
REASONING ALGEBRAÏCALLY WITH DESCRIPTION

LOGICS

Jocelyne Faddoul

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy

Concordia University

Montréal, Québec, Canada

September 2011

© Jocelyne Faddoul, 2011

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Jocelyne Faddoul
Entitled: Reasoning Algebräıcally with Description Logics

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair
Dr. Mingyuan Chen

External Examiner
Dr. Grant Weddell

Examiner
Dr. Hovhannes Harutyunyan

Examiner
Dr. Leila Kosseim

Examiner
Dr. Otmane Ait Mohamed

Supervisor
Dr. Volker Haarslev

Approved
Chair of Department or Graduate Program Director

20

Dr. Robin A.L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Reasoning Algebräıcally with Description Logics

Jocelyne Faddoul, Ph.D.

Concordia University, 2011

Semantic Web applications based on the Web Ontology Language (OWL) often

require the use of numbers in class descriptions for expressing cardinality restrictions

on properties or even classes. Some of these cardinalities are specified explicitly, but

quite a few are entailed and need to be discovered by reasoning procedures. Due to the

Description Logic (DL) foundation of OWL, those reasoning services are offered by DL

reasoners. Existing DL reasoners employ reasoning procedures that are arithmetically

uninformed and substitute arithmetic reasoning by “don’t know” non-determinism in

order to cover all possible cases. This lack of information about arithmetic problems

dramatically degrades the performance of DL reasoners in many cases, especially with

ontologies relying on the use of Nominals and Qualified Cardinality Restrictions.

The contribution of this thesis is twofold: on the theoretical level, it presents

algebräıc reasoning with DL (ReAl DL) using a sound, complete, and terminating

reasoning procedure for the DL SHOQ. ReAl DL combines tableau reasoning proce-

dures with algebräıc methods, namely Integer Programming, to ensure arithmetically

iii

better informed reasoning. SHOQ extends the standard DL ALC with transitive

roles, role hierarchies, qualified cardinality restrictions (QCRs), and nominals, and

forms an expressive subset of OWL. Although the proposed algebräıc tableau is dou-

ble exponential in the worst case, it deals with cardinalities with an additional level

of information and properties that make the calculus amenable and well suited for

optimizations. In order for ReAl DL to have a practical merit, suited optimizations

are proposed towards achieving an efficient reasoning approach that addresses the

sources of complexity related to nominals and QCRs.

On the practical level, a running prototype reasoner (HARD) is implemented

based on the proposed calculus and optimizations. HARD is used to evaluate the

practical merit of ReAl DL, as well as the effectiveness of the proposed optimizations.

Experimental results based on real world and synthetic ontologies show that ReAl

DL outperforms existing reasoning approaches in handling the interactions between

nominals and QCRs. ReAl DL also comes with some interesting features such as the

ability to handle ontologies with cyclic descriptions without adopting special blocking

strategies. ReAl DL can form a basis to provide more efficient reasoning support for

ontologies using nominals or QCRs.

iv

Acknowledgments

While completing this thesis, I often felt like I was being transported in a train, unsure

when the next stop is going to be, nor when the destination is going to be reached.

I am fortunate and blessed to have had many companions who made my ride fun,

exciting, and nurturing.

I would like to thank my supervisor, Dr. Volker Haarslev, for his guidance, in-

sightful discussions, encouragement, and constructive feedback. Dr. Haarslev’s words

since day one, “There is always something that we can do,” provided me with a boost

every time I felt discouraged or challenged. His confidence in my work allowed me to

overcome several obstacles, including completing this thesis from a distance. With-

out his continuous support, the research presented in this thesis would not have been

possible.

I am grateful to many people who have pushed me to pursue my PhD: my un-

dergraduate instructor Dr. Bilal Barake, my work colleague Boutros Chalouhy, my

spiritual mentor Fr. Jean Saab, and my brother Miled Faddoul.

It was a pleasure to share doctoral studies and lab space with people like Dr.

Hsueh-leng Pai, Dr. Xi Deng, Dr. Yu Ding, Dr. Ahmed Alasoud, Dr. Malek Barho,

Hiba Tabbara, Jinane El Hashem, Zeina Nasr, Nasim Farsiniamarj, Francise Gasse,

Jiewen Wu, and Dr. Tarek el Salty, who became my dearest friend and listened to

my grumbling many, many times.

I thank Cresco management and staff for providing me with office space and

v

technical support while writing my thesis after moving to Halifax, Nova Scotia.

I wish to thank my family and extended family for providing a loving environment

for me, especially my mother Odette, my brother Moussa, my sister Jihane, and my

mother-in-law Hanne, who were particularly supportive. My heartfelt gratitude and

thanks go out to my brother Miled; the support he gave me goes beyond any tangible

and intangible support which anyone can give.

I would like to remember my father Youssef on the 10th anniversary of his passing.

He knew my education would bring me to Canada long before I did; this was his pre-

monition 10 years ago while fighting his battle with cancer. It is sad and unfortunate

he lost his battle and could not be with me at this time.

My deepest appreciation goes to my husband Joseph, for without his unconditional

love and support, this thesis would not have been completed. This work is as much

his as it is mine.

My final thanks go to my son Jonas, who’s birth has provided me with a gentle

diversion from the rigours of PhD life. This thesis is dedicated to him.

vi

“Being an intellectual creates a lot of questions and no answers.”

Janis Joplin

“I love fishing.

You put that line in the water and you don’t know what’s on the other end.

Your imagination is under there.”

Robert Altman

“The true sign of intelligence is not knowledge but imagination.”

Albert Einstein

vii

Contents

List of Figures xiv

List of Tables xix

List of Algorithms xxi

1 Introduction 1

1.1 Problem Statement . 3

1.1.1 Thesis Objectives . 5

1.2 Thesis Contributions . 7

1.3 Thesis Outline . 9

2 Preliminaries 11

2.1 Description Logics . 11

2.1.1 Basic DL ALC Syntax and Semantics 13

2.1.2 More Expressive DLs . 17

2.1.3 DL Inference Services . 24

2.2 DL Reasoning . 26

2.2.1 Tableau Algorithms . 26

2.2.2 Tableau Algorithms for Expressive DLs 31

2.2.3 Complexity of DL Reasoning 35

viii

2.3 Practical DL Reasoners . 37

2.4 Conclusion . 39

3 DL Reasoning With Nominals and QCRs 40

3.1 From Theory to Practice . 41

3.1.1 The Semantics of Nominals, QCRs, and Numbers 42

3.1.2 Non-Determinisim with QCRs, Nominals, and their Interaction 44

3.2 Optimized Reasoning with Nominals and QCRs 50

3.2.1 Satisfiability Optimizations 54

3.3 The Algebräıc Method . 60

3.4 Atomic Decomposition . 62

3.5 Discussion and Conclusion . 65

4 Hybrid Algebräıc Reasoning Procedure for SHOQ 67

4.1 General Overview . 68

4.1.1 Preprocessing . 70

4.2 Algebräıc Reasoning and SHOQ . 77

4.2.1 Global Numerical Restrictions 77

4.2.2 Cyclic Descriptions . 78

4.2.3 Encapsulated Qualifications on Role-Fillers 79

4.3 A Tableau for the DL SHONR\ . 82

4.4 The Algebräıc Method for SHONR\ 84

4.4.1 Atomic Decomposition and SHONR\ 84

4.4.2 Partitions and Signatures . 87

4.5 The Algebräıc Tableau Algorithm for SHONR\ 90

4.5.1 Satisfying Numerical Restrictions Using Algebräıc Reasoning . 93

4.5.2 Deciding KB Consistency . 98

ix

4.5.3 Strategy of Rule Application 100

4.5.4 Explaining the Rules . 101

4.5.5 Example . 104

4.6 Proofs . 113

4.7 Discussion . 122

4.7.1 Completion Graph Characteristics 122

4.7.2 Using an In-equation Solver 123

4.7.3 Termination . 123

4.7.4 Proxy Nodes and Their Re-use 124

4.7.5 Caching . 125

4.7.6 The EU Example . 126

4.8 Conclusion . 127

5 Towards Practical Algebräıc Reasoning With DL 129

5.1 Introduction . 129

5.2 From Theory to Practice . 130

5.2.1 Towards Practical Non-Determinism 132

5.2.2 Towards Practical Partitioning 134

5.3 Preprocessing Optimizations . 135

5.3.1 Initially Bounding the Size of the Search Space 139

5.3.2 Heuristic Guided Nominal Distribution 143

5.4 Look Ahead Optimizations For Backtracking 144

5.4.1 ch-Rule Look Ahead . 144

5.4.2 �-Rule Look Ahead . 146

5.4.3 Active Roles Heuristic . 146

5.5 Look Back Optimizations for Backtracking 148

5.5.1 Backjumping . 149

x

5.5.2 Learning . 152

5.6 Look Ahead with Back-jumping . 154

5.7 Lazy Partitioning . 155

5.8 Lazy Nominal Generation . 157

5.9 Discussion . 158

5.10 Conclusion . 160

6 HARD - A Hybrid Algebräıc Reasoner for DL 161

6.1 Ontology Loader . 162

6.2 Configuration Controller . 163

6.3 Reasoner Manager . 166

6.4 Preprocessor . 167

6.5 Tableau Reasoner - Inference Engine 170

6.5.1 Rule Application Strategy . 176

6.6 Constraint Solver . 178

6.7 Clash Handler . 181

6.8 Concluding Remarks . 184

6.8.1 Limitations . 186

7 Performance Evaluation 188

7.1 Evaluation Methodology . 189

7.1.1 Choosing Benchmarks . 190

7.1.2 Comparing With SOTA Reasoners 192

7.1.3 Evaluating The Implemented Optimizations 193

7.1.4 Evaluation Platform . 193

7.2 Test Cases . 193

7.2.1 Test Cases for QCRs and Role Hierarchies 194

xi

7.2.2 Test Cases for QCRs and Nominals 219

7.3 Optimizations Effects . 244

7.3.1 Effect of Exploiting Told Nominal Interactions 244

7.3.2 Effect of Enhanced Back-jumping 249

7.3.3 Effect of Enhanced Partitioning 252

7.3.4 Overall Optimizations Effect 254

7.4 Discussion . 256

7.4.1 Practical Performance . 256

7.4.2 Effect of Adopted Optimizations 259

7.5 Conclusion . 262

8 Conclusions and Outlook 264

8.1 Research Methodology and Contributions 265

8.1.1 Theoretical Contributions . 265

8.1.2 Practical Contributions . 267

8.2 Open and Future Work . 268

Bibliography 272

Glossary 284

Appendices 289

A ReAl DL 290

A.1 List of Notations Used . 290

A.2 Standard Tableau for SHOQ . 292

B HARD 294

B.1 The Tableau Reasoner . 294

xii

B.2 Failing Test Cases . 296

C Evaluation 297

C.1 Test Cases for QCRs . 297

C.2 Test Cases With Real World Ontologies 299

C.2.1 The Wine ontology . 299

C.2.2 The Koala ontology . 301

C.3 Test Cases With Synthetic Ontologies 304

C.4 Optimizations Effects . 306

xiii

List of Figures

1 Basic DL knowledge base consisting of a TBox and an ABox. 16

2 Syntax and semantics of the DL SHOQ. 18

3 Tableau expansion rules for ALC. 28

4 Tableau expansion during a satisfiability test of the concept Father. . 29

5 Tableau model for the satisfiability of C � ∃R.C. 30

6 Tableau expansion rules handling the semantics of SHOQ. 32

7 Completion graph showing non-determinism due to the choose-Rule. . 45

8 Completion graph expansion tree due to the choose-Rule. 45

9 Completion graph expansion showing non-determinism due to the choose-

Rule and the ≤-Rule. 47

10 Completion graph expansion showing non-determinism due to the choose-

Rule, the ≤-Rule, and the �-Rule. 48

11 Non deterministic interaction between nominals and QCRs. 49

12 Absorption with GCI using the oneOf constructor. 52

13 Absorption with a GCI using the hasValue constructor. 54

14 Syntactic branching versus semantic branching. 56

15 Effect of Dependency Directed Backtracking. 57

16 Atomic Decomposition on D = {Children, Sons,Daughters}. 63

17 TBox axioms representing the EU MemberState example. 76

18 TBox internalization into C ′T in SHONR\. 77

xiv

19 TBox example. 79

20 Association between roles and their qualifications after rewriting, when

T is unfoldable. 80

21 Association between roles and their qualifications after rewriting when

T is not unfolded. 81

22 Atomic decomposition of DR. 86

23 Completion rules for SHONR\ - Part I. 98

24 Completion rules for SHONR\ - Part II. 99

25 Example TBox with cycles, nominals, and qualifying concepts. 105

26 TBox internalization into C ′T in SHONR\. 106

27 Atomic Decomposition of DS = {R1, S11, S21, o, i, C}. 107

28 Expansion tree considering a distribution of nominals for case (a). . . 108

29 Expansion tree considering a distribution of role fillers for case (a). . 110

30 CCG representing a model for case (a). 112

31 CCG representing a model for case (b). 112

32 Example TBox T . 123

33 Partitioning of DS = {M′, i, o1, . . . , o27} 127

34 Expansion tree due to the �-Rule. 133

35 Expansion tree due to the ch-Rule. 133

36 TBox axioms in the SHONR\ TBox T ′ after preprocessing the TBox T .137

37 Extended role hierarchy for hasChild. 140

38 Clash free compressed completion graph for Parent. 147

39 Expansion tree of a clash free CCG which shows that initially comput-

ing a global partitioning is not necessary. 156

40 General sequence diagram showing the control flow of the Reasoner

Manager. 167

xv

41 Representation of the CCGraph object class. 170

42 General sequence diagram for the HARD Tableau Reasoner performing

a consistency test. 171

43 TBox axioms representing a European country concept description. . 172

44 Expansion of the search space due to the applicability of the ch-Rule

on the variables for the nominal Asia. 174

45 Example of an IP model in lp-format. 180

46 Expansion tree showing an expansion of the �-Rule leading to a clash

free CCG for CALCQ. 196

47 Effect of increasing the size of the numbers used in QCRs in satisfiable

cases of CALCQ. 198

48 Effect of increasing the size of the numbers used in QCRs with unsat-

isfiable cases of CALCQ. 201

49 Effect of linearly increasing the size of the numbers used in QCRs

with unsatisfiable cases of CALCHQ where j = i− 1 and the hierarchy

between the roles used is not flat. 202

50 Effect of increasing the number of QCRs in a satisfiable concept ex-

pression. 205

51 Effect of increasing the number of QCRs in a satisfiable concept ex-

pression. 206

52 Effect of disjunctions between QCRs on performance of Hermit. . . . 209

53 Effect of disjunctions between QCRs on performance of HARD. . . . 209

54 Effect of the ratio RQCR of the number of at-least to the number of

at-most restrictions in a concept expression. 212

55 Effect of the numbers in QCRs in satisfiable versus unsatisfiable ex-

pressions. 214

xvi

56 Effect of backtracking with CBack−ALCQ. 216

57 Effect of backtracking with CBack−disjunctive−ALCQ. 217

58 Effect of backtracking with CBack−disjunctive−ALCQ. 218

59 TBox axioms in the Wine ontology. 221

60 Role hierarchy within the RBox R for the Wine ontology. 221

61 TBox axioms using the hasValue nominals constructor. 223

62 TBox axioms in the adapted Koala ontology. The expression = nR.C

abbreviates ≥ nR.C � ≤ nR.C. 224

63 Role hierarchy within the RBox R for the Koala ontology. 225

64 TBox axioms in the Countries-Csimple−EU ontology. 229

65 TBox axioms in the Countries-Csimple−IEU ontology. 229

66 TBox axioms in the Countries-Ccomplex−EU ontology. 230

67 TBox axioms in the Countries-Ccomplex−IEU ontology. 230

68 TBox axioms in the Countries-CParliament−full ontology 233

69 TBox axioms in the Countries-CParliament−atlantic ontology. 233

70 TBox axioms in the Countries-CParliament−PEI ontology 234

71 TBox axioms in the Countries-CSAT−Parliament−ON ontology 234

72 Some TBox axioms in the Time ontology 235

73 Effect of increasing the number of nominals with the numbers used in

QCRs in CSAT−nominals−ALCOQ. 238

74 Effect of increasing the number of nominals with the numbers used in

QCRs in CUnSAT−nominals−ALCOQ. 238

75 Effect of increasing the size of the numbers used in QCRs. 240

76 Role hierarchy within the RBox R. 241

77 Collaboration diagram during a consistency check. 295

xvii

78 Effect of the satisfiability of C∗−Lin−ALCQ on the runtime performance

of Fact++. 298

79 Effect of the satisfiability of C∗−Lin−ALCQ on the runtime performance

of Pellet. 298

80 Effect of the satisfiability of C∗−Lin−ALCQ on the runtime performance

of Hermit. 299

81 TBox axioms in the Wine ontology. 300

82 Role hierarchy within the RBox R for the Wine ontology. 300

83 Clash free compressed completion graph for Wine-CIceWine test case. 301

84 TBox axioms in the Koala ontology. 302

85 Clash free CCG forKoala-C1 representing a pre-model for the concept

KoalaWithPhD. 302

86 Role hierarchy within the RBox R for the Koala ontology. 303

87 Clash free CCG for Koala-C2(n = 3) representing a pre-model for the

concept MaleStudentWithnDaughters. 303

88 Clash free CCG for Koala-C1−2(n = 3) representing a pre-model for

(KoalaWithPhD �MaleStudentWithnDaughters). 304

89 Clash free CCG for CSAT−nested−ALCHOQ. 305

90 Clash free CCG for Ccyclic−ALCHQ. 305

91 Clash free CCG for Ccyclic−ALCHQ. 306

xviii

List of Tables

1 Computation complexity of DL inference services using an empty TBox. 36

2 Encoding relations between concepts into arithmetic terms. 64

3 Identifying decomposition set elements for T 106

4 Correspondence between DL syntax and OWL syntax. 168

5 Example of a binary representation and corresponding variable indexes. 174

6 General characteristics of test cases based on adapted real world on-

tologies. 219

7 Runtimes in milliseconds with the test cases for the Wine ontology. . 222

8 Runtimes in milliseconds with the test cases for the Koala ontology. 226

9 Runtimes in milliseconds with the test cases for the countries ontology.231

10 Runtimes in milliseconds with the test cases for the countries ontol-

ogy including the Canadian Parliament representation. 234

11 Runtimes in milliseconds with the test cases for the Time ontology. . 236

12 Runtimes in milliseconds with the test cases using a deep role hierarchy.241

13 Runtimes in milliseconds with the test cases using nesting occurrences

of QCRs within concept expressions. 242

14 Runtimes in milliseconds with the test cases using cyclic concept ex-

pressions. 243

15 Runtimes in milliseconds with the test cases with real world ontologies

where one or more THA optimization (s) is (are) turned OFF. 245

xix

16 Speed up factor for the optimizations relying on told nominal interac-

tions. 245

17 Characteristics of the elements of the global decomposition set for the

different test cases - Part I. 247

18 Characteristics of the elements of the global decomposition set for the

different test cases - Part II. 247

19 Characteristics of the Koala test cases - part I 249

20 Characteristics of the Koala test cases - part II 249

21 Runtimes in milliseconds with the real world test cases where one or

more LAB optimization(s) is(are) turned OFF. 250

22 Speed up factor of the LAB optimizations used for enhanced back-

jumping. 250

23 Characteristics of the real world test cases used to evaluate the LAB

optimizations. 250

24 Runtimes in milliseconds with the real world test cases where one or

more PRA optimization (s) is (are) turned OFF. 253

25 Speed up factor of the PRA optimizations used for enhanced partition-

ing. 253

26 Runtimes in milliseconds showing the overall optimizations effect - I. 254

27 Runtimes in milliseconds showing the overall optimizations effect - II. 255

28 Characteristics of the synthetic test cases used to evaluate the LAB

optimizations. 306

29 Runtimes in milliseconds with the synthetic test cases where one or

more LAB optimization(s) is(are) turned OFF. 307

30 Speed up factor of the LAB optimizations used for enhanced Back-

jumping. 307

xx

List of Algorithms

4.1.1 The rw preprocessing algorithm. 71

6.7.1 Pseudo-code for the Logical Clash Handler. 181

6.7.2 Pseudo-code for the GetAlternativeChoicePoint procedure. 182

6.7.3 Pseudo-code for the OR Clash Handler. 182

6.7.4 Pseudo-code for the Arithmetic Clash Handler. 183

6.7.5 Pseudo-code for the TreatInfeasibleQCR procedure. 184

xxi

Chapter 1

Introduction

One of the areas of Artificial Intelligence studies the simulation of reasoning to achieve

machine intelligence. Simulating a human reasoning process requires that an extensive

knowledge about the world be represented and stored in a knowledge base. Among

the things that need to be represented are: objects, properties, and relations between

objects. A complete representation of “what exists” in a given domain forms an

ontology. Ontologies have now been adopted by many disciplines, such as biology and

e-science [WBH+05], as part of their integration into the Semantic Web [BLHL01],

which is defined as a “web of data” allowing machines to understand the meaning of

and process the information on the World Wide Web.

Description logic (DL) [FB07a] is a family of first-order logic formalisms allowing

the representation of knowledge in the form of “concepts” (class, unary predicate),

“roles” (object property, binary predicate), and “individuals” (class instance). The

ability of DL languages to define concepts and relationships between concepts in a

systematic and formal manner, makes them ideal to capture the complex relationships

and semantics that are often part of many domains (e.g., medical domain). DL is

becoming very popular in Knowledge Representation and modelling as it provides

the logical foundation for the Web Ontology Language (OWL) [MPSCG08], defined

1

by the World Wide Web Consortium (W3C) as a standard for representing semantic

links and knowledge on the Semantic Web [BHS03].

Nominals (enumerated classes) [Sch94] play an important role in DL as they allow

one to express the notion of uniqueness and identity; nominals must be interpreted

as singleton sets. Many ontologies, for instance in the geo-spatial domain, use nom-

inals as names for persons, countries, colours, etc. In fact, the WINE ontology1

which was designed to describe the features of OWL-DL relies heavily on nominals

to represent wine colour, body, and flavour. An example for the use of nominals

would be the representation of a European Union member state concept as an enu-

meration of the 27 distinct member states of the European Union (EU) as follows:

EU MemberState ≡ {Austria, . . . ,UK} where Austria, etc. are all distinct nominals.

Qualified Cardinality Restrictions (QCRs) allow one to specify a lower or upper

bound on the number of elements related via a certain role with additionally specifying

qualities on the related elements. For example, the following concept representation

of (Future EU � ≥ 30MemberOf.EU MemberSate) states a necessary condition that

an instance of the Future EU concept must have at least 30 member states (using the

operator ≥, the role MemberOf, and the qualifying concept EU MemberState). Qual-

ified Cardinality Restrictions have a long history in DLs. Their recently availability

in OWL was advocated in [RS05] for modelling ontologies [HB91] in medical domains

such as human anatomy [GZB06] and bio-ontology [WBH+05].

It is known that DLs offering nominals and QCRs enjoy additional expressive

power. There exist no other way, using the DL SHOQ, to close a concept or domain

with a finite number of elements except using nominals. This means that nominals

can also emulate concept cardinalities [BBH96] (as was shown in [Tob00]). For exam-

ple, informally speaking, it turns out that the representation of the EU MemberState

1http://www.w3.org/TR/owl-guide/wine.rdf

2

concept and the disjointness of all 27 nominals express an implicit cardinality restric-

tion; the concept EU MemberState has exactly 27 individuals. However, the repre-

sentation of Future EU states that an instance of Future EU needs to be related to

at least 30 different instances of EU MemberState. The unsatisfiability of Future EU

might be surprising until one remembers that the cardinality of EU MemberState is

implicitly restricted to the 27 member states listed in its definition, so, there cannot

exist at least 30 distinct EU member states. Now, it is trivial for humans to realize

that the concept Future EU must be unsatisfiable. However, for existing DL reasoning

algorithms, the unsatisfiability of Future EU is not so trivial.

1.1 Problem Statement

Most modern DL reasoners implement tableau-based decision procedures which usu-

ally need to be equipped with a set of optimization techniques [PCS06] because their

näıve implementations fail to be practical. Such decision procedures typically check

the consistency of an ontology by constructing a so-called pre-model for the ontology.

Despite many optimization techniques [FB07b] studied and implemented so far, they

do not provide a generic practical DL reasoner. It is easy to find ontologies where one

reasoner performs very well while the other is hopelessly inefficient. This is not only

due to the high computational complexity of tableau calculi and inference services,

but also to the fact that these algorithms create pre-models in an often blind way.

Major inefficiency sources can be due to:

• (i) The high degree of non-determinism introduced by (a) the use of General

Concept Inclusion axioms (GCIs) or (b) when merging domain elements is nec-

essary,

• (ii) The construction of large models, and

3

• (iii) The interaction between language constructors.

For instance, in the case of deciding the satisfiability of Future EU, a standard

tableau algorithm creates 30 distinct but anonymous instances of EU MemberState

and then non-deterministically tries to merge them with the 27 nominals enumerating

the EU member states, until all possibilities are exhausted and the unsatisfiability of

Future EU is returned. The overall fact that 27 nominals can never be distributed

over 30 distinct instances is lost. This blindness to numbers can result in severe

performance degradation not only by affecting the size of the completion models

but also by introducing a high degree of non-determinism. The problem gets even

worse when a large number of nominals is used or when large numbers are used in

descriptions such as in the following concept description:

Person �≥ 230 hasJoint.(Movable � Semi Movable)

An ontology containing the representation of EU MemberState, Future EU, and the

disjointness declaration for the 27 nominals was modelled and tested with the OWL

ontology editor Protégé 4.02, and none of the highly optimized DL reasoners FaCT++,3

Pellet,4 or HermiT5 could decide the satisfiability of EU MemberState, in this small

OWL ontology, within 2 hours of CPU time (using a PC with an AMD 64*2 Dual

Core Processor 5200, 2.70 GHZ and 3GB of RAM).

Existing DL reasoning approaches are known to be very weak in handling QCRs

especially with large numbers. The numerical restrictions implied by nominals and

their interaction with QCRs aggravate the complexity. Little progress has been made

to handle the interaction between nominals and QCRs. In fact, the only efficient

2http://www.co-ode.org/downloads/protege-x/
3http://owl.man.ac.uk/factplusplus/, version 1.2
4http://pellet.owldl.org/, version 2.0
5http://www.hermit-reasoner.com/, version 1.1

4

way to handle QCRs is through algebräıc reasoning first reported for the DL SHQ in

[HM01a, HTM01] and more recently in [FH10c]. Decision procedures for expressive

DLs enabling both nominals and QCRs were published in [HS07] with very weak opti-

mizations if any (no DL reasoner was able to classify the WINE6 ontology until recent

efforts [PCS06]). The optimization techniques for nominals proposed in [PCS06] do

not address the interaction between nominals and QCRs. Recent efforts in [MH08]

address inefficient reasoning due to the creation of large tableau models and the pres-

ence of nominals. Resolution-based reasoning procedures were proposed in [KM06]

and were proven to be weak in dealing with large numbers in QCRs. Hypertableaux

[MSH07] were recently studied to minimize non-determinism in DL reasoning with no

special treatment for QCRs. To the best of our knowledge no arithmetically informed

approaches have been reported for ontologies that rely on the use and interaction of

both nominals and QCRs.

1.1.1 Thesis Objectives

The research presented in this thesis is focused on designing an alternative reasoning

approach for DLs handling nominals and QCRs rather than optimizing existing ones,

which are found to be arithmetically uninformed and inefficient. Before designing

and implementing a DL system, one should be clear about the expected goals to be

achieved against which the performance/practicality will be measured. The adopted

reasoning approach is of a hybrid nature, it consists of a standard tableau-based rea-

soning algorithm for DL combined with algebräıc reasoning. The algebräıc methods

used are inspired and based on the arithmetic reasoning about sets for formal lan-

guages first introduced in [OK99]. The main objectives of adopting such a reasoning

approach can be summarized as follows:

6http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

5

1. High expressivity of the DL language supported: Available language construc-

tors and properties of their combination or use define the language expressivity

(see Chapter 2). The work presented in this thesis focuses on providing reason-

ing support for DL languages that allows all elements in an application domain

to be expressed using the available logical language constructs. Ideally, one

would be interested in the full expressivity of OWL (SROIQ [HKS06]) as it is

the expressivity supported by Semantic Web applications. This thesis considers

fragments of this language, in particular, those that support nominals (O) and

number restrictions (N or Q) reaching the expressivity of SHOQ.

2. Strong arithmetic reasoning: The reasoning approach must ensure a reasoning

support that is strong on the logical (handling boolean operators on concept

descriptions) side as well as on the arithmetic side (handling numerical features

implied by concept descriptions). Unlike in standard tableau algorithms, the

cardinality restrictions implied by nominals and those expressed with QCRs are

encoded into a system of linear in-equations. The solvability of such a system

can be decided using standard Integer Linear Programming algorithms (such as

Simplex [CLRS01]). In the case of Future EU a corresponding system of linear

in-equations would immediately be recognized as unsolvable.

3. Correctness: The reasoning procedure must ensure soundness and completeness.

Soundness in the sense that every “yes” answer for an inference test is a valid

answer. Completeness in the sense that every “no” answer for an inference test

is a valid answer.

4. Termination and Efficiency: Implementing sound and complete decision proce-

dures for very expressive DL languages is the ultimate goal of every DL system.

However, if such decision procedures do not terminate or do not respond in

6

reasonable time, then the whole system is not useful. The DL system needs to

be equipped with a suite of optimization techniques to ensure efficiency without

breaking correctness or termination.

5. Usability: The reasoning approach need not only provide practical DL reasoning

with realistic applications, but also allow existing DL systems to adopt a simi-

lar algebräıc reasoning component for better handling of numerical features of

concepts. The usability of the approach in realistic application will be assessed

by an empirical analysis.

1.2 Thesis Contributions

The work presented in this thesis is of interest to the DL community and should be of

value to designers and implementors of DL systems, who will be able to incorporate

or use the reasoning approach together with their implemented procedures. The

main contributions can be identified while meeting the previously mentioned thesis

objectives:

• A first contribution is the design of a decidable calculus for the DL ALCQ based

on the hybrid algebräıc approach. This calculus is published in [FFHM08a]

and forms the basis for the algebräıc calculus for the DL SHQ [Far08], and

for handling the full expressivity of SHOQ [FH10a] which will be covered in

Chapter 4. The main activities consists of:

1. Defining a tableau for ALCQ.

2. Designing a hybrid reasoning procedure which relies on algebräıc reasoning

to decide the satisfiability of QCRs.

3. Devising proofs of soundness, completeness, and termination of the rea-

soning procedure.

7

• A second contribution is the design of a decidable calculus for the DL SHOQ

extending the first contribution to handle a more expressive DL with general

TBoxes. The calculus is presented in Chapter 4, it has been published in

[FH10a, FHM09] and makes up the theoretical contribution of this thesis due

to the following:

1. Extending a tableau reasoning algorithm with an algebräıc component, for

expressive DLs, while maintaining soundness, completeness, and termina-

tion.

– Extending the tableau for ALCQ into a tableau for SHOQ.

– Designing a hybrid reasoning procedure which relies on algebräıc rea-

soning to decide the satisfiability of QCRs and nominals.

– Devising proofs of soundness, completeness, and termination of the

reasoning procedure.

2. The encoding of nominals semantics into in-equations handled using alge-

bräıc reasoning. This handling of the numerical restrictions imposed by

the nominals constructor is novel.

3. The handling of cycles within concept descriptions or due to GCIs and

transitive roles is ensured through the re-use of individuals. This handling

of cycles is novel.

• A third contribution relies in analyzing sources of inefficiency in the reasoning

algorithm proposed, and investigating possible optimizations. Part of those

optimizations are published in [FH10b], and all optimizations considered are

discussed in Chapter 5.

• A fourth contribution relies in the design and implementation of a running pro-

totype reasoner to show the practical merit of the hybrid approach equipped

8

with the proposed optimizations. The prototype reasoner’s architecture is de-

scribed in Chapter 6.

• A last contribution relies in the evaluation of the performance of the reasoning

approach, as well as the effectiveness of the proposed optimizations. The empir-

ical evaluation is described in Chapter 7, the preliminary results were published

in [FH10b] and a publication of the full evaluation is in preparation [FH11].

1.3 Thesis Outline

The remainder of this thesis can be outlined as follows:

• Chapter 2 introduces the formal syntax and semantics of DL as well as the

inference services that are tackled in this thesis.

• Chapter 3 provides a review of existing approaches in dealing with QCRs and

nominals in DLs.

• Chapter 4 presents a formal description of the proposed calculus along with

proofs of soundness, completeness, and termination.

• Chapter 5 discusses optimization techniques aiming at enhancing performance

of an implementation of the proposed calculus.

• Chapter 6 presents the architecture of the prototype reasoner, HARD, imple-

menting the optimizations discussed in Chapter 5.

• Chapter 7 presents an empirical evaluation comparing the performance of HARD

against existing state-of-the-art reasoners and shows the effectiveness of the

adopted optimizations.

9

• Finally, Chapter 8 concludes this thesis with a summary, open problems and

future directions.

10

Chapter 2

Preliminaries

This chapter introduces background information relevant to the work presented in

this thesis. Section 2.1 introduces the syntax, semantics and inference problems of

Description Logics with a main focus on the DL SHOQ, which extends the basic

DL ALC with transitive roles, role hierarchies, nominals, and qualified cardinality

restrictions (QCRs), and which is the main focus of this thesis. Section 2.2 presents

tableau algorithms as the most widely used reasoning procedures adopted by most

state-of-the-art DL reasoners. The complexity of DL reasoning and the need for

optimizations in discussed in Section 2.2.3. Section 2.4 concludes this chapter.

2.1 Description Logics

Description Logic (DL) [FB07a] is a family of knowledge representation languages

used to represent and reason about an application’s domain elements. DLs stem

from Semantic Networks [Qui67] and Frames [Min81]. They are distinguished by

their terminological orientation, their well defined logic-based semantics, and their

inference capabilities. A typical Knowledge Representation system based on DL pro-

vides facilities to set up Knowledge Bases (KBs) and to reason about their content.

11

A DL KB comprises two components, the TBox and the ABox. The TBox introduces

the terminology (i.e., the vocabulary of the represented domain), while the ABox con-

tains assertions about named domain elements in terms of this vocabulary. To define

the terminology of a certain KB, DL relies on the notions of “concepts”, “roles”, and

“individuals” combined using a set of operators (DL constructors) into structured

and formally well defined descriptions.

Definition 2.1.1 (Concept) A concept is used to denote a set of domain elements

with common characteristics. For example, the concept Man can be used to refer to

all persons that are male, and the concept Child can be used to refer to all offsprings of

a person. Concepts with no common elements are referred as disjoint. For example,

the concepts Man and Woman can be declared as disjoint.

Definition 2.1.2 (Role) A role is used to denote a binary relationship between

domain elements. For example, the role hasChild can be used to define a relationship

between a Man and a Child.

Definition 2.1.3 (Individual) An individual is used to name elements within the

represented domain. An individual is usually referred to as an instance of a certain

concept (e.g., the individual Joseph is an instance of the concept Man, Joseph : Man),

or as related to another individual via a certain role (e.g., the individual Joseph is

related to the individual Jonas via the hasChild role, 〈Joseph, Jonas〉 : hasChild).

Concepts, roles, and individuals represented using a DL language can be inter-

related in such a way that implicit knowledge can be derived from explicitly repre-

sented knowledge. This can be done because DL systems not only store terminologies

and assertions, but also offer services that reason about them. Typical reasoning

12

tasks for a terminology are to determine whether a description is satisfiable (i.e.,

non-contradictory), or whether one description is more general than another, that

is, whether the first subsumes the second. Inference problems for an ABox are to

find out whether its set of assertions is consistent (i.e., whether it has a model), and

whether the assertions in the ABox entail that a certain individual is an instance of a

given concept description. Satisfiability checks of descriptions and consistency checks

of sets of assertions are useful to determine whether a KB is meaningful at all.

The language for building descriptions is a characteristic of each DL system, and

different DL systems are distinguished by their description languages. The description

language has model-theoretic semantics. Most common used DLs are considered as

decidable fragments of first order predicate logic (FOL); individuals can be seen as

constants, concepts as unary predicates, and roles are binary predicates. Therefore,

for some DL languages, statements in the TBox and in the ABox can be identified

with formulae in first-order logic (Man −→ Person ∧Male, Man(Joseph)). The DL

ALC is the basic DL language containing the smallest set of DL constructors (�, �,

¬, ∃, ∀) closed under all boolean operations (conjunction, disjunction, and negation).

The following section introduces the formal syntax, semantics and inference services

of the DL ALC which is extended with transitive roles (leading to the DL S), role

hierarchies (H), nominals (O), and qualified cardinality restrictions (Q) leading to the

definition of the DL SHOQ which is the main family of DLs referenced throughout

this thesis.

2.1.1 Basic DL ALC Syntax and Semantics

In [Sch91], it was shown that ALC is a syntactic variant of the modal logic K [BL06],

where all roles are atomic and complex concepts can be built using boolean operators

13

(�, �, ¬), universal restriction (∀), and existential (∃) value restriction on atomic con-

cepts. Let NC, NR, and NI be non-empty and pair-wise disjoint sets of concept names,

role names, and individual names respectively. A is used to denote an atomic concept

(A ∈ NC), R is used to denote an atomic role (R ∈ NR). ALC-concept expressions

are defined inductively using the syntax rule in (1), where C,D are ALC-concepts,

and � and ⊥ are used to abbreviate (C � ¬C) and (C � ¬C), respectively.

ALC-concept −→ � |⊥ |A | ¬A | (C �D) | (C �D) | (∃R.C) | (∀R.C) (1)

DLs differ from their predecessors in that they are equipped with a formal logic-

based semantics. An interpretation I is defined to give formal semantics. An inter-

pretation is a pair I = (ΔI , .I) where ΔI is a non-empty set, called the domain of the

interpretation, and .I is the interpretation function. The interpretation function maps

each atomic concept A ∈ NC to a subset of ΔI , each atomic role R ∈ NR to a subset

of ΔI × ΔI , and each individual a ∈ NI to an element of ΔI . The interpretation

function is extended to satisfy ALC-concept expressions as follows:

�I = ΔI

⊥I = ∅

(¬A)I = ΔI \ AI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∀R.C)I = {s ∈ ΔI | ∀t ∈ ΔI : 〈s, t〉 ∈ RI ⇒ t ∈ CI}

(∃R.C)I = {s ∈ ΔI | ∃t ∈ ΔI : 〈s, t〉 ∈ RI and t ∈ CI}

ALC-concepts can be used to describe classes of objects; for example, the concept

description (Person �Male) is used to describe “persons that are male”. Using TBox

axioms, one can make statements about relations between concepts and roles.

14

Definition 2.1.4 (Concept Inclusion Axiom) A Concept Inclusion Axiom is an

expression of the form:

• C � D referred to as a concept subsumption axiom, or

• C ≡ D referred to as a concept definition axiom which is an abbreviation for

C � D and D � C. A concept definition axiom is said to be a primitive

definition if C is a concept name.

In the case where C is not a concept name, a concept inclusion axiom is referred to as a

General Concept Inclusion axiom (GCI). Given an interpretation I, the subsumption

relation (C � D) between two concepts C,D holds if CI ⊆ DI holds.

Definition 2.1.5 (TBox) A TBox T is a finite set of concept inclusion axioms; an

example TBox is shown in Figure 1. T is said to be

• Unfoldable if all concept inclusion axioms consist of concept subsumption ax-

ioms of the form A � C and/or primitive definitions of the form A ≡ C, such

that all axioms are unique and acyclic. For example, given the unfoldable TBox

shown in Figure 1, the definition of Father can be unfolded by replacing Man

and Child with their corresponding definitions into:

Father � Person � ¬Female � ∃hasChild.��

∀hasChild.(Person � (¬Female � Female) � Offspring)

• Acyclic if no concept inclusion axiom includes cyclic descriptions.

• General if there exists no restriction on the type of concept inclusion axioms

that can be used.

15

A TBox T is said to be consistent if there exists an interpretation I satisfying

CI ⊆ DI for each C � D ∈ T . I is called a model of T .

TBox axioms

Man � Person �Male

Child � Person � (Male � Female) � Offspring

Male � ¬Female

Father � Man � ∃hasChild.� � ∀hasChild.Child

ABox assertions

〈Joseph, Jonas〉 : hasChild

Joseph: Man

Figure 1: Basic DL knowledge base consisting of a TBox and an ABox.

In the ABox, one describes a specific state of domain elements in terms of concepts

and roles. Domain elements are referred to using individuals, by giving them names,

and one asserts properties of these individuals using ABox assertions.

Definition 2.1.6 (ABox) Let a, b be two individual names in NI, an ABox A is

defined as a finite set (possibly empty) of

• Concept Membership Assertions of the form a :C (e.g., Joseph : Man), and/or

• Role Membership Assertions of the form 〈a, b〉 :R (e.g., 〈Joseph, Jonas〉 : hasChild).

An ABox A is said to be consistent w.r.t. T if there exists a model I of T such that

aI ∈ CI is satisfied for each a : C in A and (aI , bI) ∈ RI is also satisfied for each

(a, b) :R in A. I is a model of A.

16

Definition 2.1.7 (ALC Knowledge Base) A typical DL knowledge base (KB)

represented using ALC consists of two components: a TBox (Terminological Box),

and an ABox (Assertional Box) as shown in Figure 1. An ALC KB is defined as a

tuple K=(T ,A) where T is a TBox and A is an ABox. An interpretation I is said

to be a model of K iff I is a model of T and I is a model of A.

2.1.2 More Expressive DLs

In order to meet the expressivity needs of certain application domains, various DL

constructors have been investigated in terms of expressivity and decidability of their

corresponding inference services. The corresponding languages are identified by a

string of the form ALC[||C||][S][R][H][O][I][Q][(D)] where ALC stands for basic DL

and every letter stands for a certain constructor. One of the most expressive DL

languages is now SROIQ [HKS06] which extends ALC with transitive roles , role

composition (R), nominals (O), inverse roles (I), and qualified cardinality restric-

tions (Q) and is now the DL underlying OWL 2 [MPSCG08]. On the other hand, a

less expressive fragment of ALC, the DL EL [BBL05]1, has recently drawn consider-

able attention for modelling large scale biomedical KBs. This thesis only considers

extensions of ALC enabling [O] and [Q], namely SHOQ. The DL constructors can

be grouped into concept constructors and role constructors.

1EL underlies the designated OWL2-EL profile of OWL 2 where the only available constructors
are �, conjunction (�), and existential restriction (∃).

17

Concept Constructor Syntax Interpretation .I

ALC

Top � ΔI

Bottom ⊥ ∅

Negation (¬C) ΔI \ CI

Conjunction (C �D) CI ∩DI

Disjunction (C �D) CI ∪DI

Value Restriction (∀R.C) {s ∈ ΔI | ∀t ∈ ΔI : 〈s, t〉 ∈ RI ⇒ t ∈ CI}

Existential Restriction (∃R.C) {s ∈ ΔI | ∃t ∈ ΔI : 〈s, t〉 ∈ RI ∧ t ∈ CI}

Nominals

O {o} {s ∈ ΔI | #{o}I = 1}

hasValue ∃R.{o} {s ∈ ΔI | ∃t ∈ ΔI : 〈s, t〉 ∈ RI ∧ t ∈ {o}I}

OneOf {o1, . . . , on} {o1}I ∪ · · · ∪ {on}I , n ≥ 1

Number Restriction

N
≤ nR.� {s ∈ ΔI | #(FIL(R, s)) ≤ n}, n ∈ N

≥ nR.� {s ∈ ΔI | #(FIL(R, s)) ≥ n}, n ∈ N

Qualified Cardinality Restriction

Q
≤ nR.C {s ∈ ΔI | #(FIL(R, s) ∩ CI) ≤ n}

≥ nR.C {s ∈ ΔI | #(FIL(R, s) ∩ CI) ≥ n}

Role Hierarchies

H R � S RI ⊆ SI

Transitive Roles

S Trans(R) RI = (RI)+, (RI transitive)

Figure 2: Syntax and semantics of the DL SHOQ.

18

2.1.2.1 Concept Constructors

Expressive DL concept constructors are operators used to extend the syntax and

semantics of ALC in order to capture the descriptions of more elements within a

certain domain.

Concept Cardinalities (‖C‖) Concept cardinalities were proposed in [BBH96] to

express a restriction (at-least and at-most) on the number of instances that a certain

concept can have within the represented domain. For example, the concept cardinality

restriction (≤ 195 Country) restricts the number of instances of the concept Country

to 195. Concept cardinalities extend the ALC syntax rule in (1) as follows:

ALC‖C‖-concept −→ ALC-concept | (≥ nC) | (≤ nC) (2)

The set of concept cardinalities used within a KB K are grouped into a CBox

C. An interpretation I is a model of a CBox C iff I is a model of K, and I it

satisfies all concept cardinalities in C. Due to their high computational complexity,

concept cardinalities are not adopted by standard DL languages neither are they

part of OWL. They are introduced due to their correspondence with the nominals

constructor defined below.

Nominals (O) Nominals, known as named individuals, are studied in the areas of

hybrid logics [BM01] as well as DLs [Sch94]. In DL, nominals allow the naming of

domain elements (ABox individuals) to be used within concept descriptions in the

TBox. Without the nominals constructor, the TBox axioms and the ABox assertions

are separated. Nominals are used as concept names that must be interpreted as

singleton sets and play an important role in DL because they allow one to express

the notion of uniqueness and identity. There exist many natural concepts that need

19

to be modelled using nominals such as “Sun”, “God”, “Concordia University”, etc

... Extending ALC with nominals is obtained by additionally defining a set No ⊆ NI

of nominals each treated as a concept name. When nominals are allowed, the ALC

syntax rule in (1) is extended as follows:

ALCO-concept −→ ALC-concept | {o1, . . . , on} (3)

with n ≥ 1 and o1, . . . , on elements in No. In the literature, sometimes a distinction

is made between the hasValue constructor and the oneOf constructor.

• The hasValue constructor uses nominals as part of an existential restriction as in

(EuropeanCountry � ∃locatedIn.{Europe}) where Europe is a nominal (referring

to a continent) used to define the concept of a European country as “a country

located in the European continent”.

• The oneOf constructor enumerates nominals to define a concept such as

Continent ≡ {Asia,Africa,NorthAmerica, SouthAmerica,Antarctica,Europe,Australia}

where Asia, . . . ,Australia are all nominals. To distinguish a nominal name from a

concept name within a concept description a nominal name is usually surrounded

by “{}”. Note that throughout this thesis sometimes the “{}” are omitted if the

distinction is obvious. On the semantic side, an interpretation I is required to map

every o ∈ No to a singleton set as shown in Figure 2 where # denotes the cardinality

of a set. This means that nominals can emulate concept cardinalities, for example

the concept Continent, as defined using the oneOf constructor, can have exactly 7

instances, the enumerated nominals. Note that, due to their semantic equivalence,

sometimes an enumeration of nominals is replaced with a disjunction between the

enumerated nominals. For example, the concept Continent can also be represented

using the following syntax: Continent ≡ {Asia} � {Africa} � · · · � {Australia}.

20

Number Restrictions (N) Using Number Restrictions, it is possible to specify a

lower (at-least restriction) and an upper (at-most restriction) bound on the number

of individuals related via a certain role (R ∈ NR). For example, the number restric-

tion (≥ 279 hasMember) can be used to specify that the CanadianParliament “must be

constituted of at-least 279 seats”. Number restrictions were studied in [BS99], they

extend the ALC syntax rule in (1) as follows:

ALCN -concept −→ ALC-Concept | (≥ nR) | (≤ nR) (4)

On the semantic side, an interpretation I makes sure that R-fillers satisfy each number

restriction by extending the interpretation function .I as shown in Figure 2.

Definition 2.1.8 (R-filler) A domain element t ∈ ΔI is said to be an R-filler if

there exists a domain element s ∈ ΔI such that 〈s, t〉 ∈ RI for a given role R ∈ NR,

t is said to be an R-filler of s. The set of R-fillers of a given domain element s ∈ ΔI

is defined as FIL(R, s) = {t ∈ ΔI | 〈s, t〉 ∈ RI} and the set of all R-fillers for a given

role R is defined as: FIL(R) =
⋃

s∈ΔI FIL(R, s).

Qualified Cardinality Restrictions (Q) Qualified Cardinality Restrictions (QCRs)

act like number restriction with additionally specifying qualities on the related indi-

viduals. For example, the QCR (≥ 279 hasMember.CanadianCitizen) specifies that the

CanadianParliament “must be constituted of at-least 279 seats while additionally spec-

ifying that members of the Canadian Parliament must be Canadian citizens”. When

QCRs [HB91] are allowed, the ALC syntax rule in (1) is extended as follows.

ALCQ-Concept −→ ALC-Concept | (≥ nR.C) | (≤ nR.C) (5)

21

On the semantic side, an interpretation I is required to satisfy each QCRs by extend-

ing the interpretation function .I as shown in Figure 2.

2.1.2.2 Role Constructors

Different role constructors can be used to express complex role relations using atomic

roles. Interesting role constructors have been investigated in the literature (e.g.,

transitive roles , role hierarchies , boolean operators on roles and role composition

[HKS06]). However, only role hierarchies , transitive roles , and inverse roles will be

discussed in this thesis.

Role Hierarchies (H) Role hierarchies are used to define sub-role and super-role

relationships between the roles used in the TBox, they are expressed using a set of

Role Inclusion Axioms.

Definition 2.1.9 (Role Inclusion Axiom (RIA)) A RIA is an expression of the

form R � S, where R, S ∈ NR. For example the RIA (hasBrother � hasSibling) spec-

ifies that “every brother is also a sibling”; every individual b related to an individual

a via the hasBrother role is also related to a via the hasSibling role. Their semantics

are preserved by extending the interpretation function .I as in Figure 2. A set of

RIA is referred to as an RBox R and is part of the knowledge base K. The transitive

reflexive closure of � on R is referred to as �∗.

Definition 2.1.10 (Sub-role/super-role) A role S is said to be a sub-role of a

role R in T if there exists a RIA ∈ R such that (S �∗ R). R is said to be a super-role

of S in T . For example, hasBrother is a sub-role of hasSibling which is a super-role of

hasBrother.

22

Transitive Roles Transitive roles can be used to represent transitive relations be-

tween concepts. For example, Trans(isPartOf) defines the role isPartOf as a transitive

role. The set NR+ ⊆ NR denotes the set of transitive roles .

Definition 2.1.11 (Simple Role) A role R is said to be simple if it is neither

transitive nor has a transitive sub-role.

Inverse Roles (I) Inverse Roles are used to express converse relations between

individuals using the − operator. For example, (hasMember = isMemberOf−) can

be used to express that hasMember is the converse relation of isMemberOf. Their

semantics are preserved by extending the interpretation function .I such that given

the role S defined as the inverse role of R (S ≡ R−) the following holds:

〈s, t〉 ∈ SI ⇐⇒ 〈t, s〉 ∈ RI

Concrete Datatypes (D) Concrete Datatypes are used to represent literal values

such as numbers and strings. They can be used to describe concepts such as “a toddler

is a child whose age is between 1 and 3” (Child � ∃hasAge.(max3) � hasAge.(min1))

where (max3) and (min1) are datatypes derived by adding minimum and maximum

value constraints on an integer datatype.2 Extending ALC with concrete datatypes

is obtained by additionally defining a set D of datatypes, and a set NT of role names

such that NR and NT are disjoint and T ∈ NT is referred to as a concrete role. The

ALC syntax rule in (1) is extended as follows where C is an ALC(D)-Concept, T is

a concrete role, and d ∈ D.

ALC(D)-concept −→ ALC-Concept | (∃T.d) | (∀T.d) (6)

2Integers and strings are referred to as primitive datatypes. More complex datatypes can be
derived using boolean combinations of primitive datatypes and number restrictions qualified with
datatypes [HS01].

23

On the semantic level, the domain of all datatypes is represented by ΔD such that:

• each d ∈ D is associated with a set dD ⊆ ΔD

• ΔD is disjoint with ΔI

• a negated concrete datatype ¬d is interpreted as ΔD \ dD

• the interpretation function .I is extended to preserve the semantics of concepts

using concrete roles as shown below:

(∃R.d)I = {s ∈ ΔI | #{t | 〈s, t〉 ∈ RI ∧ t ∈ dD} = 1}

(∀R.d)I = {s ∈ ΔI | ∀t : 〈s, t〉 ∈ RI ⇒ t ∈ dD}

2.1.3 DL Inference Services

What makes DLs interesting is that they allow one to represent domain knowledge

not only for the sake of representing it, but also to reason about it and make implicit

knowledge explicit through the use of some inference services. This section briefly

introduces standard DL reasoning services: TBox reasoning and ABox reasoning. A

more technical description of these services can be found in [BH91b, BLS06, FB07b].

TBox Reasoning: TBox inference services work on concept descriptions in the

TBox without any reference to the ABox. These services include:

• Satisfiability Checking: A concept C is said to be satisfiable w.r.t. a TBox

T iff there exists a model I of T with CI �= ∅, i.e., there exists an individual

s ∈ CI as an instance of C. I is called a model of C w.r.t. T .

• Subsumption Checking: Given two concept expressions C and D, the con-

cept subsumption service tries to infer subsumption relationships between the

24

two concepts (C � D and/or D � C) w.r.t. T . A concept C is subsumed

by a concept D (C � D) iff every model I of T also satisfies CI ⊆ DI . A

subsumption test can be polynominally reduced to a satisfiability test; C � D

iff the concept expression C � ¬D is not satisfiable.

• Classification: Using subsumption inferences, concept names that appear in

the TBox can be arranged in a hierarchical way. This process inference, called

classification, is one of the main inference services offered by many DL systems.

ABox Reasoning: ABox inference services work on both components of a DL KB

K: the TBox and the ABox. The basic inference services are:

• KB Consistency: A knowledge base K(T ,A) is consistent if it admits a com-

mon model for T and A. Having a consistent knowledge base is crucial for the

usefulness of any other inference service; any inference is meaningless if the KB

at hand is not consistent.

• Instance Checking: An instance checking service consists of checking whether

an ABox individual s is an instance of a concept C w.r.t. T and A. The test is

positive if sI ∈ CI for all models, I, of A and T .

Using nominals, concept satisfiability and ABox consistency can be reduced to

TBox consistency; a concept C is satisfiable w.r.t. a TBox T iff (T ∪ {{o} � C})

is consistent and o ∈ No new in T , an ABox A is consistent w.r.t. T iff (T ∪
⋃

(a:C)∈A{{a} � C}∪
⋃

((a,b):R)∈A{{a} � ∃R.{b}}) is consistent. Also, DLs that enable

both transitive roles and role hierarchies can reduce reasoning w.r.t a TBox into

reasoning without TBoxes using a technique called internalization [HS07, HST99],

25

which encapsulates TBox axioms into a single concept CT such that:

CT =
�

(Ci�Di)∈T

(¬Ci �Di) (7)

Satisfiability of a concept D w.r.t T can be reduced to testing the satisfiability of

D � CT � ∀U.CT where U is a Transitive Universal Role, super-role of all roles in T .

2.2 DL Reasoning

Many reasoning methods were investigated to handle Dl inference services such as

structural subsumption (early 90s), tableau-based (1991), automata-based (2003) [BHLW03],

semantic binary tree (2005), and resolution-based (2006). However, the most widely

used one remains tableau-based which is introduced in this section.

2.2.1 Tableau Algorithms

The first DL tableau algorithm was designed for the DL ALC in 1991 [SSS91] and

later extended for more expressive logics [BS01, HM04, HKS06, HS01]. The first

systems to implement tableau algorithms were KRIS (1991) [BH91a] and CRACK

(1995) which behaved reasonably well in practice even though the supported DL

inference problems were at-least NP- or even PSPACE-Hard.

In general, tableau algorithms are considered as goal-directed decision procedures.

They try to decide the satisfiability of a concept expression by constructing a cor-

responding model. The idea is that a concept C is satisfiable if a model exists that

corresponds to an interpretation of C such that CI �= ∅. Tableau algorithms work on

concepts in Negation Normal Form [FB07b], they are characterized by an underlying

data structure, a set of expansion rules, a number of so-called clash-triggers, and

sometimes a set of blocking strategies.

26

Definition 2.2.1 (Negation Normal Form (NNF)) A concept expression is

said to be in NNF if the negation (¬) appears only in front of concept names. NNF

can be obtained by pushing negations inwards [HS01] using DeMorgan’s law (1-2)

and the following equivalences:

(1) ¬(C �D) ⇐⇒ ¬C � ¬D

(2) ¬(C �D) ⇐⇒ ¬C � ¬D

(3) ¬(¬C) ⇐⇒ C

(4) ¬(∀R.C) ⇐⇒ ∃R.¬C

(5) ¬(≥ nR.C) ⇐⇒ ≤ (n− 1)R.C

(6) ¬(≤ nR.C) ⇐⇒ ≥ (n+ 1)R.C

In the following, nnf(C) denotes the NNF of C and ¬̇C denotes the NNF of ¬C.

The Data Structure The data structure used to describe the model of a given

concept C is usually a directed graph G(V,E) referred to as a “completion graph”.

V is a set of vertices representing individuals in the domain, and E is a set of edges

representing relations between individuals. Every node x ∈ V is labeled by a set of

concept expressions L(x) that is satisfied by the represented individual. Every edge

between two nodes, x and y, is labeled by a set, L〈x, y〉, of role names satisfying

the dependencies (Role successor-ship) between the two nodes. A symmetric binary

relation �= is used to keep track of inequalities between two nodes. For most DLs,

the construction of a model starts by initializing a root node (x0) in G such that x0

must satisfy the concept expression C. This is ensured by setting the label of x0 to

C (L(xo) = {C}).

Definition 2.2.2 (Role-Successor) A node y is said to be a Role-Successor of a

node x if there exists an edge 〈x, y〉 with R in its label (R ∈ L〈x, y〉) for some R ∈ NR.

27

The node y is said to be an R-successor of x which is then said to be ancestor of y.

