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Abstract 

Using agent-based modelling to evaluate mitigation measures for moose-vehicle 

collisions                                       

Paul Grosman 

In northern countries, moose vehicle collisions (MVCs) are often associated with the 

presence of salt pools near highways. Mitigation measures such as designing 

compensation salt pools further away from the highway and building fences along 

highways can be used. Fences are very efficient in reducing MVCs, but wildlife passages 

are required in order to increase highway permeability. Agent-based modelling (ABM) 

was used to study the effect on moose movement behaviour near highways of roadside 

salt pool removal and displacement and to estimate the required density of underpasses in 

fenced areas. ABM was applied to Highway 175 (Québec) where an extensive telemetry 

dataset on moose movement was available. The movement rules were based on cover and 

food quality in GIS forest polygons. Model moose had salt pool spatial memory (SPSM) 

and, in most cases, road avoidance (RA) behaviour, the opposing effect of which on the 

number of road crossings was investigated. Completely removing roadside salt pools with 

no compensation salt pools resulted in the highest highway crossing reductions (by 79%). 

A conceptual framework was also designed for investigating the movement of moose 

along fences using ABM. The current spacing of wildlife passages along Highway 175 is 

markedly larger than the recommended allometric spacing (i.e. based on home range 

size). The objective was to assess the impact of wildlife crossing distances on highway 

permeability. Because of the lack of telemetry data near fences, probabilistic and fuzzy-

logic approaches were proposed to determine movement rules of the model moose. Once 

the model is implemented, it is anticipated that permeability will increase with decreasing 

distances between passages, and that a plateau may be observed once the allometric 

distance is reached.  

.  
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“Essentially, all models are wrong, but some are useful.” - Box and Draper (1987) 

1 Chapter 1: Introduction 
 

The environmental effects of roads are numerous and have different reaches into the 

surrounding landscape. Road effects include chemical damage to vegetation, rivers and 

wetlands, noise, easier access for invasive species, a barrier effect for migratory species 

and dispersal of juveniles, wildlife and human traffic injuries and mortality, and property 

damage (Forman et al., 2003). Some of these effects are limited to the road surface and 

immediate neighbourhood; others can reach several kilometers into the surrounding 

landscape (Forman and Alexander, 1998). In this thesis, the focus is on the road mortality 

of moose (Alces alces) and only driver safety secondarily, in particular, the elimination of  

roadside salt pools and their displacement and secondly on the use of the allometric 

method to increase the number of wildlife underpasses in the LWR (Bissonette and Adair 

2008). Worldwide, there are several million cervid-wildlife collisions each year resulting 

in damage to vehicles, human and wildlife deaths and injuries. It is estimated that the 

damage to vehicles costs around 1 million USD per year (Groot Bruinderink and 

Hazebroek, 1996). As well, it is estimated that up to half of the wildlife-vehicle accidents 

with large ungulates go unreported (Seiler, 2005). 

Various mitigation measures have been implemented to reduce road mortality. For 

larger mammals such as ungulates and carnivores, wildlife passages that either cross over 

or under the roadway are increasingly used (Clevenger et al. 2001; Seiler 2004; Dodd et 

al., 2007c; Dodd et al., 2007a; Olsson and Widen, 2008a, AECOM Tecsult Inc. 2009, 

2010). These are often combined with fencing in order to direct the wildlife to these 
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crossings. Sometimes, existing structures like bridges or culverts can be modified to 

accommodate wildlife; otherwise, entirely new structures need to be built.  

A highway overpass can cost more than one million dollars; an underpass, half a 

million dollars (Forman et al., 2003). Thus, once these costly wildlife crossings and 

fencing have been implemented, it is essential that they are monitored for some time to 

measure their effectiveness in fulfilling their purpose of reducing the barrier effect, 

reducing wildlife traffic mortality, and reducing biodiversity loss. This is good 

conservation management practice in order to justify the effort and cost and to review for 

improvements (Clevenger 2005). 

This thesis uses an agent-based modelling (ABM) approach to investigate questions 

related to the effectiveness of mitigation measures for reducing moose-vehicle collisions 

near route 175 in the Laurentides Wildlife Reserve (LWR), between Quebec City and 

Saguenay. Chapter 2 investigated the tradeoffs between road avoidance and salt pool 

spatial memory with the elimination of roadside salt pools and the creation of 

compensatory salt pools further from route 175. This chapter was published in 2011 in 

the journal Ecological Modelling, 222 (8) p. 1423-1435, with the title: Trade-off between 

road avoidance and attraction by roadside salt pools in moose: An agent-based model to 

assess measures for reducing moose-vehicle collisions. The third chapter describes the 

changes that could be done to the ABM to investigate the effect that  allometric-scaled 

spacing of wildlife passages could have on landscape connectivity in the area dissected 

by highway 175. In this area, about fifty moose-vehicle collisions per year occurred 

between 1990 and 2002 (Dussault et al., 2006a). The two lane road is currently being 

expanded into a four lane divided highway at a cost of about a billion CDN dollars. As a 
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result, an extensive GIS database and detailed reports exist on this project (Consortium 

Génivar-Tecsult. 2004; BAPE, 2005; Transports Québec et al., 2009). The first part of 

chapter 1 synthesizes the relevant literature on road ecology, moose behaviour and agent-

based modelling. This is followed by the research questions for chapters 2 and 3.  

1.1 Literature Review 

1.1.1 Road Ecology 

 

Despite the known effects of the automobile on wildlife, limited scientific research 

had been done until recent years. In a seminal article on the North American moose, 

Stoner (1925) described a road trip he and his wife did in Iowa and he noted every 

carcass he found in their 316 mile trip in June and July 1924. He recorded l29 species of 

reptiles, birds, and mammals for a total of 84 carcasses on the first part of the trip and 141 

carcasses on the return. Peterson (1955) in his chapter on accidents has only one sentence 

on moose-vehicle collisions, showing at that time MVCs were not a real concern at that 

time. But road ecology has now been recognized as an independent scientific discipline, 

promoted by the bi-annual International Conference on Ecology and Transportation 

started in 1996 and the publication of the book (Forman et al., 2003). The fourteen co-

authors of the book detailed their knowledge about the ecological effects of roads on 

landscape and wildlife and the various mitigation measures that could be used to reduce 

the negative effects. More recently, Safe Passages, Highways, Wildlife, and Habitat 

Connectivity (Beckmann et al. 2010) was published with seventeen chapters on current 

practices, ecologically effective transportation projects, effective partnerships (including 

the Banff National Park Wildlife Crossing Project and the Arizona State Route 260 
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project), and effective innovations to further reduce WVCs using advanced sensor 

communications systems, for example.. 

Forman (2000) has estimated that in the United States, about twenty percent of the 

contiguous land is ecologically affected by the road network. The effects of these roads 

are many, and include road injury and mortality to motorists and wildlife, changes in 

home ranges and population viability, easier access for invasive species, and soil and 

water changes (Trombulak and Frissell 2000). The various effects of roads extend, on 

average, 300m each side of the highway but are generally quite asymmetric (Forman and 

Deblinger, 2000). Moose populations have been increasing in New England and tending 

to cross highways in the fragmented landscape using railroad crossings and river 

underpasses (Forman and Deblinger 2000). Because of the well-documented evidence of 

negative road effects (Roedenbeck et al. 2007; Fahrig and Rytwinski 2009), it is crucial 

to study how best they can be mitigated so that transportation planning in the future could 

take these research results into consideration. 

In 2005, a group of road ecologists met at Rauischholzhausen Castle in Germany to 

discuss the present state of road ecology and why it was not having a greater impact on 

transportation planning despite the well-documented evidence of negative road effects 

(Roedenbeck et al., 2007). They identified five questions that could provide a framework 

for road ecology. Four of the five questions were concerned with population persistence 

and one considered how road effects could best be mitigated. As well, they recommended 

where possible that full before-after-control-impact experimental designs be done. 

Manipulative experiments have much stronger inferential strength than non-manipulative 

ones. Where these experiments could not be done, transportation planners should still use 
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research that had low inferential strength and not demand better results than are possible 

under the circumstances (Roedenbeck et al. 2007). 

 

1.1.2 Moose behaviour 

 

The moose is the largest member of the deer (cervid) family. It can weigh up to 600kg 

and have a shoulder height of nearly 2m. It has a circumpolar distribution: there are 

moose in Scandinavia, Russia, Alaska, Canada, and northern US states such as Maine, 

New Hampshire, Vermont, Michigan and Minnesota (Franzmann and Schwartz 2007). 

They can live as long as twenty years but their mean life expectancy is 8 years for 

females and 7 years for males (Franzmann and Schwartz 2007). They are the least 

gregarious of the cervids; they are essentially solitary except mothers with their young.  

Because of their large size combined with the high energy demand on their 

environment and the generally low nutrient value of their food, moose must consume 

between 20kg and 30kg per day of forage. Moose eat mainly shrubs, twigs, leaves, shoots 

and aquatic plants. In winter they depend mainly on willow and they strip bark off trees 

(Rea and Child 2007).   

The rut season starts in September and ends in November. Bull moose will attempt to 

impregnate more than one cow but there can be competition between males with the older 

males chasing the younger and immature bulls away from the females. Females actively 

choose their mates unlike other ungulates (Franzmann and Schwartz 2007). The birthing 

period runs from late May until early June and typically one or two calves are born per 
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year depending on habitat quality. The cow has its maximum fertility between 4 and 7 

years (Franzmann and Schwartz 2007).  

Their main predators are wolves and bears but an adult moose can successfully defend 

itself from both by standing its ground (Franzmann and Schwartz 2007). Their young, 

however, often are killed and eaten by these predators. 

Moose have the following general annual life cycle: a green (i.e. deciduous leaves 

present) season: May to September and a dead season (i.e. deciduous leaves absent): 

October to May (Samson et al.. 2002). The green season includes the birthing period, 

before which any yearlings are chased away and must disperse to a new home range, and 

the summer feeding period, mainly foraging on deciduous trees, shrubs and aquatic 

vegetation. Moose have a chronic need for sodium after winter and thus visit roadside salt 

pools or use wetlands for sodium (Fraser and Thomas, 1982; Miller and Litvaitis, 1992; 

Dussault et al., 2006a; Leblond et al., 2007b; Laurian et al., 2008a). The dead season 

consists of the rut, which is also the hunting season, and as winter progresses there is a 

reduction in moose movement with increased conifer browsing and the seeking of cover 

protection in the conifer forests. 

1.1.3 Moose-vehicle collisions 

 

Moose-vehicle collisions vary spatially and temporally. For example, yearly values in 

Quebec range between 161 and 310 – with 45 to 50 in the LWR between 1990 and 2002 

(Dussault et al. 2006a), whereas over 900 MVC have occurred yearly in Newfoundland 

(Joyce and Mahoney, 2001), and 4,500 in Sweden (Seiler, 2004). The likelihood of a 

MVC is much higher between dusk and dawn than in the daylight hours (Joyce and 
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Mahoney, 2001; Dussault et al. 2006a). Furthermore, most MVC occur between June 1st 

and October 31st (Joyce and Mahoney, 2001). There is also a higher risk of MVC at 

higher traffic volumes (Joyce and Mahoney 2001; Dussault et al. 2006a)  

In Newfoundland, Joyce and Mahoney (2001) found related predictive factors 

consisted of time of accident, road conditions and alignment, vehicle speed and occupants 

and moose sex and age but they did not include any factors that related to the landscape 

or moose habitat. The authors found that 70% of the MVCs occurred between June 1st 

and October 31st and that there were more MVCs at high and low moose densities than at 

medium moose densities. Joyce and Mahoney (2001) attributed this to an interaction with 

habitat factors, which they did not measure and they considered this finding unreliable.  

In the LWR, MVCs are more of a traffic safety issue than a conservation issue since 

the moose population is not threatened by decline or extirpation. 

1.1.4 Mitigation Measures and Their Placement 

 

Mitigation measures to reduce wildlife-vehicle collisions can be directed at the vehicle 

drivers and the wildlife. Romin and Bissonette (1996) found that even though attempts to 

mitigate human driver behaviour were more widely used, the mitigation measures taken 

to modify wildlife behaviour were more successful (Figure 1.1). As Patricia White 

pointed out in her book Getting Up to SPEED: A Conservationist's Guide to Wildlife and 

Highways, "as it turns out, it's easier to teach animals to change than humans" (White, 

2007). 

Fencing and wildlife passages over and under the highway were the most successful 

approaches, whereas mirrors and reflectors, a widely used method, were not very 
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successful (Forman et al. 2003). For drivers, the static warning sign does not appear to be 

effective; so recently dynamic warning signs, with a flashing light when a large mammal 

is detected, have been tried (Huijser et al., 2008). 

 

 

Figure 1.1. Mitigation measures attempted to modify deer or human behaviour. These results are from 
a 1992 telephone survey of 43 U.S. state natural resource agencies. Source: Forman et al. (2003). 

et al. A large number of studies evaluated the placement of mitigation measures such 

as wildlife passages using statistical analyses based on various environmental statistics. 

These environmental factors were drawn from the immediate area of the WVC, the 

structural characteristics of the wildlife passages and the behaviour of the focal species 

(Clevenger and Waltho, 2000a; Joyce and Mahoney, 2001; Clevenger et al., 2002a; Malo 

et al., 2004; Clevenger and Waltho, 2005; Seiler, 2005; Gunson 2007; Roedenbeck 

2007).  
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In Spain, Malo et al. (2004) found that high WVC rates were associated with high 

forest cover, low crop cover, low number of buildings and high habitat diversity. At the 

local level, WVC were associated with no guardrails, lateral embankments, and large 

distances from underpasses, crossroads or buildings. In Banff National Park (BNP), 

highway crossings were shown to increase where the road bisects high quality habitat and 

lateral cross-valley movements (Clevenger et al. 2002b). In Sweden, a convex 

relationship between traffic volume and MVCs exists: at high traffic volume, the road 

becomes a complete barrier, at low volume the moose can cross safely more often, but at 

medium volume, they venture on to the road and get hit more often (Seiler, 2005) thus 

agreeing with the results of Joyce and Mahoney (2001) mentioned above. Seiler (2005) 

found that bridges and tunnels did reduce MVCs, and that MVCs increased on roads that 

went through clear-cuts and young forests. 

 

1.1.5 Effectiveness of Mitigation Measures 

 

The effectiveness of various mitigation measures can be measured on at least three 

different biological scales: at the level of the organism, population abundance, and 

genetic flow. Though the first two are easier to quantity, the last, however, needs long-

term monitoring programs in order to be assessed, as there is currently a lack of genetic 

evidence to support whether or not the overpasses are effective (Corlatti et al. 2009). One 

difficulty of this type of study is that even if the animals can cross the road safely their 

genes may be flowing across but not mating therefore not mixing with those animals on 

the other side of the road. Riley et al. (2006), studying the barrier effect of the Ventura 

Highway, a 10-12 lane high traffic highway north of Los Angeles, found a home-range 
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“pile-up” that occurred near the road that even though there were numerous crossings 

there was a lack of reproductive success by the cougars and bobcats that had crossed.  

From the point of view of the vehicle driver, the effectiveness of any mitigation 

measure should be measured as increased driver safety or as decreased risk of MVC. A 

number of studies have shown that high exclusion fencing placed along highways can 

reduce WVCs by 80% to 90% (Clevenger et al. 2001; Seiler 2004; Dodd et al., 2007c; 

AECOM Tecsult Inc. 2009). However, WVCs may still occur at the fence ends, and care 

should be taken to design fences that curve backwards into the surrounding landscape 

(Clevenger et al. 2001). This design modification has been implemented on the exclusion 

fencing in the LWR.  

From the point of view of the wildlife, the effectiveness of any mitigation measure 

should be measured as increased highway permeability. Even if a moose population is not 

at risk, they need to cross the highway to reach high quality habitat, or during the rut 

season to seek out females, and one-year-old moose need to disperse to find their own 

home ranges after being forced away by their mothers before the birth of their new 

siblings. Many studies have monitored wildlife passages after construction to determine 

their effectiveness (van der Ree et al., 2007). In BNP, the 30 underpasses have been 

studied for the last 15 years and about 220,000 crossings by eleven different species (but 

mainly elk) have been detected (Parks Canada Website, 2010), however no individual 

animal identification was available so it is not possible to know how many individuals 

used the wildlife passages (Clevenger et al. 2009). However, a new study is ongoing in 

BNP to identify the individual grizzly bears using the wildlife passages by using barb 

wire to capture their hairs (Clevenger and Sawaya 2010). In Arizona, where Highway 
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260 was upgraded from a two-lane to a four-lane highway, 8,455 animals were detected 

in five underpasses between 2002 and 2006 (Dodd et al., 2007a, b, c; Gagnon et al., 

2007a, b). In southwestern Sweden, 24 GPS telemetry-collared moose were followed 

before, during and after an expansion of a two-lane road into a four-lane highway with 

exclusion fencing and 3 underpasses to study the moose usage of these highway crossings 

(Olsson and Widen, 2008a; Olsson et al. 2008b).  

In all three study areas, researchers found that fencing and wildlife passage mitigation 

measures were effective and significantly reduced ungulate road crossings and mortality, 

while also reducing landscape connectivity.  

Increased traffic noise may affect wildlife passage success (Olsson et al. 2008b), 

although this effect was only detected for heavy tractor-trailers during low volume 

periods in Arizona (Gagnon et al., 2007b). Underpass openness was deemed important so 

the elk could see any predators. The use of earthen rather than concrete walls was found 

to be more acceptable to elk (Gagnon et al. 2007b). 

Ideally, several mitigation methods such as wildlife crossing fences and escape ramps 

should be used in combination. Furthermore, an often-neglected aspect of mitigation 

projects is to ensure that the structures are maintained in the long term; across North 

America transportation budgets for maintenance are woefully underfunded (Bissonnette 

and Cramer, 2008). These costs must be factored in cost-benefit analysis of mitigation 

measures (Huijser et al., 2009). 
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1.1.6 Landscape Connectivity and Highway Permeability 

 

Wildlife conservation has as one of its main concerns the notion of landscape or 

habitat connectivity. Connected populations have the following properties in common 

(Beckmann et al. 2010): species have a greater chance of survival, provide greater 

flexibility to respond to changing environmental conditions such as climate change and 

habitat fragmentation, species are more resilient to environmental changes and natural 

disturbances such as droughts and fire, enables breeding between subpopulations, and 

maintaining continuous habitats can buffer species communities from new diseases, the 

need for connectivity increases as the effects of habitat fragmentation and climate change 

increase. 

The two concepts of landscape connectivity and highway permeability are two key 

concepts in road ecology and they are defined below. Landscape connectivity is a concept 

that refers to how well connected the habitats or resource patches are connected to each 

other, i.e., how easy or difficult is it for specific species to move between these habitat 

patches (Taylor et al. 1993). Connectivity can be measured in a landscape for the moose 

by assessing the probability that the moose will move between all points or habitat 

resource patches (Taylor et al. 1993). When a highway is first constructed in a landscape, 

the landscape becomes less connected because of the highway, and road ecologists must 

work together with transportation departments to restore some degree of connectivity 

across the highway using fences, tunnels, culverts, underpasses and overpasses. The 

landscape will never return to its pristine state, but with mitigation measures, the animals 

will be able to move over or under the highway without endangering themselves and 

causing harm to the motorists. Highway permeability as defined by Bissonette and 

Cramer (2008), "refers specifically to the ability of species of all kinds to move relatively 
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freely across the roaded landscape ". Thus, permeability is focused on the highway while 

connectivity refers to the entire landscape. When a highway is first constructed, 

landscape connectivity is heavily reduced and only when fencing and underpasses are 

constructed together, does the degree of highway permeability increase again which 

increases landscape connectivity as well (Dodd et al. 2007b).  

Fences, by themselves, keep wildlife off the roads up to 80% to 90%  of the time 

(Clevenger et al. 2001; Seiler, 2004; AECOM Tecsult, 2010) but with wildlife 

underpasses installed as well, the fences can  funnel wildlife towards underpasses, 

however, they do hinder movement, increase isolation of sub-populations, and  increase 

travel distances (Beckmann et al. 2010). Human use of wildlife passages must be reduced 

as well since many carnivores and other species will reduce their use of underpasses and 

overpasses due to human usage.  Foster and Humphrey (1995) in a study of the Florida 

panthers found that human use of underpasses caused the panthers to use the same 

underpasses less on Highway I-75 through the Florida Everglades.  Similar observations 

were made by Clevenger and Waltho (2000) on the elk and other wildlife in BNP and the 

TCH, and by AECOM Tecsult (2010) in the LWR. If, however, there is a fence but there 

are no underpasses in a moose's home range the moose would be expected to expand its 

home range away from the road (Olsson and Widen, 2008a). 

In order to restore some connectivity, a number of steps should be undertaken: firstly, 

create a  joint road ecologist and transportation planning team  that will set goals for the 

project including the identification of focal species using scientific expertise; secondly, 

create GIS datasets of the landscape that can be evaluated to inform the best project 

design and identify the present barriers as such developed areas and roads and consider 
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how changing land use and human activity will affect the focal species in the future; and 

thirdly, engage the local communities from the beginning; local support often determines 

a project's success (Beckmann et al. 2010).  

