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Abstract
Selfish Misbehavior in 802.11 Wireless Networks

Antoniy Ganchev, Ph.D.
Concordia University, 2011

Media access protocols in wireless networks require each contending node to wait for
a backoff time chosen randomly from a given range, before attempting to transmit
on a shared channel. However, selfish stations might try to acquire an unfair portion
of the channel resources, at the expense of the cooperating nodes, by not following
the protocol specifications. For example, they might choose smaller backoff values
more often than would be dictated by pure chance. In this thesis, we study how to
detect such misbehavior as well as how nodes might be induced to adhere to the
protocol.

We first introduce a game-theoretic framework that models an abstracted version
of the medium access protocol as a strategic static game. We are interested in
designing a game which exhibits a unique Nash equilibrium corresponding to a pre-
specified full-support distribution profile. In the cooperation inducement context,
the Nash equilibrium for the game would correspond to protocol compliance on
behalf of the participating nodes. We identify an exact condition on the number
of players and the number of their strategies that must be met to guarantee the
existence of such a game.

Further, we propose a new protocol called XVBEB in order to determine based
on the stations’ backoff values choices whether they are behaving accordingly or
selfishly. We describe how to deduce the backoff values in XVBEB based on obser-
vations of transmissions by nodes in the network and the collision timeline, which
is rarely feasible with the IEEE 802.11 backoff procedure. Given a set of backoff
values used by a XVBEB node, we describe how to conclude with a specified level

of certainty whether the node is indeed adhering to the protocol.
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Finally, we evaluate the performance of a network of XVBEB nodes and com-
pare it against a standard IEEE 802.11 network. Simulation results show that the
throughput of XVBEB is better than that of 802.11 for saturated CBR traffic. Fur-
thermore, XVBEB also exhibits lower packet loss, delay and delay variation than

802.11 for both VBR and VoIP traffic for a variety of load conditions.
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Chapter 1

Introduction

The number of wireless network deployments has been significantly increasing over
the last decades as many businesses and home users have started to appreciate the
benefits of wireless communications. Ease of setup and mobility are a few of the
benefits that made such networks widely used. Therefore, many research groups
focused their attention on enhancing the existing standards and creating new stan-
dards for mobile communications. Wireless Local Area Networks (WLANs) can
be classified in two major categories: Mobile Ad Hoc Networks (MANETS) and
Infrastructure-Based Wireless Networks. MANETSs consist of a set of mobile de-
vices communicating with each other via wireless links in the absence of any fixed
infrastructure. The second type is observed when mobile nodes communicate with
peers with the help of base stations, which are networked to each other through
wired links. Typical MANET instances are military and disaster recovery oper-
ations; library and airport networks are examples of infrastructure-based wireless
networks.

Most traditional physical, data link and network layer protocols were developed



for use in wired networks and are not suitable for use in wireless environments.
Therefore, new standards had to be developed to address many important concerns
such as node mobility, insecure and unreliable wireless links, and power constraints.
Some physical and data link layer protocols for mobile communications are suit-
able for use in both MANETSs and infrastructure-based networks, whereas ad-hoc
networks require particular routing protocols. Because of the lack of designated
routing devices, all nodes must act as routers forwarding packets on behalf of the

others.

1.1 Data link layer protocols for wireless commu-

nications

Our work focuses exclusively on studying the behavior of data link layer protocols.
The first such protocol was ALOHA [Abr70], developed for packet radio networks,
the precursor of today’s ad hoc networks. In ALOHA, a wireless node or terminal
that has data simply transmits, and if it finds out later that there was a collision,
it re-transmits. By dividing time into fixed length slots, and allowing packet trans-
mission only at time slot boundaries, Slotted ALOHA reduces the time spent in
collisions thereby doubling the throughput [Rob75].

In most modern protocols, a mechanism is implemented on the data link layer
aiming to avoid simultaneous transmissions on the same channel. Such mechanisms
are often called Carrier Sense Multiple Access (CSMA) schemes. A station that has
a message to transmit must verify whether there the channel is free; if so, it attempts

to send the message. If, however, there is another transmission in progress, it wait



until the channel becomes free and then wait again for some random interval before
attempting a transmission. Additional improvements to this access scheme are
achieved by implementing a second wait period in an effort to avoid the possibility
that two or more waiting nodes try to send their packets at the same time, which
would result in a collision. This procedure is also called a Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) scheme. The p-persistent [KT75]
protocol was one of the earliest CSMA/CA schemes. A node wishing to transmit
first senses the channel. If the channel is idle, it transmits with probability p, and
defers the decision to transmit by one slot with probability 1 —p.

Most of the analysis in this thesis concentrates on the most widely used wire-
less medium access protocol IEEE 802.11 [IEEQ7], so we present its detailed mode
of operation. The IEEE 802.11 standard specifies participants’ behavior at both
physical and data link layers. On the physical layer, the transmission frequencies
are split into channels to avoid interference between different networks within the
same transmission range. On the data link layer, it is a slotted CSMA/CA scheme
designed to resolve simultaneous channel access attempts from multiple hosts.

The protocol provides two mechanisms to solve the contention problem: PCF
(point coordination function) and DCF (distributed coordination function). PCF
is based on a polling scheme where the point coordinator (access point) polls each
station in its polling list. In IEEE 802.11 DCF, which is a fully distributed mecha-
nism, the responsibility for resolving media access conflicts is distributed between
all participating nodes. Each node maintains a special value CW (contention win-

dow). Before transmitting, a node senses if the channel is free for a DIFS (DCF



inter frame spacing) period of time. If no other transmission is detected, the sta-
tion makes a transmission attempt. If the channel is sensed busy, the participant

initiates a backoff procedure (Figure 1).

DIFS
Station A _Frame | M1
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Figure 1: IEEE 802.11 Contention

When entering in backoff state, a station selects a random backoff value from
the [0, CW] interval and sets its backoff counter to the selected value. When the
channel becomes idle again, the station waits for a DIFS period and decreases its
backoff counter by one after each time slot the channel is sensed idle. If at some
point the medium becomes busy again, the backoff procedure is put on hold until
the channel becomes available. When the channel becomes available again, the
node waits for another DIFS interval and continues the countdown from the value
of the backoff counter when the backoff procedure was suspended. Once the backoff
counter reaches 0, the node makes another transmission attempt (Figure 2).

In contrast to wired networks, transmitting wireless station do not get feedback
from the medium when collisions occur. Therefore, to determine whether the trans-
mission of a data packet has been successfully received or if the packet has been

lost (e.g. due to a collision), the recipient should send a confirmation packet back
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Figure 2: IEEE 802.11 Transmission

to the sender. A transmission is deemed to be successful if the sender receives an
ACK (acknowledgment) packet back from the receiver. This mechanism is called
basic access. The basic access handshake is shown in Figure 3.

In efforts to reduce collision times and to solve the hidden node problem, an
optional RT'S/CTS (Request to Send/Clear to Send) mechanism has been specified.
Instead of sending a full data packet, a transmitting station sends a short RTS
control packet to the destination. If the receiver replies with a CTS control packet,
the sending node starts transmitting the data. Figure 4 illustrated the RTS/CTS
handshake.

The benefit of the RTS/CTS mechanism is that if two or more nodes transmit
at the same time, the collision time would normally be much shorter than if lengthy
data packets collided thus reducing the dirty utilization of the channel. In the basic
access mechanism (no RTS/CTS being used), however, there is no wasted time in
RTS/CTS frames exchange, and, therefore, a bigger portion of the channel clean
utilization is used for data traffic and less bandwidth is wasted for control frames.

If, at some point the sender fails to receive a CTS or ACK packet (depending
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on the access mechanism in use), it evokes a collision recovery procedure. The
transmitting station should double its CW value (subject to some CW,,.) and
follow the backoft algorithm again. Once the transmission succeeds, it should reset
its CW to a CW,,in, value.

In IEEE 802.11, carrier sensing is achieved in two ways: physical and virtual
sensing. Virtual sensing is implemented to help nodes conserve their power re-
sources. When a node is sending a packet, it calculates the expected communication
duration. This interval is then indicated in the NAV (network allocation value)
value contained within the MAC header. All listening nodes should refrain from
transmission for the duration of this interval. When RTS/CTS is used, the NAV
is also included in the CTS packet because there might be nodes in the destina-

tion’s transmission range that cannot overhear the RT'S packet sent by the source

(Figure 5).
DIFS
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Figure 5: IEEE 802.11 RTS/CTS

Because of the nature of the wireless links, a node cannot transmit big chunks of

data simultaneously. IEEE 802.11 DCF uses fragmenting to solve this problem. It



has a MTU (maximum transmission unit) of 2304 bytes; however, when fragmenta-
tion is used, the MTU is reduced to 1500 bytes. Each DATA-ACK fragment serves

as virtual RTS-CTS sequence thus reserving the channel for the next fragment.