�-Rule If C �D ∈ L(x), x is not blocked, and {C,D} � L(x)

Then set L(x) = L(x) ∪ {C,D}

�-Rule If C �D ∈ L(x), x is not blocked, and {C,D} ∩ L(x) = ∅

Then set L(x) = L(x) ∪ {E} with E ∈ {C,D}

∃-Rule If ∃R.C ∈ L(x), x is not blocked, and there exists no y such that:

y is a R-successor of x with C ∈ L(y)

Then create a new node y and set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and

L(y) = L(y) ∪ {C}

∀-Rule If ∀R.C ∈ L(x), x is not blocked, and there exists y such that:

y is an R-successor of x, and C /∈ L(y)

Then set L(y) = L(y) ∪ {C}

Figure 3: Tableau expansion rules for ALC.

The Expansion Rules The graph G is gradually expanded according to some

expansion rules designed to preserve and construct the logical dependencies encoded

in C. These expansion rules (also known as tableau completion rules), correspond

to constructors in the logic, they expand the initial graph by describing sub-graphs

of the completion graph before and after rule application. In many cases, they only

operate on a node and its direct neighbours. Figure 3 shows the tableau expansion

rules corresponding to the DL ALC.

28

x0

x0

y0

y0

x

y

L(x0) = {Father,Man � ∃hasChild.� � ∀hasChild.Child}
Step1: �-Rule

L(x0) = L(x0) ∪ {Man, ∃hasChild.�, ∀hasChild.Child}
Step 2: ∃-Rule

L(y0) = {�}
Step 3: ∀-Rule

L(y0) = L(y0) ∪ {Child}

L(x) = {Father}

L(y) = {�,Child}

=⇒
hasChild L(〈x, y〉) = {hasChild}

Figure 4: Tableau expansion during a satisfiability test of the concept Father as
defined in Figure 1. The expansion on the left shows the step by step application of
the expansion rules. The expansion on the right, shows the final completion graph
representing a model for the concept Father.

Some rules add new nodes (e.g., ∃-Rule), and others yield more than one possible

outcome (e.g., �-Rule). The latter ones are known as non-deterministic rules. In

order to ensure termination in the case when cyclic descriptions are encountered, the

rules employ the notion of blocking, which will be introduced in the next Section

(see Definition 2.2.4). In practice, non-determinism means search and it is dealt with

by exploring the various possible models. For an un-satisfiable concept, all possible

expansions will lead to the discovery of an obvious contradiction known as a clash (see

Definition 2.2.3), however, if at-least one expansion leads to a complete and clash-free

completion graph, then the concept is satisfiable. When no more rules are applicable,

it means that all implicit knowledge has been made explicit and the completion graph

is said to be complete. In the case of a satisfiable concept C, a complete and clash

free completion graph is found and is said to be a completion model of C. Figure 4

shows the step by step expansion of the completion model for the satisfiability of the

concept Father as defined in Figure 1.

29

x0

y1

y2

yn

L(x0) = {C, ∃R.C}
Step1: ∃-Rule

L(y1) = {C, ∃R.C}
Step 2: ∃-Rule

L(y2) = {C, ∃R.C}
Step n: ∃-Rule

L(yn) = {C, ∃R.C}

R

(a) Without blocking

x0

y1

L(x0) = {C, ∃R.C}
Step1: ∃-Rule

L(y1) = {C, ∃R.C}
Step 2: ∃-Rule R

(b) With blocking

Figure 5: Tableau model for the satisfiability of C � ∃R.C.

Clash Triggers The tableau expansion algorithm stops either when no more rules

are applicable (i.e., the completion graph is complete) or when a clash is detected.

Definition 2.2.3 (Clash) A node x is said to contain a clash when a logical de-

pendency is violated such as having x satisfy C and ¬C ({C,¬C} ⊆ L(x)).

Blocking In some cases, expanding the completion graph does not lead to a com-

plete graph. This can happen if the TBox axioms include cycles. For example, if

a TBox T contains the axiom: C � ∃R.C, then the satisfiability of C w.r.t. T will

never stop because the tableau algorithm can go on creating new individuals with

repeating structure as shown in the Figure 5a. These situations are handled using

blocking [HST99, BS01]; the idea is to block a node from applying rules if it needs to

satisfy a concept expression that is satisfied by one of its ancestors. Such is the case

with the node y1, in Figure 5b, which is blocked by the node x0. The main idea is

that the blocked node y1 can use R-successors of x0 instead of generating new ones.

30

Definition 2.2.4 (Blocked Node) A node x is said to be directly blocked by a

node y if it has an ancestor node y such that L(x) ⊆ L(y). The node x is said to be

blocked if it is directly blocked or one of its ancestors is blocked.

2.2.2 Tableau Algorithms for Expressive DLs

When dealing with more expressive DLs, tableau algorithms need to be extended in

many ways in order to preserve the semantics of the handled constructors.

2.2.2.1 Extending the Datastructure

The data structure might need some changes to reflect any additional properties. For

example, when nominals are enabled, a distinction is made between nominal nodes

and the so-called blockable nodes. A nominal node is a node whose label contains

a nominal whereas a blockable node is a node that is not a nominal node. Nominal

nodes can be arbitrarily interconnected, they are found in arbitrarily complex graphs

whereas blockabe nodes are only found in tree-like graphs rooted in nominal nodes

[HKS06, HS05]. This distinction helps preserves the semantics of nominals when

applying expansion rules, clash triggers or blocking strategies. For example, when

merging two nodes is necessary (e.g., case with the ≤-Rule) a blockable node is always

merged with a nominal node in order to preserve the nominals semantics. Initially,

a nominal node is added to the completion graph for every nominal in the KB. The

graph therefore, becomes a forest of tree-like graphs rooted in these nominal nodes.

2.2.2.2 Extending Tableau Rules

Tableau rules need to be extended to support additional available constructors as

follows:

31

∀+-Rule If ∀R.C ∈ L(x), x is not blocked, and there exists y such that:

y is an S-successor of x, S ∈ NR+ with S �∗ R, and ∀S.C /∈ L(y)

Then set L(y) = L(y) ∪ {∀S.C}

choose-Rule If ≤ nR.C ∈ L(x), x is not blocked, and there exists y such that:

y is an R-successor of x with L(y) ∩ {C, ¬̇C} = ∅

Then set L(y) = L(y) ∪ {E} with E ∈ {C, ¬̇C}

≥-Rule If ≥ nR.C ∈ L(x), x is not blocked, and there are no y1, . . . , yn

R-successors of x with C ∈ L(yi), and yi �= yj for 1 ≤ i ≤ j ≤ n

Then create n new nodes y1, . . . , yn as R-successors of x such that

for 1 ≤ i ≤ j ≤ n set yi �= yj, and L(yi) = {C}

≤-Rule If ≤ nR.C ∈ L(x), x is not blocked, and there are y1, . . . , ym

R-successors of x with C ∈ L(yi), and m ≥ n+ 1

Then select yj and yi such that yj such that not yj �= yi, and

- if yj is a nominal node, then Merge (yj, yi), and remove yi

- else if yi is a nominal node or an ancestor of yj, then Merge (yj, yi)

- else Merge (yi, yj) and remove yi

O-Rule If {o} ∈ L(x) ∩ L(y), and not x �= y

Then Merge (y, x) and remove y

Figure 6: Tableau expansion rules handling the semantics of the added constructors
extending ALC to SHOQ.

• With number restrictions (N), the rules in Figure 6 must be added to the ones in

32

Figure 3 to ensure that individuals satisfy the at-least and at-most restrictions

expressed using this constructor. The main idea is that at-least restrictions are

treated by generating the required role-successors as new distinct nodes. At

most restrictions are treated by non-deterministically merging role-successors

whenever the number of role-successors exceeds the number allowed by the

restrictions. A create and merge cycle is avoided using the inequality relations

between nodes created to satisfy an at-least restriction such that two nodes x

and y cannot be merged if x �= y.

• Treating QCRs (Q) is similar to treating number restrictions with additionally

asserting that the newly created role-successors are also members of the qual-

ifying concept C. Also, in order to detect unsatisfiability of concepts such as

(≥ nR� ≤ mR.C � ≤ mR.¬C) with n > m, the non-deterministic choose-rule

is used such that all R-successors are non-deterministically distributed over C

or ¬C.

• The nominals (O) semantics are handled by extending tableau rules with the

o-Rule [HS01]. The O-Rule works by merging two nominal nodes that contain

the same nominal in their label. This merging is needed in order to ensure

that nominals are interpreted as singletons. Also the ≤-Rule makes sure that

a nominal node is never merged with a blockable node leading to the loss of the

nominal node.

2.2.2.3 Extending Clash Triggers

Clash triggers are also extended to include all possible types of clashes.

• With number restrictions (N) a new type of clash needs to be detected: when

a node x that must satisfy an at-most restriction (≤ nR) on its R-successors,

and it already has m distinct R-successors with m > n.

33

• With nominals (O), clash triggers need also detect the type of clash causing a

violation of the nominals semantics such as having two distinct nodes, x �= y,

with the same nominal in their label i.e. having {o} ⊆ (L(x) ∩ L(y)).

2.2.2.4 Extending Blocking Strategies

With more expressive logics, sometimes more sophisticated blocking strategies need

to be used in order to ensure termination.

• In the presence of nominals, blocking strategies need to make sure that none

of the nodes between a blocking node and the blocked one is a nominal node.

Otherwise by repeating the cycle, the nominal would also be repeated and the

semantics violated.

• Transitive roles and GCIs also introduce cycles. The concept description C �

∃R.C � ∀R.(∃R.C) where R is a Transitive Role, the combination of the ∃R.C

and ∀R.(∃R.C) concepts would cause a new node y to be added to the tree

with an identical label to x. The expansion process could then be repeated

indefinitely. This problem can be dealt with by blocking: halting the expansion

process when a cycle is detected.

2.2.2.5 Merging

Some expansion rules require the merging of two nodes in order to satisfy an at-most

restriction. When a node x is merged with another node y (Merge (x,y)), y inherits

all of x’s properties including its label, inequalities, ancestors (incoming edges) and

successors (outgoing edges). Therefore, the label of x needs to be added to the label

of y (L(y) = L(y) ∪ L(x)), all edges that lead to x are updated so that they lead to

y and those leading from x to nominal nodes so that they lead from y to the same

34

nominal nodes. The completion graph is then pruned by removing x and, recursively,

all blockable role-successors of x.

2.2.2.6 Strategy of Rule Application

The implementations of tableau algorithms have shown that expansion rules often

need to be applied according to a certain strategy in order to ensure termination of

the procedure. The general idea of the strategy is to apply shrinking rules before any

other rule, and to apply these rules to lower depth nodes before applying them to

higher depth nodes.

2.2.3 Complexity of DL Reasoning

Analyzing the complexity of DL reasoning is part of studying the inherent difficulty

of its reasoning services. A distinction is made between analyzing the computational

complexity of an inference service, and analyzing the complexity of the underlying

reasoning algorithms to solve an inference service.

The computational complexity of DL inference services is usually determined

based on worst-case analysis of the size of a completion model, of a given KB, and

the time needed to construct such model. Clearly DLs that enable nominals , QCRs,

and GCIs enjoy additional expressive power (there is no other way to close a con-

cept or domain with a finite number of elements using the DL SHOQ except using

nominals) with high computational complexity. The complexity of reasoning with

nominals was studied in [AL02, HS01, Sch94, Tob00, Tob01] where nominals were

found to interact with other DL constructors such as I and N , and affect the com-

plexity. For example, while checking the satisfiability of an ALCI (ALC with inverse

roles) concept is PSPACE-complete, adding a single nominal yields an ExpTime-

complete concept Satisfiability problem [AL02]. The use of GCIs in TBoxes yields

35

an ExpTime-complete satisfiability problem for most expressive DLs extending ALC.

Table 1 shows the complexity of different DLs as can be found at the DL Complexity

Navigator.3

DL Language Satisfiability Checking KB Consistency

ALC, ALCQ, ALCOQ PSpace-complete PSpace-complete

ALCHOQ N/A N/A

SHOQ ExpTime-complete ExpTime-complete

ALCOIQ NExpTime-complete NExpTime-complete

SROIQ NExpTime-hard NExpTime-hard

Table 1: Computation complexity of DL inference services using an empty TBox.

The high worst-case complexity initially led to the conjecture that expressive

DLs might be of limited practical applicability [BDS93]. Analyzing the efficiency

of a DL reasoning algorithm consists of analyzing its soundness, completeness, and

termination. While soundness is evaluated by making sure that the algorithm will

always find the correct answer, completeness means that the algorithm will explore

every possible cases before returning an answer, and termination means that the

algorithm will always terminate. Termination is usually of great importance when

studying the practical implication of a reasoning algorithm. This is because a correct

(sound and complete) reasoning algorithm is of limited use if termination is not

guaranteed. While worst-case complexity analysis serve as a theoretical estimate

for the termination of a reasoning algorithm, the practical estimate is usually done

through a performance analysis on average cases.

3http://www.cs.man.ac.uk/~ezolin/dl/.

36

2.3 Practical DL Reasoners

There often remains a considerable gap between the theoretical presentation of a

reasoning algorithm and a practical implementation. When analyzing the practical

implication of a reasoning algorithm, one needs to distinguish between the theoretical

efficiency of a reasoning algorithm (i.e., the theoretical worst case complexity com-

pared to the worst case complexity of the corresponding inference problem), and the

practical efficiency (i.e., practical typical case performance), of the reasoning algo-

rithm. Early experiments with DL systems indicated that in practice performance, if

not equipped with suited optimizations, is a serious problem even when considering

systems handling less expressive extension of ALC such as ALCN [HKNP94]. The

goal of designing optimization techniques is to achieve practical efficiency.

Most modern DL reasoners implement tableau-based algorithms together with a

set of sophisticated optimization techniques. The state-of-the-art (SOTA) DL reason-

ers are Fact++, RacerPro,4 Pellet,5 and Hermit6 which is based on a hyper-tableau

algorithm.

• Fact++ [TH06] is a highly optimized tableau-based DL reasoner supporting

OWL DL7 and partially OWL 2.8 Fact++ implements the tableau-based rea-

soning presented in [HS05], and is based on the FaCT system [Hor97] imple-

mented to evaluate the practical efficiency of an optimized tableau-based algo-

rithm for subsumption inferences in the presence of transitive roles and GCIs.

The optimization techniques implemented by FaCT, such as semantic branch-

ing, dependency directed backtracking, and absorption are key techniques that

4http://www.racer-systems.com/
5http://clarkparsia.com/pellet/
6http://hermit-reasoner.com/
7OWL DL is a sublanguage of OWL which places a number of constraints on the use of the OWL

language constructs. See http://www.w3.org/TR/owl-ref/ for more details.
8http://www.w3.org/TR/owl2-overview/

37

have become crucial for every practical DL reasoner implementing tableau-based

reasoning. Those techniques are reviewed in Chapter 3.

• Pellet [SPG+07] is a highly optimized tableau-based DL reasoner supporting

OWL 2. Pellet was the first DL reasoner to handle nominals by implementing

suited optimizations for reasoning with nominals [PCS06], such as nominal

absorption, lazy forest generation, also adopted by Fact++.

• RacerPro [HM01b] is a highly optimized tableau-based DL reasoner supporting

the DL SHIQ. RacerPro is the only available reasoner providing algebräıc

reasoning for efficient handling of QCRs based on the algorithm presented in

[HTM01]. RacerPro also implements the signature calculus [HM01a] for dealing

with QCRs.

These systems behave well in practice for fragments of DL logics that are optimized for

realistic cases. There exist DL reasoners that adopt non-tableau reasoning algorithms

for DL. The ones that can support the expressivity of nominals are Hoolet,9 KAON2,10

and Hermit.

• Hoolet uses a first order theorem prover, Vampire [RV02], to reason with the

SHOIN DL language. With Hoolet, the TBox is translated into a collection

of first order logic axioms, based on the logical language semantics, and sent to

a theorem prover for consistency checking [TRBH04]. Hoolet works more as a

proof of concept rather than as a practical DL reasoner; it is known to be sound

but incomplete. It could be useful for testing and illustrating small examples

with easy experimentation for expressive DL languages [Lie06].

• KAON2 is an infrastructure that can manage DL KBs. Its reasoning part

consists of reducing a SHIQ KB to a disjunctive datalog program solved by

9http://owl.man.ac.uk/hoolet/
10http://kaon2.semanticweb.org/

38

well-known deductive database technology such as the magic set transformation

[CFGL04]. Its reasoning with the SHIQ DL is proven sound and complete, yet

there is little evidence for its usefulness as a practical DL reasoner compared to

tableau-based reasoners. Recent work has been done to extend KAON2 decision

procedure to handle nominals [KM06]. However, deciding concept Satisfiability

in a SHOIQ KB runs in triple exponential time due to the interaction between

inverse roles , nominals and number restrictions.

• Hermit is a recent hyper-tableau based DL reasoner supporting OWL 2. Hermit

implements the hyper-tableau based reasoning presented in [MSH09], equipped

with the optimizations discussed in [MSH07, GHM10, MH08] for efficient rea-

soning with GCIs.

2.4 Conclusion

This chapter introduced a formal definition of DL languages in terms of their syntax,

semantics and inference services. Nominals, and QCRs not only affect the expressive

power of a DL language, but also affect the complexity of its inference services as they

require complex reasoning algorithms. The most widely used tableau-based reasoning

algorithms for DL inferences were introduced. These algorithms are easy to implement

however näıve implementations are not successful since their search-like behaviour

means a high degree of non-determinism. A careful choice of reasoning algorithm

equipped with suited optimization techniques is needed for practical DL reasoning.

The following chapter discusses in more details the problem of DL reasoning with

nominals and QCRs, and report on related research activities as well.

39

Chapter 3

DL Reasoning With Nominals and

QCRs

Most Description Logics reasoners supporting nominals and QCRs implement tableau-

based decision procedures which usually need to be equipped with a set of optimiza-

tion techniques because their näıve implementations fail to be practical. Some opti-

mizations have been proposed to enhance the handling of nominals, others to enhance

the handling of QCRs. However, no optimizations were found to improve the handling

of both nominals and QCRs. This chapter discusses the challenge of DL reasoning

with nominals and QCRs; Section 3.1 discusses the sources of inefficient reasoning;

Section 3.1.1 shows that a strong correlation exists between nominals and numbers,

in such a way that nominals interact with QCRs; Section 3.2 reports on related work.

Since the hybrid approach presented in this thesis is mostly inspired by algebräıc

reasoning for DLs, Section 3.3 introduces the atomic decomposition technique which

is a fundamental technique for such reasoning.

40

3.1 From Theory to Practice

There is little experience with DL reasoners supporting nominals and QCRs. Decision

procedures for expressive DLs enabling both nominals and QCRs were published in

[HS07] with very weak implementations if any (no DL reasoner was able to classify

the WINE1 ontology until the first efforts in [PCS06]). No existing DL reasoner is

able to decide the satisfiability of the Future EU concept (described in Chapter 1).

The challenge of DL reasoning with nominals arise from their syntax and seman-

tics. Recall that the syntax of the nominal constructor allows ABox individuals to

be referenced in the TBox. This syntax breaks the TBox-ABox separation, which is

usually desired in order to separate TBox reasoning and ABox reasoning by develop-

ing separate reasoning procedures. The semantics of nominals is challenging because

each nominal must be interpreted as exactly one individual, whereas a concept is

interpreted as a set of individuals (the formal description of the syntax and semantics

of nominals was shown in Figure 2). Extending a tableau-based reasoning algorithm

with nominals was shown in Section 2.2.2; it requires a clear distinction between a

nominal node and an individual node (so-called blockable node) in order to preserve

the nominal semantics. For instance, in the case when two individual nodes need to

be merged and one node is a nominal node; the nominal node must survive (see Fig-

ure 11 for an example). In the case when blocking is applicable due to a cycle; there

cannot be a nominal node between an individual node and a blocking individual node

otherwise by repeating the cycle, the nominal would also be repeated and the seman-

tics is violated. The interaction between nominals and numerical restrictions imposed

by QCRs leads to the loss of the tree model property, which is usually advantageous

for tableau algorithms by allowing them to look for tree-like models [BS01]. There-

fore, in the presence of nominals, existing DL reasoning algorithms look for forest-like

1http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

41

models, which consist of trees rooted with arbitrarily interconnected nominal nodes

(as shown in Figure 11).

In practice, the poor performance of tableau algorithms is due to non-determinism

in the expansion rules, which results in search of different possible expansions of the

completion graph. It was shown in Section 2.2.2 that a tableau algorithm handling

nominals and QCRs is extended with at-least two non-deterministic rules: the choose-

Rule and the≤-Rule. This section illustrates the effect of non-determinism introduced

by QCRs and nominals.

3.1.1 The Semantics of Nominals, QCRs, and Numbers

QCRs carry explicit numerical restrictions; they set an upper (lower) bound on the

number of individuals related via a certain role. On the other hand, nominals carry

implicit numerical restrictions; they not only name individuals but also count them.

For example, the concept definition BloodType ≡ {o+,A+,B+,AB+, o−,A−,B−,AB−},

where {o+,A+,B+,AB+, o−,A−,B−,AB−} are all nominals, means that instances of

BloodType can only be one of the 8 enumerated blood types. This additional in-

formation carried with nominals interacts with QCRs in a way that can limit the

number of instances of a certain concept or fillers for a certain role. Given an indi-

vidual s, instance of a concept E (s ∈ EI); C ∈ NC; R ∈ NR; o1, . . . , on ∈ No; and

n,m non-negative integers, one can distinguish between local and global numerical

restrictions.

3.1.1.1 Local Restrictions

When E is of the form (≥ nR), or (≤ mR), E holds a numerical restriction on the

cardinality of the set of R-fillers of s. For example, s ∈ (≥ 2R)I imposes that at least

2 individuals, s1 and s2, must be R-fillers of s, and therefore the cardinality of the

42

set of R-fillers of s satisfies #FIL(R, s) ≥ 2. When E is of the form (∀R.C), E holds

a numerical restriction; an upper bound on the number of R-fillers of s due to the

following:

s ∈ (∀R.C)I ⇔ s ∈ (≤ 0R.¬C)I

s ∈ (∀R.{o1, . . . , on})I ⇒ s ∈ (≤ nR)I

These restrictions are local since they only affect the set of individuals that are

R-fillers of s, FIL(R, s). For example, having Joseph ∈ (Person)I with Person defined

in axiom (8) imposes that at least 1 individual, s1, must be a hasBloodType-filler of

Joseph, and therefore #FIL(hasBloodType, Joseph) ≥ 1. Also, due to the restriction

implied by the definition of BloodType, #FIL(hasBloodType, Joseph) ≤ 8.

Person � ≥ 1hasBloodType.BloodType (8)

3.1.1.2 Global Restrictions

When E is of the form E � {o1, . . . , on} ({o1, . . . , on} � E), the nominals, o1, . . . , on,

enforce a numerical restriction on the cardinality of the set of instances of E; there

can be at-most (at-least, assuming o1, . . . , on are all disjoint) n instances of E corre-

sponding to the interpretation of oI1 ∪ · · · ∪ oIn. Such at-most (at-least) restrictions

carried with nominals are global since they can affect the set of all individuals in

the domain of interpretation (ΔI). Nominals can specify concept cardinalities (See

section 2.1.2.1 for a definition of concept cardinalities) as was shown in [Tob00]. For

example, the concept BloodType has exactly 8 instances. These implied concept car-

dinalities can interact with local restrictions; having additionally s ∈ (∀R.E)I means

that the set of R-fillers of s is bounded by n, FIL(R, s) ≤ n (FIL(R, s) ≥ n).

43

3.1.2 Non-Determinisim with QCRs, Nominals, and their In-

teraction

This section illustrates the non-determinism introduced by tableau expansion rules

while satisfying the semantics of QCRs and nominals.

3.1.2.1 Non-Determinism with QCRs

QCRs introduce non-determinism in choosing a distribution (choose-Rule) for each

role-successor created to satisfy at-least restrictions as well as an at-most restriction,

and when merging those role-successors is necessary to satisfy at-most restrictions (≤-

Rule). Such non-determinism can be aggravated when the number of nodes created

in a completion graph increases (either due to a large number of at-least restrictions

≥ nR.C, or due to large numbers (n) used in these restrictions), possibly the number

of rules applied to these nodes increases and some of these rules might also be non-

deterministic. Moreover, in cases where an at-most restriction is violated, the non-

determinism introduced when merging two nodes can cause a blow up of the search

space especially when the qualification used with the at-most restriction also contains

a disjunction (≤ nR.(C � D)). The following examples illustrates the effect of non-

determinism with QCRs.

Example 3.1.1 (Non-Determinism Due to The choose-Rule) When testing

the satisfiability of (≥ nR.D� ≤ mR.C), a standard tableau algorithm, as described

in Section 2.2.2, starts with a node x0 such that L(x0) = {(≥ nR.D� ≤ mR.C)}.

After applying the �-Rule to x0, the label is extended to L(x0) = {(≥ nR.D� ≤

mR.C),≥ nR.D,≤ mR.C}. Applying the ≥-Rule, creates n distinct R-successors,

y1, . . . , yn, of xo such that L(yi) = {D} for each 1 ≤ i ≤ n. The choose-Rule non-

deterministically assigns C, or ¬C to the label of each R-successor of x0.

44

x0

y1

y1

L(y1) ∪ {C}

y1

L(y1) ∪ {¬C}

y2 y3 yn

yn

L(yn) ∪ {C}

yn

L(yn) ∪ {¬C}

L(x0) = {(≥ nR.D� ≤ mR.C),≥ nR.D,≤ mR.C}

L(y1) = {D} L(yn) = {D}≥-Rule

choose-Rule

≥-Rule: create n R-successors of x0 such that L(〈x0, yi〉) = {R} for 1 ≤ i ≤ n.

choose-Rule: extend the label of each R-successor of x0 such that L(yi) = L(yi) ∪ E ∈ {C,¬C}.

Figure 7: Completion graph showing one source of non-determinism: the choose-Rule.

y1

y1 y1

y2

yn−1

yn yn

L(y1) = {D}

L(y1) = L(y1) ∪ {C} L(y1) = L(y1) ∪ {¬C}

L(y2) = L(y2) ∪ {¬C}

L(yn−1) = L(yn−1) ∪ {C}

L(yn) = L(yn) ∪ {C} L(yn) = L(yn) ∪ {¬C}

Figure 8: Completion graph expansion tree due to the choose-Rule.

The completion graph can therefore be expanded in 2n different ways, as shown in

Figure 8, based on the distribution of these R-successors. Having more than one at-

most restriction, also affects the expansion such that if there are q at most restrictions,

then the total number of branches becomes equal to 2n×q.

Example 3.1.2 (Non-determinism due to the choose-Rule and the ≤-Rule)

This example shows the effect of non-determinism due to the≤-Rule when the number

45

of R-successors, created to satisfy at-least restrictions (≥ nR.D, ≥ pR.E), exceeds

the number allowed by an at-most restriction (≤ mR.C), (n + p) > m. As shown

in Figure 9, the ≥-Rule creates (n + p) R-successors of x0 such that y1, . . . yn are

mutually disjoint and z1, . . . , zp are mutually disjoint. This means y-nodes cannot be

merged together, and z-nodes cannot be merged together either (to make sure the

≥ is always satisfied and avoid a create and merge cycle known as a “yo-yo” effect).

The choose-Rule non-deterministically expands the completion graph by creating

two branching points in the search space for each R-successor of x0. Having (n + p)

R-successors, means that the search space is expanded with 2n+p branches. Since

(n+ p) > m, the ≤-Rule non-deterministically merges a yi node such that C ∈ L(yi)

with a zj node such that C ∈ L(zi) until (n+ p) ≤ m. Assuming that the exceeding

number of R-successors is given as k =| m − (n + p) |, this means that k yi nodes

need to be merged with k zj nodes. The number of ways that the n R-successors

(y1, . . . , yn) can be grouped into k R-successor is defined as Ky = (n!)
(n−k)! and the

number of ways that the p R-successors, z1, . . . , zp, can be grouped into k elements

is defined as Kz = (p!)
(p−k)! . This means that the number of ways to merge k yi nodes

with k zj nodes is given as Kyz = (n!)
(n−k)!) ×

(p!)
(p−k)! . The nodes that can be merged

are highlighted. Due to non-deterministic rules, the completion graph is expanded in

2n+p ways (choose-Rule), andKyz ways (≤-Rule). Note also that having more at-least

restrictions, not only affects the expansion of the completion graphs by introducing

more expansions due to the choose-Rule, but also introduces more possible ways to

merge excess R-successors.

46

x0

y1

y1 y1

y2 yn

yn yn

z1

z1 z1

z2 zp

zp zp

L(x0) = {≥ nR.D,≥ pR.E,≤ mR.C}

≥-Rule: create n R-successors of x0 such that L(〈x0, yi〉) = {R} for 1 ≤ i ≤ n.

≥-Rule: create p R-successors of x0 such that L(〈x0, zj〉) = {R} for 1 ≤ j ≤ p.

choose-Rule: extend the label of each R-successor of x0with E ∈ {C,¬C}.
≤-Rule: non-deterministically merge yi with zj until ≤ mR.C is satisfied.

Figure 9: Completion graph expansion showing two sources of non-determinism: the
choose-Rule and the ≤-Rule.

Example 3.1.3 (Non-determinism due to the choose-Rule, �-Rule, and

≤-Rule) This example shows a source of non-determinism when handling QCRs

using disjunctive descriptions to qualify R-successors such as in the following concept

description: (≥ nR.D� ≥ pR.E � ≤ mR.(A � B)). As illustrated in Figure 10, in

addition to the sources of non-determinism illustrated in Examples 3.1.1 and 3.1.2,

the �-Rule introduces non-deterministic expansions of the labels of R-successors of

xo and doubles the number of nodes to be considered by the ≤-Rule.

47

x0

y1

y1

y1 y1

y1

y2 yn

yn

yn yn

yn

z1

z1

z1 z1

z1

z2 zp

zp

zp zp

zp

L(x0) = {≥ nR.D,≥ pR.E,≤ mR.(A �B)}

choose-Rule: extend the label of each R-successor of x0with E ∈ {(A �B), (¬A � ¬B)}
�-Rule: extend the label of each R-successor of x0, having A �B in its label, with E ∈ {A,B}

≤-Rule: non-deterministically merge yi with zj until ≤ mR.(A �B) is satisfied

Figure 10: Completion graph expansion showing three sources of non-determinism:
the choose-Rule, the �-Rule, and the ≤-Rule.

3.1.2.2 Non-Determinism with Nominals

Due to the equivalence between the definition of BloodType in axiom (9), using an

enumeration of nominals, and that in axiom (10), using a disjunction of nominals,

nominals introduce non-determinism when used with the oneOf constructor.

BloodType ≡ {o+,A+,B+,AB+, o−,A−,B−,AB−} (9)

BloodType ≡ {o+} � {A+} � {B+} � {AB+} � {o−} � {A−} � {B−} � {AB−} (10)

48

x0

y

y1 y2 y3 y8

x1

L(x1) = {o+}

x2

{A+}

x3

{B+}

x4

{AB+}

x5

{o−}

x6

{A−}

x7

{B−}

x8

L(x8) = {AB−}

L(x0) = {≥ 1hasBloodType.BloodType}

L(y1) = {o+} L(y8) = {AB−}

≥-Rule

�-Rule

≥-Rule: create hasBloodType-successor, y, of x0 that L(y) = {{o+} � {A+} · · · � {AB−}}
�-Rule: extends the label of each hasBloodType-successor of x0 using {o+} � {A+} · · · � {AB−}

O-Rule: merge two nodes having the same nominal in their label.

(a) Completion graph expansion showing non-determinism due to nominals in QCRs.

x0

x1

L(x1) = {BloodType, o+}

x2

{A+}

x3

{B+}

x4

{AB+}

x5

{o−}

x6

{A−}

x7

{B−}

x8

L(x8) = {AB−}

L(x0) = {≥ 1hasBloodType.BloodType}

{hasBloodType}

(b) Completion model showing the interaction between nominals and QCRs.

Figure 11: Non deterministic interaction between nominals and QCRs.

This non-determinism can interact with the non-determinism introduced with

QCRs in cases where nominals are used to qualify role-successors. For example,

the description ≤ 1hasBloodType.BloodType specifies that one can have at-most one

BloodType such that the hasBloodType-filler must be identified with one of the nom-

inals enumerating blood types, see Figure 11.

49

3.2 Optimized Reasoning with Nominals and QCRs

There do not exist many optimization techniques that address nominals or QCRs.

First performance improvements for tableau-based DL systems handling QCRs have

been reported in [HM01a, HTM01] and more recently in [FFHM08b]. Optimizations

for tableau-based reasoning with nominals were first studied in [PCS06] as simple

extension/modification of existing optimizations [FB07b] like absorption, pseudo-

model merging and caching. Resolution-based reasoning procedures were proposed

in [KM06] and were proven to be weak in dealing with large numbers in QCRs.

Hyper-tableau [MSH07] which combines tableau and resolution-based [KM06] rea-

soning were recently studied to minimize the size of the models created and their

degree of non-determinism in DL reasoning with no special treatment for QCRs or

nominals. This section provides a review of the tableau-based optimization techniques

investigated to handle nominals, and QCRs. Those technique have been aimed at the

non-determinism due to the handling of nominals and disjunctions of concepts dur-

ing a preprocessing phase, a satisfiability test phase, or a subsumption test phase. In

Section 3.3, the non-tableau methods used to enhance reasoning with QCRs [HTM01]

are reviewed.

3.2.0.3 Preprocessing Optimizations

Preprocessing techniques are performed directly on the syntax of the input to render it

more amenable to reasoning and processing. These techniques examine the syntactic

structure of input concept expressions and exploit relations (tautology, clash) which

are obvious, and can significantly speed up subsequent reasoning. Some of the widely

50

used preprocessing techniques are lazy unfolding,2 internalization,3 and absorption

[HT00].

Absorption aims at reducing (if not eliminating) GCIs occurring in a TBox due

to the high degree of non-determinism that they introduce. Every GCI of the form

C � D is converted to a disjunction ¬C � D that is added to every node in the

completion graph during an inference service. The search space grows exponentially

with the size of GCIs available in a TBox. A standard absorption technique is a

rewriting technique aiming at absorbing CGIs into definition axioms of the form

A � C, with A a concept name, and C a concept expression, using the following

equivalences:

C �D � E ≡ C � ¬D � E (11)

C � D � E ≡ ((C � D) � (C � E)) (12)

Absorption reduces the effect of disjunctions and makes sure they are only applicable

to individuals that are already known to be instances of the appropriate concept. It is

worth noting that some axioms in a TBox T cannot be absorbed, and they are treated

via internalization or by adding a disjunction to every node in the completion graph.

Although absorption can dramatically improve the performance of a DL reasoner, it

is known to be a non-deterministic technique since there might be more than one way

to absorb a GCI. Finding the best way to absorb a GCI is an open problem and is

subject to many research activities [Zuo06, HW06, Wu08].

2Unfolding is a preprocessing technique which aims at reducing concept inclusion axioms by
replacing each occurrence of an atomic concept with its corresponding definition. An example was
shown in Definition 2.1.5.

3Internalization is a preprocessing technique which encapsulates all relevant information encoded
in a TBox T into a single concept CT (as shown in Section 2.1.3) which is added to every newly
added node in the completion graph.

51

Nominal Absorption When nominals appear in GCIs, standard absorption tech-

niques can no longer be used. Two types of absorption techniques have been consid-

ered to absorb GCIs with nominals depending on whether the oneOf or the hasValue

constructor (introduced in Section 2.1.2.1) is used. The OneOf and the HasValue ab-

sorption techniques, the first being applicable to GCIs using the oneOf constructor,

the second being applicable to GCIs using the hasValue constructor, try to absorb

nominal -based disjunctions in order to minimize their undesirable effects.

GCI with oneOf:

WineColor ≡ {red, rose,white}

Standard Absorption:

¬WineColor � {red} � {rose} � {white}

WineColor � ¬({red} � {rose} � {white})

(a) Applying standard absorption.

GCI with oneOf :

WineColor ≡ {red, rose,white}

OneOf Absorption:

WineColor � {red} � {rose} � {white} in T

(red : WineColor) in A

(rose : WineColor) in A

(white : WineColor) in A

(b) Applying the OneOf absorption.

Figure 12: Absorption with GCI using the oneOf constructor.

The OneOf Absorption The axiom (WineColor ≡ {red, rose,white}) is equivalent

to (WineColor � {red, rose,white}) and ({red, rose,white} � WineColor). Standard ab-

sorption techniques cannot capture this axiom, which results in adding the expressions

shown in Figure 12a to every node in the completion graph expansion yielding a great

number of backtracking points being added to the search space. The OneOf Absorp-

tion, was introduced in [Sir06] to absorb this type of GCIs into primitive definitions

52

as shown in Table 12b using the following equivalence:4

C ≡ {a1, a2, . . . , an} ⇔ C � {a1, a2, . . . , an}, and, (a1 : C), . . . , (an : C) (13)

The HasValue Absorption Applying standard absorption to GCIs using the has-

Value constructor can result in a big number of backtracking points being added to the

search space. For example, the number of choice points can grow significantly if there

is a big number of instances of the Wine concept, given the standard absorption (using

equivalence (11)) of Riesling definition axiom as shown in Figure 13a. Due to the equiv-

alence in (11), we also have ∃madeFrom.{RieslingGrape} � ¬Wine� ≥ 2madeFrom.

The HasValue Absorption, introduced in [Sir06], absorbs the definition axiom of

Riesling into the ABox assertions in Figure 13b. This can be done using the semantics

of nominals and the following equivalence5:

∃R.{o} � C ⇔ {o} � ∀R−.C (14)

Notice that the same number of disjuncts is introduced. However with the Has-

Value absorption, the effect of the disjuncts is localized to instances of Riesling con-

cept instead of instances of the Wine concept . This can work well if the number

of instances of Riesling is considerably less than the ones of Wine. The effect of this

technique is problem dependent, even if disjunction is localized to a different concept,

this does not necessarily mean that the disjunction will be applied to a small number

of individuals. Also the use of inverse roles might render this optimization useless -

if the logical language at hand does not enable inverse roles - or less efficient by ren-

dering the reasoning task more complex if no optimization techniques were adopted

to deal with inverse roles.

4See [Sir06] for a proof.
5This equivalence is a special variant of ∃R.C � D ⇔ C � ∀R−.D which is proved in [Din08].

53

GCI with hasValue:

Riesling ≡Wine� ≤ 1madeFrom � ∃madeFrom.{RieslingGrape}

Standard Absorption:

Wine � Riesling � ∀madeFrom.¬{RieslingGrape}� ≥ 2madeFrom

(a) Applying standard absorption.

GCI with hasValue:

Riesling ≡Wine� ≤ 1madeFrom � ∃madeFrom.{RieslingGrape}

HasValue Absorption:

({RieslingGrape} : ∀madeFrom−.(Riesling � ¬Wine� ≥ 2madeFrom))

(b) Applying hasValue absorption.

Figure 13: Absorption with a GCI using the hasValue constructor.

3.2.1 Satisfiability Optimizations

A satisfiability test is usually the core test of most inference services. Satisfiability

optimizations aim at enhancing the order in which to apply tableau expansion rules,

and the order in which to investigate possible expansions of non-deterministic rules.

In terms of applying an order of rule application, expansion rules that create new

nodes in the completion graph (e.g., ∃-Rule, ≥-Rule) are usually assigned the lowest

priority. In practice, it was shown that such ordering of rule applications can have

an effect on performance. In terms of ordering non-deterministic expansions for a

concept expression that includes a disjunction (C1 � C2 � C3 . . .), standard tableau

algorithms use a technique known as syntactic branching : it allows the algorithm

to non-deterministically choose an unexpanded disjunction (C1 � C2 � C3 . . .) in the

label (L(x)) of a node (x) and add each of the disjuncts in (C1 � C2 � C3 . . .) to

L(x). In some case, the algorithm might need to explore different completion graphs

54

corresponding to different disjuncts (maybe all) before the test terminates. Addition-

ally, completion graphs corresponding to each of C1 �C2 �C3 . . . are not disjoint and

non-deterministically exploring them can lead to the recurrence of an unsatisfiable

disjunct in more than one graph which renders the whole algorithm inefficient. Se-

mantic branching, boolean constraint propagation, dependency directed backtracking,

heuristic guided search,6 and caching [TH05] are some of the optimizations designed

and implemented to handle this source of inefficiency.

3.2.1.1 Semantic Branching

As shown in Figure 14, instead of choosing an unexpanded disjunction, semantic

branching chooses a single unexpanded disjunct, C, from L(x) and explores the two

models for C and ¬C (added to L(x)). The two models are disjoint and recurrence

is avoided as shown in Example 3.2.1, which also shows that, compared to syntactic

branching, semantic branching can have a dramatic effect in pruning the search space.

Example 3.2.1 Semantic Branching vs Syntactic Branching When testing

the satisfiability of (C �D1)� (C �D2) with C an unsatisfiable expression, semantic

branching allows a more reduced search space than semantic branching as shown in

Figure 14.

6Heuristic guided search can be used to guide the choice of the disjuncts in order to minimize
the search space.

55

x0

x0 �

�x0

L(x0) = {(C �D1), (C �D2)}

L(x0) = L(x0) ∪ {D1} Clash ⇐ L(x0) = L(x0) ∪ {C}

Clash ⇐ L(x0) = L(x0) ∪ {C}L(x0) = L(x0) ∪ {D2}

(a) Syntactic Branching

x0

� x0

L(x0) = {(C �D1), (C �D2)}

L(x0) = L(x0) ∪ {¬C,D1, D2}L(x0) = L(x0) ∪ {C} ⇒ Clash

(b) Semantic Branching

Figure 14: Syntactic branching versus semantic branching during the satisfiability
test of (C �D1) � (C �D2).

3.2.1.2 Boolean Constraint Propagation

Boolean Constraint Propagation (BCP), also known as simplification, works by exam-

ining disjunctions and simplifying them where possible so that it can later determin-

istically expand single disjunctions in L(x). This technique can greatly reduce the

search space especially when used with semantic branching [FB07b]. It can be used

with a wide range of DL languages without increasing the size of the search space.

3.2.1.3 Dependency Directed Backtracking

Sometimes large amounts of unproductive backtracking search is caused by inher-

ent unsatisfiability encapsulated in sub-problems, a problem known as thrashing (as

shown in Figure 15a).

56

x

xx

x

x

x x

yy

L(x) = {(C1 �D1), . . . , (Cn �Dn)}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn−1}

L(x) ∪ {Cn} L(x) ∪ {¬Cn, Dn}

L(y) = {(A �B),¬A,A,B}L(y) = {(A �B),¬A,A,B}

RR

(a) Thrashing

x

xx

x

x

x x

�

L(x) = {(C1 �D1), . . . , (Cn �Dn)}

L(x) ∪ {C1} L(x) ∪ {¬C1, D1}

L(x) ∪ {¬C2, D2}

L(x) ∪ {Cn−1}

L(x) ∪ {Cn} L(x) ∪ {¬Cn, Dn}

L(y) = {(A �B),¬A,A,B}

R

B
ac
k-
ju
m
p
in
g Pruning

(b) Back-jumping

Figure 15: Effect of Dependency Directed Backtracking.

Dependency directed backtracking addresses this problem by labelling concepts

with a dependency set indicating the non-deterministic expansion choices on which

they depend. When a clash is discovered, the dependency sets of the clashing concept

57

s can be used to identify the most recent non-deterministic expansion where an al-

ternative choice might alleviate the cause of the clash. The algorithm can then jump

back over intervening non-deterministic expansions without exploring any alternative

choices (as shown in Example 3.2.2). This technique is also known as backjumping

and it is used in solving Constraint Satisfiability Problems (CSP) [Bak95] as well as

in solving satisfiability problems in DL [Hor97].

Example 3.2.2 Resolving Thrashing Using Backjumping Let L(x) = {(C1 �

D1), ..., (Cn�Dn), ∃R.(A�B), ∀R¬A}. Figure 15a shows how the problem of thrash-

ing can occur in backtracking, and Figure 15b shows how back-jumping resolves

thrashing.

3.2.1.4 Caching

When role-successor nodes are created, many of these nodes have common labels,

particularly due to the application of the ∀-Rule. The repeated satisfiability checks

of these common labels can be avoided using caching [FB07b, HT99]. Creating role-

successor nodes is delayed until all other expansion possibilities are exhausted and

the set of concept expressions that constitute the label of each successor is computed.

If two successors are found to have the same label, then they will have the same

satisfiability test, which is computed once with the status result saved and applied

not just to both nodes, but to any of their successor nodes having the same label.

Caching can interact with backjumping mainly because two nodes (especially those

that were not expanded) that have the same concept labels may not necessarily have

the same dependency sets. When caching is used with an unsatisfiable role-successor

x, a weak form of backjumping can be used by computing x’s dependency set as the

58

union of the dependency sets of the concept names in L(x). Caching can be highly

effective with problems of repeated structure. However, it causes storage overhead

and can sometimes interact with backjumping and degrade performance. It is also

logic (supported DL constructors) and problem dependent.

3.2.1.5 Forest Caching

In the presence of nominals , caching the satisfiability status of a node cannot be

directly used since ABox assertions can affect concept satisfiability; nominals can be

referred to across different nodes of the completion graph and new concepts may prop-

agate to a previously cached node. As was shown in Figure 11, a nominal node (for

every nominal) is added to the initial completion graph when testing the satisfiability

of a concept C relying on nominals. The forest-like shape of the completion graph

can result in a large number of completion rules to be triggered. The forest caching

technique [PCS06, Sir06] is a caching technique used in the presence of nominals to

save the state of the completion graph after an initial consistency check. The cached

state is used as an initial completion graph for subsequent concept satisfiability tests.

This technique avoids repeating the process of expanding nominal nodes from their

initialization state which may involve a large number of expansion rules. However,

in order to ensure correctness of the technique, the whole status of the expansion

needs to be saved including non deterministic choices that remain to be explored and

dependency sets for nodes and edges’ labels. Saving the whole status, affects memory

consumption.

3.2.1.6 Lazy Forest Generation

Another optimization technique used to reduce the overhead of a large number of

expansion rules, triggered by the use of a forest, is to include nominal nodes in the

59

initial completion graph only if the nominal rule (O-Rule) is applied when checking

concept satisfiability. Because unless a nominal rule is applicable, the satisfiability of

a concept does not depend on the individuals in the ABox. The combination of lazy

forest generation [PCS06, Sir06] and caching may interact with dependency-directed

backtracking and, in order to ensure the correctness of the technique, the initial set

of nominal nodes is generated whenever back-jumping is applied, even if the nominal

rule is not applicable.

3.2.1.7 Using The Signature Calculus

When the number of role-successors introduced in a completion graph becomes large,

the non-determinism in merging these role-successors in order to preserve the sat-

isfiability of at-least and at-most restrictions (as shown in Examples (3.1.1-3.1.3)

can possibly cause a combinatorial explosion. The signature calculus is introduced in

[HM01a] to handle such inefficiency for DL handling the expressivity of ALCQH. The

signature calculus generates a so-called proxy role-successor node for each ≥ nR.C.

The proxy node represents the n R-successors sharing a common restriction, C called

signature. On the other hand, a proxy role-successor x sometimes need to be split

into more than one (case when a new signature extends the one represented by x for

some of the role-successors represented by x), or merged with a proxy role successor

y (case when x and y violate an at-most restriction) in cases where the restrictions

on role-successors are not satisfied.

3.3 The Algebräıc Method

If one knows that a person has two sons and three daughters, one can easily deduce

that this person has five children. So far, DL reasoning remains blind with such

reasoning about numbers; this is because the reasoning procedures treat numerical

60

restrictions implied by concept definitions using expansion rules that construct com-

pletion models by searching case by case until numerical restrictions are satisfied.

Such blindness to numbers results in highly non-deterministic handling of numerical

restrictions implied by QCRs and nominals, as was shown in Sections 3.1.2.1 and

3.1.2.2. For example, in order for the entailment in (15) to hold, a DL reasoning

algorithm would need to know about all restrictions and relationships between the

concept definitions of Son, Daughter, Child, and the roles hasSon, hasDaughter, and

hasChild.

≥ 2hasSon� ≥ 3hasDaughter |=≥ 5hasChild (15)

None of the optimizations presented in the previous sections aims directly at

handling non-determinism caused by numerical restrictions either through merging

excess role-successors (≤-Rule), choosing a distribution of role-successors based on

their qualifications (choose-Rule), or when merging and distributing role-successors

interacts with a non-deterministic distribution of nominals. First efforts [HTM01]

to efficiently deal with the numerical restrictions implied by QCRs were based on

combining tableau-based algorithms with algebräıc reasoning such that concept sat-

isfiability is reduced to pure linear in-equation solving. The approach demonstrated

the performance gain using algebräıc reasoning for the DL SHQ. However, the ap-

proach in [HTM01] was based on a recursive calculus and no proofs for soundness,

completeness, and termination were given.

Algebräıc reasoning for set description languages including DL was first introduced

in [OK96] and later in [OK99] where it was investigated how a concept satisfiabil-

ity check can be reduced to a pure in-equation solving problem. The DL operators

discussed handle only the expressiveness of ALCQ (ALC extended with QCRs) and

neither nominals nor GCIs were taken into account, with no formal calculus for the

61

approach. The basic idea is that numerical features of the concept sets (cardinal-

ity information) are turned into arithmetic terms and put into linear in-equations

which are easily handled by arithmetic equation solvers, and entailments like the one

(15) are handled efficiently. The results from [HTM01] have lately been sharpened

in [Far08, FH10c] where a decidable hybrid calculus for SHQ, based on the hybrid

decision procedure for the DL ALCQ [FFHM08a], is proposed along with a practical

implementation showing that algebräıc reasoning can dramatically improve perfor-

mance with QCRs [Far08, FH10c]. In [Din08] the algebräıc reasoning is combined

with tableau reasoning to achieve an improved worst-case upper bound for deciding

the satisfiability of ALCFI concepts.

The hybrid approach presented in this thesis is mainly inspired by, and based on

the atomic decomposition technique, which is illustrated in this section.

3.4 Atomic Decomposition

The atomic decomposition technique allows encoding the numerical restrictions on

concepts and role fillers into in-equations. The satisfiability of the numerical restric-

tions can therefore be decided by solving the encoded in-equations. Given a finite

set of sets, which is referred to as D, the atomic decomposition considers all possi-

ble ways to decompose D into mutually disjoint atomic sets. These atomic sets are

considered the atoms of the Boolean Algebra consisting of the closure of sets under

union, intersection, and complement. In the case of the entailment in (15), the atomic

decomposition works on the sets of hasSon-fillers, hasDaughter-fillers, and hasChild-

fillers represented using arbitrarily overlapping sets respectively as sons, daughters

and children shown in Figure 16. As it can be seen, different overlaps result in differ-

ent mutually disjoint areas representing subsets of D = {Children, Sons,Daughters}.

Each subset represents the set of role fillers satisfying a concept expression which can

62

be derived based on set conjunctions and complement operations as follows:

C = Children ∩ ¬Sons ∩ ¬Daughters CS = Children ∩ Sons ∩ ¬Daughters

S = ¬Children ∩ Sons ∩ ¬Daughters SD = ¬Children ∩ Sons ∩ Daughters

D = ¬Children ∩ ¬Sons ∩ Daughters CD = Children ∩ ¬Sons ∩ Daughters

CSD = Children ∩ Sons ∩ Daughters

C

SD

R1R2CSD

SD

CSCD

hasChild-fillers

hasSon-fillers hasDaughter-fillers

Figure 16: Atomic Decomposition on D = {Children, Sons,Daughters} representing
hasChild-fillers, hasSon-fillers, and hasDaughter-fillers.

The corresponding sets can be derived from their decomposed subsets using union

operations:

Children = C ∪ CS ∪ CD ∪ CSD

Sons = S ∪ CS ∪ SD ∪ CSD

Daughters = D ∪ CD ∪ SD ∪ CSD

Since the decomposed subsets are all disjoint, and the cardinality function of

disjoint sets is additive, one can encode the number restriction expressions in into

63

arithmetic terms:

≥ 2hasSon =⇒ S+ CS+ SD+ CSD ≥ 2

≥ 3hasDaughter =⇒ D+ CD+ SD+ CSD ≥ 3

≤ 4hasChild =⇒ C+ CS+ CD+ CSD ≤ 4

For ease of presentation, the cardinality function over a set (#) is dropped, and

each set name is used to represent the cardinality of the corresponding concept set.

Given a decomposition set D of size n, the atomic decomposition considers 2n

possibilities of overlaps between the elements of D. However, relations between con-

cepts, such as disjointness and subsumption, can be further exploited and encoded

into arithmetic terms allowing a reduced number of atomic subsets.

Concept relation DL notation Arithmetic encoding

Sons and Daughters are disjoint Sons � ¬Daughters SD =0, CSD =0

Daughters are Children Daughters � Children D=0

Sons are Children Sons � Children S=0

Children are either sons or daughters Children � Sons � Daughters C=0

Table 2: Encoding relations between concepts into arithmetic terms.

And the original entailment ≥ 2hasSon� ≥ 3hasDaughter |=≥ 5hasChild which is

decided by testing the unsatisfiability of ≥ 2hasSon� ≥ 3hasDaughter� ≤ 4hasChild

can be reduced to solving the following system of linear in-equations:

CS ≥ 2 (16)

CD ≥ 3 (17)

CS+ CD ≤ 4 (18)

64

It is trivial for an in-equation solver to find out that there is no solution and the

original problem ≥ 2hasSon� ≥ 3hasDaughter� ≤ 4hasChild is unsatisfiable. Thus,

the entailment (≥ 2hasSon� ≥ 3hasDaughter) |=≥ 5hasChild holds.

3.5 Discussion and Conclusion

This chapter illustrates the challenge of DL reasoning in the presence of nominals

and QCRs, as well as the semantic interaction between the two constructors. A

review of related optimization techniques is provided, however a complete list and

evaluation on the effectiveness of these techniques is beyond the scope of this thesis

and can be found in the articles where these techniques were described. The purpose

of introducing these technique is to show that they do not aim at a better handling of

the interaction between the two constructors, but at the non-determinism caused by

this interaction. This is because the reasoning is based on an algorithm blind to the

numerical features, and interactions between nominals and QCRs. Although better

informed calculi have been investigated to handle QCRs [HTM01, HM01a, OK99],

no formal calculus with proofs of soundness and completeness is devised, and the

extension to handle more expressive constructors including nominals is not clear.

Also, the optimizations designed to handle the nominal constructor are designed more

on the syntactic level, such as the nominal absorption techniques, without taking into

consideration their implied numerical semantics.

Nominals are powerful; once they are available, a significant gain in expressivity

is added to the language at hand. A lot of existing ontologies rely heavily on the

use of nominals (Wine ontology for example). The absence of efficient reasoning

with nominals, means that a lot of existing ontologies will not have a practical rea-

soner and not much can be inferred from these ontologies. On the other hand, one

65

might argue that there is no need to handle large numbers (with QCRs) in ontolo-

gies. However, this seems to be a chicken and egg problem; there does not exists

a lot of ontologies using large numbers because no available reasoner handles large

numbers efficiently. There exists a lot of cases where one needs to use large num-

bers in QCRs such as specifying that a person has 230 movable and semi movable

joints (Person �≥ 230hasJoint.(MovableJoint � SemiMovableJoint)) as part of the hu-

man skeletal system [MHWZ06] representation. Also due to the implied numerical

restrictions imposed by nominals, these numbers do not necessarily need to be explic-

itly represented by QCRs. Thus in order to be a practical DL reasoning component,

the full expressivity of OWL2 must be handled including nominals . However, no

performance improvements have been reported for KBs that rely on the use and

interaction of both nominals and QCRs.

The next chapter proposes a more informed tableau-based reasoning algorithm for

a better handling of nominals, QCRs and their interaction. The algorithm is based on

a hybrid approach combining tableau-based reasoning (as introduced in Chapter 2),

with algebräıc reasoning (as introduced in Section 3.3) and handles the expressivity

of the DL SHOQ.

66

Chapter 4

Hybrid Algebräıc Reasoning

Procedure for SHOQ

This chapter demonstrates how a standard tableau reasoning algorithm for SHOQ

can be extended with an algebräıc component while maintaining soundness, com-

pleteness and termination. Recall that SHOQ is the basic DL ALC extended with

transitive roles (S), role hierarchies (H), nominals (O) and QCRs (Q). Since nomi-

nals carry numerical restrictions, algebräıc reasoning is used to ensure their semantics

while still handling their interaction with QCRs. The result is a hybrid reasoning al-

gorithm which is more informed about arithmetic constraints imposed by concept

descriptions. In particular, a better handling of numerical restrictions implied by

nominals, QCRs and their interactions is ensured. It turns out the proposed alge-

bräıc reasoning comes with novel characteristics, which are discussed in Section 4.7,

and can be used to address the major sources of inefficient reasoning for SHOQ.

67

4.1 General Overview

The algebräıc reasoning for Description Logics, proposed in this chapter, consists

of combining tableau-based DL reasoning with the algebräıc method in an effort to

overcome the challenges of reasoning with nominals and QCRs while still handling

their interaction (See Section 3.1 for a detailed review of the challenging interaction

between the two constructors). The tableau-based reasoning is based on a standard

tableau for ALC [BS01], as introduced in Section 2.2.1, modified and extended to

work with an algebräıc reasoning component. Algebräıc reasoning is based on the

assumption that domain elements consist of a set of individuals divided into subsets

depending on their role filler membership and/or concept membership. Nominals

and QCRs represent cardinality restrictions on their corresponding sets: nominals are

singleton sets, QCRs represent at-least and at-most restrictions on the cardinalities of

the corresponding sets of role fillers. As was discussed in Section 3.1.1 the numerical

restrictions imposed by nominals are global, therefore, a global form of the atomic

decomposition technique, as introduced in Section 3.4, is considered to allow the

following:

• The computation of all possible intersections between domain elements by ap-

plying it on the sets of role fillers and nominals in contrast to the approaches

presented in [OK97, HM01a, FFHM08a, FFHM08b] where the atomic decom-

position is applied on sets of role fillers of a given individual.

• The handling of possible interactions between nominals and role fillers.

• The encoding of the nominals semantics into in-equations.

• Reducing the satisfiability of nominals semantics and QCRs into in-equation

solving.

