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Abstract

The discrete spectra of Dirac operators.

Petr Zorin.

A single particle is bound by an attractive central potential and obeys the Dirac

equation in d spatial dimensions. The Coulomb potential is one of the few examples

for which exact analytical solutions are available. A geometrical approach called “the

potential envelope method” is used to study the discrete spectra generated by poten-

tials V (r) that are smooth transformations V (r) = g(−1/r) of the soluble Coulomb

potential. When g has definite convexity, the method leads to energy bounds. This

is possible because of the recent comparison theorems for the Dirac equation. The

results are applied to study soft-core Coulomb potentials used as models for con-

fined atoms. The spectral estimates are compared with accurate eigenvalues found

by numerical methods.
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Introduction

The first theory of quantum mechanics was the matrix theory. The development of the

matrix formulation of quantum mechanics was done by the German physicists Werner

Heisenberg1 [1] and Max Born in 1925. But matrix theory was new to physics and was

not very welcome. It was difficult for contemporaries to understand and apply, but it

was reluctantly recognized and accepted as a theory of quantum mechanics. However,

shortly after this theory was published, the Austrian physicist Erwin Schrödinger in

1926, fascinated by de Broglie’s Ph.D thesis2, constructed wave mechanics and the

nonrelativistic Schrödinger equation as an approximation to the generalised case of

de Broglie’s theory [2, 3]. Soon after, Schrödinger [4] and von Neumann [5] showed

that the matrix and wave theories of quantum mechanics were equivalent, the former

treating operators in the Hilbert space l2 and the latter in L2. Schrödinger tried to

make his quantum mechanics relativistic, but was not satisfied, because it was second

order in time (the state at a later time is not predicted from the present). In 1928,

the British physicist Paul Dirac introduced a satisfactory solution which required 4–

spinor states and 4 × 4 matrix operators. Thus arose Dirac’s relativistic quantum

mechanical wave equation in three spatial dimensions.

With these two fundamental theories of quantum mechanics available, the field

grew quickly. Quantum theory was applied to atoms, molecules, and solids, with

1Heisenberg was awarded the Nobel Prize in physics 1932 for this achievement.
2In 1924, the French physicist Louis de Broglie put forward his theory of matter waves by stating

that particles can exhibit wave characteristics and vice versa. This theory was for a single particle
and derived from the special relativity theory.
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great success. The wave equation form of quantum mechanics is still generally used

today. One of the main problems in relativistic quantum mechanics is to determine

the solutions of the Dirac equation, in particular, to find the energy levels of a parti-

cle. But very few problems admit exact analytic solutions. Therefore methods that

give approximate solutions are extremely important. In this thesis, we describe the

envelope theory which allows us to approximate the energy eigenvalues by studying

potentials V (r) that are smooth transformations V (r) = g(h(r)) of soluble potentials

h(r).

We start the first Chapter with the derivation of three fundamental equations of

Quantum Mechanics: the Schrödinger, Klein–Gordon and Dirac equations, guided by

[6]. Then we consider the properties of certain Dirac matrices and state a theorem

which gives the connection between the size of the Dirac matrices and the spatial

dimension d. For central potentials, after the time dependence is determined, we

derive a pair of Dirac coupled equations in d spatial dimensions [7]. We then obtain

from these the radial Schrödinger equation in the nonrelativistic limit. At the end

of this chapter we describe some spectral generalities concerning the Dirac energy

eigenvalues.

In Chapter 2 we review the asymptotic iteration method [8, 9]. Then with its help

we solve the pair of the Dirac coupled equations for a particle which is moving in a

pure vector Coulomb field. As a result we get the formula for the Coulomb energies

in d spatial dimensions.

In Chapter 3 we derive scaling laws for the Schrödinger and the Dirac radial

equations for different central potentials.

We begin Chapter 4 with the relativistic Comparison Theorem for the Dirac equa-

tion, and the proof, following Hall [10, 13]. We then illustrate this theorem with some

examples.

In Chapter 5 we review the envelope theory and demonstrate it by an example.
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In Chapter 6 we briefly review the shooting method for finding numerical solutions

to boundary–value problems. Then we consider initial conditions for the Schrödinger

and Dirac equations with different potentials. Finally, we introduce a computer pro-

gram, based on this theory, with which we can calculate the energy values for the

Schrödinger and Dirac coupled equations with different potentials.

In Chapter 7 we consider a family of soft–core Coulomb potenials. In particu-

lar, we obtain the scaling law for this family with the Dirac Hamiltonian, establish

monotonicity of the energy values, and give an approximate formula for the soft–core

Coulomb energy eigenvalues.

In an appendix we include some general background information about specific

potentials which we use in this thesis.

Throughout the thesis, the natural units � = c = 1 are employed if it is not

explicitly stated otherwise.
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Chapter 1

The Dirac equation in d + 1

dimensions

1.1 Schrödinger, Klein–Gordon, and Dirac equa-

tions

The classical nonrelativistic relation between the energy E and momentum � for a

free particle of mass m reads

E =
�
2

2m
. (1.1)

We replace the energy E and the momentum � by their corresponding quantum

mechanical operators

E −→ i�
∂

∂t
and � −→ �

i
�, 1 (1.2)

and let them act on the wave function Ψ(r, t). Then the equation (1.1) becomes

i�
∂Ψ

∂t
= − �

2

2m
�2 Ψ, (1.3)

1The nabla symbol � denotes the gradient and � = h/2π is the reduced Planck constant.
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which is the well-known nonrelativistic time dependent Schrödinger equation for a

free particle.

Let us now apply the same approach to the relativistic relation between energy

and momentum, namely

E2 = �
2c2 +m2c4, (1.4)

where c is the speed of light. Using (1.2), we obtain the Klein–Gordon equation for

a free particle of mass m:

−�
∂2Ψ

∂t2
=
(−�

2c2 �2 +m2c4
)
Ψ. (1.5)

The Klein–Gordon equation presents some difficulties. For instance, it is a second

order differential equation in the time t. This means that we can find the solution

only if two boundary conditions are given, i.e. Ψ(r, t) and ∂Ψ(r, t)/∂t for a given t.

Also the Klein–Gordon equation admits negative energy solutions. Because of these

problems, physicists searched for another equation which could combine quantum

mechanics and special relativity. This equation must be a differential equation of first

order in time so we will not run into the above mentioned problem of the Klein–Gordon

equation, and also of first order with respect to derivatives of space coordinates so

that the equation can be invariant under Lorentz transformations.

Dirac considered the square root

E =
√
�2c2 +m2c4,

and assumed that it cannot be extracted in some simple way. In the limit � −→ 0,

we find √
�2c2 +m2c4 −→ mc2,
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and for m −→ 0, √
�2c2 +m2c4 −→ �c.

Then Dirac generalized the two last limits to

√
�2c2 +m2c4 = α�c+ βmc2,

and, following a similar path as that to the Klein–Gordon equation, he obtained his

famous equation.

i�
∂Ψ

∂t
=
(
α�c+ βmc2

)
Ψ. (1.6)

We shall determine the coefficients α and β in the next section.

1.2 α,β algebra: general formulation

Let us rewrite equation (1.6) in natural units � = c = 1 in the following way

i
∂Ψ

∂t
=

(
d∑

j=1

αjpj + βm

)
Ψ, H =

d∑
j=1

αjpj + βm, (1.7)

where m is the mass of the particle and the operator pj is defined by

pj = −i
∂

∂xj
, 1 ≤ j ≤ d. (1.8)

Equation (1.7) is the Dirac equation in d + 1 dimensions for a free particle. The

coefficients {αj} and β cannot be simple numbers, otherwise (1.7) would not be form

invariant with respect to simple spatial rotations, thus they are matrices, called Dirac

6



matrices. Since {αj} and β are matrices then Ψ has to be a column vector

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψ1(r, t)

ψ2(r, t)

. . .

ψn(r, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

therefore {αj} and β have to be n×n square matrices. Following [14, 15] we consider

their basic properties.

If we rewrite equation (1.7) for a free particle in the following form

(
d∑

j=1

αjpj + βm− i
∂

∂t

)
Ψ = 0,

and, multiply it on the left by the operator
(∑d

j=1 αjpj + βm+ i ∂
∂t

)
, we obtain

(
d∑

i,j=1

αiαjpipj +m
d∑

j=1

(αjβ + βαj) pj +m2β2 +
∂2

∂t2

)
Ψ = 0.

Since
∑d

i,j=1 αiαjpipj =
(∑d

i,j=1 αiαjpipj +
∑d

i,j=1 αjαipjpi

)
/2, we finally obtain

−∂2Ψ

∂t2
=

(
d∑

i,j=1

αiαj + αjαi

2
pipj +m

d∑
j=1

(αjβ + βαj) pj +m2β2

)
Ψ.

Each component ψi(r, t) of the spinor Ψ must satisfy the Klein–Gordon equation

(1.5) (with � = c = 1)

−∂2ψi

∂t2
=
(
�
2 +m2

)
ψi.

The comparison of the last two equations gives us the following requirements for the

matrices {αj} and β:

αiαj + αjαi = 2δij�, (1.9)
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αjβ + βαj = 0, (1.10)

α2
i = β2 = �, (1.11)

where

δij =

⎧⎨
⎩ 1, if i = j,

0, if i �= j,

is the Kronecker delta symbol. The anticommutation relations (1.9), (1.10), and

(1.11) define an algebra for the {αj} and β matrices. The hamiltonian H in (1.7) has

to be hermitian (self-adjoint), therefore Dirac matrices also have to be hermitian. This

implies that the elements on the main diagonal are real, the matrices are symmetric

with respect to the main diagonal, their eigenvalues are real, and

α†
j = αj,

2 (1.12)

β† = β. (1.13)

Since the {αj} are hermitian, they are diagonalizable. Suppose that αj in its eigen-

representation has the form

αj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0

0 a2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1.14)

2The symbol “†” denotes the conjugate transpose of a matrix.
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where a1, . . . , an are eigenvalues of {αj}. Then (1.14) and (1.11) give us

α2
j = � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a21 0 0 · · · 0

0 a22 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · a2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

from which we have ak = ±1, k = 1, . . . , n. The same argument applies to the

matrix β. Thus the eigenvalues of {αj} and β are equal to ±1.

Multiply of (1.10) on the left by β yields (with β2 = �),

βαjβ = −αj. (1.15)

Using the identity 3 trAB =trBA from [16] with (1.11) and (1.15), we get

tr αj = tr β2αj = tr βαjβ = −tr αj,

or tr αj = −tr αj, this is possible only if

tr αj = 0. (1.16)

Following the same reasoning we can obtain for the matrix β:

−β = αjβαj,

then

tr β = tr α2
jβ = tr αjβαj = −tr β.

3tr A, the trace of a square n×n matrix A, is defined to be the sum of the elements on the main
diagonal.
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Finally,

tr β = 0. (1.17)

Now let us go back to the constraint (1.10), which we can rewrite in the following

form

αjβ = −βαj = (−�)βαj.

If we take the determinant of both sides of the above equation,

det αjdet β = (−1)ndet βdet αj

we find that n must be even.

Suppose that T is the n × n square matrix which transforms the matrix αj into

its diagonal form

TαjT
−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0

0 a2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (1.18)

Then (1.18) and identity trAB =trBA gives us

tr

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 · · · 0

0 a2 0 · · · 0

...
...

...
. . .

...

0 0 0 · · · an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
n∑

k=1

ak = tr TαjT
−1 = tr αjTT

−1 = tr αj. (1.19)

From (1.19) we can conclude that the trace of a matrix is the sum of its eigenvalues.

But on the other hand, we know that the trace of the Dirac matrices is equal to zero

and their eigenvalues are ±1. Thus the number of positive eigenvalues has to be the

same as the number of negative eigenvalues.