1.2 Cooperation issues in mobile networks

Lack of central authority to provide control and management over the network
operation can be observed in both types of wireless networks. This makes the
wireless environments more vulnerable and imposes additional constraints on the
design of communication protocols. Aside from the obvious security concerns, some
participants could try to exploit the autonomous nature in order to achieve gain in
different aspects such as achieving higher bandwidth or saving battery life. This
gain is almost always achieved at the expense of the participants that adhere to
the communication rules. Such behavior is often referred to as selfish or greedy
masbehavior.

Note that such misbehavior could occur in the traditional wired networks; how-
ever, it is unlikely to happen because nodes are physically attached to the same
backbone and usually belong to same organization.

It is important to distinguish selfish from malicious agents. Selfish nodes’ goal
is to maximize their own benefit which may impact the network operations in
a negative way. Malicious nodes’ purpose, on the other hand, is to obscure the
network operations; saving energy, for example, is not a priority.

By design, all network and media access protocols work under the assumption

that the participants strictly follow the protocol specifications, which makes them



susceptible to selfish misbehavior. Greediness may occur in all layers of the protocol
stack [CGMO04].

We briefly the describe the non-cooperation problem at the network layer. Two
general approaches for ad-hoc routing protocols have been developed [RT99]: re-
active and proactive protocols. Proactive protocols are similar to the conventional
routing protocols, i.e. all nodes maintain routing tables and routing decisions are
taken by the intermediate nodes. Frequent topology changes are typical for ad-hoc
environments resulting in high traffic overhead for routing table updates. As an al-
ternative, reactive routing protocols do not require routing table maintenance. The
routes are established only as needed, and the path that the packet should take
is piggybacked by the sender into the packet header. A connection between two
nodes is established in two phases: route discovery and packet forwarding. Reactive
routing protocols are considered more suitable for ad-hoc environments.

A node may act selfishly trying to maximize or conserve its power resources in

several ways:

1. Forwarding phase: each data packet having source/destination different from

the current node is discarded.

2. Routing phase for reactive protocols (AODV [PBRDO03], DSR [JMH]): not

replying to route request, route reply, and route error messages.

3. Routing phase for proactive protocols (FSR [GPHC], OLSR [CJ03]): not co-

operating in the propagation of routing information throughout the network.

This thesis focuses on selfish misbehavior at the data link layer. All CSMA/CA

schemes assume that all participants strictly follow the protocol specifications in
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order to achieve an operational point of the network on the data link layer. However,
this assumption may not be always valid, especially in the presence of autonomous
nodes. For example, a node may have an incentive to increase its own throughput.
This could be easily achieved by transmitting right after the channel is sensed idle
instead of invoking the backoff procedure.

Unfortunately, there are numerous ways in which a station can gain advantage

by not adhering to the protocol guidelines:

e Choosing small backoff values: Instead of choosing randomly, a selfish node
could choose a smaller value. For example, if a cheater intentionally selects a
backoff value of 0 each time it needs to access the communication medium, it

will have the highest chance to access the media as soon as it becomes free.

e Not doubling CW after collision: after a collision, a node may not invoke the
collision recovery procedure. Thus, the node would be always choosing its

backoff values from [0, CW,,in], thereby utilizing values for backoff

e Manipulating the NAV value: if a node increases this value, it can assure that

all other agents will remain idle even after the end of the current transmission.

e Not conforming to the DIFS and SIFS intervals: such behavior will increase

the chances of getting access to the medium.

e Scrambling others’ data and control frames: such behavior would push other
stations to invoke the collision recovery procedure, thus forcing them to double

their CW values.

Note that not obeying the inter-frame spacing intervals or manipulating the

10



NAV values could be easily detected from the other participants. Scrambling others
frames require the node to use energy resources for transmissions. Thus, the easiest
ways for a participant to behave selfishly without being noticed is to choose lower
backoftf or not to double its contention window values. This two possibilities are
special subcases of a generalized misbehavior: the station is choosing its backoft
values according to a distribution different than the specified uniform distribution.

In the presence of two or more cheaters, a disastrous situation could occur. For
instance, if two participants always choose O as their backoff value, only collisions
will occur on the channel, and the network will collapse.

Finally, note that a participant might be misbehaving without even being aware
of it. This could happen if manufacturer of wireless equipment aims to increase its
popularity by incorporating lower backoff values in its products, which would lead
to better performance compared to the products of its competitors. In recent work,
Tinnirello et al. [TGNOQ9] tested a number of Wi-Fi cards and discovered that some
products were not conforming to the IEEE 802.11 specifications and the size of the

contention window was smaller than the value given in the protocol specifications.

1.3 Thesis statement

The main goal of this thesis is to model and analyze data link layer protocols in
order to detect and prevent selfish misbehavior on the part of wireless nodes. More
specifically, we focus our attention on greedy nodes that manipulate the backoff
procedure by choosing their backoff values based on other than the uniform distri-

bution in [1, CW]. The objective is to provide an incentive to the participants to

11



strictly follow the backoff algorithm and to detect stations that do not obey the
protocol specifications.

Using the rationality assumption of game theory (i.e. that all participants seek
to maximize their utility), we aim to create a game theoretic framework for the
CSMA /CA backoff procedure and to answer the question whether it is possible to
design an incentive scheme within that model that would allow for enforcement of
protocol compliance. In other words, is it possible to design a game that has a
unique Nash equilibrium such that it is in the nodes’ best interest to strictly follow
the specified procedure? If so, the player utilities in the game could be used as
incentives to the wireless stations to enforce cooperation.

As previously noted, the participants in IEEE 802.11 backoff procedure are re-
quired to choose their backoff values uniformly at random over the entire backoff
range. However, we also investigate protocols based on distributions differing from
the uniform. Is it always possible to design games with a unique outcome regardless
of the desired distribution? Are there any restrictions imposed by the number of
participants or their strategies? What would be the effect on the network perfor-
mance when alternative backoff schemes are used to detect and prevent selfishness?
Would there be any negative impact on throughput, packet loss and packet delay?

Finally, we attempt to address scenarios when the rationality assumption is not
satisfied. In practice it might not be feasible to implement an incentive scheme (as
calculating equilibria might be a time and resource consuming process), or some
nodes simply decide to behave selfishly regardless of the incentives they would
be awarded. Therefore, we seek to create a selfishness detection scheme to iden-

tify greedy but not necessary rational nodes based on the choices of their backoff

12



values. Are there some backoff protocols that are more amenable to detect such

misbehavior?

1.4 Thesis contributions

In this thesis, we solve the problems discussed in Section 1.3. We first design a
game-theory framework to be used as an incentive to protocol compliance. We also
take a more practical approach to detect selfish misbehavior. In particular, we make

the following contributions:

e We abstract the CSMA /CA backoff algorithm to a static game that models a

single round of the media access procedure.

e We derive an ezact condition based on the relationship between the cardi-
nalities of the players’ action sets that would make it possible to design a
static game which exhibits a unique Nash equilibrium corresponding to a

pre-specified full-support distribution profile.

e If the condition on the cardinalities of the players’ strategies is not satisfied,
we prove that it is impossible to create a game that has a unique full-support

Nash equilibrium.

e When the condition is satisfied, we demonstrate how, based on the number
of available actions for each player, to design a game that has a unique Nash
equilibrium which corresponds to backoff scheme compliance in wireless net-

works.

13



e We propose a new backoff scheme, named XVBEB, that allows to deduce the
backoff values of the participants based on the timeline of the channel access

events (which is rarely possible in IEEE 802.11).

e We demonstrate how to perform sample validation on the backoff value choices

of the participating stations in order to detect greedy misbehavior.

e We study the performance of XVBEB in a variety of aspects, such as satura-
tion throughput, packet loss and packet delay, and show by simulations that

it is similar or superior to IEEE 802.11.

The results in Chapter 3 have been published in [GNS06] and [GNS08]. The
work in Chapter 4 has been published in [GNS09]|. The results in Chapter 5

have been published in [GN11] and in Chapter 6 in [GNA11].

1.5 Thesis outline

The rest of this thesis is organized as follows. In Chapter 2 we discuss some of the
work related to our areas of research. In Chapter 3 we introduce a game-theoretic
framework for an abstract version of the medium access contention resolution pro-
cedure and design games based on the number of players and their strategies that
have a unique Nash equilibrium corresponding to cooperative behavior of the sta-
tions in wireless networks. In Chapter 4, we generalize these results by providing
an exact condition under which it is possible to design such games. In Chapter 5
we propose XVBEB, a new backoff procedure, and illustrate how to detect misbe-

having nodes when XVBEB is used. The performance of XVBEB is evaluated and

14



compared against IEEE 802.11 in Chapter 6. Finally, some concluding remarks are

made in Chapter 7.
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Chapter 2

Related Work

There are three main research areas closely related to our work: game-theoretic and
mechanism design approaches to ensure cooperation in wireless networks, selfish
misbehavior detection and prevention in medium access schemes and performance
evaluation of data link layer protocols. We survey the relevant literature in each of

these three areas in the reminder of this chapter.

2.1 Game-theoretic and mechanism design approaches

to accomplish cooperation in wireless networks

Game theory [Gib92, OR96] focuses on the interactions between individuals in
competitive and cooperative situations. It aims to model and analyze the individual
decision making in fundamentally strategic situations, where the outcome for the
individuals not only depends on their decisions but also on what the other player
will choose as a strategy. Two major categories are defined: static and dynamic

games. In static games, all players make their moves simultaneously, whereas in
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dynamic the agents make their decisions based on the history of the game.