68

An integer linear programming (ILP) algorithm (such as Simplex) with the ob-

jective of minimizing the sum of all cardinalities can be used to solve the encoded

in-equations. If no solution for the in-equations is possible, this means that the do-

main elements cannot be distributed between sets without violating the cardinality

restrictions. When a solution is returned, the domain elements are distributed among

sets without violating any at-least or at-most restrictions, or any nominal semantics.

Tableau expansion rules are used to generate a completion graph model based on

the distribution of the domain elements while also maintaining the satisfiability of

concept descriptions that use propositional operators (�,�,¬) and ∀, ∀\ operators,

or invoking the algebräıc component if additional numerical restrictions need to be

satisfied. When creating role-successor nodes, only one proxy node is used as a

representative for an atomic set.

Before describing the calculus, a preprocessing of concept descriptions is defined

in Section 4.1.1 to allow a distinction between the numerical restrictions and the

qualifications expressed by QCRs by rewriting concept descriptions in SHOQ DL

into concept description in SHONR\. The principles underlying the non-tableau

reasoning methods used are discussed in Section 4.2. A tableau for the DL SHON

is defined in Section 22 and the algebräıc method for SHON is described in Section

4.4. The hybrid reasoning algorithm is detailed in Section 4.5. Proofs of soundness

completeness and termination are devised in Section 4.6. A discussion of the algorithm

is shown in Section 4.7. The chapter is concluded in Section 4.8. For convenience of

the reader and ease of reference, a list of all notations introduced in this chapter is

compiled into Section A.1.

69

4.1.1 Preprocessing

Recall from Section 2.1.3 that subsumption and satisfiability inferences can be reduced

to each other. Satisfiability of concepts w.r.t. a knowledge base can also be reduced

to knowledge base consistency: a concept C is satisfiable w.r.t. KB(T ,R) if and only

if (T ∪ {{o} � C},R) is consistent, for o a nominal that does not occur in C or

T . As a consequence, in the remainder of this chapter and without loss of generality,

we will restrict our attention to knowledge base consistency. Also, recall that when

checking a KB(T ,R) consistency, the concept axioms in T can be internalized into a

single axiom � � CT such that CT abbreviates
�

(C�D)∈T nnf (¬C �D), where C, D

refer to general concept descriptions, as introduced in Section 2.1.3 (before NNF was

introduced).

A KB consistency test can be performed by checking the consistency of {o} � CT

with o ∈ No new in T , which means that at least {o}I ⊆ CT
I and CT

I �= ∅.

Moreover, since �I = ΔI then every domain element must also satisfy CT (every

domain element is a member of CT).

Definition 4.1.1 (Qualifying Concept) A qualifying concept D is a concept

used to impose a qualification, D, on the set of R-fillers for some role R ∈ NR.

Let QC(R) = {D | ∀S.D occurs in CT with R �∗ S ∈ R} define the set of qualifying

concepts for R ∈ NR, and let QC =
⋃

R∈NR
QC(R) define the set of qualifying concepts

in CT . The set Q¬C = {¬̇D |D ∈ QC} defines the set of negated qualifying concepts

in their NNF. A mapping is maintained between a qualifying concept and the NNF

of its complement using a bijection ¬̇Q : QC −→ Q¬C such that given a qualifying

concept D ∈ QC, ¬̇Q(D) = ¬̇D, ¬̇D ∈ Q¬C, and QC ∩ Q¬C = ∅.

In order to allow the applicability of the algebräıc method, a separation between

70

numerical restrictions and their qualifications is needed. This is done using Algo-

rithm 4.1.1, which rewrites concept expressions occurring in CT , similarly to [OK99],

allowing a separation between numerical restrictions and their qualifications. Since

qualifications on role fillers can be encapsulated by the use of GCIs and transitive roles

(as will be elaborated in Section 4.2.3), Algorithm 4.1.1 also allows a bookkeeping of

negated qualifying concepts in their preprocessed NNF into the set Q¬C.

Definition 4.1.2 (Role-Set Difference Operator) Given CT , a set NR of roles,

R a set of RIAs, and QC a set of qualifying concepts, we define a new concept operator

∀\, the role-set difference operator, used for descriptions like ∀(R\S).D such that R, S

in NR and D a SHOQ concept. The ∀\ operator is based on set semantics such that

given an interpretation I, then (∀(R\S).D)I = {s ∈ ΔI | 〈s, t〉 ∈ RI ∧ 〈s, t〉 /∈ SI ⇒

t ∈ DI} is satisfied.

Algorithm 4.1.1 rw : Given the SHOQ concepts A ∈ NC, C, D; R ∈ NR; R, the
set of RIAs; and Q¬C, the set of negated qualifying concepts, the following rewriting
holds:
1: rw(A,NR,R, Q¬C) −→ A

2: rw(¬A,NR,R, Q¬C) −→ ¬A

3: rw((C �D), NR,R, Q¬C) −→ (rw(C,NR,R, Q¬C) � rw(D,NR,R, Q¬C))

4: rw((C �D), NR,R, Q¬C) −→ (rw(C,NR,R, Q¬C) � rw(D,NR,R, Q¬C))

5: rw(¬C,NR,R, Q¬C) −→ rw(¬̇C,NR,R, Q¬C)

6: rw(∀R.C,NR,R, Q¬C) −→ ∀R.rw(C,NR,R, Q¬C ∪ rw(¬̇C,NR,R, Q¬C))

7: rw(≥ nR.C,NR,R, Q¬C) −→ (≥ nR′ � ∀R′.rw(C,NR ∪ {R′},R∪ {R′ � R}, Q¬C))

//same with ≥ nR.�

8: rw(≤ nR.C,NR,R, Q¬C) −→

(≤ nR′�∀R′.rw(C,NR∪{R′},R, Q¬C)� ∀ (R\R′).rw(¬̇C,NR∪{R′},R∪{R′ � R}, Q¬C))

//same with ≤ nR.�

71

Let SHONR\ denote the DL SHO extended with unqualified cardinality restric-

tions (N) and the role-set difference operator (R\), Algorithm 4.1.1 is applied to CT

such that rw(CT , NR,R, Q¬C) returns an equi-satisfiable concept expression (C ′
T) in

the DL SHONR\ as shown in Lemma 4.1.3. Note that SHONR\ is not closed under

negation; for example, with ∀R.(∀S.C), the qualifying concept for R corresponds to

∀S.C, and the negation of the qualifying concept for R, ¬̇(∀S.C) is equal to ≥ 1S.¬C,

which is not in SHONR\. Therefore, a bookkeeping of the preprocessed form of ¬̇C,

for every qualifying concept C, into Q¬C is required. Q¬C is initially empty; it is ex-

tended with the preprocessed form of ¬̇C every time rw is applied to a concept of

the form ∀R.C. This means that when rw is applied to ∀R.(∀S.C), the following

expression ≥ 1S1 � ∀S1.¬C, corresponding to the preprocessed form of ¬̇(∀S.C), is

added to Q¬C such that ¬̇Q(∀S.C) = ≥ 1S1 � ∀S1.¬C is in SHONR\. Also, NR and

R are extended with a fresh role R′ new in T every time the conditions in lines 7 and

8 are applicable. It can be shown that Lemma 4.1.3 holds.

Lemma 4.1.3 (Preserving Satisfiability) Rewriting CT according to Algorithm

4.1.1 preserves satisfiability. Satisfying CT w.r.t. R consists of satisfying C ′
T w.r.t.

R.

Proof. It is easy to see that satisfiability is preserved for atomic concepts, negated

concepts, conjunctions and disjunctions of concepts. Let C,D be SHOQ concepts;

n,m non-negative integer numbers; and R a role name in NR, with R a set of role

implications. One can show that ≥ nR.C is satisfiable iff rw(≥ nR.C, NR,R, Q¬C)

is satisfiable, and ≤ mR.D is satisfiable iff rw(≤ mR.D, NR,R, Q¬C) is satisfiable.

Since transitive roles are not used in at-least restrictions ≥ nR.C with n > 1, nor in

at most restrictions with n > 0, preserving the satisfiability of rw(≥ 1R.C, NR, R,

Q¬C) is an easy consequence of the following proofs.

72

1. If ≥ nR.C is satisfiable then ≥ nR′ � ∀R′.C is satisfiable w.r.t. R.

Proof. Assume that ≥ nR.C is satisfiable, this means that there exists a

non-empty interpretation I with:

(a) an individual s ∈ ΔI such that s ∈ (≥ nR.C)I , and

(b) n distinct individuals t1 . . . tn ∈ ΔI such that ti ∈ (FIL(R, s) ∩ CI) for

1 ≤ i ≤ n.

One can construct the interpretation, I ′, of ≥ nR′ �∀R′.C from I. Let I ′ = I,

R′ a new role name in NR such that FIL(R′, s) = FIL(R, s) ∩ CI . For s ∈ ΔI′

the following holds:

(a) s ∈ (≥ nR′)I
′
since FIL(R′, s)⊆ FIL(R, s) and there exists t1 . . . tn ∈

FIL(R′, s),

(b) One can add R′ � R ∈ R, and I ′ satisfies R because by definition of R′

all the R′-fillers are also R-fillers,

(c) s ∈ (∀R′.C)I
′
since FIL(R′, s)⊆ CI

′
, and

(d) s ∈ (≥ nR.C)I is not violated.

Hence, if ≥ nR.C is satisfiable then ≥ nR′ � ∀R′.C is also satisfiable w.r.t. R.

2. If ≥ nR′ � ∀R′.C is satisfiable w.r.t. R with R′ � R ∈ R then ≥ nR.C is

satisfiable.

Proof. Assume that ≥ nR′ � ∀R′.C w.r.t. R is satisfiable, this means that

there exists a non-empty interpretation I ′ with:

(a) An individual s ∈ ΔI′ such that s ∈ (≥ nR′ � ∀R′.C)I
′
, and

73

(b) n distinct individuals t1 . . . tn ∈ ΔI′ such that ti ∈ FIL(R′, s) and ti ∈ CI
′

for 1 ≤ i ≤ n.

It is easy to construct the interpretation I of ≥ nR.C from I ′; setting I = I ′

gives s ∈ (≥ nR.C)I since there already exists n distinct individuals t1 . . . tn ∈

ΔI satisfying ti ∈ FIL(R, s) ∩ CI for 1 ≤ i ≤ n. Hence, if ≥ nR′ � ∀R′.C is

satisfiable w.r.t. R then ≥ nR.C is also satisfiable.

3. If ≤ mR.D is satisfiable then ≤ mR′ �∀R′.D �∀(R\R′).¬D is satisfiable w.r.t.

R.

Proof. Assume that ≤ mR.D is satisfiable, this means that there exists a

non-empty interpretation I with:

(a) An individual s ∈ ΔI such that s ∈ (≤ mR.D)I , and

(b) At most m individuals t1 . . . tm ∈ ΔI such that ti ∈ FIL(R, s) and ti ∈ DI

for 1 ≤ i ≤ m.

One can construct the interpretation, I ′, of ≤ mR′�∀R′.D�∀(R\R′).¬D from

I. Let I ′ = I and one can create a new role name R′ in NR such that FIL(R′, s)

= FIL(R, s) ∩ DI . For s ∈ ΔI′ the following holds:

(a) s ∈ (≤ mR′)I
′
since FIL(R′, s)⊆ FIL(R, s) and there exists t1 . . . tm ∈

FIL(R′, s),

(b) One can add R′ � R ∈ R and I ′ satisfies R because by definition of R′ all

the R′-fillers are also R-fillers,

(c) s ∈ (∀R′.D)I
′
since FIL(R′, s)⊆ DI′ ,

74

(d) s ∈ (∀R\R′.¬D)I
′
. Since there can be at most m individuals in FIL(R, s)

∩ DI , this means that all intersections with FIL(R, s) that do not also in-

tersect with FIL(R′, s) cannot intersect with DI′ ; FIL(R, s) \ FIL(R′, s) ⊆

¬DI′ . Therefore, one can safely assign t1, . . . , tm to DI′ and all individuals

in (FIL(R, s)\(FIL(R’,s))) can be assigned to (¬DI′), and

(e) s ∈ (≤ mR.D)I is not violated.

Hence if ≤ mR.D then ≤ mR′ � ∀R′.D � ∀(R\R′).¬D is satisfiable w.r.t. R .

4. If ≤ mR′�∀R′.A�∀(R\R′).¬A is satisfiable w.r.t. R then ≤ mR.A is satisfiable

Proof. Assume that ≤ mR′ �∀R′.A�∀(R\R′).¬A is satisfiable w.r.t. R, this

means that there exists a non-empty interpretation I ′ with:

(a) An individual s ∈ ΔI′ such that s ∈ (≤ mR′ � ∀R′.D � ∀(R\R′).¬D)I
′
,

(b) At most m distinct individuals t1 . . . tm ∈ ΔI′ such that ti ∈ FIL(R, s) and

ti ∈ DI′ for 1 ≤ i ≤ m, and

(c) FIL(R, s) \ FIL(R′, s) ⊆ ¬DI′ .

It is easy to construct the interpretation I of ≤ mR.D from I ′; setting I = I ′

gives s ∈ (≤ mR.D)I since there already exist at most m distinct individuals

t1 . . . tm ∈ ΔI satisfying ti ∈ FIL(R, s) ∩ DI for 1 ≤ i ≤ m. Hence, if ≤

mR′�∀R′.A�∀(R\R′).¬A is satisfiable w.r.t.R then ≤ mR.D is also satisfiable.

Preprocessing Examples This section illustrates the process of applying the pre-

processing algorithm with two examples. Example 4.1.4 illustrates the preprocessing

of a concept expression, and Example 4.1.5 shows the preprocessing of a TBox.

75

Example 4.1.4 Applying rw to the concept expression in (19) where NR = {R},

No = {o}, R = ∅, and Q¬C = ∅ gives the concept expression in (20) with R = {R1 �

R, R2 � R}, Q¬C = ∅ and NR = {R,R1, R2}.

≥1R.({o} � ≤ 1R.{o}) (19)

≥ 1R1 � ∀R1.({o}� ≤ 1R2 � ∀R2.{o} � ∀R\R2.¬{o}) (20)

Example 4.1.5 Let the TBox T in Figure 17 represent the EU member states

example, as introduced in Chapter 1.

EU MemberState ≡ {Austria} � . . . � {UK}

Future EU �≥ 30MemberOf.EU MemberState

Figure 17: TBox axioms representing the EU MemberState example.

The TBox is internalized into CT as shown in Figure 18a. Initially, NR =

{MemberOf},R = ∅, Q¬C = ∅ and rw(CT , NR,R, Q¬C) extendsNR toNR = {M′,MemberOf},

R to R = {M′ � MemberOf}, and CT to C ′T shown in Figure 18b.

76

CT = (¬EU MemberState � {Austria} � . . . � {UK})�

((¬{Austria} � . . . � ¬{UK}) � EU MemberState) �

(¬Future EU� ≥ 30MemberOf.EU MemberState)

(a) TBox internalization into CT .

C ′T = (¬EU MemberState � {Austria} � . . . � {UK})�

((¬{Austria} � . . . � ¬{UK}) � EU MemberState) �

(¬Future EU� ≥ 30M′ � ∀M′.EU MemberState)

(b) Applying rw to CT gives C ′T .

Figure 18: TBox internalization into C ′T in SHONR\.

4.2 Algebräıc Reasoning and SHOQ

When considering algebräıc reasoning for the DL ALCQ, algebräıc reasoning need

only capture the numerical restrictions implied by the QCRs constructor. However,

in order to use the algebräıc method with the DL SHOQ, one must consider the

following implied restrictions due to the expressivity of the language constructors:

global numerical restrictions imposed by nominals (O), cycles introduced by the use

of transitive roles and GCIs (S), qualifications on roles imposed by the use of role

hierarchies and GCIs (H).

4.2.1 Global Numerical Restrictions

Recall from Section 3.1.1 that the numerical restrictions implied by nominals are

global restrictions that affect domain elements as a whole. These restrictions could

77

interact with the numerical restrictions imposed by QCRs as it is the case with the

definition of Future EU in (22), which implies a numerical restriction that is local

to MemberOf-fillers, and the definition of EU MemberState in (21), which implies a

numerical restriction that is global and affects all elements in the domain. This means

that applying the algebräıc method locally to each individual as is the case with

algebräıc reasoning for ALCQ [FFHM08a, FFHM08b, FH10c] can no longer ensure

soundness; the algebräıc reasoner may satisfy local numerical restrictions imposed

by QCRs without necessarily satisfying the global ones imposed by nominals. A

global form of applying the atomic decomposition technique on a decomposition set

capturing the semantics of nominals, QCRs, and the interaction between the two

constructors is needed.

EU MemberState ≡ {Austria} � . . . � {UK} (21)

Future EU �≥ 30MemberOf.EU MemberState (22)

4.2.2 Cyclic Descriptions

When transitive roles and/or GCIs are allowed, as is the case with the DL SHOQ,

one must keep in mind that the process of expanding a node’s label based on concept

description, may no longer terminate because cyclic descriptions can repeat concept

labels through nodes as is the case with the tableau algorithm described in Section

2.2.1. For example, having the concept description (23) in the label of a node x,

such that R is a transitive role, the completion rules introduce a node y as an R-

successor of x such that after applying ∀-Rule and the ∀+-Rule, the node y has the

same label as x. Traditional tableau algorithms [HS01] for DLs with transitive roles

and GCIs implement blocking strategies to detect and handle cycles. The algorithm

presented in this chapter shows how global partitioning of domain elements allows a

78

re-use strategy which can also handle cycles.

A� ≥ 1R � ∀R.A � ∀R.(≥ 1R � ∀R.A) (23)

4.2.3 Encapsulated Qualifications on Role-Fillers

The preprocessing algorithm described in Algorithm 4.1.1 serves as a separation be-

tween numerical restrictions and their qualifications. Since a newly introduced role

is used for each QCR, the separation is more syntactic, because semantically, every

∀R′.C is directly linked to its R′-fillers and no other concept expression uses R′. On

the other hand, the qualifications on role fillers need not always be explicitly used

with QCRs, but encapsulated through the use of GCIs and role hierarchies . The

following example illustrates such a case.

Example 4.2.1 Assume checking the satisfiability of the concept (≥ 1S1.(A �

B1)� ≥ 1S2.(A � B2)) w.r.t. the TBox T shown in Figure 19.

A � ≥ 1R.B

B1 � ∀R.C

B2 � ∀R.¬C

Figure 19: TBox example.

The numerical restriction (≥ 1R.B) encapsulated in A is common to S1 -fillers and

S2 -fillers which both require an R-filler being a member of B . On the other hand,

S1 -fillers and S2 -fillers have different qualifying concepts for their R-fillers due to the

axioms for concepts B1, B2. S1 -fillers which are members of B1 must have R-fillers

being members of C , and S2 -fillers which are members of B2 must have R-fillers being

members of ¬C . The satisfiability test can be done by adding the axiom (24) to T

79

with o ∈ No a nominal new in T .

{o} � ≥ 1S1.(A �B1) � ≥ 1S2.(A �B2) (24)

In principle, when preprocessing a KB by applying the rewriting algorithm, one

has two choices: Case (1) or Case (2). When the TBox is unfoldable one can opt for

case (1) and otherwise one has to consider case (2).

• Case (1): Unfolding T by replacing A with (≥ 1R.B), B1 with ∀R.C, and B2

with ∀R.¬C would make all (≥ nR.C) restrictions explicit. The TBox can be

internalized to CT shown in Figure 20a and rewriting QCRs results in C ′T as

shown in Figure 20b. A distinction can be made between R-fillers of S1-fillers

and those of S2-fillers because rw uses a different role for each occurrence of

≥ 1R.B.

CT = ¬{o} � (≥ 1S1.(≥ 1R.B � ∀R.C) � ≥ 1S2.(≥ 1R.B � ∀R.¬C))

(a) TBox internalization into CT after unfolding T .

C ′T = ¬{o} � (≥ 1S11 � ∀S11.(≥ 1R1 � ∀R1.B � ∀R.C)�

≥ 1S21 � ∀S21.(≥ 1R2 � ∀R2.B � ∀R.¬C))

(b) Applying Algorithm 4.1.1 to CT .

Figure 20: Association between roles and their qualifications after rewriting, when T
is unfoldable.

In this case, the algebräıc method will automatically consider the cases when

R-fillers have different qualifications due to R1 and R2 which are sub-roles of

R.

• Case (2): When the TBox is not unfolded or cannot be unfolded then CT is of

the form shown in Figure 21a and C ′T is shown in Figure 21b.

80

CT = ¬A� ≥ 1R.A�

¬B1 � ∀R.C �

¬B2 � ∀R.¬C �

¬{o}� ≥ 1S1.(A �B1) � ≥ 1S2.(A �B2))

(a) TBox internalization into CT .

C ′T = ¬A� ≥ 1R1 � ∀R1.A�

¬B1 � ∀R.C �

¬B2 � ∀R.¬C �

¬{o}� ≥ 1S11 � ∀S11.(A �B1) � ≥ 1S21 � ∀S21.(A �B2))

(b) Rewriting CT into C ′T .

Figure 21: Association between roles and their qualifications after rewriting when T
is not unfolded.

In this case, the qualifications differentiating R-fillers are still encapsulated

in B1 and B2; S11-fillers and S21-fillers have different qualifying concepts for

their R1-fillers. R1-fillers of S11-fillers must also be members of C and this is

encapsulated in B1, and R1-fillers of S21-fillers must be members of ¬C and this

is encapsulated in B2.

This example shows the problem of encapsulated qualifications on role fillers due

to the use of GCIs. These qualifications could also be inherent due to a role hierarchy

or role transitivity, and if not taken into consideration make the algebräıc method

incomplete. After a tableau for the DL SHONR\ is presented in the following section,

Section 4.4, shows how the algebräıc method handles the challenge of encapsulated

qualifications using a proper global decomposition set.

81

4.3 A Tableau for the DL SHONR\

This section defines a tableau for the DL SHONR\ based on the standard tableau

for the DL SHOQ, which was introduced in [HS01].1 It is important to note that

SHONR\ is not closed under negation due to the preprocessing step described in

Algorithm 4.1.1, but this does not cause a problem because the proposed calculus

never negates a preprocessed concept.2

Given concept description C (in the DL SHONR\), let clos(C) define the smallest

set of concepts such that:

• (a) C ∈ clos(C),

• (b) if A ∈ NR and A ∈ clos(C) then ¬A ∈ clos(C),

• (c) if (E �D) or (E �D) ∈ clos(C) then E,D ∈ clos(C),

• (d) if ∀R.D or ∀R\S.D ∈ clos(C) then D ∈ clos(C).

The size of clos(C) is bounded by the size of C. The set of relevant sub-concepts of

a TBox T is then defined as clos(T) = clos(C ′T).

Definition 4.3.1 (SHONR\ Tableau) Given a SHOQ KB(T ,R) which has been

preprocessed into a SHONR\ KB(T ,R), T = (S,L, E) defines a tableau for (T ,R) as

an abstraction of a model for T . S is a non-empty set of individuals, L : S −→ 2clos(T)

is a mapping between each individual and a set of concepts, and E : NR −→ 2S×S is

a mapping between each role and a set of pairs of individuals in S. For all s, t ∈ S,

A ∈ NC, C,D ∈ clos(T), o ∈ No, R, S ∈ NR, and given the definition RT (s) = {t ∈

S | 〈s, t〉 ∈ E(R)}, properties (1) - (11) must always hold:

1For convenience, the definition of a standard tableau for SHOQ is illustrated in Section A.2.
2The negations of qualifying concepts are computed using ¬̇Q which returns SHONR\ concepts

(See Section 4.1.1).

82

1. C ′T ∈ L(s)

2. If A ∈ L(s) then ¬A /∈ L(s).

3. If C �D ∈ L(s) then C ∈ L(s) and D ∈ L(s).

4. If C �D ∈ L(s) then C ∈ L(s) or D ∈ L(s).

5. If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t).

6. If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) with R �∗ S and R ∈ NR+ then ∀R.C ∈ L(t).

7. If ∀(R\S).C ∈ L(s) and 〈s, t〉 ∈ E(R), and 〈s, t〉 /∈ E(S) then C ∈ L(t).

8. If (≥ nR) ∈ L(s) then #RT (s) ≥ n.

9. If (≤ mR) ∈ L(s) then #RT (s) ≤ m.

10. If 〈s, t〉 ∈ E(R) and R �∗ S ∈ R, then 〈s, t〉 ∈ E(S).

11. For each o ∈ No,#{s ∈ S | o ∈ L(s)} = 1.

Lemma 4.3.2 A SHOQ knowledge base KB(T ,R) is consistent iff there exists a

tableau T for (T ,R).

Proof. The proof is similar to the one found in [HS07]. Property (6) ensures that

the qualification restrictions due to role transitivity are enforced while taking into

consideration role hierarchies. Property 7 of this tableau ensures that the semantics

of the ∀(R\S).C operator is preserved. Property 11 ensures that the semantics of

nominals are preserved.

83

4.4 The Algebräıc Method for SHONR\

In [FHM08, FHM09] the algebräıc method is combined with tableau reasoning and

is applied globally to reduce the satisfiability of concept descriptions using QCRs

and/or nominals into in-equation solving. A key technique to enable the algebräıc

reasoning is the atomic decomposition (introduced in Section 3.4) which allows the

decomposition of a set of elements into mutually disjoints subsets. We illustrate

how this technique can enable the algebräıc method for the DL SHONR\ with GCIs

by using the appropriate decomposition set. Unlike in the other approaches, the

decomposition set includes roles, qualifying concepts and nominals.

4.4.1 Atomic Decomposition and SHONR\

In order to allow the atomic decomposition technique to capture the semantics of

nominals, qualifying concepts, and roles, one has to define the proper decomposition

set.

Capturing role fillers Let NR′ denote the set of role names newly introduced by

Algorithm 4.1.1. Given a role R ∈ NR, letH(R) denote the set of all newly introduced

sub-roles of R: H(R) = {R′ |R′ �∗ R, R′ �= R,R′ ∈ NR′}. There is no need to add

S such that S � R, and S /∈ NR′ , to H(R) since S does not occur in QCRs anymore

after preprocessing. For every role R′ ∈ H(R), the set of R′-fillers forms a subset of

the set of R-fillers (FIL(R′)⊆FIL(R)). Let R′ be the complement of R′ relative to

H(R), the set of R′-fillers is then defined as FIL(R′) = (FIL(R) \ FIL(R′)).

84

Capturing qualifying concepts In order to distinguish the cases when role fillers

have different qualifications, as was discussed in Example 4.2.1, the atomic decompo-

sition must also consider when FIL(R) intersects with the interpretation of a quali-

fying concept. For this purpose, one can use a set of qualifying concepts of R, QC(R)

as defined in Definition 4.1.1. Since D ∈ QC(R) could be a complex expression

or a nominal, one can refer to a qualification using a qualification name q for each

D ∈ QC(R). Let NQ be the set of all qualification names assigned. For clarity pur-

poses and ease of presentation no distinction is made between a qualification name

and its corresponding qualifying concept ; we take the liberty to use the qualifying

concept D when referring to its name q ∈ NQ, and vice versa.3 Let QN(R) denote

the set of qualification names for a role (R ∈ NR) then QN(R) = QC(R).4

Definition 4.4.1 (Decomposition Set) Let DR = (H(R) ∪ QN(R)) define the

decomposition set for R-fillers. DR is a decomposition set since each subset P of

DR (P ⊆ DR) defines a unique set of roles and/or qualification names that admits

an interpretation P I corresponding to the unique intersection of role fillers and in-

terpretation of qualifying concepts for the roles and qualification names in P : P I =
⋂

R′∈(P∩H(R)) FIL(R
′)∩

⋂
R′′∈(H(R)\P) FIL(R

′′)∩
⋂

D∈(P∩NQ) D
I ∩

⋂
D∈(NQ\P)(¬̇Q(D))I .

P I cannot overlap with role fillers for roles that do not appear in P since it is

assumed to overlap with their complement. Similarly, in the case when QN(R) �= ∅,

P I cannot overlap with the interpretation of a qualifying concept whose correspond-

ing qualification name is not in P because it overlaps with the interpretation of its

complement. This makes all P I disjoint as in [OK99] and the set of all P ⊆ DR

3In [FH10a], a mapping between qualification names and their corresponding concept expressions
is maintained using a bijection θ : NQ −→QC; in case a nominal o ∈ No has been used as a qualifying
concept expression then o is also used as the qualification name and θ(o) = o.

4If the mapping θ is used as in [FH10c] then QN(R) = {q ∈ NQ | q ∈ QC(R)}

85

defines a partitioning of DR.

R1

R3R2

R1R2R1R2R3

R2R3

R1R3R1R2

(a) Atomic decomposition of DR = {R1, R2, R3}.

R1

CR2

R1R2R1R2C

R2C

R1CR1R2

(b) Atomic decomposition of DR = {R1, R2, C}.

Figure 22: Atomic decomposition of DR.

Example 4.4.2 Assuming a decomposition set DR = {R1, R2, R3} with H(R) =

{R1, R2, R3} and QN(R) = ∅ and the decomposition as shown in Figure 22a, then

if P1 = {R1, R2} and P2 = {R2, R3} this means that P1 is the partition name for

FIL(R1) ∩ FIL(R2) ∩ FIL(R3) which is equal to P I1 and P2 is the partition name

for FIL(R2) ∩ FIL(R3) ∩ FIL(R1), and therefore, although P1 ∩ P2 = {R2} we have

P I1 ∩ P I2 = ∅.

Since SHONR\ does not allow ≥ nR or ≤ nR concept expressions using role

complements, no role complement will be explicitly used. For ease of presentation, the

role complements are not listed in a partition name. Also, since a qualification is not

applicable unless there exists a corresponding role filler, there is no need to consider

a partition P , P ⊆ QN(R), if P includes a qualification name without including a

role. For example, Figure 22b shows the decomposition of DR = {R1, R2, C} and the

86

part which corresponds to the partition P = {C} does not need to be considered.

Capturing nominals For each nominal o ∈ No, {o}I can interact with R-fillers for

some R in NR such that ({o}I⊆FIL(R)). Also the same nominal o can interact with

R-fillers and S-fillers for R, S ∈ NR such that R, S do not necessarily share sub-roles

or super-roles in R. This means that R-fillers and S-fillers could interact with each

other due to their common interaction with the same nominal o. These interactions

lead to the following definition of a Global Decomposition Set (GDS).

Definition 4.4.3 (Global Decomposition Set) A global decomposition set is

defined as the set of all role names, qualifying concepts, and nominals occurring in

C ′T as: DS =
⋃

R∈NR
DR∪No. When C and ¬C are both used as qualifying concepts,

only C is included in DS. Applying the decomposition technique on DS defines a

global partitioning of domain elements.

Definition 4.4.4 (Global Partitioning) A global partitioning on domain ele-

ments is defined as follows: Let P be the set of the disjoint partition names defined

for the decomposition of DS: P = {P |P ⊆ DS}. Then PI = ΔI because it in-

cludes all possible domain elements which correspond to a nominal and/or a role

filler PI =
⋃

P⊆DS P
I .

4.4.2 Partitions and Signatures

A given model I of a KB (T , R) consists of domain elements grouped into mutually

disjoint partitions. Each partition represents a signature of concept descriptions that

is common to all elements in the partition. The signature F of a partition p is given

87

based on the elements represented by p such that:

F =
�

o∈(No∩p)

{o} �
�

R∈(p∩NR′),∀R.C∈T ′

C �
�

D∈NQ

D

F represents a SHONR\ concept expression, and a model I of T satisfies a

signature F iff F I �= ∅ such that:

F I =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⋂
o∈(No∩p){o}

I ∩
⋂

o′∈(No\p){¬o
′}I∩

⋂
R∈(p∩NR′),∀R.C∈T ′ CI∩

⋂
D∈(NQ∩p) D

I ∩
⋂

D′∈(NQ\D) (¬̇QD
′)I

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Lemma 4.4.5 Given a model I of T , for each non-empty partition pI ⊆ PI , and

two domain elements i, j ∈ pI , if i ∈ F I (F is the signature of p) then: (1) j ∈ F I

and, (2) there exists no other domain element i′ ∈ ΔI such that i′ ∈ pI ∩F I ∩ p′I for

some partition p′I ⊆ PI different from pI .

Proof. It is easy to prove (2) since all partitions are disjoint by definition. For (1),

given R1, . . . Rn ∈ NR, o1, . . . , on ∈ No, q1 . . . qn ∈ NQ, and i, j ∈ ΔI we consider

Cases 1-5.

• Case 1 - Nominals partition: pI is a nominals partition, then it corresponds to

some partition name p ∈ P of the form p = {o1, . . . , on} and individuals in pI

satisfy the signature F such that F I =pI = ({o1}I ∩ . . .∩{on}I), assuming NR

and NQ are empty. Given the nominals semantics, i ∈ F I and if there exists

j ∈ pI then j ∈ F I since i = j; there can only be one element in pI .

• Case 2 - Role fillers partition: pI is a role fillers partition, then it corresponds

to some partition name p ∈ P of the form p = {R1, . . . , Rn} and individuals in

pI satisfy pI = (FIL(R1) ∩ . . . ∩ FIL(Rn)). If i, j ∈ pI then i, j ∈ (FIL(R1) ∩

88

. . . ∩ FIL(Rn)); assume i /∈ (FIL(R1) ∩ . . . ∩ FIL(Rn)) then i is a nominal or

an Rx-filler for some x > n. However i cannot be a nominal or a member

of a qualifying concept since p ∩ No = ∅, and p ∩ NQ = ∅. Without loss

of generality, assuming i ∈ FIL(R1) but i /∈ (FIL(R2) ∩ . . . ∩ FIL(Rn)) this

means that i belongs to a partition p′I corresponding to some partition name

p′ ∈ P such that R1 ∈ p′ and {R2}, . . . , {Rn} �⊆ p′. Now we have p′ different

from p with i ∈ (p ∩ p′), this is a contradiction since partitions are disjoint.

Therefore, i ∈ (FIL(R1) ∩ . . . ∩ FIL(Rn)), and by analogy we prove that j ∈

(FIL(R1)∩ . . .∩FIL(Rn)). Therefore both i and j must satisfy the signature F

such that F I = ∩∀R1.C1∈T C
I
1 . . .∩∀Rn.Cn∈T CIn , assuming No and NQ are empty.

• Case 3 - Role fillers with qualifications partition: pI is a role fillers partition

with qualifications, then it corresponds to some partition name p ∈ P of the

form p = {qk, Rl} for some k, l, 1 ≤ k, l ≤ n, and individuals in pI satisfy

pI = (
⋂

1≤k≤n q
I
k ∩

⋂
q∈(NQ\{q1,...,qk}) ¬̇Qq

I ∩
⋂

1≤l≤n FIL(Rl)). If i, j ∈ pI then

i, j ∈ (FIL(R1) ∩ . . . ∩ FIL(Rn)) ∩
⋂

1≤k≤n q
I
k ∩

⋂
q∈(NQ\{q1,...,qk}) ¬̇Qq

I . Similar

to Case 2, we can prove that i, j ∈ (FIL(R1) ∩ . . . ∩ FIL(Rn)) and i cannot be

a nominal since p ∩ No = ∅. Now we need to prove that i, j ∈
⋂

1≤k≤n q
I
k ∩

⋂
q∈(NQ\{q1,...,qk}) ¬̇Qq

I .

Let us assume that i /∈ (
⋂

1≤k≤n q
I
k ∩

⋂
q∈(NQ\{q1,...,qk}) ¬̇Qq

I) and without loss

of generality, let i ∈ qI1 but i /∈ (qI2 ∩ . . . ∩ qIn) this means that i belongs to a

partition p′I corresponding to some partition name p′ ∈ P such that q1 ∈ p′

and {q2}, . . . , {qn} �⊆ p′. Now we have p′ different from p with i ∈ (p ∩ p′), this

is a contradiction since partitions are disjoint. Therefore, i ∈ (
⋂

1≤k≤n q
I
k ∩

⋂
q∈(NQ\{q1,...,qk}) ¬̇Qq

I), and by analogy we prove that : j ∈ (
⋂

1≤k≤n q
I
k ∩

⋂
q∈(NQ\{q1,...,qk}) ¬̇Qq

I). Hence, both i and j must satisfy the signature F such

that F I = ∩∀R1.C1∈T C
I
1 . . .∩∀Rn.Cn∈T C

I
n ∩ (

⋂
1≤k≤n q

I
k ∩

⋂
q∈(NQ\{q1,...,qk}) ¬̇Qq

I).

89

• Case 4 - Nominals and role fillers partition: pI is a role filler partition of

nominals, then it corresponds to some partition name p ∈ P of the form

p = {ok, Rl} for some k, l, 1 ≤ k, l ≤ n, and individuals in pI satisfy pI =

(
⋂

1≤k≤n{ok}I ∩
⋂

1≤l≤n FIL(Rl)). Given the nominals semantics and similarly

to case 1 if there exists i, j ∈ pI then i = j. The signature F for pI is such that

it satisfies F I =
⋂

1≤k≤n{ok}I ∩
⋂
∀R1.C∈T CI .

• Case 5 - Nominals and role fillers partition with qualifications: this case can be

reduced to case 4 where additionally nominals satisfy the qualifications.

There is no need to consider the cases when a partition is for individuals with

qualifications without being role fillers since these cases do not occur. A qualification

is only applicable on a role filler as defined by the semantics of the language.

4.5 The Algebräıc Tableau Algorithm for SHONR\

This section describes an algebräıc tableau algorithm which decides the existence of

a tableau for a SHONR\ TBox T . The algorithm is hybrid because it relies on

tableau completion rules working together with an in-equation solver to construct a

tableau as an abstraction of a model of T . Tableau completion rules work in such

a way to (1) decide the satisfiability of concept descriptions that use propositional

operators (�,�,¬) and ∀, ∀\ operators, (2) encode numerical restrictions on nomi-

nals, role fillers, and their qualifications into a set of in-equations processed by an

in-equation solver, and (3) make sure that a numerical solution satisfies logical re-

strictions by constructing a pre-model of the solution. The pre-model is represented

using a compressed completion graph (CCG).

90

Definition 4.5.1 (Compressed Completion Graph) The compressed comple-

tion graph (CCG) is different from the “so-called” completion graph (introduced in

Section 2.2.1) used in standard tableau algorithms for SHOQ [HS01] and is defined

as follows.

• A (CCG) is a directed graph G = (V,E,L,LE,LP). Where nodes represent

domain elements and the edges between the nodes represent role relations. Each

node x ∈ V is labeled with three labels: L(x), LE(x) and LP (x), and each edge

〈x, y〉 ∈ E is labeled with a set, L(〈x, y〉) ⊆ NR, of role names.

– L(x) denotes a set of concept expressions, L(x) ⊆ clos(T), that the domain

element, ix, represented by x must satisfy.

– LP (x) denotes a partition name and is used as a tag for x based on the

partition that ix belongs to. A partition name can include role names,

nominals or qualification names LP (x) ⊆ DS.

∗ When a role R ∈ NR appears in LP (x) this means that ix belongs to

the partition representing the set of R-fillers. The node x can therefore

be used as an R-successor. When an R-successor is needed for a node

y, x is checked as a candidate (see e-Rule).

∗ When a nominal o ∈ No appears in LP (x) this means that ix ∈ oI ,

and {o} is added to L(x) when x is created. On the other hand if a

nominal o ∈ No does not appear in LP (x) this means that ix satisfies

the complement of {o}, ix ∈ (¬{i})I and (¬{o}) is added to L(x)

when x is created (see fil -Rule).

∗ When a qualification name q ∈ NQ appears in LP (x) this means that

ix satisfies the qualifying concept mapped to q, ix ∈ qI and q is added

to L(x) when x is created. As with the nominals case, if a qualification

91

name p ∈ NQ does not appear in LP (x) this means that ix satisfies

the complement of the qualifying concept mapped to p, ix ∈ ¬̇Q(p)
I

and ¬̇Qp is added to L(x) when x is created (see fil -Rule).

– LE(x) denotes a set ξx of in-equations that must have a non-negative in-

teger solution. The set ξx is the encoding of number restrictions, qualifi-

cations and nominals (as defined in Section 4.5.1) that must be satisfied

for x. In order to make sure that local numerical restrictions for a node

x are satisfied while the global restrictions carried with nominals are not

violated, the in-equation solver collects all in-equations and variable assign-

ment in LE before returning a distribution. This makes sure that an initial

distribution of nominals and/or role fillers is globally preserved while still

satisfying the numerical restrictions (a distribution of role fillers) for each

node in the completion graph. LE(x) also contains a set of in-equations

with one variable such that LE(x) can be extended with v ≥ 1 and v ≤ 0.

This form of in-equations is used to denote a range of values for variables,

(i.e., a variable can have the value zero or at-least 1) as is done by the

ch-Rule.

• There is no distinction between nodes having a nominal in their label and other

nodes.

• The CCG relies on the use of proxy nodes (see Definition 4.5.2) as representa-

tives for domain elements distributed over the same partition. The use of proxy

nodes was first introduced in [HM01a].

• Using LP (x) as a tagging allows for the re-use of existing nodes instead of

creating new ones. For example if the roles R, S appear in LP (x) then x can be

used as an R-successor and then re-used as an S-successor or vice versa.

92

• No blocking strategies are implemented and no merging of existing nodes is

possible. Termination is a natural consequence of the re-use of nodes.

• An in-equation solver collects and checks the satisfiability of numerical restric-

tions.

Definition 4.5.2 (Proxy Node) A proxy node is a representative for the elements

of each partition. Proxy nodes can be used due to Lemma 4.5.4 since partitions are

disjoint and all elements within a partition P satisfy P ’s signature.

4.5.1 Satisfying Numerical Restrictions Using Algebräıc Rea-

soning

Given a partitioning P for the decomposition set DS = (NR′ ∪No ∪NQ) for T , one

can reduce a conjunction of (≥ nR) and (≤ mR) in L(x) to a set of in-equations and

check their satisfiability using an in-equation solver based on the following principles.

P0: Mapping Cardinalities to Variables. We assign a variable name v for

each partition name P such that v can be mapped to a non-negative integer value n

using σ : V −→ N such that σ(v) denotes the cardinality of P I . Let V be the set of

all variable names and α: V −→ P be a one-to-one mapping between each partition

name P ∈ P and a variable v ∈ V such that α(v) = P , and if a non-negative integer

n is assigned to v using σ then σ(v) = n = #P I . Given L ⊆ DS, let VL denote the

set of variable names each mapped to a partition p such that L ⊆ p, VL is defined as

VL =

⎛
⎜⎜⎜⎜⎝

{v ∈ V | p ∈ α(v) for each p ∈ (L ∩NR)}∩

{v ∈ V | oq ∈ α(v) for each oq ∈ (L ∩ (No ∪NQ))}∩

{v ∈ V | oq /∈ α(v) for each ¬oq ∈ (L ∩ (No ∪NQ))}

⎞
⎟⎟⎟⎟⎠

93

P1: Encoding Number Restrictions, Qualifications and Nominals Into

In-equations. Since the partitions in P are mutually disjoint and the cardinality

function, of disjoint partitions, is additive one can encode a cardinality restriction

on partition’s elements using ξ such that ξ(L,≥, n) = v1 + · · · + vk ≥ n, and ξ(L,≤

,m) = v1 + · · · + vk ≤ m where {v1, . . . , vk} ⊆ VL and L ⊆ DS. Hence, a lower

(upper) bound on the cardinality of the set of domain elements distributed over the

partitions in P can be encoded into in-equations as follows:

• (i) Bounds on role fillers: concepts of the form (≥ nR) and (≤ mR) in the

label of a node x express lower and upper bounds n and m, respectively, on

the cardinality of the set FIL(R, ix) for some R ∈ NR. These bounds can

be reduced into in-equations using ξ(L,≥, n) and ξ(L,≤,m) for L = {R} or

L = {R, q}, if additionally we have ∀S.C such that (R �∗ S) with C ∈ DS

and q = C. Consider a node x in a CCG G, such that x is labelled with

the concept expression from Example 4.1.4, L(x) = {≥ 1R1, ∀R1.({o}� ≤

1R2 � ∀R2.{o} � ∀R\R2.¬{o})}, then the bounds on FIL(R1, ix) are encoded

into in-equation (25). Assuming another node, y, in G such that L(y) = {{o},≤

1R2, ∀R2.{o}, ∀R\R2.¬{o}}, then the bounds on FIL(R2) are encoded into in-

equation (26). In both in-equations, every variable v, mapped to a partition p,

is indexed with the names of the elements forming p.

• (ii) Bounds imposed by nominals : Nominals carry cardinality restrictions; they

not only name individuals but also allow for counting individuals. Therefore,

the cardinality of a partition with a nominal o can only be equal to 1 based

on the nominals semantics; #{o}I = 1. This bound on the cardinality of the

nominals partitions can be encoded into in-equations using ξ({o},≥, 1) and

ξ({o},≤, 1) for each nominal o ∈ No. In the case of Example (4.1.4) then the

nominals semantics is encoded into in-equations (27) and (28).

94

vR1 + vR1o + vR1R2 + vR1R2o ≥ 1 (25)

vR2o + vR1R2o ≤ 1 (26)

vo + vR1o + vR2o + vR1R2o ≥ 1 (27)

vo + vR1o + vR2o + vR1R2o ≤ 1 (28)

When the nominals semantics is encoded into in-equations together with the

bounds on role fillers, the interaction between nominals and role fillers is handled

while preserving that there is one individual for each o ∈ No: #{o}I = 1.

P2: Getting a Solution. Given a set ξx of in-equations in LE(x), an integer

solution defines the mapping σ for each variable v occurring in ξx to a non-negative

integer n denoting the cardinality of the corresponding partition. For example, as-

suming σ(v{R1,R2}) = 1 and α(v{R1,R2}) = {R1, R2}, this means that the corresponding

partition (α(v{R1,R2}))
I must have 1 element; #(FIL(R1) ∩ FIL(R2)) = 1. Addition-

ally, it is desirable sometimes to minimize the sum of all variables in order to ensure

a minimum number of role fillers at each level. A solution defining σ, then defines a

distribution of individuals that is consistent with the numerical restrictions encoded

in ξx and the hierarchy expressed in R. Getting a solution for ξx can be considered

as an Integer Linear Programming problem [Dan63], which is the problem of maxi-

mizing or minimizing a linear function over a convex polyhedron specified by linear

and non-negativity constraints, and ξx represents an IP model.

Definition 4.5.3 (IP Model) An IP model consists of an objective function that

needs to be optimized subject to a set of linear constraints on that function, and is

considered a special type of Linear Programming (LP) problems with additionally

95

constraining the values of all variables to integer values. An example of a an LP

problem is shown below:

Minimize

Z = v1 − v2 + a1v3 − a2v4

subject to the constraints:

v1 + v2 + b1v3 + b3v4 = c1

b4v2 + v3 + b5v4 ≤ c2

Where Z is the objective function whose value needs to be optimized, vi are the

variables whose optimal values need to found w.r.t the set of constraints consisting

of linear in-equations, and ai, bi, ci are constants derived from the specification of the

LP problem. When encoding number restrictions with QCRs and nominals into an

ILP problem, ai and bi can take only the values of (0, 1). For example, if vi has been

assigned vi ≥ 1 by the ch-Rule then bi is set to 1, otherwise bi is set to 0. All ai are set

to 1 because the objective function is to minimize the variables occurring in the linear

constraints. Also, ci are derived from the numbers used in cardinality restrictions.

For example, in the case of encoding a nominal’s semantics into a linear constraint,

ci is always equal to 1 (otherwise it is equal to a non-negative integer number).

Integer Programming (IP) problems can be solved using the widely known Sim-

plex [CLRS01] method for LP, extended with the branch and bound technique to

solve the integer constraints. Branch and bound (also known as branch and cut)

complements the Simplex method and works in a divide-and-conquer strategy to find

an integer solution. For instance, if a non-integer solution is returned by the Simplex

method such that a variable is assigned the value v = 0.66, then branch and bound

would try to find a solution by trying v = 0 and v = 1. A minimal solution is desired,

in a sense where less variables are assigned the values of ≥ 1, in order to keep the

96

completion model of smaller size thus allowing less expansion rules to become appli-

cable. However, a less optimal solution does not affect the correctness of algebräıc DL

reasoning, which relies on IP mainly to decide the satisfiability or unsatisfiability of

the numerical restrictions imposed by nominals and QCRs. In the scope of algebräıc

reasoning for DL, a solution does not necessarily need to be optimal, and variants of

the Branch and bound technique, which do not always consider the optimal solution

for sake of finding a solution quicker, can be considered.

Lemma 4.5.4 (Using a Proxy Individual) Given a graph G as a representation

of a model I for a TBox T , P a non-empty partition in PI, and n a non-negative

integer assigned by the in-equation solver such that n = #P . It is sufficient to create

one proxy node in G as a representative of the n individuals in P .

Proof. Lemma 4.5.4 is an easy consequence of Lemma 4.4.5. Creating a proxy node

x for P in G allows to test the satisfiability of P ′s signature (see Section 4.4.2). If x

satisfies the signature, then m elements can also satisfy it and m is decided by the

in-equation solver. x cannot violate cardinality bounds on role fillers and nominals

since these bounds are numerically satisfied by the in-equation solver. However, if x

does not satisfy the signature of P due to a clash, this means that P must be empty

because its signature is unsatisfiable.

97

4.5.2 Deciding KB Consistency

�-Rule If C �D ∈ L(x), and {C,D} � L(x)

Then set L(x) = L(x) ∪ {C,D}

�-Rule If C �D ∈ L(x), and {C,D} ∩ L(x) = ∅

Then set L(x) = L(x) ∪ {E} with E ∈ {C,D}

∀-Rule If ∀R.C ∈ L(x) and there exists y such that L(〈x, y〉) ∩ (H(R) ∪ {R}) �= ∅,

and C /∈ L(y)

Then set L(y) = L(y) ∪ {C}

∀+-Rule If ∀R.C ∈ L(x) and there exists y such that L(〈x, y〉) ∩ (H(S) ∪ {S}) �= ∅,

S ∈ NR+ with S �∗ R, and ∀S.C /∈ L(y)

Then set L(y) = L(y) ∪ {∀S.C}

Figure 23: Completion rules for SHONR\ - Part I.

Recall that one can decide the consistency of KB(T , R) by checking the consistency

of C ′
T using i ∈ No new in T such that iI ∈ C ′

T
I and every new individual satisfies

C ′
T . The algorithm starts with the CCG G = ({r0}, ∅, ∅,LE, ∅). With LE(ro) =

⋃
o∈No

{ξ({o},≤, 1), ξ({o},≥, 1)} which is an encoding of the nominals semantics.

The node r0 is artificial and is not considered as part of the pre-model, it is only

used to process the numerical restrictions on nominals using the in-equation solver

which returns a distribution for them. The distribution of nominals (solution) is pro-

cessed by the fil -Rule (see Figure 24) which, based on a non-deterministic distribution

of nominals, initializes the proxy nodes for nominals.

98

∀\-Rule If ∀(R\S).C ∈ L(x), and there exists y such that:

L(〈x, y〉) ∩ (H(R) ∪ {R}) �= ∅, L(〈x, y〉) ∩ (H(S) ∪ {S}) = ∅, and C /∈ L(y)

Then set L(y) = L(y) ∪ {C}

��-Rule If (�� nR) ∈ L(x) for ��∈ {≤,≥},

Then If ∀S.C ∈ L(x) with R �∗ S and ξ({R,C},��, n) /∈ LE(x)

Then set LE(x) = LE(x) ∪ {ξ({R,C},��, n)}

Else If ξ({R},��, n) /∈ LE(x) Then set LE(x) = LE(x) ∪ {ξ({R},��, n)}

ch-Rule If there exists v occurring in LE(x) such that {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅

Then set LE(x) = LE(x) ∪ {V }, V ∈ {v ≥ 1, v ≤ 0}, and

set LE(y) = LE(y) ∪ {V }, for all nodes y in G such that v occurs in LE(y)

fil -Rule If there exists v occurring in LE(x) with σ(v) = m and m > 0, and

there exists no y with LP (y) = α(v)

Then 1. create a new node y, 2. set LP (y) = α(v), 3. set LE(y) = LE(x),

4. set L(y) =

⎛
⎜⎝
{C ′T } ∪

⋃
o∈(α(v)∩No)

o ∪
⋃

i∈(No\α(v)) ¬i ∪⋃
q∈(α(v)∩NQ) q ∪

⋃
p∈(NQ\α(v)) ¬̇Qp

⎞
⎟⎠

e-Rule If (�� nR) ∈ L(x), and there exists y such that R ∈ LP (y) and R /∈ L(〈x, y〉)

Then If ∀S.C ∈ L(x) with R �∗ S and C ∈ LP (y), or

∀S.C /∈ L(x) with R �∗ S

Then set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and

If LE(x)�LE(y) Then set LE(y) = LE(y) ∪ LE(x)

Figure 24: Completion rules for SHONR\ - Part II.

After at least one nominal is created, G is expanded by applying the completion

99

rules given in Figures 23 and 24 until no more rules are applicable or when a clash

occurs (see Section 4.5.4 for an explanation of the rules). No clash triggers or rules

other than the fil -Rule apply to ro. When no rules are applicable or there is a clash,

a CCG is said to be complete.

Definition 4.5.5 (Clash) A node x in (V \ {r0}) is said to contain a clash if:

• (i) {C,¬C} ⊆ L(x), or

• (ii) a subset of in-equations ξx ⊆ LE(x) does not admit a non-negative integer

solution.

When G is complete and there is no clash, this means that the numerical as well

as the logical restrictions are satisfied (C ′
T
I �= ∅) and there exists a pre-model for T :

the algorithm returns that T is consistent. Otherwise the algorithm returns that T

is inconsistent.

4.5.3 Strategy of Rule Application

Given a node x in the CCG, the completion rules in Figures 23 and 24 are applicable

based on the following priorities:

• Priority 1: �-Rule, �-Rule, ∀-Rule, ∀+-Rule, ch-Rule, ��-Rule, e-Rule.

• Priority 2: fil-Rule.

• Priority 3: ∀\-Rule.

The rules with Priority 1 can be fired in arbitrary order. The fil-Rule has Priority

2 to ensure that all at-least and at-most restrictions for a node x are encoded and

100

satisfied by the in-equation solver before creating any new nodes. This justifies why

role fillers or nominals are never merged nor removed from G; a distribution of role

fillers and nominals either survives into a complete model or fails due to a clash.

Also, assigning the fil-Rule Priority 2 helps in early clash detection in the case when

the in-equation solver detects a numerical clash even before new nodes are created.

The ∀\-Rule has Priority 3 to ensure that the semantics of the ∀\ operator are not

violated. We enforce the creation of all possible edges between a node and its succes-

sors before applying the ∀\ operator semantics. This rule priority is needed to ensure

the completeness (see Lemma 4.6.3) of the algorithm.

4.5.4 Explaining the Rules

The �-Rule, �-Rule, ∀-Rule and the ∀+-Rule in Figure 23 are similar to the ones

introduced in Section 2.2.1.

∀\-Rule. This rule is used to enforce the semantics of the role set difference

operator ∀\ introduced at preprocessing. Given a node x, this rule makes sure that

all R-successors of x that are not also S-successors of x are labelled. Together with

the ch-Rule (see explanation below), this rule has the same effect as the choose-rule,

introduced in Section 2.2.2 and discussed in Section 3.1.2.1.

��-Rule. This rule encodes the numerical restrictions in the label L of a node

x, for some role R ∈ NR, into a set of in-equations maintained in LE(x) (see P1 in

Section 4.5.1). An in-equation solver is always active and responsible for finding a

non-negative integer solution σ (see P2 in Section 4.5.1) or triggering a clash if no

solution is possible. If the in-equations added by this rule do not trigger a clash, then

the encoded at-least/at-most restriction can be satisfied by a possible distribution of

role fillers. We distinguish two cases:

• Case (i): R-fillers of x must also satisfy a qualified restriction C due to a

101

∀S.C restriction on a role S such that R �∗ S and C is either a nominal

or a qualification name in DS. Then the numerical restriction is encoded on

partitions P ∈ P with P I ⊆ (CI ∩ FIL(R)) which means {R,C} ⊆ P .

• Case (ii): There exist no qualified restrictions on R-fillers of x due to a ∀

restriction on a role S such that R �∗ S. In this case the numerical restriction

is encoded on partitions P ∈ P with P I ⊆ FIL(R) which means {R} ⊆ P

Unlike in [FH10a, FHM09, FFHM08b], a distinction needs to be made between

case (i) and case (ii) in order to preserve completeness of the algorithm. Otherwise

given two nodes x and y inG such that {≥ 1R, ∀S.C} ⊆ L(x), and {≥ 1R, ∀S.¬̇QC} ⊆

L(y) with R �∗ S ∈ R, then the encoded in-equations in LE(x) and LE(y) rely

on variables for partitions P ∈ P such that P I ⊆ FIL(R) and the qualifications

imposed by ∀S.C and ∀S.¬̇C are lost because then one would have FIL(R, x) ≡

FIL(R, y) whereas FIL(R, x) ⊆ CI and FIL(R, y) ⊆ (¬̇QC)I . See Section 4.2.3 for

an illustration of encapsulated qualifications which motivate the use of qualifying

concepts.

ch-Rule. This rule checks for empty partitions while ensuring completeness of

the algorithm. Given a set of in-equations in the label (LE) of a node x and a variable

v such that α(v) = P and P ∈ P we distinguish between two cases:

• (i) The case when P I must be empty (v ≤ 0); this happens when restrictions

on elements of this partition trigger a clash because the signature of P cannot

be satisfied. For instance, if {∀R1.A, ∀R2.¬A} ⊆ L(x), vR1R2 ≥ 1 ∈ LE(x)

and there exists a node y with LP (y) = {R1, R2} and {R1, R2} ⊆ L(〈x, y〉) the

qualifications on R1 and R2-fillers trigger a clash {A,¬A} ⊆ L(y) and vR1R2 ≤ 0

is enforced.

• (ii) The case when P I must have at least one element (1 ≤ m ≤ σ(v)); if P I

102

can have at least one element without causing any clash, this means that the

signature of P is satisfiable and we can have m elements also in P I without a

clash.