Identification of safe wildlife crossings is of prime importance since the road-kill data 

locations may have little to do with where the wildlife can safely cross the highway 

(Clevenger et al., 2002a). Often a road-kill can occur some distance from a safe wildlife 

corridor if the animal has been wandering along the highway for some distance. 

Landscape connectivity is influenced by the width, number of lanes and other design 

characteristics of the highway. Traffic volumes of 4,000 to 10,000 vehicles / day create 

strong barriers to movement across the highway; at 10,000 vehicles / day it becomes a 

near total barrier to movement across the highway (Iuell et al. 2003). Figure 1.2 shows a 

convex curve for MVCs in Sweden which indicates that most MVCs occur at 4,000 to 

6,000 cars per day but at 10,000 cars per day the MVCs drop to near zero since the road 

becomes a total barrier to movement. The model area had 2,000 MVC sites and the test 

area had 1,300 MVC sites (Seiler 2005). Large mammals can cross more easily at night 

when traffic volumes are lowest  (Beckmann et al. 2010). 
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Figure 1.2. The relationship between MVC and traffic volume in Sweden. The model area is in south-
central Sweden and the test area is just north of the model area. Source Seiler (2005). 

 

High landscape connectivity is important for the following reasons: many multi-

habitat organisms regularly move through the landscape to different habitat types to 

obtain their daily needs and this allows for movement to repopulate patches that have 

suffered local population declines or extirpation and can minimize the effects of 

inbreeding. Barriers such as roads impede these movements resulting in higher road 

mortality, lower reproduction, and ultimately smaller populations (Forman et al. 2003). 

The species that are most vulnerable to the barrier effect of highways are those that avoid 

roads but have multiple resource needs and need large amounts of resources that require 

them to travel over large areas, foraging in a home range, dispersing for young to new 

home ranges and migration. The barrier effect will affect species differently depending 

on an animal's movement behaviour, their young's dispersal ability, and their population 

density. A highway can become the boundary for home ranges for some species such as 
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moose. As well, the cumulative effect of power lines, railways, pipelines and aqueducts 

on the movement of various species is unknown and requires scientific investigation 

(Forman et al. 2003). The cumulative effect of habitat loss, reduced habitat quality, 

wildlife mortality and reduced connectivity results in a time lag effect that can take 

several generations of animals to observe (Forman et al. 2003). Thus, the introduction of 

mitigation measures now may actually be addressing effects that started decades ago. In 

general, the impact of the virtual ecological footprint of roads must be reduced so that 

wildlife populations can recover and thrive. As well, mitigation efforts are meant to 

restore some connectivity but not to return the modified landscape to its original 

condition (Parks Canada Website, 2010b).   

 

1.1.7 Agent-based modelling 

 

Agent-based modelling is a computer simulation technique which considers 

individuals in a study area as agents and attempts to implement some of their life history 

variability, individual resource use and different behaviours into a coherent model to 

solve or better understand some problems. In contrast with classical theoretical ecology 

that works top-down and typically stops at the population level and does not consider the 

individual variability of the species significant, ABMs work bottom-up and consider the 

variability of individuals crucial to the modelling process and results (Figure 1.3). ABM 

is now being used in ecology, geography, urban planning sociology, economics and other 

scientific disciplines (Schelling 1969;  Grimm 1999; Railsback and Harvey 2002; Grimm 

and Railsback 2005a; Anwar et al., 2007; Brown et al., 2008; Tesfatsion 2008; Grosman 

et al., 2009; 2011). 
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Figure 1.3. A comparison of the "top-down" approach of classical theoretical ecology with the "bottom-
up" approach of ABM. Note that the emergent properties of the second approach must be compared to 
the theoretical concepts of the first approach (Grimm 1999). 

There is a difference between individual-based and agent-based models, even though 

many authors use the terms interchangeably. The essential difference is that individuals 

are more reactive; whereas, agents are more proactive and goal-oriented (Parrott, 2008). 

In this thesis, the agent moose actively seek out the best forest polygon when travelling, 

find roadside and compensation salt pool and place them in their spatial memory and 

actively avoid the road. Thus the virtual moose are more agents and less individuals. 

The agent-based modelling approach for the moose was chosen to develop a "bottom-

up" model that took into account certain individual properties of the virtual moose. If a 

statistical or system dynamics models like STELLA™, it would be operating more at the 

moose population level and not at the individual moose level. An agent-based modelling 

approach was chosen so that used some of the individual variability of the moose agents. 
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Most existing ABMs work on human individuals; there are few that work on wildlife-

human interactions.  The latter include models of Florida panther movements (Cramer 

and Portier 2001), whale-watching boats and whales in Saguenay-St. Lawrence Marine 

Park near Tadoussac (Anwar et al., 2007), moose in the Isle Royale National Park in 

Lake Superior (Booth 1997; Schmitz and Adair 2000) and in the LWR in Québec 

(Grosman et al., 2009; 2011), Eurasian lynx in the Swiss Alps (Kramer-Schadt et al., 

2004) and vultures and artificial feeding stations in France near the Pyrenées mountains 

(Deygout et al., 2009).   

Grimm (1999) and Grimm et al. (2006) remark that, in ecology,  too many ABMs are 

essentially one-off projects that attempt to solve the ecological problem at hand but make 

no attempt to build a model that could be used again for other problems. They 

recommend two new ideas, first that ABMs could establish a better conceptual 

framework by borrowing key concepts from Complex Adaptive Systems (Grimm and 

Railsback 2005a). These concepts consist of: emergence, adaptation, fitness, prediction, 

interaction, sensing,  stochasticity, collectives, scheduling, and observation. Concepts like 

adaptation and fitness are already used in classical theoretical ecology, but some of the 

others such as emergence and collectives are more pertinent to ABM. The second 

suggestion is to use a concept called “pattern-based modelling” where ABMs attempt not 

only to produce an emergent pattern that is core to the problem under study but to also 

produce a pattern not related to the problem under study but still relevant to the 

individuals under study (Grimm et al., 2005b). If the other patterns also match the real 

situation well, then the ABM has more “structural realism”. A pattern is any behaviour 

that is more than random variation. Both “weak” and “strong” patterns, that is, patterns 
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that are not much different from random variation and those that are highly different can 

be used to construct and validate an ABM. Ideally, a common protocol for describing the 

purpose and content of an ABM should be used so that it can be better understood by 

other practitioners and more easily replicated. This protocol is called the Overview, 

Design, and Details protocol or ODD (Grimm et al. 2006; Grimm et al. 2010).  

1.2 Chapter Themes 
 

The second chapter presents my ABM that assesses the trade-off between road 

avoidance and attraction by road salt pools by moose. In this ABM, there are five 

scenarios that have different amounts of the elimination of roadside salt pools along the 

upper highway 175 and the construction of compensatory salt pools further away from 

the highway 175. The third chapter describes my revised ABM that explores the 

allometric method for eighteen scenarios for the placement of wildlife underpasses along 

highway 175, starting from the current situation of six wildlife underpasses for moose 

and going up to forty underpasses. In each scenario except the first one that will use the 

actual fences and underpasses newly constructed for the LWR and highway 175, fences 

will be constructed along both sides of the Highway 175 so that the moose can be 

directed towards the underpasses. This ABM has not yet been programmed but the 

chapter describes the specifications in detail. 

1.3 Objectives and Hypotheses  
 

The main objective of chapter 2 was to better understand the trade-off between road 

avoidance behaviour and salt pool spatial memory for moose agents and to implement a 

better representation of real moose behaviour in the landscape than the previous ABM 
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(Grosman et al. 2009), and thus generate a more reliable predictive modelling tool to 

examine various mitigation measures for reducing MVCs. We also included in the ABM 

in chapter 2, a new home range enforcement method, a distance travelled algorithm based 

on a power-law distribution and a new travelling to salt pools method. The trade-off 

between avoidance of risks associated with roads and attraction by roadside salt pools for 

sodium acquisition is essential for understanding moose movement behaviour in 

landscapes that contain roads and salt pools. Since moose exhibit some variability in their 

behaviour including high or low levels of road avoidance (Laurian et al., 2008b), we also 

wanted to compare the independent and combined influences of road avoidance and salt 

pool memory on moose movement patterns near roads. Furthermore, we applied the 

model to assess the effect of road avoidance behaviour and salt pool memory on the 

reductions of road crossing frequencies in different scenarios of salt pool removal and 

displacement to assess the potential influence of inter-individual variation. This will 

provide highway managers with an estimate of the range of the effectiveness of 

mitigation measures. 

The main hypotheses of chapter 2 are that the total elimination of road side salt pools 

with both road avoidance and salt pool spatial memory activated, should lead to the 

greatest reduction in moose road crossings and secondarily, the creation of compensation 

salt pools further from the Highway 175 with both road avoidance and salt pool spatial 

memory activated should lead to a smaller but still significant reduction in moose road 

crossings. The trade-off between the effects of road avoidance and memory of salt pool 

locations makes it difficult to predict how the number of road crossings and the effect of 

salt pool removal and replacement would change but it is expected that the road 
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avoidance factor will be much stronger than the opposing salt pool spatial memory factor. 

Chapter 2 investigates the relative importance of these two behaviours on moose 

reactions to roads and management of salt pools as a mitigation measure of MVC. 

The main objective of chapter 3 is to use a revised ABM based on the ABM in chapter 

2 to assess the impacts and the effectiveness of road exclusion fencing and wildlife 

underpasses for MVC near the upgraded (from 2 lanes to 4 divided lanes) highway 175 in 

the LWR. The main research question is: will allometrically-scaled wildlife crossings 

increase the landscape connectivity compared to the actual fencing and wildlife 

underpasses newly constructed in the LWR and by how much? There will be eighteen 

scenarios and the eleventh is the allometrically-scaled one; at that point, there should be a 

plateauing effect of the number of moose crossings. In this chapter, I develop a 

conceptual framework to determine the model moose movement rules near fences and 

underpasses, and I determine the response variables needed to assess the effectiveness of 

different spacings of wildlife passages.  

The hypotheses of chapter 3 are that the allometrically-scaled placement of wildlife 

underpasses, which has never been tested before, should lead to a far greater number of 

moose road crossings that the current situation with just six wildlife underpasses and that 

the number of moose road crossings should reach a plateau at the allometrically-scaled 

number of wildlife underpasses. Accordingly, the allometrically-scaled placement of 

wildlife crossings (Bissonette and Cramer, 2008) would be the recommended principle 

for the placement distance of crossing structures for moose. 
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2 Chapter 2: Trade-off between road avoidance and 
attraction by roadside salt pools in moose: An 
agent-based model to assess measures for 
reducing moose-vehicle collisions 

2.1 Introduction 
 

Roads and traffic fragment the habitat of many wildlife species, thereby decreasing 

habitat amount and quality, increasing mortality due to collisions with vehicles, reducing 

access to resources on the other side of the road, and subdividing animal populations into 

smaller and more vulnerable fractions (Jaeger et al., 2005; Fahrig and Rytwinski, 2009). 

For larger terrestrial mammals, wildlife-vehicle collisions (WVC) also pose a risk to 

human safety and vehicle integrity (Clevenger et al., 2001; Forman et al., 2003). It was 

estimated that, in North America and Europe, there are several millions of vehicle 

collisions with moose (Alces alces), elk (Cervus canadensis), caribou (Rangifer tarandus) 

and other members of the cervidae family each year (Groot Bruinderink and Hazebroek, 

1996; Romin and Bissonette, 1996; Conover, 1997; Dussault et al., 2007). 

Where large quantities of de-icing salt are used on roads in northern countries such as 

Canada, runoff leaches the road salt to the ditches and depressions beside the road in the 

spring snow melt. Moose need sodium in their diet (Jolicoeur and Crête, 1994), which 

they can either obtain by browsing on aquatic plants or by a quick trip to the roadside 

(potentially crossing the road to get to the salt pools on the other side). The latter is more 

“efficient” since sodium concentration is 2 or 3 times higher in the salt pools compared to 

aquatic plants (Leblond et al., 2007b), but it can increase the probability of moose-

vehicle collisions (MVC) by 80% near roadside salt pools (Dussault et al., 2006a). The 

moose's spatial memory of salt pools has been demonstrated empirically by Miller and 

Litvaitis (1992) who showed that moose extended their summer home ranges to 
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encompass the roadside salt pools at the edge of their home ranges (see also Laurian et 

al., 2008a). This implied that moose do not search for new salt pools all the time but 

remember their locations from year to year. To mitigate the risk of MVC, salt pools can 

be removed or drained, and compensatory salt pools can be maintained further away from 

the road to keep moose away from the roadway (Leblond et al., 2007b; Grosman et al., 

2009). 

Agent-based modelling (ABM) considers the resource use and other behaviours of 

individuals as well as the variability in their activities, and this approach is increasingly 

used to simulate animal movement (Tang and Bennett, 2010). Identifying the key 

external environmental factors, internal states, motion abilities and navigation capacities 

of the animal remains the primary challenge in applying a movement ecology approach to 

a particular system (Nathan et al., 2008; Tang and Bennett, 2010). Grosman et al. (2009) 

used ABM to explore whether the removal of roadside salt pools and their replacement 

by compensatory salt pools could reduce the number of moose road crossings. This 

model (hereafter referred to as the G2009 model) predicted a significant reduction in road 

crossings when the roadside salt pools were either completely or partly removed, with or 

without the creation of compensatory salt pools. However, in the original version of this 

model, moose agents did not have spatial memory of roadside salt pools they had 

previously visited. Furthermore, an assessment of moose movement obtained from 

telemetry data revealed that most, but not all, moose avoid roads (Laurian et al., 2008b). 

Thus, a more realistic road avoidance behaviour scheme than the one in the G2009 model 

was required to adequately represent individual moose behaviour near roads. 
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The main objective of this paper was to assess whether the inclusion of road avoidance 

behaviour and of salt pool spatial memory for moose agents can provide a better 

representation of real moose behaviour in the landscape, and can thus generate a more 

reliable predictive modelling tool to examine various mitigation measures for reducing 

MVC. It is known that moose are not maximizing their energy (or mineral) intake at all 

costs, but they try to consume a reasonable amount of resources while minimizing other 

risks like mortality on the road (Dussault et al., 2005; Laurian et al., 2008b). This trade-

off between avoidance of risks associated with roads and attraction by roadside salt pools 

for sodium acquisition is essential for understanding moose movement behaviour in 

landscapes that contain roads. However, since moose exhibit some variability in their 

behaviour including high or low levels of road avoidance (Laurian et al., 2008b), we also 

wanted to compare the independent and combined influences of road avoidance and salt 

pool memory on moose movement patterns near roads. Furthermore, we applied the 

model to assess the effect of road avoidance behaviour and salt pool memory on the 

reductions of road crossing frequencies in different scenarios of salt pool removal and 

displacement to assess the potential influence of inter-individual variation. This will 

provide highway managers with an estimate of the range of the effectiveness of 

mitigation measures. 

The trade-off between the effects of road avoidance and memory of salt pool locations 

makes it difficult to predict how the number of road crossings and the effect of salt pool 

removal and replacement would change following the implementation of these two types 

of behaviour in the G2009 model. This paper investigates the interplay and relative 

importance of these two behaviours on moose reactions to roads and management of salt 
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pools as a mitigation measure of MVC. The new model represents major scientific 

advances over the previous (G2009) model as it also uses home range enforcement and a 

more realistic method of distance selection to produce a more realistic representation of 

moose movement. 

 

2.2 Methods 

2.2.1 Study area and available datasets 

 

The study area was the northern portion of the Laurentides Wildlife Reserve (LWR) 

situated between Québec City and Ville de Saguenay, Canada (Figure 2.1). The LWR is a 

7861km
2
 forested region (Dussault et al., 2006a) with two provincial highways (HW 175 

and 169) crossing its territory. Winters are severe in this reserve with annual snowfalls 

greater than 550cm in some areas. Snow starts to accumulate in early November and lasts 

until early June under forest cover. De-icing efforts in the LWR apply >100 metric tons 

of road salt/km/yr (Jolicoeur and Crête, 1994). 
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Figure 2.1. The study area is indicated by the black rectangle centered on the upper portion ofHW175 
above the junction with HW169. The boundary of the Laurentides Wildlife Reserve (LWR) is outlined in 
green. The LWR is situated between Québec City and Saguenay in the Province of Québec, Canada. 

.  

 

We used moose locations obtained through a GPS telemetry program of moose in the 

study area to validate our models. The moose movement dataset consisted of GPS 

telemetry locations for 47 moose, recorded every 2 h for 3 years (~200,000 locations). 

Other datasets available allowed us to map forest stands available within the study area 

(~10,000 polygons), eco-forest maps provided by the Ministère des Ressources naturelles 

et de la Faune du Québec (MRNF), highways, water bodies and streams, topography, and 

roadside and compensatory salt pool locations. The forest polygon vegetation dataset 

included slope, tree species composition and age, disturbance type and time, habitat type 
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for moose with food and cover quality based on the Habitat Quality Indicators developed 

by Dussault et al. (2006b) (Table 2.1). The other environmental factors such as salt pool 

locations and forest polygons remained constant during the 3-year period where moose 

movement data were collected. Thus our data adequately reflected the targeted spatial 

configurations. These datasets and several scientific papers that investigated moose 

behaviour in the LWR (Dussault et al., 2004, 2005, 2006a, b, 2007; Leblond et al., 

2007a, b; Laurian et al., 2008a, b) provided the solid background knowledge needed to 

model moose behaviour with confidence in the LWR. More detailed information on the 

datasets is provided in Grosman et al. (2009).  

 

Habitat Type Description Food quality Cover quality 

Other Lakes islands other 2 1 

Fi50 Deciduous intolerant hardwoods up to 50 yr old 4 2 

Ft50 Deciduous tolerant hardwoods up to 50 yr old 5 2 

IMP Buildings urban area fens bogs alder stands 2 1 

Mi10 Mixed and intolerant hardwoods 10 yr old 5 1 

Mi30 Mixed and intolerant hardwoods 30 yr old 4 3 

Mi50 Mixed and intolerant hardwoods 50 yr old 3 3 

Mt50 Mixed and tolerant hardwoods 50 yr old 5 3 

R10 Conifers regenerating 3 1 

RE30 Conifers with black spruce 30 yr old 1 4 

RS30 Conifers with balsam fir or white spruce 30 yr old 2 4 

Table 1.1. Habitat types and corresponding food and cover quality attributes along roads in the 
Laurentides Wildlife Reserve. Habitat types were based on the vegetation available in each forest 
polygon as indicated on forest maps of the study area. Based on the MRNF Habitat Quality Indicators. 
Source: Dussault et al. (2006b). 
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2.2.2 Salt pool management scenarios 

 

Five scenarios were studied with the model in order to cover a range of salt pool 

management options (Table 2.2):  

 Scenario #1: current situation; 

 Scenario #2: 100% salt pool removal, no compensation salt pools; 

 Scenario #3: 100% salt pool removal, 100% compensation salt pools, 8 of 

 which  were less than 500m from the road. Note that only 18 

 compensation salt pools were needed to replace the 36 roadside salt pools 

 since the latter were clustered in groups; 

 Scenario #4: 2/3 salt pool removal, no compensation salt pools; 

 Scenario #5: 2/3 salt pool removal, 2/3 compensation salt pools, 4 of 

 which were less than 500m from the road. 

In order to study road avoidance behaviour and salt pool spatial memory separately 

and together, the five scenarios were run for four combinations of behaviour resulting in 

twenty different configurations overall. The four combinations of moose behaviour were: 

A. Road avoidance behaviour and salt pool spatial memory both on; 

B. Road avoidance behaviour on and salt pool spatial memory off; 

C. Road avoidance behaviour off and salt pool spatial memory on; 

D. Road avoidance behaviour and salt pool spatial memory both off. 
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2.3 ABM model 
 

The model was programmed using the open-source Recursive Porous Agent 

Simulation Toolkit, Repast Simphony from the Argonne National Laboratory, U.S. Dept. 

of Energy (Repast Simphony, 2008). It is considered a mature and flexible platform 

written in Java with many users in the scientific community and has good development 

support (Railsback et al., 2006; Tesfatsion, 2008). Repast Simphony includes the 

GeoTools and the Java Topology Suite toolkits. GeoTools can read and write ArcGIS 

vector datasets which were imperative for this ABM since all GIS datasets are vector-

based. The Java Topology Suite was used to create and process geometric objects such as 

new target moose locations, and on-the-fly buffering in the model. GeoDa (Anselin, 

2004) was used to create a list that identified all the neighbouring polygons of each forest 

polygon that was loaded in the model initialization. The GIS analysis was done using 

ArcGIS 9.3 (ESRI, 2009). The model description followed the ODD (Overview, Design 

Concepts, Details) protocol for describing individual- and agent-based models (Grimm et 

al., 2006, 2010). 

Scenario # Roadside 
Salt Pools 

# Compensation Salt 
Pools 

1. Current Situation 36 0 

2. 100% Salt Pool Removal, No Comp. Salt Pools 0 0 

3. 100% Salt Pool Removal, 100% Comp. Salt Pools 0 18 

4. 2/3 Salt Pool Removal, No Comp. Salt Pools 12 0 

5. 2/3 Salt Pool Removal, 2/3 Comp. Salt Pools 12 12 

Table 2.2. The five salt-pool management scenarios with the number of roadside and compensation salt 
pools in each case. 
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2.3.1 Purpose 

 

The agent-based model investigates how the interplay of two opposing factors: road 

avoidance and salt pool spatial memory, affected 40 model moose in the Laurentides 

Wildlife Reserve. We are simulating the behaviour of moose that we assume are using 

roads and salt pools.  