MacKenzie et al. [MWO01] were the first to tackle the cooperation issue on the
data link layer using game theoretic techniques. However, they analyzed a very
limited model of Slotted Aloha assuming that each user knows how many back-
logged packets there are in all other nodes. In [AEAJO03] the results in [MWO01] are
improved by analyzing a model of Slotted Aloha where nodes are not aware of other
nodes’ backlogged packet. It is shown that as the arrival probabilities increase, the
behavior of the nodes becomes more aggressive resulting in deterioration of the sys-
tem throughput. Also, the authors show that adding additional cost to the packet
transmission could be used to improve the performance.

A game theoretic approach to analyze the problem in CSMA /CA protocols has
been proposed in [CGAHO05]. It is assumed that there are N static nodes willing to
send data to N receivers (one per node) within the same communication range. The
nodes always have packets (of the same size) to send. The presence of MAC layer
authentication is another assumption. The players are assumed to be rational, and
they try to maximize they payoff (throughput). Bianchi’s model [Bia00] is used
to measure the throughput and the access probabilities. The authors show, using
both simulation and analysis, that in a game with single cheater the selfish node
maximizes its utility (throughput) by minimizing his CW. Further, they look at a
static game where all agents are cheaters. They show that there exist an infinite
number of Nash equilibria and that normally the system will converge to a point
where the nodes will receive zero payoffs. Another result is the existence of a Pareto
optimal point of operation which is not a Nash equilibrium point. Using the theory

of dynamic games, the authors design a distributed algorithm, and, by introducing
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a penalty function, they lead the cheaters to a desired Nash equilibrium. All nodes
measure their own throughput and their neighbors’ one. If someone’s throughput
is higher, this node is identified as misbehaving cheater. The punishment P; for
a misbehaving node should not affect any other player’s payoff which could be
achieved by selectively jamming player i’s packets. After being punished, a node
should run an adaptive strategy, meaning that a node should gradually increase its
CW. One constraint is that the players must not use the penalization mechanism
while running the adaptive strategy. According to the proposed mechanism, this
will lead to a new Nash Equilibrium point. Finally, it is shown that the network
could be brought to the Pareto optimal point of operation using a simple gradient
search mechanism. Every cheater uses a random timer to increase its CW thus
intentionally deviating from the current Nash Equilibrium.

Chen et al. [CCHDOQ7| provide a general game theoretic framework for medium
access control protocols. The medium contention is defined as a random access game
where players’ utilities are functions of their channel access probabilities. Finally,
they design new classes of MAC protocols in efforts to achieve superior performance
over 802.11.

Mechanism design[Par01, DNPO03] is a branch of game theory that has been
used to provide cooperation incentives in wireless networks mainly on the network
layer. This field is concerned with the design of games in which the equilibrium
strategy for all players represents a desired social outcome. In game theory, in
general we know the strategies and the utilities available to each player, and the
aim is to analyze the outcome for a given game. In mechanism design, on the other

hand, we know the desired outcome, and the goal is to design utility function for
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the players such that their actions will represent the desired outcome.

One kind of mechanism that has been studied extensively is the VCG mecha-
nism named after Vickrey [Vic61], Clarke [Cla71], and Groves [Gro73]. The typical
property of the VCG based mechanism is that truth-telling is the dominant strat-
egy for every player. Ad hoc-VCG [AEQ3] is a reactive routing protocol, which
uses mechanism design techniques and is based on the VCG second best sealed bid
auction. The network is represented as a directed graph where each has a weight
representing the energy that a node has to spend in order to forward a packet on
this edge. The mechanism calculates the shortest path based on energy cost. Using
the VCG mechanism, a payment scheme is developed which stimulates the nodes to
report their real costs. Two models are proposed. In the source model, the sender
is willing to pay a premium to the intermediate nodes along the minimum cost
path in addition to their true cost, and in the central-bank model, only the real
cost is paid and a central authority maintains an account for each node. During
the route discovery phase, the intermediate nodes append their types (forwarding
costs) to the route request packets. Once the destination receives all the packets, it
constructs the underlying graph, and after calculating the shortest path, it forwards
a route reply packet, which is signed and contains the payment for each node, along
this path. In the source model, during the data transmission, the sender will attach
the payments to each data packet. In the central-bank model, the receiver records
the amount of money the sender owes, which is eventually synchronized with the
central authority. If a link along the path fails, a broken link message is sent to
the source along the inverse path, and the sender initiates new route discovery.

One of the main drawbacks of this algorithm is that some nodes may receive bigger
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amounts than what they normally should, which is termed as overpayment.

Sprite [ZCYO03] is a system that provides incentive to mobile nodes to cooperate
at the network layer using game theoretic tools to determine payment and charges.
The source pays the intermediate nodes for the service they provide. Each node
reports the packets it has forwarded to a central authority called Credit Clearance
Service (CCS). Upon switching to a backup power and fast connection, each node
uploads fingerprints of all forwarded messages called receipts. The authors show
that each node is motivated to report its receipts honestly. Although this paper is
motivated by algorithmic mechanism design, the information held by each player
is not totally private, so this work does not fit exactly into the mechanism design
framework.

The mechanism design problem for dynamic systems is termed online mecha-
nism design. In [FP03], the authors consider the problem of designing mechanisms
for problems when agents arrive and depart over time. They show how the results
of the mechanism design field can be extended to the online problem. A specific
example is examined where wireless access is shared among transient users who
have to pay for the service. The wireless network can serve only limited number m
of nodes simultaneously. Each agent has a valuation, and a VCG pricing scheme
is developed such that it is in each player’s interest to report its highest valuation.
The scheme allows a node to claim later arrival time hoping that the price will drop
due to subsequent departures or arrivals of other users. The authors show that
when the valuations remain constant (over time), the online auction is equivalent
to a series of (m + 1)’st price auctions. The main problem in the online version is

how to calculate the pricing in a timely fashion.

20



None of the strategies above seek to provide incentives to the wireless stations
to follow the protocol specifications. Our approach is to design a utility scheme

such that the unique best strategy for all players would be protocol compliance.

2.2 Selfishness detection and prevention for medium

access protocols

As discussed in the previous section, the game-theoretic techniques have been rarely
used to prevent selfish behavior at the medium access layer. There has been, how-
ever, considerable interest in the problem of selfishness detection and prevention at
this layer. The approaches taken thus far fall into two general categories: protocol
modification and reputation-based (punishment) schemes. The reputation-based
schemes aim to detect misbehaving nodes and sometimes isolate them from the
network activity, which is less desirable especially in ad-hoc environments, where

isolating some nodes could result in a partitioned network.

2.2.1 Protocol modification schemes

Konorski [Kon01] and [Kon02] suggested new backoff algorithms resilient to selfish
behavior. Stations send packets in bursts. The competition for channel access goes
through several elimination and reaction burst cycles until a winner is elected who
resumes its packet transmission. The proposed packet scheduling policies aim to
converge the network to a fair and efficient Nash equilibrium.

A scheme trying to detect selfish misbehavior in IEEE 802.11 is proposed in [KV04].

The suggested solution modifies the 802.11 protocol specifications, assuming that
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the receivers are well-behaving nodes. In 802.11 the sender has the responsibility
to choose its backoff value; instead, the authors assign this role to the receiver,
which encapsulates this value in the CTS packet. If the sender tries to deviate from
the assigned value, the receiver will detect this behavior and will add a penalty
to the next backoff value, which will increase the possibility of detecting misbe-
havior. When the deviation reaches a certain threshold, the node is identified as
misbehaving.

Lolla et al. [LLK 06| proposed a solution for the backoff value deduction problem
in IEEE 802.11. Due to the nature of IEEE 802.11, in the presence of collisions it
is impossible to know what are the backoff value choices of the participants. To
overcome this problem, each station must include information in the RTS/CTS
packets about the state of its pseudo-random sequence generator, which will allow
the other nodes to estimate a sequence of expected future backoff values of the
transmitting node and later compare whether the observed behavior complies with

the expected sequence.

2.2.2 Detection schemes

The watchdog scheme [MGLBO00] detects misbehaving nodes using a passive ac-
knowledgment scheme. A node B, after forwarding a packet on behalf of node A
to a node C, will expect C to retransmit the packet further. Due to the broadcast
nature of the wireless links, in most cases B will overhear when C relays the packet
to D thus allowing detection of misbehavior. The main weakness of this approach
is that there are situations when B will not overhear the packet retransmission

(collisions, different transmission ranges, etc). The pathrater component combines
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knowledge of misbehaving nodes with link reliability to choose reliable paths.

In efforts to overcome the watchdog’s weaknesses, Djenouri et al. [DB05] suggest
a two-hop active acknowledgment scheme. This method does not rely on passive
ACKs; rather, node D will send back an encrypted message to B confirming that
C has forwarded the packet. An obvious drawback of this scheme is the generated
overhead. To overcome this problem, the authors propose a random two-hop ACK
scheme, where ACKs are only required on randomly selected packets.