Since the in-equation solver is unaware of partition signatures imposing restrictions on

role fillers, an explicit distinction between cases (i) and (ii) is needed. This distinction

is done by non-deterministically assigning ≤ 0 or ≥ 1 for each variable v occurring

in LE(x). The ch-Rule needs only fire once for each variable v. However, v can also

occur within the label LE of a node y. In order to avoid the applicability of the

ch-Rule to a node y with v, after the ch-rule is applicable on the node x for v, the

variable choices are propagated to all nodes y such that v ∈ LE(y).

fil-Rule. This rule is used to generate proxy nodes depending on the distribution

(σ) returned by the in-equation solver. The rule is fired for every non-empty partition

P based on σ(v). It generates one proxy node y as the representative for the m

elements assigned to P I by the in-equation solver. The node y is tagged with its

partition name using α(v) in LP (y). The set of in-equations is accumulated in LE(y).

Nominals and qualifications satisfied by the partition elements are extracted from the

partition name and added to L(y). C ′
T is added to L(y) to ensure that every node

created by the fil -Rule also satisfies C ′
T .

e-Rule. This rule creates the edges between the proxy nodes created by the

fil -Rule. If ≥ nR ∈ L(x), for some R, this means that x must be connected to a

number r of R-fillers such that n ≤ r. If ≤ mR ∈ L(x) then x could be connected to

a maximum number r′ of R-fillers such that r′ ≤ m. If there exists a node y such that

R ∈ LP (y), this means that a distribution of R-fillers has been assigned by the in-

equation solver such that the numbers n and m are satisfied and y is a representative

for a number p of R-fillers such that r ≤ p ≤ r′. We distinguish between two cases:

• Case (i): R-fillers of x must also satisfy a qualified restriction C due to a ∀S.C

103

restriction on a role S such that R �∗ S. In this case, if C is also in LP (y) then

the partition represented by y intersects with CI and y is a member of C.

• Case (ii): There exists no qualified restrictions on R-fillers of x due to a ∀S.C

restriction on a role S such that R �∗ S. In this case there is no restriction on

the partitions intersecting with R-fillers.

In both cases, an edge can safely be created between x and y such that R ∈

L(〈x, y〉) and this edge is also a representative for the number p of edges between

x and the p elements represented by y. If S is also in LP (y) this means that the p

R-fillers represented by y are also S-fillers and y is a representative for a partition

p ∈ P such that pI ⊆ FIL(R) ∩ FIL(S). Therefore y can be re-used to connect x

or another node y having ≥ n′S or ≤ m′S, n′ ≤ n and m′ ≥ m, in their label. In

the case where n = 0 or m = 0 the CCG will not have any nodes representing the

corresponding role fillers, because the in-equation solver will not assign a distribution

of fillers, and the e-Rule will not fire. One might argue that the e-Rule does not

need to fire for ≤ mR ∈ L(x). However, if we have a node x with {≥ 1R1, ∀R1.C,

≤ 1R2, ∀R2.C, ∀R \ R2.¬C} ⊆ L(x) with R1 � R, and R2 � R and a node y such

that LP (y) = {R1, R2}, then if the e-Rule only fires for ≥ 1R1 then the edge created

between x and y will satisfy only R1 ∈ L(〈x, y〉) and the ∀\-Rule propagates ¬C to y

leading to a clash making the algorithm incomplete because y has also been assigned

as an R2-filler.

4.5.5 Example

To better illustrate the calculus, we demonstrate it by checking the consistency of the

TBox T from Example 4.2.1 which we adapt to include cycles as shown in Figure 25.

T contains cyclic descriptions (A � ≥ 1R.A), nominals ({o}) and numerical restric-

tions (≥ 1R.A) with qualifying concepts (∀R.C), and can be used to highlight some

104

of the strong features (see Section 4.7) of the algebräıc tableau algorithm presented

in this chapter.

A � ≥ 1R.A

B1 � ∀R.C

B2 � ∀R.¬C

{o} � ≥ 1S1.(A �B1)� ≥ 1S2.(A �B2))

(a) TBox axioms in T .

topObjectProperty

R S1 S2

(b) Initial role hierarchy in R.

Figure 25: Example TBox with cycles, nominals, and qualifying concepts.

The set of nominals referenced in concept descriptions consists of

No = {o} (29)

the set of qualifying concepts consists of

NQ = {C} (30)

and the set of role names used in number restrictions consists of

NR = {R, S1, S2} (31)

such that the hierarchy between the roles is as shown in Figure 25b.

Algorithm 4.1.1 rewrites CT , as was illustrated for Example 4.2.1, into C ′T as

shown in Figure 26a, and extends the role hierarchy in Figure 25b with the newly

introduced roles as shown in Figure 26b. The consistency of (T , R), is reduced to

checking the consistency of (i � C ′
T with i ∈ No new in T). In order to apply the

105

atomic decomposition, the different sets which are used to build the decomposition

set DS are identified in Table 3.

C ′T = ¬A � (≥ 1R1 � ∀R1.A)�

¬B1 � ∀R.C �

¬B2 � ∀R.¬C �

¬{o} � (≥ 1S11 � ∀S11.(A �B1) � ≥ 1S21 � ∀S21.(A �B2))

(a) Internalization of T into C ′T after preprocessing CT .

topObjectProperty

R

R1

S1

S11

S2

S21

(b) Extended hierarchy.

Figure 26: TBox internalization into C ′T in SHONR\.

Roles Nominals Qualifying Concepts

NR′ = {R1, S11, S21} No = {o, i} NQ = {C}

H(R) = {R1} QC(R) = {C}, Q¬C(R) = {¬C}

H(S1) = {S11} QC(S1) = ∅, Q¬C(S1) = ∅

H(S2) = {S21} QC(S2) = ∅, Q¬C(S2) = ∅

DR = H(R) ∪QC(R) = {R1, C}

DS1 = H(S1) ∪QC(S1) = {S11}

DS2 = H(S2) ∪QC(S2) = {S21}

Table 3: Identifying decomposition set elements for T .

The global decomposition set DS =
⋃

R∈NR
DR ∪ No, as defined in Definition

4.4.3, consists of DS = {R1, C, S11, S21} ∪ {o, i}.5 The atomic decomposition of

DS, as shown in Figure 27,6 defines the partitioning P = {{R1}, {S11}, {S21}, . . .,

{R1, S11, S21, o, i, C}} of domain elements. Let V define the set of variables associ-

ated with each partition in P : V = {vR1 , vS11 , vS21 , . . . , vR1S11S21oiC}. The calculus

5We only include C to QC if C and ¬C are used as qualifying concepts.
6Some partitions are left unnamed in the figure for better clarity.

106

starts with the CCG G = ({r0}, ∅,L,LE, ∅) with LE(r0) ={ξ({o},≥, 1), ξ({o},≤, 1),

ξ({i},≥, 1), ξ({i},≤, 1)} as shown in Figure 28. A distribution of nominals is decided

by the ch-Rule branching on nominals ’ variables. Notice that when the ch-Rule as-

signs all nominals ’ variables ≤ 0, a clash is detected because there is no solution for

ξr0 ; the nominals semantics is violated.

S21

S11 S11S2
1

R1

R1S11

S21R
1

R1S11S21

oS11S21
oS11

i

iR1

oR1

oR1S11

CiR1S11
CioS11

CioS11S21

Cio

o oS21

CioS21

iS21

oS21R1
CioS21R1CioR1

CioR1S11 CioS21R1S11 oS21R1S11

C io

Figure 27: Atomic Decomposition of DS = {R1, S11, S21, o, i, C}.

Consider the following cases of nominals distributions:

• Case (a): The ch-Rule rule assigns nominals variables such that voi ≥ 1 and all

other variables ≤0. The expansion of a CCG for this case starts as shown in

Figure 28 and continues as shown in Figure 29. The final CCG is illustrated in

Figure 30.

• Case (b): The ch-Rule rule assigns nominals variables such that vi ≥ 1, vo ≥ 1

and all other variables ≤0. The CCG for this case is illustrated in Figure 31.

Considering case (a), the expansion of the CCG, by application of the completion

rules described in Figures 23 and 24, is illustrated in Figure 28. Once the ch-Rule is

not applicable anymore, the in-equation solver returns a solution σ such that σ(voi) =

1 and all other variables are set to zero.

107

r0

LE(r0) = {ξ({o},≥, 1), ξ({o},≤, 1), ξ({i},≥, 1), ξ({i},≤, 1)}

r0 LE(r0) ∪ {vo ≥ 1}r0LE(r0) ∪ {vo ≤ 0}

r0

r0

� r0 LE(r0) ∪ {voi ≥ 1}

x LP (x) = {o, i}
L(x) = {o, i,¬C} ∪ {C′

T }

(¬{o} � (≥ 1S11 � ∀S11.(A �B1)� ≥ 1S21 � ∀S21.(A �B2)))}
x L(x) ∪ {(¬A � (≥ 1R1 � ∀R1.A)), (¬B1 � ∀R.C), (¬B2 � ∀R.¬C),

�L(x) ∪ {¬{o}} x L(x) ∪ {(≥ 1S11 � ∀S11.(A �B1)� ≥ 1S21 � ∀S21.(A �B2))}

xL(x) ∪ {≥ 1R1 � ∀R1.A} x L(x) ∪ {¬A}

xL(x) ∪ {∀R.C} x L(x) ∪ {¬B1}

xL(x) ∪ {¬B2} x L(x) ∪ {∀R.¬C}

x L(x) ∪ {≥ 1S11, ∀S11.(A �B),≥ 1S21, ∀S21.(A �B2)}

x LE(x) = {ξ({R1, C},≥, 1), ξ({S11},≥, 1), ξ({S21},≥, 1)}

x x

B
a
ck

tr
a
ck

B
a
ck
tr
a
ck

ch-Rule

ch-Rule

ch-Rule

fil-Rule

�-Rule

�-Rule

�-Rule

�-Rule

�-Rule

�-Rule

��-Rule

ch-Rule

Figure 28: Expansion tree considering a distribution of nominals such that voi ≥ 1.
The expansion continues in Figure 29.

108

The fil -Rule becomes applicable to r0 and one new node x is created such that

LP (x) = α(voi) = {o, i}, LE(x) = LE(r0), and

L(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⋃
o∈(α(v)∩No)

o ∪
⋃

i∈(No\α(v)) ¬i

∪
⋃

q∈(NQ∩α(v)) q ∪
⋃

p∈(NQ\(NQ∩α(v))) ¬̇Qp

∪{C ′
T }

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= {o, i} ∪ {¬C} ∪ {C ′T }

The �-Rule, �-Rule, and ��-Rule become applicable to x such that L(x) and LE(x)

are extended to L(x) ∪ {o, i,¬C,≥ 1R1, ∀R1.A, ∀R.C,¬B2,≥ 1S11 , ∀S11 .(A � B1),≥

1S21 , ∀S21 .(A � B2)},7 and LE(x) ∪ {ξ({R1, C},≥, 1), ξ({S11},≥, 1), ξ({S21},≥, 1)}

respectively. The ch-Rule becomes applicable to x in order to branch on role fillers

partitions’ variables. Consider the branching points where vR1C , vS11 and vS21 are all

≥ 1 in LE(x), and all other applicable variables are set to ≤ 0. The expansion tree is

illustrated in Figure 29 which complements the one shown in Figure 28. A solution to

the in-equations in LE(x) preserving the initial variable assignment in LE(r0) assigns

vS11 , vS21 , and vR1C the value 1. The fil -Rule creates the nodes y1, y2, and y3 such

that: LP (y1) = α(vS11) = {S11}, LP (y2) = α(vS21) = {S21}, LP (y3) = α(vR1C) =

{R1, C}, LE(y1) = LE(y2) = LE(y3) = LE(x), L(y1) = {¬o,¬i,¬C} ∪ {C ′T }, L(y2) =

{¬o,¬i,¬C} ∪ {C ′T }, and L(y3) = {¬o,¬i, C} ∪ {C ′T }.

The e-Rule becomes applicable to x three times and the edges 〈x, y1〉, 〈x, y2〉, and

〈x, y3〉 are created such that: L(〈x, y1〉) = {S11}, L(〈x, y2〉) = {S21}, and L(〈x, y3〉) =

{R1}. The ∀-Rule enforces the qualifications on role successors such that A is added

to L(y3), (A �B1) is added to L(y1), and (A �B2) is added to L(y2).
7Considering the left branch of each �-Rule branching points as illustrated in the first part of

the CCG shown in Figure 28.

109

xLE(x) = {{ξ({R1, C},≥, 1), ξ({S11},≥, 1), ξ({S21},≥, 1)}}

x LE(x) ∪ {vR1C ≤ 0}xLE(x) ∪ {vR1C ≥ 1}

x

xLE(x) ∪ {vS11
≥ 1}

x LE(x) ∪ {vS21
≥ 1}

y1LP (y1) = {S11} y3

LP (y3) = {R1, C}

y2 LP (y2) = {S21}

L(y3) = {C′
T } ∪ {¬i,¬o, C}}

L(y1) = {C′
T } ∪ {¬C,¬i,¬o} L(y2) = {C′

T } ∪ {¬C,¬i,¬o}

y3 L(y3) ∪ {A}y1L(y1) ∪ {A �B1} y2 L(y2) ∪ {A �B2}

y1

y2y3y1L(y1) ∪ {A,B1}

y2 L(y2) ∪ {A,B2}y3LE(y3) ∪ {ξ({R1,¬C},≥, 1)}

y2 LE(y2) ∪ {ξ({R1,¬C},≥, 1)}

y2

LE(y2) ∪ {vR1 ≥, 1)}

y2 LE(y2) ∪ {vR1 ≤, 0)}zLP (z) = {R1}
L(z) = {C′T } ∪ {¬C,¬o,¬i}

{S11} {S21}{R1}

{R1}

{R1}

{R1}

{R1}

ch-Rule

ch-Rule

ch-Rule

fil-Rule, e-Rule

∀-Rule ∀-Rule

�-Rule, �-Rule �-Rule, �-Rule

�-Rule

�-Rule��-Rule

fil-Rule, e-Rule ��-Rule

ch-Rule

Figure 29: Expansion tree considering a distribution of role fillers such that vR1C ≥ 1,
vS11 ≥ 1, and vS21 ≥ 1.

110

Since C ′T is in the label of each of y1, y2, y3, the �-Rule, and �-Rule become

applicable to y1, y2, and y3. Consider that after applying these rules, the labels of y1,

y2, y3 are as follows:

L(y1) = {¬o,¬i,¬C,A,B1,≥ 1R1, ∀R1.A,¬B2, ∀R.C}

L(y2) = {¬o,¬i,¬C,A,B2,≥ 1R1, ∀R1.A,¬B1, ∀R.¬C}

L(y3) = {¬o,¬i, C,A,≥ 1R1, ∀R1.A,¬B1, ∀R.¬C}

Since ≥ 1R1 ∈ L(y1) and R1 ∈ LP (y3), the e-Rule becomes applicable to y1

and an edge is created between y1 and y3 with L(〈y1, y3〉) = {R1}. Notice how y3

is re-used because it satisfies the conditions for the e-Rule and no other node does.

The ��-Rule is applicable to y2 and y3 such that ξ({R1,¬C},≥, 1) is added to LE(y2)

and LE(y3). Consider the case when the ch-Rule assigns vR1 ≥ 1 and all other

applicable variables (to the newly added in-equation) to ≤ 0. The in-equation solver

collects all in-equations (and previous solutions) and assigns vR1 the value 1. The

fil -Rule becomes applicable to y3 and y2 and one new node z is created such that:

LP (z) = α(vR1) = {R1}, LE(z) = LE(y2),L(z) = {¬o,¬i,¬C} ∪ {C ′
T }.

The e-Rule becomes applicable to y2 and an edge is created between y2 and z such

that L(〈y2, z〉) = {R1}. The node z is re-used by the e-Rule on y3 to create an edge be-

tween y3 and z such that L(〈y3, z1〉) = {R1}. Due to C ′T in L(z), the �-Rule, �-Rule,

and ��-Rule apply to z such that L(z) = {¬o,¬i,¬C,A,≥ 1R1, ∀R1.A,¬B1, ∀R.¬C},

and LE(z) = LE(z)∪ξ({R1,¬C},≥, 1). However, ξ({R1,¬C},≥, 1) has already been

satisfied by the in-equation solver which means that the e-Rule is now applicable to

z re-using z to create an edge such that L(〈z, z〉) = {R1}. No rules are applicable

anymore and no clash has been detected: there is a complete and clash-free CCG as

shown in Figure 30 consisting of the nodes x, y1, y2, y3, z
8 and the TBox is consistent.

8The node r0 is artificial and will be ignored since it is not part of the pre-model.

111

x L(x) = {o, i, C′
T }

y1 y3 y2

z

{R1}{S11} {S21}

{R1}

{R1}

{R1}

{R1}

Figure 30: CCG representing a model in case when σ(voi) = 1, and LP (x) = {o, i}.

x1L(x) = {o,¬i, C′
T }

x2 L(z) = {¬o, i, C′
T }

y1 y3 y2

z

{R1}{S11} {S21}

{R1}

{R1}

{R1}

{R1}

{R1}

Figure 31: CCG representing a model in case when σ(v0) = 1, σ(vi) = 1, LP (x) =
{o, C}, LP (y) = {i}.

112

4.6 Proofs

The soundness, completeness and termination of the algorithm presented in this chap-

ter are consequences of Lemmas 4.3.2, Lemma 4.6.1, 4.6.2, and 4.6.3.

Lemma 4.6.1 (Termination) When started with a SHOQ TBox T , the proposed

algorithm terminates and is worst-case double exponential.

Proof. Let l = #clos(T), nr denote the size of NR′ , no denote the size of No, and

nq denote the size of NQ, termination of the algebräıc tableau algorithm is guaranteed

due to the following.

• The rewriting in Algorithm 4.1.1 can be done in linear time and does not affect

termination.

• Computing a partitioning P for T : in the worst case #DS = #{NR′∪NQ∪No},

and the size of P is bounded by 2r+o+q − 1 since we do not consider the empty

partition. Although this computation is exponential, it is done at-most once.

• Getting a distribution of individuals (solution for the in-equations) will not

affect termination of the completion rules. The Simplex method is considered

to be one of the most significant algorithms for solving IP problems; its worst

case complexity is exponential in the number of variables. However, it is very

efficient in practice and converges in polynomial time for many input problems,

in particular those with a fixed number of variables [HHLS86], as is the case

with ξ in the label of a CCG nodes, where the number of variables is fixed to

(2r+o+q − 1).

• The algorithm constructs a graph consisting of a set of arbitrarily interconnected

nodes by applying completion rules which do not remove nodes from the graph,

113

nor remove concepts from node labels or edge labels. For each node x:

– the number of times the fil -Rule can be applied is bounded by the size

of P . In the worst case, one node is created for each partition. It is not

possible to have more nodes than the size of P , in the graph, since each

node is either a nominal or a role filler and in both cases it must be in

some partition in P .

– the number of times the e-Rule is applied for each �� nR restriction is

bounded by n (the largest number used in a QCR restriction). In the

worst case individuals satisfying �� nR are distributed into n partitions.

The total number that this rule can be applied is bounded by l ∗ n.

– the ch-Rule non-deterministically assigns each variable to≥ 1 or≤ 0. Each

variable is assigned once per completion graph which means that in the

worst case when all possible completion graphs are explored, the ch-Rule

is applied 2(2
r+o+q−1+1) − 1 times.

– all other rules are applied at most l times.

• Traditional termination problems due to cyclic TBoxes and the so-called “yo-

yo” effect are not encountered:

– cyclic definitions do not cause a termination problem since nodes having

the same label (case when blocking is needed with other algorithms) will

eventually be mapped to the same partition and only one proxy node is

created. This justifies why we do not need any blocking strategies, the

re-use of individuals acts like a natural block.

– The “yo-yo” effect [Lut02] of infinitely creating and merging nodes cannot

occur since in a given CCG, nodes are neither removed nor merged.

114

Lemma 4.6.2 (Soundness) If the completion rules can be applied to T such that

they yield a complete and clash-free CCG, then T has a tableau.

Proof. A tableau T = (S,L′, E) can be obtained from a clash-free CCG G =

(V,E,L,LE,LP) by mapping nodes in G to individuals in T which can be defined

from G as T such that: S = V \ {r0}, L′(x) = L(x), and E(R) = {〈x, y〉 ∈

E | (H(R) ∪ {R}) ∩ L(〈x, y〉) �= ∅}. We show that T is either a tableau or can

be easily extended to a tableau for T since properties (1) - (11) of a tableau (see Def.

4.3.1) are either satisfied or can be easily satisfied.

• Property (1): Assume there exists an individual x in S such that CT /∈ L′(x),

this means that the corresponding node x in G also satisfies CT /∈ L(x). This

case is not possible first because x cannot be r0 and second because CT is added

to L(x) for every node x created in G by the fil -Rule. Hence CT ∈ L′(x) for

every x ∈ S and Property (1) is satisfied.

• Property (2): Assume there exists an individual x in S such that A ∈ L′(x)

and ¬A ∈ L′(x) this means that there exists a corresponding node x in G such

that A ∈ L(x) and ¬A ∈ L(x). This case is not possible since G is clash-free.

Hence, Property (2) is satisfied.

• Property (3): Assume there exists an individual x in S such that C�D ∈ L′(x),

C ∈ L′(x), and D /∈ L′(x) this means that there exists a corresponding node x

in G such that C �D ∈ L(x), C ∈ L(x), and D /∈ L(x). Having C �D ∈ L(x),

C ∈ L(x), and D /∈ L(x) makes the �-Rule applicable to x in G however this

115

case is not possible since G is complete. Hence Property (3) is satisfied and we

can similarly prove that Property (4) is also satisfied.

• Property (5): Assume ∀S.C ∈ L′(x) and 〈x, y〉 ∈ E(S) then we must have C ∈

L′(y). Having 〈x, y〉 ∈ E(S) means that L(〈x, y〉) ∩ (H(S) ∪ {S}) �= ∅. Since

G is complete and clash free then C must be in L(y) otherwise the ∀-Rule

conditions are met and the rule is applicable to G. Since C ∈ L(y) this means

that C ∈ L′(y) and Property (5) is satisfied.

• Property (6): Assume there exists an individual x in S such that ∀S.C ∈ L′(x)

and there exists an individual y ∈ S such that 〈x, y〉 ∈ E(R) and R is a transitive

role such that R �∗ S ∈ R then we must have ∀R.C ∈ L′(y). Since we

have 〈x, y〉 ∈ E(R) this means that L(〈x, y〉) ∩ (H(R) ∪ {R}) �= ∅, and having

R ∈ NR+ with R �∗ S ∈ R then we have ∀R.C ∈ L(y) otherwise the ∀+ would

be applicable. Therefore, since ∀R.C ∈ L(y) then ∀R.C ∈ L′(y) and Property

(6) is satisfied.

• Property (7): Assume ∀R\S.C ∈ L′(x) and 〈x, y〉 ∈ E(R) but not in E(S) then

we must have C ∈ L′(y). Since we have 〈x, y〉 ∈ E(R) and 〈x, y〉 /∈ E(S), this

means that L(〈x, y〉) ∩ (H(R) ∪ {R}) �= ∅ and L(〈x, y〉) ∩ (H(S) ∪ {S}) = ∅

respectively. C must be in L(y) otherwise the ∀\-Rule would be applicable to

G. Since C ∈ L(y) this means that C ∈ L′(y) and Property (7) is satisfied

• Property (8): Assume (≥ nS) ∈ L′(x) then completeness of G implies that there

exist j proxy individuals y1 . . . yj each representing a partition of mi individuals

such that
∑j

i=1 mi = n and S ∈ L(〈x, yi〉) (1 ≤ i ≤ j). Due to Lemma 4.5.4,

we can replicate each yi, mi−1 times and set S = S ∪{yik} and L(〈x, yik〉) = S

with 1 ≤ k ≤ mi − 1, then we have #ST (x) ≥ n and property (8) is satisfied.

116

One might think that replicating individuals could result in violating the nom-

inals semantics (Property 11) for example by replicating a nominal individual.

However, this case can never happen since nominals are represented by proxy

individuals yi belonging to a partition with only one individual, mi = 1 always

holds for nominals partitions and is encoded by the in-equations (see Property

(11) below). Similarly, Property (9) cannot be violated due to replication of

individuals; partition sizes (mi) are assigned such that all at-least and at-most

restrictions are satisfied (see Property (9) below).

• Property (9): Assume (≤ mS) ∈ L′(x) and #ST (x) ≤ m is violated. This

means that we have j proxy individuals y1 . . . yj each representing a partition

of mi individuals such that
∑j

i=1 mi > m. This case cannot happen for two

reasons: (1) Having the lowest priority for the fil-Rule, nodes are created only

after making sure that all at-least and at-most restrictions for a node x are

satisfied by a distribution of role fillers (a non-negative integer solution for the

in-equations in LE(x)). This means that no nodes will be created that violate

an at-most restriction. (2) G is clash free which means that for each (≤ mS) ∈

L(x) we have ξ({S},≤,m) in LE(x) and there is no ξ({S},≥, n) in LE(x) and

n > m.

• Property (10): If the distribution is not consistent with R, then for some (R′ �∗

R), there exists an R′-filler y assigned to a partition P with R′ ∈ P and

P I ⊆ (FIL(R′) \ FIL(R)). This case is not possible due to the definition of

H(R) which assumes that R is implied in P whenever R′ ∈ P and R′ ∈ H(R).

Hence, this property is always satisfied.

• Property (11): G cannot contain two nodes x and y such that for some nominal

o ∈ No we have o ∈ L(x) ∩ L(y). Since each node in G is a representative for a

117

partition P then having two nodes x and y with o ∈ L(x)∩L(y) means that there

are two partitions P1 and P2 such that o ∈ P1 ∩ P2. However since partitions

are disjoint (Lemma 4.4.5) and due to the nominals semantics encoded into

ξ({o},≤, 1) and ξ({o},≥, 1) in LE(r0) the in-equation solver will assign the

nominal o to only one partition P1 or P2 and all other partitions will have ¬o

in the label of their proxies. In addition, no nodes that are created can be

removed or merged, and no nominals individual can be replicated to satisfy

Property 8. Therefore, the set of nodes with a nominal o in their label always

satisfies property 11.

Lemma 4.6.3 (Completeness) If T has a tableau, then the completion rules can

be applied to T such that they yield a complete and clash-free CCG.

Proof. Let T = (S,L′, E) be a tableau for T , T can be used to guide the appli-

cation of the completion rules. We define the mapping function π from nodes in the

graph G = (V,E,L,LE,LP) to individuals in S, inductively with the creation of new

nodes, such that for each x, y ∈ V , roles R, S ∈ NR and a partition name p ∈ P we

have:

1. L(x) ⊆ L′(π(x))

2. if 〈x, y〉 ∈ E and S∈L(〈x, y〉), then 〈π(x), π(y)〉 ∈ E(S)

3. ξ({R},≥, n) ∈ LE(x) implies #RT (π(x)) ≥ n

4. ξ({R},≤, n) ∈ LE(x) implies #RT (π(x)) ≤ n

5. ξ({R, q},≥, n) ∈ LE(x) implies #(RT (π(x)) ∩ qI) ≥ n

118

6. ξ({R, q},≤, n) ∈ LE(x) implies #(RT (π(x)) ∩ qI) ≤ n

The claim is that having a CCG G that satisfies the properties of π we can apply

the completion rules defined in Figure 23 and 24, when applicable, to G without

violating the properties of π. Initially G consists of the artificial node r0 such that
⋃

o∈No
{ξ({o},≥, 1), ξ({o},≤, 1)} ⊆ LE(r0) and at least one node x0 with some o ∈

L(x0) is created. Given a tableau T for G, we can set s0 = π(x0) for some s0 ∈ S.

We show that whenever we can apply a completion rule to G, the properties of

π are not violated: applying the �-Rule, �-Rule, or the ∀-Rule strictly extends the

label of a node x and this does not violate properties of π due to properties (1)-(5)

of a tableau. Let us consider applying the other rules to a given node x:

• The ∀+-Rule: Having a node x in G such that ∀R.C ∈ L(x) and there exists

a node y with L(〈x, y〉) ∩ (H(S) ∪ {S}) �= ∅ and S is a transitive role such

that S �∗ R, this means that there exists π(x) ∈ S such that ∀R.C ∈ L′(π(x))

and there exists π(y) ∈ S such that 〈π(x), π(y)〉 ∈ E(S). Applying the ∀+-Rule

adds ∀S.C to L(y) thus preserving Property (6) of a tableau (∀S.C ∈ L′(π(y)))

without violating π.

• The ∀\-Rule: Having ∀R\S.C ∈ L(x) with L(〈x, y〉) ∩ (H(R) ∪ {R}) �= ∅

and L(〈x, y)〉 ∩ (H(S) ∪ {S}) = ∅ this means that ∀R\S.C ∈ L′(π(x)) with

〈π(x), π(y)〉 ∈ E(R) and 〈π(x), π(y)〉 /∈ E(S). Applying the ∀\-Rule adds C to

L(y) which means that C is now in L′(π(y)) and Property 7 of a tableau is

satisfied. This property along with properties of π cannot be violated later for

example by having 〈π(x), π(y)〉 ∈ E(S) due to the strategy of rule application

which forces the ∀\-Rule to be applicable to a node only when no other rules

are applicable. In particular, the e-Rule cannot be applied to x such that

L(〈x, y〉) ∩ (H(S) ∪ {S}) �= ∅, which would add 〈π(x), π(y)〉 to E(S), after the

∀\-Rule had been applied. For example, consider the following scenario:

119

– Initially let {≥ nR,≥ mS, ∀R.A, ∀R\S.¬A} ⊆ L(x) and y be a proxy node

with LP (y) = {R, S}

– after applying the e-Rule for some ≥ nR ∈ L(x) and the ∀-Rule for

(∀R.A) ∈ L(x), y is an R-filler of x with {A} ⊆ L(y)

– after applying the ∀\-Rule for (∀R\S.A) ∈ L(x) we have {A,¬A} ⊆ L(y)

with y an R-filler of x.

This case cannot happen. Due to the strategy of rule applications in Section

4.5.3, the ∀\-Rule cannot be applied if the e-Rule is also applicable. The rule

priorities make sure that the ∀(R\S) semantics are enforced only when no more

nodes can be S-fillers of x and Properties (5) and (7) of the definition of a

tableau are preserved.

• The ��-Rule: If (≥ nR) or (≤ mR) ∈ L(x), then (≥ nR), (≤ mR) ∈ L′(π(x)),

this implies that #RT (π(x)) ≥ n, #RT (π(x)) ≤ m, (properties 8 and 9 of

a tableau). Applying the ��-Rule, extends LE(x) wither with ξ({R},≥, n) or

ξ({R},≤,m) if no qualifications on a super-role of R apply or with ξ({R,C},≥

, n) or ξ({R,C},≤,m) if a qualifying concept C also applies on R-fillers of x.

In both cases the properties of π and those of a tableau are not violated.

• The fil-Rule: Since the fil -Rule has priority 2 then every (≥ nR), (≤ mR) ∈

L(x) has already been encoded into in-equation in LE(x) and due to the clash-

freeness of T this means that there exists a distribution of role fillers satisfying

every (≥ nR), (≤ mR) ∈ L(x). The distribution of fillers is encoded in the

solution σ for LE(x) and applying the fil -Rule creates a proxy individual y as a

representative for each corresponding partition based on σ returned by the in-

equation solver. Every node created is tagged with the proper partition name

using LP and the set of in-equations is propagated using LE(x) to y. LP is

120

later used by the e-Rule to create the proper edges between the nodes. Since

the creating of nodes is guided by the solution, σ, returned by the in-equation

solver and due to the rule priority, the number of nodes created the fil -Rule

cannot violate properties of a tableau nor π.

• The e-Rule : For each (≥ nR) ∈ L(x) we have (≥ nR) ∈ L′(π(x)) which means

that #RT (π(x)) ≥ n must be satisfied. The e-Rule is applied to connect x

to its R-fillers such that with each ith (1 ≤ i ≤ n) application of this rule an

edge is created between x and some proxy individual yi such that R ∈ LP (yi)

and yi represents mi (the number of elements assigned to a partition by the

in-equation solver) individuals of a partition p.

After all edges have been created we have j proxy R-fillers each representing mi

individuals such as
∑j

i=1 mi ≥ n. Due to Lemma 4.5.4 we can replicate each yi,

mi−1 times and by setting L(〈x, yik〉) = {R} with 1 ≤ i ≤ j and 1 ≤ k ≤ mi−1

and by setting π = π[y11 → t11 , . . . , yik → tik] with t11 . . . tik tableau elements

in T satisfying #RT (π(x)) ≥ n. We can see that #RT (π(x)) ≥ n is satisfied

without violating π. By analogy, we can prove that applying the e-Rule for each

(≤ nR) ∈ L(x) does not violate π.

The resulting graph G is clash free due to the following:

1. G cannot contain a node x such that {A,¬A} ⊆ L(x) since L(x) ⊆ L′(π(x))

and Property 2 of the definition of a tableau would be violated.

2. G cannot contain a node x such that LE(x) is unsolvable. If LE(x) is unsolvable,

this means that for some role R ∈ NR we have:

• {ξ({R},≥, n)} ⊆ LE(x), and there is no possible distribution of R-fillers

satisfying ≥ nR ⊆ L(x), hence, property 8 of a tableau would be vio-

lated due to the equivalence properties between ξ({R},≥, n) ∈ LE(x) and

121

#RT (π(x)) ≥ n respectively, or

• {ξ({R},≤, n)} ⊆ LE(x), and there is no possible distribution of R-fillers

satisfying ≤ mR, hence, property 9 of a tableau would be violated due to

the equivalence properties between ξ({R},≤,m) ∈ LE(x) and #RT (π(x)) ≤

m.

4.7 Discussion

This section highlights some of the novel characteristics of the hybrid algebräıc rea-

soning algorithm presented in this chapter.

4.7.1 Completion Graph Characteristics

A compressed completion graph G for a KB (T ,R) consists of the artificial root

node r0, which is not part of the model for KB, and arbitrarily interconnected proxy

nodes. Unlike standard tableau algorithms for SHOQ [HS01], a tree-like or forest-like

shape restriction is not enforced on the shape of the completion graph. This feature

is desirable since not all models are necessarily tree-shaped [MH08]. Such freedom in

the completion graph shape is considered novel because a tree-shaped/forest-shaped

feature is usually crucial for termination of standard tableau algorithm. It also allows

a better handling of KBs with complex structures for example, a KB for the human

anatomy does not necessarily have a tree-shaped model (or a tree-shaped comple-

tion graph). Restricting a model to a tree-like one would unnecessarily complicate

constructing G.

122

4.7.2 Using an In-equation Solver

Using an in-equation solver to find a solution for the in-equations encoding nominals

and QCRs, allows the algorithm to scale better when the size of the numbers used

with QCRs increases.

A � ≥ nR.A

B1 � ∀R.C

B2 � ∀R.¬C

{o} � ≥ nS1.(A �B1)� ≥ nS2.(A �B2))

Figure 32: Example TBox T .

For example, applying the algebräıc algorithm to test the consistency of the TBox

T shown in Figure 32 for large values of n (n = 100) will not affect the behaviour of

the algorithm as was reported in [FH10c] for the DL SHQ. This makes its extension

to more expressive logics more promising.9 Additionally, the in-equation solver facili-

tates early clash (Definition 4.5.5 (ii)) detection, and ensures that a minimum number

of role fillers is considered by setting the objective function to minimize the sum of

variables considered. See Sections 7.2.1, and 7.2.2.6 for an empirical evaluation of

this feature.

4.7.3 Termination

As illustrated with the example in Section 4.5.5, termination of the completion graph

expansion is naturally inherent. Unlike traditional DL reasoning algorithms for

SHOQ, a tree-like model property with cycle detection techniques/blocking strat-

egy is not crucial for termination. Nodes created are neither merged nor pruned

9Large values of n are known to be problematic for most DL reasoners supporting SHQ.

123

which means that there is no need to handle the so-called “yoyo” effect, of infinitely

creating and merging nodes, or to manage incoming and outgoing edges between

nodes.

4.7.4 Proxy Nodes and Their Re-use

The completion graph used in this calculus is called ”compressed completion graph”

and this is due to the use and re-use of proxy nodes as representatives for nodes

having common restrictions. Using proxy nodes helps minimize the number of nodes

to be created and the number of completion rules to be triggered, which means that in

some cases non-determinism can be minimized because some of the completion rules

are non-deterministic. When creating a representation for a distribution of domain

elements, let pa denote the number of partitions used, pa = #P , po denote the

number of nominals, and p�� denote the number of at-least and at-most restrictions,

we consider the following cases:

• Case 1: All domain elements fall in the same partition and only one proxy is

created. The KB is under-constrained and an over-constrained representation

of it is created. In this case only one node is created other than r0.

• Case 2: All elements satisfying an at-least or an at-most restriction are in

the same partition and only one proxy is created for each at-least or at-most

restriction. In this case pa = max{p��, po} if nominals interact with role fillers,

or pa = (p��+ po) if nominals do not interact with role fillers. The total number

of nodes created equals pa.

• Case 3: Elements satisfying each at-least and at-most restriction of the form

�� nR are in n different partitions and n proxy nodes are created for each �� nR

restriction. In this case pa = max {(n× p��), po} if nominals interact with role

124

fillers, or pa = (n × p�� + po) if nominals do not interact with role fillers. The

total number of nodes created equals pa.

On the other hand, nodes that are created can later be re-used. The re-use of indi-

viduals has also been proposed in [MH08] recently. However, the re-use implemented

by the algorithm presented in this chapter is more informed. Once a node is created,

it is tagged, using LP , based on the partition it belongs to. Which means that each

node is tagged by the signature its representative elements can satisfy without vio-

lating a number restriction. For example when an element is assigned to a partition

labeled {R1, R2} this means that this element is a potential R1-filler and a potential

R2-filler. The e-Rule uses and re-uses this individual whenever an R1-filler or an

R2-filler is needed. In a sense, once a distribution of domain elements is assigned by

the in-equation solver, the proxy node re-use is deterministic, there is no guessing of

which individuals can be re-used. This form of re-use still ensures termination while

preserving soundness and completeness. One could say that the re-use acts like block-

ing in the case of cyclic descriptions. However, there is no use of any cycle detection

mechanism, and the re-use is not intended for termination because it is not only used

in the case of cycles. The use of a proxy nodes together with the re-use of nodes could

work as a double optimization to reduce non-determinism and model sizes especially

since KBs are often naturally under-constrained, which facilitates individual re-use.

4.7.5 Caching

The ch-Rule described in Figure 24 performs a semantic split for groups of elements

(a single partition) and not necessarily for each element as is the case with tableau

algorithms using the choose-rule (described in Section 6), which non-deterministically

chooses a distribution for each role filler. It is interesting to note that the splitting

of the ch-Rule allows some form of global caching. Partitions represent signatures

125

(Lemma 4.4.5) and variables are used to represent the cardinalities of these partitions.

Then, if a variable must be zero, this means that the signature for the corresponding

partitions is unsatisfiable. This result is carried throughout the search by setting

the corresponding variable to zero and no individuals are assigned to that partition.

However, if a variable vP is ≥ 1 this means that the signature of α(v) = P is satisfiable

and at least one individual x is a member of this signature. Whenever a new individual

is needed satisfying the signature of P , x is re-used.

4.7.6 The EU Example

Consider testing the consistency of the the TBox T representing the EU member

states as defined in Example 4.1.5. For ease of presentation, the concept names,

role names, and nominals are replaced with a one letter symbol such that NR =

{M′,M}, R = {M′ � M}, No = {i, o1, . . . , o27}. The global decomposition set consists

of DS = {M′, i, o1, . . . , o27} and the global partitioning of DS results in (229 − 1)

partitions. However, all instances of EU MemberStates are disjoint and one can safely

ignore partitions having more then one nominal. Figure 33 shows the corresponding

partitioning; in total one only need to consider (2× 28 + 1) partitions.

Considering an initial distribution of nominals and after applying the comple-

tion rules in Figure 23 and Figure 24 then the CCG contains a node (x) such that

LP (x) = {i,¬o1, . . . ,¬o27} and L(x) = {i,¬E,¬o1, . . . ,¬o27,≥ 30M′, ∀M′.E}. The

��-Rule would add ξ({M′},≥, 30) to the set, LE(x), of in-equations encoding the

nominals semantics.

LE(x) =

⎧⎪⎨
⎪⎩

ξ({i},≥, 1), ξ({i},≤, 1), ξ({o1},≥, 1), ξ({o1},≤, 1), . . . ,

ξ({o27},≥, 1), ξ({o27},≤, 1), ξ({M′},≥, 30)

⎫⎪⎬
⎪⎭

The unsatisfiability of LE(x) can be immediately detected by the in-equation

solver considering that vM′ ≤ 0 and vM′o1 , . . ., vM′o27 are all ≥ 1 as the initial distri-

bution of nominals.

126

o1

o2

o3

o4
o5

o6 o7 o8
o9

o10

o11

o12

o13

o14

o15

o16

o17

o18

o19
o20o21o22

o23
o24

o25

o26

o27

i

o1

o2

o3

o4
o5

o6 o7 o8
o9

o1

o1

o1

o1

o1

o1

o1

o1

o18

o19
o20o21o22

o23
o24

25

26

27

i

o

o2

o3

o4
o5

o6 o7 o8
o9

o1

1

1

1

1

1

1

o17

o18

o19
o20o21o22

o23
o2

2

2

2

i M ′

Figure 33: Partitioning of DS = {M′, i, o1, . . . , o27}

In comparison with standard tableau algorithms for SHOQ when checking the

satisfiability of ≥ 30M′.EU, 30 anonymous individuals are created and then non-

deterministically identified with the 27 nominals. Considering that we have 30 indi-

viduals that need to be distributed over 27 there are 30!
3!

= 4.420 × 1031 cases to be

considered. In the case of the algebräıc method, one would have to consider, in the

worst case, 228×2+1 − 1 = 1.441 × 1017 − 1 cases for the ch-Rule until vM′ ≤ 0 and

vM′o1 , . . ., vM′o27 are all ≥ 1.

4.8 Conclusion

This chapter presents an algebräıc tableau reasoning algorithm for SHOQ. Unlike

available reasoning algorithms for SHOQ, the algebräıc tableau method allows a

calculus that is explicitely informed about the numerical restrictions on domain ele-

ments. The algebräıc reasoning is based on the atomic decomposition technique which

127

is applied on the proper global decomposition set allowing the calculus to handle the

various interactions between nominals, role fillers and their qualifications.

When creating an abstraction of a model, only one representative element is cre-

ated for each partition and tagged by the partition signature. Using a representative

element not only helps in reducing the size of the pre-model generated but also al-

lows for re-using elements. Due to the re-use, the calculus naturally handles cyclic

descriptions without the need for any blocking strategies to ensure termination.

The upper bound on the size of the search space is double exponential to the size

of the input problem, mainly due to non-determinic expansions. For soundness and

completeness proofs, non-deterministic expansions are not given much consideration

because one only needs to prove that the search will always find a solution if one

exists and it will always terminate. From a theoretical point of view, it is enough

to devise/analyze the upper bound on the worst case complexity. However, when

considering a practical implementation, it is crucial to give careful consideration to

non-deterministic expansions; in particular how to reduce the size of the search space

and how to explore it in an efficient manner. This will be discussed in the following

chapter.

128

Chapter 5

Towards Practical Algebräıc

Reasoning With DL

5.1 Introduction

Reasoning Algebräıcally with Description Logics (ReAl DL) was presented in Chapter

4 using a sound and complete hybrid algebräıc tableau-based reasoning algorithm for

the DL SHOQ. If not amenable to optimizations, the practical usefulness of ReAl

DL is questionable and the contribution of this thesis remains purely theoretical.

Such usefulness debate has always accompanied the design of decision procedures for

expressive DLs. This is because expressivity usually carries out an inevitable high

worst case complexity. The satisfiability problem for SHOQ is ExpTime-complete;

available DL systems handling SHOQ implement a wide range of optimization tech-

niques without which, these systems fail to efficiently handle satisfiability problems of

growing size. As discussed in the previous chapter, the hybrid algebräıc reasoning al-

gorithm for ReAl DL which runs in double exponential time in the worst case will not

have any practical merit if not amenable to optimizations. The theoretical efficiency

(w.r.t. the worst case complexity) might be even questioned due to the gap between

129

the complexity of the satisfiability problem, which is ExpTime-complete, and that of

the reasoning algorithm which is 2ExpTime.

Due to its hybrid nature, the algebräıc tableau algorithm can be seen as a mixed

algorithm implementing both search and constraint satisfaction problems (CSP). A

wide range of optimizations have been investigated to enhance the performance of

search based satisfiability algorithms [FB07b, THPS07]. Also, a wide range of opti-

mizations have been studied to enhance the performance of CSPs [DF02]. Some of

the optimizations for DL search based satisfiability have already been adapted from

earlier versions of optimizations for CSPs [Bak95], namely dependency directed back-

tracking (see Section 3.2.1.3 for a review). In this chapter, two major sources of inef-

ficiency, that cannot be addressed through existing optimizations, are identified with

non-determinism and global partitioning. Sections 5.3 through 5.6 discuss how non-

determinism can be handled more efficiently at different phases using preprocessing

optimizations, look-back optimizations, look-ahead optimizations and a combination of

both. Section 5.7 discusses how partitioning can be optimized using lazy partitioning.

A discussion of the different suggested techniques is presented in Section 5.9 before

the chapter is concluded in Section 5.10.

5.2 From Theory to Practice

When moving from theory to practice, there has always been a significant gap be-

tween the design of a DL reasoning algorithm and its practical implementation.

Despite the high worst case complexity of DL inference services, experiments with

early DL systems such as KRIS, and lately with SOTA DL systems have shown

that applying suited (even simple) optimization techniques could lead to a significant

improvement in the empirical evaluation of a DL system. These optimizations ren-

der the adopted reasoning algorithm useful for realistic applications, even in cases

130

where non-optimized implementations of the algorithm are hopelessly intractable.

The worst case complexity of the hybrid algebräıc tableau-based satisfiability algo-

rithm is demonstrated in Section 4.6 as being double exponential. The theoretical

complexity result is not surprising because the satisfiability problem of expressive

DLs is usually inevitably at-least exponential. However, the algorithm might be con-

sidered theoretically inefficient because the complexity of the satisfiability algorithm

(double exponential) came out greater than the complexity of the satisfiability prob-

lem itself (single exponential). Such a gap between the complexity of an algorithm

and that of the problem might be due to the fact that the algorithm was designed

in such a way to facilitate proofs of its soundness and completeness without much

consideration to its worst case complexity or practical implementation.

It might seem a little bit discouraging to consider the practical implication of an

algorithm with a questionable theoretical worst case complexity. However, a high

worst-case complexity is not uncommon with practical DL systems. For example, the

hyper-tableau satisfiability algorithms [MSH07, MSH09] designed to handle general

concept inclusion axioms (GCIs) more efficiently with the DLs SHIQ and SHOIQ

share a double exponential worst case complexity, whereas satisfiability with SHIQ

is ExpTime-complete and that with SHOIQ is NExptime-complete. Also, the alge-

bräıc tableau reasoning algorithm [FH10c] designed for the DL SHQ runs in double

exponential time whereas satisfiability with SHQ is ExpTime-complete. On the other

hand, systems based on optimized implementations of these algorithms demonstrate

significant performance improvement showing their practical impact in solving spe-

cialized problems. So far, no better way has been reported in solving QCRs other

than through algebräıc reasoning. Also, Hermit is the first reasoner able to classify

ontologies which had previously been proven too complex for any available reasoner

131

to handle1.

When considering a practical implementation for the hybrid algebräıc algorithm

one can quickly identify the two major sources of inefficiency: non-determinism in

expansion rules, and global partitioning which aggravates the non-deterministic ch-

Rule. Specialized techniques to handle those inefficiency sources are discussed in the

following sections.

5.2.1 Towards Practical Non-Determinism

Poor performance of tableau-based DL systems has been usually associated with non-

determinism in tableau expansion rules. The algorithm for SHONR\, as described

in Section 4.5, implements two non-deterministic rules: the ch-Rule and the �-Rule.

Each time the �-Rule is applied to a node x in a compressed completion graph G with

(C1 �C2 � · · · � Cn) ∈ L(x), a list of child graphs is returned where the label L(x) is

extended with Ci in each child graph. As shown in Figure 34, the size of the list of

child graphs is bounded by n. Each time the ch-Rule is applied to a node x a list of

child graphs is returned where the label LE(x) is extended with one operand in each

child graph. As shown in Figure 35, the size of the list of child graphs is bounded

by 2. Each child graph represents a choice point in the search tree. The algorithm

explores choice points until no more rules are applicable or a clash occurs.

The search space is explored in a depth-first manner such that once a clash is

encountered either logically or arithmetically, the nearest alternative choice point is

explored. This is called backtracking and it usually involves two phases:

• Forward phase. The forward phase usually begins when a non-deterministic rule

is applicable. In case of the ch-Rule, this phase consists of selecting a range

value for the variable v such that the label of the node LE(x) is extended with

1Hermit is also the first reasoner based on hyper-tableaux reasoning [MSH09].

132

either v ≥ 1 or v ≤ 0.

x

x
x

x
x

x

L(x) = {(C1 � C2 � · · · � Cn)}

L(x) = L(x) ∪ {C1}

L(x) = L(x) ∪ {C2}

L(x) = L(x) ∪ {Cn}

Figure 34: Expansion tree due to the �-Rule.

x

x x

x

x

x x

LE(x) = {v1 + v2 + · · ·+ vn �� m}

LE(x) = LE(x) ∪ {v1 ≥ 1} LE(x) = LE(x) ∪ {v1 ≤ 0}

LE(x) = LE(x) ∪ {v2 ≤ 0}

LE(x) = LE(x) ∪ {vn−1 ≥ 1}

LE(x) = LE(x) ∪ {vn ≥ 1} LE(x) = LE(x) ∪ {vn ≤ 0}

Figure 35: Expansion tree due to the ch-Rule.

In case of the �-rule, this phase consists of selecting a disjunct Ci with 1 ≤ i ≤ n

from (C1 � C2 . . . � Cn) such that the label of the node is extended with Ci.

• Backward phase This phase usually begins when the current assigned variable

range or the selected disjunct causes a clash. In this case backtracking returns

to the previous choice point and looks for a new extension of the node’s label.

Due to the high degree of non-determinism, the algorithm can easily fail to be scalable

or even practical because the search space is double exponential to the size of the

problem. Exploring the whole search space would inevitably lead to intractability

for all but the smallest problems. Also, näıve backtracking suffers from thrashing

133

(an example of thrashing was given in Section 3.2.1.3 Figure 15) which refers to

rediscovering the same inconsistencies and the same partial successes during search.

Therefore, the practical usability of the algebräıc algorithm can be considered by

designing optimization techniques aiming at reducing the size of the search space

through improved backtracking and finding more efficient ways to explore it through

heuristics.

There are typically two types of procedures that have been designed to improve

backtracking with search based algorithm and CSPs. Those employed before the

search algorithm is started to set a bound on the size of the search space, and those

employed dynamically during the execution of the algorithm to decide which branch-

ing points can be safely pruned from the search space. In the context of SHONR\,

preprocessing optimizations aiming at reducing the number of variables used can

be considered, as well as dynamically improving the pruning power of backtracking

through look back and look ahead optimizations. Look back optimizations aim at guid-

ing backtracking as soon as the algorithm encounters a clash and is ready to backtrack

during a backward phase. Look ahead optimizations aim at discarding choice points

during a forward phase as soon as a non-deterministic rule is applied.

5.2.2 Towards Practical Partitioning

Another source of inefficiency with the algebräıc tableau algorithm is the global parti-

tioning, which comes with an exponential blow up of variables, that if näıvely treated

by the ch-Rule, gives a double exponential worst case algorithm. For example, given

a global decomposition set DS of size d, the atomic decomposition considers 2d parti-

tions while computing a global partitioning on DS. A näıve implementation of such

an algorithm initializes 2d variables, and the ch-Rule considers 22
d
branching points

134

in the worst-case. A näıve implementation is doomed because it runs in double expo-

nential time and space. Even with optimized expansions of the ch-Rule, the algorithm

suffers from an exponential overhead; that of computing the global partitions. On the

other hand, not all partitions need to be considered and the semantic split (nature of

the algorithm) allows a great deal of optimizations. Lazy partitioning and lazy nomi-

nal generation can be used to minimize or delay the effect of the global partitioning,

these techniques are discussed in Section 5.7, and 5.8 respectively.

5.3 Preprocessing Optimizations

This section discusses optimizations that are used before applying tableau expansion

rules, aiming at bounding the size of the search space or determining a fixed order in

which a distribution of nominals is considered.

Given a SHONR\ TBox T , let NR denote the set of role names used in concept

descriptions occurring in T , P denotes a partitioning on the global decomposition

set DS = No ∪ NR′ ∪ NQ (where No is the set of nominals, NR′ is the set of newly

introduced roles after applying Algorithm 4.1.1, and NQ is the set of qualifying con-

cepts), and G denotes a compressed completion graph (CCG). The size of P greatly

affects the size of the search space needed to complete a KB consistency test. Due

to the applicability of the ch-Rule for variables mapped to each partition p ∈ P , the

size of the search space grows exponentially to the size of P . Recall from Section

4.6 that the size of P is exponential to the size of the global decomposition set DS,

#P = 2nr′+no+nq − 1. Therefore, a smaller decomposition set DS means a smaller

number of partitions hence variables. However the size of DS is fixed by the num-

ber of nominals (no), the number of newly introduced roles (nr′), and the number of

qualifying concepts (nq) occurring in T . On the other hand one can exploit TBox and

RBox axioms to detect and discard quasi-noGood (see Definition 5.3.3) and noGood

135

(see Definition 5.3.1) partitions either initially when the global partitioning is being

computed, or during tableau expansion due to an unavoidable clash. This section

presents techniques that can be used to initially discard quasi-noGood and noGood

partitions and we leave it to Section 5.5.2 to discuss techniques that can be used to

dynamically discard such partitions. Recall from Section 4.4.2 that for each partition

p ∈ P corresponds a signature F such that a partition p is empty if F I is empty.

Definition 5.3.1 (noGood partition) A partition p ∈ P is said to be noGood

w.r.t T ′ if the signature, F , of p cannot be satisfied (F I = ∅). In other words,

no domain element can be assigned to this partition without causing a clash, and

therefore p must be empty. This can happen in the following cases given C1, C2

disjoint nominals or disjoint qualifying concepts in T (C1, C2 ∈ No∪NQ) and R1, R2

newly introduced role names in NR′ such that:

• {C1, C2} ⊆ p,

• {R1, R2} ⊆ p with ∀R1.C1, ∀R2.C2 ∈ T ′,

• {C1, R2} ⊆ p with ∀R2.C2 ∈ T ′.

In all cases, the signature F of p is such that {C1, C2} ⊆ F and F I = ∅ w.r.t T ′

because C1 � ¬C2 ∈ T ′. For example, the partition pc = {hC2, hC3} is a noGood par-

tition w.r.t T ′ in Figure 36 because an element j assigned to pc is an hC2-filler and an

hC3-filler for some element i (j ∈ FIL(hC2, i)∩FIL(hC3, i)) such that (i: BusyParent)

and 〈i, j〉 : hC1, 〈i, j〉 : hC2. The element j must satisfy F I such that (j : Female)

because of ∀hC2.Female and (j : Male) because of ∀hC3.Male. However, this is not

possible because Male and Female are disjoint in T which makes F I = ∅.

A noGood partition p cannot be extended with elements from DS to form a new

non-empty partition p′. This is because the unsatisfiability of F is inherent in the

136

signature, F ′, of p′. For example, the partitions pd = {hC2, hC3,Canada} is also a

noGood partition.

Parent � Person� ≥ 1hasChild.Child

BusyParent � Parent ≥ 3hasChild.Female � ≥ 2hasChild.Male

Male � ¬Female

ParentOfACanadian � Person� ≥ 1hasChild.Canadian

Country ≡ {Afghanistan, . . . ,Canada, . . . ,Zimbabwe}

Canadian � Person� ≥ 1bornIn.{Canada}

CanadianResident � Person� ≥ 1livesIn.{Canada}

Person � (Male � Female)� ≤ 1bornIn.Country

(a) TBox axioms occurring in the SHOQ TBox T .

Parent � Person� ≥ 1hC1 � ∀hC1.Child

BusyParent � Parent ≥ 3hC2 � ∀hC2.Female � ≥ 2hC3 � ∀hC3.Male

Male � ¬Female

ParentOfACanadian � Person� ≥ 1hC4 � ∀hC4.Canadian

Country ≡ {Afghanistan, . . . ,Canada, . . . ,Zimbabwe}

Canadian � Person� ≥ 1bI2 � ∀bI2.{Canada}

CanadianResident � Person� ≥ 1lI1 � ∀lI1.{Canada}

Person � (Male � Female)� ≤ 1bI1 � ∀bI1.Country �∀(bornIn\bI1).¬Country

(b) TBox axioms occurring in the SHONR\ TBox T ′ after preprocessing the TBox T .

topObjectProperty

hasChild

hC1 hC2 hC3 hC4

bornIn

bI1 bI2

livesIn

lI1

(c) Extended role hierarchy in R after preprocessing.

Figure 36: TBox axioms in the SHONR\ TBox T ′ after preprocessing the TBox T .

137

Definition 5.3.2 (noGood variable) A variable v ∈ V is said to be a noGood

variable if v is mapped to a noGood partition.

Definition 5.3.3 (quasi-noGood partition) A partition p ∈ P is said to be

quasi-noGood w.r.t T if p is an empty partition and the unsatisfiability of its signa-

ture, F , is caused by a ∀R \R′.C qualification:

• R1 ∈ p and R2 /∈ p with ∀R1.C1 and ∀R \R2.C2 such that R1 � R,R2 ⊆ R ∈ R

and C1 � ¬C2 ∈ T .

For example, The partition pd = {bI2} is a quasi-noGood partition w.r.t T ′ in

Figure 36 with {∀bornIn \ bI1.¬Country}. An element j assigned to pd as a bornIn-

filler and bI2-filler for i : Canadian (j ∈ FIL(bornIn, i) ∩ FIL(bI2, i)) must satisfy F I

such that j: {Canada} because of ∀bI2.{Canada} ∈ T and j : ¬Country because of

∀bornIn \ bI1.¬Country ∈ T . However, this is not possible because now j must satisfy

j: {¬Canada,Canada} because ¬Country ≡ ¬Afghanistan � · · · ¬Canada � · · · ¬Zimbabwe.