2.3.2 Entities, state variables, and scales  

 

MooseGISModel was the controller of the ABM which verified that the various input 

parameters were valid, for example, that the sum of weights was 1, the number of years 

was between 1 and 4, etc. (Figure 2.2). It then read the vector GIS datasets (all in the 

same MTM projection) and created all of the entities described below as well as the daily 

schedule. 
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Figure 2.2. Unified Modelling Language Diagram of the primary objects in the model. 

There was one active entity in the model: moose (n = 40); and a number of passive 

ones: forest stands (n = 10,575), home ranges (n = 40), salt pools (by scenario: 1: 36 

roadside; 2: 0 salt pools; 3: 18 compensatory; 4: 12 roadside; and 5: 24, 12 roadside and 

12 compensatory; see Table 2.2), road (n = 1), East study area (n = 1; the portion of the 

study area east of highway 175) and west study area (n = 1; the portion of the study area 

west of highway 175).  
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The active agent, moose, had the following state variables: its current forest polygon, 

its current habitat type, its previous forest polygon, its forest polygon before the previous 

one, the distance travelled today in meters; the total distance travelled that year and its 

current x and y location in meters. These 40 model moose were implemented as a point 

GIS data set in ArcGIS. 

The first passive agent, the forest stand, had 10,575 forest polygons extracted from the 

forest maps from the MRNF. These agents had the following state variables: number of 

salt pools within the forest polygon, whether or not the highway 175 was within 500m of 

the forest polygon, proximity to water bodies, proximity to salt pools, habitat type, food 

quality and cover quality (Dussault et al., 2006b), slope, adjacent forest polygons as 

determined by the GeoDa program, and whether or not it was within 75m of the highway 

175. These variables determined the movement of the model moose. The 10,575 forest 

polygons were implemented as a polygon GIS data set in ArcGIS. 

The 40 home-range agents had one state variable, a buffer in meters which was set to 

625m. The 40 home ranges that corresponded to 40 real annual moose home ranges, 

constructed using the Minimum Convex Polygon method, were buffered outwards by 

625m so that the model moose found the salt pools at the edges of their home ranges. 

These 40 home ranges were implemented as a polygon GIS data set in ArcGIS. 

The roadside and compensatory salt pool agents had different numbers by scenario as 

mentioned above. They had two state variables: their location west or east of highway 

175, and their x and y location in meters. These salt pools were implemented as a point 

GIS data set in ArcGIS. The section of the highway 175 north of the junction with 

highway 169 was represented as a road agent. It had a width of 45m presenting a 2-lane 



33 

 

undivided highway. The road was implemented as a polygon GIS data set in ArcGIS. The 

East study area and West study area agents divided the approximately 26km wide by 

45km long study area into two polygons so that road crossings were accurately counted. 

They had no state variables. These 2 agents were implemented as polygon GIS data sets 

in ArcGIS. The spring and summer time period was chosen for the model as this is when 

the moose are the most active visitors at salt pools (Leblond et al., 2007b). To match the 

GPS telemetry storage interval of two hours (Dussault et al., 2007) and the study duration 

of the empirical research by Laurian et al. (2008a), the model run time was from May 1st 

to September 30th in 2-h time steps, or Repast Simphony “ticks”, resulting in a total of 

1836 steps. 

The run duration in the previous G2009 model was from May 1st to August 31st, or 

1476 steps for a total of 7344 time-steps per run. Here, to achieve a total number of 

model runs of at least 100, we repeated the simulations 34 times for 4 summers, which 

resulted in 136 runs. The last 3 of the 4 years were used for the analysis of the model 

moose movement, since in all scenarios, the first year had road avoidance deactivated to 

let the model moose find the salt pools more easily.  

2.3.3. Process overview and scheduling 

The 40 model moose used a discrete time step of 2 h. The moose‟s daily activities 

were divided into four phases, represented in the internal state of the model moose (Tang 

and Bennett, 2010): foraging for food, ruminating, resting, and travelling (Renecker and 

Schwartz, 2007). Following the calibration which was based on habitat use of twelve 

agent moose compared to twelve real moose, these four activities were assigned equal 

duration (i.e., 6 h each). These estimates were in the range of reported values for moose 
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activity budget (Renecker and Hudson, 1989). This was slightly different from the G2009 

model where resting lasted 8 hours and travelling extended over 4 h. All the moose‟s 

daily activities were divided into the same four time durations, each of 6 consecutive 

hours in the following order: ruminating, travelling, resting, and foraging. All data 

updated by the sub-models were immediately stored in the objects and reported on by the 

Repast Simphony run-time system (see Section 2.3.4.8 in Section 2.3.4). 

2.3.4. Design concepts 

2.3.4.1. Basic principles  

The ABM imposed moose movement behaviour using the input values contained in 

the forest polygon GIS datasets. The food value was assigned the largest weight given the 

size of the moose and the large amount of browse they eat daily. Proximity to salt pools 

was given the next highest weight given that moose were sodium deficient at the end of 

winter and had either to eat aquatic vegetation or make quick trips to the roadside or 

compensatory salt pools. Since aquatic vegetation is not fully mature in this area until 

mid-July, the moose are likely to visit salt pools. As well, if salt pool spatial memory was 

activated (see Sections 2.3.4.5 and 2.3.7.1) and the model moose had found and thus 

remembered the location of one or more salt pools, then in the second, third and fourth 

years the model moose made a number of trips (according to a Poisson distribution based 

on a mean of 2.1 (Laurian et al., 2008a)) to the closest salt pool in June and July. Given 

that 90% of moose were road-avoiders but they must get salt for their diet, these two 

factors worked against each other. Moose visiting roadside salt pools have a high 

probability of getting hit by automobiles. This ABM looked at these 2 factors with 5 

different scenarios of salt pool locations to investigate their interplay. We hoped to 
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produce a prototype ABM that could be developed into a useful tool for road ecologists 

and highway transportation planners in regions where road salt is an important element of 

winter road safety. 

2.3.3 Emergence, adaptation, interaction, and collectives 

 

There was no emergent behaviour from the model since most of the model moose 

movement behaviour was imposed. There was no adaptation in this ABM as the rules 

remained constant throughout the ABM. There were also no interactions between the 

moose agents and no collectives in the model. These 40 model moose were solitary 

creatures with no herding instincts. 

2.3.4 Objectives  

 

The objectives of the model moose were twofold: obtain enough food every day to 

survive and seek out salt pools to overcome their sodium deficiency from their winter 

months.  

2.3.5 Learning  

 

Moose with activated salt pool spatial memory remembered the salt pool locations 

when they found salt pools within their home ranges. When the time was scheduled to go 

to a salt pool, they chose the closest one to their current location. Moose without salt pool 

spatial memory had to continually look for salt pools and had no memory of them after 

they had found them. Thus, they did not learn. The first option is the more realistic one 

according to previous studies (Leblond et al., 2007b; Laurian et al., 2008a,b). 
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2.3.6 Prediction  

 

Moose with activated salt pool spatial memory remembered salt pool locations and 

when the scheduled time came to go to a salt pool, they moved directly to it with purpose.  

2.3.7 Sensing  

 

The model moose used the forest polygon‟s values of food quality, cover quality, 

proximity to salt pools, proximity to water bodies and slope to determine the score of 

each forest polygon that they wanted to travel to. As well, if road avoidance was 

activated, and the forest polygon was within 500mof the highway 175, then the food 

quality, cover quality, and proximity to water bodies values were degraded to enforce 

road avoidance as a habitat quality attribute. 

2.3.8 Stochasticity  

 

After the scores of the next potential forest polygons to travel to were obtained, a 

limited amount of randomness was applied to the scores (see Grosman et al. (2009) for 

details) so that the highest scoring forest polygon was not always the one chosen. As 

well, when salt pool spatial memory was activated, a Poisson distribution was used to 

choose the time steps at which a moose went to a salt pool. 

2.3.9 Observation  

 

All data created by the ABM were used for analysis. The following reports were 

issued by the Repast Simphony ABM: 
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1. The Moose Crossing report listed the total number of moose  road crossings 

 by year, and the total number of moose road approaches by year for each 

 moose and each run. 

2. The four Habitat Use reports, for each run, listed by year the total number of 

 visits to each of the 11 habitat types by each model moose. 

3. The Distance Travelled report listed the estimate of distance travelled in 

 each of the 4 years by scenario and run and by model moose. 

4. The Salt Pool Discovery report listed which model moose have discovered 

 salt pools, and at what time steps in years 2–4 they should proceed 

 directly to one of its discovered salt pool, for each run. 

5. The Road Avoider report listed by scenario each model moose and whether 

 it was a road-avoider or not. 

6. The Foraging Same Habitat report counted by model moose the number of 

 times while foraging it moved outside its forest polygon to a neighbour 

 with the same habitat type, for each scenario. 

7. The Detailed Data log listed by time step for each run and scenario, the 

 current location, animal identification, year, month, day and hour,  the 

 current and previous forest polygon, habitat type selected, activity type, 

 distance travelled that day and total distance travelled so far. 

8. The Habitat Use, Distance Travelled, Moose Crossings and Salt Pool 

 Discovery reports for the last 3 years were combined for the 102 runs 

 per scenario and summarized to determine the number of moose-road 
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 crossings while travelling, the total distance travelled by the model 

 moose, and their habitat use. 

2.3.10 Initialization 

 

There were 40 model moose with their home ranges that started from the same May 

1st, 2005 noon locations in each year. These locations were taken from the corresponding 

real moose‟s May 1st, 2005 noon locations. There were 10,575 forest polygons initially 

in each of the five scenarios. There were five sets of forest polygon and salt pool GIS 

datasets for the five different scenarios. The forest polygon GIS datasets differed only in 

their proximity to salt pool values since each scenario had a different number of salt 

pools. The roadside salt pools were based on real data, however, for the compensatory 

salt pools, only 4 existed on highway 175; the rest were created by the modeller. The 

home-range agents, at initialization, first buffered themselves outward 625m and then 

determined which forest polygons were within their buffered home ranges. The model 

moose were not allowed to travel outside their (buffered) home ranges. 

Between 0 and 36 salt pools agents were created, depending on which scenario was 

being run. The road agent was created with an initial width of 45m(22.5m on either side) 

and buffered outwards 477.5m on each side that created a road buffer of 500m. As well, 

the East Study Area and west study area agents were created. 

2.3.11  Input data 

 

The model used the forest maps from the MRNF for the 10,575 forest polygons with 

their food quality, cover quality, and slope values. The values for proximity to salt pools, 

proximity to water bodies, number of salt pools within the forest polygon, whether or not 
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the highway 175 was within 500m of the forest polygon and whether or not the highway 

175 was within 75m of the forest polygon were determined by the modeller and inserted 

into the forest polygon GIS datasets; however, only the proximity to salt pool values were 

different by scenario.  

As well, the model used the following other GIS datasets: 40 model moose with initial 

locations, 40 model moose home ranges, highway 175 with a 45m width (between 

kilometer markers 169 and 221), salt pool locations: both roadside and compensatory, 

East and West polygons that divided the study area into two sections based on the 

highway 175. 

2.3.12 Detailed processes and sub-models 

2.3.12.1 Salt pool spatial memory  

 

In the G2009 model, the model moose had to hunt for the salt pools continuously and 

had no spatial memory of any salt pools that they found. In the new model, the moose 

agents had a memory of the locations of one or more salt pools that they had found within 

their buffered home ranges. As a moose travelled on the landscape in the model and 

found a forest polygon containing a salt pool, it remembered this salt pool location and 

could then visit it again in subsequent simulation years. The model moose had a spatial 

memory of more than one salt pool and it could have discovered salt pools in any year 

even if it had already found one before. The distance decay function of movement step 

lengths (described below, Eq. (1)) was still kept when the salt pool spatial memory was 

turned off. In order to implement this module, it was essential to know how frequently 

real moose visit salt pools. Observations by Laurian et al. (2008a) in the LWR showed 

that the total number of moose salt pool visits varied from 1 to 5 per summer, with a 
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mean of 2.1 visits per summer. The model moose chose the salt pool that was closest to 

their current location at the time step that triggered a salt pool visit, regardless of whether 

or not it was located on the same side of the road as the model moose‟s location. If the 

model moose was a road-avoider (see below) then it left the salt pool area quickly; if it 

was one of the few non-road-avoiders, then it did not. When salt pool memory was turned 

on, once a model moose had chosen a salt pool from the ones it remembered, in the 

scoring method of the travel process the Proximity to Salt Pools weight (initially set to 

0.30) of this moose was set to zero, and the other weights were increased proportionally 

so that the sum of the weights remained equal to one. For those moose that did not find a 

salt pool in the first year, the proximity to salt pools weight was still used for determining 

the next forest polygons to move to in subsequent years. When salt pool spatial memory 

was turned off, the moose could find up to 3 salt pools, after which the above scoring 

method of the travel process was applied to reflect that moose would not be attracted to 

salt pools any more. 

2.3.12.2 Road avoidance behaviour  

 

Laurian et al. (2008b) found that moose in general avoid a buffer strip up to 500m 

wide around paved roads except when obtaining sodium from roadside salt pools in June 

and July. Thus, a 477.5m buffer around the 45m buffered paved road (representing both 

the two-lane road and the distance from the road shoulder to the forest) was created and 

used for modelling road avoidance behaviour. Since the highway is 45m wide, we 

subtracted 22.5m from 500m on both sides to get 477.5m. All polygons that intersected 

with this buffer were split up into separate polygons. If the interior point of the longest 

bisector of a forest polygon was within the buffered area that included the road then its 
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food quality, forest cover quality and proximity to water body values were decreased to 

reflect the lower attractiveness of these polygons for road avoiders. In the second and 

subsequent years, the food quality value, the forest cover quality value and the proximity 

to water body values of the forest polygons within the 500m buffer were all reduced by 3 

(with a minimum value of 0). These three parameters initially could have values from 5 

to 1, 4 to 1, and 5 to 1, respectively. The reduction by 3 was determined by calibrating the 

resulting moose road crossings against the 12 real moose crossing values. There were, 

however, a few moose that spent a considerable amount of time within a 50m buffer of 

the paved road. Laurian et al. (2008b) found that 4 of the 47 moose (8.5%) highly 

preferred the 0–50m strip next to the road. Thus, in the model scenarios, four model 

moose out of 40 (10%) were selected randomly by Hawth„s Tools (Beyer, 2004) and 

configured to not be road avoiders; thus, the food, cover, and proximity to water bodies 

values were not degraded within the 500m buffer of the paved road for these non-road 

avoiders. 

2.3.12.3 Distance travelled  

 

The movement distances of the 12 real moose in the database used in the G2009 

model from May 1st to Aug 31st, using bins of 25m (from 0m to 1000 m), was 

represented by a power law probability distribution:  

  y = 8999.2 x
−1.592

, R
2
 = 0.89       (1)  

where x represents the bin number (from 1 to 40) and y represents the corresponding 

frequency. The moose generally moved short distances in 2 h when foraging or 

ruminating, and longer distances when travelling, but longer distances were chosen less 

frequently. Equation (1) was used to generate movement distances for the model moose. 
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This approach differs from the one used in G2009 model where the distribution of 

movement distances was uniform with a maximum movement distance while foraging of 

160m (in both horizontal and vertical directions), whereas the average distance when 

travelling to an adjacent forest polygon was about 1034m. 

For foraging and ruminating activities, the model moose were restricted to their 

current forest polygon with the exception of moving to an adjacent forest polygon of the 

same habitat type. This happened about 20% of the time in a simulation run. The 

maximum forage distance was determined to be 125m after calibration against the real 

moose, using a total travel distance in one summer of 2,537km, and taking into account 

that three of the real moose‟s GPS telemetry records ended before September 30th, which 

resulted in a smaller total distance travelled than by the model moose. A random 

movement angle between 0º and 359º using a uniform distribution function was then 

chosen (angle between the previous and the new movement direction). Applying the 

following trigonometric functions, a new target foraging or ruminating location was 

determined: 

  horizontal direction = distance * cos (angle);    (2) 

  vertical direction =  distance * sin (angle);     (3) 

For travelling, a distance was chosen from the power law probability distribution (Eq. 

(1)) using the maximum forage distance, initially set to 125m, as a lower limit, and the 

maximum travel distance, initially set to 550m, as an upper limit. All forest polygons that 

intersected a circle with a radius of the chosen travel distance within the model moose‟s 

home range were selected. These were scored using the weighted parameters to 

determine which forest polygon would be selected. 
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When salt pool spatial memory was active and it was time for a moose to visit a salt 

pool, the moose moved with intentional direction and speed that was higher than regular 

travel speed (Laurian et al., 2008a). The minimum travel distance was increased to 275m 

in the model to reflect this.  

2.3.12.4 Parameters and weights  

 

External environmental factors were incorporated in the ABM through habitat use 

rules that determined which forest polygon to move to in the next time step. The rules 

were based on the five most significant parameters extracted from the current scientific 

literature on moose in the LWR (Dussault et al., 2004, 2005, 2006a, 2007). These were 

food quality, cover quality (protection from predators and thermal stress), slope, 

proximity to water bodies and streams, and proximity to roadside salt pools. Food quality 

was assigned a value from 1 to 5 and cover quality was assigned a value from 1 to 4 

based on the habitat suitability index developed by Dussault et al. (2006b) (Table 2.1). 

Moose prefer to move along ridges and valleys rather than climbing or descending hills 

(Leblond et al., 2010). Accordingly, four slope  categories were created, where 5 

corresponds to shallow slopes (<8%), 4 to slopes between 9% and 30%, 1 to slopes 

between 31% and 40% and 0 to slopes >41%. Water bodies are important for sodium 

intake and staying cool to avoid thermal stress. Three classes of proximity to water 

bodies were created based on distance: 5 for bordering a water body, 3 for polygons less 

than 200m from a water body and 0 for distances greater than 200 m. Finally, proximity 

to salt pools was coded as an attribute of the forest polygons as a distance decay function 

with 5 if a forest polygon contained a salt pool; 4 if a forest polygon was within 100m of 

a salt pool; 3 if a forest polygon was within 250m of a salt pool; 2 if a forest polygon was 
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within 500m of a salt pool; 1 if a forest polygon was within 1000m of a salt pool; and 0 if 

a forest polygon was more than 1000m away from a salt pool. 

Weights were applied to each of the five parameters, resulting in an overall 

“attractiveness” score for each polygon. These scores were turned into preferences that 

were normalized to 100%. After a re-calibration using 12 real moose, the weight of 

proximity to salt pools was decreased by 0.05 and the food quality parameter was 

increased by 0.05 compared to the G2009 model. 

The yearly home ranges of 68 real moose along highways 169 and 175 were created 

using the minimum convex polygon method of Hawth„s Tools (Beyer, 2004). The home 

ranges were drawn around the GPS telemetry locations for the May 1st to September 30th 

time period and buffered outward by a value of 625 m. This buffer width was calibrated 

so that the model moose living in these home ranges could find the roadside salt pools 

that were often located at the edge of their home ranges. Without the buffer, some moose 

would not have enough room to find the roadside salt pools. These buffered model moose 

home ranges had an average area of 73km
2
 (range: 28–208km

2
). Because the ABM 

domain is around highway 175, real moose home ranges that encompassed highway 169 

were moved by translation and rotation near highway 175. From this dataset, the home 

ranges of 40 model moose were randomly selected (Figure 2.3a). The 40 model moose 

corresponded to 21 real moose (since some real home ranges were for the same moose 

but for different years) (Figure 2.3b). Each real moose home range was determined on an 

annual basis: from January 1st to December 31st. Each of the 40 model moose had home 

ranges based on the 21 real moose, and some of the model moose home ranges were 

duplicated by shifting them approximately 500–3000 m. To validate the model, 12 of the 
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21 pairs of real and agent moose were used. The starting forest polygon locations for each 

model moose were determined by using the May 1st noon-time location of each 

corresponding real moose. The number of moose agents in this study was considerably 

higher than the 12 model moose that were used in the G2009 model. 

 

Figure 2.3. (a) Home ranges for the 40 model moose used in the model which were based on the home 
ranges of 21 real moose (b). The home ranges of the 12 real moose near highway 175 that were used 
for validation are highlighted in red. 

  

 

What the real moose were doing and where they were moving between the recorded 

locations was not known. The model moose, however, do not move around between their 

2-h time steps. Thus, a road crossing was only counted if the 2-h movement line segment 

crossed or intersected the pavement portion of highway 175. This pavement portion is 
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defined as a 3.7m buffer on each side of the road center line that represents highway 175. 

Each moose road crossing was logged in the moose crossing report by animal 

identification, date and time. The initial constant weights for the five variables (food 

quality (0.45), cover quality (0.10), slope (0.05), proximity to water bodies (0.10) and 

proximity to salt pools (0.30)) contained in each forest polygon were calibrated against a 

subset of the real moose. 

For scenario #2, since there were no salt pools in the GIS landscape and it was 

assumed in the model that the moose knew that there were no salt pools, the weight of the 

Proximity to Water Bodies parameter was correspondingly increased to 0.40. 