10



According to the constraints (1.9), (1.10), and (1.11) the Dirac matrices should

anticommute. Only three anticommuting 2×2 matrices exist [17]. They are the Pauli

matrices σm, m = 1, 2, 3, given by

σ1 =

⎛
⎝0 1

1 0

⎞
⎠ , σ2 =

⎛
⎝0 −i

i 0

⎞
⎠ , σ3 =

⎛
⎝1 0

0 −1

⎞
⎠ .

Therefore we can construct the Dirac matrices in terms of the Pauli matrices

αj =

⎛
⎝ 0 σm

σm 0

⎞
⎠ and β =

⎛
⎝� 0

0 −�

⎞
⎠ , (1.20)

where � is the 2× 2 unit matrix. The algebra of these matrices is a special case of a

Clifford algebra [11, 12]. From (1.20) we can see that the Dirac matrices must be at

least 4× 4 dimensional. According to [18]–[21] we can state the following theorem:

Theorem 1.1. Suppose that the size of the Dirac matrices is n× n. If d+1 is even,

then

n = 2(d+1)/2.

If d+1 is odd,

n = 2d/2.

For example, if d = 1 or 2 then n = 2; if d = 3 or 4, n = 4.

1.3 Central potentials V (r) and S(r)

The Dirac equation (1.7) in d + 1 dimensions for spherically symmetric vector and

scalar potentials V (r) and S(r) respectively can be expressed in natural units � =

11



c = 1 as [7, 22]

i
∂Ψ

∂t
= HΨ, H =

d∑
j=1

αjpj + β (m+ S(r)) + �V (r), (1.21)

where m is the mass of the particle, � is the identity matrix, and the (d+1) matrices

{αj} and β satisfy the anticommutation relations (1.9)–(1.11). Let us introduce the

radial momentum and radial velocity operators respectively

pr = r−1

(
d∑

j=1

xjpj − i
d− 1

2

)
(1.22)

and

αr = r−1

(
d∑

j=1

αjxj

)
. (1.23)

Let us now define a finite set of the orbital angular momentum operators Lij, by

the following algebraic relations [25]:

Lij = xipj − xjpi
(1.8)
= −i

(
xi

∂

∂xj

− xj
∂

∂xi

)
, (1.24)

Lij = −Lji, (1.25)

Lij = L†
ij (self-adjoint), (1.26)

[Lij, Lik] = iLjk
4, (1.27)

[Lij, Lkl] = 0, for i �= j �= k �= l, (1.28)

LijLkl + LkiLjl + LjkLil = 0, for i �= j �= k �= l, (1.29)

where the indices i, j, k, l can take the values 1, 2, . . . , d (d is the dimension of

4The commutation relation [a, b] = ab− ba.
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the space). Then the total orbital angular momentum has the form

L2 =
d∑

i<j

L2
ij. (1.30)

We introduce now the generalized spin angular momentum σij, and its basic properties

[26]:

σij = − i

2
[αi, αj], (1.31)

σij = −σji, (1.32)

σij = σ†
ij, (1.33)

σ2
ij = 1 (the unit operator), (1.34)

[σij, σik] = iσjk, for i �= j �= k, (1.35)

[σij, σkl] = 0, for i �= j �= k �= l, (1.36)

and again the indices i, j, k, l can take the values 1, 2, . . . , d. It can be shown [27]

that the total angular momentum and the operator k̂d commute with the Hamiltonian

H, where

k̂d = β

(
d∑

i<j

σijLij +
d− 1

2

)
. (1.37)

Using the information above and
∑d

j=1 (x
j)

2
= r2 we can rewrite the Dirac Hamil-

tonian from (1.21) in terms of three operators: pr, αr, and k̂d, in the following way

H = αrpr +
i

r
αrβk̂d + β(m+ S(r)) + �V (r). (1.38)

If we find the eigenvalues of k̂d, then we can find the eigenvalues of H. For this
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purpose, we introduce the operator L, such that

L =
d∑

i<j

σijLij, (1.39)

and, according to (1.37), k̂d becomes

k̂d = β

(
L+

d− 1

2

)
. (1.40)

Since the potentials are spherically symmetric, the operators H, L2, and L com-

mute, i.e. [H, L] = 0 and [L2, L] = 0. Thus, according to [17], these operators have

common eigenfunctions, so we can find eigenvalues of L by establishing a relation

between L and L2. From (1.39) we have

L2 =
d∑

i<j

d∑
k<l

σijLijσklLkl = L2
1 + L2

2 + L2
3, (1.41)

where L2
1 consists of terms with paired equal indices, i.e., i = k and j = l; the second

sum L2
2 includes terms with unequal indices, i.e., i �= j �= k �= l; L2

3 – terms which

can be contracted into σijLij. So,

L2
1 =

d∑
i<j

(σijLij)
2 (1.30)

=
(1.34)

L2. (1.42)

Then the second partial sum has the form:

L2
2 =

d∑
i<j

d∑
k<l

σijLijσklLkl, i �= j �= k �= l, (1.43)

and the third one is:

L2
3 =

d∑
i<j

(
d−1∑
k=1

σkiLkiσkjLkj +
d∑

k=j+1

σikLikσjkLjk

j−1∑
k=i+1

σkjLkjσikLik

)
(1.44)

14



= −(d− 2)L.

The terms in the sum (1.39) are symmetric, so all terms from (1.42) can be recovered

by summing up only the following three terms (with the help of (1.27) and (1.34)):

σijLijσklLkl + σikLikσjlLjl + σjkLjkσilLil

= σijσkl(LijLkl + LikLjl + LjkLil) = 0, i < j < k < l. (1.45)

It can be shown that the numbers of terms involved in each partial sum areN1 = d(d−
1)/2 in L2

1, N2 = 6
∑d

i<j<k<l 1 = d(d−1)(d−2)(d−3)/4 in L2
2, and N3 = d(d−1)(d−2)

in L2
3. Then the total number of terms is N = N1 +N2 +N3 = (d(d− 1)/2)2. Using

equations (1.42), (1.44), and (1.45) we find 5

L2 = L(L+ d− 2). (1.46)

Since the eigenfunctions of L2 are doubly degenerate [23, 24], we may write

Lψ1 = lψ1, (1.47)

Lψ2 = −(l + d− 2)ψ2, (1.48)

which lead to

L2ψi = l(l + d− 2)ψi, i = 1, 2. (1.49)

Thus, the eigenvalues of k̂d can be written as

kd = ∓
(
j +

d− 2

2

)
, j = l ± 1

2
. (1.50)

5For an alternative way of getting this result see [25], Lemma 2.
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Introducing τ = ±1, we can rewrite kd and j in the following way

kd = τ

(
j +

d− 2

2

)
, with j = l − τ

2
. (1.51)

By introducing the two–component wave function

Ψ = r−
d−1
2

(
iG

−F

)
, (1.52)

we obtain the radial Dirac equations in d dimensions (since time has been removed)

dG

dr
= −kd

r
G+ (E +m− V (r) + S(r))F, (1.53)

dF

dr
=

kd
r
F − (E −m− V (r)− S(r))G. (1.54)

Equations (1.53) and (1.54) can be reduced to three dimensions with k3 = τ(j+1/2)

for j = l − τ/2, which is in agreement with [14], and to two dimensions with k2 =

τ l − 1/2.

1.4 Nonrelativistic limit

It is well known that, in nonrelativistic limit, the Dirac equation becomes the Schrödinger

equation. In this section we derive the radial Schrödinger equation from the pair of

the Dirac coupled equations.

Consider the relation between the Dirac and Schrödinger energies E and E respec-

tively:

E = m+ E , (1.55)

where m is the mass of the particle. Substitution of this relation and putting S(r) = 0
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into the Dirac radial equations (1.53) and (1.54) gives us

dG

dr
= (E − V (r))F + 2mF − kd

r
G, (1.56)

dF

dr
=

kd
r
F + (V (r)− E)G. (1.57)

We assume that in nonrelativistic limit |E| 	 m, therefore in equation (1.56) term

(E −V (r))F is much less then the term 2mF , so we can omit (E −V (r))F and (1.56)

becomes

dG

dr
= 2mF − kd

r
G. (1.58)

Then we differentiate the last equation with respect to r:

d2G

dr2
= 2m

dF

dr
+

kd
r2
G− kd

r

dG

dr
.

Substituting (1.57) into the previous equation yields

d2G

dr2
= 2m

kd
r
F + 2m(V (r)− E)G+

kd
r2
G− kd

r

dG

dr
. (1.59)

Using (1.58), we can replace F in (1.59) and obtain

d2G

dr2
=

k2
d + kd
r2

G+ 2m(V (r)− E)G. (1.60)

Replacing G(r) by R(r) in (1.60) gives us

1

2m

[
− d2

dr2
+

kd(kd + 1)

r2

]
R + V (r)R = ER, (1.61)

which is the radial Schödinger equation for a spherically symmetric potential V (r) and

a particle of mass m in d–dimensions. R(r), like G(r), satisfies R(0) = 0. We keep the

function G(r) instead of F (r) because m >> 1 and from (1.58) F = 1
2m

dG
dr

+ 1
2m

kd
r
G.
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Thus F approaches zero in the nonrelativistic limit. In quantum mechanics F is

colled the small component and G is the big component of the wave function Ψ.

From the section above we have kd = τ
(
j + d−2

2

)
, where j = l− τ/2 and τ = ±1.

According to [10] we can generalize the orbital–angular momentum quantum number

l from the three–dimensional case to d-dimensions by introducing

ld = l +
d− 3

2
. (1.62)

Thus the factor kd(kd + 1) in (1.61) for τ = ±1 will take the form

kd(kd + 1) = ld(ld + 1). (1.63)

Also we can derive (1.61) from

⎛
⎜⎝− 


2m
+ V (r)

⎞
⎟⎠Ψ = EΨ 6, by considering ra-

dial solutions of the form Ψ(r) = ψ(r)Yl(θ0, θ1, . . . , θd−1) and taking ψ(r) =

r−(d−1)/2R(r) where ψ(r) is spherically symmetric, Yl is the generalized spherical

harmonic [28], and R(r) is the radial wavefunction. This deviation, for instance, can

be found in [29] and [30].

1.5 Some spectral generalities

Let us consider equation (1.61) in three dimensions, thus, according to (1.62) and

(1.63) it becomes

1

2m

[
− d2

dr2
+

l(l + 1)

r2

]
R + V (r)R = ER, (1.64)

which is the radial Schrödinger equation for a particle of mass m and a spherically

symmetric potential V (r) in three dimensions [17, 31] with � = c = 1. With the

6
 = �2 is the Laplace operator or Laplacian.
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sech–squared potential V (r) = −v sech2 r (A.8), and l = 0, equation (1.64) takes the

form

− d2

dr2
R− 2mv sech2(r)R = 2mER, (1.65)

and the eigenvalues are given by, see (A.9),

E = − 1

2m

[(
2mv +

1

4

)1/2

−
(
n+

1

2

)]2
, (1.66)

where n = 1, 2, 3, . . . labels the sequence of discrete eigenvalues. Therefore, accord-

ing to (1.55), the Dirac energy E for the sech–squared potential is asymptotically

E = m− 1

2m

[(
2mv +

1

4

)1/2

−
(
n+

1

2

)]2
. (1.67)

In the nonrelativistic limit E approaches m, or, equivalently, E approaches zero.

Therefore from the last two relations we conclude that these conditions will be satisfied

if

v > vL =
n(n+ 1)

2m
, (1.68)

where vL is the lower bound for the coupling v. In other words, this condition means

that if v ≤ vL, the discrete energy eigenvalue E does not exist and the pair of Dirac

coupled equations cannot be solved.

We can verify the condition (1.68) using numerical methods for finding solutions

of the Schrödinger and Dirac equations. We shall discuss these in Chapter 6. They

allow us to find, for an arbitrary potential V (r) and dimension d, the energy values,

and also to plot the graph of the radial wave function.