Unlike a noGood partition, a quasi-noGood partition’s name p can be extended

with elements from DS to represent a new partition p′ which is not necessarily empty.

For example, the partition pd can be extended with {bI1} to form the partition

pe = {bI1, bI2} and pe is not a quasi-noGood partition nor it is a noGood partition.

This is because the signature, F ′, of pe no longer includes ¬Country, enforced by the

role complement of bI1, and elements in pe do not need to satisfy the qualification

imposed by (∀bornIn \ bI1.¬Country).

138

5.3.1 Initially Bounding the Size of the Search Space

Given a TBox T , a global partitioning (P) on the global decomposition set (DS), a

partition p ∈ P can be safely discarded based on the following techniques.

Using role hierarchy relations Role hierarchy relations allow one to discard

partitions either by enforcing super-role relations or by exploiting the role hierarchy

relations as follows:

• Enforcing super-role relations : a partition p can be safely discarded if p repre-

sents the set of R-fillers (for some Role R ∈ NR) not intersecting with the set of

S-fillers (for some role S ∈ NR) and S is a super-role of R (R � S) in R. This

can be done because when the set of R-fillers does not intersect with the set of

S-fillers, it is assumed to intersect with the complement2 of S-fillers. Therefore p

must be empty because it represents a set of role-fillers violating the semantics of

super-role relations which enforce that every R-filler is also an S-filler whenever

R � S. For example, assuming the role hierarchy shown in Figure 36c is ex-

tended with the following RIAs: hasDaughter � hasChild and hasSon � hasChild,

then the role hasChild is a super-role for hasDaughter and hasSon. Rewriting

the concept expression (≥ 3hasDaughter.Child� ≥ 2hasSon.Child) w.r.t to the

TBox in Figure 36 extends the role hierarchy for hasChild in Figure 36c with

the one shown in Figure 37 where hD1 and hS1 are the newly introduced roles

for hasDaughter and hasSon respectively. The partition pa = {hD1} represents

hasDaughter-fillers that are neither hasSon-fillers ({hS1} ∩ p = ∅) nor hasChild-

fillers ({hC1, hC2, hC3, hC4} ∩ pa = ∅), pa can be safely discarded because every

hasDaughter-filler must also be a hasChild-filler.

2Recall that the a role complement relation is not expressed in the DL SHOQ and the name for
a role complement is not used as part of a partition’s name.

139

topObjectProperty

hasChild

hasDaughter

hD1

hasSon

hS1

hC1 hC2 hC3 hC4

Figure 37: Role hierarchy for hasChild extended with hasDaughter � hasChild and
hasSon � hasChild.

• Exploiting role hierarchy relations : a partition p can be safely discarded if p

represents the set of R-fillers intersecting with the set of S-fillers such that the

roles R and S do not share any super-role or sub-role unless p also represents

a nominal o. This can be done because role-fillers from different parts of a

hierarchy do not necessarily interact, and are sometimes assumed disjoint. For

example, given that hasChild-fillers are members of the concept Child and bornIn-

fillers are members of the concept Country, there is no need to consider the set

of hasChild-fillers intersecting with the set of bornIn-fillers. The only case when

two roles from a different hierarchy would share a role filler is when this role

filler is a nominal. For example, in the case of pb = {bI2, lI1, {Canada}}, the

set of bornIn-fillers interacts with the set of livesIn-fillers for domain elements

(member of Canadian and CanadianResident as defined in Figure 36) that live in

the same country ({Canada}) where they were born even though the roles bornIn

and livesIn do not share any super-role or sub-role. A less restricted version of

this optimization is discussed in [OK99] and is applicable to the DL SHNR\

such that if two roles do not share a sub-role or super-role one can omit the

partitions where their role-fillers intersect.

140

Using disjointness relations A partition p ∈ P can safely be discarded if p can

be identified as a noGood partition due to the disjointness relations between two

concept descriptions C and D (C ≡ ¬D ∈ T) such that given the signature F of p,

the following holds:

• C,D ⊆ F . For example, all partitions pa such that {Canada,USA} ∩ pa �= ∅ can

be safely discarded from P for the TBox shown in Figure 36 because {Canada}

and {USA} are disjoint3 nominals that cannot refer to the same country.

• R, S ⊆ F and ∀R.C, ∀R.D. For example, all partitions pa such that {hS1, hD1} ∩ pa

�= ∅ can be safely discarded from P for the TBox shown in Figure 36 because

sons and daughters are disjoint due to Male � ¬Female.

• C, S ⊆ F and ∀S.D. For example, all partitions pa such that {USA, bI2} ∩ pa �= ∅

can be safely discarded from P for the TBox shown in Figure 36 because bI2-

fillers must be identified with the nominal {Canada} due to ∀bI2.{Canada} and

cannot interact with {USA} due to the disjointness relation between the two

nominals.

In all cases, p is a noGood partition because no element can be assigned to p

without causing a clash. Also, all partitions p′ such that p ⊆ p′ can be safely discarded.

Using told nominal interactions with Roles Some obvious interactions between

nominals and role fillers due to the hasValue constructor or the ∀-constructor can be

exploited to discard partitions.

Definition 5.3.4 (Told Nominal Filler) A nominal o ∈ No is said to be a Told

nominal Filler if o is a qualifying concept (∀R.{o}), or o is subsumed by a qualifying

3The disjointness relation between every two nominals is assumed implicitly in this TBox.

141

concept (∀R.C and C ≡ {o, a, b, c . . .}), for a role R. In this case, R is said to be a told

nominal role. For example, each one of the nominals enumerated in the definition

of Country, in Figure 36, is a Told nominal Filler for the role bI1, and bI2 is a told

nominal role for {Canada}.

A partition p ∈ P can safely be discarded if one of the following interactions

between a nominal and a role holds.

• {R} ⊆ p, R is a told nominal role for {o}, and {o} � p. In this case, p is an

empty partition because having {o} � p implies that p represents the set of R-

fillers intersecting with the complement of {o}, thus violating the semantics of

told nominals with their told nominal roles; R-fillers must intersect with {o} be-

cause R is a told nominal role for {o}. For example, the partition pa = {bI2, bI1}

can be safely discarded from the partitioning for the TBox in Figure 36 because

bI2 is a told nominal role for {Canada} and bI2-fillers must be identified with

{Canada}, but {Canada} � pa. In such cases, p must be empty because it is a

noGood partition and any partition p′ such that p ⊆ p′ can also be discarded.

• {R′′, o} ⊆ p, R′ is a told nominal role for {o}, {R′} � p, and R′ � R ∈ R,

R′′ � R ∈ R, and ∀R \ R′.¬{o} ∈ T . In this case, p is an empty partition

because only R′-fillers can intersect with {o}; all other R-fillers intersect with

the complement of {o}. For example, the partition pa = {{Canada}, bI1} can

be safely discarded from the partitioning for the TBox in Figure 36 because all

bornIn-fillers not intersecting with bI2-fillers cannot be identified with {Canada}.

In such cases p must be empty because it is a quasi-noGood partition.

Discarding partitions using told nominal interactions with roles does not affect

the algorithm’s completeness. This is because a fresh role R′ is introduced by the

rewriting algorithm for each �� nR.C. This means that no R′-fillers will be assigned

142

other than those intersecting with the interpretation of C. Therefore, eliminating

partitioning for R′-fillers not intersecting with the nominal implied by C is safe.

Reducing the size of DS One could reduce a decomposed qualification over the

same role into a single qualification due to the following : ∀R.C�∀R.D ⇐⇒ ∀R.(C�

D). Instead of having two qualifying concepts C, and D for R and the size of NQ is

increased by 2, one would have one qualifying concept E such that (E ≡ C �D) and

the size of NQ is increased by 1. Hence, the size of DS is reduced.

5.3.2 Heuristic Guided Nominal Distribution

During the expansion of a compressed completion graph, the distribution of nominals

over partitions, among the global partitioning P , is somehow decided by the ch-Rule.

In fact, a nominal o can be assigned to a partition p ∈ P only if the variable v mapped

to p satisfies (v ≥ 1) ∈ LE(r0) and o ∈ α(v). In practice, the ch-Rule is applicable

to variables mapped to nominals partitions before any other rule, and the ch-Rule

always branches on v ≤ 0 before branching on v ≥ 1.

The heuristic guided nominal distribution technique aims at minimizing the size

of the search space by guiding the applicability of the ch-Rule in such a way that

the search tree is explored by first considering choice points where each nominal is

distributed over a more promising partition. It does so by exploiting told nominals

and their told nominal roles to guess a distribution for nominals over partitions rep-

resenting told nominal role fillers intersecting with the corresponding told nominals.

Given a told nominal o and its corresponding told nominal role R, a partition p with

{o, R} ⊆ p is considered more promising for o than a partition p′ such that {R} � p′.

For example, when considering the partitioning for the TBox in Figure 36, the parti-

tion pa = {bI2, bI1,Canada} is considered more promising for the nominal Canada than

143

the partition pb = {bI1,Canada}. Such a distribution is considered more promising

because it takes into consideration the interaction between told nominals (Canada)

and their told nominal roles (bI2) in advance.

In order to make sure that nominals are distributed over their more promising

partitions, an ordering of variables is imposed during the application of the ch-Rule.

Since the ch-Rule branches on v ≤ 0 before branching on v ≥ 1, the variables corre-

sponding to more promising partitions are ordered last. By doing this, and considering

a depth-first search, all variables corresponding to less promising partitions for a nom-

inal o are assigned v ≤ 0 until the most promising variable v′ is reached. Once the

ch-Rule is applied on v′, and in order to ensure that the semantics of o is preserved

(see also the ch-Rule look ahead technique in Section 5.4.1), only one branch needs to

be considered: v′ ≥ 1. This optimization only affects the order in which the ch-Rule

branches on variables and therefore does not affect completeness of the algorithm.

5.4 Look Ahead Optimizations For Backtracking

Look ahead optimizations aim at reducing the size of the search space by discarding

choice points as soon as a non-deterministic rule is applied. The following look-ahead

techniques can be applied during the expansion of a compressed completion graph.

5.4.1 ch-Rule Look Ahead

The ch-Rule look ahead technique aims at discarding choice points when the ch-Rule

is applied to a node x, with v occurring in LE(x) and α(v) = p, as follows:

• Discard branching on v ≤ 0. The child graph in which LE(x) is extended with

v ≤ 0 can be safely discarded if one of the following holds:

144

– {o} ⊆ p and all the variables mapped to partitions representing the nomi-

nal o have been assigned to ≤ 0 in LE(x). In this case, the child graph in

which LE(x) is extended with v ≤ 0 will have an arithmetic clash because

the encoded in-equation for the nominal o (ξ({o},=, 1) ∈ LE(x))
4 cannot

be satisfied. Such is the case when the heuristic guided nominal distribu-

tion technique is applied and the ch-Rule is applied to the most promising

variable for a given nominal.

– {R} ⊆ p and assigning v the value zero will render the in-equation (ξ({R},��

, n) ∈ LE(x)) infeasible. For example, the ch-Rule can safely discard

branching on va ≤ 0 if hC1 ∈ α(va) and the in-equation ξ({hC1},≥, 1) be-

comes infeasible because all other variables for hC1 have been identified as

noGood variables.

• Discard branching on v ≥ 1. The child graph in which LE(x) is extended with

v ≥ 1 can be safely discarded if assigning v the value i such that i ≥ 1 results

in an infeasible in-equation for some role R.

Discarding these choice points can be done in one of two ways: either by detecting

obvious clashes or by detecting arithmetic clashes using the Constraint Solver. Note

that when the Constraint Solver is invoked to check the feasibility of the system of

in-equations during a look ahead phase, there is no need to consider integer solutions

only and the solutions do not need to be kept. Looking for real solutions can be

sometimes faster than looking for integer solutions, and during the look ahead phase,

the branching decisions are affected in the cases of infeasibility; if no real solution

exists, for sure no integer one exists either.

4For ease of presentation ξ({o},=, 1) is used as an abbreviation for ξ({o},≥, 1) and ξ({o},≤, 1).

145

5.4.2 �-Rule Look Ahead

The �-Rule look ahead technique aims at discarding choice points when the �-Rule

is applied to a node x with (C1 � C2 � · · · � Cn) ∈ L(x) and n ≥ 2. The child graph

Gi in which L(x) is extended with Ci can be safely discarded if one of the following

holds:

• Infeasible in-equation: If Ci is an at-least restriction (≥ nR) and all variables

mapped to partitions representing R-fillers are noGood variables. The child

graphGi will have an arithmetic clash because the in-equation ξ({R},��, n) ∈ LE(x)

cannot be satisfied and the set of in-equations (ξ(x)) becomes infeasible.

• Clashing concept: if Ci is a concept description (or a nominal) and we have

¬Ci ∈ L(x). The child graph Gi will have a logical clash due to {C,¬C} ∈ L(x).

For example, given a node x such that {(C � (D � E)),¬C} ⊆ L(x), the �-

Rule look ahead discards the branch adding C to L(x) because ¬C ∈ L(x).

Expanding (C � (D � E)) becomes deterministic and adds (D � E) to L(x).

The �-Rule look ahead technique is similar to the boolean constraint propagation

(BCP) (introduced in Section 3.2.1.2) with the advantage of avoiding disjuncts leading

to arithmetic clashes, or leading to a violation of the nominals semantics. Recall that

when the fil-Rule is applied and a node x is created such that o /∈ Lp(x), ¬o is added

to L(x). Hence, the �-Rule look ahead can avoid expansions which result in having

{o,¬o} ∈ L(x).

5.4.3 Active Roles Heuristic

The atomic decomposition technique considers all possible intersections between the

sets of role fillers, nominals, and qualifying concepts, when computing the global

partitioning. Although this global partitioning is required to ensure the completeness

146

a

b c

L(a) = {Parent,Person,≥ 1hC1, ∀hC1.Child, (Male � Female),≤ 1bI1, ∀bI1.Country, ∀(bornIn\bI1).¬Country}

L(b) = {Child} L(c) = {Country, {Afghanistan,USA,Canada, . . . ,Zimbabwe}}

{bI1}{hC1}

Figure 38: Clash free compressed completion graph for Parent.

of the algorithm, not all partitions are used, to distribute domain elements, within

each satisfiability test. Consider for example the clash free CCG in Figure 38 for

the satisfiability test of the concept Parent as defined in Figure 36. The partition

pa = {hC1, hC2} is part of the global partitioning P for T ′, however pa is never used

because no hC2-fillers are needed to satisfy an at-least restriction (≥ nhC2 ∈ L(a)) in

order to decide on the satisfiability of the concept Parent.

The active roles heuristic aims at identifying those partitions that are potentially

used, within a satisfiability test, in order to reduce the size of the search space by

avoiding unnecessary partitions. It does so by labelling partitions that are potentially

used as active partitions for active roles and restricting the applicability of the ch-Rule

to active variables only.

Definition 5.4.1 (Active Variable) a variable v mapped to a partition p is said

to be active if the corresponding partition p is an active partition.

Definition 5.4.2 (Active Partition) A partition p ∈ P is said to be active w.r.t

T if every R ∈ (p ∩ NR′) is an active role. Also, all the qualifying concepts in p are

qualifying concepts for active roles. For example, given the TBox in Figure 36 such

that the role names in NR′ ∪ NR follow the hierarchy shown in Figure 36c, and the

CCG G as shown in Figure 38. The partition pa = {hC1, bII} is an active partition

147

because ≤ 1bI1 ∈ L(a) and ≥ 1hC1 ∈ L(a). However, the partition pb = {hC1, hC2}

is not an active partition because there does not exists a node x ∈ G such that

(�� nhC2) ∈ L(x).

Definition 5.4.3 (Active Role) A role R ∈ NR′ is said to be active if there exists

a node x in G such that �� nR ∈ L(x), ��∈ {≤,≥}. For example, given the CCG

shown in Figure 38 the role hC1 is an active role because (≥ 1hC1 ∈ L(a)).

The set of active roles is updated every time the ��-Rule is fired to a node x and is

propagated to a node y whenever an edge is created between the node x and y. Also

when encoding number restrictions into in-equations only active variables are consid-

ered. By delaying the applicability of the ch-Rule until a variable is being activated,

this heuristics helps avoid unnecessarily branching on variables until it becomes nec-

essary. In other words, this heuristics delays the use of all global partitions, and it

is maximally effective in cases of having disjunctive or nested QCRs, otherwise all

partitions are activated.

This optimization can interact with the heuristic guided nominal distribution tech-

nique because a told nominal role may not yet be activated initially (when the ch-rule

is applied for nominal variables on ro the set of active roles is empty). However the

active roles heuristic can be set to automatically activate told nominal roles.

5.5 Look Back Optimizations for Backtracking

Back-jumping or conflict-directed backtracking are improved backtracking methods

adapted to DL reasoning as dependency directed backtracking (DDB) [HT99] (intro-

duced in Section 3.2.1.3). While adopting existing DDB techniques for DL reasoning

helps prune the search space due to the � rule, this technique does not prune the

148

choice points due to the ch-Rule, which is the rule responsible for the double expo-

nential blow up of the search space. This section shows how backtracking can be

optimized during the following two phases:

• Phase 1 - Back-jumping - During this phase an adapted form of DDB analyzes

the source of a clash and decides how far to backtrack.

• Phase 2 - Learning - After consulting the sources of a clash, the algorithm can

learn that a certain partition is a noGood partition or a quasi-noGood partition.

This learned information is recorded as new constraints in form of quasi-noGood

and noGood variables.

5.5.1 Backjumping

Recall from Section 3.2.1.3 that DDB aims at safely bypassing choice points; it works

by replacing choice points that caused a clash with ones that are more promising

to succeed. Once a clash is encountered, the clash sources are analyzed in such a

way to allow the algorithm to back-jump to a choice point in the search space where

the same clash is avoided. In the case of reasoning with SHONR\, three types of

clash handlers are considered for analyzing the sources of a clash and setting the next

choice point to visit in such a way that the clash is avoided.

Logical clash handler The logical clash handler is invoked whenever a logical

clash is encountered in the label of a node x with {C,¬C} ⊆ L(x) and C is a concept

expression. Once this clash handler is fired, the dependencies of C and those of

¬C are consulted for alternative choice points where either the source of C, or the

source of ¬C, is not enforced on x. The algorithm is then set to back-jump to the

nearest choice point. If no alternative choice point is found this means that C and

¬C are always enforced on x and no clash-free CCG G with x ∈ G exists. In this

149

case the node x is a representative for a noGood partition p because no element can

be assigned to p without causing a clash. The variable vx, representing the partition

for x, is therefore a noGood variable and the algorithm can safely back-jump to the

choice point where vx ≤ 0 thus bypassing all the choice points for vx ≥ 1.

�-Rule clash handler Sometimes applying the �-Rule to a node x with (C1 � C2

� · · · � Cn) ∈ L(x) returns an empty list of child graphs. This can happen when

the �-Rule look ahead optimization (introduced in Section 5.4.2) is enabled and all

child graphs Gi (1 ≤ i ≤ n), each extending L(x) with Ci, must be discarded because

they lead to obvious clashes. In this case, the �-Rule clash handler is fired and the

dependencies of (C1, C2, . . . , Cn) are consulted for alternative choice points where

the source of one of (C1, C2, . . . , Cn) is not enforced on x. The algorithm is then

set to back-jump to the nearest choice point if one exists. Otherwise, similar to the

case with the logical clash handler, vx is set as noGood and the algorithm can safely

back-jump to the choice point where vx ≤ 0.

Arithmetic Clash Handler The arithmetic clash handler is used to detect and

handle obvious arithmetic clashes. An obvious arithmetic clash is detected when

an in-equation cannot be satisfied due to the assignment of the occurring variables;

adding such an in-equation to ξ(x) in LE(x) will render the set of in-equations infea-

sible because it cannot be satisfied. By detecting these arithmetic clashes the clash

handler can avoid unnecessary runs of the Simplex procedure, and allow a smart

back-jumping to a graph where the in-equation is not necessarily infeasible. The

arithmetic clash handler is invoked every time an unsatisfiable in-equation is encoun-

tered by considering the following cases:

• The in-equation is an at-least restriction and all the (active) variables are as-

signed values such that the cardinality of the in-equation is not satisfied.

150

– All the variables are noGoods. This clash can be detected as early as when

the ��-rule is being applied to a node x for an expression �� nR, the variable

assignment for R is checked and the node is set to have an arithmetic clash.

– The sum of the variable values assigned by Simplex does not satisfy the

cardinality. For example, if all the variables have been assigned to ≤ 0

by the ch-Rule. This clash can be detected as early as when the ��-rule is

being applied to a node x having ≥ nR ∈ L(x). In case the in-equation

is not encoded, the clash handler randomly chooses a variable v which is

not a noGood and back-jumps to the branching point where v is assigned

to ≥ 1 by the ch-Rule. If no other variable assignment is possible then the

in-equation cannot be satisfied for the node, and the clash handler checks

for alternative choice points for x where the in-equation is not added to

the label. If no such alternative exists, the node x is set to noGood.

• The in-equation is an at-most restriction and all variable assignments (due to

previous runs of Simplex) do not satisfy the cardinality (their sum is greater

then the cardinality). For example, if all the non-zero variables are nominal

variables, then these variables can only be assigned the value 1. If there are

more nominal variables than the cardinality, then the in-equation is infeasible,

and the handler chooses a non-nominal variable vR mapped to the partition

representing R-fillers for the corresponding role R, and sets the algorithm to

back-jump to the choice point where vR ≤ 0.

• ch-Rule: if the ch-Rule is being applied to a node x on a variable va for a

nominal o or a role Ra and the list of child graphs is empty because va cannot

be ≤ 0 nor ≥ 1 while satisfying the in-equation for Ra (ξ(Ra,��, n)) or the

semantics of the nominal o (ξ(o,��, 1)). This means that a different distribution

of the variables for o is required. When this clash handler is fired, it randomly

151

picks an active variable vb which is set to vb ≤ 0 in the current branching graph

and sets the algorithm to back-jump to the branching graph where vb ≥ 1.

• Nodes are always checked for an arithmetic clash with an at-least restriction

where all the active variables become noGoods.

This optimization can interact with the active roles heuristic optimization. For

example, in the case when the clash handler chooses a variable vp and sets the al-

gorithm to back-jump to the CCG G′ with vp ≥ 1, but the partition p mapped to

vp is such that R ∈ p for a role R that is not yet activated in G′. Expanding G′

with vp ≥ 1 is not possible because the active roles conditions for the applicability of

the ch-Rule cannot be met. In order to ensure completeness, the set of active roles

is back-propagated as follows: once a clash occurs at a given node x such that the

algorithm is set to back-jump to G′, the set of active roles for x is copied either to x

in G′, or to ro if x is a role-successor that is not yet created in G′.

5.5.2 Learning

A partition p which survives the partition elimination techniques during preprocessing

is not necessarily non-empty. This is because some clashes (see Definition 4.5.5)

cannot be easily detected by examining TBox and RBox axioms. The algorithm

might assign elements to a partition p and discover later that assigning elements to

p leads to unavoidable clashes and therefore p must be empty. Since the algorithm

discovers those empty partitions due to clashes, clash handlers are adapted to detect

and set quasi-noGood or noGood partitions by studying the sources of a clash (as

described in the previous section). However, the same noGood may be rediscovered

over and over again as the algorithm explores different branches in the search space.

To avoid running into the same clash, the back-jumping algorithm can be augmented

152

with a learning phase which is called back-jump learning, and which is responsible for

capturing the characteristics of a clashing partition as well as learning which elements

are responsible for the clash in order to detect other non-empty partitions. The

learned information about empty partitions is recorded as global noGood variables.

Back-jump Learning Whenever a clash handler encounters a clash with no al-

ternative choice point for the clashing descriptions, the search algorithm is said to

encounter a dead-end. The back-jump learning technique can be implemented as soon

as a dead-end is encountered and just before the algorithm is ready to back-jump.

Back-jump learning works as follow:

• Once a dead end is encountered identify the clashing node’s partition, p.

• Identify the partition elements responsible for the clash. For example, if p =

{S1, R1, R2, o1} and the clash encountered was due to {C,¬C} ∈ L(x) then the

dependencies for C and ¬C are checked. If the dependency for C is ∀R1.C and

the dependency for ¬C is ∀R2.¬C, then this means that R1 and R2 are the

elements of p responsible for the clash. One might argue that such partitions

might already have been eliminated due to the disjoint qualification technique.

However, these cases might not be as obvious; consider for example (≥ 1S1 �

∀S1.(≥ 1R1 � ∀T.C)� ≥ 1R2 � ∀R2.¬C) with R1 � T , R2 � T .

• Learn the clashing combination of role fillers and generalize. For example, if

having {R1, R2} ⊆ p inevitably leads to a clash, then one can learn that every

partition p′ having {R1, R2} ⊆ p′ is inevitably empty. For every learned empty

partition p′, the noGood constraint is recorded as an index to the single variable

mapped to p instead of storing p and its signature.

This learning technique enables some form of caching (see section 3.2.1.4) the

unsatisfiability of the signature of a noGood partition. Unlike caching, and due to

153

its learning phase, this technique does not work with problems of repeated structure

only. It is also estimated not to degrade performance like known learning algorithms

for graph-based search where the recorded dependencies and learned information

cause performance degradation in some cases. The mapping between variables and

partitions, allows noGood constraints to be stored as indexes for the corresponding

variables (see Chapter 6 for more details on how the indexing of variables is done).

Even in the case of assigning multiple noGoods, the process of storing and retrieving

noGoods is not expected to degrade performance.

5.6 Look Ahead with Back-jumping

The look ahead techniques presented in the previous sections aim at discarding choice

points of non-deterministic rules. In some cases of applying these non-deterministic

rules, the look-ahead techniques discard all possible choice points resulting in an

empty list of child graph. When this happens, no further expansion of the CCG

is possible and näıve backtracking is triggered. In the case of the ch-Rule, the look

ahead technique is adapted with smarter back-jumping than näıve backtracking using

the ch-Rule back-jumping heuristics.

ch-Rule backjumping heuristic The ch-Rule back-jumping heuristics chooses a

variable v and sets the algorithm to back-jump to the branching point where the

choice for v is more likely to succeed. Here is how it works: if the ch-Rule is applied

to a node x with v ∈ LE(x), and

• the choice point for v ≤ 0 is discarded because the in-equation in LE(x) encoding

an at-least restriction becomes infeasible, and

• the choice point for v ≥ 1 is discarded because v is a noGood variable.

154

Then choose a variable vb within the set of variable occurring in LE(x) and set the

algorithm to back-jump to the choice point where vb ≥ 1. The intuition is that the

completion graph G′ with vb ≥ 1 ∈ L(x) is more likely to be clash free. In order to

preserve completeness, this heuristic guesses the variable with the closest branching

point.

5.7 Lazy Partitioning

The optimization techniques presented in the previous sections affect either the num-

ber of choice points a non-deterministic rule can have, or the number of times a

rule can fire. For example, the active roles heuristic affects the number of times

the ch-Rule can fire by restricting its applicability to active variables. On the other

hand, these techniques do not avoid the overhead of computing exponentially many

partitions. This is because a partition is computed before it is flagged as quasi-

noGood, noGood, or active and there are exponentially many partitions5. This means

that the algorithm is best-case exponential because computing all partitions initially

requires exponentially many steps and is likely to cause an exponential number of

(quasi-noGood, noGood, or active) checks to be triggered. On the other hand, such

exponential computational overhead is sometimes unnecessary. Consider the CCG

G shown in Figure 39 where applying the �-Rule to the node x returns a list of

child graphs G1, . . . , Gi where L(x) is extended with (≥ njRj � ∀Rj.D) in each Gj,

(1 ≤ j ≤ i). In each graph Gj the satisfiability of (≥ njRj � ∀Rj.D) is checked inde-

pendently. In a sense, Rj-fillers do not interact with Rj−1 or Rj+1-fillers and therefore

computing the partitions where these R-fillers intersect is unnecessary.

5The total number of partitions is exponential to the size of DS as defined in Chapter 4 Lemma
4.6.1 as #DS = #{NR′ ∪NQ ∪NO}.

155

x in G

x in G1L(x) = L(x) ∪ {(≥ n1R1 � ∀R1.D)} x in Gi L(x) = L(x) ∪ {(≥ niRi � ∀Ri.D)}

�-Rule

L(x) = {≥ mS1, ∀S1.E, ((≥ n1R1 � ∀R1.D) � · · · � (≥ niRi � ∀Ri.D))}

Figure 39: Expansion tree of a clash free CCG which shows that initially computing
a global partitioning is not necessary.

Lazy partitioning aims at delaying the process of computing partitions for a certain

role R until necessary. It does so by applying partitioning incrementally at each

node using an incremental decomposition set. The incremental decomposition set is

composed of nominals and active roles only. This is because until a role R is active

there is no need to consider the partitions for R-fillers. Here is how it works: the set

of active roles for a CCG G is defined as AR = {R| R is active} (See definition 5.4.3

for a formal definition of active roles). A role R is activated and added to AR every

time the ��-Rule is applied to a node x. An incremental decomposition set for G is

defined as IDS =
⋃

R∈ARDR ∪No ∪NQ
6 and an incremental partitioning set IP is

defined as an incremental partitioning on IDS. Every time the ��-Rule is applied to

a node x for �� nRa ∈ L(x), Ra is added to IDS and the incremental partitioning

set is expanded such that IP = IP ∪
⋃

p∈IP(p ∪ {Ra}) ∪
⋃

o∈No
{Ra, o} ∪ {Ra}7. In

the case of the example in Figure 39, the IDS for G1 consists of {S1, R1} which is

6Note also that NQ denotes the set of the qualifying concepts for active roles only.
7With the assumption that nominals are disjoint, only one nominal is included in a partition.

Otherwise intersections between nominals need also to be considered.

156

greatly smaller than the global decomposition set DS = {S1, R1, . . . , Ri} and only 22

partitions need to be computed instead of 2i+1 partitions.

This technique can greatly reduce the size of the search space. However, similar

to the active roles heuristics, and if not carefully implemented, this technique might

interact with other optimizations such as backjumping and violate the completeness of

the algorithm. Therefore, every time back-jumping is triggered the set of active roles

is back-propagated and partitions are considered even if these roles are not activated

in the graph where the algorithm is set to back-jump. Also, every time the ch-Rule

back-jumping heuristics needs to guess a variable, it must choose an active one.

5.8 Lazy Nominal Generation

As a first step, the hybrid algebräıc algorithm always guesses an initial distribution

of all nominals occurring in the TBox. Considering all nominals distributions is

necessary to ensure the completeness of the algorithm. However, in some cases,

similar to what was discussed in the previous section not all nominals come into play

in each satisfiability test.

For example, there exists cases where nominals do not interact with Roles. Com-

puting intersections of these nominals with every Role in DS (IDS) becomes an

unnecessary overhead. The lazy nominal generation technique aims at delaying the

generation of nominal nodes until it becomes necessary. It does so by exploiting Told

nominal relations with their told nominal roles, such as as soon as a told nominal

role is activated, the corresponding Told nominal can be activated as well. Once a

nominal is activated, it is considered within the decomposition set where its interac-

tion with Roles is taken into consideration. Otherwise, and in order to preserve the

nominals semantics, the nominal is distributed over a partition p representing the

nominal itself without intersecting with any element in DS (IDS).

157

5.9 Discussion

The optimizations presented in this chapter focus on optimizing consistency reasoning

through optimizing the satisfiability testing. This does not mean that the algebräıc

reasoning algorithm is not amenable to other optimizations developed to simplify and

preprocess the ontology such as lazy unfolding and absorption (introduced in Chapter

3) which have been widely used to reduce the size of the search space due to a large

number of axioms in the TBox. In fact, this chapter focuses more on optimizations

aiming at improving the satisfiability test where the complexity is due to the hybrid

nature of the algorithm.

The preprocessing optimizations discussed to initially bound the size of the search

space not only minimize the size of P by avoiding unnecessary computations of noGood

partitions, but also minimize the number of choice points of the non-deterministic ch-

Rule which becomes deterministic with noGood variables. If the ch-Rule is applied

to a node x with a noGood variable v, then the number of child graphs is reduced to

1 because the only possible choice point for v is v ≤ 0. In this case, the label LE(x)

can be extended without creating a child graph as is done with deterministic rules.

On the other hand, a possible drawback of using role hierarchy relations to enforce

the RBox hierarchy relations is that the re-use of individuals becomes restricted to

those identified with nominals and role fillers.

The �-Rule look ahead optimization can be seen as some form of boolean con-

straint propagation (BCP) on the disjuncts allowed in a node’s label. Therefore its

effectiveness could be relatively limited and problem dependant. The use of noGoods

during back-jump learning can be seen as a form of caching the unsatisfiability of the

signature of the noGood partition.

Dependency directed backtracking (DDB) is adopted by most tableau-based rea-

soners due to its efficiency. The advantage of the technique presented in this chapter

158

over the well known DDB, for DL reasoning, is that the dependencies for a con-

cept description, within the label of a node, can be tracked down to the application

of one non-deterministic rule. Whereas with tableau algorithms implementing the

non-deterministic choose-Rule (as introduced in Section 2.2.2), the dependencies of a

concept description within the label of a node need to consider the dependencies due

to the application of two non-deterministic rules: the choose-Rule and the �-Rule.

The interaction between the two dependencies has been linked to the performance

degradation of tableau reasoners with QCRs. This interaction has also been identified

as an open problem rather than an implementation detail [Hor02].

The active role heuristic and the lazy partitioning optimizations both simulate

some form of local partitioning, as in [Far08], by using the partitions that are locally

applicable to a node. This can greatly enhance performance with SHQ TBoxes

where a global partitioning is not necessarily required. The advantage of using these

optimizations is best reached in case of disjunctive (≥ nR� ≥ nS) or nested (≥

nR � ∀R.(≥ nS)) QCRs. In case of disjunctions and when branching on ≥ nR

there is no need to consider intersections with S and vice versa. The challenge

with these optimizations is that once enabled the algorithm loses some kind of a

look-ahead especially with the heuristic guided nominal distribution optimization.

If a told nominal role is not yet activated one cannot favour a nominal partition

intersecting with this role. However, one can still adapt lazy partitioning and active

role heuristic so that when nominals partitions are initially computed, the atomic

decomposition still considers the partitions where nominals intersect with their told

nominal role fillers even if the corresponding roles are not yet activated. Unlike the

active partitions heuristic, Lazy partitioning does not compute partitions until all

corresponding Roles have been activated. The active role heuristic does not avoid

computing a global partitioning and therefore is likely to be less efficient than lazy

159

partitioning.

Lazy nominal generation is very similar to the lazy forest generation [PCS06]

technique (introduced in Section 3.2.1.6), used to delay the generation of nominals

until necessary. However, once a clash occurs lazy forest generation does not avoid

computing the initial forest, whereas lazy nominal generation propagates information

through back-jumping.

Finally, it would be interesting to investigate if the form of caching enabled by

the back-jump learning technique could be exploited to yield a single exponential

algorithm as in [MM00, Din08].

5.10 Conclusion

This chapter discussed a range of optimization techniques that can be used to improve

non-determinism in the algebräıc reasoning algorithm. Some of these techniques are

based on existing well known optimizations for search based tableau algorithms in

general, and DL tableau algorithms in particular such as DDB. However, they are

designed and adapted to work with the algebräıc reasoning approach. The primary

goal of discussing the optimizations is to prove the utility of the algebräıc algorithm

in realistic applications. This will be assessed in Chapter 7 through an empirical

analysis.

160

Chapter 6

HARD - A Hybrid Algebräıc

Reasoner for DL

This chapter presents a prototype Hybrid Algebräıc Reasoner for DL (HARD). HARD

is based on the algebräıc tableau reasoning algorithm presented in Chapter 4, and

implements the optimization techniques discussed in Chapter 5. HARD will be used

as a test bed for ReAl DL (Reasoning Algebräıcally with DL). The main goal of HARD

is to show the practical merits of combining algebräıc reasoning with standard tableau

reasoning for DL with nominals and QCRs, as well as the impact of the optimization

techniques proposed. Given an ontology file, HARD decides whether the underlying

ontology is consistent or not. This chapter presents the general architecture of HARD

which is implemented using JAVA (JRE 1.6) and OWL-API (2.2)1 and consists of

the following main components:

• Ontology Loader - The Ontology Loader is responsible for loading an ontology

selected by the user. The Ontology Loader is described in Section 6.1.

1http://owlapi.sourceforge.net/

161

• Configuration Controller - The Configuration Controller is responsible for check-

ing and storing different user preferences such as which optimizations to enable

or disable. The Configuration Controller is described in Section 6.2.

• Reasoner Manager - The Reasoner Manager is responsible for managing the

tasks between the different components of HARD. It is described in Section 6.3.

• Preprocessor - The Preprocessor is responsible for making sure that the input

ontology is of the format accepted by the reasoner by applying the preprocessing

algorithm required for ReAl DL. It is described in Section 6.4.

• Tableau Reasoner - The Tableau Reasoner is responsible for applying the tableau

expansion rules in the proper order. It is described in Section 6.5

• Constraint Solver - The Constraint Solver is responsible for solving the set of

in-equations generated by the Tableau Reasoner using the Simplex [CLRS01]

procedure. It is described in Section 6.6.

• Clash Handler - The Clash Handler is responsible for detecting and handling

clashes. Different clash handlers are used to detect and handle different types

of clashes. The Clash Handler is described in Section 6.7.

6.1 Ontology Loader

The Ontology Loader allows HARD to accept a test case ontology in the form of .owl

file designed using an ontology editor such as Protégé2 and saved in the RDF/XML

format.3 One can load an ontology by selecting an .owl file residing on the computer

directory. The ontology file is loaded into an OWLOntology object that is manipulated

by the OWL-API.

2http://protege.stanford.edu/
3http://www.w3.org/TR/rdf-syntax-grammar/

162

6.2 Configuration Controller

The Configuration Controller allows HARD to fetch user preferences before running a

KB consistency test. These preferences are stored as static global variables members

of a Preferences class which is also global. Based on the different components of

HARD, there are different types of preferences that can be enabled. They can be

grouped as follows:

Reasoner Preferences To assess the performance of ReAl DL, one needs to com-

pare it against existing reasoning algorithms implemented by SOTA (state-of-the-art)

reasoners. Therefore, JAVA APIs for each of those reasoners have been integrated

into HARD’s application implementation. These preferences allow the user to select

the reasoner to perform the KB consistency check. A user interface with radio buttons

allows the user to select one of:

• Fact++(version 1.4.1):4 a highly optimized tableau-based DL reasoner imple-

mented in C++ and supporting OWL-DL5 and partially OWL 2.6 A system

description of Fact++ can be found in [TH06].

• Hermit (version 1.2.3):7 a recent hypertableau-based DL reasoner implemented

in JAVA and supporting OWL 2.

• Pellet (version 2.2.0):8 a highly optimized tableau-based DL reasoner imple-

mented in JAVA and supporting OWL 2. Pellet was the first DL reasoner

to handle nominals [PCS06]. A system description of Pellet can be found in

[SPG+07].

4http://code.google.com/p/factplusplus/
5OWL-DL is a sublanguage of OWL which places a number of constraints on the use of the OWL

language constructs. See http://www.w3.org/TR/owl-ref/ for more details.
6http://www.w3.org/TR/owl2-overview/.
7http://hermit-reasoner.com/
8http://clarkparsia.com/pellet/

163

• RacerPro (version 2.0):9 a highly optimized tableau-based DL reasoner imple-

mented in LISP and supporting the DL SHIQ. RacerPro implements algebräıc

reasoning for dealing with QCRs based on the algorithm presented in [HTM01].

RacerPro tests are invoked using JRacer 2.0.10 A system description of Racer

can be found in [HM01b]. A system description of Hermit can be found in

[SMH].

• HARD: a prototype reasoner based on ReAl for the DL SHOQ implemented

in JAVA and equipped with the optimization techniques discussed in Chapter

5. Due to time constraints, HARD does not handle qualifying concepts (see

Section 6.8 for more details) and is described in detail in the following sections.

Optimizations Preferences In order to assess the efficiency of the optimization

techniques proposed in the previous chapter, one can select which optimizations to

enable during the reasoning procedure. A user can turn an optimization ON or OFF.

Among the optimizations discussed in Chapter 5, note that the ch-Rule look ahead

optimization described in Section 5.4.1 is implemented in such a way to detect obvious

arithmetic clashes. Invoking the Constraint Solver during the look ahead phase of

this optimization was not implemented due to time constraints.

Constraint Solver Preferences The generated system of in-equations can be

solved using Simplex methods. The user can choose between using an integrated

implementation of the Simplex procedure as in [Far08], and using the LPSolver11

which is a JAVA-based API designed to solve linear programming problems using

the Simplex method. Both implementations rely on branch and bound techniques in

finding the integer solution.

9http://www.racer-systems.com/
10JRacer is network-based client JAVA API for accessing RacerPro.
11http://code.google.com/p/lpsolver/

164

If the LPSolver is selected, the user can select more preferences such as setting the

objective function to minimize one of the following sets of variables: those that have

been assigned by a previous solution, those occurring in at-most restrictions only, or

all variables.12

Output Preferences

• Generate a log file. When this option is enabled, and the HARD reasoner is

selected, a file name SHOQ-‘‘ontologyfilename’’-log.txt is generated. This

file contains a trace of each function called along with time stamps and error

descriptions. This log helps debugging the system and monitoring the flow

between the different reasoner components. The log file helps the process of

validating the execution of the algorithm and allows a better tracking of errors.

In case of an exception or an error, it is easy to report the last execution before

the error and trace it back.

• Generate a statistics file. When this option is enabled during execution of the

reasoning procedure, information regarding the execution of the consistency

test is collected. When the HARD reasoner is selected, this information in-

cludes: preprocessing time, partitioning time, run-time, number of arithmetic

clashes, number of logical clashes, etc. Otherwise, the file contains the times

taken to initialize the selected reasoner, load the ontology file, preprocess the

ontology, and perform a satisfiability test along with the total time since ini-

tialization. At the end of the TBox consistency test an excel file is gener-

ated Runtime-‘‘ontologyfilename’’.xls containing the collected informa-

tion. This file allows one to find out where most of the time is spent and which

types of clashes are more frequent etc.

12Setting the objective function to maximize was much slower and therefore it was disabled.

165

• Generate a compressed completion graph file. When this option is enabled and

in case the input ontology is consistent, the CCG information is printed into a

separate text file named CCGraph.txt. This file helps validate the completion

model generated by HARD.

• Generate an ontology information file. When this option is enabled, a file named

SHOQ-onto.txt is generated containing information about the preprocessed on-

tology in SHONR\ including information collected when preprocessing the on-

tology (e.g. the total number of nominals, QCRs, etc).

When the performance is evaluated only the “generate statistics file” is enabled, as

generating the other files results in unnecessary overhead.

6.3 Reasoner Manager

As shown in Figure 40, the Reasoner Manager is responsible for the overall program

flow. It coordinates and manages different tasks between different components. The

Reasoner Manager first passes the preferences selected by the user to the Configura-

tion Controller, and then passes the ontology file to the Ontology Loader, which in

turn loads the ontology into an OWLOntology object that can be manipulated using

the OWL API. The corresponding Preprocessor is then invoked (based on the selected

reasoner) to apply the rewriting algorithm on the ontology object. Once preprocess-

ing is completed, the ontology is passed to the Tableau Reasoner which performs a

KB consistency test. In the case of the HARD reasoner being selected, and during

execution of the tableau expansion rules, the Reasoner Manager takes care of calling

the Constraint Solver with the encoded in-equations and returning the solution to the

Tableau Reasoner. Whenever a clash occurs, the Reasoner Manager makes sure that

the appropriate Clash Handler is triggered. Upon completion, the Reasoner Manager

166

generates the output files based on the preferences selected by the user.

:ReasonerManager :ConfigController :OntLoader :Preprocessor :Reasoner

loadOWLFile()

setPreferences()

applyPreprocessing()

checkConsistency()

generateOutputFiles()

Figure 40: General sequence diagram showing the control flow of the Reasoner Man-
ager.

6.4 Preprocessor

The Preprocessor applies the necessary processing to the OWLOntology object loaded

by the Ontology Loader and returning the new processed OWLOntology object to the

Reasoner Manager. Preprocessing is performed directly on the OWLOntology object

without affecting the original ontology file.

Since the OWL API is used to manipulate the ontology object (OWLOntology),

we show the correspondence between DL syntax and OWL syntax in Table 4 and use

the OWL syntax when referring to implemented procedures throughout this chapter.

Preprocessing is performed in case the HARD reasoner was selected. Otherwise, each

reasoner’s API is responsible for applying any necessary preprocessing required. Pre-

processing an OWLOntology object before passing it to the Tableau Reasoner involves

the following procedures:

167

SHOQ DL notation OWL notation

C � D SubClassOf(C D)

C ≡ D EquivalentClasses(C D)

� Thing

⊥ Nothing

¬C ObjectComplementOf(C)

C �D ObjectIntersectionOf(C D)

C �D ObjectUnionOf(C D)

≤ nR.C ObjectMaxCardinality(nRC)

≥ nR.C ObjectMinCardinality(nRC)

≥ nR.C� ≤ nR.C ObjectExactCardinality(nRC)

∀R.C ObjectAllValuesFrom(RC)

R � S SubObjectProperty(RS)

Concept name A OWLClass

C, A, {o}, R OWLObject

{o} OWLIndividual

R OWLObjectProperty

Table 4: Correspondence between DL syntax and OWL syntax.

Enforcing negation normal form Since all concept descriptions (referred as

OWLDescription) are assumed to be in their negation normal form (NNF), as intro-

duced in Definition 2.2.1 of Chapter 2, this procedure replaces all OWLDescriptions

occurring in OWLOntology with their NNF (i.e., negation occurs only in front of con-

cept names or nominals).

168

Converting SHOQ descriptions to SHONR\ descriptions Since the reasoning

algorithm handles expressions conforming with the syntax and semantics of the DL

SHONR\ as introduced in Section 4.1.1, OWLDescriptions are replaced with equisat-

isfiable ones in the SHONR\ NNF format. This is done by implementing Algorithm

4.1.1, which is the rewriting algorithm responsible for rewriting QCRs into unqualified

cardinality restrictions and extending the role hierarchy with the newly introduced

roles, as introduced in Section 4.1.1.

Collecting the global decomposition set elements When OWLDescriptions

are being processed, the set of role names (NR) occurring in OWLOntology is formed

as a set of OWLObjectProperty objects. This set is extended with the set of NR′ every

time a newly introduced role is created. Similarly the set of nominals (No) is formed as

a set of OWLIndividual objects and is extended every time a nominal is encountered

within an OWLDescription. The set of qualifying concepts is not maintained because

qualifying concepts are not handled by the prototype reasoner.

Bookkeeping told nominals and their roles As OWLDescriptions are pro-

cessed, they are also analyzed (depending on which optimization is turned on) in

such a way that told nominals are identified and stored.

Note that the bookkeeping of negated qualifying concepts as required for the han-

dling of qualifying concepts is not implemented because the prototype reasoner does

not handle qualifying concepts (See Section 4.1.1 for a review on the handling of qual-

ifying concepts). Hence, even though the resulting DL SHON\R is not closed under

negation, the reasoner will no longer negate an OWLDescription after preprocessing

is complete.

169

6.5 Tableau Reasoner - Inference Engine

The Tableau Reasoner implements the tableau calculus presented in Section 4.5 and

is responsible for deciding on a KB consistency check. It does so by constructing

a compressed completion graph (CCGraph) using the tableau expansion rules while

ensuring that these rules are applied in the proper priority by enforcing a rule appli-

cation strategy. This reasoner works on a CCGraph object, as illustrated in Figure 41,

which consists of a set of proxy nodes (pNodes) and a set of edges (pEdges) between

these nodes. Each proxy node object (ProxyNode) contains an OWLIndividual in-

stance (owlInd) representing a domain element or a nominal, and a cardinality value

(cardinality) denoting the number of elements represented by this proxy node. If

the proxy node represents a nominal, then the cardinality value is set to 1; otherwise,

it is set to a non-negative integer value.

ProxyNode

owlInd

cardinality

conceptLabel

inequationLabel

. . .

CCGraph

pNodes

pEdges

. . .

Edge

iNode

oNode

edgeLabel

. . .

Figure 41: Representation of the CCGraph object class.

Each Edge object consists of an incoming node (iNode), an outgoing node (oNode),

and a label (edgeLabel) representing the role relations between the individuals rep-

resented by the two nodes. The Tableau Reasoner builds a CCGraph by applying

expansion rules on each node in pNodes until a clash is detected or no more rules are

applicable.

170

:ReasonerManager :TableauReasoner :ConstraintSolver :ClashHandler

checkConsistency()

computeGlobalPartitioning()

applyTableauRulesPriorityI()

handleClash()

applyTableauRulesPriorityII()

handleClash()

applyTableauRulesPriorityIII()

findSolution()

handleClash()

LoopLoop

generateOutputFiles()

Figure 42: General sequence diagram for the HARD Tableau Reasoner performing a
consistency test.

Figure 42 shows the main steps handled by the Tableau Reasoner during a KB

consistency check. At first, a CCGraph G is initialized with only one node (rNode) in

pNodes. rNode represents the node r0; the owlInd is set to null and the cardinality

value is set to zero because r0 does not represent any domain element. In order to

initialize the node’s in-equation label with the encoding of the nominals semantics,

the global partitioning is computed by calling the computeGlobalPartitioning()

procedure.

171

EuropeanCountry �≥ 1locatedIn.Continent � ∀locatedIn.{Europe}

Continent ≡ {Asia,Europe}

Figure 43: TBox axioms representing a European country concept description.

computeGlobalPartitioning() This procedure is responsible for computing global

partitioning. It starts by combining the elements of the sets of NR′ and No col-

lected at preprocessing into DS represented as an array (DecSetArray consisting

of OWLObjects). For example, consider the decomposition set corresponding to the

TBox shown in Figure 43, DS = {locatedIn,Asia,Europe}13 such that we have the

following sets of nominals No = {Europe,Asia}, and role names NR = {locatedIn}, the

array representing DS is as follows: DecSetArray = [locatedIn, Asia, Europe] which

means that:

DecSetArray[0] = locatedIn

DecSetArray[1] = Asia

DecSetArray[2] = Europe

A hashMap, DecSetIndexMapping, keeps a mapping between OWLObjects and their

corresponding array index in DecSetArray. Every entry <(OWLObject, Integer)>

in DecSetIndexMapping corresponds to an elements of DS represented by OWLObject,

and its corresponding array index represented by an Integer. In the case of DS =

{locatedIn,Asia,Europe}, the mapping is represented as follows:

DecSetIndexMapping={(locatedIn, 0), (Asia, 1), (Europe, 2)}

The use of array indexes and index mapping allows a direct access to an OWLObject.

It is also used to compute the partitioning based on a binary representation of the

13For clarity locatedIn is used to refer to R′ such that R′ � locatedIn and R′ is the role name
introduced after preprocessing ≥ 1locatedIn.Continent into ≥ 1R′ � ∀R′.Continent.

172

array elements. Each binary number refers to a certain partition name p such that

the zero digits represent the nominals or role names not included in p, whereas the

1 digits represent the nominals or role names included in p. For example, the binary

number a = 001 consists of 3 digits each representing an array index in DecSetArray,

the first digit from right to left is ‘‘1’’ and it corresponds to array index 0, the sec-

ond digit is ‘‘0’’ and it corresponds to array index 1, the third digit is ‘‘0’’ and it

corresponds to array index 2. a refers to the partition name pa = {locatedIn} because

the “1” digit represents DecSetArray[0]= locatedIn. Similarly, the binary number

b = 011 refers to the partition name pb = {locatedIn,Asia}.

Variable

partitionIndex

value

. . .

getPartitionObjects()

The integer values for these binary representations are used as indexing for the

variables used to represent each partition name. For example, the variable index for pa

is equal to (0×22+0×21+1×2o) = 1 and that for pb is equal to (0×22+1×21+1×20) =

2 + 1 = 3.

For every element d in DS the set of all possible partitions including d is com-

puted. In the case of DS = {locatedIn,Asia,Europe} the partitions names computed

for each OWLObject are shown in Table 5. A hasMap (PartitionsIndexMapping) con-

sisting of <OWLObject, Set<Integer>> is used to keep a mapping between each

OWLObject and the set of variable indexes referring to the corresponding partitions

names including this object. The partition mapping for locatedIn, Asia, and Europe

is as shown below:

PartitionsIndexMapping={(locatedIn, {1, 3, 5, 7}), (Asia, {2, 3, 6, 7}), (Europe, {4, 5, 6, 7})}

173

OWLObject Binary representation of partition names Variable indexes

locatedIn 001, 011, 101, 111 1, 3, 5, 7

Asia 010, 011, 110, 111 2, 3, 6, 7

Europe 100, 101, 110, 111 4, 5, 6, 7

Table 5: Binary representation and corresponding variable indexes for the decompo-
sition of DS = {locatedIn,Asia,Europe} as represented in DecSetArray = [locatedIn,
Asia, Europe].

It is at this stage that the partition elimination techniques are invoked. A set

of noGood variables and illegal variables is maintained. For example, variables with

index 7 and 6 are noGood variables because they correspond to partition names

including the names for two nominals that are disjoint (Asia and Europe). When the

ch-Rule is applicable to rNode, the set of variables (indexes) for a nominal are easily

fetched from the partionIndexMapping, the set difference is computed between this

set and the set of noGood/illegal variables. The branching is only done on variables

that are neither noGood nor illegal (e.g. v2 and v3 in the case of Asia).

The ch-Rule is applied to rNode such that for each nominal, every variable index

is assigned a choice point (e.g. v2 ≥ 1, v3 ≤ 0) as illustrated in Figure 44.

r0

r0

r0

v3 ≤ 0

r0

v3 ≥ 1

v2 ≤ 0

r0

r0

v3 ≤ 0

r0

v3 ≥ 1

v2 ≥ 1

Figure 44: Expansion of the search space due to the applicability of the ch-Rule on
the variables for the nominal Asia. The left branch corresponds to the choice point
for vi ≤ 0, and the right branch corresponds to the choice point for vi ≥ 1 with i = 2,
and 3. The ch-Rule is not applied to v6 and v7 because those are noGood variables.

174

The ch-Rule selection, together with the encoding of the nominals semantics form

a set of in-equations. The encoding of the nominals semantics into in-equations, given

the highlighted branching point in Figure 44, is formed as follows:

Nominal Encoded in-equation

Asia
v2 + v3 = 1

v2 ≥ 1

Europe v4 + v5 = 1

If a solution is returned, then the value of each corresponding variable is set to the

one assigned by the Constraint Solver. Apply the fil-Rule and initialize nominal

nodes based on the solution returned by Simplex.

applyTableauRulesPriorityI() This procedure is responsible for checking if a

rule with Priority 1 is applicable to any node in the CCGraph. These rules correspond

to the implementations of the following rules: �-Rule, ∀-Rule, ∀+-Rule, ��-Rule, e-

Rule, �-Rule, and ch-Rule, and they are consulted in the order listed. Except for the

ch-rule, these rules are applicable to all nodes but rNode.

applyTableauRulesPriorityII() This procedure is responsible for checking if a

rule with Priority 2 is applicable to any node in the CCGraph. The fil-Rule is

implemented in such a way that it is only applicable to an rNode object, where

a collection of inequationLabel objects is maintained. Once applicable, the rule

collects all inequation labels from the nodes in G not previously added to its own

label, and transforms the inequationLabel into constraints passed to the proper

Constraint Solver for a solution. If no solution is found, then the graph G is marked

as clashed and the arithmetic clash handler is fired. Otherwise, the variable values

are updated with the returned solution and the corresponding nodes are created and

added to pNodes.

175

applyTableauRulesPriorityIII() This procedure is responsible for checking if a

rule with Priority 3 is applicable to any node in the CCGraph. Only one rule has

Priority 3 and it corresponds to the implementation of the ∀\-Rule. The following

section classifies the expansion rules based on how they extend the CCGraph objects,

and discusses the rule application strategy.

6.5.1 Rule Application Strategy

HARD implements a rule application strategy which makes sure that rules are applied

based on their priorities. In practice, the order in which rules within the same priority

are applied affects the performance of the reasoner. Before discussing the strategy

adopted by HARD in applying an order of which rules within the same priority are

fired, a distinction is made between deterministic, non-deterministic, generating and

non-generating rules.

Deterministic Rules A deterministic rule extends either the labels (LE(x) re-

ferred as inequationLabel or L(x) referred as nodeConceptLabel) of a certain node

(iNode element of pNodes) or the label (edgeLabel) of a certain edge (iEdge element

of pEdges), or the set of nodes (pNodes) by introducing a new node. For example,

among the tableau rules described in Figures 23 and 24 of Section 4.5.2, we identify

the �-Rule, ∀-Rule, ∀+-Rule, ∀\-Rule, ��-Rule, e-Rule, and the fil-Rule as determin-

istic rules. The implementation of these rules is straightforward and can be easily

translated from their descriptions.

Non-Deterministic Rules A non-deterministic rule extends the label (LE(x) re-

ferred as inequationLabel or L(x) referred as nodeConceptLabel) of a node (iNode

element of pNodes) while also expanding the search space (CCGraphTree), which con-

sists of a tree of CCGraph objects. For example, among the tableau rules described in

176

Section 4.5.2, the �-Rule and the ch-Rule are non-deterministic rules. For a demon-

stration on how these rules expand the label of a node while also expanding the search

tree see Figures 34, 35 and 39.

Generating Rules A generating rule introduces new nodes to the CCG. The only

generating rule is the fil-Rule which extends the set of nodes in CCGraph with new

nodes based on the solutions returned by the Constraint Solver. Every time a node

is created, the list of nominals is added to the concept label description, as well as

the negation of the nominals not included in the list.

Non-Generating Rules A non-generating rule does not extend the set of nodes

within the completion graph. This means that non-generating rules are rules which

are not generating. Deterministic and Non-deterministic rules can also be considered

non-generating.

Both deterministic and non-deterministic rules extend the labels of a certain node.

Deterministic rules can be applied without expanding the search space unlike non-

deterministic rules which additionally expand the search space with choice points for

every extension of a node’s label. This means that a bookkeeping of choice points is

required along with a bookkeeping of dependencies.