2.3.12.5 Foraging and ruminating sub-models.  

 

When foraging or ruminating, a travel distance between 0m and 125m was randomly 

selected from the power law distribution, and a direction was randomly selected between 

0º and 359º. If this travel distance was within the model moose„s current forest polygon 

or an adjacent one that has the same habitat type, it moved there. Then the following state 

variables were recorded for these sub-models and all the subsequent ones: date and time, 

activity type, distance travelled for that day and for the year, habitat type, totals for the 

eleven habitat types, the new and 2 previous forest polygons visited.  

2.3.12.6 Resting sub-model  

 

When resting, the model moose remained in its current forest polygon and did not 

move. 
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2.3.12.7 Travelling sub-model  

 

When travelling, a travel distance between 125m and 550m was randomly selected 

from the power law distribution. This travel distance corresponded to the radius of a 

circle used to choose the forest polygons that intersected this circle (except, of course, the 

current forest polygon). Since the moose could not travel outside its own home range, 

only forest polygons within the buffered home range were chosen. Then using the five 

state variables from each forest polygon: and multiplying each of the five variables by the 

calibrated weights, a total score was determined for each possible destination forest 

polygon. If the target polygon was within 75m of the 45 m-buffered paved road then the 

food and cover weights were reversed, i.e., the food weight was multiplied by the forest 

cover quality value and the cover weight was multiplied by the forest food quality value. 

This reflected the moose‟s behaviour in the vicinity of the highway where it valued forest 

cover more than food instead of the normal situation where food was valued over cover 

(Dussault et al., 2007). 

As well, if salt pool spatial memory was activated, the proximity to salt pools weight 

was reduced to 0 and the values were redistributed proportionally to the other 4 weights. 

Then some randomness was applied to the scores, so that the best scoring forest polygon 

was not always selected, and the moose travelled to the midpoint of the longest bisector 

of the chosen forest polygon. If salt pool spatial memory was activated, and the chosen 

forest polygon contained a salt pool, it was recorded in the moose„s memory. If salt pool 

spatial memory was not activated, then just the number of salt pools in the moose„s home 

range was increased by 1. Finally, the moose road crossing process was invoked, to count 

any road crossing by the moose. 
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2.3.12.8 Travelling to a salt pool sub-model  

 

When travelling to a salt pool, if salt pool spatial memory was activated, and the time-

step equaled one of the pre-selected time-steps, then the moose chose the salt pool closest 

to its current location. A travel distance between 275m and 550m was randomly selected 

from the power law distribution for each time-step and the moose proceeded in a straight 

line towards the salt pool until it reached the salt pool. Finally, the moose road crossing 

process was invoked, to count any road crossing by the moose. If the moose was a road-

avoider, then it left the area quickly; otherwise, it did not. If salt pool spatial memory was 

not activated, the moose found a maximum of 3 salt pools per year. 

2.4. Statistics 

Statistical tests used a significance level of 0.05 and 0.1. A 2-way ANOVA was 

performed on the road crossing results, both for summary scenario data (n = 20) and for 

the individual moose level (n = 800). The two fixed factors were road avoidance and salt 

pool spatial memory. In addition, permutation tests that shuffled both the rows of the 

summary scenario and individual moose road crossing data 999 times were performed. 

The resulting p-values of these 2-way ANOVAs were compared to the p-values of the 2-

way ANOVA permutation tests. To investigate if the reductions in moose crossings and 

in total distance travelled due to roadside salt pool removal and displacement were 

statistically significant, we performed Student‟s t-tests on the 102 runs (i.e. 34 runs for 

each of the years 2–4) comparing each of the four salt pool removal or displacement 

scenarios with its first scenario (where all original salt pools were present). All statistical 

tests were performed in the R statistical language (R Development Core Team, 2009).  
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2.4 Results  

2.4.1  Model validation 

 

The validation was done using 12 real moose and the corresponding 12 model moose 

that both had their home ranges near Highway 175 (highlighted in red on Figure 2.3b). 

The 12 model moose data were extracted from the current situation scenario (#1, where 

all salt pools are present), as this corresponded to the situation experienced by real moose 

during the telemetry follow-up. The validation was based on distance travelled, habitat 

use, number of road crossings, and proportion of locations within a 500-m buffer zone 

around highways. The latter two variables were expected to be affected by road 

avoidance behaviour and salt pool spatial memory since they were related to movement 

patterns near the roads, whereas overall habitat use and distance travelled should be 

primarily affected by food and cover quality habitat. 

The number of road crossings and the proportion of locations within a 500-m buffer 

varied markedly in the model moose dependent on whether road avoidance and salt pool 

spatial memory were activated or not (Table 2.3). As expected, there were more moose 

close to the road (and thus more crossings) when road avoidance behaviour was turned 

off, resulting in a number of road crossings much greater than observed in the telemetry 

database. The model moose with both road avoidance and salt pool spatial memory 

activated produced the best results when comparing to the real moose data. 
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Moose type  : 

Real vs. current situation (4 cases) 

Average number 

of road crossings / 

moose / summer 

Proportion of 

moose locations < 

500 m from roads 

(%) 

Real (telemetry data) 4.4 7.8 

Model with road avoidance ON and 

salt pool memory ON 
2.0 2.6 

Model with road avoidance ON and 

salt pool memory OFF 
1.3 1.7 

Model with road avoidance OFF and 

salt pool memory ON 
12.4 12.4 

Model with road avoidance OFF and 

salt pool memory OFF 
9.0 8.7 

Table 2.3. Comparison of the number of road crossings and the proportion of locations within 500m. 
from the road between the 12 real moose and the corresponding 12 model moose with road avoidance 
and salt pool spatial memory turned on or off for the current situation (scenario #1). The real moose are 
averaged over one summer whereas the model moose values are averaged over 3 summers. 

The average foraging and ruminating distances for the four combinations of road 

avoidance and salt pool spatial memory for the current situation salt pool scenario were 

all the same (30 km). The travel distances did not differ much between the four 

combinations of moose behaviour (i.e. from 217km for the road avoidance off and salt 

pool spatial memory on to 227km for the case of road avoidance on and salt pool spatial 

memory off). Thus, no conclusion can be drawn from foraging, ruminating and travelling 

distances about the question of which behaviour is more realistic when modelling moose 

movement. 

When examining the 40 model moose with road avoidance and salt pool memory, the 

average travelled distance per moose was 255 km. This is very close to the average 

distance travelled by the 21 real moose, which was 247km per moose. However, the 

variability in the distances travelled by the model moose was low (with a minimum of 

250km and a maximum of 260 km). This contrasted with the marked variability in the 

real moose, ranging from 155km to 402 km. The highest distance belonged to a yearling 

female seeking out a new home range after being pushed away by her mother in 

anticipation of new offspring.  
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We summarized habitat use for each of the 11 habitat types for the 12 real moose and 

the corresponding 12 model moose (with both road avoidance behaviour and salt pool 

spatial memory activated) (Figure 2.4). For most habitat types, the counts corresponded 

reasonably well. The greatest differences between the real moose and the model moose 

were observed for the three habitat types Mi30 (mixed and intolerant hardwoods 30 years 

old), Mi50 (mixed and intolerant hardwoods 50 years old), and Fi50 (deciduous intolerant 

hardwoods up to 50 year old) (Table 2.1, Figure 2.4). When the details of the home 

ranges of the 12 real moose were examined, it appeared that 9 of the 12 real moose did 

not use much of habitat type Mi30 and 7 of the 12 real moose did not use much of habitat 

type Mi50. As for Fi50, almost all of this habitat type is in the northern half of the study 

area. We interpret the differences between the real and the model moose as a 

consequence of the inter-individual variation in the real moose – which may partly be a 

response to differences in habitat availability among the various home ranges.  

 

This was not reflected in the model moose. The numbers were much closer for habitat 

type Mi10 reflecting the fact that real moose preferred to forage in forests that are 

regenerating after a forest cut, which was well reproduced in the model moose. 

These results confirmed that the inclusion of road avoidance behaviour and of salt 

pool spatial memory for moose agents provided a better representation of real moose 

behaviour in the vicinity of roads (Table 2.3). In addition, the results confirmed that the 

habitat selection rules that were based on the weighted average of the five parameters of 

food, cover, slope, proximity to salt pools and proximity to water bodies with some 

stochastic variability were reasonable. Considering that the ABM moose agents were 

coded with a realistic but simplified set of behavioural features, these validation results 
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were encouraging. The model adequately simulated moose movement, although with a 

somewhat reduced variability compared to real moose. 

2.4.2 Salt pool memory and road avoidance 

 

Two 2-way ANOVAs were performed on the summary (n = 20) and individual moose 

absolute road crossing totals (n = 800) to assess the influence of road avoidance 

behaviour and salt pool spatial memory both separately and in interaction (Table 2.4). 

When examining results on the summary data, road avoidance behaviour had a 

statistically significant effect on number of road crossings (p-value < 0.001), salt pool 

spatial memory was also significant (p-value = 0.01), but the interaction between the two 

factors was only statistically significant at the 10% level (p-value = 0.06) (Table 2.4). 

When the 2-way ANOVA with crossed fixed factors was performed on the individual 

moose by scenario, the p-value for the effect of salt pool spatial memory decreased from 

0.01 to 0.001, probably due to the increased sample size. The p-value of the interaction 

between the two factors changed from 0.06 in the summary scenarios to 0.04 in the 

individual scenarios, making it statistically significant at the 5% level. The 2-way 

ANOVA permutation tests gave similar p-values to the 2-way ANOVA. 

When the partitioning of variance (Gotelli and Ellison, 2004) was performed on the 2-

way ANOVA for the individual moose road crossings, it was found that 83% of the 

explained variance was due to the road avoidance factor, 4% was due to the salt pool 

spatial memory factor and 13% was due to the interaction of the two factors (Table 2.4). 

Road avoidance was thus clearly the most important, which was expected since there 

were few visits to salt pools each year. The coefficients for the road avoidance and the 

salt pool spatial memory factors had opposite signs (Table 2.4), meaning that their effects 
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on the moose movement were in opposite directions: road avoidance repelling the model 

moose from the road and salt pool spatial memory attracting them to the road. 

 
Factors Coefficients 

(summary) 

Coefficients 

(individual) 

P value 

(summary) 

P value 

(individual) 

Partitioning of 

Variance 

(individual) 

Road avoidance -5.798 -5.801 <0.001 <0.001 83.5% 

Salt-pool spatial 

memory 

6.958 6.955 0.01 0.001 3.9% 

Road avoidance: 

salt-pool spatial 

memory 

-3.066 -3.0642 0.06 0.04 12.6% 

Table 2.4. Results of two 2-way ANOVAs on the summary absolute number of moose road crossings by 
scenario (n = 20) and on the individual absolute number of moose road crossings by scenario (n = 800), 
with the partitioning of variance for the individual cases and the coefficients of the two factors and of 
the interaction. 

 

 

 

 

2.4.3 Number of road crossings in the five scenarios 

 

In order to assess the potential influence of inter-individual variability, independent 

and combined influences of road avoidance and salt pool memory in different scenarios 

of salt pool removal and displacement were examined. This also allowed us to assess the 

0%

5%

10%

15%

20%

25%

30%

35%

Habitat Types

Real Moose

Model Moose

Figure 2.4.  A comparison of the habitat use of the 12 real moose with home ranges near Highway 175 with the 12 
model moose. The proportion of time corresponds to the number of time steps spent in each habitat divided by the 
total number of steps for the model and real moose, respectively. 
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sensitivity of the model to road avoidance and salt pool memory behaviour. The number 

of road crossings varied markedly depending on whether or not road avoidance and salt 

pool memory were activated, and depending on the salt pool mitigation scenario (Figure 

2.5a, Table 2.5). Simulations in which road avoidance was activated clearly resulted in 

fewer crossings, whereas salt pool memory tended to increase the number of crossings 

compared to runs where this option was deactivated as evident in scenarios 1, 3, 4, and 5 

(this would not be apparent in scenario 2 since there were no salt pools). These two 

behavioural features therefore played against each other, as expected, but road avoidance 

dominated, although the impacts of these two factors varied with salt pool mitigation 

scenarios. With both road avoidance and salt pool spatial memory on and all 36 roadside 

salt pools present (current situation, scenario #1), there was an average of 4.24 road 

crossings per moose per summer (Figure 2.5a). When salt pool spatial memory was 

turned off, the road crossings dropped by 31% (to 2.93). With both road avoidance and 

salt pool spatial memory on and all the roadside salt pools removed and the 18 

compensation roadside salt pools present (scenario #3), there was an average of 2.13 

moose road crossings per summer. When salt pool spatial memory was turned off, road 

crossings dropped by 39% (to 1.30). The biggest impact of salt pool memory was for 

scenario #4, where 2/3 of salt pools were removed with no compensation pools, and the 

road crossings dropped by 44% (from 3.30 to 1.84 road crossings per moose per summer) 

when salt pool spatial memory was turned off, although this difference was not 

statistically significant. Thus, when salt pool spatial memory was on, it tended to increase 

moose road crossings in all the scenarios where there were roadside or compensation salt 

pools present regardless of whether road avoidance was on or off. 
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The results can also be analyzed in terms of reductions in moose road crossings 

compared to the current situation (current situation, scenario #1). In the first set of 

simulations with both road avoidance and salt pool spatial memory active, scenarios #2 

(all salt pools removed) and #3 (all salt pools removed with equivalent compensation 

pools) showed significantly fewer crossings than in the current situation (scenario #1, 

Figure 2.5b), with reductions of 79% (p < 0.001) and 50% (p = 0.031), respectively. 

When only road avoidance was activated (no salt pool memory), moose were continually 

searching for salt pools. This resulted in higher reductions in road crossings than in those 

scenarios where moose remembered the location of salt pools. When salt pool memory 

was active, the moose travelled to the road and then from time to time crossed it. Since 

the compensatory salt pools were further from the road in scenarios 3 and 5, the moose 

hunted and discovered these salt pools without necessarily crossing the road. With road 

avoidance on and salt pool spatial memory off, scenarios #2 and #3 were significantly 

different from the current situation with road reductions of 65% (p = 0.007) and 56% (p = 

0.020), respectively. Without road avoidance, the moose road crossings were much 

higher and the reductions in scenarios 3, 4 and 5 were smaller. In the fourth set of 

scenarios with both road avoidance and salt pool spatial memory off, salt pool 

management scenarios did not influence the number of road crossings. As well, Student‟s 

t-tests between simulations with salt pool memory on or off (with no road avoidance) 

showed no significant differences for all scenarios. 
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scenario RAB SPSM Crossings Reduction% t-tests 

p-

values 

t-tests 

p-

values 

999 

perms 

1 

(current 

situation) 

Yes Yes 4.24    

 Yes No 2.93    

 No Yes 17.78    

 No No 11.50    

       

2 Yes Yes 0.88 79.28% <0.001 0.001 

 Yes No 1.01 65.49% 0.007 0.004 

 No Yes 9.20 48.26% 0.017 0.016 

 No No 9.34 18.75% 0.500 0.514 

       

3 Yes Yes 2.13 49.88% 0.031 0.029 

 Yes No 1.30 55.54% 0.018 0.021 

 No Yes 14.87 16.35% 0.420 0.454 

 No No 10.56 8.15% 0.755 0.745 

       

4 Yes Yes 3.30 22.13% 0.339 0.327 

 Yes No 1.84 37.30% 0.134 0.127 

 No Yes 15.33 13.77% 0.473 0.465 

 No No 11.27 1.92% 0.940 0.942 

       

5 Yes Yes 2.65 37.50% 0.097 0.101 

 Yes No 1.99 32.01% 0.198 0.188 

 No Yes 15.67 11.83% 0.552 0.563 

 No No 10.72 6.76% 0.789 0.788 
Table 2.5. This table lists the 5 scenarios with each of the four combination of the two factors: road 
avoidance and salt pool spatial memory, the average number of moose road crossings averaged over 3 
years, road crossing reductions percentages, the t-test p-values and the t-test p-values with 999 
permutation tests. The t-tests were performed in R using the t-test program with 999 permutation 
tests. (Legendre, 2010). 
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Figure 2.5. (a) Number of moose road crossings per moose per summer in the five scenarios and (b) 
model moose road crossing reductions compared to the current situation (Scenario #1). The double 
stars indicate a statistically significant p-value (<0.05) and the single star represents a significant p-value 
at p < 0.10. Scenario 2 has no salt pools at all. Scenario 3 has no roadside salt pools and 18 
compensation salt pools. Scenario 4 has 12 roadside salt pools with no compensation salt pools and 
Scenario 5 has 12 roadside salt pools with 12 compensation salt pools. The figure is based on the three 
year averages of the road crossings for the 40 model moose. 
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2.5 Discussion 
 

This study has demonstrated that agent-based modelling (ABM) is a worthwhile 

approach for the study of moose-road interactions. Our results show that both road 

avoidance behaviour and salt pool spatial memory of the moose agents affect the 

predicted numbers of road crossings by moose as a consequence of the removal and 

displacement of roadside salt pools. However, road avoidance behaviour was shown to be 

the more influential factor. The scenarios with road avoidance active exhibited far fewer 

road crossings in each scenario than in the scenarios where the moose did not avoid the 

road (Figure 2.5a). When salt pool spatial memory was turned on, it resulted in slightly 

higher numbers of road crossings than when it was turned off. This is probably due to the 

planned salt pool visits.  When road avoidance behaviour was turned off, the model 

moose did not leave the road quickly after visiting the salt pool. When salt pool spatial 

memory was turned off and only the distance decay function was used to find salt pools, 

it resulted in fewer road crossings due to the fact that the model moose do not always find 

salt pools near the road in the second and subsequent years, particularly when the moose 

avoided the road. 

A detailed analysis of the movement of all model moose for the current situation, 

(scenario #1) revealed the presence of 4 outliers in the database, which corresponded to 

two different situations. First, when a lake was present near the road, the model moose 

tended to be attracted to the lake and stayed in its vicinity since even though the 

Proximity to Water Bodies score had been reduced from 5 to 2 near roads, this was still 

enough to attract the model moose. This was particularly the case when salt pool spatial 

memory was activated since, when the moose had found a salt pool, the weight for the 

proximity to water bodies factor was increased proportionally as the proximity to salt 
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pools weight was reduced to zero. The second type of unusual behaviour was related to 

the road avoidance algorithm which reduced by 3 the score of food and cover quality near 

roads. This did not entirely prevent agent moose from getting close to the road area when 

habitat near the road was of very high quality. When removing these 4 outliers from our 

analysis, fewer road crossings per moose occurred in the first scenario. 

It is interesting to note that the road avoidance effect was the dominant factor in 

scenario #2 when the roadside salt pools were completely removed with no compensatory 

salt pools but in scenario #3, the placement of the compensatory salt pools generated a 

substantial increase in the number of crossings (Figure 2.5a). It is also important to note 

that many MVCs in the LWR involve young moose who are dispersing from their 

mother„s home range to find their own home ranges and wander onto the highway (Y. 

Leblanc, AECOM Tecsult Inc., pers. comm.). In this study, the age of moose was not 

used and dispersal was not considered.  

The results suggest that the most effective management strategy is to remove all salt 

pools without creating any compensatory ones, and to let the moose return to foraging for 

aquatic plants to satisfy their sodium dietary requirement. These observations were also 

noted in the G2009 simulations where the reductions were between 49% and 16% (with 

the same order of the scenarios as in the current model), but the reductions are 

significantly higher in this improved model which better takes into account the real 

moose‟s road avoidance behaviour that has been noted in several empirical studies (Dyer 

et al., 2002; Forman et al., 2003; Dussault et al., 2007; Leblond et al., 2007a,b; Laurian 

et al., 2008a,b). If compensation salt pools are still considered necessary, then moving the 

compensation salt pools beyond 500m from the road (as far as possible) should lead to 
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better results. Compensation salt pools were indeed used in the LWR, in combination 

with the drainage of roadside salt pools (which were filled with stones). These are 

relatively simple and inexpensive means of reducing MVCs. Other solutions to MVCs 

such as fencing may be more efficient, but their cost is high. For example, in the LWR, 

fencing is estimated at CDN$40,000 to $60,000 per kilometer (Y. Leblanc, AECOM 

Tecsult Inc., pers. comm.). These high cost, however, must be compared to the average 

cost of MVC (including vehicle repair costs, human injuries and fatalities, towing, etc.), 

estimated at US$31,000 (Huijser et al., 2009). Thus, the fencing of the road should be 

cost-effective in many situations. 

The inclusion of salt pool spatial memory proved to be a useful addition to the model. 