CORE |[MMO02]| is a reputation-based scheme which extends watchdog using
three different types of reputations: subjective, indirect, and functional. Subjective
reputation is based on the node’s direct observations, indirect is provided by other
nodes, and functional is calculated from subjective and indirect reputations with
respect to various functions.

DOMINO [RHAO04] is a system which aims to detect MAC layer misbehavior
while trying to remain transparent to the network operations. DOMINO could be
implemented for example on an access point to monitor the behavior of the par-
ticipants. It periodically collects nodes’ behavior data, which is analyzed to detect
potential misbehavior. DOMINQO’s measurements are based on several metrics as it
tries to address several misbehaving issues such as scrambling the frames of other
stations, NAV oversizing and backoff manipulation. The main drawback in terms
of the backoff manipulation detection component is that it does not work in the
presence of collisions, as it is impossible to make deductions for the station’s backoff
values.

Sequential probability ratio test (SPRT) is used in [RLCO06] to detect misbehav-

ior based on the throughput degradation monitored at a normally behaving station.
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Another statistical approach is developed in [RBKO05] using minimax robust detec-
tion approach. The performance of DOMINO and SPRT is compared in [CRBO09];
in addition, the authors propose a more realistic framework for the SPRT test.
We propose a minor modification to IEEE 802.11 called XVBEB that allows us
to deduce the backoff values of a wireless station even in the presence of collisions.
XVBEB differs from IEEE 802.11 only in the way the nodes choose their backoft
values. We also show how to determine whether the station is misbehaving based

on its backoff value choices.

2.3 Performance evaluation of data link layer pro-

tocols

Saturation throughput of IEEE 802.11 networks was thoroughly analyzed using
Markov chains for the first time in [Bia00]. Bianchi showed that as the channel
offered load increased, the throughput increased to a certain maximum value, but
then decreased to stabilize at the saturation value. Under the key approximation
that each packet collides with constant and independent probability, the backoff
procedure in IEEE 802.11 is modeled as a Markov stochastic process to obtain the
transmission probability of a node as a function of the collision probability and
the size of the contention window. Finally, a formula for the saturation system
throughput is derived as a function of the transmission probability and the number
of nodes, which enables the calculation of the value of the contention window to op-
timize the system throughput providing information for the number of participating

nodes is available.
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Much of the work that followed focused on enhancing the model presented
in [Bia00]. In [WPL"02], the authors incorporated in the model the fact that a
packet is dropped after several retransmission attempts, as defined by the short or
the long retry counters in IEEE 802.11. In contrast, Bianchi’s model incorporates
a behavior where a packet stays in the queue until it is successfully transmitted.

Wang et al [WCLHO05] broadened the model to mixed (IEEE 802.11b and IEEE
802.11g) networks. They proposed a hybrid Markov chain to evaluate the saturation
throughput in heterogeneous IEEE 802.11 environments.

In [ZA02] the busy medium conditions that invoke the backoff algorithm are
incorporated into the the Markov chain. In addition, an analytical model for delay
analysis again based on the Markov chain model.

He et al. [HPO06] extended the model to multihop networks using 3-dimensional
Markov chains. It is assumed that the nodes are randomly situated according to a
two-dimensional Poisson distribution with density as a parameter.

A fair backoff algorithm has been proposed in [FBWO02]|, where each station
continuously estimates its throughput and the aggregate throughput of the other
nodes in its range. The station adjusts its contention window based on a fairness
index based on its own throughput and the throughput of its neighbors.

In [MNO7], the authors present an alternative backoff scheme aiming to reduce
the number of collisions by choosing uniformly at random from the second half of the
contention window range (instead of the entire backoff range) in the lower backoff
levels. It is also claimed that this backoff procedure provides better performance in
terms of packet delivery variation.

All of the performance evaluation work in listed this section is based on the
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backoff scheme using the uniform distribution used in IEEE 802.11. We, however,
model and evaluate the performance of the XVBEB scheme and compare it against

the performance of IEEE 802.11.
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Chapter 3

On Games that Induce Unique A

Priori Specified Nash Equilibria

In this chapter, we introduce a game-theoretic framework to analyze medium access
protocols, more specifically the CSMA /CA backoff procedure. We first note that
the medium access contention backoff procedure, in its full generality, corresponds
naturally to realizing a dynamic game; the nodes can (and do) modify their actions
in response to the outcome of previous rounds. We begin by studying a simpler
abstraction: games that model a single round of the media access problem.
Thus, a static version of the cooperation problem in wireless networks is modeled
as a strategic game played by non-cooperating, rational players (the stations). Our
objective is to design a game which exhibits a unique, a prior: specified mixed-
strategy Nash equilibrium. In the context of the simplified media access problem,
the game, if correctly implemented, would correspond to nodes choosing backoff
times randomly from a given range of values, according to the given distribution,

which would ensure protocol compliance. We consider natural variations of the
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problems concerning the number of actions available to the players and show that
it is possible to design such a game when there are at least two players that each
have the largest number of possible actions among all players.

Indeed, IEEE 802.11 can be abstracted as k stations (the players) competing for
access to the shared wireless medium using a backoff protocol where the j** node
should choose a backoff value uniformly at random from a range given [1,n;] (the
contention window). Our goal is to design the corresponding game, ¢.e. to specify
utility functions for the players that would induce a unique mixed strategy Nash
equilibrium which corresponds ezactly to each player faithfully following the pro-
tocol, viz. choosing a backoff value uniformly at random. We stress here that it
is not difficult to construct a game with a mixed strategy Nash equilibrium that
corresponds to the uniform distribution (or indeed, any other distribution); the
challenge lies in ensuring that this equilibrium is unique and not just one among
many possible equilibria, so that rational play automatically leads to protocol com-
pliance.

Hence, we start with the presumption that we are given an a prior: distribution
profile o* (for example, the uniform distribution in the case of IEEE 802.11). We
wish to design a strategic game that realizes ezactly this distribution as its unique
mixed-strategy Nash equilibrium. In this chapter, we show that this is possible when
there exist at least two players with the largest number of actions; we arrive at this
result by generalizing the construction of a game achieving a desired equilibrium

distribution among players with exactly the same number of actions.
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3.1 Preliminaries

For any fixed positive integer m, let [1, m] denote the set of integers {1,2,..., m}.

We shall be concerned with two such sets that arise in our strategic games:
e A finite ordered set of k > 2 players, P = [1, k].

e A finite set of n; > 1 possible actions (or strategies), A; = [1,n;], for each

player j € P.

We use the terminology profile for an ordered tuple that is typically indexed by
an index set such as P. Following standard game-theoretic notation, an outcome
of the game is represented by an action profile, s = (ij)jcp, with the interpretation
that every player j € P performs the corresponding action i; € A; in the outcome.
The space of all possible outcomes is denoted by S.

A utility function is a function u: A; x A; x...x Ay — IR that associates the
real value u(s) with the action profile s. Every player has its own utility function.
Collectively, the utility function profile, (u;)jcp is interpreted as follows: for any
action profile s, the corresponding utility profile for the players is simply (u;(s));jcp-
We assume rational players that play independently (without any collusion) but
seek to maximize their respective utilities, .e. a player will always prefer an action
a € A; over some other action b € A; if the corresponding utility is strictly higher.

We briefly review the notion of Nash equilibria for our games; for details, the
reader is referred to Osborne and Rubinstein [OR96]. Given an action profile s, we

denote by s_; the partial profile containing the actions in s for all players except
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player j. For any player j and any partial profile s_j, the set

Bj(s_j) ={a € Aj 1 uj(s_j,a) > uj(s_j,b) for all b € A}

is the set-valued best-response function for player j. A pure strategy Nash

equilibrium is a specific action profile

st = (a;‘)jeP
such that all the individual actions in s* are stmultaneously best responses for the
players with respect to the corresponding partial action profiles. More formally, it

is the case that for every j € P:

uj(s") > uj(sZ;,b)  for every b € A;

where (s*_)-, b) is the action profile obtained from s* by replacing the component ac-
tion s; with the action b. Intuitively, players cannot gain any utility by unilaterally
changing their equilibrium actions.

Not all finite games necessarily have pure-strategy Nash equilibria. However,
they must have mixed strategy Nash equilibria which generalize pure-strategy
Nash equilibria. For a player j € P, a mixed strategy, o, is a discrete probability
distribution over its action set A;. One interpretation of a mixed strategy is that the
player j chooses any action a € A; independently with the corresponding probability
o(a). In particular, note that every outcome (7.e. action profile) of the game

corresponds to a degenerate mixed strategy in which every player assigns probability
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1 to its action in the outcome.
Collectively, the mixed strategies of all the players constitute a distribution

profile, o = (oy)jcp with the following interpretation of utilities:

e Player j’s utility for any particular pure strategy a € A; is the expected
value of the utility function u; conditioned on the event that player j chooses

strategy a. Let U (a) denote this expected value.

e Player j's overall utility for distribution profile « is given by

uj(a) = Z o ()W (a) (1)
aeA;

We say an action a € A; is in the support of a mixed strategy «; for player j
if «;(a) > 0. Furthermore, we say that o« = (&)jcp is a full-support distribution
profile if for every player j € P, the support of the distribution «; is the entire action
set Aj, t.e. aj(a) > 0 for all j € Pya € A;. In this thesis, we will be exclusively
interested in full-support distribution profiles as actions that have zero probability
in an equilibrium profile could as well be omitted from consideration.