We start from the ground state n = 1 and take m = 1/2, thus condition (1.68)

becomes v > vL = 2. Then using numerical methods we solve equation (1.65) for

different values of the coupling parameter.

As we can see from the Fig. 1.1, when the coupling satisfies condition (1.68),
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we get the energy values ENM with the help of numerical methods, which are in

agreement with the exact values of E from (1.66). We also obtain the graphs of the

radial wave function R(r) (Fig. 1.1 (a) and (b)). On the other hand, when v ≤ vL

we can see from the Fig. 1.1 (c) and (d) that the graphs of R(r) are “wrong”; thus

the eigenvalues can not be calculated if v is too small.

Hence, for short–range potentials, such as the sech–squared potential, there are

no eigenvalues unless the coupling v is sufficiently large, v > vL. As the coupling is

increased beyond the critical value vL, the eigenvalue E is reduced. Another boundary

is reached when E approaches −m. In general, the eigenvalues lie in the interval

(−m, m), [14].

(a) v = 3, E = −0.09167, and
ENM = −0.09167.

(b) v = 2.1, E = −0.00109, and
ENM = −0.00109.
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(c) v = 2, E = 0.00000, and
ENM = 0.00000.

(d) v = 1.5, E = −0.03137, and
ENM = 0.00000.

Figure 1.1: Graphs of the Schrödinger radial wave function R(r) for the ground state
and different v.
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Chapter 2

The exact solution of the Coulomb

problem

2.1 The asymptotic iteration method

In this section we consider the asymptotic iteration method (AIM) which was de-

veloped in [8] and [9]. Let us start from the first–order linear coupled differential

equations:

φ′
1 = λ0(x)φ1 + s0(x)φ2, (2.1)

φ′
2 = ω0(x)φ1 + p0(x)φ2, (2.2)

where ′ denotes the operator d/dx, and λ0(x), s0(x), ω0(x), and p0(x) are sufficiently

differentiable in appropriate domains. If we take the derivative with respect to x from

the equations (2.1) and (2.2) we obtain

φ′′
1 = λ′

0φ1 + λ0φ
′
1 + s′0φ2 + s0φ

′
2,

φ′′
2 = ω′

0φ1 + ω0φ
′
1 + p′0φ2 + p0φ

′
2,
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and with (2.1) and (2.2) these equations become

φ′′
1 = λ1(x)φ1 + s1(x)φ2, (2.3)

φ′′
2 = ω1(x)φ1 + p1(x)φ2, (2.4)

where

λ1(x) = λ′
0 + λ2

0 + s0ω0,

s1(x) = s′0 + λ0s0 + s0p0,

ω1(x) = ω′
0 + λ0ω0 + p0ω0,

p1(x) = p′0 + p20 + s0ω0.

If we continue to differentiate equations (2.3) and (2.4), after n steps, we will have

φ
(n+2)
1 = λn+1(x)φ1 + sn+1(x)φ2, (2.5)

φ
(n+2)
2 = ωn+1(x)φ1 + pn+1(x)φ2, (2.6)

with

λn+1(x) = λ′
n + λnλ0 + snω0, (2.7)

sn+1(x) = s′n + λns0 + snp0,

ωn+1(x) = ω′
n + ωnλ0 + pnω0,

pn+1(x) = p′n + pnp0 + ωns0.

Using (2.5), we can consider the ratio:

φ
(n+2)
1

φ
(n+1)
1

=
λn+1(φ1 + (sn+1/λn+1)φ2)

λn(φ1 + (sn/λn)φ2)
. (2.8)
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Meanwhile,

φ
(n+2)
1

φ
(n+1)
1

=
d

dx

(
ln(φ

(n+1)
1

)
. (2.9)

We now introduce the “asymptotic” aspect of the method. For sufficiently large

n = 1, 2, 3, . . . we have

sn+1

λn+1

=
sn

λn

:= α. (2.10)

Joining equations (2.8), (2.9), and (2.10) we have

d

dx
ln
(
φ
(n+1)
1

)
=

λn+1

λn

,

then, with (2.7) and (2.10), the previous fraction becomes

λn+1

λn

=
d

dx
(ln(λn)) + λ0 + αω0.

The last two equations give us

ln
(
φ
(n+1)
1

)
=

∫ x

⎛
⎜⎝ d

dt
(ln(λn(t))) + λ0(t) + α(t)ω0(t)

⎞
⎟⎠ dt,

or

φ
(n+1)
1 (x) = C1λn exp

(∫ x

λ0(t) + α(t)ω0(t)

)
dt, (2.11)

where C1 is the constant of integration. From (2.5) we can write

φ
(n+1)
1 = λn(x)φ1 + sn(x)φ2. (2.12)
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Substituting of (2.11) into (2.12), and using (2.10), we obtain

λn(x)φ1 + sn(x)φ2 = C1λn exp

(∫ x

λ0(t) + α(t)ω0(t)

)
dt,

or

φ1(x) = C1 exp

(∫ x

λ0(t) + α(t)ω0(t)

)
dt− α(x)φ2(x). (2.13)

Also we can rewrite equation (2.2) in the following form

φ1(x) = (φ′
2(x)− p0(x)φ2(x))/ω0(x).

Combining the two last equations, we obtain

C1ω0(x) exp

(∫ x

[λ0(t) + α(t)ω0(t)]

)
dt− α(x)φ2(x)ω0(x) = (φ′

2(x)− p0(x)φ2(x)),

or

φ′
2 + ξ(x)φ2 = η(x), (2.14)

with

ξ(x) = α(x)ω0(x)− p0(x),

and

η(x) = C1ω0(x) exp

(∫ x

[λ0(t) + α(t)ω0(t)]

)
dt.

Equation (2.14) is a first–order linear differential equation and its solution is given

by [33]

φ2 = exp−1

[∫ x

ξ(t)dt

] [∫ x

η(t) exp

[∫ x

ξ(t)dt

]
dt+ C2

]
. (2.15)

Substitution of the expressions for ξ and η into (2.15) yields the general solution of
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φ2(x):

φ2(x) = exp

(∫ x

(p0 − αω0)dt

)[
C1

∫ x

ω0 exp

(∫ t

(λ0 − p0 + 2ω0α)dτ

)
dt+ C2

]
.

(2.16)

We can use this solution and (2.13) to find φ1(x):

φ1(x) = C1 exp

(∫ x

λ0(t) + α(t)ω0(t)

)
dt−

α(x) exp

(∫ x

(p0 − αω0)dt

)[
C1

∫ x

ω0 exp

(∫ t

(λ0 − p0 + 2ω0α)dτ

)
dt+ C2

]
.

(2.17)

2.2 Solution of the Dirac Coulomb problem

Suppose we have a particle which is moving in a pure vector Coulomb field i.e. S(r) =

0 and

V (r) = −v

r
, (2.18)

where v = αZ is the coupling parameter, α = e2/c� ≈ 1/137.037 is the fine–structure

constant, and Z is the atomic number. Thus equations (1.53) and (1.54) take the

form

dG

dr
=
(
E +m+

v

r

)
F −

kd

r
G, (2.19)

dF

dr
=

kd

r
F −
(
E −m+

v

r

)
G, (2.20)

where kd = τ
(
j + d−2

2

)
and j = l − τ/2. Consider the behaviour of the functions

G(r) and F (r) for small and large r. Near the origin (r −→ 0) the terms with r in

the denominator become extremely large in comparison with the terms E ±m, thus
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we can omit the small terms and equations (1.53) and (1.54) become

dG

dr
=

v

r
F −

kd

r
G, (2.21)

dF

dr
=

kd

r
F − v

r
G. (2.22)

After taking the derivative with respect to r from the system above we get

d2G

dr2
=

v

r

dF

dr
− F

v

r2
+G

kd
r2

− kd
r

dG

dr
,

d2F

dr2
=

kd
r

dF

dr
− F

kd
r2

+G
v

r2
− v

r

dG

dr
.

Then we substitute into the system above equations (2.21) – (2.22) and obtain

d2G

dr2
= G

k2
d

r2
−G

v2

r2
− F

v

r2
+G

kd
r2
, (2.23)

d2F

dr2
= F

k2
d

r2
− F

v2

r2
− F

kd
r2

+G
v

r2
. (2.24)

Using (2.21) and (2.22), we can replace the two last terms in (2.23) and (2.24) in the

following way:

−F
v

r2
+G

kd
r2

=
1

r

dG

dr
,

−F
kd
r2

+G
v

r2
=

1

r

dF

dr
.

Finally, for small r equations (2.19) and (2.20) have the form

d2G

dr2
= G

k2
d − v2

r2
− 1

r

dG

dr
, (2.25)
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d2F

dr2
= F

k2
d − v2

r2
− 1

r

dF

dr
. (2.26)

These are the Cauchy–Euler equations with solution in the form [34]

H(r) = rγ, (2.27)

where H(r) can be G(r) or F (r) as well, and

γ =
√
k2
d − v2, (2.28)

and v2 < k2
d for the ground state, that is for j = 1/2; thus v < 1.

Now let us consider the case when r is large. When the terms with r in the

denominator approach to zero and the system (2.19) – (2.20) becomes

dG

dr
= (E +m)F, (2.29)

dF

dr
= (m− E)G, (2.30)

and, after differentiation with respect to r,

d2G

dr2
= (E +m)

dF

dr
,

d2F

dr2
= (m− E)

dG

dr
.

Using (2.29) and (2.30) in the last two equations we get the system of the Dirac
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coupled equations for r −→ ∞:

d2G

dr2
=
(
m2 − E2

)
G,

d2F

dr2
=
(
m2 − E2

)
F,

with the solution

T (r) = Ce−r
√
m2−E2

, (2.31)

where T (r) is either G(r) or F (r) and C is the constant of integration. Keeping in

mind (2.27) and (2.31) we can introduce the radial functions G(r) and F (r) in the

following form:

G(r) =
√
m+ E rγe−r

√
m2−E2

(φ1 + φ2), (2.32)

F (r) =
√
m− E rγe−r

√
m2−E2

(φ1 − φ2). (2.33)

Now we make the substitution

r = r1ρ and
d

dr
=

1

r1

d

dρ
(2.34)

with r1 = 1/
(
2
√
m2 − E2

)
in (2.19) – (2.20) and (2.32) – (2.33), so

dG

dρ
=

[
r1(m+ E) +

v

ρ

]
F (ρ)−

kd

ρ
G(ρ), (2.35)

dF

dρ
=

kd

ρ
F (ρ)−

[
r1(m− E) +

v

r

]
G(ρ), (2.36)

and

G(ρ) =
√
m+ E rγ1ρ

γe−ρ/2(φ1(ρ) + φ2(ρ)), (2.37)
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F (ρ) =
√
m− E rγ1ρ

γe−ρ/2(φ1(ρ)− φ2(ρ)). (2.38)

Substitution of (2.37) and (2.38) into (2.35) and (2.36) yields

(
γ

ρ
− 1

2

)
(φ1 + φ2) +

dφ1

dρ
+

dφ2

dρ
=

−kd
ρ
(φ1 + φ2) +

(
r1(m+ E) +

v

ρ

)√
m− E

m+ E
(φ1 − φ2),

(
γ

ρ
− 1

2

)
(φ1 − φ2) +

dφ1

dρ
− dφ2

dρ
=

kd
ρ
(φ1 − φ2) +

(
r1(m− E)− v

ρ

)√
m+ E

m− E
(φ1 + φ2). (2.39)

Adding the last two equations, and using

√√√√m− E

m+ E

(2.34)
= 2r1(m−E) and

√√√√m+ E

m− E

(2.34)
=

2r1(m+ E), we obtain

2γ

ρ
φ1 − φ1 + 2

dφ1

dρ
= −2

kd
ρ
φ2+

[
2r21(m

2 − E2) + 2r1(m− E)
v

ρ

]
(φ1−φ2)+

[
2r21(m

2 − E2)− 2r1(m+ E)
v

ρ

]
(φ1+φ2).