Moose agents are not omniscient but neither are they just reactive to their immediate 

environment. They can have a certain level of perception, memory, and understanding of 

their surroundings – in this case, of their home range (Miller and Litvaitis, 1992; Gilbert, 

2008). For this reason, Bennett and Tang (2006) applied spatial memory at the level of 

the herd in an agent-based model of elk movement in Yellowstone National Park 

(U.S.A.). They modelled the elk herd‟s winter migration north out of the park, when 

snow cover reached a certain threshold to reach land that had less snow cover. They did 

not, however, compare scenarios with and without spatial memory at the herd level. The 

previous G2009 model used fixed distance steps, whereas the intra-patch and inter-patch 

sampling of movement distances in the new model was obtained from the power law 

probability distribution based on the actual distance travelled by the real moose. This led 

to more consistent and accurate distance results compared to the G2009 model. Sampling 

from a power law distribution produced an animal movement pattern called the Lévy 
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flight or walk which is considered to be a more accurate representation of foraging 

herbivores like moose than Brownian or purely random motion (Viswanathan et al., 

1999; Reynolds and Rhodes, 2009). In future models, however, more variability in the 

distance travelled by model moose could be introduced based, perhaps, on the age and 

sex of the moose. Higher numbers of model moose and higher numbers of model runs are 

likely to make several more of the observed differences in road crossings and reductions 

statistically significant (due to higher sample size). Therefore, the lack of statistical 

significance in some reductions of the current results should be interpreted with caution.  

 

2.6 Conclusion 
 

Our agent-based model with improved road avoidance and memory of previous visits 

to salt pools has produced results that are more consistent with field studies of moose 

behaviour involving roads and salt pools in the LWR (Laurian et al., 2008a, b; Leblond et 

al., 2007a, b). When both road avoidance and salt pool memory were active, i.e. the most 

realistic simulations compared to real moose behaviour, the two largest reductions of 

road crossings (79% and 50%) occurred when all road-side salt pools were removed, 

without and with compensation salt pools, respectively. There is, however, a trade-off in 

the two behaviours as salt pool memory tends to increase the likelihood that a moose will 

get near a road (and potentially cross it), but road avoidance greatly reduces the potential 

road crossings. Of the two factors, road avoidance clearly is the more important one. 

However, for those moose that do not avoid roads (around 10% according to the study by 

Laurian et al. (2008b)), lower road crossing reductions were predicted. The largest 

reductions in the number of road crossing (79%) were much higher than the estimated 
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reduction of 44% based on empirical data reported by Dussault et al. (2006a). However, 

since moose exhibit some variability in their behaviour including high or low levels of 

road avoidance (Laurian et al., 2008b), managers should also consider the reductions in 

road crossings predicted for individuals with lower (or no) road avoidance and no salt 

pool memory (Table 2.5) as an indication of inter-individual variability. 

This model could be extended to be then used for other ungulates such as elk and deer, 

but herd behaviour would have to be added since the current model reflects moose which 

is mainly a solitary species. The model will be expanded in future research to also 

evaluate the effectiveness of newly-implemented mitigation measures on the upgraded 4-

lane highway 175 in the Laurentides Wildlife Reserve. These measures include fencing 

with double emergency escape gates, and wildlife underpasses. 
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3 Chapter 3: An evaluation of the allometric method 
that places more wildlife passages and increases 
highway permeability, using an agent-based 
model 

 
 

3.1 Introduction 
 

Although various mitigation measures can be implemented to reduce road mortality, 

for larger mammals such as ungulates and carnivores, wildlife passages that either cross 

over or under the roadway are increasingly used (Clevenger et al. 2001; Seiler 2004; 

Dodd et al., 2007c; AECOM Tecsult Inc. 2009, 2010). These are combined with fencing 

in order to direct wildlife to these crossings. Sometimes, existing structures like bridges 

or culverts can be modified to better accommodate wildlife; otherwise, entirely new 

structures need to be built. The placement of wildlife underpasses has not had much of an 

ecological basis up until now but has been based mainly on hot-spot analysis of the 

environmental factors in the immediate proximity of wildlife vehicle collisions 

(Bissonette and Adair 2008; Bissonette and Cramer 2008). Fences  keep wildlife off the 

highways (Clevenger et al. 2001; Seiler 2004; Dodd et al., 2007c; AECOM Tecsult Inc. 

2009, 2010), but one of the most relevant questions is how much do wildlife crossings 

increase highway permeability after the highway and fences installation have reduced the 

landscape connectivity to near zero in some areas? 

Bowman et al. (2002) discovered that variance in maximum and median dispersal 

distance among terrestrial mammals was more directly correlated to their home range size 

(74%) than their body size (50%). Thus, the placement of wildlife passages should be 
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based on home range size of the focal species (i.e. the moose), rather than were their 

body size. For example, Bissonette and Adair (2008) and Bissonette and Cramer (2008) 

determined that the square root of the species home range size corresponded to the 

optimal placement of wildlife passages to increase highway permeability. In fact, most 

terrestrial fauna tend to move many short distances and only occasionally move long 

distances (Benhamou, 2007). This movement equates to a power-law distribution 

(Atkinson et al. 2002; Schick et al. 2008). Carsignol et al. (2005), for example, suggested 

placing crossings structures for small- and medium-sized fauna at a distance of about 

300m as a rule of thumb.  In the LWR, based on the annual home range areas of the 47 

moose that were followed through GPS telemetry, the allometric scaling would result in 

an average of 7km of daily movement distance. This average is quite a bit higher than the 

daily movement distance of 3.52km reported by Bissonette and Adair (2008) that was 

extracted from a paper by Courtois et al. (1998) that studied moose in eastern Québec, 

Canada. 

In Banff National Park (BNP), there are 30 passages over 75km, for an average 

spacing of 2.5km, along the Trans-Canada Highway; along the Arizona State Route 260, 

there are 11 underpasses and 6 bridges over 27km, i.e. 1.6km spacing on average, and 

along the Highway 93 in Montana there are 42 passages over 91km or 2.2km average 

distance between passages (Beckmann et al. 2010).  All of the average distances between 

passages in these projects are lower than the daily movement distance of elk of 3.52km 

recommended by Bissonette and Adair (2008), thus these three projects are within the 

allometrically-scaled placement of wildlife passages for elk. In the south-west of Sweden, 

there is a segment of 15km with 6 over-passages and under-passages whose average 
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distance is 2.5km and the allometric distance is 2.2km for the focal species, the moose 

(Olsson et al., 2008b). In Spain, the focal species focal is the wild boar, there is 183km 

with 43 passages whose average distance is 4.26km and the allometric distance is 

13.28km (Subdued and Al 2008). In England, there is a segment of 59km of the road with 

47 passages thus an average distance of 1.26km for the focal species, the deer. The 

allometric distance is 1.24km (Langbein. 2010). In the LWR, however, there are only 6 

moose passages over 174km corresponding to an average spacing of 29km between 

wildlife passages. If we only consider the more problematic northern and southern slopes 

of the LWR where most of the MVC occurred between 1990 and 2002, the average 

spacing still remains quite high, i.e. 17km for the northern slope and 26km for the 

southern slope (Figure 3.2).  

 

Figure 3.1. Elevation profile of the LWR displaying the top priority areas for mitigation measures on 
Highway 175 in the LWR. The moose density is much higher on the southern (left) and northern (right) 
sections than in the middle plateau due to the higher food quality due to the mixed deciduous forest 
compared to the coniferous forest on the plateau. Source: Donald Martel, MTQ. BAPE Presentation 
(2005). 
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Thus, the spacing of the 6 moose wildlife passages is considerably larger than the 

daily movement distance of the moose estimated from their home ranges as 7km. It is 

also considerably larger than the spacing used in other projects in North America. 

Although local environmental factors such as funding, topography, and engineering may, 

in practice, outweigh the allometry principle (Beckmann et al., 2010), the very large 

distances between passages in the LWR need to be further investigated for their impact 

on highway permeability.   

 

Figure 3.2. This figures shows the allometric distances for 7 focal species in North America and Europe 
on the x-axis and the actual distances between passages on the y axis. One can see the LWR is an 
outlier. 
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When there are no wildlife underpasses for the moose within their home ranges, and 

the portion of the home range intersected by the fence and covering the road is 

inaccessible, we would expect the moose to compensate for this home range loss by 

expanding its home range outward in the other direction.  Olsson and Widen (2008a) 

stated in their results that “most of the moose that had home ranges that were bisected by 

the highway prior to the fencing changed their movement behaviour and moved their 

home ranges to the west of the highway after fencing.” Olsson and Widen (2008a) found, 

as well, that after fencing was implemented, the number of home ranges intersecting the 

highway decreased from 26% (10 of 38) to 13% (5 of 38). However, in order to get 

accurate information on the moose's behaviour near fences and underpasses, it is essential 

to use GPS telemetry collars on moose after fencing and underpasses have been 

constructed. This would help answer key questions for moose movement rules such as: 

“When they first encountered a fence along the highway, what percentage of the moose 

follow the fence and what percentage return to their home ranges?”,  “How long do the 

moose follow the fences?”  or “How many different moose are actually using the 

underpasses?” In a study on Arizona State Route 260 that focused on pre- and post-

construction of fencing and underpasses, Dodd et al. (2007b) used GPS telemetry collars 

on elk to determine the highway permeability. They found that the passage rates (# 

crossings / # approaches) was 0.43 ± 0.15 after reconstruction compared to 0.86 ± 0.09 

for the sections during the reconstruction of the highway, the fences, and underpasses and 

the control sections.  
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3.2 Fences and underpasses in the LWR 
 

Various studies have shown that exclusion fencing beside roads can lead to a reduction 

in WVC by 80% to 90% (Clevenger et al. 2001; Seiler 2004; Dodd et al. 2007c; AECOM 

Tecsult Inc. 2009, 2010). Olsson and Widen (2008a) found that exclusion fencing with 

three underpasses for moose in south-western Sweden reduced the number of MVC by 

67-89%, thus, creating increased motorist safety but may have had a negative effect on 

moose access to resources as well as gene flow and re-colonization rates on more 

sparsely populated areas. In a second study, Olsson et al. (2008b) found that overpass use 

by moose declined as traffic volume increased but that the 5-7 moose that did use the 

overpass annually was enough to maintain gene flow between previously isolated sub-

populations. In the LWR, there were 50 MVCs per year between 1990 and 2002. Now 

with the fences and underpasses, there were 31 MVCs in 2009, all in the unfenced areas, 

many of them just beyond the end of the fences. Fences are 2.4 m high, and were 

installed on 23km in the northern section and on 37km in the southern section (Figure 

3.3). There is also a 2-km fence near the Jacques-Cartier passage, and a 4.5km fence at 

Lac Tourangeau, which was a former test site for an electric fence installation by 

ElectroBraid™ (Leblond et al, 2007a). In the fenced areas in the northern and southern 

parts of the LWR there were hardly any moose road crossings of Highway 175, with only 

moose and hunters, kayakists, and fishermen using the wildlife crossings (AECOM 

Tecsult 2010). 
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Figure 3.3. LWR fenced areas and wildlife underpasses for moose. 

There are six moose wildlife crossings in the LWR, two in the southern section, two in 

the northern section, one at the discharge from Lac Tourangeau and one at the Jacques-
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Cartier River (Figure 3.2). Salt blocks were installed to attract moose at the entrances of 

each wildlife crossing on both sides of the road. After the BAPE approval of the Highway 

175 expansion from a 2-lane highway to a 4-lane highway, the Québec government 

mandated AECOM Tecsult to monitor the moose road crossings on Highway 175 for 5 

years, from 2006 to 2011. AECOM Tecsult sent out biologists and technicians by bicycle 

every 3 weeks in the summer from May to September to monitor both fenced and 

unfenced sections of Highway 175 and report the crossings and approaches. As well, 

motion-detection cameras were placed in each underpass to monitor large and small 

fauna crossings. There is a marked increase (38%) in the number of crossings between 

2009 and 2010, which seems to indicate that moose are quickly learning how to find 

these passages (Table 3.1). However, the 6 passages are not used evenly. The Bureau 

River underpass was designed for small fauna but it is nevertheless highly used by moose 

(Table 3.1). On the contrary, the Jacques-Cartier river underpass is not used very much, 

perhaps because the moose are not able to see through the underpass to the other side and 

thus turn around instead, or because there is only 4km of fencing surrounding the 

underpass which may not be enough to funnel them towards it (AECOM Tecsult 2010; 

Beckmann et al. 2010).   
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Underpasses km 

marker

2009 2010

Bureau 87 33 108

Noel 95 117 91

Jacques-Cartier 128 3 7

Tourangeau 178 6 18

Gilbert 199 13 32

Cyriac 210 17 4

Totals 189 260  

Table 3.1  Underpass crossings of moose for 2009 and 2010 in the LWR. Source: Y. Leblanc, (AECOM 
Tecsult, pers. comm). 

 

3.3 Objectives and Research Questions 

Underpasses are designed to increase landscape connectivity by allowing the moose to 

travel under the highway to reach suitable habitat for foraging, mating, etc. However, 

very little is known on the behavior of moose near fences and wildlife passages. In this 

chapter, we develop an ABM approach to compare the impact on road permeability of 

different spacing distances between wildlife passages in the LWR, including the 

allometrically-scaled wildlife crossing approach of Bissonette and Adair (2008). The 

ABM model used in the previous chapter will be modified to investigate the use of the 

fences and underpasses by the model moose. The basic rules for the modelled moose 

behaviour are designed using the scientific literature from the study of moose behaviour 

in the LWR. Thus this study plans to build a ten year model of moose behaviour showing 

that different placements and numbers of wildlife underpasses and fencing will lead to 

different numbers of moose road crossings. The allometrically-scaled placement of 

wildlife crossings should result in a higher level of highway permeability than the actual 
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installed wildlife crossings. The highway permeability will be measured by number of 

moose underpass crossings. These patterns can be used to develop insights into the long-

term effectiveness of mitigation measures for reducing MVC. 

The general objective of this part of the research is to use an agent-based model to 

assess the effectiveness and the impacts of mitigation measures of road exclusion fencing 

and wildlife underpasses for MVCs along the upgraded (2 lanes to 4 divided lanes) 

highway 175 in the LWR. Thus the main research question is: will allometrically-scaled 

wildlife crossings increase the highway permeability compared to the actual fencing and 

wildlife underpasses newly constructed in the LWR and by how much? The specific 

objective of this chapter is to develop a conceptual framework to determine the model 

moose movement rules near fences and underpasses, and to determine the response 

variables needed to assess the effectiveness of different spacing of wildlife passages.  

 

3.4 Modelling approach 
 

As in the previous chapter, the study area is in the LWR situated between Québec City 

and Ville de Saguenay, Québec, Canada (Figure 3.1). However, here the entire Highway 

175 within the LWR is examined. The GIS files described previously (e.g. forest 

polygons) are used. The highway was buffered with the forest polygons for 10km on 

either side of Highway 175.  

The weights and five travelling parameters based on the scientific literature on moose 

in the LWR (Dussault et al. 2004, 2005, 2006a, 2007) used to score potential forest 

polygon destinations will be used directly from the previous model. These five 
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parameters were food and cover qualities, proximity to compensation salt pools and water 

and slope. The five weights, after calibration were 0.45 for food quality, 0.10 for cover 

quality, 0.10 for proximity to water, 0.30 for proximity to compensation salt pools, and 

0.05 for slope. These weights would have to be adjusted seasonally for the fall rut when 

males stop eating for a time and the winter season when females seek more cover in 

conifers.     

The ABM model used to examine highway permeability will be based on the same 

movement rules and corresponding weights as the ABM model used to investigate the 

impact of salt pool management (Chapter 2). However, several new modules will need to 

be added in order to simulate the movement of moose near fences and wildlife passages. 

The conceptual framework to determine the model moose movement rules near fences 

and underpasses is described in the sections below. This will be followed by some results 

on calibration and validation, by anticipated results and by a discussion on the issues that 

need to be examined in order to implement this conceptual framework as a simulation 

model. 

 

3.4.1 Moose Home Range Creation 

 

The first major change compared to the model described in chapter 2 is to let the 

model moose determine their own home ranges instead of imposing a home range as in 

chapter 2. In the previous ABM (Grosman et al. 2011) home ranges were imposed on the 

model moose, but we thought it was better that the model moose create their own home 

ranges, since, in  this chapter, it focuses on road crossings and highway permeability, the 

produced moose home ranges need to be in the vicinity of the Highway 175. Therefore, 
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the ABM was run with no home range enforcement and road avoidance activated for nine 

moose except for the following real moose: L06_2003, L06_2004, and L25_2003 which 

are their GPS telemetry collar ids (Breton et al, 2006).  The model was run 10 times for 

12 months to determine after how much time the model moose would cover an area 

comparable to the real moose‟s home range, using their locations to determine the 

corresponding home range. For the non-road avoiders food, cover and proximity to water 

bodies values were degraded by 1 instead of 3 for the road-avoiders in order to reduce 

their highway proximity by a small degree. The averages of home range areas based on 

point locations were extracted from the 10 runs for the 2-month, 4-month, 6-month, and 

12-month periods. These were compared with the 12 home ranges for the real moose 

(Table 3.2). The averages for the 2 months are lower than the average of the real moose 

and those for 4 months are higher. Thus, a run of 3 months was deemed best to obtain 

average home range areas for the model moose that are comparable to the real moose‟s 

averages. The next step in the calibration process will be to compare these home ranges 

to the real ones mentioned above to see if they match reasonably well in habitat 

composition and road interaction.  
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Table 3.2. The real moose home range areas (km2) with the model moose average home ranges areas 
after the model is run for 2, 4, 6, and 12 months. Thus a run of 3 months would produce home range 
areas that are most similar to the 12 real moose's home range areas. 

Home range sizes were determined using the minimum convex polygon estimator 

(Mohr, 1947). Girard et al. (2002) found that 100 to 300 GPS telemetry locations 

annually or 20 to 100 GPS telemetry locations seasonally were necessary to reach a 

plateau in MCP home range estimation. They also found that high bias occurred below 

these values. This minimum convex polygon estimation is one of the most commonly 

used techniques of habitat use. A more accurate analysis of habitat use using the GPS 

telemetry of the 47 real moose and the underlying SIEF forest maps supplied by MRNF 

was performed as well of the actual habitat use by the 47 real moose over the three years 

of the MRNF-UQAR study (Figure 3.4). This analysis with the MCP home ranges sizes 

gives a better representation of the actual habitat use by the 47 real moose since the MCP 

alone included areas within their home ranges that the 47 real moose did not visit and 

use. An analysis of the eleven habitat types with food and cover quality based on the 

Habitat Quality Indicators developed by Dussault et al. (2006b) was also performed on 

these 71 home ranges (Table 3.3). The mixed intolerant 10 year old habitat type was the 
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most popular for the real moose and they spent over thirty percent of their time there 

(Figure 3.4).  

Habitat 

Type 

Description Food 

quality 

Cover 

quality 

Other Lakes, islands, other 2 1 

Fi50 Deciduous intolerant hardwoods up to 50 yr old 4 2 

Ft50 Deciduous tolerant hardwoods up to 50 yr old 5 2 

IMP Buildings urban area fens bogs alder stands 2 1 

Mi10 Mixed and intolerant hardwoods 10 yr old 5 1 

Mi30 Mixed and intolerant hardwoods 30 yr old 4 3 

Mi50 Mixed and intolerant hardwoods 50 yr old 3 3 

Mt50 Mixed and tolerant hardwoods 50 yr old 5 3 

R10 Conifers regenerating 3 1 

RE30 Conifers with black spruce 30 yr old 1 4 

RS30 Conifers with balsam fir or white spruce 30 yr old 2 4 

Table 3.3. The 11 habitat types in the SIEF maps for the LWR with the Habitat Quality Indicators for food 
and cover qualities. 
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Figure 3.4. The eleven habitat types and their total forest polygon usage percentage for the 71 annual 
home ranges of the 47 real moose. 

As in Chapter 2, home range enforcement will still be implemented, now using the 

dynamically-created home ranges from the three-month runs instead of imposing a home 

range from the annual real moose home ranges. These home ranges will not be buffered 

outwards 625m since there are no roadside salt pools in the new model and compensation 

salt pools will already be within their home ranges. 

3.4.2 Model Moose Following Fences 

 

The major new process in this ABM will be the movement rules for model moose 

moving along fences. There are no telemetry data available to document moose 

movement along fences in the LWR and, to the best of my knowledge, there are no 

telemetry data for any species near fences and wildlife passages elsewhere. Thus, the 

conceptual framework described here for model moose is quite speculative and would 

need to be tested against real moose behaviour.  The first new movement rule concerns 

0%
5%

10%
15%
20%
25%
30%
35%

O
th

er

Fi
5

0
 

Ft
5

0
 

IM
P

 

M
I1

0
 

M
i3

0
 

M
i5

0
 

M
t5

0
 

R
1

0
 

R
E3

0
 

R
S3

0
 

Habitat type

Habitat Frequency in LWR 
Home Ranges



78 

 

the situation where a moose starts at the back of its home range and proceeds towards 

Route 175. When a model moose encounters a forest polygon with a fence within it for 

the very first time, it must decide if it will follow the fence and, if so, in which direction. 

Since we do not have any empirical data on this decision, a stochastic approach will be 

used based on three cases: 1) most moose would tend to turn their back to the fence, and 

only 25% of the moose decide to follow the fence; 2) half the moose (50%) follow the 

fence and half the moose return to their home range further away from the road; 3) most 

moose (75%) tend to follow the fence.  There is no way to know which of these three 

cases is closest to reality, but it is very likely that between 25% and 75% of real moose 

encountering a fence would tend to follow it (C. Dussault, pers. comm.).   

The second decision for the model moose following the fence is which way to move: 

left or right? Since there is no a priori reason for a moose to go one way rather than 

another way, a 50% probability of turning left or right will be used. After the model 

moose decides to follow the fence, the moose will proceed along the fence in the chosen 

direction, moving to the next forest polygon it its home range that has a fence in it. 