A mazed-strategy Nash equilibrium is a special distribution profile, o* =
(o )jep, with the property that a player cannot increase its (expected) utility by
unilaterally changing its own distribution in the profile. In other words, every
player’s mixed strategy at equilibrium is a best response to the mixed strategies of
the other players. We have assumed a finite set of actions for each player. This

allows us to use a very useful alternative characterization of a mixed-strategy Nash

equilibrium o*:
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We make extensive use of an alternative characterization of any full-support

Nash equilibrium:

Lemma 3.1.1. A distribution profile, o* = (oc;‘)jep, 15 a full-support Nash equi-
librium if and only if for every player P;, all its actions have ezactly the same

expected utility under «*.

We do not provide a proof of this characterization; the interested reader is

referred to Lemma 33.2 in [OR96] for details.

3.2 Designing games with identical player strate-
gies

We first consider the situation where players have the same set of actions, A = [1,n].
We will use the index set P = [1,k] for the players’. Suppose that we have an a
priort known full-support distribution profile o* = (oc;‘)jep. We are interested in the
following general question: is it possible to design a strategic game with a unique
Nash equilibrium that is given by the profile «*? In what follows, we will construct
such a game.

For ease of description, we will treat both the index sets P and A as being

circularly ordered, 1.e. with player k+ 1 being interpreted as player 1, with action

n+1 being interpreted as action 1 and so on. We design our game with the following

property:

!In principle, players need not have exactly the same set of actions; what matters is that they
have the same number of possible actions.
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The utility function for player j € P depends only on its own actions

and those of its predecessor, player j — 1.

This property allows us to present the game using an abbreviated version of the
usual strategic form of presentation. Kearns et al. study a graphical representation
of games where each player is represented by a node and a utility matrix, and the
utility to a player 1 is affected only by the actions of player i and its neighbors in
the underlying undirected graph [KLS01]. The game presented in this section is a
graphical game but for a directed simple cycle on k nodes/players numbered from
1 through k: for every node/player i, there is a directed edge from i to node/player
(1+ 1) with k + 1 interpreted as 1.

The utility function u; for each player j € P, can be represented concisely by a
two dimensional matrix M; with n rows and n columns. The interpretation of this
matrix is as follows: M;(a, b) is the value of the utility function u; when applied to
every action profile s in which player j—1 performs action b and player j performs
action a. Thus, one thinks of the rows of M; as being indexed by the pure strategies
of player j and the columns of M; as being indexed by the pure strategies of player
j—1T.

For ease of description, the entries in matrix M; can be specified over two steps.

Let [, be the identity matrix with n rows and columns. Consider the following
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matrix, V,, obtained from I,, by shifting down (circularly) the rows of I,:

0 0 1
1 0 0

Vi = (2)
0 1 0

For every player j € P, an intermediate matrix lQlj is defined as follows:

o V.  ifj=1 )

I, otherwise

Now, let o* = (oc;‘)jep be the desired unique mixed strategy equilibrium profile.
Then, the utility matrix M; for player j € P is defined as follows. Recall that the
columns of M; correspond to actions of the previous player j — 1 in the circular

ordering of P. For any pair of actions a,b € A, we have
M;(a,b) = Mj(a,b)/a (b) (4)

In other words, we obtain M; from lOlj by scaling each entry by the reciprocal of
player (j — 1)’s column probability for that column. Note that the matrices are
well-defined since we have assumed that «* is a full-support distribution profile
and therefore, the probability in the denominator of (4)’s right-hand side is always
non-zero. We will now establish that the game defined above has a unique Nash
equilibrium where player j chooses ezactly the corresponding desired mixed strategy

Oéj.
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Consider any mixed strategy, o = (oy)jcp, for the game. Under this mixed
strategy, player j’s expected payoff for an action a is easily shown via (4) to be:

Wila) — o la—1T1)/x(a—1) ifj =1 5)

o-1(a)/og;(a) otherwise
Specifically, for the case when o« = «*, the right hand side is identically equal to
1 for all actions of all the players thus establishing that every player has equal
payoffs for all its pure actions under distribution profile «*. Thus, «* is indeed
a mixed strategy Nash equilibrium for the game. It remains to show that this

equilibrium is unique. We start with a useful definition specific to our game.

Definition Let & = («;)jcp be a mixed strategy profile that differs from o*. For
a given action a and player j, let rj(a) = og(a)/oc;“(a). We say that action a is

o-deficient for player j if rj(a) < 1.

Lemma 3.2.1. Suppose that the profile o = (&)jcp s a mized strategy Nash

equilibrium for the game. Then, the following implications hold:
(A) If action a s a-deficient for player k, then o;(a+1) =1(1) =0.
(B) For 1 <j <k, 1if action a is x-deficient for player j, then «;i(a) =

T(a) =0.

Proof. Let « be a Nash equilibrium for the game. To prove the first implication
(Lemma 3.2.1(A) above), assume that the hypothesis holds. Both & and «; being

probability distributions, ) ., oa(b) = 1 = 3 ., o;(b) and from this it
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Figure 6: Implications for r values in Lemma 3.2.1

follows that since r(a) < 1, then there must be another action b # a for which
r(b) > 1.

Applying (5) above with j = 1, we conclude that under the mixed strategy «,
player 1 will have a strictly larger payoff for playing the pure strategy b + 1 as
compared to playing the pure strategy a+ 1. Consequently, action a+ 1 cannot be
in the support of the equilibrium strategy «; for player 1, and hence, o;(a+1) =0
(which, in turn, implies that r;(a+1) = 0). An almost identical argument works for
the second part of the lemma except that we use (5) for the case when 1 <j <k.
Figure 6 is a schematic illustration of these implied dependencies among relevant r

values for the players. O

Theorem 3.2.2. The game outlined above 1s a k-player, n-strategy game that
has the unique mized strategy Nash equilibrium given by the full support dis-

tribution profile (o )jep.

Proof. We have already shown that o is a Nash equilibrium for the game. To
establish uniqueness, we will show that assuming a different equilibrium profile,
o # o, yields a contradiction. Figure 6 (based on Lemma 3.2.1) provides the
intuition for this: it shows that if an action a is x-deficient for a player j then so is

action a for player j + 1, except in the case when j = k and then it is action a + 1
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that is «-deficient for player 1.

More formally, let o # «*. Then there must be some player j for whom there is
an action a that is «-deficient. If player j is someone other than player k (z.e. where
1 <j < k), then Lemma 3.2.1(B) implies that «;.;(a) = 0. In fact, we can apply
Lemma 3.2.1(B) to obtain that rj(a) < 1 implies a;;(a) = 0 and therefore rj,(a) =
0 < 1. By the same reasoning and by repeatedly applying Lemma 3.2.1(B), we
obtain that «;(a) =0, Vi € {j + 2,k}. Thus we deduce that player k must have an
«-deficient action if o differs from o*.

Without loss of generality, let a be an «-deficient action for player k such that
action a + 1 is not «-deficient for player k, 7.e. with r,(a+ 1) > 1. Now, Lemma
3.2.1(A) applies, and we get oy (a+ 1) = 0. Thus, action (a + 1) is «-deficient for
player 1 and by applying Lemma 3.2.1(B) in succession (k — 1) times, we conclude
that o (a+1) = 0 (see Figure 6). This contradicts our earlier assertion that action
a+ 1 is not «-deficient for player k. Thus, contrary to assumption, « cannot differ

from «*; the game exhibits the unique Nash equilibrium profile o*. |

We note that Theorem 3.2.2 can be easily specialized to the case that is relevant
for the single round version of the medium access control problem, with all backoff
values in the range [1,n] and the desired distribution being the discrete uniform

distribution for all players.
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3.3 Designing games with non-identical player strate-
gies

In this section, we consider games where the players do not have the same number of
strategies available to them, but we still wish to achieve a target distribution profile
that is a unique Nash equilibrium with full-support component distributions.

We first show how such a game can be designed if the players can be partitioned
into groups where each group contains at least two players having the same number
of actions. More generally, we show that it suffices to have at least two players
that have the maximum number of actions among all players; under this condition,
a given profile is realizable as the unique Nash equilibrium of an appropriately
designed game.

From now on, we will assume that when a given distribution profile is to be
realized, we limit the set of actions for any player to be exactly those actions that
are in the support of the component that corresponds to the player’s distribution.

A simple corollary of Theorem 3.2.2 gives us the following result.

Theorem 3.3.1. Consider a set of players P that can be partitioned into subsets
P1, Py, ... P where [Pl > 1 for all 1 < j < m. If the set of strategies for all
players in subset P; 1s [1, 1], then for any given full-support, distribution profile

«*, there exists a game whose unique Nash equilibrium 1s the profile «*.