According to (2.34) 2r21(m
2 − E2) = 1/2, thus

γ

ρ
φ1 − φ1 +

dφ1

dρ
= −kd

ρ
φ2 − 2vr1E

ρ
φ1 − 2vr1m

ρ
φ2.

Taking

a = 2vr1E and b = 2vr1m, (2.40)

we finally obtain

dφ1

dρ
=

(
1− a+ γ

ρ

)
φ1 − b+ kd

ρ
φ2. (2.41)
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Subtracting equations (2.39), and following the same reasoning, we get

dφ2

dρ
=

b− kd
ρ

φ1 +
a− γ

ρ
φ2. (2.42)

Following [9], we will use AIM to solve equations (2.41) and (2.42). Comparing

equations (2.41) with (2.1), and (2.42) with (2.2), we find that

λ0(ρ) = 1− a+ γ

ρ
, s0(ρ) = −b+ kd

ρ
, ω0(ρ) =

b− kd
ρ

, p0(ρ) =
a− γ

ρ
. (2.43)

Then using the iteration formulas (2.7) and condition (2.10) we obtain

if n = 0, then a = γ and b = −kd,

if n = 1, then a = 1 + γ and b = −kd, ±
√

1 + 2γ + k2
d,

if n = 2, then a = 2 + γ and b = −kd, ±
√

3 + 2γ + k2
d, ±

√
4 + 4γ + k2

d,

if n = 3, then a = 3 + γ and

b = −kd, ±
√

5 + 2γ + k2
d, ±

√
8 + 4γ + k2

d, ±
√

9 + 6γ + k2
d.

Finally, for arbitrary n, we have

a = n+ γ and b = ±
√
s(2n− s) + 2sγ + k2

d, (2.44)

where s = 0, 1, 2, . . . , n. From (2.40) and (2.44) it follows that

n+ γ =
Ev

√
m2 − E2

=⇒ E = ±
m√√√√√√1 +

⎛
⎜⎝ v

n+ γ

⎞
⎟⎠

2
(2.45)
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and

±
√

s(2n− s) + 2sγ + k2
d =

mv
√
m2 − E2

=⇒ E = ±m

√√√√
1−

v2

s(2n− s) + 2sγ + k2
d

.

These two expressions for the energy must be equal, thus s must be either n or n+2γ.

From (2.28) we see that γ is not an integer, but s and n should be integers, therefore we

have only one possibility s = n. According to (2.44), b becomes b = ±√n2 + 2nγ + k2
d

and, for n = 0, b has to be equal to −kd. Using (2.28), and introducing the “principal

quantum number” defined as nr = n+ |kd| − d−3
2

= 1, 2, 3, . . . in (2.45), we get the

well–known formula for the Coulomb energy in d dimensions

E = m

⎡
⎣1 +

(
v

nr − |kd|+ (d− 3)/2 +
√
k2
d − v2

)2
⎤
⎦−1/2

. (2.46)

According to [14], we exclude the negative sign in (2.46) because for positive coupling

constant (αZ > 0), negative energies E do not fulfill the left hand side of the quantity

(2.45) since n+ γ is positive.
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Chapter 3

Scaling laws

3.1 Scaling for the Schrödinger equation

In three dimensions the Hamiltonian operatorH from the Schrödinger equation (1.61)

with m = 1, l = 0, can be written as

H = −1

2

d2

dr2
+ V (r), (3.1)

where V (r) = vf(r) is the potential with v > 0, the coupling parameter, and f(r)

the shape of the potential. Suppose that H has the eigenvalues E(v, 1) and we mark

it in the following way

−1

2

d2

dr2
+ vf(r) −→ E(v, 1) = F (v), (3.2)

from which it immediately follows

−1

2

d2

dr2
+ f(r) −→ F (1). (3.3)
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Assume that (3.2) is solved, i.e. we know the exact value of F (v) for the potential

V (r) = vf(r), and we want to find the eigenvalues E(v, a) for the potential vf(r/a),

where a is a positive real number, thus we can rewrite (3.2) in the following way

−1

2

d2

dr2
+ vf

(r
a

)
−→ E(v, a). (3.4)

With the substitution r = ax, the operator d2/dr2 becomes

d2

dr2
=

d2

d(ax)2
=

1

a2
d2

dx2
,

and (3.4) takes the form

−1

2

d2

dx2
+ a2vf(x) −→ a2E(v, a).

In accordance with (3.2) we also can write

−1

2

d2

dx2
+ a2vf(x) −→ E(a2v, 1) = F (a2v).

Comparison of the last two expressions yields our first scaling law

E(v, a) =
1

a2
E(a2v, 1) =

1

a2
F (a2v). (3.5)

As an example of (3.5), we consider (3.2) with the Hulthén potential (A.6) in the

form

−1

2

d2

dr2
+ v

( −1

er − 1

)
−→ F (v) = −(2v − n2)

2

2
.

Using (3.5), we can easily find the eigenvalues E(v, a) for the potential with the

shape f(r/a) = −1/(er/a − 1)

E(v, a) = −(a22v − n2)
2

2a2
.
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3.1.1 Scaling for the class of the power potentials V (r) =

v sgn(q)rq

The Hamiltonian for the radial Schrödinger equation (1.61) in three dimensions, with

m = 1, has the form

H = −1

2

d2

dr2
+

l(l + 1)

2r2
+ V (r). (3.6)

If we consider the family of power potentials V (r) = v sgn(q)rq, where q > −2 is the

power parameter, and make the substitution r = ax in (3.6). Similarly, from (3.2) we

have

−1

2

d2

dx2
+

l(l + 1)

2x2
+ va2+q sgn(q)xq −→ a2F (v). (3.7)

We set va2+q = 1, then a = v−
1

2+q , so the last expression becomes

−1

2

d2

dx2
+

l(l + 1)

2x2
+ sgn(q)xq −→ v−

2
2+qF (v).

But, on the other side, using (3.3), we can write

−1

2

d2

dx2
+

l(l + 1)

2x2
+ sgn(q)xq −→ F (1).

Comparing the last two expressions, we obtain the scaling law for the class of power

potentials V (r) = v sgn(q)rq

F (v) = v
2

2+qF (1). (3.8)

Now let us check the law (3.8). For this, we consider the Coulomb potential

V (r) = −v/r, so q = −1 and the eigenvalues are given by (A.3)

F (v) = − 2v2

(n+ l)2
.
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It follows that

v
2

2+qF (1) = −v2
2

(n+ l)2
,

which confirms the law (3.8). We consider also the harmonic oscillator V (r) = vr2

(A.4), so q = 2, and the energy values can be found using formula (A.5)

F (v) = (4n+ 2l − 1)

√
v

2
=⇒ F (1) = (4n+ 2l − 1)

√
1

2
,

thus

v
2

2+qF (1) = v1/2(4n+ 2l − 1)

√
1

2
,

which again confirms (3.8).

3.1.2 Scaling for a class of soft–core Coulomb potentials

Using the same notation as in the section above we derive the scaling law for the

soft–core Coulomb potential (A.11)

V (r) = − v

(rq + βq)1/q
, (3.9)

where v > 0 is the coupling parameter, β > 0 is the cutoff parameter, and q ≥ 1 is the

power parameter. It is clear that the soft–core Coulomb energy value depends on its

parameters, i.e. E = E(v, β, q). Using the Hamiltonian from the radial Schrödinger

equation (1.61), with m = 1, we write

−1

2

d2

dr2
+

ld(ld + 1)

2r2
− v

(rq + βq)1/q
−→ E(v, β, q). (3.10)

Substituting r = ax into the last expression yields

− 1

2a2
d2

dx2
+

ld(ld + 1)

2a2x2
− v

(aqxq + βq)1/q
−→ E(v, β, q).

36



Factoring out βq from the denominator, followed by multiplication by a2 on both

sides, yields

−1

2

d2

dx2
+

ld(ld + 1)

2x2
− av(

xq +
(
β
a

)q)1/q −→ a2E(v, β, q).

In accordance with (3.10) we can also write

−1

2

d2

dx2
+

ld(ld + 1)

2x2
− av(

xq +
(
β
a

)q)1/q −→ E

(
av,

β

q
, q

)
.

Comparing the last two expressions, we arrive at the general scaling law for the class

of soft–core Coulomb potentials

E(v, β, q) =
1

a2
E

(
av,

β

q
, q

)
. (3.11)

If we choose a = 1/v in (3.11), we obtain the special scaling law

E(v, β, q) = v2E(1, vβ, q), (3.12)

and, with a = β, we get the second special scaling law

E(v, β, q) =
1

β2
E(vβ, 1, q). (3.13)

3.2 Scaling for the Dirac equation

Let us rewrite the Dirac coupled equations (1.53)–(1.54) with S(r) = 0 in the matrix

form

HΨ = EΨ, (3.14)
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where

H =

⎛
⎜⎜⎜⎜⎝
V (r)−m

d

dr
+

kd

r

d

dr
−

kd

r
V (r) +m

⎞
⎟⎟⎟⎟⎠ and Ψ =

⎛
⎝F (r)

G(r)

⎞
⎠ . (3.15)

Consider the potential V (r) = vf(r/a), where v > 0 and a is a positive real number,

thus the eigenvalue E of H depens on three parameters: v, a, and m. In accordance

with (3.1) and (3.2) we can write

⎛
⎜⎜⎜⎜⎝
vf(r/a)−m

d

dr
+

kd

r

d

dr
−

kd

r
vf(r/a) +m

⎞
⎟⎟⎟⎟⎠ −→ E(v, a, m). (3.16)

Then we put r = δx, where δ is a positive real number, so

d

dr
=

1

δ

d

dx
,

therefore we can rewrite (3.16) as

⎛
⎜⎜⎜⎜⎝
δvf(δx/a)− δm

d

dx
+

kd

x

d

dx
−

kd

x
δvf(δx/a) + δm

⎞
⎟⎟⎟⎟⎠ −→ δE(v, a, m).

Using (3.16), we also can write

⎛
⎜⎜⎜⎜⎝
δvf(δx/a)− δm

d

dx
+

kd

x

d

dx
−

kd

x
δvf(δx/a) + δm

⎞
⎟⎟⎟⎟⎠ −→ E(δv, a/δ, δm).
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From the last two expressions, the first scaling law for the Dirac eigenvalues follows

immedialtely

E(v, a, m) =
1

δ
E
(
δv,

a

δ
, δm
)
. (3.17)

Now we consider the power potential V (r) = vf(r) = v sgn(q)rq and rewrite (3.16)

in simpler form

vf(r/a) = v sgn(q)
(r
a

)q
−→ E(v, a, m), (3.18)

or

vf(r/a) =
v

aq
sgn(q)rq =

v

aq
f(r) −→ E

( v

aq
, 1, m

)
. (3.19)

Since the left hand sides of (3.18) and (3.19) are equal, we can write the second scaling

law

E(v, a, m) = E
( v

aq
, 1, m

)
. (3.20)

From (3.17) and (3.20), the general scaling law for the Dirac equation follows

E(v, a, m) =
1

δ
E

(
vδq+1

aq
, 1, δm

)
. (3.21)

If we choose δm = 1, we obtain the special case of the law (3.21)

E(v, a, m) = mE
( v

aqmq+1
, 1, 1

)
. (3.22)

Then, for the Hydrogen atom q = −1, the previous law becomes

E(v, a, m) = mE (va, 1, 1) , (3.23)

and, for the linear potential q = 1, we get the scaling law in the form

E(v, a, m) = mE
( v

am2
, 1, 1

)
. (3.24)
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Now let us check the law (3.23) for the Coulomb potential. We know that in this

case the energy eigenvalues are given by (2.46)

E(v, a, m) = m

⎡
⎣1 +

(
va

nr − |kd|+ (d− 3)/2 +
√
k2
d − (va)2

)2
⎤
⎦−1/2

.