HARD implements a rule application strategy which facilitates early clash detec-

tion with a minimal search space. This is done by enforcing that deterministic rules

are applied before non-deterministic ones in order for clashes to be detected before

a further expansion of the search space. Also, generating rules are applicable be-

fore non-generating rules, which enforces a breadth-first order of application of rules

within a completion graph.

177

6.6 Constraint Solver

The Constraint Solver is responsible for solving the system of linear in-equations,

accumulated due to the applicability of the ��-Rule, using Integer Programming (IP)

22. Recall from Definition 4.5.3 that an IP model consists of an objective function

that needs to be optimized subject to a set of linear constraints on that function, and

is considered a special type of Linear Programming (LP) problems with additionally

constraining the values of all variables to integer values. Integer Programming (IP)

problems can be solved using the widely known Simplex [CLRS01] method for LP,

extended with the branch and bound technique to solve the integer constraints.

HARD relies on two different implementations of the Simplex method; one is hard

coded and accessed directly in the implementation of HARD through a Simplex mod-

ule, and one is accessed through an external Constraint Solver; the non-commercial

LPSolver.

Simplex module The Simplex module is based on the implementation in [CLRS01]

which is also used in [Far08] and is responsible for finding a non-negative integer

solution using the branch-and-bound method. Unlike the implementation in [Far08],

our Simplex module does not implement the ch-Rule directly and does not implement

any of the optimizations discussed to enforce a certain ordering on variables. Also

the Simplex module returns either only one solution or no solution.

LPSolver The LPSolver is invoked through its own API. It is invoked by the fil-

Rule which is also responsible for expanding the completion graph based on the

solution returned by the LPSolver. The IP model is passed using a file containing

an lp-model in lp-format. The lp-format is the LPSolver native format to read and

write IP models; its input syntax consists of a set of algebräıc expressions and integer

declarations in the following order:

178

<objective function>

<constraint> ∗

<declaration> ∗

The <objective function> is a linear combination of optional variables ending with

a semicolon, preceded by “min’:’ to indicate that the objective function is to be

minimized. The objective function is required, but can be empty. As discussed in

Section 6.2, and depending on the Constraint Solver preferences selected by the user,

the set of variables used in this function could refer to the variables that have already

been assigned a value, those occurring in an at-most restriction only, or all variables

used.

The <constraint> ∗ is an optional constraint name followed by a colon, plus a lin-

ear combination of variables and constants followed by a relational operator, followed

again by a linear combination of variables and constants, ending with a semicolon.

The relational operator can be any of the following: “<=” “=” or “>=”. Two types

of constraints are modelled, <Nominals constraints> and <QCRs constraints>. The

<Nominals constraints> represent the encoding of the nominals semantics into lin-

ear constraints. The <QCRs constraints> represent the encoding of the QCRs into

linear constraints. Another set of constraints is also passed, the <assigned variables

constraints>, which consists of passing previous solutions for variables as constraints.

The <declaration> ∗ is used to define integer variables. Using the following

syntax: “int” var [“,”] var [“,”] var ... “;”

179

/* Objective function */

min: +v2 + v3 + v4 + v5;

/* Nominals Constraints */

Asia : v2 + v3 = 1;

Europe : v4 + v5 = 1;

/* Inequations Constraints */

locatedIn : v1 + v3 + v5 ≥ 1;

/* Assigned Variables */

v2 = 1;

v5 = 1;

/* Variable bounds */

int v2, v3, v4, v5;

Figure 45: Example of an IP model in lp-format representing the encoding of nominals
and QCRs constraints represented in the definition of a EuropeanCountry.

Figure 45 shows the lp-format representing the encoding of nominals and QCRs

constraints represented in the definition of a EuropeanCountry as shown in Figure 43.

The assigned variables correspond to an initial nominal distribution over the following

partitions pa = {Asia}, and is represented by v2 = 1, and pb = {Europe, locatedIn},

and is represented by v5 = 1

The result of solving the IP model is returned back to the Reasoner Manager

which either calls the Clash Handler, in case no solution was found, or returns the

solution back to the Tableau Reasoner for modelling.

180

6.7 Clash Handler

There are three types of clashes that can occur during a satisfiability test: (1) the

logical clash, (2) the arithmetic clash, and the (3) OR clash. Once a clash is detected,

the Clash Handler makes sure that the appropriate handler is fired. The following

three clash handlers are implemented:

Algorithm 6.7.1 Pseudo-code for the Logical Clash Handler.

Algorithm 6.7.1: Logical Clash Handler(C)

k1 ← GetAlternativeChoicePoint(C)

k2 ← GetAlternativeChoicePoint(ObjectComplementOf(C))

if (k1 = 0 and k2 = 0)

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cIndex← GetClashedNodeIndex()

noGoods.add(cIndex)

nextDDBCraph← GetGraphIndex(cIndex ≥ 1)

else

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if (k1 ≥ k2)

then nextDDBGraph← k2

else nextDDBGraph← k1

Logical clash handler. The logical clash handler detects clashes due to the occur-

rence of C and ObjectComplementOf (C) within the label of a node. When such a

clash is detected, Algorithm 6.7.1 is fired to set the corresponding backtracking point

if one exists. The pseudo-code for the GetAlternativeChoicePoint is presented in

Algorithm 6.7.2.

181

Algorithm 6.7.2 Pseudo-code for the GetAlternativeChoicePoint procedure.

Algorithm 6.7.2: GetAlternativeChoicePoint(C)

if (C instanceOf OWLObjectUnionOf)

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment:Get the graph where the �-Rule was applied on C

pGraph← GetParentGraph(C)

comment:Get the list of branching graphs for C

orGraphBranches← GetOrBranches(pGraph, C)

comment: Iterate through the branches to find an alternative

for each childGraph ∈ orGraphBranches

do if (childGraph.isClashFree())

return (childGraph.Index)

else if (C instanceOf OWLObjectALLRestriction)

then

⎧⎪⎨
⎪⎩
cF iller ← C.getFiller()

return (GetAlternativeChoicePoint(cF iller))

Algorithm 6.7.3 Pseudo-code for the OR Clash Handler.

Algorithm 6.7.3: OR Clash Handler(D = (C1 � C2 . . . � Cn))

k ← GetAlternativeChoicePoint(D)

if (k = 0)

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cIndex← GetClashedNodeIndex()

noGoods.add(cIndex)

nextDDBCraph← GetGraphIndex(cIndex ≥ 1)

else nextDDBGraph← k

182

OR-Rule clash handler. The OR-Rule clash handler detects and handles the

clashes due to the applicability of the �-Rule to a node x where all the disjuncts in

(C1 �C2 · · · �Cn) are skipped by the look ahead optimizations because they will lead

to clashes. When this clash is detected, the node is set to clashed and Algorithm

6.7.3 is fired to set the corresponding backtracking point if one exists.

Algorithm 6.7.4 Pseudo-code for the Arithmetic Clash Handler.

Algorithm 6.7.4: InfeasibleQCRHandler(QCR)

NextDDBGraph← TreatInfeasibleQCR(QCR)

if (NextDDBGraph == 0)

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cSource← getSrouce(QCR)

NextDDBGraph← GetAlternativeChoicePoint(cSource)

if (NextDDBGraph == 0)

then

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cIndex← GetClashedNodeIndex()

noGoods.add(cIndex)

nextDDBCraph← GetGraphIndex(cIndex ≥ 1)

Arithmetic clash handler. The arithmetic clash handler detects and handles ob-

vious arithmetic clashes as well as arithmetic clashes detected because the Constraint

Solver returned no solution for the IP model. If the QCRs responsible for the clash

are identified, then Algorithm 6.7.4 is fired to set the corresponding backtracking

point if one exists. Otherwise, the node is set as clashed and standard backtracking

takes care of exploring alternative choice points.

A statistics module keeps track of the different types of clashes encountered. A

file named STAT-"OWLFileName".txt is generated at the end of a consistency check

test containing all the information gathered by the different clash handlers including

183

clashes counts and types.

Algorithm 6.7.5 Pseudo-code for the TreatInfeasibleQCR procedure.

Algorithm 6.7.5: TreatInfeasibleQCR(QCR, rV ariables)

if (QCR instanceOf atLeastRestriction)

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment: find an active variable set to zero

vIndex← GetBackumpingVariable(rV ariables, 0)

comment: backjump to where this variable is not zero

nextDDBCraph← GetGraphIndex(vIndex ≥ 1)

else if AllNominalVariables(rV ariables)

then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

comment: choose a variable to eliminate

iIndex← GetBackumpingVariable(rV ariables, 1)

comment: identify the nominal involved

iNominal ← iIndex.GetNominalFromPartition(iIndex)

iRole← QCR.GetOWLObjectPropertyExpression()

comment: choose a nominal variable not intersection with iRole

vIndex← GetNominalVarWithoutRole(iRole, iNominal)

comment: backjump to where this variable is not zero

nextDDBCraph← GetGraphIndex(vIndex ≥ 1)

6.8 Concluding Remarks

In this chapter, the main components that make up HARD, the prototype reasoner

implementing ReAl DL, were presented. During the implementation of HARD the

184

extreme programming14 technique was adopted; this means that the implementation

was started from scratch with a basic sound and complete implementation handling

at least the basic DL with nominals and QCRs (ALCOQ). The implementation was

repetitively extended along with regression testing until when this thesis was written

and it handles SHOQ except for the handling of qualifying concepts. Note that qual-

ifying concepts do not affect the complexity of the Tableau Reasoner implemented by

HARD, they only need to be enabled in the presence of GCIs where concept descrip-

tions contain qualifying concepts. Once enabled, the handling of qualifying concepts

affects the bookkeeping phase during preprocessing in order to compute NQ. The size

of NQ extends the size of DS as well as the size of the global partitioning P . Also, the

conditions of applicability of the ��-Rule and the fil-Rule must be adapted. There-

fore, they do not affect the purpose and evaluation of the algebräıc method because

the effect of an increasing decomposition set can be evaluated using an increasing set

of nominals or QCRs. The handling of qualifying concepts is missing strictly due to

time constraints; the validation of possible interactions with implemented optimiza-

tions could not be estimated to be completed within the time limit.

The algebräıc approach in dealing with QCRs discussed in [HTM01] is part of

RacerPro’s reasoning algorithm. When a partitioning is computed for a certain role,

RacerPro’s satisfiability test is fired for each partition to check if that partition is

satisfiable or not. This means that with an exponential number of partitions, an

exponential number of recursive satisfiability checks is invoked which makes the im-

plementation best case exponential.

The hybrid algebräıc reasoning algorithm for SHQ presented in [Far08] extends

the one in [FFHM08b] with role hierarchies and transitive roles. It was evaluated

using an optimized prototype implementation which is based on a logical module

14http://www.extremeprogramming.org/

185

working together with an arithmetic module implementing Simplex. As the name

suggests, the logical module is responsible for applying tableau rules while the arith-

metic module is responsible for solving the constraints generated by the QCRs using

Simplex methods added with branch-and-bound. A major divergence to the calcu-

lus is the implementation of the ch-Rule directly into the arithmetic module which

returns not only one solution but all possible solutions due to the different choices

assigned by the ch-Rule. In a sense, the logical module does not have any information

about the variables during execution of the tableau rules. This limits the effectiveness

of implemented backtracking methods because the dependencies for variables cannot

be recorded. When a reference is made to the Simplex module implemented within

HARD, it refers to the version from [Far08] without the implementation of ch-rule

and the different heuristics for variables like the don’t care variable assignment.

Unlike the implementation presented in [Far08] and handling the DL ALCHQ,

where a local repetitive decomposition of role fillers is adopted and solutions returned

by the Constraint Solver are not kept from one node to another, the implementation

of HARD is based on a global decomposition set, and a global assignment of the

solutions to the in-equations carried from one node to another. On the other hand,

the use of indexing of variables to refer to their corresponding partitions is based on

the idea from [Far08] with the use of a different data structure.

6.8.1 Limitations

The following problems were encountered during the implementation of HARD:

• The prototype reasoner uses a parser that can only handle ontologies in the

RDF/XML format.

• The implementation of the Simplex procedure from [Far08] contains some bugs.

There are test cases where the Constraint Solver implemented could not find a

186

solution whereas if the LPSolver was selected a solution is found. Some of these

test cases are listed in Section B.2.

• A java.lang.NumberFormatException is encountered if the size of DS is ≥ 63.

This is a JAVA limitation on the size of an array which can be at most equal to

Integer.MAX VALUE which is equal to 263 = 2147483647. This puts a limitation

on the size ofDS that can be handled to 63. This problem can be overcome using

a different data structure such that the limitation is BigInteger.MAX VALUE.

However, the incremental decomposition and the use of the lazy decomposition

techniques avoid running into this problem in most test cases used.

• Java randomly resets static counters used to count the number of CCGraph

created when applying tableau rules.

• Java randomly frees up some memory and some CCGraph are disposed from

the hashtree, which causes a wrong result in case when the procedure requires

back-jumping to a CCGraph which has been already disposed.

These cases were very rare and were encountered during the process of debugging

the implementation but not encountered during the performance evaluation phase.

Some of the errors encountered were the motivation behind integrating the LPSolver

as an API into HARD. The additional benefit of such an integration is that HARD can

be easily modified to use an off-the-shelf highly optimized Constraint Solver. Finally,

integrating available reasoner’s APIs allows a more consistent way to evaluate the

reasoning performance. An evaluation of the performance of a näıve implementation,

as well as the optimizations required in order to have a practical reasoner are discussed

in the next chapter.

187

Chapter 7

Performance Evaluation

This chapter aims at evaluating the practical aspect of ReAl DL (Reasoning Alge-

bräıcally for Description Logics). The evaluation of the approach is twofold: first, the

practical performance of HARD, the prototype reasoner described in Chapter 6, and

which implements the hybrid algebräıc tableau reasoning algorithm proposed in this

thesis, is compared against existing SOTA (state of the art) reasoners for which avail-

able native libraries are integrated into HARD’s application. Second, the effectiveness

of the optimization techniques proposed in Chapter 5 is evaluated by comparing runs

of test cases where one or more optimization(s) are enabled by the user preferences.

This chapter is structured as follows: Section 7.1 describes the methodology

adopted to evaluate HARD’s performance. Section 7.2 describes the tests suites and

cases used and the reported run-times. Section 7.3 highlights key optimizations as

well as their effect on the performance of HARD. Section 7.4 gives a general analysis

of HARD’s performance, limitations and problems. Section 7.5 concludes the chapter.

188

7.1 Evaluation Methodology

The implementation of ReAl DL into the prototype reasoner (HARD) has two main

objectives:

1. To show that the optimized ReAl DL is efficient. In a sense, show that HARD

can solve problems with nominals and QCRs better than existing reasoners

which do not implement algebräıc reasoning.

2. To show that the optimization techniques proposed in Chapter 5 are effective.

These optimizations bring a dramatic speed-up to (typical case) satisfiability

tests. Without these optimizations HARD cannot be considered practical.

These objectives can be met by evaluating HARD through TBox consistency tests

using real world ontologies which at least include a pattern of the problem being tack-

led. This means that the ontologies used must be based on a DL expressivity that is at

least the basic DL ALC extended with nominals (O) and QCRs (Q). This is because

the algebräıc reasoning algorithm was proposed to address inefficient reasoning with

QCRs and nominals. Also, since the algebräıc method has been adopted previously

in [HTM01, FH10c] to handle QCRs, HARD is also tested against test cases relying

on the use of QCRs without necessarily using nominals. By doing this, one can verify

if previous results in handling QCRs algebräıcally still hold, and if the complexity of

handling nominals using a global decomposition affects the reasoning even when the

test cases do not include nominals.

The scalability of HARD is tested by using ontologies of different complexity. Note

however that ontologies of generally large size (hundreds of concepts) are not consid-

ered, this is because although the size greatly affects the complexity of reasoning, the

prototype reasoner is not intended to tackle such a complexity. Hence, the test cases

are limited to small ontologies including complex patterns that challenge reasoning

189

about nominals and QCRs by existing tableau-based reasoning methods.

7.1.1 Choosing Benchmarks

The benchmarks used include existing prototype ontologies, such as the ones used in

[FH10c] and [HSV11], to evaluate reasoning with QCRs, newly designed prototype

ontologies (hand crafted) and an adaptation or subtraction of existing real world

ontologies to evaluate reasoning with QCRs and nominals. In fact, most existing

real-world ontologies, if not adapted, cannot serve as benchmarks for HARD because

of the following reasons:

• Most real world ontologies are based on a DL expressivity not including QCRs;

ontology designers have been avoiding the use of this constructor even if comes

very natural in many domains for the following reasons:

1. QCRs were recently added to the new version of OWL, OWL 2 [MPSCG08],

2. QCRs are not very well handled with most existing reasoning approaches

especially when the numbers used in QCRs are high. It has been reported

many times that existing reasoners cannot handle QCRs without the use of

algebräıc methods, e.g., this is the case with tableau-based DL reasoning

[Hor02], resolution-based DL reasoning [KM06] and hypertableau-based

DL reasoning [MSH09].

Some ontologies compensate the use of QCRs with the use of concrete datatypes

(e.g., the Semantic Web for Earth and Environmental Terminology known as

the sweet1 ontology), which are introduced in Section 2.1.2.2. Also most

bioinformatic ontologies (snomed, galen, etc . . .) rely on the expressivity of

1http://sweet.jpl.nasa.gov/

190

the DL EL which allows conjunction (�), existential restrictions on concepts

(∃) and neither QCRs nor nominals.

• Most real world ontologies are based on a DL expressivity which allows the use

of constructors not supported by HARD such as inverse roles (I) and concrete

datatypes (see Section 2.1.2.2 for an introduction of these constructors).

• Most real world ontologies contain a large number of GCIs or domain elements.

HARD does not implement optimizations (absorptions, etc...) required for effi-

cient reasoning with large ontologies.

Adapting a real world ontology to serve as a benchmark for HARD therefore

involves extracting a subset ontology, eliminating the use of operators that are not

supported by HARD, and enforcing the use of QCRs where suitable.2

The scalability of HARD is tested using ontologies of various characteristics such

that these characteristics affect the complexity of DL reasoning in general or the com-

plexity of ReAl DL implemented by HARD. In general, it is the expressivity and the

size of the ontology that affect reasoning with that ontology; concept satisfiability for

the DL ALCHOQ is PSpace-complete but becomes ExpTime-complete if transitive

roles are used or if GCIs are enabled in the TBox.3 The size of an ontology is mea-

sured using the TBox size, the ABox size, the number of GCIs used, or the size of

the generated model. These are characteristics which affect DL reasoning in general

without reference to the implemented reasoning procedure. On the other hand, the

complexity analysis in Chapter 4 for ReAL DL has shown that the size of the global

decomposition set (DS) highly affects the complexity of such a reasoning procedure.

The size of DS is measured using the number of nominals used (size of No), number

of QCRs (size of NR′), and the number of qualifying concepts (size of QN). The size

2For example, the use of datatypes could often be replaced by the use of QCRs.
3See the description logics complexity navigator at http://www.cs.man.ac.uk/~ezolin/dl/ for

more details on how each DL constructor affects the complexity of reasoning.

191

of No affects the size of the TBox and the size of the ABox, the size of NR′ affects

the size of the TBox and the size of the generated model, and the size of QN affects

the size of the TBox. Therefore, when considering ontologies of different TBox sizes

one could focus on the size of No +NR′ . There is no need to consider the number of

qualifying concepts because these are not handled by HARD. Also, when considering

the size of an ABox one could focus on the size of No, and to consider the size of

the generated model one could focus on either the number of QCRs (size of NR′) or

the size of the numbers used in those QCRs. As mentioned earlier, ontologies with

large TBoxes or with a large number of GCIs are not interesting for HARD because

HARD is not equipped with the necessary optimizations (absorption, unfolding, etc

. . .) to process such ontologies.

7.1.2 Comparing With SOTA Reasoners

To asses the performance of HARD, one needs to compare it against existing reasoning

algorithms implemented by SOTA (state-of-the-art) reasoners. As described in the

previous chapter, JAVA APIs for each of those reasoners have been integrated into

HARD’s application implementation and user preferences allow one to select one of

Fact++, Hermit, Pellet, RacerPro, or HARD to perform the KB consistency test.

These systems implement different reasoning algorithms for DL. For example,

Fact++ implements tableau-based DL reasoning whereas Hermit implements hyper-

tableau reasoning. Each reasoner comes equipped with numerous optimizations some

of which are specific to handle a certain complexity. For example, Hermit implements

core blocking when dealing with ontologies with cyclic TBoxes of a large sizes and

therefore, Hermit can classify ontologies that no other reasoner can classify. Also, a

certain system might be slow for a specific test case due to various effects that can

sometimes hardly be tracked down to the reasoning algorithm adopted. Therefore, it

192

might be hard to associate a reasoning performance degradation or speedup to the

reasoning algorithm adopted.

7.1.3 Evaluating The Implemented Optimizations

To evaluate the effectiveness of the various optimizations proposed in Chapter 5 and

implemented in HARD, test cases are evaluated where optimizations are turned ON

or OFF. The speed-up factor is measured for key optimizations.

7.1.4 Evaluation Platform

The set of benchmarks used for evaluation consists of .owl files representing OWL

ontologies, in the RDF/XML format, modelled using Protégé 4.1.4 The tests are

performed on a PC running Windows XP Media Centre Edition (version 2002 with

Service Pack 3) with 2.93 GB of RAM and 2.40 GHZ AMD Athlon(tm) 64 Processor.

The run-time of each test is reported in milliseconds as the average run-time of three to

five separate executions of the test using the same reasoner. Each run-time represents

the time needed for a selected reasoner to perform a KB consistency test.

7.2 Test Cases

This section describes the test cases that were used, and reports the run-times needed

for HARD to decide a KB consistency compared to other reasoners. Since the rea-

soners are invoked for a KB consistency test on the loaded ontology, the satisfiability

check of a certain concept C is tested by adding the following axiom � � ¬{a} � C

to the ontology, where {a} is a freshly introduced nominal. The reported time is in

milliseconds, and the TimeOut is set to 10 minutes (600000 ms). The first set of

4http://protege.stanford.edu/

193

benchmarks consists of test cases using the basic DL ALC extended with QCRs and

role hierarchies. The second set of benchmarks consists of test cases using basic DL

ALC extended with nominals, QCRs, role hierarchies and GCIs.

7.2.1 Test Cases for QCRs and Role Hierarchies

As mentioned earlier, we find it imperative to report on HARD’s performance against

the test cases that were used in [Far08] to evaluate the performance of algebräıc

reasoning with the DL ALCHQ. We first adapt these test cases to the DL ALCQ as

done in [HSV11] and then we test them using the expressivity of ALCHQ as was done

in [FH10c]. We choose to use the same test cases for two main reasons: first, we would

like to show how the global partitioning needed in the presence of nominals affects

performance. Second, we would like to show that even with global partitioning, the

calculus is amenable to optimizations that allow a similar performance as with a local

partitioning. In order to make this thesis self contained we repeat the descriptions

of those test cases as we report on the performance. In some cases we consider

more complex variants of the concept descriptions used. Each test case consists of a

TBox consistency test where the TBox T includes the description of a concept C, for

which we want to check the satisfiability, and the TBox axiom � � ¬{a} � C where

a is a freshly introduced nominal. If the test description uses roles such that the

hierarchy between these roles is flat, we refer to the test case as CALCQ. Otherwise,

if the hierarchy is not flat, we refer to the test case as CALCHQ. In the following we

describe the test cases designed to test the algebräıc reasoning approach with qualified

cardinality restrictions against the following parameters:

1. The size of the numbers used in qualified cardinality restrictions,

2. The number of qualified cardinality restrictions used,

194

3. The ratio of the number of at-least restrictions to the number of at-most restric-

tions, and

4. The satisfiability versus the unsatisfiability of the given concept expression.

7.2.1.1 Testing the size of the numbers used in QCRs

The effect of increased numbers used in QCRs is tested using the concept C defined

using the DL ALCQ as follows:

CALCQ � ≥ 2ir.(A � B)� ≤ ir.A� ≤ ir.B � (≤ (i− 1)r.¬A� ≤ jr.¬B)

Since we have� � ¬{a} � CALCQ this means that a is a member of CALCQ, (a : CALCQ),

and CALCQ is satisfiable if a satisfies the following:

1. a : (≥ 2ir.(A � B)) =⇒ a must have at least 2i r-fillers such that each r-filler

satisfies (A � B), we refer to these r-fillers satisfying (A � B) as r1-fillers.

2. a : (≤ ir.A) =⇒ at most i r-fillers of a can be members of A. We refer to these

r-fillers that are members of A as r2-fillers and enforce that all other r-fillers

(r \ r2-fillers) of a become members of ¬A.

3. a : (≤ ir.B) =⇒ at most i r-fillers of a can be members of B. We refer to those

r-fillers that are members of B as r3-fillers and enforce that all other r-fillers

(r \ r3-fillers) become members of ¬B.

4. a : (≤ (i− 1)r.¬A) � (≤ jr.¬B)) =⇒ there can be at most (i− 1) r-fillers of a that

are members of ¬A, OR there can be at most j r-fillers of a that are members

of ¬B. We refer to r-fillers that are members of ¬A as r4-fillers and those that

are members of ¬B as r5-fillers.

195

a:1

�-Rule

a:1L(a) ∪ {(≤ jr5 � ∀r5.¬B � ∀r \ r5.B)} a:1 L(a) ∪ {(≤ (i− 1)r4 � ∀r4.¬A,�∀r \ r4.A)}

a:1L(a) ∪ {(≤ jr5, ∀r5.¬B, ∀r \ r5.B)} a:1 L(a) ∪ {(≤ (i− 1)r4, ∀r4.¬A, ∀r \ r4.A)}

a:1LE(a) ∪ {ξ(r5,≤, j)} a:1 LE(a) ∪ {ξ(r4,≤, (i− 1))}

a:1Solution Found! a:1 Arithmetic Clash!

e-Rule

b:iLP(b) = {r1, r2, r5}

b:iL(b) = {(A � B),A,¬B}

c:i LP(c) = {r1, r3}

c:i L(c) = {(A � B),B}

c:i L(c) ∪ {¬A}

L(a) = {CALCQ,≥ 2ir1, ∀r1.(A � B),≤ ir2, ∀r2.A.∀r \ r2.¬A,≤ ir3, ∀r3.B, ∀r \ r3.¬B,

((≤ (i− 1)r4 � ∀r4.¬A � ∀r \ r4.A) � (≤ jr5 � ∀r5.¬B � ∀r \ r5.B))}

�-Rule �-Rule

��-Rule ��-Rule

fil-Rule fil-Rule

ch-Rule ch-Rule

{r1, r2, r5} {r1, r3}

∀-Rule ∀-Rule

∀\-Rule

Figure 46: Expansion tree showing an expansion of the �-Rule leading to a clash free
CCG for CALCQ with j = i, after applying the tableau rules described in Figures 23
and 24. Note that the QCRs in L(a) have already been preprocessed according to
Algorithm 4.1.1, described in Section 4.1.1, such that ≥ 2ir.(A � B) is rewritten into
≥ 2ir1 � ∀r1.(A � B). The nodes highlighted in green represent a completion model
for CALCQ.

196

The domain element a satisfies (1), (2), and (3) for all values of i > 0, however, in

order to satisfy (4) a must also satisfy a : (≤ jr.¬B) because a : (≤ (i− 1)r.¬A) cannot

be satisfied. Therefore, the satisfiability of C depends on the value of j; if j ≥ i then C

becomes satisfiable because a : (≤ jr.¬B) is satisfiable. Otherwise if j ≤ (i− 1) then

C becomes unsatisfiable because a : (≤ (i− 1)r.¬B) cannot be satisfied.

CSAT−ALCQ is used to refer to a satisfiable case of CALCQ where j = i, and CUnSAT−ALCQ

to refer to an unsatisfiable case of CALCQ where j = (i− 1). In a first set of tests,

C∗−lin−ALCQ, the numbers are increased linearly using i such that the values of i range

between 1 and 10. In a second set of tests, C∗−exp−ALCQ, the numbers are increased

exponentially using i = 10k and the values of k range between 1 and 6.

In the case of CSAT−lin−ALCQ, the KB is consistent because a model exists that can

be represented by a clash-free compressed completion graph G. Figure 46 illustrates

the expansion of the CCG G, where a domain element represented by the proxy

node (a : 1) is a member of the concept CALCQ
5. The node (b : i) is a proxy node

representing i domain elements that are r-fillers of a intersecting with r1-fillers of a,

r2-fillers of a, r5-fillers of a. Due to the qualifications imposed by the ∀-Rule, these

role fillers are members of (A � ¬B). The node (c : i) is a proxy node representing i

domain elements that are r-fillers of a intersecting with r1-fillers of a and r3-fillers of

a. Due to the qualifications imposed by the ∀-Rule, and the ∀\, these role fillers are

members of (B � ¬A). The domain elements represented by b satisfy the restrictions

imposed by (1), (2), (3) and (4) and the domain elements represented by c satisfy the

restrictions imposed by (1), (2) and (3). Whereas in the case of CUnSAT−lin−ALCQ, T is

inconsistent because CALCQ is unsatisfiable for j = i− 1 and there exists no model for

T . The effect of increasing the numbers used in QCRs on reasoning performance is

shown respectively in Figures 47, 48 for satisfiable and unsatisfiable cases of CALCQ.

5For clarity and ease of presentation, only the concept expressions relevant to a rule application
are shown in the label of a node.

197

2 4 6 8 10
101

102

103

104

105

106

value of i in CSAT−Lin−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(a) Increasing i linearly in a satisfiable concept expression

1 2 3 4 5 6
101

102

103

104

105

106

value of k in CSAT−exp−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

HARD

Pellet

RacerPro

(b) increasing i exponentially in a satisfiable concept expression;

i = 10k, 1 ≤ k ≤ 6

Figure 47: Effect of increasing the size of the numbers used in QCRs in satisfiable
cases of CALCQ with i = j, and i = 10k in case of increasing the numbers exponentially.
No results can be reported for Hermit and Fact++, which crash with these test cases.

198

Each figure consists of two subfigures, subfigure (a) considers increasing the num-

bers linearly, and subfigure (b) considers increasing the numbers exponentially. When-

ever a test case result is not shown in the figure, this is because the corresponding

reasoner either returned an error or timed out. It is easy to see that the performance

of HARD and RacerPro is not affected by the size of the numbers used in a QCRs,

even when the numbers are very large and i is increased exponentially. On the other

hand, the other reasoners are dramatically affected by the increase in the size of the

numbers, even when the increase is only linear and with very small values of i. For

example, when testing CSAT−lin−ALCQ case for i = 6 Fact++ and Hermit cannot han-

dle the test case due to some error. Also, Pellet times out whenever i ≥ 8. In the

case when the numbers are increased exponentially, only HARD and RacerPro can

decide the TBox consistency even in less than 0.5 seconds, none of other reasoners can

handle any case either due to some error (Fact++) or because the reasoner cannot

decide the test within the time limit (Pellet, Hermit).

The stability of HARD and RacerPro in solving these test cases shows the ad-

vantage of solving QCRs using algebräıc reasoning over adopting another reasoning

approach. Notice that the due to the use of proxy nodes (see Definition 4.5.2), the

same CCG is valid for cases where the numbers are increased linearly and for those

when the numbers are increased exponentially. In the first case, the proxy nodes b

and c represent i elements. In the latter case, they represent 10k (1 ≤ k ≤ 6) ele-

ments. On the other hand, HARD requires slightly more time to solve unsatisfiable

cases and this is because most unsatisfiable cases presented in this thesis are usually

harder to solve than the satisfiable ones.6 In particular, all possible attempts to solve

the encoded in-equations are exhausted before deciding unsatisfiability.

Consulting the statistics file generated by HARD shows that HARD spends more

6For a comparison of performance between satisfiable and unsatisfiable cases see Section C.1.

199

time trying to find a solution for the generated in-equations than it does in satisfiable

cases. Such behaviour is expected because in this case, HARD tries all possible

expansions of the ch-Rule, without any specific optimizations to avoid repetitively

solving the same in-equations. In the cases with Fact++, Hermit and Pellet, the

performance dramatically degrades with unsatisfiable cases and this is because if no

particular optimization is used to detect numerical clashes, these reasoners need to try

all possible attempts to merge the 2i fillers created to satisfy the at-least restriction

and exceeding the numbers (i− 1) and i allowed in the at-most restrictions before

deciding unsatisfiability.

A variant of CALCQ is considered by adding role hierarchies and is defined using

the DL ALCHQ as follows:

CALCHQ � ≥ 2irs.(A � B)� ≤ is.A� ≤ ir.B� (≤ (i− 1)t.¬A� ≤ it.¬B)

such that the roles, rs, s, r and t follow the hierarchy defined in the RBox R.

R =

⎧⎪⎨
⎪⎩

r � t, s � t

rs � r, rs � s

⎫⎪⎬
⎪⎭

Figure 49 shows the results in case of increasing the numbers linearly in satisfiable

and unsatisfiable cases. For most reasoners, running the test cases using the DL

ALCHQ did not seem to have any effect on their performance versus running the

test cases without role hierarchies. The only affected reasoners were Fact++ and

Pellet which implement tableau-based reasoning. When deciding on cases with role

hierarchies (CALCHQ), Fact++ is slower in deciding satisfiable cases and Pellet is

slower in deciding unsatisfiable ones.

200

1 2 3 4 5 6
101

102

103

104

105

106

value of i in CUnSAT−lin−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(a) Increasing i linearly in an unsatisfiable concept expression

1 2 3 4 5 6
101

102

103

104

105

106

value of k in CUnSAT−exp−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(b) increasing i exponentially in an unsatisfiable concept expression;

i = 10k, 1 ≤ k ≤ 6

Figure 48: Effect of increasing the size of the numbers used in QCRs with unsatis-
fiable cases of CALCQ where j = i− 1, and i = 10k in case of increasing the numbers
exponentially.

201

2 4 6 8 10
101

102

103

104

105

106

value of i in CSAT−Lin−ALCHQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(a) Increasing i linearly in a satisfiable concept expression.

2 4 6 8 10
101

102

103

104

105

106

value of i in CUnSAT−Lin−ALHCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(b) increasing i linearly in an unsatisfiable concept expression.

Figure 49: Effect of linearly increasing the size of the numbers used in QCRs with
unsatisfiable cases of CALCHQ where j = i− 1 and the hierarchy between the roles used
is not flat.

202

7.2.1.2 Testing The Number of Qualified Cardinality Restrictions

It was shown in Section 4.6 that the complexity of the hybrid algorithm implemented

by HARD is characterized by a double exponential function of the number of QCRs,

q. It is therefore expected that as the number of QCRs increases, the performance of

HARD degrades. The effect of increased number of QCRs is tested using the concept

CQCR−ALCQ defined below:

CQCR−ALCQ � ≥ 4nr.�

� ≥ 2nr.C1 � . . .� ≥ 2nr.Ci

� ≤ nr.(¬C1 � ¬C2) � . . .� ≤ nr.(¬Ci � ¬Ci+1)

As the name suggests, CQCR−ALCQ is defined using the expressivity of the DL ALCQ.

Using a non flat role hierarchy Another variant of CQCR−ALCQ is tested by using

a non flat role hierarchy between the roles, rs and r, used in QCRs as defined in the

RBox R = {rs � r} . We refer to this variant as CQCR−ALCHQ defined as follows:

CQCR−ALCHQ � ≥ 4nrs.�

� ≥ 2nr.C1 � . . .� ≥ 2nr.Ci

� ≤ nr.(¬C1 � ¬C2) � . . .� ≤ nr.(¬Ci � ¬Ci+1)

Using different values for the numbers used in QCRs Also, one variant of

CQCR−ALCQ is considered by using different values for the numbers used in QCRs as

was done in [HSV11].7 We refer to this variant as CQCR−var−ALCQ defined as follows:

7The results in [HSV11] show that using a different number for each QCR degrades the perfor-
mance of ALCQ2SMT reasoning algorithm.

203

CQCR−var−ALCQ � ≥ 4nr.�

� ≥ 2nr.C1� ≥ 2(n− 1)r.C2 � · · · � ≥ 2(n− i+ 1)r.Ci

� ≤ nr.(¬C1 � ¬C2) � · · · � ≤ (n− 1)r.(¬C2 � ¬C3)

≤ (n− i+ 1)r.(¬Ci � ¬Ci+1)

The various definitions of the concept CQCR−∗−ALCQ consist of one at-least restric-

tion (≥ 4nr.�) gradually extended for each value of i such that i ranges between 1 and

10 and CQCR−∗−ALCQ remains satisfiable for all values of i. The ratio of the number of

at-least restrictions to the number of at-most restrictions is kept fixed by extending

(≥ 4nr.�) with i at-least and i at-most restrictions for every instance of the problem.

The number of QCRs is a function of i: q = 2i+ 1, and the numbers used for each

restriction range between 1 (n = 1), and 40 (n = 10). For all values of i (1 ≤ i ≤ 10)

and n (n = 1, 5, 10) considered, the concept definition of CQCR−∗−ALCQ is satisfiable.

The effect of increasing the number of QCRs on reasoning performance is shown

in Figures 50 and 51. In Figures 50a and 50b the results are shown for n = 1 and

i = 1, 2, . . . , 20, and n = 5 and i = 1, 2, . . . , 10, respectively, for CQCR−ALCQ. Fig-

ures 51a and 51b show the results for n = 10, i = 1, 2, . . . , 10 for CQCR−ALCQ and

CQCR−var−ALCQ respectively. Clearly, Fact++ is the only reasoner which maintains a

stable runtime for different values of n and i. Hermit does not seem to be affected by

the number of QCRs when n = 1, however, and surprisingly Hermit could not solve

any of the tests for n = 5, 108. This might be due to the fact that the individual

re-use optimization is only effective with ∃R.C equivalent to ≥ 1R.C, and therefore

as i grows, the effect of this optimization becomes minimal.

8With these test cases Hermit would quickly timeout or run out of memory for the JAVA heap
space.

204

2 4 6 8 10 12 14 16 18 20
101

102

103

104

105

106

value of i in CQCR−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(a) Using the same values with added QCRs with n = 1.

2 4 6 8 10
101

102

103

104

105

106

value of i in CQCR−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(b) Using the same values with added QCRs with n = 5.

Figure 50: Effect of increasing the number of QCRs in a satisfiable concept expression.

205

2 4 6 8 10
101

102

103

104

105

106

value of i in CQCR−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(a) Using the same values with added QCRs with n = 10.

2 4 6 8 10
101

102

103

104

105

106

value of i in CQCR−var−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(b) Using different values with added QCRs with n = 10.

Figure 51: Effect of increasing the number of QCRs in a satisfiable concept expression.

Pellet is affected by the number of QCRs and by the values of the numbers used.

The overall performance seems to be affected by the total number of individuals that

206

the reasoner needs to create or merge in order to satisfy the restrictions imposed by

the QCRs. To better illustrate this, we take for example the case where i = 6 and

n = 10 and compare the results for CQCR−var−ALCQ and CQCR−ALCQ. Clearly Pellet can

solve CQCR−var−ALCQ because the total number of individuals needed to satisfy the at-

least restrictions is 105 whereas with CQCR−ALCQ the number of individuals created

to satisfy the at-least restrictions grows to 120. RacerPro is dramatically affected by

the number of QCRs and cannot solve the tests for i ≥ 10.

These test cases can be considered very hard for both tableau and algebräıc rea-

soning procedures. As the number of at-least restrictions increases the number of

individuals that need to be created also increases. Also, as the number of at-most

restrictions increases the number of ways that the individuals can be distributed also

increase. The numbers used in QCRs consistently degrade the performance of tableau

reasoners as they grow. For algebräıc reasoners, the number of QCRs means a de-

composition set with a larger size and a ch-Rule with more cases to consider which

consistently degrade the performance of HARD. For i ≥ 6 HARD runs into a stack

overflow error.9

When comparing the results between the use of different values for n we noticed

a difference in performance with HARD. The fact that HARD is not sensitive to

the values used in QCRs, and the fact that HARD’s performance was sometimes

faster with greater values of n, suggest that the performance speedup/degradation

was due to some factor other than the number of cardinality restrictions used or

the values of the numbers used with those QCRs. After analyzing the information

generated in the statistics file in terms of the applicability of the ch-Rule and the

different types of clashes returned, we noticed that the performance degradation was

associated with a greater number of applicability of the ch-Rule and a greater number

9This error is due to a JAVA limitation with numbers. However, alternative ways of representing
the numbers could be investigated such as using java.lang.BigNum.

207

of arithmetic clashes. For example, for three separate runs of the test CQCR−ALCQ

with i = 2 and n = 1, 5, 10, the number of times the ch-Rule was applied was 424,

26, and 1512 respectively. We also compared the number of times the ch-Rule is

applicable for different runs of CQCR−ALCQ for the same values of i and n. It turned

out that the order in which the ch-Rule selects variables (to branch on) greatly affects

performance. Some variable choices affect how quickly a distribution of individuals

is found, and other variable choices could result in hitting the worst case because all

possible explorations of these variables need to be tried before a solution is found.

We also considered some variant of CQCR−ALCQ where we use disjunctive descrip-

tions between at-least/at-most restrictions. Although the size of the global decompo-

sition set remains the same, different decompositions need to be activated/computed

and a smaller set of in-equations needs to be considered in each branch. We refer

to this test case as CQCR−disjunctive−atLeast−ALCQ when the disjunctions are considered

between at-least restrictions,

CQCR−disjunctive−atLeast−ALCQ � (≥ 4nr.�� ≥ 2nr.C1 � · · · � ≥ 2nr.Ci)

� ≤ nr.(¬C1 � ¬C2) � · · · � ≤ nr.(¬Ci � ¬Ci+1)

and Cdisjunctive−atMost−ALCQ when the disjunctions are considered between at-most

restrictions.

CQCR−disjunctive−atMost−ALCQ � ≥ 4nr.�� ≥ 2nr.C1 � · · · � ≥ 2nr.Ci

�(≤ nr.(¬C1 � ¬C2) � · · · � ≤ nr.(¬Ci � ¬Ci+1))

208

1 2 3 4 5 6
101

102

103

104

105

106

value of i in CQCR−∗−∗−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

CQCR−ALCQ
CQCR−disjunctive−atLeast−ALCQ
CQCR−disjunctive−atMost−ALCQ

Figure 52: Effect of disjunctions between QCRs on performance of Hermit.

1 2 3 4 5 6
101

102

103

104

105

106

value of i in CQCR−∗−∗−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

CQCR−ALCQ
CQCR−disjunctive−atLeast−ALCQ
CQCR−disjunctive−atMost−ALCQ

Figure 53: Effect of disjunctions between QCRs on performance of HARD.

The reasoners implementing tableau-based reasoning like Fact++, Pellet, and

RacerPro did not have any performance degradation/speedup in solving different

209

variants of CQCR−∗−∗−ALCQ. However, Hermit and HARD seem to be affected by

disjunctions; Hermit is slightly faster with CQCR−disjunctive−atLeast−ALCQ cases, but Her-

mit quickly runs out of memory with Cdisjunctive−atMost−ALCQ cases even for small val-

ues of i as shown in Figure 52. HARD, on the other hand, performs better with

CQCR−disjunctive−atMost−ALCQ as shown in Figure 53. The statistics file showed that

HARD spends less time solving the in-equations. This might be due to the fact that

it is easier to solve a system of in-equations with less at-most restrictions than it is

with less at-least restrictions.

7.2.1.3 Ratio of the Number of at-least to the Number of at-most Re-

strictions

The ratio of the number of at-least to the number of at-most restrictions is defined as

RQCRs =
Qat−least

Qat−most
. The previous set of benchmarks focused on increasing the number

of QCRs without affecting the ratio between the number of at-least and the number

of at-most restrictions used, RQCRs =
i+1
i
. In this set of benchmarks, we fix the total

number of QCRs used and change the ratio, RQCRs. We use a satisfiable concept

expression C whose pattern is similar to the one defined in the previous section. The

total number of QCRs is fixed to m such that for each test case, the number of at-

most restrictions varies with i and the number of at-least restrictions is equivalent to

(m− i). We test CALCQ with m = 10 and n = 1 because for larger values of n some

reasoners like Hermit had performance degradation.10

CQRatio−ALCQ � ≥ 4nr.�

� ≥ 2nr.C1 � . . .� ≥ 2nr.Cm−i−1

� ≤ nr.(¬C1 � ¬C2) � . . . ≤ nr.(¬Ci � ¬Ci+1)

10Hermit cannot solve the test cases for larger values of n within the time limit.

210

The effect of the RQCRs on the performance of reasoning is shown in Figure 54. All

existing reasoners need negligible time to decide on the satisfiability of CQRatio−ALCQ

and maintain a stable response time as RQCRs changes except for HARD. It is hard

to associate the performance degradation of HARD to an increasing variable. Notice

that all the test cases share a common overhead which is the size of DS. This

means that in the worst case and for all the test cases HARD needs to consider the

same number of possibilities for the ch-Rule and for partitions. What makes a test

case run faster/slower is how quickly a distribution of r-fillers is found. Since the

qualifications are not necessarily disjoint, this means that what affects the run-time

is the solvability of the encoded in-equations. Notice for example, that when there

are no at-least (at-most) restrictions, the set of in-equations consists only of at-most

(at-least) restrictions and since the arithmetic solver tries to minimize, the solution

is trivial and that’s why the test cases for (i = 0, 10) have similar performance. This

is in contrast to [FH10c], where the results showed that the performance is affected

by the number of at-least restrictions. We cannot conclude the same because the

implementation of our ch-Rule does not depend on at-least restrictions. As long as

some at-least restrictions exists, the more at-most restrictions are there, the harder

it becomes to find an optimal solution for the generated set of in-equations. The

statistics file showed that even for test cases with similar numbers of choices for the

ch-Rule, more time was spent in the constraint solver. Configuring different choices

for the objective function did not seem to have any effect on the performance of

the constraint solver. This set of test cases suggests that some work can be done

to enhance the constraint solver or find a better one than LPSolver. Similar to the

result shown with CQCR−disjunctive−atMost−ALCQ, the less at-most restrictions, the faster

is the reasoning and less time is spent in the Constraint Solver.

211

0 2 4 6 8 10
101

102

103

104

105

106

value of k in RQCR:
10−k
k

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

Figure 54: Effect of the ratio RQCR of the number of at-least to the number of at-most
restrictions in a concept expression.

7.2.1.4 Satisfiable Versus Unsatisfiable Concepts

The numbers used in QCRs affect the satisfiability of concept expressions. We eval-

uate reasoning performance for satisfiable and unsatisfiable cases using a set of test

cases based on the following concept expression:

CSAT−UnSAT−ALCQ � ≥ 3nr.(A � B)� ≥ 3nr.(¬A � B)

� ≥ 3nr.(A � ¬B)� ≥ 3nr.(¬A � ¬B)

� ≤ inr.�

The number of QCRs is fixed to 5 as well as the ratio between at-least and at-most

restrictions (RQCR = 4). Each at-least restriction requires 3n r-fillers such that no

two at-least restrictions can share their r-fillers because these r-fillers satisfy mutually

disjoint qualifications. Therefore, a domain element a : CSAT−UnSATALCQ requires at-

least 12n distinct r-fillers to render the concept CSAT−UnSAT−ALCQ satisfiable. When

212

i ≥ 12n, CSAT−UnSAT−ALCQ is satisfiable, otherwise when i < 12n, CSAT−UnSAT−ALCQ is

not satisfiable. We run our experiments using n = 1, 10 and i = 1, 2, 4, . . . , 24. The

results are shown in Figure 55 with Figure 55a showing the results for n = 1 and

Figure 55b showing the results for n = 10.

The advantage of adopting algebräıc reasoning is clearly shown by the stability

of both HARD and RacerPro in deciding satisfiable and unsatisfiable cases for both

cases n = 1 and n = 10.11 For most reasoners, and with a small number of individu-

als, in case when n = 1, there is no difference in performance between satisfiable or

unsatisfiable cases as illustrated in Figure 55a. With the exception of Hermit whose

performance degrades as the value of i increases whether a case is satisfiable or not.

In fact, Hermit’s performance deteriorates with the cases when n = 10. The effect of

satisfiable and unsatisfiable cases on tableau-based reasoners is better shown in Figure

55b when a larger numbers of individuals needs to be managed. Fact++ performance

degrades up to 2 orders of magnitude with unsatisfiable cases. Pellet on the other

hand, cannot decide on satisfiable cases within the time limit, and its performance is

2 orders of magnitude slower than that of HARD when deciding unsatisfiable cases.

11In [FH10c] the hybrid reasoning algorithm showed unexpected instability because in some cases
the arithmetic reasoner needed more time to decide on the unsatisfiablity of the encoded in-equations.

213

5 10 15 20 25
101

102

103

104

105

106

value of i in CSAT−UnSAT−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(a) Using small numbers in QCRs, n = 1

5 10 15 20 25
101

102

103

104

105

106

value of i in CSAT−UnSAT−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

(b) Using large numbers in QCRs, n = 10

Figure 55: Effect of the numbers in QCRs in satisfiable versus unsatisfiable expres-
sions.

214

7.2.1.5 Backtracking

The effect of backtracking is tested using a set of TBox consistency tests where every

TBox T includes the following axioms.

CBack−ALCQ � ≥ 3r.D1 � . . .� ≥ 3r.Di� ≤ 3i− 1r.�

Dq �¬Dp for all q < p

CBack−ALCQ is satisfiable if a domain element a : (CBack−ALCQ) has 3i r-fillers such

that, for a given value of i, 3 r-fillers satisfy each ≥ 3r.Di and the total number

of these r-fillers cannot exceed 3i− 1. This means that some r-fillers must satisfy

(Dq � Dp) for some 1 ≤ p, q ≤ i, however this is not possible because all Dp and Dq are

disjoint. This renders the concept CBack−ALCQ unsatisfiable. In the case of a tableau

algorithm, backtracking is involved each time an r-filler satisfying Dp is merged with

an r-filler satisfying Dq. With algebräıc reasoning, backtracking is involved each time

a distribution of individuals puts ri-fillers and rj-fillers in the same partition (i.e the

ch-Rule assigns the corresponding variable ≥ 1).

Figure 56 shows that Hermit implements poor backtracking strategies whereas

HARD implements backtracking strategies that are competitive with the ones im-

plemented by SOTA reasoners. Notice however that CBack−ALCQ does not rely on

any disjunctive descriptions. This means that non-determinism is due to the ch-Rule

for algebräıc reasoning, and the non-determinism in merging individuals for tableau

reasoning. Notice that the numbers used are very small, this means that in the case

where individuals are distributed over distinct partitions, the ch-Rule might perform

as many non-deterministic choices as the ≤-Rule for merging individuals.

215

2 4 6 8 10 12 14 16 18 20
101

102

103

104

105

106

value of i in CBack−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

Figure 56: Effect of backtracking with CBack−ALCQ.

A more complicated test case is considered where disjunctive QCRs are used with

disjunctive qualifications.

CBack−disjunctive−ALCQ � ≥ (j+ 1)r.D1 � . . .� ≥ (j+ 1)r.Di

� ≤ jr.(D1 � D2)� ≤ jr.(D2 � D3) � . . .� ≤ jr.(Di−1 � Di)

Dq �¬Dp for all q < p

Non-determinism in tableau reasoning now has three sources: the choose-Rule

(or ch-Rule for algebräıc reasoning), the �-Rule, and non-determinism in merging

individuals exceeding the number in the at-most restriction. Since each one of �-

Rule and choose-Rule rules is applicable to each created individual, the greater the

size of j, the less efficient the reasoning; Figure 57 shows how increasing j with just

one number affects performance.

216

2 2.5 3 3.5 4 4.5 5
101

102

103

104

105

106

value of i in CBack−disjunctive−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++ (j=3)

Fact++ (j=2)

Hermit (j=3)

Hermit (j=2)

Pellet (j=3)

Pellet(j=2)

Figure 57: Effect of backtracking with CBack−disjunctive−ALCQ.

We focus on the effect of non-determinism and backtracking and run the test with

j = 3. The results are shown in Figure 58. Racer and HARD are the best in deal-

ing with disjunctions, whereas, Hermit and Pellet easily fail with only 2 disjunctions.

Fact++ scales better, but, it quickly times out for i ≥ 4. This test case shows how the

interaction between non-determinism in the choose-Rule and the �-Rule blows up the

search space of tableau reasoning. Whereas, the algebräıc approach allows a better

scalability because of two main things: (1) the ch-Rule is applied for every variable,

which could represent n individuals, which means that the semantic split over the

qualifications used in at-most restrictions is done over groups of individuals rather

than for each individual as is the case with the choose-Rule. Non-Determinism in

concept descriptions does not interact with non-determinism in distributing individ-

uals among the restrictions used as qualifications in at-most restriction. This allows

a more fine grained backtracking.

217

2 2.5 3 3.5 4 4.5 5
101

102

103

104

105

106

value of i in CBack−disjunctive−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

RacerPro

Figure 58: Effect of backtracking with CBack−disjunctive−ALCQ.

We also run the test where ≤ jr.(D1 � D2)� ≤ jr.(D2 � D3) � . . .� ≤ jr.(Di−1 � Di)

is replaced with ≤ jr.(D1 � D2 � D3 � . . . � Di) with values of i between 1 and 10.

Fact++, Racer and HARD can solve the test very quickly (less than half a second).

However, Pellet and Hermit cannot solve the test within the time limit even for small

values of i, (e.g., 2).

Although HARD performs better than other non-algebräıc reasoners, we noticed

that the order in which the ch-Rule is applied has a dramatic effect on performance.

Although the reported run-time is still high, there are runs where HARD was able

to return results much faster. The difference in run-times was associated with a

different order in which the ch-Rule was applied because it affects how quickly a

noGood variable is discovered. In fact, the sooner noGood variables are discovered

the more efficient is the pruning of the search space.

218

7.2.2 Test Cases for QCRs and Nominals

This section presents an evaluation of the performance of HARD using test cases,

which rely on the use of nominals and QCRs, where the two constructors (O and Q)

interact. The used test cases range between some adaptations of real world ontologies,

and some synthetic ones. The real world ontologies are selected such that they are

small in size, and use nominals and QCRs in concept descriptions; such ontologies

are the Time12, the Koala, the Countries, and the Wine ontologies which are

part of the Protégé ontology library, and which can be downloaded from http://

protege.stanford.edu/download/ontologies.html. The synthetic ontologies are

designed to test the scalability of the algebraic reasoning approach based on the

following parameters: the number of nominals used (size of No), the depth of the role

hierarchy, the use of cycles within concept descriptions, and the occurrence of QCRs

within nested descriptions.

7.2.2.1 Tests Cases Based on Real World Ontology Adaptation

The characteristics of the adapted ontologies are summarized in Table 6. Notice

that the expressivity of the DL underlying the input file ontology is adapted to the

expressivity handled by HARD.

Ontology Original DL ex-

pressivity

Nominals in

adapted version

Roles in adapted

version

Adapted DL ex-

pressivity

Wine SHOIN (D) 12 5 ALCHOQ

Koala ALCON (D) 6 4 ALCOQ

Countries ALCIN (D) 13 4 ALCOQ

Time SHOIN (D) 14 3 ALCON

Table 6: General characteristics of test cases based on adapted real world ontologies.

12http://www.w3org/2006/time.

219

7.2.2.2 The Wine ontology

One cannot consider nominals in DL without referring to the Wine ontology which

relies heavily on the use of nominals for representing the different kinds of wines

based on their flavour, colour, texture, etc The Wine ontology is designed using

the DL SHOIN (D) and it contains 206 nominals. It was originally developed as a

DL example for the CLASSIC system [BMPSR91], and later it was expanded to an

ontology tutorial[NM01].13 Tableau-based reasoners remained unable to classify it

until the optimizations for nominals were introduced in[PCS06], and now adopted

in most reasoners that handle the nominals constructors. In order to be suitable

for testing with HARD, an extract of the Wine ontology is used where only the

expressivity of the DLALCHOQ is used. The extracted TBox T is shown in Figure 59

where nominals appear using the oneOf constructor to define WineColor, WineBody,

etc, or using the hasValue constructor to define the concepts representing the different

types of wines.

The set of nominals referenced in concept descriptions consists of

No = {red, rose,white, full, light,medium, delicate,moderate, strong, dry, offdry, sweet}(32)

and the set of role names used in number restrictions consists of

NR = {hasWineDescriptor, hasBody, hasColor, hasFlavor, hasSugar} (33)

The hierarchy between roles within the RBox R is depicted in Figure 60, which

shows the initial role hierarchy of the Wine ontology in Figure 60a. This hierarchy

is maintained by the reasoners considered except for HARD which extends it to the

13See more details about the Wine ontology and its usage at http://www.w3.org/TR/2004/

REC-owl-guide-20040210/#Usage.

220

hierarchy shown in Figure 60b14, after the preprocessing algorithm is executed.

Wine �= 1hasBody.WineBody� = 1hasColor.WineColor

� = 1hasFlavor.WineFlavor� = 1hasSugar.WineSugar

DessertWine ≡ Wine � ∀hasSugar.{offdry, sweet}

LateHarvest � Wine � ∀hasFlavor.{moderate, strong} � ∀hasSugar.{sweet}

IceWine ≡ DessertWine � LateHarvest � ∃hasColor.{white}

IceWine � ∀hasBody.{full,medium} � ∀hasFlavor.{moderate, strong}

WineDescriptor ≡ WineColor �WineTaste

WineTaste � WineDescriptor

WineColor ≡ {red, rose,white}

WineBody ≡ {full, light,medium}

WineFlavor ≡ {delicate,moderate, strong}

WineSugar ≡ {dry, offdry, sweet}

Figure 59: TBox axioms in the Wine ontology.

topObjectProperty

hasWineDescriptor

hasBody hasColor hasFlavor hasSugar

(a) Role hierarchy for the Wine ontology.

topObjectProperty

hasWineDescriptor

hasBody

hB1

hasColor

hC1 hC2

hasFlavor

hF1

hasSugar

hS1

(b) Role hierarchy for the Wine ontology after

applying the preprocessing algorithm.

Figure 60: Role hierarchy within the RBox R for the Wine ontology.

14The extended hierarchy is maintained during test execution only.

221

Test case Fact++ HARD Hermit Pellet

Wine-CIceWine 63 566 219 336

Table 7: Runtimes in milliseconds with the test cases for the Wine ontology.