Proof. We note that the case when the number of groups m equals 1 is the case
handled by Theorem 3.2.2. More generally, let |P;| = k; > 1. Then we create utility
matrices for the players in set P; according to the k;-player, n;-strategy game in

Theorem 3.2.2. Similarly we create utility matrices for the players in each subset
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P;. Thus the utility for any player in P; depends only on a single other player within
the same subset Pj; the game is essentially partitioned into disjoint games - one for
each subset of players, P;. The topology of the graph corresponding to this game
is a set of m disjoint cycles, each cycle corresponding to a set of players Pj. It is
straightforward to see that the game represented by these utility matrices realizes

the target profile as its unique Nash equilibrium. O

The conditions in the above theorem can be relaxed. We show that so long as
there are at least two players with the (same) largest number of strategies, we can
create a game corresponding to any a prior: given, full-support distribution profile
o*. Our basic idea is to create utility matrices so that player j’s utilities depend on
the actions chosen by player j — 1 and player k.

Consider the players arranged in non-decreasing order of the number of actions
available to them. Let m; be the number of actions available to player j. Then
N1 = ny; the last two players have the same number of actions. For the remaining
players, we will make the simplifying assumption that for all j € [1,k—2], nj < nj;.
It will be obvious from the construction how this assumption can be relaxed 2. The
game itself is specified over two stages starting with unscaled utility matrices which
will subsequently be scaled appropriately in a second stage. For convenience, we
will assume that ny = 0 henceforth.

In the first stage, we will represent the utilities for j as simple unscaled matrices
with player j’s actions represented by the rows. Recall that for any n > 1, [, is

the identity matrix with n rows and n columns. The utility matrices are described

2 Alternatively, if there are two or more players that have the same number of strategies, we can
deal with this set of players in isolation using Theorem 3.3.1.
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below:

e Player 1’s utilities only depend on player k’s actions; the utility matrix (un-

scaled) is:

My = [Vn, | 0]

where V,,, is the identity matrix with its rows shifted down once (circularly).

The 0 sub-matrix corresponds to actions n; + 1,...,ny of player k.

e Player k’s utilities only depend on player (k — 1)’s actions; the utility matrix

(unscaled) is:

Note that n,_; = ny.

e For every other player j (hence, 2 <j < (k— 1)), the utilities depend both on
player k as well as the previous player (j — 1). We represent the utilities as
separate (n; x nj_;) matrices for each of the actions 1,...,n, of player k. The
matrices are divided into three groups; each matrix has an upper sub-matriz
consisting of the first n;_; rows and a lower sub-matriz consisting of the

remaining (mn; —nj_;) rows:
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— For player k’s action a € [1,n;_,] U [n; 4+ 1,ny], the matrix is:

I, |
00 ... 1
Mg =
0 0 1

Every row in the lower sub-matrix is identical, and equals [0, O,..., 1],

the last row of the identity sub-matrix.

— For player k’s action a € [nj_z + 1,nj_1], the matrix is:

L.
j

—1

Xj X]' ]‘f‘Xj

Xj X]' ]‘f‘Xj

Every row in the lower sub-matrix is identical, and equals [x;, Xj,..., 1+

x;] for a value x; > 0 to be determined later.

— Let y; > 0 be a value to be determined. For action (n;_; +1) of player k,

with i € [1,n; —n;_;], the corresponding matrix is:

Mnjq +i o In]‘*]
j =

where C;j, the lower sub-matrix, has as its ith row, the row vector

[_(1+Uj)> _(1+Uj)a---> _(1+Uj)> _yj]>
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and whose remaining rows are all identically equal to the row vector
Y5 —Yj--ey —yj 1—yjl

As before, we obtain the actual utility matrices by scaling the above matrix
entries by the reciprocals of the «*-probabilities of the actions of the relevant players
that influence any given entry. Thus, for instance, the scaled matrix M; for any
player j € [2,k — 1], is obtained from the corresponding unscaled matrix IQ[]“ by

multiplying each entry in column b by

1
o 1 (b)eg(a)

and so on. The scaled utility matrices define our game. The topology of the graph
corresponding to this game is a directed cycle on k nodes, with additional edges
from node k to every node in 2,k — 2].

Suppose that the players use a distribution profile « for their mixed strategies.
As usual, let mj(a) = oj(a)/og (a) be the ratio of the actual probability to the desired
one for action a by player j. Some more notation comes in handy when describing
various expected payoffs. Let B; = [nH + 1, ny] denote the jth block of actions

(recall that ny = 0). For any player m > j, we let

R,=> tumla)

GEB]'

denote the sum of the 1, values over the Bj-actions. Also, for any player j, the sum
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of its ratios over all its actions is given by

aelln;]

Let us calculate the expected payoffs for player j when the players use mixed

strategy profile ««. Then, the payoffs are as follows.

1. For player 1, the expected payoff for action a € [1,n4] is

r(a—T1) when 1 < a <mny
Up(a) = (6)
(M) when a =1

2. For player k, the expected payoff for action a € [1,n,] is

U](;(a) =T11(a) (7)

3. For every other player j € [2,k — 1], it follows from the construction above
that for an action a € [1,n;_4], the identity sub-matrix (the upper sub-matrix)

determines the expected payoff which is simply

Ujo((a) = Tj_] (G)Rk (8)

since the sub-matrix is repeated for all actions of player k. Next, consider
the payoff for action n;_; + i of player j; this action corresponds to the ith
row of each of the lower sub-matrices in the three groups. The respective

contributions from the three groups of matrices appear below on separate
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lines in the expression for the expected payoft:

W, (g +1) =11 (nj—1)[Re — R — R}
+ R Ryt + i1 (n-1)] (9)

— ijj,] Ri — Rj,1rk(nj,1 + l) + RLT};] (T'Lj,ﬂ

We now proceed to show that for appropriate values of x; and y; in the matrices
above, the profile «* is the unique Nash equilibrium for this game. Note that if the
players use mixed strategy profile o*, then every ratio rj(a) equals 1 and hence,
by construction, the expected payoffs (under strategy «*) for players 1 and k also
equal 1 regardless of the action played.

For player j € [2,k — 1], the payoff for any action in the upper sub-matrices is
equal to Ry = ny from Equation (8) since all ratios are 1. Observing Equation (9),
we can see that the contributions from all three groups of lower sub-matrices are
independent of the action n;_; +1 when the ratios are equal to 1; the net payoff, on

simplification, can be seen to be

U{X* (le_1 + l) =Ty + XMy (Tl.j_1 — le_z) —Yiny— (TL)' — TL)'_1) — Ty

Hence, equating the payoff for the upper sub-matrix actions to the right hand side
of the above equation gives us the following necessary and sufficient relationship

between x; and y; for o* to be a Nash equilibrium:

Xj(n]’,] — T'Ljfz) = U) (Tl] — le,]) + ] (10)

We can always choose xj,y; > O to ensure that Equation (10) holds, e.g. when
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x; =1 and y; = (N1 —njr —1)/(ny — ).

Having established that «* is a Nash equilibrium profile for our game for appro-
priate choices of x; and y; values as above, we now turn our attention to showing
that the equilibrium is unique. We approach this in a spirit similar to that in Sec-
tion 3.2, 1.e. we first show that it suffices to consider distributions that differ in
probability from the given distribution «* for some actions of player k, and then
show that this will lead to a contradiction.

Assume that our game has a Nash equilibrium o that differs from «*. Recall
that by definition, the action a for any player j is x-deficient if and only if the ratio

ri(a) = o5(a)/og (a) is less than 1.

Lemma 3.3.2. Suppose that the profile o = (oy)jep 5 a mized strategy Nash
equilibrium for the game. For 1 <j <k, 1if action a is x-deficient for player

j, then «jq1(a) =0.

Proof. The proof is very similar to that of Lemma 3.2.1(B). If action a is «-deficient,
then there must be another action b that is not «-deficient for player j. Hence, the
expected utility to player j + 1 for action b will dominate the utility for action a
via Equation (8) above. Hence, if « is an equilibrium profile, it will assign zero

probability to action a for player j + 1. |

Now, repeated applications of Lemma 3.3.2 allow us to conclude that a purported
Nash equilibrium « that differs from o«* must witness some «-deficient action a for
player k. In turn, this implies that player k has at least one action b for which
m.(b) > 1. Let A, be the proper subset of [1,n,] that contains all the «-deficient

actions for player k. We denote by Ag4, the complement of A4 in the set [1,n,].
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Recall that B; = [nj_; + 1, ny] is the jth block of actions (with ny = 0 tacitly). We

have two exclusive (and exhaustive) cases to consider:

1. Within some block Bj of player k’s actions, there is at least one action from
each of the sets Ay and Ay. Without loss of generality, let a and a + 1 be a
pair of consecutive actions (circularly within block B;) such that a € A4 and
a+1¢€ A, Then

rn(a)<1<r(a+1)

by definition. Let us examine the difference in payoffs between actions a + 1
and a for player j. From Equation (9), we observe for all actions within block
B;, only the contributions from the third group of utility matrices for player
j differ. In fact, for consecutive actions like a and a + 1, it is only the
matrices corresponding to actions a and a + 1 for player k that differ in their

contribution. Upon simplification, we see that

W(a)—UW(a+1) = Riimla+1)—n(a)l

> 0

since Rj_; is positive and 1 (a + 1) > r¢(a) by assumption. Consequently,
if o is a Nash equilibrium profile as claimed, it will yield o;(a + 1) = 0. By
repeatedly applying Lemma 3.3.2, we obtain the fact that oq(a+1) = 0 which

contradicts the assumed non-deficiency of action a + 1 for player k.