The right hand side of (3.23) gives us

mE (va, 1, 1) = m

⎡
⎣1 +

(
va

nr − |kd|+ (d− 3)/2 +
√
k2
d − (va)2

)2
⎤
⎦−1/2

,

which confirms the law (3.23).
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Chapter 4

Comparison Theorem

4.1 Relativistic comparison Theorem for the Dirac

equation

Let us rewrite equations (1.53) and (1.54) with S(r) = 0 in the following way

EG(r) = (V (r) +m)G(r) +

(
kd
r

− d

dr

)
F (r), (4.1)

EF (r) = (V (r)−m)F (r) +

(
kd
r

+
d

dr

)
G(r), (4.2)

where the radial functions G(r) and F (r) are in L2 ([0, ∞), dr) and, for d > 1, satisfy

the normalization condition1

(G(r), G(r)) + (F (r), F (r)) =

∫ ∞

0

(
G2(r) + F (r)2

)
dr = 1. (4.3)

The eigenvalue E = Ekdν corresponds to the state with ν = 0, 1, 2, . . . nodes for the

radial function G(r), and kd is defined by (1.51). In one dimension, the normalization

1(f, g) =
∫ b
a
f(x)g(x)dx is an inner product of two square–integrable real–valued functions f(x)

and g(x) on an interval [a, b].
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condition (4.3) becomes
∫∞
−∞ (G2(x) + F (x)2) dx = 1. With all these assumptions we

can state, and then prove, the following theorem due to Hall [13]:

Theorem 4.1. The real attractive central potential V(r, a) depends smoothly on the

parameter a, and E(a)= Ekdν(a) is a corresponding discrete Dirac eigenvalue. Then

if V ′ ≥ 0, then E ′(a) ≥ 0 and if V ′ ≤ 0, then E ′(a) ≤ 0, (4.4)

where ′ is the operator ∂/∂a.

Proof: Differentiation of the equations (4.1)–(4.2) with respect to a gives

E ′(a)G+ E(a)G′ = V ′G+ (V +m)G′ +
(
kd
r

− d

dr

)
F ′, (4.5)

E ′(a)F + E(a)F ′ = V ′F + (V −m)F ′ +
(
kd
r

+
d

dr

)
G′. (4.6)

Consider the quantity
∫∞
0
((4.5)G+ (4.6)F )dr

E ′(a) [(G, G) + (F, F )]︸ ︷︷ ︸
=1 by (4.3)

= (G, V ′G) + (F, V ′F ) +W, (4.7)

where

W = (G′, (V +m)G) +

(
G,

(
kd
r

− d

dr

)
F ′
)
− E(a)(G′, G)+

(F ′, (V −m)F ) +

(
F,

(
kd
r

+
d

dr

)
G′
)
− E(a)(F ′, F ). (4.8)

Let us show that W = 0. For this purpose, we prove the relation

(G, DrF ) = −(DrG, F ), (4.9)

where the operator Dr is defined by Dr = ∂/∂r. We know that (G, DrF ) =∫∞
0

GDrFdr, then using integration by parts
∫∞
0

udv = [uv]∞0 − ∫∞
0

vdu with u =
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G =⇒ du = dG and dv = DrFdr =⇒ v = F we have

∫ ∞

0

GDrFdr = [GF ]∞0 −
∫ ∞

0

DrGFdr.

According to the boundary conditions [GF ]∞0 = 0, thus (4.9) is proven. Similarly, it

can be shown that (F, DrG) = −(DrF, G). Relation (4.9) holds for d > 1. For the

one–dimensional case, we can establish the corresponding result

(G(x), DxF (x)) = [G(x)F (x)]∞−∞ −
∫ ∞

−∞
DxG(x)F (x)dx = −(DxG(x), F (x)),

with Dx = ∂/∂x. Using (4.9) we can rewrite two terms of W in the following way

(
G,

(
kd
r

− d

dr

)
F ′
)

=

(
G′,
(
kd
r

− d

dr

)
F

)

and (
F,

(
kd
r

+
d

dr

)
G′
)

=

(
F ′,
(
kd
r

+
d

dr

)
G

)
.

Therefore (4.8) becomes

W =

⎛
⎜⎜⎜⎝G′,

[
(V +m)G+

(
kd
r

− d

dr

)
F − E(a)G

]
︸ ︷︷ ︸

=0 by (4.1)

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝F ′,

[
(V −m)F +

(
kd
r

+
d

dr

)
G− E(a)F

]
︸ ︷︷ ︸

=0 by (4.2)

⎞
⎟⎟⎟⎠ = 0,

and (4.7) takes the form

E ′(a) = (G, V ′G) + (F, V ′F ). (4.10)
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From this relation it follows that if V ′ is non–negative, then E ′(a) is also non–negative.

Similarly, if V ′ ≤ 0 =⇒ E ′(a) ≤ 0. These results complete the proof of the theorem.

�

Now we can state the Comparison Theorem [10]:

Theorem 4.2 (Comparison Theorem). Suppose that E
(1)
kdν

and E
(2)
kdν

are the Dirac

eigenvalues corresponding to two distinct attractive central potentials V (1)(r) and

V (2)(r). Then

if V (1)(r) ≤ V (2)(r), then E
(1)
kdν

≤ E
(2)
kdν

. (4.11)

Proof: We assume that the potentials V (1)(r) and V (2)(r) are fixed. Then we

define the one–parameter family of potentials V (r, a) by

V (r, a) = V (1)(r) + a
(
V (2)(r)− V (1)(r)

)
, (4.12)

where a ∈ [0, 1]. Suppose now that Ekdν(a) = E(a) is the eigenvalue which corre-

sponds to V (r, a), thus according to (4.12) V (r, 0) = V (1)(r) and V (r, 1) = V (2)(r),

so E
(1)
kdν

= E(0) and E
(2)
kdν

= E(1). From (4.11), it follows that V (2)(r)− V (1)(r) ≥ 0,

so from (4.12) we have ∂V (r, a)/∂a = V (2)(r)−V (1)(r) ≥ 0. Since ∂V (r, a)/∂a ≥ 0,

according to Theorem 4.1, E ′(a) ≥ 0 which implies that E(a) is increasing and

E(0) ≤ E(1); hence E
(1)
kdν

≤ E
(2)
kdν

.

�

4.2 Some examples

Consider three potentials: the Woods–Saxon (A.14)

W (r) = − w

1 + e
r−R
a

, (4.13)
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the laser–dressed Coulomb potential (A.13)

L(r) = − l

(r2 + λ2)1/2
, (4.14)

and the cutoff Coulomb potential (A.12)

C(r) = − u

r + β
, (4.15)

where w, l, λ, u, and β are positive real parameters. First we compare the potentials

L(r) and C(r). By choosing values for the parameters l, λ, u, and β, we make

L(r) > C(r) as is clear from Fig. 4.1. Then using numerical methods we solve the

Figure 4.1: Laser–dressed (doted line) and cutoff (dashed line) Coulomb potentials
with l = 0.5, λ = 1, u = 0.73, and β = 1.

equations (4.1)–(4.2) with potentials (4.14), (4.15), and initial conditions (6.13) (to

be disscussed in Chapter 6), and in three dimensions with m = 1. As the result,

we get the energy values for the laser–dressed and the cutoff potentials, EL and EC

respectively. They are given in the Table 4.1. According to Theorem 4.2, the potential

ordering L(r) > C(r) implies the spectral ordering EL > EC ; this is confirmed

numerically in Table 4.1 for various choices of the eigenvalue labels n, τ , and j.
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Table 4.1: Energy values of laser–dressed (EL) and cutoff (EC) Coulomb potentials

n τ j EL EC

-1 1/2 0.909402 0.887474
1 1 0.968006 0.949588

5/2 0.986091 0.974595
2 0.972553 0.957953
5 -1 1/2 0.995206 0.991155
8 0.998095 0.996293

In Fig. 4.2 we compare potentials (4.13) and (4.14). We solve the pair of Dirac

Figure 4.2: Woods–Saxon (full line) and Laser–dressed Coulomb (doted line) poten-
tials with w = 1, R = 1, a = 1.3, l = 0.74, and λ = 1.

coupled equations with these potentials by using numerical methods with appropriate

initial conditions in three dimensions. For the case n = m = 1, τ = −1, and

j = −1/2, equations (4.1)–(4.2) give us the energy value for the Woods–Saxon case

EW = 0.872630 and for laser–dressed potential EL = 0.825824. According to Fig. 4.2,

W (r) > L(r), therefore Theorem 4.2 implies that EW > EL. This claim is confirmed

by numerical methods since EW = 0.872630 and EL = 0.825824.
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Chapter 5

Envelope theory

Here we introduce the envelope theory [35]–[37] and we give an example of its ap-

plication. The Comparison Theorem 4.2 allows us to use the envelope method to

approximate energy eigenvalues with the help of certain exact solutions, such as those

for the Coulomb potential.

5.1 The envelope method

The central potential can be written as V (r) = vf(r) where v > 0 is the coupling

parameter and f(r) is the shape of the potential. We assume that we can represent

the shape f(r) in the following way

f(r) = g(h(r)), (5.1)

where h(r) is the shape of a soluble potential and g(h(r)) is a smooth transforma-

tion function. We suppose that g(h) is a monotone increasing function with definite

convexity. We shall show that, if g(h) is a convex (g′′(h) ≥ 0), envelope theory leads

to a family of lower potentials which gives energy lower bounds. Conversely, in the

case where g(h) is a concave function (g′′(h) ≤ 0), we obtain an upper energy bounds.
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According to (5.1), for a function f(r), the family of functions f (t)(r) tangential at

the point r = t is given by1

f (t)(r) = a(t) + b(t)h(r), (5.2)

where

a(t) = g(h(t))− g′(h(t))h(t), and b(t) = g′(h(t)). (5.3)

Therefore we can write the shape f(r) as

f(r) = envelope
t

{
f (t)(r)

}
. (5.4)

If g(h) is convex, its graph lies above its tangents and therefore f(r) ≥ f (t)(r);

meanwhile, if g(h) is concave, we have f(r) ≤ f (t)(r). With (5.2) and v = 1, the

tangential potential becomes

V (t)(r) = a(t) + b(t)h(r). (5.5)

Now we suppose that h(r) represents a Coulomb potential with unit coupling, i.e.

V (r) = h(r) = −1/r. The radial equations (1.53)–(1.54) with potentials (5.5) and

S(r) = 0 give us the tangential spectrum

E(t) = a(t) +D(b(t)), (5.6)

where D(u) is the Dirac energy function for the Coulomb potential, which is given

by (2.46) and, since u < 1, we require b(t) < 1.