The satisfiability of the concept IceWine is tested using KB consistency tests where

the TBox T includes � � ¬{a} � IceWine with a a freshly introduced nominal. The

concept IceWine is satisfiable and Figure 83, of Appendix C.2.1, shows a CCG for

the test case Wine-CIceWine. The run-times of the different reasoners for deciding the

satisfiability of this concept are shown in Table 7.

Although the satisfiability of IceWine can be considered a simple test case, HARD’s

performance is not the best, and this is due to the non-determinism in selecting an

initial distribution of nominals (ch-Rule). For example, the nominals used to de-

scribe the concept WineSugar must be distributed such that the restrictions imposed

by the definition of Wine are satisfied. This distribution of nominals must also satisfy

∀hasSugar.{offdry, sweet} because IceWine is also a DessertWine, and ∀hasSugar.{sweet}

because IceWine is a LateHarvest. In a sense, although dry, offdry, and sweet are told

nominals for hasSugar, only sweet must be used as a hasSugar-filler. Since HARD

does not implement any special processing of ∀hasSugar restrictions, an initial dis-

tribution of nominals does not necessarily consider sweet as the only hasSugar-filler.

The performance of HARD is affected by how quickly a distribution for nominals is

found such that sweet is the only filler for hasSugar. Similarly, although full, light,

and medium are all told nominals for hasBody, only one of full, medium is allowed

for iceWine and there can be only one WineBody for an instance of Wine. Although

HARD is not the fastest in deciding the satisfiability of IceWine, HARD’s performance

can be improved by using some heuristics to process the ∀ restrictions and placing

some ordering/priorities based on which nominals are distributed as role fillers.

222

7.2.2.3 The Koala ontology

Male ≡ ∃hasGender.{male}

Female ≡ ∃hasGender.{female}

KoalaWithPhD � ∃hasDegree.{PhD}

Figure 61: TBox axioms using the hasValue nominals constructor.

The Koala ontology is a simple ontology about marsupials and humans. It is de-

signed using the DL ALCON (D), and is part of the Protégé ontology library.15 Nom-

inals are referenced using the hasValue constructor as shown in Figure 61.

In order to be suitable for HARD, expressions relying on the use of concrete

datatypes are removed. For example, axiom (34), which uses the datatype property

isHardWorking, is removed.

Koala � isHardWorking.false (34)

Also, expressions of the form (�� nR.� � ∀R.C) are replaced with (�� nR.C). For

example, the TBox axiom (35) is replaced with axiom (36). This is done because

(�� nR.� � ∀R.C) is based on the unqualified number restrictions constructor (N),

which is not interesting for HARD, because we want to test QCRs Q even though

the two expressions may not admit identical models.

Animal � ≥ 1 hasHabit � ∀hasHabitat.Habitat (35)

Animal �≥ 1 hasHabitat.Habitat (36)

The concepts Gender and Degree are poorly defined using ABox assertions. For

example, the individuals male, and female are used in ABox assertions such that these

15http://protege.stanford.edu/plugins/owl/owl-library.

223

individuals are instances of the concept Gender; (male: Gender), and (female: Gender).

However, male and female are the only allowed instances for Gender, and this should be

defined in the TBox. Such poor representation of concepts is replaced by definitions

of the concepts Gender and Degree in the TBox using the oneOf constructor with the

nominals male, female, BA, BS, MA, PhD as follows:

Gender ≡ {male, female} (37)

Degree ≡ {BA,BS,MA,PhD} (38)

The final Koala TBox includes the axioms shown in Figure 62 and has the

expressivity of the ALCOQ.

KoalaWithPhD ≡ Koala � ∃hasDegree.{PhD}

Koala � Marsupials � ∃hasHabitat.Forest

Marsupials � Animal

Animal � ≥ 1 hasHabitat.Habitat� = 1 hasGender.Gender

MaleStudentWith3Daughters � ∀hasGender.Male� = 3 hasChildren.Female

MaleStudentWith3Daughters � Student

Student � Person � ∃ hasHabitat.University

Person � Animal

Female � ∃hasGender.{female}

Male � ∃hasGender.{male}

Gender ≡ {male, female}

MaleStudentWithnDaughters � hasGender.Male� = n hasChildren.Female

MaleStudentWithnDaughters � Student

Figure 62: TBox axioms in the adapted Koala ontology. The expression = nR.C
abbreviates ≥ nR.C � ≤ nR.C.

224

topObjectProperty

hasHabitat hasBody hasChild hasGender

(a) Initial role hierarchy for the Koala ontology.

topObjectProperty

hasHabitat

hH1 hH2 hH3

hasBody

hB1

hasChild

hC1

hasGender

hG1 hG2 hG3

(b) Extended role hierarchy for the Koala ontology after applying the preprocess-

ing algorithm.

Figure 63: Role hierarchy within the RBox R for the Koala ontology.

The set of nominals referenced in concept descriptions consists of

No = {BA,BS,MA,PhD,male, female} (39)

and the set of role names used in number restrictions consists of

NR = {hasChildren, hasDegree, hasGender, hasHabitat} (40)

such that the hierarchy between the roles is shown in Figure 63a. HARD extends

this hierarchy after applying Algorithm 4.1.1 into the one shown in Figure 63b.

The concept MaleStudentWith3Daughters implicitly uses nominals through the

conceptsMale and Female. The satisfiability of KoalaWithPhD,MaleStudentWith3Daughters,

and (KoalaWithPhD � MaleStudentWith3Daughters) is tested using KB consistency

tests where the TBox T includes � � ¬{a} � C.

225

Test case Fact++ HARD Hermit Pellet

Koala-C1 55 168 250 382

Koala-C2(n = 3) 51 332 238 463

Koala-C2(n = 10) 50 309 39324 669

Koala-C1−2(n = 3) 59 426 258 410

Koala-C1−2(n = 10) 52 438 39672 535

Table 8: Runtimes in milliseconds with the test cases for the Koala ontology.

The test case Koala-C1 refers to the KB consistency test where C refers to

the concept KoalaWithPhD. Koala-C2(n = 3), and Koala-C1−2(n = 3) refer to the

KB consistency tests where C refers to the concepts MaleStudentWithnDaughters

and (KoalaWithPhD � MaleStudentWithnDaughters) with n = 3 respectively. Simi-

larly Koala-C2(n = 10), and Koala-C1−2(n = 10) refer to the KB consistency tests

where C refers to the concepts MaleStudentWithnDaughters and (KoalaWithPhD �

MaleStudentWithnDaughters) with n = 10. Figure 85, in Appendix C.2.2, shows a

CCG for Koala-C1, Figure 87 shows a CCG for Koala-C2(n), and Figure 88 shows

a CCG for Koala-C1−2(n). The existence of these complete and clash free CCGs

shows that the concepts being tested are all satisfiable. The run-times for the corre-

sponding test cases are shown in Table 8.

Although the tests considered are simple cases where the concepts are satisfiable,

the results show that Pellet is the worst performing reasoner in all cases, even though

Hermit is terrible in handling cases with large values of n. HARD’s performance is,

as expected, affected by the number of QCRs to satisfy (HARD is slightly slower with

Koala-C1−2), but insensitive to n. Fact++ can routinely process these test cases.

226

7.2.2.4 The Countries ontology

The Countries16 ontology represents the ISO 3166 Code17 list of countries using

the DL ALCIN (D). The fact that every country has exactly one English name is

represented using axiom (41), where nameEnglish is a functional datatype role whose

range is a string.

Country � = 1nameEnglish (41)

Since nameEnglish is functional, each country can have exactly one English name.

However, the fact that a country’s English name must be an English word is missing

because the range for nameEnglish is any string. Also, the fact that a country’s

English name must be the same name used in every model of an English country

is lost. For example, if we have an individual country Canada as an instance of the

concept Country, one could have 〈Canada,′′ Kanata′′〉 : nameEnglish18 in one model, and

〈Canada,′′ Canada′′〉 : nameEnglish in some other model.

The countries ontology is adapted so that the fact that every country has ex-

actly one English name is represented using axiom (42) where hasEnglishName is an

object property whose range is the concept EnglishCountryName defined in (43) using

the oneOf constructor as an enumeration of nominals representing existing English

country names19.

Country � = 1hasEnglishName.EnglishCountryName (42)

LongEnglishCountryName ≡ {Afghanistan,AlandIslands, . . . ,Zimbabwe} (43)

LongEnglishCountryName � EnglishCountryName (44)

16http://www.bpiresearch.com/BPMO/2004/03/03/cdl/Countries.
17http://www.iso.org/iso/English_country_names_and_code_elements.
18Kanata is the First Nations word where the name of Canada originated.
19In total, there exists 248 official short names for countries as listed at http://www.iso.org/

iso/english_country_names_and_code_elements.

227

The fact that a country’s English name must be the same one used in every

model is represented using axioms like Canada � ∃hasEnglishName.{Canada} where

{Canada} is a nominal representing the EnglishCountryName used for Canada.

The European Union Countries Example The EU example which was dis-

cussed in Section 4.7.6 is integrated into the Countries ontology. Recall that the

EU example represents the European Union (EU) member states as an enumeration

of 27 nominals, each representing a member state. The resulting TBox is shown in

Figure 64, where an interaction between nominals and role fillers is required to satisfy

the concept EuropeanUnion. In a first variant of this example, the representation of

EuropeanUnion does not rely on concepts from the Countries ontology. This simple

representation is referred as Countries-Csimple−EU.

A more complex representation of the EU example is considered where the concept

Country is used within the definition of EuropeanUnion, and an enumeration of the

English names for the member states is used to define ShortEnglishCountryName. For

ease of presentation and better clarity, we use the short english name for a country

when referring to an EU member state. The resulting TBox is shown in Figure

66 and this test case is referred as Countries-Ccomplex−EU. Another variant of the

Countries-C∗−EU ontology is considered where only the six inner member state of

the EU are represented. The simple representation of the InnerEuropeanUnion is shown

in Figure 65 and a more complicated one is shown in Figure 67.

Unlike the original countries ontology, the Countries-C∗−∗EU ontologies use

the DL ALCOQ. The satisfiability of (Inner)EuropeanUnion is tested using KB con-

sistency tests where (� � ¬{a} � (Inner)EuropeanUnion) is included in the TBox T .

Notice that (Inner)EuropeanUnion is satisfiable in the case where (n ≤ 6) n ≤ 27, and

unsatisfiable otherwise. The run-times for the corresponding test cases are shown in

Table 9.

228

State � Country

EUMemberState ≡ {Austria,Belgium, . . . ,UnitedKingdom}

EuropeanUnion � ∀hasMember.EUMemberState

EuropeanUnion �≥ nhasMember.State

Figure 64: TBox axioms in the Countries-Csimple−EU ontology.

habi

State � Country

EUInnerMemberState ≡ {Italy,Netherlands,Belgium, France,Germany, Luxembourg}

InnerEuropeanUnion � ∀hasMember.EUInnerMemberState

InnerEuropeanUnion �≥ nhasMember.State

Figure 65: TBox axioms in the Countries-Csimple−IEU ontology.

The complexity of the test cases for Countries-C∗−simple−∗EU is due to the non-

determinism in merging the domain elements that are hasMember-fillers of a with the

nominals enumerated in the definition of InnerEuropeanUnion. A standard tableau

algorithm decides the satisfiability of (Inner)EuropeanUnion by creating n distinct

anonymous domain elements related to a, the instance of (Inner)EuropeanUnion, via

the hasMember role. The ∀hasMember.EU(Inner)MemberState forces these elements

to become members of the EU(Inner)MemberState concepts. This means that each

one of these elements must be identified with one of the nominals enumerated in

the definition of EU(Inner)MemberState. The (un)satisfiability is discovered after all

possibilities of merging the n elements with the (6)27 nominals are exhausted. Notice

that Pellet’s performance is the worst in handling this complexity especially in the

case of unsatisfiability. Fact++ and Hermit handle satisfiable cases better, however

their performance deteriorates as the number of nominals increases with unsatisfiable

cases. HARD’s performance is affected by the increase in the number of nominals

229

with satisfiable cases. This performance degradation is expected since HARD needs

to consider more partitions as the number of nominals increases.

State � Country

Country �= 1hasEnglishName.ShortEnglishCountryName

Country �= 1locatedIn.Continent

Continent ≡ {Europe}

ShortEnglishCountryName ≡ {AT,BE, . . . ,UK}

EUMemberState ≡ {AT,BE, . . . ,UK}

EuropeanUnion � ∀hasMember.EUMemberState

EuropeanUnion �≥ nhasMember.(Country � ∃locatedIn.{Europe})

Figure 66: TBox axioms in the Countries-Ccomplex−EU ontology.

State � Country

Country �= 1hasEnglishName.ShortEnglishCountryName

Country �= 1locatedIn.Continent

Continent ≡ {Europe}

ShortEnglishCountryName ≡ {IT,NL,BE, FR,DE, LU}

EUInnerMemberState ≡ {IT,NL,BE, FR,DE, LU}

InnerEuropeanUnion � ∀hasMember.EUInnerMemberState

InnerEuropeanUnion �≥ nhasMember.(Country � ∃locatedIn.{Europe}

Figure 67: TBox axioms in the Countries-Ccomplex−IEU ontology.

However, the fact that (7)30 elements can never be distributed over (6)27 nominals

is quickly discovered by HARD which maintains a stable performance with unsatis-

fiable cases. We study how the number of nominals and the numbers used in the

QCRs affects the performance of these reasoners in Section 7.2.2.6.

230

Test case Fact++ HARD Hermit Pellet

Countries-CSAT−simple−IEU(n=6) 47 219 188 625

Countries-CUnSAT−simple−IEU(n=7) 94 110 703 8234

Countries-CSAT−simple−EU(n=27) 62 343 312 19641

Countries-CUnSAT−simple−EU(n=30) TO 109 TO TO

Countries-CSAT−complex−IEU(n=6) 32 146781 234 703

Countries-CUnSAT−complex−IEU(n=7) 94 142 1078 19952

Countries-CSAT−complex−EU(n=27) 63 TO 344 29546

Countries-CUnSAT−complex−EU(n=30) TO 125 TO TO

Table 9: Runtimes in milliseconds with the test cases for the countries ontology.

The complexity of the test cases for Countries-C∗−complex−∗EU is due to the

fact that the nominals interacting with the hasMember-fillers also interact with the

hasEnglishName-fillers at different levels of the completion graph. Fact++ does not

seem to be affected by this complexity as it maintains a similar performance as with

Countries-C∗−simple−∗EU cases. Pellet’s performance and Hermit’s performance con-

sistently degrade as the number of nominals increases and it is worst with unsatisfiable

cases. HARD’s performance is directly affected by this complexity, especially if an

initial distribution of nominals does not take into consideration their interaction with

hasEnglishName-fillers (case when the hasEnglishName role is not activated) and as-

signs these nominals to hasMember partitions. As soon as the hasEnglishName role

is activated the satisfiability of = 1hasEnglishName is not possible, and the distribu-

tion of nominals is no longer valid. The algorithm considers a different distribution

for each nominal, which means that the choice points for the ch-Rule with nominal

variables are exhausted until a distribution is found which takes into consideration

the interaction between the nominals, hasEnglishName-fillers and hasMember-fillers.

231

If the lazy nominal generation is disabled, HARD can solve it in 1546 milliseconds.

In the case of Countries-CSAT−complex−EU a blow up in the number of partitions that

needs to be considered results in a java.lang.NumberFormatException which is an

implementation problem and can be enhanced by a smarter way of representing vari-

ables and indexes for partitions. On the other hand, the numerical unsatisfiablity

remains trivial.

The Canadian Parliament An interesting extension to theCountries ontologies

is considered by representing the members of the Canadian parliament based on their

distribution over Canadian provinces.20 The resulting TBox is shown in Figure 68.

None of the available reasoners can decide the satisfiability of the concept Canadi-

anParliament. In the case of HARD, a java.lang.NumberFormatException is thrown

due to the blow up in the size of the decomposition set. Different TBox extractions

are considered:

• Only members of the Canadian parliament within the provinces across atlantic

Canada are considered. The corresponding TBox is shown in Figure 69 and the

test case is referred as Countries-CParliament−atlantic.

• Only members within a province having the lowest number of seats are con-

sidered. The corresponding TBox is shown in Figure 70, and the test case is

referred to as Countries-CParliament−PE.

• Only members within a province having the highest number of seats are con-

sidered. The corresponding TBox is shown in Figure 71, and the test case is

referred to as Countries-CParliament−ON.

20As described in the definition of House of Commons of Canada at http://en.wikipedia.org/
wiki/House_of_Commons_of_Canada#Members_and_electoral_districts.

232

CanadianParliament �≥ 279hasMember.(Person� ≥ 1livesIn.CanadianProvince)

CanadianParliament �= 305hasMember.(Person� ≥ 1livesIn.CanadianProvince)

CanadianParliament �≥ 95hasMember.(Person� ≥ 1livesIn.{ON})

CanadianParliament �= 106hasMember.(Person� ≥ 1livesIn.{ON})

CanadianParliament �= 75hasMember.(Person� ≥ 1livesIn.{QC})

CanadianParliament �≥ 28hasMember.(Person� ≥ 1livesIn.{BC})

CanadianParliament �= 36hasMember.(Person� ≥ 1livesIn.{BC})

CanadianParliament �≥ 21hasMember.(Person� ≥ 1livesIn.{AB})

CanadianParliament �= 28hasMember.(Person� ≥ 1livesIn.{AB})

CanadianParliament �= 14hasMember.(Person� ≥ 1livesIn.{MT})

CanadianParliament �= 14hasMember.(Person� ≥ 1livesIn.{SK})

CanadianParliament �= 11hasMember.(Person� ≥ 1livesIn.{NS})

CanadianParliament �= 10hasMember.(Person� ≥ 1livesIn.{NB})

CanadianParliament �= 7hasMember.(Person� ≥ 1livesIn.{NL})

CanadianParliament �= 4hasMember.(Person� ≥ 1livesIn.{PE})

CanadianProvince ≡ {ON,AB,QC,BC, SK,MB,NL,NS,NB,PE}

Figure 68: TBox axioms in the Countries-CParliament−full ontology

CanadianParliament �= 305hasMember.(Person� ≥ 1livesIn.CanadianProvince)

CanadianParliament �≥ 11hasMember.(Person� ≥ 1livesIn.{NS})

CanadianParliament �≥ 10hasMember.(Person� ≥ 1livesIn.{NB})

CanadianParliament �≥ 7hasMember.(Person� ≥ 1livesIn.{NL})

CanadianParliament �≥ 4hasMember.(Person� ≥ 1livesIn.{PE})

CanadianProvince ≡ {ON,AB,QC,BC, SK,MB,NL,NS,NB,PE}

Figure 69: TBox axioms in the Countries-CParliament−atlantic ontology.

233

CanadianParliament �= 305hasMember.(Person� ≥ 1livesIn.CanadianProvince)

CanadianParliament �≥ 4hasMember.(Person� ≥ 1livesIn.{PE})

CanadianProvince ≡ {ON,AB,QC,BC, SK,MB,NL,NS,NB,PE}

Figure 70: TBox axioms in the Countries-CParliament−PEI ontology

CanadianParliament �= 305hasMember.(Person� ≥ 1livesIn.CanadianProvince)

CanadianParliament �≥ 106hasMember.(Person� ≥ 1livesIn.{ON})

CanadianProvince ≡ {ON,AB,QC,BC, SK,MB,NL,NS,NB,PE}

Figure 71: TBox axioms in the Countries-CSAT−Parliament−ON ontology

Test case Fact++ HARD Hermit Pellet

Countries-CParliament−full ERR20 ERR20 TO ERR20

Countries-CParliament−atlantic 260 375 TO TO

Countries-CParliament−ON 203454 360 TO TO

Countries-CParliament−PEI 63 218 TO TO

Table 10: Runtimes in milliseconds with the test cases for the countries ontology
including the Canadian Parliament representation.

The run-times for the corresponding test cases are shown in Table 10. Hermit and

Pellet cannot solve any of the test cases within the time limit. Fact++’s performance

degrades as the number used with ≥ nhasMember increases. Note however, that re-

placing ≥ n hasMember with = n hasMember results in none of the tableau reasoners

being able to solve even the smallest examples. This might be due to the fact that a

= nR.C is equivalent to ≥ nR.C� ≤ nR.C, and reasoning with more ≤ nR.C is less

efficient due to the applicability of the non-deterministic choose-Rule.

20Fact++ and Pellet run out of memory for the JAVA heap space, and HARD runs into a JAVA
number format exception due to the blow up of variables.

234

7.2.2.5 The Time ontology

DateTimeDescription �≤ 1dayOfWeek � ∀dayOfWeek.DayOfWeek

� ≤ 1timeZone � ∀timeZone.TimeZone

� = 1unitType � ∀unitType.TemporalUnit

DayOfWeek ≡ {Sunday,Monday, . . . , Saturday}

TemporalUnit ≡ {unitDay, unitHour, . . . , unitYear}

Figure 72: Some TBox axioms in the Time ontology

The Time ontology is part of the ontologies within the Semantic Web for Earth and

Environmental Terminology (SWEET) project.21 The ontologies can be downloaded

from http://sweet.jpl.nasa.gov/sweet. The Time ontology relies on the DL

SHOIN (D), a detailed description is available at http://www.w3.org/TR/owl-time/

and the OWL file can be downloaded from http://www.w3.org/2006/time. A sub-

set of the ontology has been converted to the DL expressivity of ALCON such that

concrete datatype roles were discarded as well as expressions relying on them. Also,

roles that are not referenced within concept expressions are discarded. The resulting

TBox contains the axioms shown in Figure 72. The set of nominals referenced in

concept descriptions consists of

No = {Sunday,Monday,Tuesday,Wednesday,Thursday, Friday, Saturday, unitDay

unitHour, unitMinute, unitMonth, unitSecond, unitWeek, unitYear} (45)

and the set of role names used in number restrictions consists of

NR = {unitType, dayOfWeek, timeZone} (46)

21The SWEET ontology provides an upper-level ontology for Earth system science. The SWEET
ontologies include several thousand terms, spanning a broad extent of Earth system science and
related concepts (such as data characteristics) using the OWL language.

235

Test case Fact++ HARD Hermit Pellet

Time-CSAT−DTD 59 195 223 328

Table 11: Runtimes in milliseconds with the test cases for the Time ontology.

used in the definition of DateTimeDescription which consists of number restrictions

with role fillers that interact with the nominals used in the definitions of DayOfWeek

and TemporalUnit. The test case Time-CSAT−DTD refers to the TBox consistency tests

for the satisfiability of the concept DateTimeDescription which is satisfiable.

7.2.2.6 Synthetic Test Cases

The test cases used in the previous section make use of the oneOf constructor and/or

the hasValue constructor. The test cases focus more on a real world occurrence

or use of nominals and their effect on reasoning performance when they interact

with role fillers. Most of those test cases are simple and do not pose significant

challenge to known reasoning algorithms. In this section, some synthetic test cases

are designed to test the scalability of ReAl DL based on the following four criteria:

number of nominals used, the depth of the role hierarchy, the use of cycles within

concept descriptions and the nesting in the use of QCRs. The purpose of these test

cases is to evaluate the effect of different DL expressivity features used in concept

descriptions, where an interaction between nominals and QCRs is expected, on the

reasoning performance.

• The number of nominals. The reasoning performance is evaluated as the number

of nominals (size of No) used in the TBox increases. The purpose of these tests

is to stress HARD’s reasoning.

• The depth of the role hierarchy. The reasoning performance is evaluated as the

hierarchy between the roles used in QCRs becomes deeper. The purpose of

236

these tests is to evaluate how HARD handles decomposition of roles within a

hierarchy of a deeper level.

• The use of cycles in concept descriptions. Cyclic descriptions require the use

of blocking strategies in order for reasoning to terminate. The purpose of these

test cases, is to evaluate how HARD handles cycles through the re-use of proxy

nodes compared to other reasoners that need to be equipped with blocking

strategies to ensure termination.

• The use of nested nominals and QCRs within concept descriptions. The reason-

ing performance is evaluated as the QCRs used become nested within concept

descriptions. The purpose of these test cases is to evaluate how the interac-

tion between nominals and/or QCRs at different levels of the completion graph

affects performance.

Every test case is evaluated using two variants: a satisfiable case, and an unsatis-

fiable one. In the following, the cases which are satisfiable are referred to as CSAT−∗−∗,

and those that are unsatisfiable are referred to as CUnSAT−∗−∗.

Effect of increasing the number of nominals The effect of increasing the num-

ber of nominals within a concept description, enforced as a qualification on role fillers,

is shown using a set of synthetic ontologies, where the TBox includes the concept

Cnominals−ALCOQ defined using the DL ALCOQ as follows:

Cnominals−ALCOQ � ≥ jR.E

E ≡ {o1, o2, . . . , oi}

237

5 10 15 20 25 30
101

102

103

104

105

106

value of i in CSAT−nominals−ALCOQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

Figure 73: Effect of increasing the number of nominals with the numbers used in
QCRs in a satisfiable concept expression CSAT−nominals−ALCOQ with j = i.

2 4 6 8 10
101

102

103

104

105

106

value of i in CUnSAT−nominals−ALCOQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

Figure 74: Effect of increasing the number of nominals with the numbers used in
QCRs in an unsatisfiable concept expression CUnSAT−nominals−ALCOQ with j = i+ 1.

238

In the case of CSAT−nominals−ALCOQ, the value of i is such that i ≥ j in order for

Cnominals−ALCOQ to be satisfiable. In the case of CUnSAT−nominals−ALCOQ, the value

of i is such that j=i+1. In each test, the value of i is increased and the perfor-

mance results are shown in Figure 73 for CSAT−nominals−ALCOQ cases, and Figure 74 for

CUnSAT−nominals−ALCOQ cases. In a second set of test cases, we fix i to 5 and replace j

with 10k+ 1. Since j is always greater than i, Cnominals−ALCOQ becomes unsatisfiable

and we refer to this set of test cases as CUnSAT−fixed−nominals−ALCOQ .

Running the cases with Cnominals−ALCOQ have shown that the interaction between

nominals and QCRs has a direct effect on reasoning performance as the number of

nominals increases in a concept description relying on the oneOf constructor. If

the role fillers exceed the number of nominals allowed, the unsatisfiability of the

concept description (CUnSAT−nominals−ALCOQ) cannot be solved without the algebraic

approach; HARD is the only reasoner which decides the unsatisfiability, within the

time limit, as the number of nominals increases. Figure 74 shows that the other rea-

soners compete in deciding unsatisfiability. Even though the different optimizations

implemented make some reasoners faster than others, when it comes to scalability,

the performance degradation seems to be a function of the same variable due to a

common complexity bound that is reached. The complexity is due to the increase

of both the number of nominals and the numbers used in QCRs. For instance as

shown in Figure 75, some reasoners (Fact++) scale better if the number of nominals

is fixed while increasing the value of the number used in QCRs. The test results

with the cases where the number of nominals is fixed but the numbers used in QCRs

is increased, case CUnSAT−fixed−nominals−ALCOQ. Therefore, we can conclude that it is

the interaction and increase of both nominals and QCRs which is weakly handled by

tableau reasoners.

239

10 20 30 40 50
101

102

103

104

105

106

value of k in CUnSAT−fixed−nominals−ALCOQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++

HARD

Hermit

Pellet

Figure 75: Effect of increasing the size of the numbers used in QCRs with unsatisfiable
cases of CUnSAT−fixed−nominals−ALCOQ where the number of nominals is fixed, i = 5 and
j = 10k+ 1.

However, in the case when the number of role fillers does not exceed the num-

ber of nominals allowed, case with CSAT−nominals−ALCOQ, most reasoners did not have

a problem deciding satisfiability with an increased number of nominals, except for

Pellet whose performance degrades as the number of nominals increases. Fact++ is

stable, Hermit and HARD need slightly more time to process the increased number

of nominals.

Effect of increasing the depth of the role hierarchy The effect of the depth of

the role hierarchy on the performance of reasoning is tested using the role hierarchy

shown in Figure 76 where roles from different levels of the hierarchy are used in

QCRs in the definition of the concept C for which the test cases are referred to as

C∗−R−deep−ALCHQ when there is no nominal interaction and C∗−R−deep−ALCHOQ there

is an interaction between nominals and role fillers. The interaction with nominals is

enabled by adding the definition of D to the TBox axioms.

240

CR−deep−ALCHQ �≥ nR1.A� ≥ nR2.B� ≥ nR1a.A� ≥ nR2a.B� ≤ mR.� � ∀R.�

CR−deep−ALCHOQ �≥ nR1.A� ≥ nR2.B� ≥ nR1a.A� ≥ nR2a.B� ≤ mR.� � ∀R.D

D ≡ {o1, o2, . . . , on}

topObjectProperty

R

R1

R1a

R2

R2a

Figure 76: Role hierarchy within the RBox R.

Test case Fact++ HARD Hermit Pellet

CSAT−R−deep−ALCHQ 39 250 635 349

CUnSAT−R−deep−ALCHQ 39 266 7891 7329

CSAT−R−deep−ALCHOQ 47 375 875 344

CUnSAT−R−deep−ALCHOQ 47 126 7792 7214

Table 12: Runtimes in milliseconds with the test cases using a deep role hierarchy.

The performance results displayed in Table 12 for the cases with C∗−R−deep−∗ show

the effect of the depth of the role hierarchy in R: even though the depth used is

only minimal, Pellet’s performance degrades with unsatisfiable cases and Hermit’s

performance degrades with satisfiable and unsatisfiable cases. On the other hand,

Fact++ and HARD’s performance are not affected by the depth of the role hierarchy.

241

Effect of increasing the nesting level of QCRs The effect of using QCRs in

nested expressions on the performance of reasoning is tested using the satisfiability of

Cnested−ALCHQ. In this case the qualification on the role fillers of R1 includes a QCRs.

Cnested−ALCHQ �≥ nR1.(A� ≥ nR2.B)� ≥ nR1a.(A� ≥ nR2a.B)� ≤ mR.� � ∀R.�

When the nominal interaction is enabled we refer to the test case as Cnested−ALCHOQ.

Cnested−ALCHOQ �≥ nR1.(A� ≥ nR2.B)� ≥ nR1a.(A� ≥ nR2a.B)� ≤ mR.� � ∀R.D

D ≡ {o1, o2, . . . , on}
The performance results displayed in Table 13 for the cases with C∗−nested−∗ show

the effect of the nesting within concept descriptions: most reasoners can quickly

decide these test cases. A slight performance degradation is noticed with HARD

while deciding unsatisfiable cases when nested expression allow an interaction be-

tween nominals and role fillers at different levels. Such a degradation is somehow

expected, especially if due to the interaction between nominals and role fillers, an

initial distribution of nominals (due to the ch-Rule) leads to a clash, and backtrack-

ing is required until the interaction is taken into consideration when the nominals

are initially distributed over partitions. Pellet’s performance is unexpectedly the

worst when deciding satisfiability cases. Appendix C Figure 89 shows a compressed

completion graph for CSAT−nested−ALCHOQ.

Test case Fact++ HARD Hermit Pellet

CSAT−nested−ALCHQ 31 219 258 375

CUnSAT−nested−ALCHQ 63 140 266 385

CSAT−nested−ALCHOQ 47 313 274 325411

CUnSAT−nested−ALCHOQ 47 516 266 381

Table 13: Runtimes in milliseconds with the test cases using nesting occurrences of
QCRs within concept expressions.

242

Effect of using cyclic descriptions The effect of using cycles in concept descrip-

tions on the performance of reasoning is tested using the satisfiability of Ccyclic−ALCHQ

when there is no nominal interaction and Ccyclic−ALCHOQ where nominals interact

through the definition of D.

Ccyclic−ALCHQ �≥ nR1.C� ≥ nR2.C� ≥ nR1a.C� ≥ nR2a.C� ≤ mR.� � ∀R.�

C � Ccyclic−ALCHQ

Ccyclic−ALCHOQ �≥ nR1.Co � ≥ nR2.Co � ≥ nR1a.Co � ≥ nR2a.Co � ≤ mR.� � ∀R.D

D ≡ {o1, o2, . . . , on}

Co � Ccyclic−ALCHOQ

The performance results displayed in Table 14 for the cases with C∗−cyclic−∗ show

the effect of cycles within concept description. As expected, HARD does not need to

implement any blocking strategies to ensure termination. The termination is guar-

anteed by the re-use of individuals. Even though Hermit is known to implement a

sophisticated blocking strategy notice how it’s performance degrades with C∗−cyclic−∗

with and without nominals interaction for satisfiable and unsatisfiable cases. Pellet

on the other hand, needs considerably more time to decide unsatisfiable cases with

cycles. Appendix C Figures 91 and 90 show examples of a CCG for CSAT−cyclic−ALCHQ,

it is easy to see how cycles are handled by the re-use of proxy nodes.

Test case Fact++ HARD Hermit Pellet

CSAT−cyclic−ALCHQ 47 202 594 359

CUnSAT−cyclic−ALCHQ 63 249 6468 7345

CSAT−cyclic−ALCHOQ 47 281 1297 374

CUnSAT−cyclic−ALCHOQ 63 110 6453 6500

Table 14: Runtimes in milliseconds with the test cases using cyclic concept expres-
sions.

243

7.3 Optimizations Effects

This section reports on run times for the previously discussed test cases where one

or more optimizations are disabled. The purpose of running these tests is twofold:

first, the effect of the proposed optimizations in Chapter 5 is evaluated, second, key

optimizations are highlighted. Optimizations effect are measured by calculating their

speed up factor S which is defined as S(O) = tOFF

tON
where tOFF is the run time reported

when the optimization O is turned OFF and tON is the run time reported when O

is turned ON. In the following sections, optimizations are grouped based on their

dependencies, and the phase of the satisfiability test when they are applied. In a first

group, the effect of exploiting told nominal relations is evaluated based on using the

told nominals heuristic optimization, and the lazy nominal generation optimization.

In a second group, the effect of optimized back-jumping is evaluated using the look

ahead, look back, and the learning optimization techniques. In a third group, the effect

of reduced partitioning is evaluated using the incremental decomposition optimization,

the lazy nominal generation, and the active roles heuristics. Finally, the overall effect

of all the optimizations used is evaluated.

7.3.1 Effect of Exploiting Told Nominal Interactions

Recall that told nominal interactions with roles can be used to reduce the size of the

search space at preprocessing as described in Section 5.3.1. Also, told nominal inter-

actions allow enabling the heuristic guided nominal distribution technique, described

in Section 5.3.2, and which enforces an ordering on role variables when processed

by the ch-rule; and the lazy nominal generation technique, which allows a nominal

partition to be used on demand, as described in Section 5.8.

244

Test case THA T-A TH- T- - - - -

Wine-CIceWine 566 265 TO TO TO

Koala-C1 168 140 859 312 TO

Koala-C2(n = 3) 332 360 546 14078 TO

Koala-C1−2(n = 3) 426 1719 267641 TO TO

Countries-CSAT−simple−IEU(n=6) 219 328 156 172 922

Countries-CUnSAT−simple−IEU(n=7) 109 109 234 250 73532

Countries-CSAT−simple−EU(n=27) 343 328 343 2031 TO

Countries-CUnSAT−simple−EU(n=30) 109 109 234 235 TO

Time-CSAT−DTD 195 202 TO TO TO

Table 15: Runtimes in milliseconds with the test cases with real world ontologies
where one or more THA optimization (s) is (are) turned OFF.

Test case S(THA) S(H) S(A) S(HA)

Wine-CIceWine 10596 0 1060 1060

Koala-C1 3577 1 5 2

Koala-C2(n = 3) 1807 1 2 42

Koala-C1−2(n = 3) 1408 4 628 1408

Countries-CSAT−simple−IEU(n=6) 1749 1 1 6

Countries-CUnSAT−simple−IEU(n=7) 5505 1 2 2

Countries-CSAT−simple−EU(n=27) 4 1 1 1

Countries-CUnSAT−simple−EU(n=30) 668 1 2 2

Time-CSAT−DTD 3073 1 3073 3073

Table 16: Speed up factor for the optimizations relying on told nominal interactions.

In the remainder of this section T, H, and A are used to refer to the told nominal

interactions with roles, the heuristic guided nominal distribution, and the lazy nom-

inal generation techniques respectively. The effect of enabling those techniques is

245

measured by running the test cases listed in Table 15 where one-of or all-of T, H, and

A are disabled; the disabled optimization is marked using “-”. The corresponding run

times are shown in Table 15, and the speed up factor of each optimization is shown

in Table 16.

The results show that the optimizations relying on told nominal interactions are

crucial; without enabling these optimizations most test cases time out. The Heuristic

guided nominal distribution does not always speed up reasoning, in case of tests

with a minor speedup factor. This is expected because the heuristic guided nominal

distribution does not affect the size of the number of partitions computed, but it

affects how much faster a good distribution of individuals between partitions is found.

The highest speed up factor for this optimization is reported with test case Koala-

C1−2(n = 3). The lazy nominal generation technique always improves performance,

and the highest speed up factor for this optimization is reported with test case Time-

CSAT−DTD.

Table 17 shows the different characteristics of the test cases in terms of; the size of

the set of activated roles (ADR), due to the active roles heuristic technique; the size

of the set of nominals (No) occurring in the TBox for the test case used; and the size

of the set of activated nominals (ANo), due to the lazy nominal generation technique,

for the test case. The size of ADR and the size of ANo determine the size of the global

decomposition set (DS), and hence affect the size of the global partitioning (P) that

needs to be computed. For example, if the lazy nominal generation technique is en-

abled, and assuming that the active roles heuristic is enabled as well, the total number

of partitions (size of P) that needs to be computed is equal to 2(size of ADR + size of ANo).

Whereas, if the lazy nominal generation is not enabled, the total number of partitions

that needs to be computed is equal to 2(size of ADR + size of No).

246

Test case size of ADR size of No size of ANo

Wine-CIceWine 5 12 12

Koala-C1 4 6 3

Koala-C2(n = 3) 5 6 2

Koala-C1−2(n = 3) 7 6 3

Countries-CSAT−simple−IEU(n=6) 1 6 6

Countries-CUnSAT−simple−IEU(n=7) 1 6 6

Countries-CSAT−simple−EU(n=27) 1 27 27

Countries-CUnSAT−simple−EU(n=30) 1 27 27

Time-CSAT−DTD 1 14 14

Table 17: Characteristics of the elements of the global decomposition set for the
different test cases - Part I.

Test case
size of P = size of reduced P = resize factor

2size of(ADR+No) 2size of(ADR+ANo) size of P
size of reduced P

Wine-CIceWine 131072 131072 1

Koala-C1 1024 128 8

Koala-C2(n = 3) 2048 128 16

Koala-C1−2(n = 3) 8192 1024 8

Countries-CSAT−simple−IEU(n=6) 128 128 1

Countries-CUnSAT−simple−IEU(n=7) 128 128 1

Countries-CSAT−simple−EU(n=27) 268435456 268435456 1

Countries-CUnSAT−simple−EU(n=30) 268435456 268435456 1

Time-CSAT−DTD 32768 32768 1

Table 18: Characteristics of the elements of the global decomposition set for the
different test cases - Part II.

247

Table 18 shows the resize factor due to the lazy nominal generation technique

which allows a reduced size of P . The resize factor is computed based on the following

formula:

resize factor =
size of P

size of reduced P =
2(size of No)

2(size of ANo)
(47)

The lazy nominal generation is mostly effective with the Koala ontology test

cases, because these test cases have the highest resize factor. Figure 63 shows

the newly introduced roles and the hierarchy between them after preprocessing the

Koala ontology. This hierarchy is the same for all of theKoala test cases. However,

each test case has a different decomposition set based on the concept satisfiability and

the corresponding activated roles and nominals. When the lazy nominal generation

technique is enabled, the number of nominals to be activated is equal to the size of

ANo, otherwise all nominals appearing in the TBox are generated and ANo = No.

This optimization avoids unnecessary computations of intersections between nominals

and role fillers. An increased number of intersections affects performance because of

the increased size of the search space due to the ch-rule. It is interesting to conclude

which characteristics of a TBox allow a maximum benefit from this optimizations.

Those characteristics are shown in Tables 19 and 20 where, DRo denotes the set of

roles (within ADR) that require a nominal as a role filler when deciding the consistency

of a Koala ontology. In Table 20, DR - ADR shows the size of the total number of

roles within the TBox (DR), versus the total number of roles activated for the test

case (ADR). No - ANo shows the size of the total number of nominals within the

TBox (No), versus the total number of the nominals activated by the lazy nominal

generation technique (ANo). DRo shows the total number of told nominal roles (i.e.

roles that require a nominal as a role filler), and NRo shows the total number of

nominals used as role fillers.

248

Test case ADR ANo DRo

Koala-C1 {hD1, hH1, hH2, hG1} {PhD,male, female} {hD1, hG1}

Koala-C2(n = 3) {hG1, hG2, hG3, hC1, hH1, hH2} {male, female} {hG1, hG2, hG3}

Koala-C1−2(n = 3) {hD1, hH1, hH2, hG1, hG2, hG3, hC1} {PhD,male, female} {hD1, hG1, hG2, hG3}

Table 19: Characteristics of the Koala test cases - part I

Test case DR - ADR No - ANo DRo NRo

Koala-C1 7 - 4 6 - 3 2 2

Koala-C2(n = 3) 7 - 6 6 - 2 3 2

Koala-C1−2(n = 3) 7 - 7 6 - 3 4 3

Table 20: Characteristics of the Koala test cases - part II

When the set of nominals activated is smaller than the set No appearing in the

TBox, having more told nominal roles for the same nominal helps also decrease the

set of nominals being activated. If T is the only optimization enabled, then the more

told nominal roles there are, the less partitions need to be considered.

7.3.2 Effect of Enhanced Back-jumping

This section presents an evaluation of the effect of enhanced back-jumping. Recall

that back-jumping can be enhanced through look ahead and look back techniques to

reduce the size of the search space, as described in Sections 5.4 and 5.5. In particular,

the ch-Rule look ahead, and the �-Rule lookahead techniques are evaluated as look

ahead techniques. As for look back techniques, the back-jumping and the learning

techniques are considered. The evaluated techniques are referred to as the LAB

techniques, L is used to refer to the Learning technique, A is used to refer to the look

Ahead techniques, and B is used to refer to the look Back techniques. The effect of

enabling those techniques is measured by running the test cases listed in Table 21

249

where one-of or all-of L, A, and B are disabled; the disabled optimization is marked

using “-”.

Test case LAB LA- L-B -AB - -B -A- L- - - - -

Wine-CIceWine 566 1265 2641 2078 5140 563 2733 11578

Koala-C1−2(n=3) 426 344 438 391 374 344 345 1610

Countries-CUnSAT−simple−IEU(n=7) 110 124 9578 1844 8547 1796 155 9671

Countries-CUnSAT−simple−EU(n=30) 117 203 TO TO TO TO TO TO

Time-CSAT−DTD 195 187 172 202 187 202 173 187

Table 21: Runtimes in milliseconds with the real world test cases where one or more
LAB optimization(s) is(are) turned OFF.

Test case S(LAB) S(LA) S(LB) S(AB) S(B) S(A) S(L)

Wine-CIceWine 20 9 1 5 2 5 4

Koala-C1−2(n=3) 4 1 1 1 1 1 1

Time-CSAT−DTD 1 1 1 1 1 1 1

Countries-CUnSAT−simple−IEU(n=7) 88 78 16 1 1 87 17

Countries-CUnSAT−simple−EU(n=30) 5128 5128 5128 5128 2 5128 5128

Table 22: Speed up factor of the LAB optimizations used for enhanced back-jumping.

Test case size of DS = size of ADR + size of ANo

Wine-CIceWine 17

Koala-C1−2(n = 3) 10

Countries-CUnSAT−simple−IEU(n=7) 7

Countries-CUnSAT−simple−EU(n=30) 28

Time-CSAT−DTD 15

Table 23: Characteristics of the real world test cases used to evaluate the LAB opti-
mizations.

250

The corresponding run times are shown in Table 21, and the speed up factor of

each optimization is shown in Table 22. TO is used to refer to a test case which could

not be checked within the time limit (600000 ms) set for the reasoner. To calculate

the speed up factor for an optimization where TOFF is a TO, the value of 600000 is

used to get an estimate of the minimum speed up factor for that optimization. N/A

is used if a certain speed up factor is not applicable, such is the case when TO could

not be reached due to some error in the reasoner. The errors encountered are either

due to a saturated JAVA heap space, or due to a partition’s set whose size exceeds

the number allowed by JAVA (see Section 6.8.1 for more details).

Considering the case with the real world ontologies, it is interesting to observe that

the effect of the LAB optimizations seems to be maximized when these techniques

are enabled together. The optimization with the minimal effect for all test cases

is the look back technique. This minimal effect is to be expected mainly because

the test cases considered do not rely on disjunctive descriptions, which means that

not a lot of logical clashes would have alternative choice points. Instead clashes

result in identifying noGood partitions and therefore, back-jumping works better with

learning. Since, most of these test cases do not rely on the use of disjunctions, the

size of the global partitioning (P) is the main source of a search space blow up

due to the non-determinism of the ch-Rule. The search space is exhausted if the

test case is unsatisfiable. Therefore, although Countries-CUnSAT−simple−IEU(n=7) has

a smaller decomposition set than Time-CSAT−DTD, most optimizations have a much

higher speedup factor with Countries-CUnSAT−simple−IEU(n=7), which is unsatisfiable.

Another interesting observation, is that even when two cases are satisfiable, not

only the size of DS affects non-determinism, but also the type of interactions between

nominals and QCRs. For example, Time-CSAT−DTD has a larger DS than the Koala-

C1−2(n=3), but a minimal speedup factor is reported for the LAB optimizations. This is

251

because the interaction of nominals with role fillers is very simple and straightforward

in the case of Time-CSAT−DTD, but occurs at different levels in the case of Koala-

C1−2(n=3). The more complicated the interactions are between nominals and QCRs,

the harder it becomes to guess/come up with an initial distribution of nominals which

survives the expansion/test case. This explains why in the case ofWine-CIceWine, more

backtracking is needed to guess the right distribution of nominals, even though the

size of DS is not much higher than with Time-CSAT−DTD. Additional results are

shown with synthetic ontologies tests in Tables 29, 30, and 28 of Appendix C, where

it is also shown that in general, the speedup factor increases with the size of DS.

7.3.3 Effect of Enhanced Partitioning

This section presents an evaluation of the effect of the optimizations used to enhance

the computation of partitioning through the use of lazy partitioning and lazy nominal

generation techniques as described in Sections 5.7 and 5.8 respectively. The evalu-

ated techniques are referred to as the PRA techniques: P is used to refer to the lazy

Partitioning optimization, R refers to the active Roles heuristic optimization, and A

refers to the lAzy nominal generation optimization. The effect of enabling those op-

timizations is measured by running the test cases where one or all of PRA techniques

are disabled. The corresponding run times are shown in Table 24, and the speedup

factors are shown in Table 25. Note that the speedup factors are only calculated for

P and R individually. This is because these two optimizations do not depend on each

other, and they are not expected to enhance reasoning if both enabled. In fact, if

they are both enabled, the P optimization takes over because partitions are no longer

created and later activated. Instead, once a partition is created, it is automatically

activated.

252

Test case PRA -RA P-A PR- - -A -R- P- - - - -

Wine-CIceWine 566 TO 516 TO TO ERR ERR ERR

Koala-C1 168 53343 156 859 52718 ERR ERR ERR

Koala-C2(n=3) 332 TO 266 546 444171 ERR ERR ERR

Koala-C1−2(n=3) 426 49055 1703 267641 44406 ERR ERR ERR

Countries-CSAT−simple−EU(n=27) 325 155 344 343 140 407 375 251

Countries-CUnSAT−simple−EU(n=30) 117 156 110 234 126 249 281 218

Time-CSAT−DTD 195 218 188 TO 251 375 218 374

Table 24: Runtimes in milliseconds with the real world test cases where one or more
PRA optimization (s) is (are) turned OFF.

Test case S(P) S(R) S(PA) S(RA)

Wine-CIceWine 1060 0.9 N/A N/A

Koala-C1 318 0.9 N/A N/A

Koala-C2(n=3) 1807 0.8 N/A N/A

Koala-C1−2(n=3) 115 4 N/A N/A

Countries-CSAT−simple−EU(n=27) 0 1 1.2 1.1

Countries-CUnSAT−simple−EU(n=30) 1 0.9 2.1 2.4

Time-CSAT−DTD 1 0.9 1.9 1.1

Table 25: Speed up factor of the PRA optimizations used for enhanced partitioning.

The corresponding speedup factor is calculated as follows: S(P) = T−RA

TPRA
, S(R) =

TP−A

TPRA
, S(PA) = T−R−

TPRA
, and S(RA) = TP−−

TPRA
. Whenever T∗∗∗ corresponds to a TO

entry, the value of 600000 (= 10 minutes) is used instead to give a minimum speedup

factor for the corresponding optimization; for example, the speedup factor of P with

the Wine-CIceWine is calculated as S(P) = T−RA

TPRA
= 600000

566
= 1060. In the case when

T∗∗∗ was not calculated because of an error (ERR), N/A is used to denote that the

corresponding speedup factor could not be calculated. It is easy to see that the

speedup factor of the lazy partitioning technique is much higher than that of the

253

active roles heuristic. This is because the active roles heuristic does not avoid the

overhead of computing partitions. An interesting observation is the significant effect

of the lazy nominal generation when combined with either the active roles heuristic,

the lazy partitioning, or with both optimizations. If the lazy nominal generation

optimization is disabled with at least one of PR- optimizations, the test cases with

the highest speed up factor for P and R run out of memory.

7.3.4 Overall Optimizations Effect

In the previous sections, the effect of groups of optimizations were evaluated. Op-

timizations were grouped based on the level on which they are applied, or based on

their interoperability. In this section, we study the overall effect of all the imple-

mented dynamic optimizations, which aim at reducing non-determinism dynamically,

together with those aiming at enhancing preprocessing.

Test case Optimizations ON Optimizations OFF Speedup

Wine-CIceWine 566 TO 1059.60

Koala-C1 168 TO 3576.75

Koala-C2(n=3) 332 TO 1807.23

Koala-C1−2(n=3) 426 TO 1408.45

Countries-CSAT−simple−IEU(n=6) 219 453 2.07

Countries-CUnSAT−simple−IEU(n=7) 110 TO 2739.73

Countries-CSAT−simple−EU(n=27) 343 TO 1749.27

Countries-CUnSAT−simple−EU(n=30) 109 TO 5504.59

Time-CSAT−DTD 195 TO 3072.98

Table 26: Runtimes in milliseconds showing the overall optimizations effect. The
speedup factor is calculated as OptimizationOFF

OptimizationON
, and the value 600000 milliseconds is

used for TO - Part I.

254

Test case Optimizations ON optimizations OFF Speedup

CSAT−lin−ALCQ(i=10) 313 251 0.80

CUnSAT−lin−ALCQ(i=10) 1385 218 0.16

CQCR−ALCQ(n=4) 10867 15532 1.43

CQCR−var−ALCQ(n=4) 69585 15047 0.22

CQCR−disjunctive−atMost−ALCQ(n=4) 2218 3624 1.63

CQCR−disjunctive−Least−ALCQ(n=4) 76182 1675 0.02

CQRatio−ALCQ(n=5) 11578 TO 51.82

CSAT−UnSAT−ALCQ(n=24) 117 547 4.68

CSAT−UnSAT−ALCQ(n=10) 102 452 4.45

CBack−disjunctive−ALCQ(i=10) 72553 TO 8.27

CUnSAT−nested−ALCHOQ 516 TO 1162.79

CSAT−cyclic−ALCHQ 202 TO 2970.30

CUnSAT−cyclic−ALCHQ 249 TO 2409.64

CSAT−cyclic−ALCHOQ 281 TO 2135.23

CUnSAT−cyclic−ALCHOQ 110 TO 5454.55

Table 27: Runtimes in milliseconds showing the overall optimizations effect. The
speedup factor is calculated as OptimizationOFF

OptimizationON
, and the value 600000 milliseconds is

used for TO - Part II.

It turns out that without enabling the optimizations for preprocessing (initial

partition elimination techniques) most test cases time out, and the speedup factor

could not be calculated. Therefore, the partition elimination techniques were kept

enabled as part of the partitioning rather than as an optimization. The results, as

shown in Figures 26 and 27, show that the optimizations proposed and implemented

in HARD significantly improve the performance; without these optimizations, HARD

times out in most test cases. In fact, most DL reasoners fail to have any practical

merit if näıvely implemented; the first DL reasoner (KRIS) implementing a tableau

255

algorithm for ALC was useless. Many attempts to speed up tableau based reasoners,

like KRIS, did not succeed until these reasoners were equipped with the optimizations

proposed in [Hor97]. Such is the case with almost every proposed (tableau and non-

tableau) reasoning procedure for expressive DLs.

It is easy to speculate that HARD would be of no practical merit due to the

high complexity of the algorithm implemented. However, the performance analysis

presented in this chapter shows that with the design of suited optimizations, one can

achieve a speed up of 3 orders of magnitude compared to a näıve implementation.

The speed up improvement not only allows a better performance compared to a

näıve implementation of algebräıc reasoning, but also compared to implementations

based on less informed calculi, where the speedup improvement can be of 2 orders of

magnitude, as was shown in Section 7.2.

7.4 Discussion

The overall effect of the optimization adopted by HARD shows that the practical

merit of ReAl DL can be easily questioned, if no suitable optimizations were found.

This section discusses the practical performance of ReAl DL compared to existing

approaches in handling different types of interactions between nominals, QCRs and

role hierarchies, as well as the effect of the optimizations adopted.

7.4.1 Practical Performance

The proposed optimizations allow a reasoner to handle QCRs and nominals better

than any existing reasoner handling nominals. The total number of test cases relying

on the use of nominals is 85, and HARDs reported performance was better than at

least one other reasoner in 73 test cases (86%). Among the test cases with nominals,

256

56 cases are based on the interaction between an increasing number of nominals and

QCRs, HARD outperformed at least one other reasoner (by several orders of magni-

tude) in all these cases (100%). In Section 7.2.1, the performance results show the

advantage of using ReAl DL to handle QCRs. Such results are not any news because

similar results have already been shown in [Far08] and [HTM01]. The purpose of the

evaluation is however, to show that the optimizations discussed in Chapter 5 allow

a more efficient reasoning even though the added complexity of handling nominals

was expected to degrade performance. In particular, the optimizations aiming at

enhanced partitioning give the algorithm a pay-as-you-go characteristics by simulat-

ing some form of local decomposition, and allow to reproduce the results reported

with the algebräıc approach for SHQ if the input ontology does not rely on nomi-

nals. Also, previous evaluation criteria were extended to evaluate the performance of

HARD in dealing with non-determinism due to disjunctions and the added expres-

sivity of SHOQ (see Section 7.2.2). The main results of the performance evaluation

are grouped into results showing a poor performance of HARD and those showing a

strong performance.

Poor performance The performance of HARD was poor in the following cases:

• The number of QCRs used within the label of a node is large. A performance

degradation is associated with an increased number of QCRs within the label

of a node as with the test cases CQCR−ALCHQ. An implementation limitation

was also reported when the increasing number of QCRs exceeds 13 due to a

limitation of the JAVA long type. On the other hand, not so many test cases

or concept descriptions exists where within the same label of a node more than

13 QCRs need to be solved. This performance degradation is more due to an

implementation restriction than it is due to a restriction in the theoretical basis

of the algorithm. A smarter implementation would not necessarily lead to such

257

poor performance.

• The number of at-most restrictions within a concept description is high. When

the number of at-most restriction increases, the Constraint Solver needed more

time to find a solution. This performance degradation might be enhanced by

having the Constraint Solver find any integer solution rather than always search

for an optimal one. From a satisfiability point of view, it is enough to test

whether the encoded in-equations admit a solution or not. The solution itself is

not so interesting and does not affect a completion model; this is because empty

partitions are not represented and non-empty ones are represented using a proxy

nodes, the cardinality of the partition does not have an effect on the completion

model. From a completion graph expansion point of view, a minimal number of

proxy nodes is usually desirable because it can reduce the number of expansion

rules to be applicable, some of which could be non-deterministic. It might be

interesting to investigate the characteristics of a given ontology (or the encoded

in-equations) where the algorithm could switch minimality (ON/OFF) for the

sake of performance due to a minimum number of nodes (less expansions) versus

a faster Constraint Solver.

Strong performance HARD’s performance was as good as existing reasoner or

better in the following cases:

• The numbers used in QCRs are large. The stability of HARD and RacerPro

in solving the test cases C∗−∗−ALCQ shows the advantage of solving QCRs using

algebräıc reasoning over adopting another reasoning approach. This was also

shown in test cases where a large number used in QCRs interacts with a large

number of nominals. HARD maintains a stable performance, and performs

better than existing reasoners in satisfiable and unsatisfiable cases by several

258

orders of magnitude in 100% of the cases. The performance stability is not

only maintained because HARD relies on LPSolver to decide the satisfiability

of QCRs, but also because HARD relies on the use of proxy nodes to model

a solution. For example, the same CCG is valid for different values of n in

CSAT−∗−∗. This means that the large numbers used in QCRS do not necessarily

affect the size of the completion graph where it is known that more nodes in the

completion graph invoke more rules, some of which might be non-deterministic.

• The depth of the hierarchy between roles is greater than 1.

• The unsatisfiability of a concept expression is caused by disjunctive descriptions

or due to unsatisfiable numerical restrictions, or a combination of both.

• The concept descriptions include cycles. HARD’s re-use of individuals showed

a strong handling of cycles within concept descriptions where a natural halt is

guaranteed even without the use of special blocking strategies.

Although the use of concrete datatypes is usually cheaper for reasoners, not much

can be inferred when they are used. Recall from the Countries ontology, that when

a country’s English name property is modelled using a concrete datatype, the fact that

a countrys English name must be the same name used in every model of an English

country is lost. A better handling of nominals allows real world ontologies to rely

more on the nominals constructor. Such is the case with the test cases in Section

7.2.2 where the use of nominals replaced some uses of concrete datatypes.

7.4.2 Effect of Adopted Optimizations

The goal of the optimizations proposed in Chapter 5 is to have an almost optimal

algorithm with respect to the worst-case complexity of concept satisfiability with the

259

DL SHOQ. While some optimizations target a better handling of a source of ineffi-

ciency due to the use of a certain constructor, the overall effect of the optimizations

is dramatic. In fact, without optimizations, HARD cannot solve some small problems

within realistic time (10 minutes to few hours) without running out of memory. Such

results are not surprising, this was already expected due to the double exponential

complexity of a näıve tableau algorithm.