The third decision for movement rules comes into play once a model moose following 

a fence reaches the end of its home range. Based on our knowledge of moose behaviour, 

it is estimated that the moose could follow the fence at least for 1km and at most for 

10km past its home range limit (C. Dussault, pers. comm.). In order to implement this 

variability in model moose‟s behaviour, fuzzy logic will be used to progressively degrade 

food, cover and water quality in forest polygons beyond the home range limit. Three 

decreasing fuzzy logic sigmoidal functions will be applied to the moose travelling along 

the fences at the limit of their home range (Figure 3.5).  
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Figure 3.5. Fuzzy functions for the degradation of habitat using 3 maximum distances (3  5 and 10km) 
once the moose reaches the limit of its home range. 

The presence of salt blocks at the entrance of wildlife passages must also be taken into 

account in the movement rules. This can have two effects. First, it is expected that the 

presence of a salt block will encourage moose to follow the underpass to the other side of 

route 175, where it will continue foraging on the other side of the road. Secondly, the 

moose will place the location of the salt blocks and wildlife underpass in its spatial 

memory, so that the next time, it can proceed to the underpass with purpose. As well, if 

the female moose has brought its one or two yearlings with her through the crossing, the 

yearlings will have spatial memory of the salt block and underpass, as well, and can use it 

independently when they are forced out by their mothers after one year and need to find 

their own new home ranges. Thus, once a model moose has a spatial memory of the 

underpass, the next time it decides to cross the Highway 175, it will follow the fence with 
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purposeful direction and then use the underpass instead of using the fuzzy logic algorithm 

to determine its movement distance along the fence. 

Road avoidance, compensation salt pools, the travel distance algorithm and the 

weights and travelling parameters from the previous model described in chapter 2 will all 

be used in this model as well. Road avoidance will still be a factor in the new model since 

the highway is wider, thus the noise from the highway and the traffic volumes will be 

greater as well. As in the previous model, we will choose the road-avoiders and the non 

road-avoiders randomly. New forest polygons 500m from the new rights-of-way and the 

exclusion fences will be identified and provided with a reduced food, cover and distance 

to water bodies values for the road-avoiding model moose but not for the non road-

avoiding ones. These values will be used in the fuzzy logic function to determine the 

probability that the model moose will continue to follow the fence when it is outside its 

home range boundary.  Road avoidance will always be active for 90% of the model 

moose since we have determined in the previous model that this has the best affinity to 

the real moose behaviour.   

All roadside salt pools are drained away immediately due to the new engineering work 

on Highway 175 so the salt will go directly into the aquatic environment. Compensation 

salt pools will be continued to be built off forestry secondary roads of Highway 175.  As 

their actual locations are not known, a number of compensation salt pools will be built in 

the model from 500m to 1,500m from the fences or the rights-of-way. Once a model 

moose has found a compensation salt pool, it will add it to its spatial memory and then 

visit it according to a Poisson distribution with a mean of 2.1 to plan its trips (Laurian et 

al. 2008a). It will seek out the closest compensation salt pool to its current location in the 
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months of June and July as done in the previous model. In the new model, spatial 

memory of salt pools will always be activated, since we found in the previous model that 

this produced results that had the best fidelity to the real moose`s results.   

The travel distance algorithm that was based on the power-law distribution y = 8999.2 

x
-1.592

, with a R
2
 = 0.89, derived from the 2 hour time steps of the 12 real moose will still 

be used in the new model for  foraging (0m to 125m), ruminating (0m to 125m), 

travelling (125m to 550m) and travelling to salt pools (275m to 550m). When, however, 

the moose encounters a fence for the first time and decides to follow it, a different 

algorithm will be used where the model moose will follow the fence using neighbouring 

forest polygons that each contains a fence.   

 

3.5 Scenarios 

To assess the impact of distance between underpasses on road permeability in the 

LWR, we suggest using 100 model moose with a time-step of 2 hours for 10 years 

starting with the current situation of six underpasses.  The results from this scenario #1 

(current situation) will be compared to the number of real moose crossings through the 

underpasses. Once the model is validated, seventeen new scenarios will be run to assess 

the impact of progressively reducing the average distance down to and less than the 

allometric distance, which corresponds  to scenario #11 (Table 3.4): 
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Table 3.4. The eighteen scenarios starting with the current situation with six underpasses and 
proceeding to scenario 18 with 40 underpasses. Even though the scenario #11 is the correct 
allometrically-scaled one, we want to see that the permeability effects will be with the wildlife 
underpasses even closer together than scenario #11. 

 

Each scenario will be run for the 3 cases (25%, 50% or 75% of moose following 

fences) and for the three different fuzzy functions to degrade the habitat values of food, 

cover and proximity to water bodies beyond the home range limit thus the home range 

limits will not be enforced. 
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3.6 Response and explanatory variables 

The following response and explanatory variables will be used in the statistical 

methods of redundancy analysis and forward selection described in the appendix. 

There will be seven response variables for each model moose for each scenario:  

  The number of wildlife underpasses selected by the model moose, 

  The number of moose crossings at wildlife underpasses, 

  Food quality selected by forest polygon per year, 

  Cover quality selected by forest polygon per year, 

  Distance travelled per year,  

  The total time spent in 2 hour time steps on each side of the road by forest 

 polygon per year, and  

  The habitat use by the model moose on each side of the road by forest 

 polygon per year.  

There will be five explanatory variables for each scenario: 

 The total number of wildlife underpasses available per scenario, 

 food available per forest polygon,  

 cover available per forest polygon,  

 proximity to water bodies per forest polygon, and   
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 slope per forest polygon. 

Each forest polygon near the road will have new Boolean codes for the following 

properties: 

  a fence cuts completely through it (yes/no),  

  an underpass entrance exists in it (yes/no), 

  the presence of an escape gate (yes/no), and  

  a distance decay function for the presence of a salt block.  

As well, the female moose will have a new field indicating how many yearlings they 

have accompanying them. 

 

3.7  Statistical Methods 
 

Redundancy analysis, using the extension of multiple regression to model multivariate 

response data (Legendre and Legendre, 1998; Gotelli and Ellison, 2004), will be 

performed in the R statistical language on the seven response variables and the five 

explanatory variables to determine which of the response variables and the explanatory 

variables have the most impact on the 100 model moose. This will be done for all 

eighteen scenarios. As well, forward selection will be also performed in the R statistical 

language on the variables to see which variables contributed most to the R
2
 values, which 

are part of the redundancy analysis output. Graphs displaying the number of moose road 

crossings versus density of wildlife crossings structures will be displayed for all eighteen 

scenarios. It is expected that the allometrically-scaled placement of wildlife crossings of 
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scenario #11 will have greater highway permeability compared to the current situation of 

the fences and crossings in the LWR and we may see a levelling off of the highway 

permeability at scenario #11. 

 

3.8 Home Ranges Characteristics: validation data 
 

In order to assess the validity of the model, the current situation (scenario #1) will be 

validated using a comparison with the real moose‟s home range characteristics. Using the 

GPS telemetry data from the 47 GPS collared moose in the LWR, we created 71 annual 

home ranges (Table 3.5) using the minimum convex polygon method from Beyer (2004). 

Most of the 47 moose had GPS data for more than one year, so 71 annual home ranges 

were created using each year of the 47 moose resulting in 71 annual home ranges. The 

average area was 53km
2 

and the areas ranged from 15km
2 
to

 
172km

2
. The square root of 

each home range i.e. the daily movement distance is also displayed in Table 3.5. The 

daily movement distance of the 71 annual home ranges was 7km. 
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Table 3.5. The 71 annual home ranges of the real 47 GPS collared moose. 
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An analysis was also performed about how many of the 71 annual home ranges of the 

real moose were intersected by either Highways 169 or 175 in the LWR (Figure 3.6). 

Most home ranges had either 0% intersection with the highways (28) or 10% intersection 

(26).  

 

Figure 3.6. The 71 annual home ranges and their percentage intersection with highways 169 and 175 for 
the real 47 GPS-telemetry collared moose. 
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Finally, the slopes were calculated for each forest polygon within the 71 annual home 

ranges (Figure 3.7). In general, real moose tend to follow ridges or river valleys and not 

go up and down hills (Dussault et al. 2005). 

 

 

 

Figure 3.7. The slope percentages for the 71 real moose annual home ranges for the 47 real moose. 
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with an increase in the fuzzy buffer width which allows moose to travel beyond their 

home range limit when following a fence. These two expectations are summarized in 

Figure 3.8. On the one hand, it is possible that permeability would increase in a linear 

way as the number of wildlife passages increases (Figure 3.8a). However, it is also 

possible that highway permeability would level off at some point, likely when the 

distance between wildlife passages is close to the allometric distance (Figure 3.8b). Until 

the ABM is created, run and analyzed for all scenarios, it is not possible to know what 

impact the number of wildlife passages has on permeability and what the slope of the 

curve is. Figure 3.8b is similar to figure 6 in Pfister et al. (2002) where they graph the 

number of mammal wildlife crossings versus the width of the wildlife crossings. 

 Redundancy analysis and forward selection will be applied to the seven response 

variables for each model moose for each scenario and the five explanatory variables for 

each scenario. Tri-plot graphs that show the response and explanatory variables as arrows 

and the locations of the 100 model moose will be displayed as well. Whichever variables 

are closest to each of the 100 model moose in the eighteen scenarios determines the 

relative importance of each variable to that particular model moose. We should be able to 

summarize the most important response and explanatory variables by scenario.  

Forward selection will also be applied to each of the eighteen scenarios, as a 

secondary method to determine which of the response or explanatory variables contribute 

most to the R
2
 value of the each of the scenarios' redundancy analysis. Forward selection 

starts with no variables and adds one at a time until the R
2
 value is exceeded. Forward 

selection can only give some indication of the important variables in the model; but since 



90 

 

the statistical computation is not independent, the outputs should not be tried as final but 

only as guidance (Legendre and Legendre, 1998). 

I expect that the redundancy analysis and the forward selection for the scenarios below 

the allometrically-scaled scenario #11 will show that Food Selected, and Food Available 

will be the most important response and explanatory variables, but as the scenarios reach 

#11 and beyond, I expect that the number of wildlife underpasses selected by the model 

moose and the number of wildlife underpasses available will become the most important 

response and explanatory variables. 
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Figure 3.8. Possible changes in permeability with increasing number of wildlife underpasses for a) the 
case where permeability continually increases as more underpasses are available, and b) the case 
where a plateau is reached where increasing the number of underpasses no longer affects permeability.  
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3.10 Discussion 
 

The modelling approach for the model moose following fences and then discovering 

the salt blocks at the entrances of the underpasses and the underpasses themselves is quite 

theoretical since there is no empirical GPS data available to use to validate the modelling 

approach. We know, however, that the real moose have been using the underpasses in the 

LWR as shown in Table 3.1 and their wildlife passages have increased by 38% from 

2009 to 2010. The increase in wildlife passages suggests that the real moose are learning 

to use the underpasses quite quickly. Thus, the modelling approach should result in 

increased levels of highway permeability as the numbers of wildlife passages increase 

scenario by scenario. So the allometric method used in the revised ABM should produce 

much higher highway permeability than the real six underpasses in the LWR for the 

moose and the allometric method itself is an important first step in increasing highway 

permeability for moose. It may not be possible to place wildlife passages on a strictly 

allometric basis given that the road project's fiscal constraints, local topography and other 

local factors thus the spacing of the wildlife passages will be probably further apart 

(Beckmann et al. 2010).  

As the number of scenarios increase, the number of model moose wildlife passages 

will increase as well. This will result in increased highway permeability that will lead to 

more landscape connectivity. Landscape connectivity, as defined by Taylor et al. (1993), 

can be measured for model moose by the movement probability between resource 

patches. In figure 3.3, one can see that the most popular habitat type selection for the real 

moose is MI10 (mixed intolerant hardwoods, 10 years old), RS30 (conifers 30 years old), 

and MI50 (mixed intolerant hardwoods, 50 years old). Similar results should appear for 
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the later scenarios for the model moose as the highway permeability and landscape 

connectivity increases. 

This revised ABM is using the weights on the five parameters of food, cover, 

proximity to compensation salt pools, proximity to water bodies and slope as the ABM in 

chapter 2. These parameters and weights, however, are imposed on the behaviour of the 

model moose and no variability is expressed except by the different habitat types in each 

model moose's home range and the final bit of randomness applied to the choice of the 

best forest polygon to travel to next. 

The home range enforcement process is the same as in the ABM in chapter 2 except 

when moose are following fences or they have spatial memory of underpasses and can go 

directly to them. The power-law distribution for moose movement is also the same as the 

ABM in chapter 2 except when moose are following fences or they have spatial memory 

of underpasses and can go directly to them. Since all the roadside salt pools are drained 

immediately by the new Highway 175 configuration, we have created compensation salt 

pools in all of the 100 model moose home ranges. Since the salt pool algorithm will be 

implemented in the revised ABM as well, they will use the compensation salt pools only 

since the roadside salt pools are all drained away automatically into the aquatic sustems. 

The creation of the model moose home ranges must be validated by the data from the 

71 real moose home ranges. If the model moose home range areas are greater than one 

standard deviation of the real moose home range areas or the number of model moose 

home ranges are split by the highway is greater than one standard deviation from the real 

moose home ranges road splits, or the slopes of the forest polygons in the model moose 

home ranges are greater than one standard deviation from the model moose home ranges 
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or the habitat use frequencies of the model moose home ranges are greater than one 

standard deviation from the real moose home ranges habitat use frequencies, then the 

model home range creation process will have to be rerun until each of these four model 

moose categories are within one standard deviation of the real moose categories.  

Since the process of the moose following fences has neither GPS calibration nor 

validation data, it was decided that, for each of the eighteen scenarios, we will have three 

separate versions in each scenario: when the moose follow the fence for the first time, 

they will follow it 25% 50% or 75% of the time; otherwise, they return to their home 

range. As well, when they first encounter the fence and do decide to follow it, a normal 

distribution is used to decide if they will proceed left or right. When they reach the 

boundary of their home range, they must decide to continue or not. At this point the food, 

cover and proximity to water bodies are degraded and these values are fed into a 

sigmoidal fuzzy logic function to determine if they continue. Obviously, this process is 

quite speculative and not based on any GPS data on the moose following fences. Since 

there is no GPS data available, the process, though, is highly theoretica.l is If GPS data 

will become available in the future, the process could be reworked. 

There are eighteen scenarios and the eleventh is the correct allometrically-scaled one 

for the Highway 175 in the LWR. It was decided to extend the scenarios beyond the 

eleventh in order to determine if the number of wildlife passages reach a plateau after the 

eleventh or continue to increase. Obviously, the spacing of the wildlife passages using the 

entire 174km length of Highway 175 is not very practical, since the majority of the 

MVCs occurred in the northern and southern slopes and not on the central plateau which 

has an abundance of conifers which is not the moose‟s favourite tree type. It was thought 
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better, however, to space the underpasses using the entire length of the Highway 175 and 

not consider the habitat differences as important.  

The seven response and five explanatory variables as well as the locations of the 100 

model moose for each scenario will be used in redundancy analysis to produce tri-plot 

graphs. These tri-plot graphs that will determine which of the seven response and five 

explanatory variables are most important to each of the locations of the 100 model 

moose; for each scenario, the results will then be summarized to determine which of the 

response or explanatory variables have the overall most important impact of the 100 

model moose in each scenario. As the number of wildlife passages increase, as mentioned 

in the anticipated results,it is expected that the number of wildlife passages available and 

selected should become the most important explanatory and response variables, 

respectively. If this does not occur, however, and other variables are more important then 

we will have to reconsider the impact that wildlife passages have on the model moose. 

The strengths of the first and revised ABMs are, firstly, that agent-based modelling in 

wildlife ecology is a bottom-up modelling simulation tool of great potential in wildlife 

ecology. The movement parameters and activity durations are based on the scientific 

literature by UQAR and MRNF researchers and Franzmann and Schwartz (2007) for both 

regular travel and travel to salt pools, resting, ruminating, and foraging. The power-law 

distribution for travel was based on an analysis of 12 real moose for the five months of 

summer in the LWR. Road avoidance for 90% of the model moose came from Laurian 

(2008a) and salt pool spatial memory came from a paper by Leblond et al. (2007b), 

which are both papers on the behaviours of real moose. Home range enforcement was 
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applied to the ABM in chapter 2 and will be used in the revised ABM as well, except 

when moose are travelling near fences. 

There are three main weaknesses in my first and revised model. Firstly, in my first 

ABM there is no real bottom-up variability applied to the model moose except, as 

mentioned above, their road avoidance, their different habitat types in their home ranges 

and the randomness applied the final choice of the next forest polygon to travel to. 

Secondly, since the actual movement data for real moose by fences is not known, the 

parameters used for the algorithm is quite speculative in nature. If GPS data on moose 

and elk movement by fences could be obtained then we could establish movement criteria 

that are based on real calibration and validation information instead of using these 

speculative parameters.  A third weakness in the revised ABM is that the linear distance 

of the 71 real home ranges was 7km, but when we look at the 21  real moose for the five 

summer months between May 1st and Sept. 30th, the linear distance is just 1.6km, a 

difference of5.4km. Thus, if we take the real daily movement distance of the 71 real 

home ranges for the year we will find a lower number than 7km and that number could be 

used for a recalibration of the scenarios and thus choosing a lower number scenario than 

scenario #11. 

Since, currently, my ABM is the only one about mitigation measures on MVCs in the 

world, no direct comparison can be made to another ABM on MVCs. I have used, 

however, the scientific literature of John Bissonette, Anthony Clevenger, Norris Dodd, 

Christian Dussault, Catherine Laurian, Mathieu Leblond, Mattias Olsson and Andreas 

Seiler, among others. Their work on large ungulates and other wildlife in Utah, BNP, 

Arizona, the LWR, and Sweden inspired my work on my ABM. I hope that my 
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anticipated results for the application of the allometric method near Highway 175 in the 

LWR will show that the method will work as a necessary first step in planning wildlife 

overpasses and underpass before local factors are applied to a project. In particular, I used 

the results of Dussault, Laurian and Leblond to plan my first ABM (in particular, road 

avoidance from Laurian and salt pool spatial memory from Leblond) which will still be 

the core of my revised ABM. For my revised ABM, I used the allometric method of 

Bissonette and Adair (2008) and then added various speculative processes for moose 

following fences. 

Subsequent monitoring is needed using track pads, motion-detection cameras and GPS 

telemetry collars to understand how moose behave near wildlife passages. In particular, a 

program of GPS telemetry collars with a time-step of 30 minutes would be crucial in 

identifying the moose that decide to follow the fences and those that do not, and for how 

long they follow the fences before giving up. GPS telemetry collars would also be useful 

for identifying the moose that use the underpasses instead just having the motion-

detection cameras that photograph the moose but cannot identify them. Without GPS data 

on the moose following fences, it is impossible to decide objectively how long to 

program into the ABM the distance the model moose will follow the fence or if it returns 

immediately to its home range. A few studies have used GPS telemetry collars on moose 

to study highway crossing rates at newly–constructed wildlife passages over and under 

highways (Dodd et al., 2007a; Olsson and Widen, 2008a) but none used the GPS data to 

study the moose‟s movement along fences. Their GPS data, however, probably does 

contain information about the moose's and elk's behaviour near fences, how many moose 

and elk followed the fences, and for how long. As well, the GPS data probably has the 
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information on how many moose and elk decided not to follow the fence and return to its 

home range. I have communicated with both researchers about their GIS datasets but I 

have not received any GIS datasets from them yet. 

With appropriate calibration and validation data, however, and after local conditions 

such as topography, hot-spot analysis of moose road kill data, the density of the moose 

populations on the northern and southern slopes, and the plateau of the LWR, and the 

fiscal and engineering constraints placed on a highway upgrade project are taken into 

account, the placement of the moose underpasses can then be customized in the ABM 

based on these local conditions and constraints, and the individual variability of the 

moose following the fences and using the underpasses. As well, if we have the GPS 

telemetry data, we can determine how long the real moose follow fences and how many 

return to their home ranges and do not follow the fences at all. Then highway designers 

can use this revised ABM as a tool to optimize the number and location of wildlife 

passages for different species of wildlife.   

3.11 Conclusion 
 

In order to restore some highway permeability after roads have been placed on the 

landscape and most connectivity between moose sub-populations has been lost, it is 

essential to not only erect fences to exclude large fauna from the highway, which reduces 

wildlife highway permeability (but increases motorist safety). It is also important to place 

wildlife underpasses and overpasses using the allometric method that uses the linear daily 

distance determined by the square root of the moose's home range area. These measures 

together are expected to reduce human and moose injury and mortality and lead to both 
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fewer moose road passages at grade and more highway permeability using the 

underpasses.  

Given fiscal constraints, local topography, and other local factors, it may not be 

possible to place wildlife passages on a strictly allometric basis, thus the spacing of the 

wildlife passages will probably be further apart (Beckmann et al. 2010). These 

constraints could only partially reduce the barrier effect of Route 175 and not increase the 

highway permeability to the extent that the allometrically-scaled wildlife passages would. 