1In many calculus books it can be found that for a given function f(x) the equation of the tangent
line at the point a is given by

y(x) = f(a) + f ′(a)(x− a).
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Suppose g is convex, then f (t)(r) ≤ f(r). The Comparison Theorem 4.2 for the

Dirac eigenvalues implies for each discrete eigenvalue

E(t) ≤ E. (5.7)

According to (5.6) and (5.7), the best lower bound for E is the maximum of the right

hand side of (5.6) over t, so

E ≥ max
t

{
E(t)
}
= max

t
{a(t) +D(b(t))} . (5.8)

Similarly, in the concave case when g′′(h) ≤ 0, we obtain upper bounds for the energy

values E ≤ min
t

{
E(t)
}
. The Comparison Theorem 4.2 guarantees these bounds for

each discrete eigenvalue. Using (5.4) we can write the family of lower bounds for E

as

EL = envelope
t

{a(t) +D(b(t))} . (5.9)

Now let us study the Dirac energy function D(u) for the case d = 3. From (2.46)

we have (with m = 1 and d = 3)

D(u) =

[
1 +

(
u

n− k +
√
k2 − u2

)2
]−1/2

, (5.10)

where n = 1, 2, 3, . . . is the principal quantum number, k = j + 1/2 is the value of

|kd| in three dimensions, and the Coulomb coupling u satisfies u < 1. Thus the first

derivative of D(u) has the form

dD(u)

du
= −
[

2u(
n− k +

√
k2 − u2

)2 +
2u3

√
k2 − u2

(
n− k +

√
k2 − u2

)3
]
×

2

[
u2(

n− k +
√
k2 − u2

)2 + 1

]−3/2

, (5.11)
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and it is easy to see that D′(u) < 0 if u ∈ (0, k). The expression of the second

derivative of D(u) is too complicated, so we will not introduce it here, instead we,

using Maple, plot the family of the graphs of D′′(u) for two cases: n ≥ k and n < k,

Fig. 5.1 and 5.2 respectively. From the graphs of the second derivative of the function

Figure 5.1: The graph of D′′(u) for n ≥ k.

Figure 5.2: The graph of D′′(u) for n < k.

D(u) we see that D′′(u) < 0. Finally, D(u) is a positive, monotone decreasing and

concave function of u ∈ (0, k).
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In order to find the envelope of the family EL of tangential energy functions we,

using (5.3), rewrite EL in the following way

EL = g(h)− g′(h)h+D(g′(h)). (5.12)

Differentiation of the last equation with respect to h yields

−hg′′(h) +D′(g′(h))g′′(h) = 0.

After division by g′′(h) we find that the critical point is h = D′(g′(h)). Using the

value for the critical point, and changing variables again to u = g′(h) in (5.12), we

obtain

EL = E(u) = g(D′(u))− uD′(u) +D(u). (5.13)

Therefore the first and second derivatives of E(u) with respect to u are

E ′ = D′′ (g(D′)− u) and E ′′ = D′′(g′′D′′ − 1) +D′′′(g′ − u). (5.14)

From (5.3) and (5.8) we see that the energy function has the form

E(t) = g(h)− hg′(h) +D(g′(h)). (5.15)

From (5.13) and (5.14), it follows that E(u) and E(t) have the same critical point and

critical value. Finally, from (5.14), we find that if g is convex then the critical point is

a minimum and if g is concave then the critical point is a minimum if g′′D′′ < 1 and

a maximum if g′′D′′ > 1. Since we assumed that g′′ ≥ 0, we can write the following

approximate formula

E ≈ min
u

{g(D′(u))− uD′(u) +D(u)} , (5.16)
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while for the case g′′ ≤ 0 we have

E ≈

⎧⎪⎨
⎪⎩

min
u

{g(D′(u))− uD′(u) +D(u)} , if g′′D′′ < 1,

max
u

{g(D′(u))− uD′(u) +D(u)} , if g′′D′′ > 1.
(5.17)

5.2 An example

Consider the Hulthén potential (A.6)

H(r) = uf(r), and the shape f(r) = − 1

erλ − 1
, (5.18)

where u and λ are real positive parameters. For a soluble potential, we take the

Coulomb potential V (r) = −v/r (A.2) with the shape h(r) = −1/r. According to

(5.1), we can introduce f(r) as

f(r) = g(h(r)) = − 1

e−λ/h(r) − 1
. (5.19)

Taking x = − λ
2h

> 0, we can express g(h) in terms of the hyperbolic cotangent as

g(x) =
1− coth x

2
. (5.20)

So

dg

dx
=

1

2 sinh2 x
> 0, (5.21)

and

d2g

dx2
= − coth x csch2 x < 0. (5.22)
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Thus g is an increasing concave function and, according to the section above, we

obtain optimized upper bounds for the Hulthén energy E

E ≤ min
t

{
E(t)(v)

}
= min

t
{ua(t) +D(ub(t))} , (5.23)

where ub(t) < 1. The coefficients a(t) and b(t) can be calculated using (5.3):

a(t) =
1

1− eλt
+

λt

4 sinh2
(
λt
2

) , (5.24)

and

b(t) =
λt2

4 sinh2
(
λt
2

) . (5.25)

With the help of mathematical softwhere (in our case Mathcad), we can calculate the

values EU = min
t

{
E(t)(v)

}
and compare them with the values E of the energy for

the potential (5.18) with different values of the parameters v, λ, τ . These are shown

in Table 5.1.

Table 5.1: Comparison of the exact Hulthén energy eigenvalues E with its upper
bounds EU ; j = 1/2 and τ = −1.

n v λ E EU

0.6 1 0.98946 1
0.4 0.5 0.77699 0.78732

1 1.8 2 0.99331 1
0.29 0.3 0.39536 0.39911
0.2 0.3 0.83607 0.83973
0.19 0.2 0.89402 0.90157

2 0.67 0.7 0.99849 1
0.088 0.09 0.81972 0.82126

Also, with (5.5), we obtain the set of the upper tangentials potentials

H(r) ≤ V (t)(r) = ua(t) + ub(t)h(r), (5.26)
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and the graphs of the Hulthén potential H(r), which are given by (5.18), and the

family of the tangential potentials V (t)(r) (given by (5.26)) shown in Fig. 5.3.

Figure 5.3: Hulthén potential (full line) and the tangential potentials (dashed lines)
at different touching points t = 5, 10, 15, 20, 25, with λ = 0.2 and u = 100.
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Chapter 6

Numerical solutions

6.1 The shooting method

The shooting method [38]–[41] is a method for solving a differential equation boundary

value problem. This method reduces the boundary value problem to an initial value

problem.

Suppose that we have a boundary value problem in the following form

d2y

dt2
= f

(
t, y,

dy

dt

)
(6.1)

on t ∈ [a, b] with the boundary conditions

⎧⎨
⎩ y(a) = α,

y(b) = β.
(6.2)

Then we assume that y′(a) = A, so (6.2) reduces to

⎧⎪⎪⎨
⎪⎪⎩

y(a) = α,

dy(a)

dt
= A,

(6.3)
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where the constant A must be chosen so that y satisfies the right–hand boundary

condition y(b) = β. The shooting method gives an iterative procedure with which

we can determine this constant A. Fig. 6.1 illustrates the solution of the boundary

value problem given two distinct values of A. In one case, the value of A = A1 gives a

value for the initial slope which is too low to satisfy the boundary condition y(b) = β,

whereas the value of A = A2 is too large to satisfy this condition. However, A1 and

A2 suggest the next guess: we have to adjust the value of A in (6.3) and find such an

A which will lead to a solution which satisfies (6.2). The basic algorithm is as follows:

1. Solve the differential equation using any known method with the initial condi-

tions y(a) = α and y′(a) = A.

2. Evaluate the solution y(b) at t = b and compare this value with the target value

of y(b) = β.

3. Adjust the value of A (either bigger or smaller) untill a desired level of accuracy

is achieved.

Figure 6.1: Shooting method.

Fig. 6.1 shows the solutions to the boundary value problem with y(a) = α and

y′(a) = A. Here, two values of A are used to illustrate the solution’s behavior and its

lack of matching the correct boundary value y(b) = β.
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In our applications, instead of the initial slope A, the adjustable parameter is the

eigenvalue E given that the calculated wave function has the correct number of nodes

for the eigenvalue sought.

6.2 Initial conditions for the Schrödinger equation

We start by finding suitable initial conditions near the origin (r −→ 0) for the

Schrödinger equation in d dimensions. For this purpose, we consider equation (1.61)

with (1.63)

−R′′(r) +
(
ld(ld + 1)

r2
+ V (r)

)
R(r) = ER(r), (6.4)

where ′ represents the derivative with respect to r, and R(0) = 0. We assume that

V (r) = vf(r) is not more singular than Coulomb so that r2V (r) −→ 0 as r −→ 0,

where v > 0 is the coupling parameter and f(r) is the potential shape. For small r,

we suppose R(r) to be assymptotically of the form

⎧⎨
⎩ R(r) = brq,

R′(r) = bqrq−1,
(6.5)

where b and q are constants.

Firstly we consider the case ld = 0, thus substitution of (6.5) into (6.4) and division

by brq−2 yields

−(q − 1)q + vr2f(r) = Er2.

After taking the limit from both sides of the previous equation as r approaches zero,

we get

q(q − 1) = 0, thus q = 0 or q = 1.

Since R(0) = 0, we keep q = 1 and set b = 1. Then the initial conditions (6.5) for

57



small h have the form ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ld = 0,

R(h) = h,

R′(h) = 1.

(6.6)

For the case ld > 0, equation (6.4) with initial condition (6.5) takes the following

form

−q(q − 1) + ld(ld + 1) + vr2f(r) = Er2,

and in the limit it becomes the quadratic equation

q2 − q − ld(ld + 1) = 0.

with the solutions

q1 = ld + 1 and q2 = −ld.

Again, since R(0) = 0, we keep the positive solution q = ld + 1, so that the initial

conditions (6.5) become ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ld > 0,

R(h) = hld+1,

R′(h) = (ld + 1)hld ,

(6.7)

with b = 1.

Examples of potentials satisfying these assumptions and conditions are the har-

monic oscillator V (r) = vr2, the Hydrogen–like atom V (r) = −v/r, and the sech–

squared potential V (r) = −v sech2 r.
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6.3 Initial conditions for the Dirac coupled equa-

tions

Let us now consider the Dirac coupled equations (1.53) and (1.54) with S(r) = 0,

that is to say

G′(r) = −kd
r
G(r) + (E +m− V (r))F (r), (6.8)

F ′(r) =
kd
r
F (r)− (E −m− V (r))G(r). (6.9)

Suppose that the potential V (r) satisfies limr→0 rV (r) = −v �= 0. We again seek the

initial conditions near the origin. Therefore, according to (2.27), we take the radial

functions G(r) and F (r) to have the following forms

⎧⎨
⎩ G(r) = c1r

q,

F (r) = c2r
q,

(6.10)

where c1, c2, and q are constants greater then 0. After putting c2 = Bc1, where B is

constant, in (6.10) and substituting it into (6.8) and (6.9), we obtain

EBr − vBV (r) +mBr = q + kd,

Er − rV (r)−mr = −Bq + kdB.

After taking the limit when r → 0 from both sides of the last system of equations,

we have

vB = q + kd, (6.11)

v = −Bq + kdB. (6.12)
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The solution, q and B, of the last system is

q = ±
√
k2
d − v2, B =

kd ±
√
k2
d − v2

v
.

Since the wave functions have to be normalizable, we must choose the positive sign

for q. Therefore the intial conditions for (6.8) and (6.9) with c1 = 1 have the form

(for small h) ⎧⎪⎪⎨
⎪⎪⎩

G(h) = h
√

k2d−v2 ,

F (h) =
kd +

√
k2
d − v2

v
h
√

k2d−v2 .

(6.13)

This analysis is valid for example for the Coulomb potential V (r) = −v/r and for

a screened–Coulomb potential, such as the Yukawa potential (A.15)

V (r) = −a

r
e−λr, (6.14)

where a and λ are positive constants.

Now we consider the class of the potentials such that limr→0 rV (r) = 0, therefore

the system (6.11)–(6.12) has two solutions

q = kd and q = −kd.

