of corresponding morphisms as in BELIEF1 

(FactSetNull → FactSet1_A, FactSetNull → FactSet1_B, FactSet1_A → FactSetBase and 

FactSet1_B → FactSetBase). 

With above (a ~ e) conditions, and by Definition 4.3, Carry2 is an Inclusion Agent of 

Carry1, and Carry2 is able to take-over Carry1. But Suppose Carry2 doesn‟t satisfy one of 

the (a ~ e) conditions, then it will not be an Inclusion Agent of Carry1 and it will not be 

able to take-over Carry1. For example, GOAL2 does not have object type GoalCarryOre, or 

GOAL2 does not have object carryOreFromTargetAGoal, or GOAL2 does not have higher 

_dependency morphism: GoalCarryOreFromTargetA → GoalCarryOreFromTargetB, then by Definition 

4.2, GOAL2 doesn‟t include GOAL1 and Carry2 is not an Inclusion Agent of Carry1, this 

means the tasks of Carry1 cannot be taken by Carry2. 
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Chapter 5: Related Work and Conclusions 

 

 

In this chapter, we discuss the related work on using category theory to formalize multi-

agent systems, list the contributions and conclude the thesis by outlining the future work 

directions. 

5.1. Related Work and Significance of the Proposed Research 

Category theory has been used as a formal model in computer science and software 

engineering for many years, and some of the related work can be summarized as follows: 

In [GV79], the authors have applied the category theory as a conceptual tool to model 

general systems through the abstract representation of systems, which take objects, 

systems, interconnection, and behavior as a basis. The authors present a Behavioral 

Theorem, stating that the behavior of an interconnection between objects can be 

considered as the behaviors of individual objects; they also indicate that the notion of 

autonomy, interaction, cooperation, and self-organization are relevant to their study. 

In [Hil93], the author has introduced architecture for system configuration that is 

independent of various approaches of system specification, design, and coding. The 

architecture focused on configuring those systems from reusable modules at any stage 

during system development. The module is precisely defined as an instance of a textual 

specification, and the configuration takes place in a mathematical framework that is 

based on category theory. 
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In [JD01], the author have illustrated how to use category theory as a meta-ontology 

for information systems research through some examples, which include system 

specification, definitions of views along with their updates, and system interoperations. 

The related work has stayed that Category Theory (CAT) has more advantages on 

formalizing complex systems than other theory or modeling languages.  

Domain theory is introduced as a study of special kinds of partially ordered sets (or 

posets) in mathematics, these sets are called domains. A partially ordered set (poset) 

formalizes and generalizes the intuitive concept of an ordering, sequencing, or 

arrangement of the elements of a set. “Partially order” means not every pair of elements 

need be related: for some pairs, it may be that neither element precedes the other in the 

same poset [AJ94]. In comparison to category theory, it has a limitation of not being 

expressive enough to capture relations between posets， such as “depends on”, since 

dependency is not a ordering, sequencing, or arrangement relation. Domain theory cannot 

be used to model self-relationships of elements within a poset, which is well defined in 

category theory as identity morphism. Moreover, with category theory and its own 

properties, automation can be achieved, for example, the composition of two 

specifications can be derived automatically, and this is not addressed in the domain 

theory. 

Logics, such as first order logic, has been used to modeling multi-agent systems 

[Woo09]. In comparison to category theory, instead of capturing the structure and 

properties, it models the reasoning of properties that are shared by objects.   

Few research papers toward modeling MAS with CAT, and they can be summarized 

as follows: 
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In [Pfa05], the author has introduced a MAS category. In that category the objects are 

agents and the morphisms represent all kinds of relations between the agents. 

In [PS07], the author has also introduced typed category into multi-agent systems, 

and instead of defining a category with agent types as objects and communication types 

as morphisms as we did in Chapter 3, he applied sets of agent types and sets of 

communication types as the objects in one category, and agent types and communication 

types are generated by using two Push-out category approach [Mac71], called Double 

Push Approach (DPA). This approach provided a way to related agents with types, and 

communication with types, but didn‟t address the relationship between agent types and 

communication types.  

In [CG06], the authors have introduced an Agent Modeling Language (AML) along 

with a demonstration on how AML can be applied to efficiently, accurately, and 

comprehensively model the Prospecting Asteroid Mission (PAM) [RT07] system. A 

selection of the AML models that specify the PAM domain, goals, architecture, as well as 

behaviors are also presented in this paper. However, this language lacks theoretical 

foundations, which makes proving the isomorphism of two different models relative to 

two equivalent systems practically impossible. 