If the wildlife underpasses are placed in known hotspots, however, it will reduce the 

MVCs thus improving motorist safety and moose survival. After the wildlife passages are 

implemented, it is essential to monitor the number of wildlife underpass passages to 

ensure that this placement was effective. This monitoring can be accomplished using 

sand track pads in the wildlife underpass, motion-detection ReConyx™ cameras at the 

entrances and exits of the wildlife underpasses and most importantly, the installation of 

GPS telemetry collars on the moose to determine their behaviour near fences and 

underpasses and also to identify the moose that used the underpasses. 

As stated in Beckmann et al. (2010),  "General public knows little about the conflict 

between wildlife and transportation but conservation advocates are in a prime position to 

educate the public". It is important for both road ecology scientists and conservationists 

to reach out to the public and the transportation authorities and to educate them about the 

loss of connectivity that highways cause to wildlife populations such as moose. In 

Newfoundland, there are about 700 moose-vehicle collisions per year and there are no 

fences on the TCH. A class-action lawsuit against the government of Newfoundland by 

members of the public whose family members have been killed or paralysed in these 
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collisions has just been introduced in the Supreme Court of Newfoundland and Labrador. 

This lawsuit has been recently certified (CBC, 2011). Anthony Clevenger went to 

Newfoundland on March 31st, 2011, and told the government that neighbouring 

provinces were using exclusion fencing and underpasses on their highway and they 

should do the same (St.-John's Telegram. 2011). With the introduction of exclusion 

fencing and wildlife overpasses and underpasses for large fauna some degree of increased 

permeability can be achieved. It is the purpose of this revised ABM to use the allometric 

method and then quantity the expected/predicted increase in permeability that it can 

achieve.  

This revised ABM could be applied to any other location where fences and 

underpasses are being constructed on highways to prevent MVCs, such as Sweden, 

Alaska, Ontario and Northeastern United States. Since the moose is essentially a solitary 

creature except for a female moose and its yearling, the revised ABM would have to be 

modified for the herd property of other members of the cervidae family of species. This 

could be done, and then, the new ABM would also be available to study the movement 

behaviour near roads of such members of the cervidae family as white-tailed deer, 

woodland caribou, and elk. The next steps for this work are to actually program the 

revised ABM, execute the eighteen scenarios and analyze the results.  
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4 CHAPTER 4: THESIS CONCLUSION 
 

My ABM work, particularly in chapter 2 but perhaps eventually, chapter 3 as well, has 

contributed to the science of road ecology. The salt pool elimination and displacement 

ABM was the first in the world and, in general, its results agreed the results of other 

MRNF and UQAR researchers studying moose in the LWR. When  the revised ABM in 

chapter 3 is programmed, executed and analyzed then the results may contribute to the 

science of road ecology as well. Proper data and information is essential and then road 

ecology scientists can join with developing highway construction projects to produce 

better results for humanity and wildlife. Projects such as the Banff National Park Project 

with its overpasses and underpasses have inspired new efforts in North America and 

around the world (Beckmann et al. 2010). Clear goals in planning new projects in 

transportation must be done with both motorist safety, and wildlife connectivity in mind. 

As well, road ecologists must reach out and give seminars, briefings and presentations to 

the general public so that they can support these new types of projects (Beckmann et al. 

2010).  

Moose-vehicle collisions are a problem throughout the circumpolar regions of the 

world. The focus of this thesis has been changing moose behaviour, in particular, using 

agent-based modelling to evaluate the effects of eliminating and relocating roadside salt 

pools with the competing factors of road avoidance and salt pool spatial memory 

(Chapter 2), and to evaluate the effects of the allometric method for placing wildlife 

underpasses and fences on Route 175 in the LWR (Chapter 3). The total elimination of 

roadside salt pools with road avoidance and salt pool spatial memory activated produced 

the moose road crossing reductions that were most similar to the real moose. Roadside 
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salt pools attract moose to the roads, thus their elimination will reduce MVCs. This 

elimination would cause the moose to return to the lakes and resume eating aquatic 

vegetation. In the new configuration of Highway 175, however, with the expansion from 

2 to 4 lanes, the roadside salt pools will be drained in all cases. Transports Québec is 

creating compensation salt pools further from the Highway 175. The moose will have 

access to compensation salt pools within their home ranges. This ABM could be used 

with some modifications  such as more individual variability based on gender and age for 

transportation planning for salt pool elimination and displacement in any circumpolar 

region that uses a lot of road-salt. As mentioned in chapter 2, the management 

implications following from the results of the first ABM are that a total elimination of 

roadside salt pools is the best alternative for both the moose and the drivers, but since 

Transports Québec is creating compensation salt pools they should be at least 500m from 

the right-of-way of the Highway 175 to eliminate the road avoidance factor. 

In the second model, the allometric method was described and eighteen scenarios were 

created with increasing numbers of wildlife underpasses.  The current situation in the 

LWR has six moose underpasses. This revised ABM has not been yet been programmed 

but the most probable hypothesis is that the results will show that the number of moose 

wildife passages will reach a plateau at the allometric-scaled scenario #11. This would be 

due, in part, to the overall density of moose populations in the LWR. There are only so 

many moose close to the highway 175 in the LWR so it is likely that the numbers of 

wildlife passages will reach a plateau at some density of underpasses. But until the ABM 

is executed and analyzed, we will not know if the model wildlife passages reach a plateau 

at some point or just keep increasing. A GPS telemetry program for the moose following 
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the fences and using the underpasses would be essential for reducing the speculative 

aspects of the revised ABM and instead using real GPS data to calibrate and validate the 

model moose movement behaviour near fences and underpasses. Thus, if the allometric 

method works and produces a plateauing effect after scenario #11, it will lead to good 

results. 

The management implications for the two different anticipated results are as follows: 

in case of plateauing highway permeability, if the allometrically-scaled scenario #11 is 

before the plateau or is after the plateau, we can say that the allometric method is flawed 

because the curve plateaus after or before scenario #11. If, however, the allometrically-

scaled scenario #11 coincides with the start of the plateau, then we can state that the 

allometric method works. In the case of the ever-increasing highway permeability, 

however, if the allometrically-scaled scenario #11 has no real effect, and we can state that 

the allometric method does not work in this case.  Thus, if the allometrically-scaled 

scenario #11 coincides with the start of the plateau in figure 3.7b then we can state that 

the allometric method works, otherwise, we can only state that it is flawed or, in the case 

of figure 3.7a, it does not work at all. 

Two of the weaknesses in my first and revised model are that in the first ABM there is 

no real bottom-up variability applied to the model moose except their different habitat 

types in their home ranges and the randomness applied the final choice of the next forest 

polygon to travel to. Secondly, in the revised ABM, since the actual movement data is for 

real moose by fences is not known, the parameters used for the algorithm is quite 

speculative in nature. 
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Finally, agent-based modelling in wildlife ecology has a strong potential and is a 

relatively recent method that can be used along with other classical ecological methods as 

statistical, GIS, and systems analysis using Stella™, for example, at the population level. 

ABM can inform scientists, decision-makers, and the general public on issues with roads 

and wildlife (McLane et al. 2011). It is an approach that can be used to model the 

movement behaviour of any number of large terrestrial species to better determine 

outcomes for wildlife that must cross the highway to visit habitats on the other side of the 

highway for foraging, mating, dispersal, or birthing purposes. Though this is the only 

ABM on MVCs, there are other wildlife ecologists creating ABMs on other wildlife 

species such as woodland caribou, wolves, and whales, for example  (Metsaranta,  2008; 

Musiania et al. 2010; Chion et al. 2011). As ABM usage increases in the fields of road 

ecology, wildlife ecology and geography, we should see many new and important results 

in these fields. 

4.1 Future Research 

In my future research, since my current ABM has no individual variability besides 

road avoidance and different habitat types in their home ranges, I will apply some more 

individual variability to the model moose mainly based on sex and age  to complete the 

life cycle of the model moose using the following properties: good cover stands are less 

desired by males than females during spring, summer and early winter, moose trade off 

food availability with avoidance of deep snow and predators, females with calves differ 

from solitary female moose in that they seek protection from predation by choosing better 

cover, yearlings are kicked out just 2 weeks before birth of new moose to find their own 

home ranges, females search for isolated sites for birthing with good cover to reduce 
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stress and avoid predation, and in the rut season  most male moose gradually stops eating, 

and they fight with other males to see which will dominate and have most of the access to 

the females (Franzmann and Schwartz. 2007). Further details can be found in the 

Appendix under the heading: Future Research. 

Other processes that will be added to all scenarios are: yearling dispersal, birth, 

hunting by humans and predators such as wolves and bears, reduced highway 

maintenance budgets, gates left open and increased human traffic in large wildlife 

underpasses.  The first three processes will produce a more complete lifecycle for the 

moose but the last three are more important in developing a more complete ABM with 

more emphasis on other causes for MVCs. 
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6 Appendix 

6.1 Redundancy Analysis and Forward Selection not Presented in 
Chapter 2 

 

The following redundancy analysis, forward selection and the Comparison of R
2
 and 

adjusted R
2
 for scenarios 1, 6, 11, and 16 and the real moose were in my term paper for 

my course on Analyse quantitative des données biologiques, given by Prof. Legendre 

at the Université de Montréal, last year (Grosman 2010, unpublished) but not used for our 

article in Ecological Modelling in Chapter 2. 

6.2 Methods 

6.2.1 Redundancy Analysis 

 

Redundancy analysis (RDA) is a form of canonical analysis that is a “direct extension 

of multiple regression to the modelling of multivariate data” (Legendre and Legendre, 

1998).  One first forms a Y matrix of response variables and a X matrix of explanatory 

variables. RDA assumes that there is a causal relationship from the explanatory variables 

to response variables. rdaTest, the R function from the rdaTest library:  

http://www.bio.umontreal.ca/Casgrain/prog/labo/fonctions_r/rdaTest_1.7.zip , used in 

this study has the following inputs:  

1. Y: a matrix which represents the response table, 

2. X, a matrix which represents the explanatory variables, 

3. W: a matrix which represents an optional table of co-variables, 

4. scale.Y: =TRUE or FALSE. TRUE means Y should be standardized, i.e. 

 the variables are of different physical dimensions or FALSE which means 

 the values should only be centred on their means, 

http://www.bio.umontreal.ca/Casgrain/prog/labo/fonctions_r/rdaTest_1.7.zip
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5. test.F: NULL is the default and then the user is asked if he wants to test 

 the F statistic. If TRUE or FALSE is indicated then the program follows 

 that instruction, 

6. nperm: gives the number of permutations for the F-statistic. If NULL, then 

 the program asks the user; if nperm = 0, then the permutation tests are 

 not executed; if a positive value is entered then that number of 

 permutation  tests are executed, 

7. silent: if FALSE, then the output is displayed on the R console. 

Since in this analysis, both the X and Y matrices were centred and standardized before 

being submitted to the rdaTest R function, the scale parameter was left at its default. The 

scale(X.mat, center=T, scale=T) R function was used instead of the apply(X.mat, 2, 

scale, center=TRUE, scale=TRUE) because the apply R function stripped off the moose 

identifications and replaced them with site numbers but the scale R function preserved 

them. All other defaults were used, so the program asked for the F-statistic to be 

performed, the answer was Yes and the number of permutation tests was set to 999. The 

rdaTest  R function used for the 5 RDA was of the following format:  

 rdaMM.out = rdaTest(Y, X). 

After execution, the rdaTest R function produces a number of immediate outputs and 

the result of printing the rdaMM.out object: 

1. the eight (real moose) or nine (model moose) explanatory variables X 

 matrix's variance inflation factors. If a value is equal to 0 then that 

 variable is completely collinear. for; the value is 0 for entirely collinear 

 variables. The co-variables are not included in this calculation, 
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2. the R
2
 and adjusted R

2
 values, 

3. the F statistic and the p-value of the 999 permutation tests, 

4. a list of: 

i. number of objects, 

ii. number of response variables, 

iii. number of explanatory variables, 

iv. number of canonical eigenvalues, and 

v. total variance. 

5. The five canonical eigenvalues,   

6. The relative eigenvalues calculated as a percentage of the total variance (5 

 values), 

7. the cumulative percentage variance of the species data (5 values), 

8. a U matrix of canonical eigenvectors normalized to 1 with scaling #1 

 preserving Euclidean distances for the five response variables, 

9. a U matrix of canonical eigenvectors normalized to square root of the 

 eigenvalue with scaling #2 preserving relationships between variables for 

 the five response variables.   

10. a F matrix of the moose scores  with scaling #1, preserving Euclidean 

 distances for the 5 axes. It is computed by multiplying the eigenvalues by 

 the centered and scaled Y matrix, 

11. a Z matrix of fitted object scores with scaling #1, preserving Euclidean 

 distances for the 5 axes. It is computed by multiplying the eigenvalues by 

 the fitted values of the centered and scaled Y matrix ,   
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12.  a second F matrix of object scores but with scaling #2 preserving 

 relationships between variables for the 5 axes,   

13. a second Z matrix of fitted object scores with scaling #2 preserving 

 relationships between variables for the 5 axes,.   

14. a bi-plot scores of eight or nine explanatory variables with scaling #1, 

 preserving Euclidean distances for the 5 axes, 

15. a bi-plot scores of eight or nine explanatory variables with scaling #2 

 preserving relationships between variables for the 5 axes, 

16. a table of cumulative fit (in percent) per moose as fraction of variance of 

 moose  for the 5 response variables,   

17. a vector of that explains the amount of variance for a total percent fit per 

 moose  for the 5 response variables, 

18. the F test probability, 

19. the number of permutation tests performed, 999, 

20. the probability (p-value) associated with the F test,   

21. the original X matrix but after it has been centered and scaled for use by  

 the plotting function,   

22. R
2
 (unadjusted).   

Using the plot.rdaTest R function, a tri-plot graph is produced with both the response 

variables, explanatory variables and the moose identifications. I can then examine this tri-

plot to determine which moose are most affected by which response variables and which 

explanatory variables.  
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Since both the Y and X matrices of all the RDAs have been centered and standardized, 

the arrow length does not show the effect size, however, the arrows do indicate the 

direction and loadings on the x and y canonical axes. 

The rdaTest R function was executed five times and five tri-plots were produced 

using the following command :  plot.rdaTest(rda.out, scaling=2, mul.env=1.75, 

mul.spe=1.75) , scaling = 1 means that the Euclidean distances between the site locations 

are preserved and scaling = 2 is called a correlation bi-plot and means that the 

relationship between the response variables are preserved, the environmental and species 

(response variables) arrows were multiplied by 1.75 to make them easier to read. These 

tri-plots are included in the Results section: 

1. the 21 real moose, 

2. the 40 model moose: scenario #1, 

3. the 40 model moose: scenario #6, 

4. the 40 model moose: scenario #11, and 

5. the 40 model moose: scenario #16. 

6.2.2 Construction of the X and Y Matrices for the RDA analysis of the Real and 

Model Moose 

 

Real Moose: 

There were 5 response variables with the animal collar id: road crossings, food, cover, 

distance travelled in 5 months, salt pools in buffered home range. There were 8 

environmental variables with the animal collar id: food quality, cover quality, Proximity 

to Salt Pools, Proximity to Water Bodies, Slope, number of Salt pools in home range, 
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intersection with road: Yes or no,  percentage of forest polygons within 500m of the 

roads. 

Model Moose:  

There were 5 response variables with the animal collar id: road crossings, food, cover, 

distance travelled in 5 months, average number of salt pools found in buffered home 

range. There were 9 environmental variables with the animal collar id: food, cover, 

proximity to salt pools, proximity to water bodies, slope, number of salt pools in home 

range, intersection with road: Yes or no,  percentage of forest polygons within 500m of 

the roads, percentage of forest polygons within 75m of the roads.  

Real Moose : X Matrix 

1. In ArcGIS, the 21 real moose home ranges were buffered outwards by 625m., 

2. The forest polygons within the 625m-buffered home ranges were selected, 

3. The averages of Slope, Proximity to Salt Pools, and Proximity to Water Bodies 

 were calculated using the statistics function in ArcGIS, 

4. the percentage of forest polygons within 500m of Highway 175  and number of 

 Salt pools within its home range were determined using the Select by Location 

 function in ArcGIS, 

5. whether or not the home range intersected Highway 175 was determined visually, 

6. the following eight attributes were used for each of the 21 real moose for these 

 selected forest polygons: 

a. Food quality average, 
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b. Cover quality average, 

c. Proximity to Salt Pools average, 

d. Proximity to Water Bodies average, 

e. Slope average, 

f. Number of Salt pools within its home range, 

g. whether or not the home range intersected Highway 175, and 

h. the percentage of forest polygons within 500m of Highway 175. 

7. On the tri-plot, these eight parameters are identified as follows: 

a. Food Available, Cover Available, ProxSP, ProxWB, Slope, Salt Pools  

  Available, Intersection, and Road500m. 

Real Moose : Y Matrix 

1. In ArcGIS, 21 real moose home ranges were buffered outwards by 625m, 

2. The real moose locations were joined to the selected forest polygons for the home 

 range  to produce a shapefile that included both the moose locations with its 

forest  polygon information, 

3. the following five attributes were calculated for each of the 21 real moose: 

a. Number of crossings, 

b. The average of the food quality at each forest polygon that the real moose 

 visited, 
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c. The average of the cover quality at each forest polygon that the real moose 

 visited, 

d. the distance in meters that the real moose travelled from May 1
st
 to Sept 

 30
th

 , and 

e. The number of salt pools that were visited. 

4. On the tri-plot, these five parameters are identified as follows: 

a. Crossings, Food Selected, Cover Selected, Distance, and Salt Pools 

 Selected. 

Model Moose : X Matrix 

1. In ArcGIS, 40 model moose home ranges were buffered outwards by 625m. 

2. The forest polygons within the 625m-buffered home ranges were selected. 

3. the following nine attributes were calculated for each of the 40 model moose for  

 scenario #1 for these selected forest polygons: 

a. Food quality average, 

b. Cover quality average, 

c. Proximity to Salt Pools average, 

d. Proximity to Water Bodies average, 

e. Slope average, 

f. Number of Salt pools within its home range, 
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g. whether or not the home range intersected Highway 175, 

h. the percentage of forest polygons within 500m of Highway 175, and 

i. the percentage of forest polygons within 75m of Highway 175. 

4. On the tri-plot, these nine parameters are identified as follows: 

a. Food Available, Cover Available, ProxSP, ProxWB, Slope, Salt Pools 

 Available, Intersection, Road500m and RoadCover75m. 

Model Moose : Y Matrix 

1. In ArcGIS, the 40 model moose home ranges were buffered outwards by 625m. 

2. Using the reports produced by the model, four Java utility programs were created 

 to join the Distance Travelled, Habitat Use, Salt Pool Discovery and Road 

 Crossing text files into four files per scenario. 

3. the following five attributes were calculated for each of the 40 model moose for 

 scenario #1: 

a. Average number of crossings, 

b. The average food quality at each forest polygon that the model moose 

 visited, 

c. The average cover quality at each forest polygon that the model moose 

 visited, 



127 

 

d. the average distance in meters that the model moose travelled from May 

 1
st
 to Sept 30

th
 , and 

e. The average number of salt pools that were visited. 

4. On the tri-plot, these five parameters are identified as follows: 

a. Crossings, Food Selected, Cover Selected, Distance, and Salt Pools 

 Selected. 

6.3  Forward Selection of Parameters 
 

I used forward.sel of the packfor library http://r-forge.r-

project.org/R/?group_id=195"http://r-forge.r-project.org/R/?group_id=195  (Dray et al. 

2006), to perform the forward selection of variables in the real moose RDA and the 

model moose`s scenario #1 RDA. 

Forward selection starts with no explanatory variables in the model and adds one 

variable at a time until the R2, adjusted R2 value, alpha value, the R2more parameter, a 

large drop in F-statistic or the number of selected variables is reached. In particular, the 

adjusted R2 value is a good criterion for stopping the forward selection procedure. the 

addition of the adjusted R2 value to the alpha value does result in better model selection 

(Blanchet et al. 2008). If the R2of the variable is below the R2more parameter the 

method stops. The variables are added based on their size of their R2 value, as long as 

their p-value is below the α level set in the input parameters of forward.sel (the default α 

for forward.sel is 0.05). I am generally trying to satisfy the principle of parsimony 

(Ockham's razor) where unnecessary assumptions or variables should not be proposed in 

HYPERLINK%20%22http:/r-forge.r-project.org/R/?group_id=195%22http://r-forge.r-project.org/R/?group_id=195%20%20
HYPERLINK%20%22http:/r-forge.r-project.org/R/?group_id=195%22http://r-forge.r-project.org/R/?group_id=195%20%20
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a hypothesis or , in other words, keep it as simple as possible while still, adequately, 

explaining the solution to the problem. 

This forward.sel method of the packfor library has two improvements over the  

forward selection method in Canoco (ter Braak and Šmilauer, 2002) which had a highly 

inflated Type I error (in other words, falsely rejecting a correct null hypothesis and an 

overestimation of the amount of explained variance (Blanchet et al. 2008). Forward 

selection and stepwise selection, in general, can only give some indication of the 

important variables in the model; but since the statistical computation is not independent, 

the outputs should not be tried as final but only as guidance (Legendre and Legendre, 

1998). Also, all previous selected variables are kept in the results even though they may 

have contributed only a small amount of the R
2 
compared to some of the other variables 

selected later in the method. 