According to the boundary conditions, the radial wave functions G and F should

vanish at the origin, therefore we keep q = kd and the initial conditions (6.10) with

B = 1 become (for small h) ⎧⎨
⎩ G(h) = hkd ,

F (h) = hkd .
(6.15)

60



6.4 Maple code

In the above section we described the shooting method in general. Here we adapt it

for a program in Maple in the following way1: we start integrating numerically, if the

eigenvalue is too large we get too many nodes, if not big enough we obtain fewer nodes

than we need (this task is done by the block nodes in the Maple code). Then we solve

for each trial eigenvalue the Dirac or Schrödinger equation with appropriate initial

condition, and choose the eigenvalue which gives the best approximation. The wave

function solutions have to vanish at infinity, but for our numerical analysis we have

to choose an appropriate finite distance b at which the function must vanish. This

choice can be a vexing issue: for Coulomb potentials V (r) = −v/r, an appropriate b

may be as large as 50; for a short–range potential V (r) = −aeλr, b may turn out to

be as small as 5. As an example, we introduce the Maple code for calculating energy

eigenvalues for the Dirac coupled equations with the Coulomb potential.

> restart: with(LinearAlgebra): with(plots, listplot):

This part of the code creates the array of numbers on [a, b], which we call a mesh.

> mesh:=proc(a, b, n) local h, i, m;

m:=array(1..n+1);

h:=(b-a)/n;

for i from 0 by 1 to n do m[i+1]:=a+i*h; end do; m; end proc:

Here we create the potential. In this case, it is the Coulomb potential in the form

(2.18).

> potential:=proc(v) local V;

V:=-v/r; end proc:

In this block, we set up the system of the Dirac coupled equations (6.8) and (6.9)

with initial conditions (6.13).

> dirsys:=proc(v, mass, energy, tau, j, d, h) local ds; global k d;

1Adapted from a design of Professor R. L. Hall.
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k d:=tau * (j + (d - 2)/2);

ds:={diff(F(r), r)=(potential(v)+mass-energy)*G(r)+k d*F(r)/r,

diff(G(r), r)=(energy-potential(v)+mass)*F(r)-k d*G(r)/r,

G(h)=h^sqrt((k d)^2-v^2), F(h)=(k d + sqrt((k d)^2-v^2))/v *

h^(sqrt((k d)^2-v^2))}; end proc:

Then we solve this system for the wave functions G(r) and F (r) by Fehlberg fourth–

fifth order Runge–Kutta method with degree four interpolant - rkf45. Setting differ-

ent values for r from array mesh, we form the matrix (r, G(r)).

>dirwaveG:=proc(v, mass, energy, tau, j, d, h, amesh, nmesh)

local m, ds, mm;

m:=mesh(h, amesh, nmesh);

ds:=dsolve(dirsys(v, mass, energy, tau, j, d, h), {G(r), F(r)},
numeric, method=rkf45, output=m);

mm:=Matrix(ds[2,1]); SubMatrix(mm, [1..nmesh+1], [1, 3]);

end proc:

This block counts the nodes and it is one of the key feaures of the shooting method

described above.

>nodes:=proc(mat, n) local i, x1, x2, nc;

nc:=0; x1:=mat[1,2];

for i from 1 by 1 to n+1 do x2:=mat[i,2];

if (x1*x2<0) then nc:=nc+1 end if;

x1:=x2; end do; nc; end proc:

This is the heart of the code where we set up the node goal ng, which is the number of

zeros of the function corresponding to the particular state studied. Also, we choose

the lower e1 = eL and the upper e2 = eU limits for the possible energy values e.

Afterwards, we let e be the average e = (e1+ e2)/2 which is our first trial eigenvalue.

Then, using the numerical solution of the Dirac equation, we count its number of
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roots or nodes. If this number is less or equal than ng, then the eigenvalue e is too

small, and we have to update the lower value eL = e. In the opposite situation, when

the number of roots is greater a ng, then e is too big, and we have to change the

upper limit e = eU . To check the solution e, we calculate the energy r e using the

formula (2.46).

>diregG:=proc(n, v, mass, tau, j, d, h, amesh, nmesh, eL, eU, m,

nx, ymax) local e, e1, e2, ng, i, no, r e;

e1:=eL; e2:=eU; e:=(e1+e2)*0.5;

ng:=n-1;

for i from 1 by 1 to m do

no:=nodes(eval(dirwaveG(v, mass, e, tau, j, d, h, amesh,

nmesh)), nmesh);

if (no<=ng) then e1:=e else e2:=e end if;

e:=(e1+e2)*0.5; end do; e;

r e:=mass*(1+(v^2)/((n - abs(k d) + (d-3)/2 +

sqrt(k d^2-v^2))^2))^(-1/2);

printf("energy level=%d, energy=%3.7f, real energy=%3.7f,

v=%3.1f, mass=%d, tau=%d, j=%3.1f, dimension=%d, h=%3.5f,

amesh=%d, nmesh=%d, eL=%d, eU=%d, m=%d, nx=%d, ymax=%d",

n, e, r e, v, mass, tau, j, d, h, amesh, nmesh, eL, eU, m,

nx, ymax);

listplot(dirwaveG(v, mass, e, tau, j, d, h, amesh, nx),

view=[0..amesh, -ymax..ymax], color=green, axes=normal,

labels=[r, G]); end proc:

Here we put the values of all the required variables and, as a result, we get the energy

value energy and the graph of the radial function G(r) (Fig. 6. 2).

>diregG(4, 0.5, 1.5, -1, 1/2, 3, 0.00001, 90, 50, -2, 5, 60,
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200, 1.2);

energy level=4, energy=1.4876102, real energy=1.4876102, v=0.5, mass=1.5,

tau=-1, j=0.5, dimension=3, h=0.00001, amesh=90, nmesh=50, eL=-2, eU=5,

m=60, nx=200, ymax=1.2

Figure 6.2: Dirac radial wave function G(r).

The program calculates the energy value which satisfies (2.46). If we change the

variables, such as the coupling parameter v, energy level n, dimension d, and so on,

we will get the graph of the wave function G(r) and the eigenvalues which still satisfy

(2.46). Therefore we can conclude that our program works properly. Thus we can

use this Maple code for other equations and other potentials (with suitable initial

conditions) for which we do not know the exact answer. For this purpose, we simply

have to change the Maple code, i.e. change the potential and initial conditions.
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Chapter 7

Soft–Core Coulomb potentials -

confined atoms

7.1 Scaling

In this section we derive the scaling law for a family of central soft–core Coulomb

potentials for the Dirac coupled radial equations. For this purpose, we consider the

Dirac Hamiltonian H in the form (3.15) with the potential (A.11). In this case, the

energy eigenvalues depend on four parameters, i.e. E = E(v, β, q, m), so

H =

⎛
⎜⎜⎜⎜⎜⎜⎝
−

v

(rq + βq)1/q
−m

d

dr
+

kd

r

d

dr
−

kd

r
−

v

(rq + βq)1/q
+m

⎞
⎟⎟⎟⎟⎟⎟⎠ −→ E(v, β, q, m). (7.1)
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With the substitution r = δx, (7.1) becomes

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
vδ2(

xq +
(
β
δ

)q)1/q − δm
d

dx
+

kd

x

d

dx
−

kd

x
−

vδ2(
xq +

(
β
δ

)q)1/q + δm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→ δE(v, β, q, m).

(7.2)

On the other hand, by using (7.1), we also can write

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
vδ2(

xq +
(
β
δ

)q)1/q − δm
d

dx
+

kd

x

d

dx
−

kd

x
−

vδ2(
xq +

(
β
δ

)q)1/q + δm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−→ E

(
vδ2,

β

δ
, q, δm

)
.

(7.3)

Comparing (7.2) and (7.3), we obtain the scaling law for the family of the soft–core

Coulomb potentials under the Dirac coupled equations, namely

E(v, β, q, m) =
1

δ
E

(
vδ2,

β

δ
, q, δm

)
. (7.4)

Since δ can be any positive number, we set δ = β in (7.4) and obtain the first

special scaling law

E(v, β, q, m) =
1

β
E
(
vβ2, 1, q, βm

)
. (7.5)

And, with δ = 1/m, (7.4) becomes

E(v, β, q, m) = mE
( v

m2
, βm, q, 1

)
. (7.6)
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7.2 Monotonicity

We now suppose that m = 1 and write E(v, β, q, 1) as E(v, β, q). We establish that

the eigenvalues E(v, β, q) are monotone in each of the three potential parameters:

v > 0, β > 0, and q ≥ 1. For this purpose, we consider the potential (A.11)

V (r) = − v

(rq + βq)1/q
. (7.7)

From (7.7), it follows that

∂V

∂v
= − 1

(rq + βq)1/q
,

and it is easy to see that (rq + βq)1/q > 0, so ∂V/∂v < 0. Then the derivative of V

with respect to β is

∂V

∂β
=

vβq−1

(rq + βq)1/q+1
.

It is also straightforward that, since vβq−1 > 0 and (rq + βq)1/q+1 > 0, then ∂V/∂β >

0. Now we consider the derivative of V with respect to q

∂V

∂q
= −v

[
ln (rq + βq)

q2 (rq + βq)1/q
− βq ln β + rq ln r

q (rq + βq)1/q+1

]
.

After some algebra, we can rewrite it in the convenient form

∂V

∂q
=

v

q2
βq [ln βq − ln (rq + βq)] + rq [ln rq − ln (rq + βq)]

(rq + βq)1/q+1
.

We see that v/q2 > 0, βq > 0, rq > 0, and (rq + βq)1/q+1 > 0. But ln βq −
ln (rq + βq) = ln [βq/ (rq + βq)] < 0, since βq/ (rq + βq) < 1. Similarly, ln rq −
ln (rq + βq) < 0. Thus ∂V/∂q < 0.

In summary, we have the following monotonic behaviour of the potential in the
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parameters v, β, and q :

∂V

∂v
< 0,

∂V

∂β
> 0, and

∂V

∂q
< 0. (7.8)

These monotonicities are illustrated in Figures 7.1, 7.2, and 7.3. The special Com-

parison Theorem of R. L. Hall [13] (section 4.1 above), implies the following spectral

monotonicities for each discrete eigenvalue:

∂E

∂v
< 0,

∂E

∂β
> 0, and

∂E

∂q
< 0. (7.9)

Figure 7.1: The family of potentials V (r) = − v

(rq + βq)1/q
, with β = 0.5, q = 10, and

v = 0.1, 0.5, 1, 2, 5, 7, 10. These potentials are monotonic in v:
∂V

∂v
.
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Figure 7.2: The family of potentials V (r) = − v

(rq + βq)1/q
, with v = 0.6, q = 15, and

β = 0.1, 0.2, 0.5, 0.7, 1, 3, 7. These potentials are monotonic in β:
∂V

∂β
.

7.3 Coulomb envelopes

In this final section of our thesis, we apply the envelope theory which we described

above in section 5.1. We rewrite the potential (7.7) in the following way

V (r) = uf(r), with the shape f(r) = − 1

(rq + βq)1/q
, (7.10)

where we replaced v by u to avoid confusion with the coupling parameter from the

Colomb potential. As a potential with exact solutions, we take the Coulomb potential

V (r) = −v/r, so its shape has the form h(r) = −1/r. Then, using (5.1), we introduce

the shape f(r) as

f(r) = g(h(r)) = − 1[(
− 1

h(r)

)q
+ βq
]1/q . (7.11)

Then

dg

dh
=

(− 1
h

)q−1

h2
[(− 1

h

)q
+ βq
]1/q+1

, (7.12)
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Figure 7.3: The family of potentials V (r) = − v

(rq + βq)1/q
, with v = 1, β = 1.5, and

q = 1, 2, 3, 5, 10, 20, 100. These potentials are monotonic in q:
∂V

∂q
.

and

d2g

dh2
=

(q + 1)βq
(− 1

h

)q
h2
[(− 1

h

)q
+ βq
]1/q+2

. (7.13)

Since the quantity −1/h > 0, we conclude that dg/dh > 0 and d2g/dh2 > 0. Thus

g(h) is an increasing convex function and it leads to lower bounds for the soft–core

Coulomb energy eigenvalues. Following the envelope theory, we find the coefficients

a(t) and b(t), using (5.3),

a(t) =
tq

(tq + βq)1/q+1
− 1

(tq + βq)1/q
, (7.14)

and

b(t) =
tq+1

(tq + βq)1/q+1
. (7.15)
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Therefore we can calculate the lower bounds for the Dirac energy eigenvalues E for

the class of soft–core Coulomb potentials, by using (5.8),

E ≥ max
t

{va(t) +D(vb(t))} , (7.16)

where D(vb(t)) is the Dirac energy function for the Coulomb potential, which is given

by (5.10) provided vb(t) < 1.