The optimizations evaluated are the optimizations aiming at enhancing the major

sources of inefficiency with ReAl DL, namely global partitioning and non-determinism.

With respect to practical partitioning, using role hierarchy relations to discard par-

titions can be further exploited in such a way that the encoding of QCRs can be

clustered into sets of independent systems of in-equations such that the satisfiabil-

ity of each system can be checked independently while still guaranteeing that the

satisfiability of the combination of the systems of in-equations still hold.

The effect of the disjointness relations is problem dependent and is best reached

when the qualifications used with QCRs rely on concepts such that these concepts

are disjoint. This optimization may not enhance performance in ontologies where

disjointness relations between concepts are minimal. On the other hand, the disjoint-

ness relations between nominals are implicitly assumed, however, in most ontologies

the disjointness relations between nominals are not explicitly declared either because

ontology designers overlook the fact that these nominals might interact or because

they assume that nominals never interact. For example, the nominals {Canada} and

{USA} used to enumerate countries can never interact because Canada and USA are

assumed to be disjoint concepts and {Canada} � ¬{USA} may not be explicitly de-

clared. However, sometimes different nominals are used to refer to the same concept

such is the case with the nominals enumerating longEnglishName and shortEnglish-

Name and referring to same countries such as {Canada} and {CA}. The disjointness

260

assumption in this case might result in wrong answers unless the {Canada} and {CA}

are explicitly declared as equivalent. Usually, there are more disjoint nominals than

equivalent ones, and therefore it is more reasonable to assume disjointness rather than

assume possible equivalence. In that case, the disjointness relations always improves

performance with ontologies using nominals.

Using told nominals interactions with roles works well and the effect is maximized

when combined with heuristic guided nominal distribution and lazy nominal gener-

ation. The effect of heuristic guided nominal distribution can be further enhanced

by studying the restrictions on qualifications (using the ∀ constructor) as discussed

in Section 7.2.2.2 with the Wine ontology. It is interesting to note that the type

of interactions between nominals and their told nominal roles affects back-jumping.

In order to facilitate how quickly a good nominal distribution is found, one could

investigate ways to apply ordering heuristics.

Lazy nominal generation allows a reduced partitioning especially when combined

with active roles heuristic or lazy partitioning. Those optimizations allow a pay-as-

you-go characteristics for the algorithm when we have a large number of nominals but

only few are needed. The effect of active roles heuristic and lazy partitioning is max-

imized with ontologies using disjunctions or nested expressions with QCRs. Unlike

active roles heuristic, lazy partitioning does not compute a partition before activat-

ing it, therefore, it has a higher speed up factor because it avoids the computation of

unnecessary partitions.

Non-determinism with ReAl DL is caused by the �-Rule and the ch-Rule. These

rules expand the search space by extending different labels of a certain node. There-

fore, the dependencies of their branches do not interact with each other, which allows

a more fine grained backtracking unlike the case with the standard tableau algorithm

for SHOQ where non-determinism is due to the �-Rule and the choose-Rule both

261

extending the same label of a node with concept descriptions causing dependencies

from the application of both rules to interact, and making DDB less efficient.

The effectiveness of the �-Rule lookahead can be considered problem dependent.

On the other hand, the ch-Rule lookahead can improve performance in most cases.

This is because unless all partitions are assigned elements, there is always going to

be cases where a ch-Rule branch must be discarded due to a clash. In fact, there

are always more partitions than QCRs and nominals. The ch-Rule could be further

enhanced by implementing some form of dependencies for variables, allowing an arith-

metic clash (non-obvious one) to be tracked down to a variable choice point, allowing

enhanced back-jumping in case of arithmetic clashes detected by the constraint solver.

For now, the only back-jumping implemented in case of arithmetic clashes is during

the lookahead phase which can detect obvious arithmetic clashes.

7.5 Conclusion

In this chapter, the performance of the prototype reasoner (HARD), implementing

ReAl DL, is evaluated using a set of real world and synthetic ontologies. The evalua-

tion of the effect of different SHOQ constructors on reasoning performance shows the

advantage of using algebräıc reasoning to handle QCRs, role hierarchies, nominals,

and the interaction between these constructors. Even though the handling of nomi-

nals imposes a global partitioning, the optimizations adopted allow a pay-as-you-go

characteristic for the overhead of handling and dealing with a global partitioning.

The labelling of nodes based on the partition where they belong to and the re-use

of these nodes allows HARD to handle cyclic descriptions even without adopting a

special blocking strategy. Most generated CCGs are of compact size due to the use

of proxy nodes.

262

This evaluation shows the practical contribution of the algebräıc reasoning al-

gorithm and the effectiveness of the optimization techniques adopted. The main

implementation limitation encountered is due to the use of JAVA array, to store and

retrieve the elements of the global decomposition set, and the use of array indexes in

binary representation to refer to a partition. Note that some of the test cases were

also run on a Mac OS X Version 10.6.7 with 2.66 GHz Intel Core 2 Duo processor and

4GB of memory. No significant difference in the performance was reported compared

to running the tests on the Windows OS, and the runtimes reported in this chapter

were restricted to the ones running on windows OS. Some future directions for the

algebräıc approach and a better handling of the cases where HARD did not perform

very well will be discussed in the next chapter.

263

Chapter 8

Conclusions and Outlook

The popularity of Description Logics in Knowledge Representation and modelling, has

made DLs the topic of many research efforts focused on extending their expressivity

as well as their reasoning efficiency. It has become essential for a DL not only to

handle the expressivity to model all elements within an application’s domain, but

also to allow efficient reasoning when the expressivity is fully used. It was shown

(in Chapter 3) that existing standard tableau-reasoning procedures are arithmetically

uninformed and blind, which renders DL reasoners implementing them very inefficient

in handling the expressivity of nominals and QCRs through inferences.

Nominals capture the notion of uniqueness and identity; they are needed in many

real world domains as names for concepts with only one instance (e.g., “God”, “Red”,

“Canada”, etc. . .). The use of QCRs for modelling domain elements was found essen-

tial since advocated in [RS05]. The lack of real world ontologies relying on a rich usage

of both nominals and QCRs is mainly due to the inability of existing DL reasoners to

handle these constructors efficiently. The problem of DL reasoning with QCRs and

nominals is sometimes referred to as a chicken-and-egg problem. Ontology designers

often substitute the use of nominals or QCRs with concrete datatypes, as was shown

in some of the ontologies referred to throughout this thesis, for the sake of reasoning

264

efficiency. However, the use of concrete datatype does not enforce the semantics of

nominals or QCRs, which means that less inferences can be deduced.

The main objective of this thesis as outlined in Section 1.1.1 was to design an

efficient reasoning algorithm to handle the expressivity of DLs enabling the QCRs and

nominals constructors, as most existing reasoners handle such DLs poorly. Instead

of optimizing them, a better informed approach is desirable. The rest of this chapter

shows which objectives have been met while identifying the main contributions of this

thesis.

8.1 Research Methodology and Contributions

The research methodology adopted consists of devising a theoretically sound, com-

plete, and terminating reasoning algorithm, and designing a practical implementation

of such an algorithm. The contribution of this thesis is therefore twofold: theoretical

and practical.

8.1.1 Theoretical Contributions

• A hybrid algebräıc reasoning algorithm handling ALCQ, which is the basic DL

ALC extended with QCRs, was proposed and published in [FFHM08a]. This

calculus is the first sound, complete, and terminating hybrid algebräıc tableau-

based reasoning algorithm handling QCRs.

• An extension of the algorithm to handle the DL SHOQ, which is ALCQ ex-

tended with nominals, role hierarchies and GCIs, is proposed and published in

[FH10a]. This calculus was described in full details in Chapter 4 along with

proofs for soundness, completeness, and termination. Hence, Objectives (1),

(2), and (3), from Section 1.1.1, are met.

265

• Optimization techniques suitable for the calculus were designed and proposed

in Chapter 5. The goal of the optimizations is to achieve an optimal aver-

age (typical)-case behaviour of the algorithm w.r.t its worst-case complexity.

Some of the optimization techniques were adapted from standard DL systems

or CSPs so that they take into account the hybrid nature of the algorithm.

Novel optimizations were proposed such as the use of noGood variables. These

optimizations are crucial to meet Objective (4).

Novel features

1. A novel feature of algebräıc reasoning with DL is the encoding of the nominals

semantics using IP models. The price of such a feature is a double exponential

complexity due to handling of these semantics globally (see Section 4.6).

2. Another novel feature is due to the re-use of role-successors which ensures ter-

mination of a completion graph expansion without the need for implementing

sophisticated blocking strategies. Such re-use of nodes could lead to unneces-

sarily over-constraining a role-successor in some situations.

3. Numerical restrictions are satisfied before creating domain elements, which

means that nodes, that created in a CCG, are never merged and there is no

need for a mechanism of merging or handling the so-called “yoyo” effect (a

possibly infinite cycle of creating and merging domain elements which causes a

termination problem).

4. Due to the partitioning of the domain element into equivalence classes, elements

with the same restrictions fall into the same partition. We use one proxy element

as a representative for each partition’s elements. This means that there is no

need to implement any blocking strategies to ensure termination since no two

266

elements with the same restrictions will be created. The use of proxy nodes is

inspired by [HM01a], it allowed the use of noGood partitions which enabled some

form of caching and learning, and it can also be used to address the creation of

large models (another source of inefficient DL reasoning).

5. Due to (1), (2), (3), and (4) in contrast to existing tableau algorithms, a tree

model property with cycle detection techniques is not crucial to ensure termi-

nation of a completion graph expansion.

8.1.2 Practical Contributions

A running prototype reasoner, HARD was developed and evaluated against existing

SOTA DL reasoners, as described in Chapters 6 and 7, respectively. To the best of

our knowledge, HARD is the first DL reasoner which employs algebräıc reasoning

handling the nominals constructor.

HARD consists of five main components. The Reasoner Controller gets the input

ontologies file, selected from the computer directory, and delegates tasks to Configu-

ration Loader, Parser, Inference Engine, and Constraint Solver in order to decide the

consistency of the ontology. The Configuration Loader loads the ontology file into an

ontology object and stores relevant information about the ontology. The Inference

Engine applies the reasoning procedure to the ontology, and encodes the numerical

restrictions imposed by nominals and QCRs into an IP model. Finally, the Constraint

Solver solves the set of constraints generated by the Inference Engine by calling an

external constraint solver, LPSolver. Note that the main difference between HARD

and other standard DL systems is that, HARD relies on both the Inference Engine

and the Constraint Solver to complete the reasoning tasks, whereas the standard DL

systems need only the Inference Engine since they do not generate IP models during

the completion rule application.

267

The empirical evaluation in Chapter 7 showed that HARD outperforms existing

SOTA reasoners in about 85% of the test cases (some of which were based on real

world ontologies) with a speedup factor reaching 2-3 orders of magnitude. Hence,

Objective (5) is met.

8.2 Open and Future Work

The importance of the research done relies in the scalability of ReAl DL to handle

more expressive logics and the usability of ReAl DL by existing or future DL reasoners.

Before discussing the scalability, we highlight some of the open work.

Open work Some of the open work was left due to time constraints, and some was

spotted while analyzing the empirical evaluation.

• Handling qualifying concepts. Although qualifying concepts (see Definition 4.1.1),

were part of the theoretical presentation of ReAl DL in Chapter 4, they were

not handled by the prototype reasoner due to time constraints (see Section 6.8

for details). Once enabled, and as an optimization for reducing the size of the

global decomposition set (DS), one could make use of the equivalence between

(∀R.C � ∀R.D) and ∀R.(C � D) to group qualifying concepts for the same

role into one qualifying concept, hence reducing the size of NQ (which becomes

bounded by the size of NR) and DS.

• Ordering heuristics for the applicability of the ch-Rule. It was shown in Chapter

7 that the order in which the ch-Rule is applied on variable could have an effect

on performance. Therefore, a possible optimization would be to devise some

ordering heuristics which allows the ch-Rule to guess the best variable to branch

on.

268

• Applying global decomposition on the fly. The satisfiability of the nominals

semantics together with that of QCRs is challenging only in cases when at-

most restrictions (either imposed by QCRs or by nominals) interact with those

imposed by at-least restrictions. Therefore, even when active roles heuristics or

lazy partitioning are enabled, one could delay applying a global decomposition

until at-most restrictions are encountered, or until a clash occurs. For example,

considering the expression (≥ 3R.C� ≥ 5S.C), such that R and S do not

share any hierarchy or any told nominal, one could assume that initially every

restriction is satisfied by exactly one proxy node and apply a decomposition

only if a clash occurs instead of once a role is activated.

• Exploiting relations between concepts and roles to group partitions. Recall that

in Chapter 5, relations between concepts and roles are exploited to identify

noGood and quasi-noGood partitions. As a complement, and similar to what is

done based on told nominal relations, one could exploit relations between roles

(e.g, R and S) and their qualifications (e.g., C and D respectively) in order to

guess the best initial distribution of R-fillers and S-fillers between partitions.

• Grouping QCRs into separate independent sets. An increased number of QCRs

directly affects the performance of ReAL DL reasoning because it affects the size

of the global decomposition set. One could investigate how to solve an increased

number of QCRs using separate, and independent systems of in-equations (using

separate decomposition sets) such that the combination of the solutions from

all groups still preserves the semantics of the encoded constraints.

Scalability The scalability of ReAl DL relies in its ability to support more expres-

sive DL languages. The hybrid algebräıc tableau-based reasoning algorithm presented

269

in [FFHM08a, FFHM08b] forms the basis for the hybrid algebräıc tableau-based rea-

soning algorithms for the DLsALCOQ [FHM08, FHM09], SHQ [FH10c], and SHOQ

[FH10a].

• It would be interesting to extend ReAl DL to support more expressive DL lan-

guages, such as SROIQ. The DL SROIQ is the logic foundation for OWL2.

In addition to the language constructors supported by SHOQ, the DL SROIQ

also allows inverse role, and role relations. The major challenge for this exten-

sion would be the handling of the problematic interaction between nominals,

QCRs and inverse roles (I). The handling of inverse roles is ongoing research

[Pou].

• It would be interesting to investigate if the form of caching enabled by the use

of noGoods can be exploited to yield a single exponential algorithm.

• Also, it would be interesting to investigate if handling QCRs using IP models

allows a more relaxed restrictions for the numbers allowed with transitive roles.

Usability A typical question one is faced to answer after reaching a certain goal

would be “’What is going to happen next?”. In the case of the ReAl DL discussed in

this thesis, one would be interested in investigating the usability of the approach in

contexts other than a prototype reasoner.

• A straightforward answer would be the adoption of ReAL DL by existing DL

reasoners, which perform badly when handling the interaction between nominals

and QCRs is required. For instance, RacerPro, already adopts some form of

ReAL DL with QCRs, but does not handle nominals ; it could therefore be

extended or adapted with the hybrid calculus presented in this thesis for a

handling of the nominals expressivity. On the other hand, existing tableau-

based reasoners handling the expressivity of both nominals and QCRs could

270

be amenable to adopting algebräıc reasoning together with their sophisticated

optimization techniques due to the tableau basis of ReAl DL.

• Since nominals are considered as a more general form of ABox individuals, a

possible application of ReAL DL would be with ABox reasoning, or even in

query answering in case when database queries are reformulated using ontology

terms (“concepts”, “roles”, and “individuals”) as in [NF04].

• An interesting applicability of algebräıc reasoning can be that of ensuring that

a minimal model is always generated. Due to the use of proxy nodes, and IP

problems with the objective of minimizing constraints, one could investigate if

a minimal model generation could be established.

• Finally, the translation of DL constraints into IP models could render the transi-

tion of optimization problems, which are heavily used in company management

(e.g., planning, production, transportation, technology), into the Semantic Web

even more interesting. Typical optimization problems in management would be

to maximize profits or minimize costs given certain limited resources. A se-

mantic representation of such problems using DL and IP models is surely an

exciting combo for business ontologies.

“I have a dream for the Web [in which computers] become capable of analysing all the data

on the Web – the content, links, and transactions between people and computers. A

“Semantic Web,” which should make this possible, has yet to emerge, but when it does, the

day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled by

machines talking to machines. The “intelligent agents” people have touted for ages will

finally materialize.”

Berners-Lee & Fischetti in [BLF99]

271

Bibliography

[AL02] Carlos Areces and Carsten Lutz. Concrete domains and nominals united.

In Carlos Areces, Patrick Blackburn, Maarten Marx, and Ulrike Sattler,

editors, Proceedings of the fourth Workshop on Hybrid Logics HyLo’02,

pages 145–149. Springer-Verlag, 2002.

[Bak95] Andrew B. Baker. Intelligent Backtracking On Constraint Satisfaction

Problems: Experimental And Theoretical Results. PhD thesis, Graduate

School of the University of Oregon, 1995.

[BBH96] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality

restrictions on concepts. Artificial Intelligence, 88(1-2):195–213, 1996.

[BBL05] Franz Baader, S. Brandt, and Carsten Lutz. Pushing the EL enve-

lope. In Proceedings of the Nineteenth International Joint Conference on

Artificial Intelligence IJCAI-05, pages 364–369, Edinburgh, UK, 2005.

Morgan-Kaufmann Publishers.

[BDS93] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable

reasoning in terminological knowledge representation systems. Artificial

Intelligence Research, 1(RR-93-10):109–138, 1993.

[BH91a] Franz Baader and Bernhard Hollunder. KRIS: Knowledge representation

and inference system. SIGART Bull., 2(3):8–14, 1991.

272

[BH91b] Franz Baader and Bernhard Hollunder. A terminological knowledge rep-

resentation system with complete inference algorithms. In Proceedings of

the First International Workshop on Processing Declarative Knowledge,

volume 572, pages 67–85, Kaiserslautern (Germany), 1991. Springer–

Verlag.

[BHLW03] Franz Baader, Jan Hladik, Carsten Lutz, and Frank Wolter. From

tableaux to automata for description logics. volume 57, pages 247–279,

Amsterdam, The Netherlands, The Netherlands, 2003. IOS Press.

[BHS03] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description logics as

ontology languages for the semantic web. In Mechanizing Mathematical

Reasoning: Essays in Honor of Jörg Siekmann on the Occasion of His

60th Birthday, Lecture Notes in Artificial Intelligence, pages 228–248.

Springer, 2003.

[BL06] Franz Baader and Carsten Lutz. Handbook of Modal Logic, volume 3

of Studies in Logic and Practical Reasoning, chapter Description Logic.

Elsevier Science and Technology Books, 2006.

[BLF99] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The Original

Design and Ultimate Destiny of the World Wide Web by its Inventor.

Orion Business, 1999.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web:

A new form of web content that is meaningful to computers will unleash

a revolution of new possibilities. Scientific American, (285):34–43, 2001.

273

[BLS06] Franz Baader, Carsten Lutz, and Boontawee Suntisrivaraporn. CEL -

A polynomial-time reasoner for life science ontologies. In IJCAR, pages

287–291, 2006.

[BM01] Patrick Blackburn and Maarten Marx. Third int. workshop on hybrid

logic HyLo’01. Logic Journal of the IGPL, 9(5), 2001.

[BMPSR91] Ronald J. Brachman, Deborah L. McGuiness, Peter F. Patel-Schneider,

and Lori A. Resnick. Living with CLASSIC: when and how to use a

KL-ONE-like language. In John Sowa, editor, Principles of semantic

networks: Explorations in the representation of knowledge, pages 401–

546. Morgan Kaufmann, San Mateo, US, 1991.

[BS99] Franz Baader and Ulrike Sattler. Expressive number restrictions in de-

scription logics. Journal of Logic and Computation, 9(3):319–350, 1999.

[BS01] Franz Baader and Ulrike Sattler. An overview of tableau algorithms for

description logics. Studia Logica, 69:5–40, 2001.

[CFGL04] Chiara Cumbo, Wolfgang Faber, Gianluigi Greco, and Nicola Leone.

Enhancing the magic-set method for disjunctive datalog programs. In

Logic Programming), Lecture Notes in Computer Science, pages 371–

385. Springer, 2004.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Ribest, and Clifford

Stein. Introduction to Algorithms, chapter The simplex algorithm, pages

790–804. MIT Press, second edition, 2001.

[Dan63] George Bernard Dantzig. Linear Programming and Extensions. Prince-

ton University Press, 1963.

274

[DF02] Rina Dechter and Daniel Frost. Backjump-based backtracking for con-

straint satisfaction problems. Artificial Intelligence, 136(2):147–188,

April 2002.

[Din08] Yu Ding. Tableau-based Reasoning for Description Logics with Inverse

Roles and Number Restrictions. PhD thesis, Concordia University, 2008.

[Far08] Nasim Farsinia. Combining integer programming and tableau-based rea-

soning: A hybrid calculus for the description logic SHQ. Master’s thesis,

Concordia University, 2008.

[FB07a] Deborah L. McGuinness Daniele Nardi Peter F. Patel-Schneide

Franz Baader, Diego Calvanese. The Description Logic Handbook: The-

ory, Implementation, and Applications, chapter Basic Description Log-

ics. Cambridge University Press, 2007.

[FB07b] Deborah L. McGuinness Daniele Nardi Peter F. Patel-Schneide

Franz Baader, Diego Calvanese. The Description Logic Handbook: The-

ory, Implementation, and Applications, chapter Implementation and op-

timisation techniques. Cambridge University Press, second edition edi-

tion, 2007.

[FFHM08a] Jocelyne Faddoul, Nasim Farsinia, Volker Haarslev, and Ralf Möller. A

hybrid tableau algorithm for ALCQ,. In Franz Baader, Carsten Lutz,

and Boris Motik, editors, Proceedings of the 21st International Workshop

on Description Logics (DL 2008), Dresden, Germany, May 13-16, 2008,

volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[FFHM08b] Jocelyne Faddoul, Nasim Farsinia, Volker Haarslev, and Ralf Möller. A

hybrid tableau algorithm for ALCQ. In Malik Ghallab, Constantine D.

275

Spyropoulos, Nikos Kakotakis, and Nikolaos M. Avouris, editors, 18th

European Conference on Artificial Intelligence (ECAI 2008), volume 178

of Frontiers in Artificial Intelligence and Applications, pages 725–726.

IOS Press, 2008.

[FH10a] Jocelyne Faddoul and Volker Haarslev. Algebraic tableau reasoning for

the description logic SHOQ. Journal of Applied Logic, 8(4):334–355,

2010.

[FH10b] Jocelyne Faddoul and Volker Haarslev. Optimizing algebraic tableau rea-

soning for SHOQ: First experimental results. In Volker Haarslev, David

Toman, and Grant E. Weddell, editors, Proceedings of the 23rd Interna-

tional Workshop on Description Logics (DL 2010), Waterloo, Ontario,

Canada, May 4-7, 2010, volume 573 of CEUR Workshop Proceedings.

CEUR-WS.org, 2010.

[FH10c] Nasim Farsiniamarj and Volker Haarslev. Practical reasoning with qual-

ified number restrictions: A hybrid abox calculus for the description

logic. AI Communications, 23(2-3):205–240, 2010.

[FH11] Jocelyne Faddoul and Volker Haarslev. Optimized algebraic tableau rea-

soning for the description logic SHOQ. Journal of Artificial Intelligence

Research (JAIR) - In preparation, 2011.

[FHM08] Jocelyne Faddoul, Volker Haarslev, and Ralf Möller. Hybrid reason-

ing for description logics with nominals and qualified number restric-

tions. Technical report, Institute for Software Systems (STS), Hamburg

University of Technology, 2008. http://www.sts.tu-harburg.de/tech-

reports/papers.html.

276

[FHM09] Jocelyne Faddoul, Volker Haarslev, and Ralf Möller. Algebraic tableau

reasoning for the description logic ALCOQ. In Bernardo Cuenca Grau,

Ian Horrocks, Boris Motik, and Ulrike Sattler, editors, Proceedings of

the 22nd International Workshop on Description Logics (DL 2009), Ox-

ford, UK, July 27-30, 2009, volume 477 of CEUR Workshop Proceedings.

CEUR-WS.org, 2009.

[GHM10] Birte Glimm, Ian Horrocks, and Boris Motik. Optimized description

logic reasoning via core blocking. 2010.

[GZB06] Christine Golbreich, Songmao Zhang, and Olivier Bodenreider. The

foundational model of anatomy in OWL: experience and perspective.

Journal of Web Semantics, 4(3):181–195, 2006.

[HB91] Bernhard Hollunder and Franz Baader. Qualifying number restrictions

in concept languages. In Proceedings of the 2nd International Confer-

ence on Principles of Knowledge Representation and Reasoning, KR-91,

pages 335–346, Boston (USA), 1991.

[HHLS86] Johan Torkel Hastad, Bettina Helfrich, Jeffrey Lagarias, and Claus Peter

Schnorr. Polynomial time algorithms for finding integer relations among

real numbers. In Lecture Notes in Computer Science, volume 1986, pages

105–118. Publisher Springer Berlin / Heidelberg, 1986.

[HKNP94] Jochen Heinsohn, Daniel Kudenko, Bernhard Nebel, and Hans-Jürgen

Profitlich. An empirical analysis of terminological representation sys-

tems. Artificial Intelligence, 68(2):367–397, 1994.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible

SROIQ. In Proc. of the 10th Int. Conf. on Principles of Knowledge

277

Representation and Reasoning (KR 2006), pages 57–67. AAAI Press,

2006.

[HM01a] Volker Haarslev and Ralf Möller. Optimizing reasoning in description

logics with qualified number restrictions. In Carole A. Goble, Debo-

rah L. McGuiness, Ralf Möller, and Peter F. Patel-Schneider, editors,

Description Logics, volume 49 of CEUR Workshop Proceedings, pages

142–151, 2001.

[HM01b] Volker Haarslev and Ralf Möller. RACER system description. Lecture

Notes in Computer Science, 2083:701–705, 2001.

[HM04] Jan Hladik and Jörg Model. Tableau systems for SHIO and SHIQ. In

Proceedings of the 2004 International Workshop on Description Logics

(DL2004), 2004.

[Hor97] Ian Horrocks. Optimising Tableaux Decision Procedures for Description

Logics. PhD thesis, University of Manchester, 1997.

[Hor02] Ian Horrocks. Backtracking and Qualified Number Restrictions: Some

Preliminary Results. In In Proceedings of the 2002 Description Logic

Workshop, volume 63, pages 99–106. CEUR, 2002.

[HS01] Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D)

description logic. In Proceedings of the 17th International Joint Con-

ference on Artificial Intelligence (IJCAI 2001), pages 199–204. Morgan

Kaufmann, Los Altos, 2001.

[HS05] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for

SHOIQ. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence

(IJCAI 2005), pages 448–453, 2005.

278

[HS07] Ian Horrocks and Ulrike Sattler. A tableau decision procedure for

SHOIQ. Journal of Automated Reasoning, 39(3):249–276, October

2007.

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reason-

ing for expressive description logics. In Proceedings of the 6th Interna-

tional Conference on Logic for Programming and Automated Reasoning

(LPAR’99), pages 161–180. Springer-Verlag, 1999.

[HSV11] Volker Haarslev, Roberto Sebastiani, and Michele Vescovi. Automated

reasoning in ALCQ via SMT. In 23rd International Conference on Au-

tomated Deduction, volume 6803, pages 283–298. Lecture Notes in Com-

puter Science, July 31 - August 5 2011.

[HT99] Ian Horrocks and Stephan Tobies. Optimisation of terminological rea-

soning. LTCS-Report LTCS-99-14, LuFG Theoretical Computer Sci-

ence, RWTH Aachen, 1999.

[HT00] Ian Horrocks and Stephan Tobies. Reasoning with axioms: Theory and

practice. In Proc. of the 7th Int. Conf. on Principles of Knowledge

Representation and Reasoning (KR 2000), pages 285–296, 2000.

[HTM01] Volker Haarslev, Martina Timmann, and Ralf Möller. Combining

tableaux and algebraic methods for reasoning with qualified number

restrictions. In Description Logics, pages 152–161, 2001.

[HW06] Alexander K. Hudek and Grant E. Weddell. Binary absorption in

tableaux-based reasoning for description logics. In Proceedings of the

18th International Workshop on Description Logics (DL 2006), Lake

District, UK, May 30-June1, 2006.

279

[KM06] Yevgeny Kazakov and Boris Motik. A Resolution-Based Decision Pro-

cedure for SHOIQ, volume 4130/2006, pages 662–677. Springer Berlin

/ Heidelberg, 2006.

[Lie06] Thorsten Liebig. Reasoning with OWL – system support and insights –.

Technical Report TR-2006-04, Ulm University, Ulm, Germany, Septem-

ber 2006.

[Lut02] Carsten Lutz. PSpace Reasoning with the Description Loigc ALCF(D).

Logic Journal of the IGPL, 10(5):535–568, 2002.

[MH08] Boris Motik and Ian Horrocks. Individual reuse in description logic

reasoning. In International Joint Conference on Automated Reasoning

(IJCAR 2008), pages 242–258, 2008.

[MHWZ06] Elaine N. Marieb, Katja Hoehn, Patricia Brady Wilhelm, and Nina

Zanetti. Human Anatomy & Physiology: International Edition with Hu-

man Anatomy and Physiology Atlas, 7/E. Pearson Higher Education, 7

edition, 2006.

[Min81] Marvin Minsky. A framework for representing knowledge. In J. Hauge-

land, editor, Mind Design: Philosophy, Psychology, Artificial Intelli-

gence, pages 95–128. MIT Press, Cambridge, MA, 1981.

[MM00] Francesco M.Donini and Fabio Massacci. EXPtime tableaux for ALC.

Artificial Intelligence, 124(1):87–138, 2000.

[MPSCG08] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau.

OWL 2 web ontology language: Direct semantics. 2008. Latest ver-

sion available at http://www.w3.org/TR/owl2-semantics/.

280

[MSH07] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in

description logics using hypertableaux. In (CADE-21), volume 4603 of

Lecture Notes in Artificial Intelligence, pages 67–83. Springer, 2007.

[MSH09] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau reasoning

for description logics. Journal of Artificial Intelligence Research (JAIR),

36:165–228, 2009.

[NF04] Chokri Ben Necib and Johann-Christoph Freytag. Using ontologies for

database query reformulation. In Proceedings of the 18th Conference on

Advances in Databases and Information Systems (ADBIS), Budapest,

Hungary, 2004.

[NM01] Natalya Fridman Noy and Deborah L. McGuinness. Ontology develop-

ment 101: A guide to creating your first ontology. Technical report, Stan-

ford Knowledge Systems Laboratory Technical Report KSL-01-05 and

Stanford Medical Informatics Technical Report SMI-2001-0880, March

2001.

[OK96] Hans Jürgen Ohlbach and Jana Koehler. Reasoning about sets via

atomic decomposition. Technical Report TR-96-031, Berkeley, CA, 1996.

[OK97] Hans Jürgen Ohlbach and Jana Koehler. Role hierarchies and num-

ber restrictions. In Proceedings of the 1997 International Workshop on

Description Logics (DL’97), 1997.

[OK99] Hans Jürgen Ohlbach and Jana Koehler. Modal logics description logics

and arithmetic reasoning. Artificial Intelligence, 109(1-2):1–31, 1999.

281

[PCS06] Bijan Parsia, Bernardo Cuenca Grau, and Evren Sirin. From wine to

water: Optimizing description logic reasoning for nominals. In Proceed-

ings of the 10th International Conference on Principles of Knowledge

Representation and Reasoning (KR), pages 90–99, 2006.

[Pou] Laleh Roosta Pour. Algebräıc reasoning with the description logic

SHIQ. Master’s thesis, Concordia University.

[Qui67] Ross Quillian. Word concepts: A theory and simulation of some basic

semantic capabilities, volume 12 of Behavioral Science, pages 410–430.

September 1967.

[RS05] Alan Rector and Guus Schreiber. Qualified cardinality restrictions

QCRs: Constraining the number of values of a particular type for a prop-

erty. 2005. http://www.w3.org/2001/sw/BestPractices/OEP/QCR.

[RV02] Alexandre Riazanov and Andrei Voronkov. The design and implemen-

tation of VAMPIRE. AI Commun., 15(2):91–110, 2002.

[Sch91] Klaus Schild. A correspondence theory for terminological logics: pre-

liminary report. In Proceedings of IJCAI-91, 12th International Joint

Conference on Artificial Intelligence, pages 466–471, Sidney, AU, 1991.

[Sch94] Andrea Schaerf. Reasoning with individuals in concept languages. Data

and Knowledge Engineering, 13(2):141–176, 1994.

[Sir06] Evren Sirin. Combining Description Logic Reasoning with AI Planning

for Composition of Web Services. PhD thesis, University of Maryland,

College Park, June 2006.

[SMH] Rob Shearer, Boris Motik, and Ian Horrocks. Hermit: A highly-efficient

OWL reasoner.

282

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur,

and Yarden Katz. Pellet: A practical OWL-DL reasoner. Journal of

Web Semantics, 5(2):51–53, 2007.

[SSS91] Manfred Schmidt-Schaub and Gert Smolka. Attributive concept descrip-

tions with complement. Artificial Intelligence, 48(1):1–26, 1991.

[TH05] Dmitry Tsarkov and Ian Horrocks. Ordering heuristics for description

logic reasoning. In Proc. of the 19th Int. Joint Conf. on Artificial Intel-

ligence (IJCAI 2005), pages 609–614, 2005.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner:

System description. In Proc. of the Int. Joint Conf. on Automated Rea-

soning (IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intel-

ligence, pages 292–297. Springer, 2006.

[THPS07] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimising

terminological reasoning for expressive description logics. Journal of

Automated Reasoning, 39(3):277–316, October 2007.

[Tob00] Stephan Tobies. The complexity of reasoning with cardinality restric-

tions and nominals in expressive description logics. Journal of Artificial

Intelligence Research, 12:199–217, 2000.

[Tob01] Stephan Tobies. Complexity Results and Practical Algorithms for Logics

in Knowledge Representation. PhD thesis, LuFG Theoretical Computer

Science, RWTH-Aachen, Germany, 2001.

[TRBH04] Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Hor-

rocks. Using Vampire to reason with OWL. In Sheila A. McIlraith,

Dimitris Plexousakis, and Frank van Harmelen, editors, Proc. of the

283

2004 International Semantic Web Conference (ISWC 2004), number

3298 in Lecture Notes in Computer Science, pages 471–485. Springer,

2004.

[WBH+05] Katy Wolstencroft, A. Brass, Ian Horrocks, Phillip Lord, Ulrike Sattler,

Robert Stevens, and Daniele Turi. A little semantic web goes a long way

in biology. In 4th Int. Semantic Web Conference, volume 3792, pages

786–800, Ireland, 2005.

[Wu08] Jiewen Wu. Plan-based Axiom Absorption for Tableaux-based Descrip-

tion Logics Reasoning. Master’s thesis, Concordia University, 2008.

[Zuo06] Ming Zuo. High Performance Absorption Algorithms for Terminological

Reasoning in Description Logics. Master’s thesis, Concordia University,

2006.

284

Glossary

(D) Denotes the use of concrete datatypes within a DL lan-

guage.

A Denotes an ABox.

ABox Assertional Box.

ALC The basic Description Logic language.

ALCQ A DL language extending ALC with qualified cardinality

restrictions.

ALCHOQ A DL language extending ALC with role hierarchies, nom-

inals, and qualified cardinality restrictions.

ALCOQ ADL language extendingALC with nominals, and qualified

cardinality restrictions.

API Application Programming Interface.

285

CCG Compressed Completion Graph.

DDB Dependency Directed Backtracking.

DL Description Logic.

EL A less expressive DL than ALC where the only available con-

structors are �, conjunction, and existential restriction (∃).

FOL First-Order Logic.

GCI General Concept Inclusion axiom.

H Role hierarchies.

HARD Hybrid Algebräıc Reasoner for Description Logics.

I Inverse roles.

ILP Integer Linear Programming.

Java SE Java Standard Edition, also known as J2SE.

KB A Description Logic Knowledge Base consisting of a TBox

and an ABox.

286

N Cardinality restrictions.

NNF Negation Normal Form.

O Nominals.

OWL Web Ontology Language.

OWL DL An OWL specie that has close correspondence with the De-

scription Logic SROIQ.

Q See QCR.

QCR Qualified Cardinality Restriction.

R Denotes an RBox.

ReAl Reasoning Algebräıcally with Description Logics.

RIA Role Inclusion Axioms.

S A DL language extending ALC with transitive roles.

SOTA State-of-the-art.

287

SROIQ A DL language extending ALC with transitive role axioms,

role hierarchy, nominals, inverse roles, and qualified cardi-

nality restrictions.

T Denotes a TBox.

TBox Terminological Box

W3C World Wide Web Consortium.

XML Extensible Markup Language.

288

Appendices

289

Appendix A

ReAl DL

This appendix complements Chapter 4, which describes a hybrid algebräıc reasoning

procedure for SHOQ. Section A.1 gives a reference for the notations defined and

used throughout the chapter. Section A.2 shows the definition of a standard tableau

for SHOQ, which can be compared to the tableau defined for ReAl DL.

A.1 List of Notations Used

Notation Explanation

QC(R) defines the set of qualifying concepts for a role R ∈ NR. QC(R)=

{D | ∀S.D occurs in CT with R �∗ S ∈ R} (see also Definition 4.1.1).

QC denotes the set of all qualifying concepts in a KB.

Q¬C denotes the set of negated qualifying concepts in their NNF

¬̇Q denotes a bijection ¬̇Q : QC −→ Q¬C mapping a qualifying concepts with

the NNF of its complement

H(R) denotes the set of all sub-roles of R. H(R) = {R′ | R′ �∗ R,R′ �= R}.

290

Notation Explanation

NQ denotes the set of qualification names used to refer to qualifying con-

cepts.For clarity purposes, qualification names and qualifying concepts

are used interchangeably throughout this thesis and NQ = QC.

QN(R) denotes the set of qualification names in NQ used to refer to qualifying

concepts for R. For clarity purposes, qualification names and qualifying

concepts are used interchangeably throughout this thesis and QN(R) =

QC(R).

DR DR = H(R)∪QN(R). It denotes the decomposition set for R-fillers (see

Definition 4.4.1).

DS DS =
⋃

R∈NR
DR ∪No. It denotes a global decomposition set (see Defi-

nition 4.4.3).

P P = {P | P ⊆ DS}. It denotes a global partitioning on DS (see

Definition 4.4.4).

σ defines a mapping σ : V −→ N between variables and integer numbers.

It is used to refer to a solution for ξx.

α defines a mapping α : V −→ P between variables and partition names.

L(x) denotes a set of concept expressions that must be satisfied by x, L(x) ⊆

Clos(T).

LE(x) denotes a set of in-equations that must have a non-negative integer

solution. LE(x) = ξx

LP (x) denotes a partition name and is used as a tag for x, LP (x) ⊆ DS.

ξx denotes the encoding of number restrictions, qualifications and nominals

that must be satisfied for x.

NR denotes the set of role names used in a TBox T .

NQ denotes the set of qualifying concepts occurring in T .

NR′ denotes the set of newly introduced role names in a TBox T ′.
291

Notation Explanation

No denotes the set of nominals occurring in T .

ix denotes the domain element i ∈ ΔT represented by the proxy node x.

VL denotes the set of variable names each mapped to a partition p such

that L ⊆ p.

ξ(L,≥, n) denotes v1 + · · ·+ vk ≥ n, where {v1, . . . , vk} ⊆ VL and L ⊆ DS.

ξ(L,≤,m) denotes v1 + · · ·+ vk ≤ m, where {v1, . . . , vk} ⊆ VL and L ⊆ DS.

A.2 Standard Tableau for SHOQ

The following definition describes a standard tableau for the DL SHOQ as first

presented in [HS01]. For the purpose of clarity and ease of comparison with the

tableau defined in Section 4.3, the properties handling concrete datatypes are ignored.

Definition A.2.1 (Standard SHOQ Tableau) Given a SHOQ KB(T ,R), T

= (S,L, E) defines a tableau for (T ,R) as an abstraction of a model for T . S is a

non-empty set of individuals, L : S → 2clos(T) is a mapping between each individual

and a set of concepts, and E : NR → 2S×S is a mapping between each role and a set

of pairs of individuals in S. For all s, t ∈ S, A ∈ NC, C,D ∈ clos(T), o ∈ No, R, S

∈ NR, and given the definition RT (s, C) = {t ∈ S | 〈s, t〉 ∈ E(R) and C ∈ L(t)}, the

following properties must always hold:

1. CT ∈ L(s)

2. If A ∈ L(s) then ¬A /∈ L(s).

3. If C �D ∈ L(s) then C ∈ L(s) and D ∈ L(s).

4. If C �D ∈ L(s) then C ∈ L(s) or D ∈ L(s).

5. If 〈s, t〉 ∈ E(R) and R �∗ S ∈ R, then 〈s, t〉 ∈ E(S).

292

6. If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t).

7. If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(R) with R �∗ S and R ∈ NR+ then ∀R.C ∈ L(t).

8. If (≥ nR.C) ∈ L(s) then #RT (s, C) ≥ n.

9. If (≤ mR.C) ∈ L(s) then #RT (s, C) ≤ m.

10. If {≤ nR.C,≥ nR.C} ∩ L(s) �= ∅, and 〈s, t〉 ∈ E(R), then {C,¬C} ∩ L(t) �= ∅.

11. For each o ∈ No, if {o} ∈ L(s) ∩ L(t), then s = t.

293

Appendix B

HARD

This appendix complements Chapter 6, which describes the implementation of the

prototype reasoner (HARD). Section B.1 shows the overall architecture of the tableau

reasoner. Section B.2 gives examples of failed test cases.

B.1 The Tableau Reasoner

Figure 77 shows a collaboration diagram between the Tableau Reasoner, the Clash

Handler and the Constraint Solver during an expansion of a CCG for deciding a KB

consistency.

294

Check
consistency

RM CS CH

initialize r0

compute
global par-
titioning

encode
nominals’

in-
equations

ch-Rule
with

nominals
variables

is there a
distribu-
tion of

nominals?

is there
an alter-
native
branch?

stop

Fil-Rule

Apply expansion Rules

Apply
Rules with
priority I

Apply
Rules with
priority II

Apply
Rules with
priority III

is there a
distribu-
tion of
fillers?

complete

yes

yes

no

no

no

yes

Figure 77: Collaboration diagram during a consistency check highlighting the inter-
action between the Reasoner Manager (RM), the Constraint Solver (CS), and the
Clash Handler (CH) in the cases of arithmetic clashes due to nominals.

295

B.2 Failing Test Cases

This section is intended to give some sample test cases where the implementation of

the Simplex procedure from [Far08] failed to return an answer due to some bugs.

Test case A - wrong results The Simplex module cannot find a solution for

a feasible set of in-equation. This bug can be systematically reproduced with the

following test case:

Cnominals−ALCOQ � ≥ jR.E

E ≡ {o1, o2, . . . , oi}

where j = i = 10. However a solution is found if j = 9 and i = 10.

Test case B - A java.lang.NumberFormatException is encountered when ini-

tializing Simplex constraints. This error can be systematically reproduced with the

following test case:

≤ 10R1� ≥ 30R2� ≥ 30R3� ≥ 30R4� ≥ 30R5 (48)

On the other hand, it is not encountered with the same test case using a different

numbers

≤ 5R1� ≥ 10R2� ≥ 10R3� ≥ 10R4� ≥ 10R5 (49)

This problem is mainly due to the representation of the numbers (30) as Simplex

constraints and was not encountered if the lpSolver is selected as a constraint solver.

296

Appendix C

Evaluation

C.1 Test Cases for QCRs

The effect of increased numbers used in QCRs is tested using the concept CALCQ

defined using the DL ALCQ as follows:

CALCQ � ≥ 2ir.(A � B)� ≤ ir.A� ≤ ir.B � (≤ (i− 1)r.¬A� ≤ jr.¬B)

Recall from Section 7.2.1 that the satisfiability of CALCQ depends on the value of j;

if j ≥ i then CALCQ becomes satisfiable. Otherwise if j ≤ (i− 1) then CALCQ becomes

unsatisfiable. Figures 78-80 show the effect of satisfiable cases versus unsatisfiable

cases on the reasoning performance of Fact++, Pellet, and Hermit. CSAT−Lin−ALCQ

refers to a satisfiable cases, and CUnSAT−Lin−ALCQ refers to an unsatisfiable case. In

both cases, the values of the numbers used in QCRs are increased linearly.

297

2 4 6 8 10
101

102

103

104

105

106

value of i in C∗−Lin−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Fact++-CSAT−Lin−ALCQ
Fact++-CUnSAT−Lin−ALCQ

Figure 78: Effect of the satisfiability of C∗−Lin−ALCQ on the runtime performance of
Fact++.

2 4 6 8 10
101

102

103

104

105

106

value of i in C∗−Lin−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Pellet++-CSAT−Lin−ALCQ
Pellet-CUnSAT−Lin−ALCQ

Figure 79: Effect of the satisfiability of C∗−Lin−ALCQ on the runtime performance of
Pellet.

298

2 4 6 8 10
101

102

103

104

105

106

value of i in C∗−Lin−ALCQ

R
u
n
ti
m
e
in

m
il
li
se
co
n
d
s

Hermit-CSAT−Lin−ALCQ
Hermit-CSAT−Lin−ALCQ

Figure 80: Effect of the satisfiability of C∗−Lin−ALCQ on the runtime performance of
Hermit.

C.2 Test Cases With Real World Ontologies

This section provides additional information about real world ontology adaptations

(from Section 7.2.2) tested with HARD reasoner. For each test case, the TBox used is

repeated as well as the role hierarchy. Also, the extended role hierarchy after applying

the preprocessing algorithm is shown.

C.2.1 The Wine ontology

The TBox used with the Wine ontology test case in Section 7.2.2.2 is shown in Figure

81, the original role hierarchy as well as the extended one are shown in Figure 82.

Figure 83 shows a CCG representing a model for the concept IceWine.

299

Wine �= 1hasBody.WineBody� = 1hasColor.WineColor

� = 1hasFlavor.WineFlavor� = 1hasSugar.WineSugar

DessertWine ≡ Wine � ∀hasSugar.{offdry, sweet}

LateHarvest � Wine � ∀hasFlavor.{moderate, strong} � ∀hasSugar.{sweet}

IceWine ≡ DessertWine � LateHarvest � ∃hasColor.{white}

IceWine � ∀hasBody.{full,medium} � ∀hasFlavor.{moderate, strong}

WineDescriptor ≡ WineColor �WineTaste

WineTaste � WineDescriptor

WineColor ≡ {red, rose,white}

WineBody ≡ {full, light,medium}

WineFlavor ≡ {delicate,moderate, strong}

WineSugar ≡ {dry, offdry, sweet}

Figure 81: TBox axioms in the Wine ontology.

topObjectProperty

hasWineDescriptor

hasBody hasColor hasFlavor hasSugar

(a) Role hierarchy for the Wine ontology.

topObjectProperty

hasWineDescriptor

hasBody

hB1

hasColor

hC1 hC2

hasFlavor

hF1

hasSugar

hS1

(b) Role hierarchy for the Wine ontology after

applying the preprocessing algorithm.

Figure 82: Role hierarchy within the RBox R for the Wine ontology.

300

a:1b:1

c:1d:1

e:1

L(a) = {IceWine,Wine,= 1hB1, ∀hB1.WineBody,= 1hC1, ∀hC1.WineColor, = 1hF1,

∀hF1.WineFlavor, = 1hS1, ∀hS1.WineSugar,DessertWine,∀hasSugar.{offDry, sweet},≥ 1.hC2,

∀hC2.{white}, ∀hasBody.{full,medium}, LateHarvest, ∀hasFlavor.{moderate, strong},

∀hasSugar.{sweet}

L(b) = {WineColor, {white}}

L(c) = {WineSugar, {sweet}, {offDry, sweet}}L(d) = {WineFlavor, {moderate, strong}, {strong}}

L(e) = {WineBody, {full,medium}}

{hF1} {hS1}

{hC1, hC2} {hB1}

Figure 83: Clash free compressed completion graph for Wine-CIceWine test case.

C.2.2 The Koala ontology

The TBox axioms for the Koala ontology test case in Section 7.2.2.3 are shown in

Figure 84, the original role hierarchy as well as the extended one are shown in Figure

86. Figure 85 shows a CCG representing a model for the concept KoalaWithPhD. Fig-

ure 87 shows a CCG representing a model for the conceptMaleStudentWithnDaughters,

and Figure 88 shows a compressed completion graph representing a model for the con-

cept (KoalaWithPhD� MaleStudentWithnDaughters).

Notice that the proxy nodes having a nominal in their label (e.g., node c, e) rep-

resent a partition with only one individual, the nominal in the label. The completion

graph does not need to distinguish between a proxy node representing a nominal and

a proxy node representing domain elements. It is the cardinality value, which is

equal to 1 in case of a nominal node (e.g., (e:1)), of the ProxyNode object1 which

represents the nominals semantics.

1See Figure 41 in Section 6.5 for more details on the ProxyNode object.

301

KoalaWithPhD ≡ Koala � ∃hasDegree.{PhD}

Koala � Marsupials � ∃hasHabitat.Forest

Marsupials � Animal

Animal � ≥ 1 hasHabitat.Habitat� = 1 hasGender.Gender

MaleStudentWith3Daughters � ∀hasGender.Male� = 3 hasChildren.Female

MaleStudentWith3Daughters � Student

Student � Person � ∃ hasHabitat.University

Person � Animal

Female � ∃hasGender.{female}

Male � ∃hasGender.{male}

Gender ≡ {male, female}

MaleStudentWithnDaughters � hasGender.Male� = n hasChildren.Female

MaleStudentWithnDaughters � Student

Figure 84: TBox axioms in the Koala ontology.

a:1 b:1

c:1d:1

L(a) = { Koala-C1, Koala,≥ 1hD1, ∀hD1.{PhD},Marsupials,≥ 1hH1, ∀hH1.Forest,Animal,≥ 1hH2,

∀hH2.Habitat,= 1hG1, ∀hG1.Gender}

L(b) = {Degree, {PhD}}

L(c) = {Gender, {female}}L(d) = {Forest,Habitat}

{hH1, hH2} {hG1}

{hD1}

Figure 85: Clash free CCG for Koala-C1 representing a pre-model for the concept
KoalaWithPhD. Note that all proxy nodes represent partitions with one element.

302

topObjectProperty

hasHabitat hasBody hasChild hasGender

(a) Initial role hierarchy for the Koala ontology.

topObjectProperty

hasHabitat

hH1 hH2 hH3

hasBody

hB1

hasChild

hC1

hasGender

hG1 hG2 hG3

(b) Extended role hierarchy for the Koala ontology after applying the preprocess-

ing algorithm.

Figure 86: Role hierarchy within the RBox R for the Koala ontology.

a:1

c:1b:1

d:3

e:1

L(a) = { Koala-C2, Student,Person,≥ 1hH3, ∀hH3.University, Animal, ≥ 1hH2, ∀hH2.Habitat,

= 1hG1, ∀hG1.Gender, ∀hasGender.Male, ≥ 3hC1, ∀hC1.Female}

L(e) = {Gender, {female}}

L(c) = {Gender,Male,≥ 1hG2, ∀hG2.{male}, {male}}L(b) = {University,Habitat}

L(d) = {Female,≥ 1hG3, ∀hG3.{female}}

{hH2, hH3} {hG1}

{hC1}

{hG3}

{hG2}

Figure 87: Clash free CCG for Koala-C2(n = 3) representing a pre-model for the
concept MaleStudentWithnDaughters. Note that the proxy node d represents the par-
tition for hC1 which consists of 3 domain elements members of the concept Female.

303

a:1f:1

c:1b:1

d:3

e:1

L(a) = { Koala-C1−2, Koala,≥ 1hD1, ∀hD1.{PhD}, Marsupials,≥ 1hH1, ∀hH1.Forest,Animal,≥ 1hH2,

∀hH2.Habitat, = 1hG1, ∀hG1.Gender, Student,Person,≥ 1hH3, ∀hH3.University,∀hasGender.Male,

≥ 3hC1, ∀hC1.Female}

L(f) = {Degree, {PhD}}

L(c) = {Male,≥ 1hG3, ∀hG3.{male}, {male}}L(b) = {Forest,Habitat,University}

L(d) = {Female,≥ 1hG2, ∀hG2.{female}}

L(e) = {Gender, {female}}

{hH1, hH2, hH3} {hG1}

{hD1} {hC1}

{hG3}

{hG2}

Figure 88: Clash free CCG for Koala-C1−2(n = 3) representing a pre-model for
(KoalaWithPhD �MaleStudentWithnDaughters). The proxy node b represents a par-
tition where all hasHabitat-fillers intersect. This can be done because no disjoint
relation exists between Forest and University.

C.3 Test Cases With Synthetic Ontologies

The effect of using QCRs in nested expressions on the performance of reasoning is

tested using the satisfiability of Cnested−ALCHQ as introduced in Section 7.2.2.6. In this

case the qualification on the role fillers of R1 includes a QCRs. When the nominal

interaction is enabled, the test case is referred to as Cnested−ALCHOQ. Figure 89 shows

a CCG for CSAT−nested−ALCHOQ.

Cnested−ALCHOQ �≥ nR1.(A� ≥ nR2.B)� ≥ nR1a.(A� ≥ nR2a.B)� ≤ mR.� � ∀R.D

D ≡ {o1, o2, . . . , on}

304

a:1

b:1

d:1

c:1

e:1

L(a) = {≥ nR1.(A� ≥ nR2.B),≥ nR1a.(A� ≥ nR2a.B),mR.�, ∀R.D}

L(b) = {A,≥ nR2.B,D, {o1}} L(c) = {A,≥ nR2a.B,D, {o2}}

L(d) = {B,D, {o3}} L(e) = {B,D, {o4}}

{R1, {o1}} {R1a, {o2}}

{R2, {o3}} {R2a, {o4}}

Figure 89: Clash free compressed completion graph for CSAT−nested−ALCHOQ.

The effect of using cycles in concept descriptions on the performance of reasoning

is tested using the satisfiability of Ccyclic−ALCHQ when there is no nominals interaction.

Ccyclic−ALCHQ �≥ nR1.C� ≥ nR2.C� ≥ nR1a.C� ≥ nR2a.C� ≤ mR.� � ∀R.�

C � Ccyclic−ALCHQ

Figures 91 and 90 show examples of a CCG for CSAT−cyclic−ALCHQ, it is easy to see

how cycles are handled by the re-use of proxy nodes.

a:1

b:1 c:1

L(a) = {≥ nR1.C,≥ nR2.C,≥ nR1a.C,≥ nR2a.C,mR.�, ∀R.�}

L(b) = {A,≥ nR2.B,B} L(c) = {A,≥ nR2a.B,B}

{R1,R1a} {R2,R2a}

{R2} {R2a}

{R1,R1a}

{R2,R2a}

Figure 90: Clash free compressed completion graph for Ccyclic−ALCHQ.

305

a:1

c:1

L(a) = {≥ nR1.C,≥ nR2.C,≥ nR1a.C,≥ nR2a.C,mR.�, ∀R.�}

L(c) = {C}

{R1,R1a,R2,R2a}

{R1,R1a,R2,R2a}

Figure 91: Clash free compressed completion graph for Ccyclic−ALCHQ.

C.4 Optimizations Effects

This section provides additional information about the test cases used to analyze the

effect of the LAB optimizations in Section 7.3.2. Table 28 summarizes the charac-

teristics of the test cases used. Table 29 shows the performance results when one of

more LAB optimization is turned OFF. Table 30 shows the speed up factor of the

optimizations used.

Test case size of DS ADR + ANO

CSAT−lin−ALCQ(i=10) 4

CUnSAT−lin−ALCQ(i=10) 4

CQCR−ALCQ(i=4) 10

CQCR−var−ALCQ(i=4) 8

CQCR−disjunctive−atMost−ALCQ(i=4) 6

CQCR−disjunctive−Least−ALCQ(i=4) 6

CQRatio−ALCQ(i=5) 14

CBack−disjunctive−ALCQ(i=10) 11

CUnSAT−nested−ALCHOQ 5

Table 28: Characteristics of the synthetic test cases used to evaluate the LAB opti-
mizations.

306

Test case LAB LA- L-B -AB - -B -A- L- - - - -

CSAT−lin−ALCQ(i=10) 313 484 422 1046 1172 453 564 954

CUnSAT−lin−ALCQ(i=10) 1385 734 438 313 421 3890 751 3687

CQCR−ALCQ(i=4) 10867 49734 157484 49531 23672 50843 TO TO

CQCR−var−ALCQ(i=4) 69585 TO 236001 246282 123171 TO TO TO

CQCR−disjunctive−atMost−ALCQ(i=4) 2218 21296 10266 11625 10188 11298 2094 2531

CQCR−disjunctive−Least−ALCQ(i=4) 76182 423 49031 15219 16155 173265 25219 TO

CQRatio−ALCQ(i=5) 11578 15468 ERR2 TO TO TO TO TO

CBack−disjunctive−ALCQ(i=10) 72553 85937 28173 66015 27985 76750 30062 28797

CUnSAT−nested−ALCHOQ 516 452 1954 421 1952 421 2000 1984

Table 29: Runtimes in milliseconds with the synthetic test cases where one or more
LAB optimization(s) is(are) turned OFF.

Test case S(LAB) S(LA) S(LB) S(AB) S(B) S(A) S(L)

CSAT−lin−ALCQ(i=10) 3 4 1 2 2 1 3

CUnSAT−lin−ALCQ(i=10) 3 0 3 1 1 0 0

CQCR−ALCQ(i=4) 55 2 5 55 5 14 5

CQCR−var−ALCQ(i=4) 9 2 9 9 9 3 4

CQCR−disjunctive−atMost−ALCQ(i=4) 1 5 5 1 10 5 5

CQCR−disjunctive−Least−ALCQ(i=4) 8 0 2 0 0 1 0

CQRatio−ALCQ(i=5) 52 52 52 52 1 N/A 52

CBack−disjunctive−ALCQ(i=10) 0 0 1 0 1 0 1

CUnSAT−nested−ALCHOQ 4 4 1 4 1 4 1

Table 30: Speed up factor of the LAB optimizations used for enhanced Back-jumping.

307