Forward Selection is similar to the procedure in CANOCO but is based on 

permutation procedure using residuals from the reduced model. Y is multivariate, with 

five response variables. As well, there is a parametric version of forward selection, 

forward.sel.par, that does not use the permutation tests. I also use this R function for the 

real moose and the model moose of scenario #1. 

I used the following parameters for the forward.sel R function for the real moose: 

forward.sel(Y, X, nperm =999, R2thresh = 0.7848816, adjR2thresh=0.6414693, 

Xscale = FALSE, Yscale = FALSE, Ycenter = FALSE), where R2thresh and 

adjR2thresh are equal to the R
2
 and adjusted R

2
 of the rdaTest output for the real moose, 

the scaling and centering parameters are set to FALSE since these matrices were already 
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scaled and centered before the rdaTest was performed. The default R
2
more parameter is 

set to 0.001 and the α is set to 0.05. 

I used the following parameters for the forward.sel R function for the model moose of 

scenario #1:forward.sel(Y, X, nperm =999, R2thresh = 0.6788635, 

adjR2thresh=0.5825226, Xscale = FALSE, Yscale = FALSE, Ycenter = FALSE) , 

where R2thresh and adjR2thresh are equal to the R
2
 and adjusted R

2
 of the rdaTest 

output for the model moose of scenario #1, the scaling and centering parameters are set to 

FALSE since these matrices were already scaled and centered before the rdaTest was 

performed.  

I used the following parameters for the forward.sel.par R function for the real moose: 

forward.sel(Y, X, R2thresh = 0.7848816, adjR2thresh=0.6414693, Yscale = FALSE), 

where R2thresh and adjR2thresh are equal to the R
2
 and adjusted R

2
 of the rdaTest 

output for the real moose, the scaling of matrix Y was set to FALSE but it was 

standardized during the process.  

I used the following parameters for the forward.sel.par R function for the model 

moose of scenario #1: 

forward.sel(Y, X, R2thresh = 0.6788635, adjR2thresh=0.5825226, Yscale = FALSE), 

where R2thresh and adjR2thresh are equal to the R
2
 and adjusted R

2
 of the rdaTest 

output for the model moose of scenario #1, the scaling of matrix Y was set to FALSE but 

it was standardized during the process.  

Finally, I ran the rdaTest function on three other model scenarios that had all 36 roadside 

salt pools present, namely scenario #6 (road avoidance behaviour on, salt pool spatial 

memory off), scenario #11 (road avoidance behaviour off, salt pool spatial memory on), 
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and scenario #16 (road avoidance behaviour off, salt pool spatial memory off). I then 

compared the R
2
 and adjusted R

2
 values for the four model scenarios with all 36 roadside 

salt pools present, scenarios #1, #6, #11, and #16 and compared them to the R
2
 and 

adjusted R
2
 values of the real moose rdaTest results. The purpose of these tests is to see 

if these other scenarios produced similar R
2
 and adjusted R

2
 values to the real moose and 

the model moose of scenario #1, and similar tri-plots to the real moose and scenario #1. 

6.4 Results 
 

6.4.1 Redundancy Analysis graphs of real moose and scenarios #1, #6, #11, and #16 

 

The tri-plots of the five RDA results for the real moose and scenarios #1, #6, #11, and 

#16 show quite a similar structure for the environmental and response variables, 

particularly, for the FoodAvailable, FoodSelected, CoverAvailable and CoverSelected 

arrows (Figures A.1  - A.5). As well, for the scenarios #1, and #11, with the salt pool 

spatial memory factor on, the SaltPoolsAvailable and SaltPoolsSelected arrows are in 

similar locations. When this factor is turned off in scenario #6 and #16, these arrows are 

reduced in size and are also in similar locations.  

An analysis was performed on the tri-plots for the real moose and scenario #1‟s model 

moose, to determine for the 21 real moose ( 

Table A.1. For the RDA tri-plot of the 21 real moose, this table presents the response 

and explanatory variables that each real moose was closest to; in some cases the real 

moose has more than one arrow close to it. 
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Table A.2. For the RDA tri-plot of the 40 model moose in Scenario #1, this table 

presents the response and explanatory variables that each real moose was closest to, in 

some cases, the model moose has more than one arrow close to it. 

which shows explanatory and response variables were closest . The tri-plots for 

scenarios #6, #11 and #16 were not further analyzed. 

For the 21 real moose, 8 moose were closest to the explanatory variable, ProxSP or 

proximity to salt pools, and 6 moose were closest to the explanatory variable and 

response variable, FoodAvailable and FoodSelected, respectively. There were three 

moose closest to the CoverAvailable and CoverSelected variables. All the other 

variables had just one or two variables closest to them. Thus, one can conclude that 

ProxSP, FoodAvailable and FoodSelected had the highest effect on the real moose. The 

p-value associated with the permutation tests was 0.001, thus highly significant. The first 

4 of the five eigenvalues had a percentage variance of 36.89882, 25.75355 ,10.14533, and 

5.601632 for a cumulative total of 78.39934 compared to the R
2
 of 0.7848816. 

 For the 40 model moose in scenario #1, 21 were closest to the FoodAvailable and 

FoodSelected variables, 9 were closest to the explanatory variable, ProxWB, or 

proximity to water bodies, and the response variable, distance, had 8 model moose 

closest to it and all of the explanatory variables had 6 moose each while the remaining 

response variables, SaltPoolsSelected and Crossings had 6 and 2 moose closest to them, 

respectively. Thus, one can conclude that ProxWB, FoodAvailable and FoodSelected 

had the highest effect on the model moose. Since the weight on the FoodSelected 

variable was set at 0.45, and there are 2,262 of 10,575 that have highest value of 5, that is 

not a surprising result and though, the weight on ProxWB was set to just 0.10, there are a 
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lot of water bodies in the study area, so a large number of forest polygons (2,836 of 

10,575) would have a value of 5, representing that it is adjacent to a water body. The p-

value associated with the permutation tests was 0.001, thus highly significant. The first 4 

of the five eigenvalues had a percentage variance of 44.41253, 15.59495, 5.181138, and  

2.258358 for a cumulative total of 67.44697 compared to the R
2
 of 0.6788635. 

 

Figure A.1. Redundancy Analysis tri-plot of Real Moose. The red arrows and labels represent the 5 
response variables: Food Selected, Cover Selected, Crossings distance, and Salt Pools Selected. The blue 
arrows and labels represent the 8 environmental variables: Food Available, Cover Available, Slope, 
ProxSP, ProxWB, Road500m, Intersection, and Salt Pools Available. The 21 real moose ids are 
positioned nearest to the variables that affected them the most. All of the environment (X matrix) and 
species (Y matrix) arrows in the 5 graphs were multiplied by 1.75 so that they could be more easily 
read. 
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Table A.1. For the RDA tri-plot of the 21 real moose, this table presents the response and explanatory 
variables that each real moose was closest to; in some cases the real moose has more than one arrow 
close to it. 

 

Figure A.2. Scenario #1. Redundancy Analysis tri-plot of Model Moose. The red arrows and labels 
represent the 5 response variables: Food Selected, Cover Selected, Crossings distance, and Salt Pools 
Selected. The blue arrows and labels represent the 9 environmental variables: Food Available, Cover 
Available, Slope, ProxSP, ProxWB, Road500m, RoadCover75m, Intersection, and Salt Pools Available. 
The 40 real moose ids are positioned nearest to the variables that affected them the most. All of the 
environment (X matrix) and species (Y matrix) arrows in the 5 graphs were multiplied by 1.75 so that 
they could be more easily read. 

Response Variables

FoodSelected L40_2005 L36_2005 L36_2004 L32_2004 L22_2003 L13_2003

CoverSelected L45_2005 L19_2005 L17_2003

SaltPoolsSelected L54_2005 L28_2004

Crossings L46_2005

distance L40_2004

Explanatory Variables

FoodAvailable L40_2005 L36_2005 L36_2004 L32_2004 L22_2003 L13_2003

CoverAvailable L45_2005 L19_2005 L17_2003

SaltPoolsAvailable L54_2005 L28_2004

ProxWB L49_2005 L36_2005 L36_2004 L25_2003 L19_2005 L14_2005 L06_2004 L06_2003

ProxSP L43_2005

Road500m L46_2005 L27_2003

Intersection L43_2005

Slope L27_2004 L13_2003
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Table A.2. For the RDA tri-plot of the 40 model moose in Scenario #1, this table presents the response 
and explanatory variables that each real moose was closest to, in some cases, the model moose has 
more than one arrow close to it. 

 

 

Response Variables

FoodSelected L53_2005 L45_2005 L43_2005 L41_2004_3 L41_2004_2 L41_2004 L36_2005

L36_2004 L32_2004_3 L32_2004_2 L32_2004 L28_2005 L25_2003_2 L25_2003

L14_2005 L14_2003 L13_2003_2 L13_2003 L06_2004 L06_2003_2 L06_2003

CoverSelected L54_2005 L49_2005 L28_2005_2 L27_2003 L19_2005 L17_2003 L07_2003

SaltPoolsSelected L46_2005 L45_2005_2 L43_2005_3 L43_2005_2 L40_2005_2 L40_2005

Crossings L45_2005_2 L17_2003_2

distance L45_2005 L43_2005 L40_2004 L32_2004 L28_2004 L27_2004 L22_2003_2 L22_2003

Explanatory Variables

FoodAvailable L53_2005 L45_2005 L43_2005 L41_2004_3 L41_2004_2 L41_2004 L36_2005

L36_2004 L32_2004_3 L32_2004_2 L32_2004 L28_2005 L25_2003_2 L25_2003

L14_2005 L14_2003 L13_2003_2 L13_2003 L06_2004 L06_2003_2 L06_2003

CoverAvailable L54_2005 L49_2005 L28_2005_2 L27_2003 L19_2005 L17_2003 L07_2003

SaltPoolsAvailable L46_2005 L45_2005_2 L43_2005_3 L43_2005_2 L40_2005_2 L40_2005

ProxWB L45_2005 L43_2005 L40_2004 L32_2004 L28_2004 L28_2004 L27_2004 L22_2003_2 L22_2003

ProxSP L46_2005 L45_2005_2 L43_2005_3 L43_2005_2 L40_2005_2 L40_2005

Road500m L45_2005_2 L43_2005_3 L43_2005_2 L40_2005_2 L40_2005 L17_2003_2

Intersection L45_2005_2 L43_2005_3 L43_2005_2 L40_2005_2 L40_2005 L17_2003_2

Slope L40_2004 L32_2004 L28_2004 L27_2004 L22_2003_2 L22_2003

RoadCover75m L45_2005_2 L43_2005_3 L43_2005_2 L40_2005_2 L40_2005 L17_2003_2
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Figure A.3. Scenario #6. Redundancy Analysis tri-plot of Model Moose. The red arrows and labels 
represent the 5 response variables: Food Selected, Cover Selected, Crossings distance, and Salt Pools 
Selected. The blue arrows and labels represent the 9 environmental variables: Food Available, Cover 
Available, Slope, ProxSP, ProxWB, Road500m, RoadCover75m, Intersection, and Salt Pools Available. 
The 40 real moose ids are positioned nearest to the variables that affected them the most. All of the 
environment (X matrix) and species (Y matrix) arrows in the 5 graphs were multiplied by 1.75 so that 
they could be more easily read. 
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Figure A.4. Scenario #11. Redundancy Analysis tri-plot of Model Moose. The red arrows and labels 

represent the 5 response variables: Food Selected, Cover Selected, Crossings distance, and Salt Pools 
Selected. The blue arrows and labels represent the 9 environmental variables: Food Available, Cover 
Available, Slope, ProxSP, ProxWB, Road500m, RoadCover75m, Intersection, and Salt Pools Available. 
The 40 real moose ids are positioned nearest to the variables that affected them the most. All of the 
environment (X matrix) and species (Y matrix) arrows in the 5 graphs were multiplied by 1.75 so that 
they could be more easily read. 
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Figure A.5. Scenario #16. Redundancy Analysis tri-plot of Model Moose. The red arrows and labels 
represent the 5 response variables: Food Selected, Cover Selected, Crossings distance, and Salt Pools 
Selected. The blue arrows and labels represent the 9 environmental variables: Food Available, Cover 
Available, Slope, ProxSP, ProxWB, Road500m, RoadCover75m, Intersection, and Salt Pools Available. 
The 40 real moose ids are positioned nearest to the variables that affected them the most. All of the 
environment (X matrix) and species (Y matrix) arrows in the 5 graphs were multiplied by 1.75 so that 
they could be more easily read. 

 

6.4.2 Forward selection results for real moose  

 

The forward selection was performed on both the real moose`s X and Y matrices for 

the RDA (TableA.3,TableA.4) and the model moose X and Y matrices for the RDA 

(TableA.5,  TableA.6) using both the permutation test  and parametric versions of 

forward.sel for the packfor library.   

In both the permutation and parametric versions, the two variables first selected in the 

real and model moose cases were Food Available and SaltPoolsAvailable.  Both of 

these variables had high weights  in the travelling process, 0.45 and 0.30, respectively, so 
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it could be expected that these two variables would be selected. An additional variable, 

ProxWB, was selected for the model moose in the permutation test case. For the real 

moose, two additional attributes, ProxSP and Road500m were selected for the 

parametric case.  

 Permutation tests 

Procedure stopped (alpha criteria): p-value for variable 3 is 0.063 (superior to 0.05) 

    variables  

 

R
2
      R

2
Cum   AdjR

2
Cum         F   p-value 

FoodAvailable      0.318 0.318 0.282 8.867 0.001 

SaltPoolsAvailable      0.223 0.541 0.490 8.731 0.001 

Table A.3. Forward selection on 21 real moose using the permutation test version of the forward.sel 
function. 

Parametric test 

Procedure stopped (alpha criterion): p-value for variable  4  is  0.0942368 

Variable R
2
      R

2
Cum   AdjR

2
Cum         F p-value 

FoodAvailable  0.318 0.318 0.282 8.867 6.162e-07 

SaltPoolsAvailable  0.223 0.541 0.490 8.731 8.815e-07 

ProxSP 0.062 0.602 0.532 2.634 2.904e-02 

Road500m 0.072 0.674 0.594 3.559 5.881e-03 

Table A.4. Forward selection on 21 real moose using the parametric version of the forward.sel.par 
function. 

6.4.3 Forward selection results for model moose in scenario #1. 

 

Permutation Tests 

Procedure stopped (alpha criteria): p-value for variable 4 is 0.096 (superior to 0.050) 
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variables  R
2
      R

2
Cum   AdjR

2
Cum         F   p value 

 

FoodAvailable      0.397 0.397 0.382 25.058 0.001 

SaltPoolsAvailable      0.149 0.547 0.522 12.173 0.001 

ProxWb      0.053 0.600 0.567   4.806 0.011 

Table A.5. Forward selection on 40 model moose using the permutation test version of the forward.sel 
function. 

Parametric Test 

Procedure stopped (alpha criterion): p-value for variable  7  is  0.05073346. 

Variable R
2
      R

2
Cum   AdjR

2
Cum               F p value 

FoodAvailable 0.397 0.397 0.382 25.058 2.316e-19 

SaltPoolsAvailable 0.149 0.547 0.522 12.173 3.310e-10 

ProxWb 0.053 0.600 0.567 4.806 3.781e-04 

Table A.6. Forward selection on 40 model moose using the parametric version of the 
forward.sel.par function. 

6.4.4 Comparison of R
2
 and adjusted R

2
 for scenarios 1, 6, 11, and 16 and the real 

moose for the all 36 roadside salt pools present 

 

For scenarios #1, #6, and #16, the R
2
 and R

2
adjusted are very similar to each other but 

scenario #11 and the real moose have a more similar R
2
 but not so much the R

2
adjusted 

value which is closer but higher to the R
2
adjusted of scenarios #1, #6, and #16 

(TableA.6).  
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rdaTest Model Moose and Real Moose

all 36 roadside salt pools present

Scenario 1 6 11 16 Real

R2
0.679 0.680 0.796 0.677 0.785

adjusted R
2

0.583 0.583 0.735 0.580 0.641

RAB on on off off Not applicable

SPSM on off on off Not applicable  

Table A.7. Comparison of R2 and adjusted R2 for scenarios 1, 6, 11, and 16 and the real moose. 

6.5 Discussion  

 
The redundancy analysis of the real moose and the scenario #1 with all roadside salt 

pool present, showed that for most of the moose, FoodAvailable, and ProxWB were the 

most important explanatory variables and FoodSelected was the most important response 

variable. Though, the forward selection procedure demonstrated that FoodAvailable and 

SaltPoolsAvailable were the explanatory variables that contributed the most to the 

variance in R
2
, particularly, in scenarios #1 and #11. The forward selection procedure is 

used for guidance for definitely determining the most important variables. As well, the 

forward selection parametric test for the real moose produced the same first three 

variables as the RDA`s most important variables, namely, FoodAvailable, FoodSelected 

and ProxSP as well as the Road500m variable. The forward selection parametric test for 

the model moose produced the same first three variables as the RDA`s most important 

variables, namely, FoodAvailable, FoodSelected and ProxWB.  
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6.6 Future Research 

 

In my future research, I will apply some more individual variability to the model 

moose mainly based on sex and age using the following properties:  

1. good cover stands are less desired by males than females during spring, 

summer and early winter. Females selected and avoided these stands at day 

and night respectively from summer to early winter to avoid predation, 

predation being a limiting factor (Franzmann and Schwartz. 2007), 

2. in the winter at the home range level, moose trade off food availability with 

avoidance of deep snow and predators. During winter, moose increase use of 

stands with good cover next to stands with good food  (Franzmann and 

Schwartz. 2007), 

3. females with calves differ from solitary female moose in that they seek 

protection from predation by choosing better cover (Franzmann and Schwartz. 

2007), 

4. yearlings kicked out just 2 weeks before birth of new moose to find their own 

home ranges, thus there is much dispersal, lots of travelling, and MVCs, in 

order to find a home range near their mother (Franzmann and Schwartz. 

2007), 

5. females search for isolated sites for birthing with good cover to reduce stress 

and avoid predation, (islands, close to water, forest patches in large forest 
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cuts: they use these sites for several days to several weeks) (Franzmann and 

Schwartz. 2007), 

6. in the rut season from September to October: male moose leave wetlands 

gradually, and become less wary of roads during rut. Most male moose 

gradually stops eating during rut, and they fight with other males to see which 

will dominate and have most of the access to the females. Moose use larger 

travel steps up to doubling their rate of movement per day (Leblond et al. 

2010). Males can travel more than 250 to 700 m/day but females reduce 

movement and wait for the males to arrive (Franzmann and Schwartz. 2007).  

Other processes that will be added to all scenarios are: yearling dispersal, birth, 

hunting by humans and predators such as wolves and bears, reduced highway 

maintenance budgets, gates left open and increased human traffic in large wildlife 

underpasses. 

When the time-steps are between May 15
th 

and May 31
st
, if a female has one or more 

yearlings then she kicks them out.  The yearlings then disperse using the square root of 

their mother‟s home range as their daily travel distance, and, after some time, find new 

home ranges next to their mother‟s. Males tend to disperse farther than females from their 

mother's home range, particularly after the first year of abandonment by the mother 

(Cederlund and Sand 1992).  

When the time-steps are between June 1
st
 and June 15

th
, the females with an age 

greater 3 years and apply a random generator so that the final births equal the birth rate 

for that year (4.5%). The percentage of males, females and calves in the population is 
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32%, 52%, and 16% respectively and the total number of moose in LWR is about 3,283 

according to a 2009 winter aerial survey (MRNF 2010). 

When the time-steps are between Sept. 1
st
 and Sept. 30

th
,  the males with an age 

greater than  three years and apply a random generator so that the final hunting  deaths 

equal  the hunting rate for that year (9.9%) with 4.5% for the females and 5.4% for the 

males  (MRNF 2010). As well, predation by wolves and bears that mainly attack the very 

young moose will be added to the ABM. 

Changes will be introduced in Transports Québec maintenance budgets of the fences 

and underpasses. Bissonette and Cramer (2008) found that, across North America, that 

the maintenance budgets for fencing and wildlife passages were too low. The Transports 

Quebec maintenance budget will be varied upwards and downwards per year and if the 

budget is too low then it will cause certain fences and passages to deteriorate. This will 

cause gaps between the fences and the underpasses and holes in the fence, either, caused 

by wear and tear or by humans cutting the fences deliberately. Neither of these two 

situations will receive the required maintenance if the budgets are too low. 

The possibility will be added that pedestrian and road access gates along the Highway 

175 are left open occasionally by hunters and fishermen and fisherwomen who use them, 

thus, increasing the probability that moose can enter the Highway 175 right-of-way and 

then wander on the Highway 175 itself. I will also add the double one-way-escape gates 

that have been constructed into the fences and analyze their frequency of use by the 

model moose and also measure the number of MVCs that that moose will be involved in. 

Too much  human traffic in an underpass causes the wildlife  to use the underpass less 

often as observed in the Florida Everglades, BNP and LWR  (Foster and Humphrey 
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1995; Clevenger and Waltho 2000; AECOM Tecsult 2010).  Human traffic will be 

increased in certain underpasses thus causing the model moose to avoid  these 

underpasses and perhaps use other ones instead. 

 