With the help of the numerical methods described in Chapter 6, we calculate the

“exact” energy values E (that is to say, accurate numerical estimates) and compare

them with the lower bounds EL = max
t

{va(t) +D(vb(t))}. These are shown in the

Table 7.1.

Table 7.1: Comparison the exact soft–sore Coulomb energy eigenvalues E with its
lover bounds EL.

n u β q j τ E EL

0.1 0.1 1 0.99517 0.99509
1 0.1 0.1 10 1/2 -1 0.99499 0.99499

0.9 10 10 0.92972 0.91850
0.9 10 1 0.96198 0.95718
0.5 30 17 7/2 -1 0.99553 0.99497

2 0.6 20 30 9/2 1 0.99631 0.99631
0.2 0.1 3 3/2 0.99875 0.99875

3 0.2 4 7 5/2 -1 0.99920 0.99920
0.3 40 70 1/2 1 0.99815 0.99713

5 0.9 0.8 4 1/2 -1 0.98358 0.98003
0.4 54 40 3/2 0.99856 0.99776

9 0.8 74 3 1/2 1 0.99816 0.99697
11 0.2 0.1 19 1/2 -1 0.99983 0.99983

Also, from (5.5), we find the family of the lower tangential potentials

V (r) ≥ V (t)(r) = ua(t) + ub(t)h(r), (7.17)

whose graphs are shown in Fig. 7.4.
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Figure 7.4: Soft-Core Coulomb potential V (r) (full line) and the tangentials potentials
V (t)(r) (dashed lines) at different touching points t = 0.01, 0.7, 1.5, 2, 3, with u = 58,
β = 2, and q = 2. Each tangential potential leads to a lower energy curve E(t).
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Conclusion

Analytic solutions to the Dirac equation are often very complicated, or not available.

Therefore it is very useful to have an approximate analytic formula for the Dirac

energy eigenvalues. The Comparison Theorem allows us to use a geometric approach

to estimate the Dirac spectrum. In this thesis, we use the envelope method which

allows us to obtain such spectral estimates. For instance, if the potential V (r) is

a convex transformation V (r) = g(h) of the Coulomb potential h(r) = −1/r, then

envelope theory allows us to obtain the optimized energy upper bound

E ≤ min
u

{g(D′(u))− uD′(u) +D(u)} ,

where D(u) is the hydrogenic energy function. Since this formula is essentially ana-

lytic, it can be used to determine approximately how the energy spectrum depends

on all the parameters of the problem. As we can see from Table 7.1, this approxima-

tion gives very accurate results. Moreover, geometrical methods such as the envelope

theory are very general and lead to the same formulae for the Schrödinger and Dirac

problems in any d–dimensional space, and for each angular momentum sector.
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Appendix A

Central Potentials

The interactions between nucleons within a nucleus and between nucleons can be

described using quantum mechanics. This type of interaction is very complicated

and not precisely known. From the experiments, we know that it is of short range,

attractive at distances comparable to the size of a nucleus, and is repulsive at very

short distances. Because of the complexity of this interaction it is necessary to use

approximations. The most widely used approximate potentials are called central

potentials. They depend only on the distanee r of the particle from a center of force,

and not on the direction of the vector r connecting that center with the particle, that

is

potential = V (r), r = ||r||. (A.1)

Therefore, the system of a particle in a central potential V (r) is invariant under

spatial rotations.

A.1 Coulomb potential

The Coulomb potential is an effective pair potential that describes the interaction

between two point charges. It acts along the line connecting the two charges. Let r
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be the distance between two particles of electric charge Z1e and Z2e, respectively; so

the electrostatic interaction potential of these two particles is given by [15]

V (r) = −Z1Z2e
2

r
.

For the two identical particles Z1 = Z2 = Z, this potential becomes

V (r) = −v

r
, (A.2)

where the coupling constant v = Ze2, in which Z = 1 for hydrogen, Z = 2 for

singly ionized helium, and so on. The Coulomb potential admits continuum states

(with E > 0), describing electron–proton scattering, as well as discrete bound states,

representing the bound hydrogen atom.

Central potentials behaving like 1/r at the origin are often found in atomic and

nuclear physics. With the exception of the Coulomb potential, none of these can

be solved in terms of elementary functions for all orbital angular momentum. For

example, the radial Schrödinger equation (1.61) in three dimensions with m = 1 gives

the energy eigenvalues in a simple form [17]

E = − 2v2

(n+ l)2
. (A.3)

A.2 Harmonic oscillator

Whereas a breakthrough in atomic physics came with the quantum–mechanical solu-

tion of the central force problem with a Coulomb potential, a parallel breakthrough

in nuclear physics resulted from the quantum–mechanical solution for nucleons in a
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spherical harmonic oscillator potential, which is given by [17]

V (r) = vr2, (A.4)

where the coupling v = 1
2
ω2 > 0, and ω represents the frequency of the oscillator.

The quantum harmonic oscillator is the quantum–mechanical analog of the classical

harmonic oscillator. Because an arbitrary potential can be approximated as a har-

monic potential in the vicinity of a stable equilibrium point, it is one of the most

important model systems in quantum mechanics. Furthermore, it is one of the few

quantum–mechanical systems for which an exact solution is known. The Schrödinger

equation with this potential yields the well–known energy eigenvalues in d = 3 and

with m = 1 [17]

E = (4n+ 2l − 1)

√
v

2
. (A.5)

A.3 Hulthén potential

The Hulthén potential [42, 43] is given by

V (r) = − u

eλr − 1
, (A.6)

where u = Zλ and λ = 1/a, a is the screening parameter, Z is the atomic number.

The Hulthén potential is a short–range potential defined along a half line 0 < r <

∞. This potential is a good approximation for the Yukawa potential or the screened

Coulomb potential: for r 	 a, it is asymptotically like the Coulomb potential. There-

fore it has been used in many branches of physics, such as nuclear physics [44], atomic

physics [45], and solid state physics [46].

The Schrödinger equation (1.61) in three dimensions for this potential can be
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solved for s waves with l = 0 and m = 1 [32]

E = −(2v − n2)
2

2
. (A.7)

If l �= 0, the problem is not exactly soluble and must be solved numerically.

A.4 Sech–squared potential

The following potential interpolates between the square well and the harmonic oscil-

lator

V (r) = −v sech2 αr, (A.8)

where the coupling parameter v > 0 represents the potential depth and α > 0 is the

width of the potential. Potential (A.8) has been known under several different names

since early days of quantum mechanics such as the Pöschl–Teller potential [47], the

Eckart potential [48], and others. Therefore to avoid confusion, we shall name it by

the function itself: sech–squared potential [49]. The sech–squared potential is one

of the most important exponential–type potentials in the literature and it has been

widely used in physics [50] and chemical physics [51, 52]. The Schrödinger equation

for this potential can be solved in exact form and, for α = 1, the energy values are

given by [32]

E = − 1

2m

[(
2mv +

1

4

)1/2

−
(
n+

1

2

)]2
, (A.9)

where n = 1, 2, 3, . . . labels the sequence of discrete eigenvalues. Also the potential

(A.8) is the special case (with v2 = 0) of the Rosen–Morse potential [53]

V (r) = −v1 sech
2 αr + v2 tanhαr, (A.10)
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where v1 and v2 are the depth of the potential and α is the range of the potential. The

Rosen–Morse potential plays a fundamental role in atomic, chemical and molecular

physics, since it can be used to describe molecular vibrations and to obtain the energy

spectra of linear and nonlinear systems. This potential is very useful for describing

the interatomic interaction of linear molecules and is helpful for describing polyatomic

vibration energies including the vibration states of the NH3 molecule.

A.5 Soft–core Coulomb potential

Another family of potentials which is useful as model potentials in atomic and molec-

ular physics is the family of the soft–core (truncated) Coulomb potentials [54, 55]

V (r) = − v

(rq + βq)1/q
, (A.11)

where v > 0 is the coupling parameter, β > 0 is the cutoff parameter, and q ≥ 1 is

the power parameter. For β > 0, the potential is not singular as r −→ 0.

The specific potential corresponding to the power parameter q = 1 is called the

cutoff Coulomb potential and given by [56]

C(r) = − u

r + b
, (A.12)

with the coupling u > 0 and cutoff parameter b > 0. C(r) is an approximation to

the potential due to a smeared charge distribution, rather than a point charge, and

is appropriate for describing mesonic atoms [57]. The eigenvalues of the Schrödinger

equation generated by the cutoff Coulomb potential has been studied by many authors

who tried to estimate them. For instance, in [56] the simple formulas for upper and

lower energy bounds for all the energy eigenvalues by the potential envelope method

have been obtained. In [58] the method of the large–N expansion to approximate the

83



bound state energies from n = 1 to n = 4 has been applied. And in [57] the authors

analyzed in detail the S–wave bound–state eigenvalues of this potential as a function

of b.

If q = 2, we obtain the laser–dressed Coulomb potential, which can be treated as

an approximate stationary potential describing energy levels of the hydrogen atom in

the electromagnetic wave field. However, the approximation has no bearing on the

laser field strength and consequently the laser–dressed Coulomb potential potential

is suitable for the description of an atom under either an intense or a weak laser field.

This potential is given by [59, 60]

L(r) = − l

(r2 + λ2)1/2
, (A.13)

where the coupling l is positive, and λ > 0 is the truncation parameter which is

related to the strength of the irradiating laser field and has the range λ = 20 − 40

covering the experimental laser field strengths [61]. The parameter λ is related to the

laser frequency ω(s−1) and intensity I(W cm−2) by λ = 6.5× 1024ω−2I1/2 [59].

A.6 Woods–Saxon potential

The potential, which is a compromise between square well and harmonic oscillator

potential, is

V (r) = − w

1 + e
r−R
a

. (A.14)

This potential is known as Woods–Saxon potential [62, 63]. In (A.14), w represents

the potential well depth, a is a length representing the “surface thickness” of the

nucleus, and R = r0A
1/3 is the nuclear radius where r0 = 1.25 fm and A is the mass

number.

The Woods-Saxon potential is a mean field potential for the nucleons (protons
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and neutrons) inside the atomic nucleus, which is used to describe approximately the

forces applied on each nucleon, in the shell model for the structure of the nucleus.

Typical values for the parameters are: w ≈ 50 MeV, a ≈ 0.5 fm. For large mass

number A, this potential is similar to a potential well, because it is approximately

flat in the center. It is monotonically increasing with distance, i.e. attracting. When

using the Schrödinger equation to find the energy levels of nucleons subjected to

the Woods Saxon potential, the problem cannot be solved analytically, and must be

treated numerically.

A.7 Yukawa potential

Many properties of nuclear forces can be explained quantitatively by the potential

proposed by Yukawa in 1939 [64]:

V (r) = −a

r
e−λr, (A.15)

with a the coupling constant and λ = 1/r0, where the range r0 of the force is the

Compton wavelength �/μc of the exchanged particle of mass μ. Yukawa noticed that

the range of nuclear forces r0 ≈ 1.4 fm corresponds to the exchange of a particle of

mass μ ≈ 140 MeV. This is how he predicted the existence of the π meson1.

As the mass μ of the exchange particle approaches zero, the exponential term goes

to one, and the Yukawa potential becomes equivalent to a Coulomb potential, and

the range is said then to be infinite.

1For this insight, Hideki Yukawa received the 1949 Nobel Prize in Physics.
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