2. Every block of actions for player k either contains only actions from A4 or

only actions from A4. Then there must be consecutive blocks Bj_; and Bj (in
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circular order of the blocks) such that block B;_; contains only Ag4-actions and
block Bj contains only Ag-actions or vice-versa. Without loss of generality,
consider the first possibility. Then by assumption, action n;_;, the last action
in block Bj_y, is deficient while action n;_; + 1, the first action in block B;
is not deficient. We now compare the expected payoffs for player j for these
two actions. Observing Equation (9), we see that while the first group of
matrices do not contribute to any difference in payoffs, the latter two groups
do provide non-zero contributions. Since block Bj_; is entirely deficient for

player k, it must be the case that

R = > n(b)

bGBj,1
< | Bj1 |

= (le—1 - le—z)

Similarly, RL > (ny —ny—1) and r¢(nj_; + 1) > 1 since block Bj is assumed to

be wholly non-deficient.

Putting these inequalities together, we can simplify and show that for action

a = le,1

Wla)—UWla+1) = RlyRL+rilny +1) — xR
> qu [yj(nj — TL)',]) +1— Xj(njA - lefz)]

=0
where the last step above follows directly from Equation (10) that holds for
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jli+1] ... | &
* * *

Actions
nj—1+ 1

*

*

*

L

Block B; with 1 <j <k —1
Figure 7: Dependencies for r values in various blocks

the chosen values of x; and y;. Again, we conclude first that «j(a + 1) =
(-1 + 1) = 0 and hence, that repeated applications of Lemma 3.3.2 imply
o (nj_1 + 1) = 0. This violates our assumption that action n;_; + 1 is non-

deficient for player k.

A similar argument works as well for the symmetric case where every B;-action
is deficient and every B;_; action is not; we will not repeat the details. An
illustration of ripple-effect of an «-deficient action causing further deficien-
cies is given in Figure 7; the two parts of the figure respectively show the

dependencies for the action block B; (with 1 <j < k—2) and action block By.
We have thus established the following result:

Theorem 3.3.3. Suppose we are giwen k players with action sets [1,n] for
every player j such that ny < n; < ... < Ny = ng. Then gwen any full
support distribution profile «* for this collection of players and actions, there

18 a game whose unique Nash equilibrium s «*.

It is easy to see that some simple extensions to the construction described in
this section (using techniques akin to those used in the proof of Theorem 3.3.1)

can yield a game for the case where possibly multiple players have action set [1,m;]
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for any j; the game will have an a prior: distribution as the only possible Nash

equilibrium.
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Chapter 4

A Tight Characterization of
Strategic Games with a Unique

Equlibrium

In Chapter 3 we sought to design a game with a unique, pre-specified Nash equilib-
rium. In particular, we posed the following basic question: given a set of players and
their action sets as above, and given a full-support distribution profile «* (viz. one
that associated a positive probability with every action of every player), under what
conditions is it possible to design a strategic game whose only Nash equilibrium is
«*?

In Chapter 3 we were able to answer this question partially. We showed that
when there are at least 2 players that have the maximum number of actions among

all the players, i.e. when k, the number of players, is at least 2 and n,_; = ny, then
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we can construct a game with the desired unique Nash equilibrium. The game-
theoretic framework for the the medium access contention resolution scheme rep-
resents an abstracted, snapshot version of the backoff procedure. In IEEE 802.11,
when nodes initiate the backoff procedure, they all have the same number of strate-
gies - the size of the minimum contention windows. However, the stations double
their contention windows when they collide, so eventually there will be a situation
where the n,_; = ny condition will not be satisfied. For example, ny_; < n, when
there is only one node that has to choose its backoff values from the maximum
contention window.

In this chapter, we answer the question whether it is always possible to design
such games. We build on the results in Chapter 3 to identify the ezact condition
based on the relationship between the cardinalities of the players’ action sets that
would make it possible to design a static game which exhibits a unique Nash equi-
librium corresponding to a pre-specified full-support distribution profile. Moreover,
when such a strategic game is possible, we illustrate how to explicitly construct the
utility functions for all the players to achieve uniqueness.

Our main result is the following theorem:

Theorem 4.0.4. For any gwen full-support distribution «* on the action sets,
there exists a game such that «* 1s the unique Nash equilibrium for the game

if and only if the cardinalities of the action sets satisfy
k-1

i=1

We prove the necessary and sufficient condition in the theorem in Sections 4.1
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and 4.2 respectively. For instance, the theorem asserts that if three players P,
P, and P; have, respectively, 2, 3 and 5 actions in their action sets, then no given,
full-support distribution profile over these action sets can be a unique full-support
equilibrium for any game. On the other hand, if P; has only 4 actions, then such
a game is indeed possible. Note that the assumption of full-support in our results
is critical because otherwise, any actions that have zero probability in a desired
equilibrium profile could as well have be omitted from consideration from the very

outset.

4.1 Games without a unique equilibrium

Theorem 4.1.1. Consider a game framework (with k players etc. as defined

earlier) in which the action sets satisfy

k—1

d < e+ (k—2) (12)

i=1

Suppose that o«* = (o« )icp 15 a full-support Nash equilibrium profile for a game
G wn this framework. Then G has other full-support equilibria that are distinct

from o,

Proof. We apply Lemma 3.1.1 to player Py, the player with the largest number of
actions, ny, in its action set. As per the lemma, every action for player P, has the
same expected utility under the joint distribution given by the partial distribution
profile o*,. Equivalently, we can think of the probabilities in the partial profile
as being fized constants and the equilibrium distribution «; as being a solution

of a system of linear equations with n variables, {p; : 1 < 1 < ny}, that denote
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P\’s probabilities for its respective actions. The system consists of the following

equations:

1. For each i # k, there will be exactly (n;—1) equations that assert the equality

of the expected utility of all of player P;’s actions.

2. An additional equation

asserts that the variables form a probability distribution.

In all, the system has ny variables and

K1
m = (Zni)_(k_1)+1
i

k—1
= (Y n)—(k-2)
1=1

equations. By hypothesis, ny > m and hence, the system is under-specified and
must have an infinite number of solutions: after all, «; is a known solution.

Let 3 = (B1)iea, be one such solution distinct from «;. By convexity, it follows
that there must exist a full-support solution vy = (yi)ica, 7# «; that is a convex
combination of the solutions «f and 3. It now follows that y, together with the
partial distribution profile «*,, is a full-support Nash equilibrium for the game.

This contradicts the presumed uniqueness of o*.
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4.2 Constructing games with a unique equilibrium

In this section, we establish the other half of the characterization. Without going
into details, our approach to proving this result can be summarized as follows. We
will first design a game in which the players’ utilities are prescribed only based
on the action set cardinalities, {n; : 1 € P}. Next, the utilities are fully specified
by scaling them appropriately using the distribution «*. The resulting game will
then have o* as a full support Nash equilibrium. We will establish uniqueness by
an indirect argument as follows. Suppose that the game has another full-support
equilibrium distinct from o* and hence, there is some player that obtains different
utilities for the same action under the two distributions. We will show that this
leads to a contradiction either in the assumption of full-support or in the validity
of Lemma 3.1.1.

We begin our construction by observing that since the action set cardinalities are
ordered in non-descending order, inequality (16) implies that there is a well-defined

largest index L where 1 < L < k — 1 satisfies the inequality:

k—1

Yoz et (k=1)—1L (13)

i=L

Further, this index L can be used to construct a table of overlapped actions for the
players. Each player’s action set corresponds to a contiguous interval of rows in
the arrangement shown in Figure 8. Actions for different players that are in the

same row going across the table, are said to be aligned. In particular:

e The arrangement shown has n, rows corresponding to player Py’s actions.
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Figure 8: Action Overlaps and Blocks
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Column 1 (for 1 <1 < L) contains actions for player P; in rows 1 through n;

in that column.

Column (k — 1) contains actions for player Py ; in an interval of rows that

ends in row ny of the table. In other words, the it" action from the end for

P._; is aligned with the it" action from the end for P, for all 1 <1 < my_;.

For every remaining player P; (with j € [L + 1,k — 2]), the actions of P; form
an interval of rows so that the only overlap of actions between P; and Pj; is

between the last action n; of P; and the first action of Pj.

For 1 <j <k-—1, let m; denote the index of player Py’s action that is aligned

with the last action, nj, of P;. It is easy to verify from the table that

n for 1<ji<L
my = Ny for j=k—1 (14)

My — 1y + 1 for L+1<j<k—-2

For convenience, we will let my = 0. As Figure 8 suggests, the indices m; for
1 <j < k—1 partition Py’s actions into contiguous intervals. The interval

[T+ m;_;, my] is defined to be the block B;j of Py’s actions.