In terms of modeling and formalizing multi-agent systems using category theory, only 

a very high abstract level has been considered, such as modeling the whole system as a 

category, where agents are objects and communications [Pfa05] [PS07]. To our best 

knowledge, no work has considered the refinement of the categorical representation of 

agents into components using the BDI model of agents and the interaction between these 

components in the definition of agent architecture, as it was described in this thesis. In 
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fact, accounting for agent architecture in the categorical representation of MAS by 

zooming into single agent and analyzing the relationships among agent plans, goals and 

beliefs allows capturing the core of multi-agent systems and thus providing a fully formal 

representation on both the multi-agent system structure and autonomic computing 

properties. Furthermore, no previous work has considered the formalization of fault-

tolerance property of multi-agent systems using category theory as it as described in 

Chapter 4. This property modeling work shows our research can be adapted to 

implementation level in IT industry easily.  

5.2. Conclusions 

This thesis begins with an introduction and brief dissuasion of software complexities in 

integrating and managing computing systems, follows with a comprehensive view for the 

autonomic computing paradigm, an introduction of the agent-based computing 

technology and a background for the category theory. We carry on with previous works 

on reactive autonomic systems framework (RASF) [KO08], and implement category 

theory (CAT) as a formal method to specify and model multi-agent system (MAS) in 

RASF. We have proposed our approach with the purpose of providing solutions for the 

following research questions: 

1. How can each agent be modeled with CAT? 

a. What are the components of each agent? 

b. How do we model each component with CAT? 

c. How do we model the relations among the components with CAT? 

2. How can MAS be modeled with CAT? 
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a. What are objects and morphisms to be used to capture the transformation from 

MAS to CAT? 

b. Since agents and their communication can be classified into different types, how 

do we model these types with CAT? 

3. How can CAT represent MAS properties? 

The highlighted part of RASF project diagram depicted in Figure 5.1 was 

accomplished via this thesis. 

RAS

MAS

CAT

CAT

Jadex
 

Figure 0.1: Reactive autonomic systems framework project with research coverage 

5.3. Contributions 

This thesis proposed a formal modeling of multi-agent systems (MAS) with category 

theory (CAT).  This formal transformation helps us to focuses on the morphisms or 

relationships between objects i.e. as agents, rather than concentrates on these objects‟ 

representations. Moreover, besides mapping the overall MAS system into CAT, we are 

the first one in the related research field, to zoom into each agent, and model each 

internal component (such as plan) into CAT. This way guaranties our work is a fully 

CAT module. The main contributions of this thesis are listed below: 

1. Modeling Agent with CAT [Chapter 3] 

a. Modeling agent‟s plans, goals, and beliefs with CAT 
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b. Modeling relations between plans and goals,  plans and beliefs, and goals and 

plans with CAT 

2. Modeling MAS with CAT [Chapter 3] 

a. Modeling relations between agents  

b. Applying Type Category in MAS 

3. Modeling robotic fault-tolerance with CAT [Chapter 4] 

5.4. Future Work 

This thesis is about the formalizing Multi-agent systems with Category theory, which 

brings us several related research opportunities. The flowing listed topics could be 

considered as the future work:  

1. We can work on implement CAT by using Extensible Markup Language (XML). 

XML is machine readable language that has a high adaptability to many different 

environments and platforms. Adding CAT XML codes inside systems will improve 

the system efficiency since it‟s simple, easy to modify and most modem 

programming languages have the ability to understand XML.   

2. We can work on developing a model transformation tool to automatically transfer 

MAS based XML [Sha11] to CAT based XML, with which, the mapping from MAS 

to CAT can be done by system-self.  

3. We can work on modeling other self-managing properties with CAT. This thesis 

modeled fault-tolerance property with CAT. By the definition of autonomic systems, 
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there are more self-managing properties, such as self-configuration and self- 

optimization need to be modeled. This future work will be an extension of this thesis. 

4. We can also work on other Reactive Autonomic Systems Framework (RASF) 

projects, such as modeling Reactive Autonomic Systems (RAS) to CAT, or proving 

of MAS based CAT model is isomorphism to RAS based CAT model.  
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