4.2.1 Utilities

Our game is defined so that for any individual player, its non-zero utilities depend
on specific actions of other players, and the action overlaps and blocks shown in

Figure 8 play a central role in this dependence:

e P¢’s utilities only depend on block B; actions of Py.
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e P,’s utilities depend on specific actions of the players P; through Py ;.

e For every remaining player P;, 2 <j <k—1, the utilities for P; only depend

on actions of its predecessor player, P;_;, and actions of Py.

We will specify these utilities in abbreviated form. For instance, consider P;’s utility
described above: specifically, P;’s utility for any action a € [1,n4] is non-zero only if
Py simultaneously also chooses a unique action f(a) € B; in the outcome; the actions
of the remaining players do not matter to P;. A compact representation of P;’s
utilities, in this instance, is a two-dimensional matrix with n, rows (corresponding
to Py’s actions) and n, columns (corresponding to block By actions for player Py)
with non-zero values for entries indexed by (a,f(a)) for all a € [1,n]. Note that
all other outcome combinations have zero utility for P, e.g. outcomes in which Py
chooses actions that are not in block B;,

For each player, we will first specify - in abbreviated form - unscaled utilities
that only depend on the action set cardinalities, {n;: i € P}, and more specifically,
on the table shown in Figure 8. These utilities can then be easily scaled according
to the given distribution «* to complete the construction.

Four specific kinds of matrices occur in our construction so it is worthwhile to
fix some notation for them. Let m be a positive integer. Then, I, denotes the
n-dimensional identity matrix; V,, is the (cyclic) permutation matrix obtained by
shifting down (circularly) the rows of the identity matrix; and T, and E, are,
respectively, the row vectors [1,1,...,1] (all ones) and [0,0,...,0,1] (zeroes with a

single trailing one entry).
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Utilities for P,

Only player P,’s actions in block B; = [1,n;] influence P;’s utility. Specifically, the
utility sub-matrix for P; is given by V;,, (see the notation above) where the columns
correspond to actions in block B; of player Py. Intuitively, P; depends cyclically
on Py’s actions in block B;, viz. action a has non-zero utility for P; if and only if
Py chooses action (a — 1) in the outcome (with n; + 1 interpreted cyclically as 1).
The final, scaled utility in the outcome is obtained by dividing its value by the «*

probability of P,’s action in the outcome.

Utilities for P;, j € 2,k — 1]

P;’s utility depends both on some actions of its immediate predecessor, P;_;, and
some actions of player P,. There are two disjoint action intervals of P;’s actions for

which this happens:

1. Consider the initial prefix of P;’s actions that overlaps with actions of P;_;.
For every action of player Py, the abbreviated utility sub-matrix is the iden-
tity matrix I with its rows and columns corresponding, respectively, to the
overlapping action intervals of P;_; and P;. Note that the dimensions of this
matrix depend on j as can be seen from Figure 8:

e for 2 <j <L, the number of rows is n;_y,

e for j =L + 1, the number of rows is

Ny +nNp — Mg,

e for L+2 < j < k—1, since P; and Pj_; overlap in just one action,
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the identity matrix reduces to a single 1 entry (for that combination of

aligned actions).

In any such outcome where P;’s action is aligned with P;_;’s action, the scaled
utility is obtained by dividing the unscaled utility by the o probability of

the latter action.

. The remaining suffix of P;’s actions overlaps with block B; of Py’s actions.
Consider any action q of P; from this suffix. Then, the utility for P; for
choosing action q depends on the actions of P;_; and Py in the outcome. In
abbreviated form, we can describe this as a combination of the following row
vectors of dimension n;_;. Note that the columns of the vectors represent the

actions of P;_;, the predecessor player.

(a) The vector E,, for each one of Py’s actions. The scaled form is obtained by
dividing entries of the vector by the «* probabilities of the corresponding

column actions of P;_;.

(b) The vector —T, for the action of Py that is aligned with action q of P;.
Denoting this action of Py by {, we obtain the scaled form of the utility

by dividing each entry of the vector by o (q).

(c) For some fixed chosen constant x; > 0, the vector x;T,, for each one of
Py’s actions in block B;_;. The scaled form of the utility is obtained by
dividing entries of the vector by the o* probability of the corresponding

action of Py in block Bj_;.
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(d) for the constant y; satisfying the equation

xj(my_1 —my2) =1+ y;(my —my_4), (15)

the vector —y; T, for each one of Py’s actions in block B;.

The scaled form of the utility is obtained by dividing entries of the vector by

the «* probability of the corresponding action of Py in block B;.

Utilities for Py

As mentioned previously, Py ’s utilities depend on actions of all the preceding players
Py through Py ;. The overlaps shown in Figure 8 define this dependence more
precisely: any action of P, depends only on the corresponding aligned action of a
preceding player with the largest index among such players. Thus, all the utility
sub-matrices for player Py can be combined into a single compact representation: the
1dentity matrix [, , where the columns correspond to contiguous action intervals
of different players. Referring to Figure 8, the columns of the (identity) utility

matrix can be identified with players P; through P, ; as follows:

1. Let d = my; —nry;. Then, columns 1 through d correspond to the action
interval [1, d] of player P, since actions 1 through d for player P, are aligned

with those of P but not with the actions of players P;,; through P, ;.

2. Similarly, columns d+1 through my,;—1 of the identity sub-matrix correspond

to the action interval [1,n,; — 1] of player Pr,;.

3. For all j such that L +1 < j < k — 2, the columns m; through mj,; — 1
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correspond to the action interval [1,n;,; — 1] of player Pj,;.
4. The last ny_; columns correspond to the actions of P,_;.
In the scaled form, the utility is obtained by dividing each diagonal entry of the

identity matrix with the «* probability of the corresponding column action.

4.2.2 A complete example

Consider a game with three players P;, P, and Pz, and suppose that the players

have 2, 3 and 4 actions in their respective action sets. We will use the construction

Players

1 2 3  Blocks
1 1
B
T m |
2 3
3 4 B,

Figure 9: Action Overlaps and Blocks with 3 Players

outlined earlier to design a game where the desired Nash equilibrium o* is the
uniform distribution on the action sets of the players. From inequality (13), it
follows that L = 1 and hence, the actions for the players will be aligned as shown
in Figure 9. Note that there are two blocks of actions for player P;, viz. block
B; = [1,2] overlapping the two actions of P; and block B, = [3,4] overlapping
actions [2, 3] of P,.

Player P;’s non-zero utilities for its actions are described in abbreviated form

by by the submatrix, V,, whose columns correspond to P3’s action block B;. The
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complete strategic form for P;’s utilities is shown in Figure 10 as a sequence of
three identical matrices that correspond to the three actions of player P,: the row
player is P; while the column player is P; with the row/column labels being their
respective actions. Note that P;’s utilities are zero-valued for action block B, of
player P3;, and the non-zero entries are scaled by a factor of 4 since they depend on

actions of Pz, each of which is to be chosen with equal probability 1/4.

1 2 3 4 1 2 3 4 1 2 3 4
1{0 4 0 O 1{0 4 0 O 1{0 4 0 O
2\4 0 0 O 2\4 0 0 O 2\4 0 0 O

1 2 3

Figure 10: Py’s utilities

For the strategic representation of player P,’s utilities, we choose the constant
x; = 1 and substitute it in Equation (15) to obtain y, = 0.5 (since my, m; and
m, are respectively 0, 2 and 4). Using these constants, the representation is shown
in the four matrices in Figure 11 that correspond to the actions of player P;, with
P, and P; being the row and column players respectively. The first two matrices
correspond to actions in block B; while the next two matrices correspond to actions
in block B,. We will describe two of the rows in the matrices to illustrate the
construction.

Consider, for instance, the second rows in the third and fourth matrices in Figure
11, i.e. the utility vectors when P; choosing actions 3 and 4 respectively, P, chooses
action 2, and where P;’s actions are the columns. Both the matrices correspond to
block B,. The second row of the third matrix is the weighted sum of the component

vectors E; = [0, 1] (from part (a) of the construction), —T, = [—1,—1] (from part (b))
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and —y, T, = [—0.5,—0.5] from part (d) of the construction. In particular, vector
(a) is scaled by a factor of 2 (by dividing each entry by 1/2, the probability of each
action of P;); vectors (b) and (d) are each scaled by 4. The resulting weighted sum
is [—6,—4]. Likewise, the second row of the fourth matrix can be shown to be the
weighted sum of the component vectors E, = [0, 1] (scaled by a factor of 2) and

—y,T, = [-0.5,—0.5] scaled by a factor of 4; the result is the vector [—2,0].

1 2 1 2 1 2 2
10 2 10 2 1/ 0 2 1/ 0 2
24 o 24 6 2] 6 —4 21 -2 0
3\4 6 3\4 6 3\-2 0 3\—6 —4

1 2 3 4

Figure 11: P,’s utilities

Finally, P5’s utilities are defined in abbreviated form by the identity matrix I4
whose rows correspond to P3’s actions and whose columns, in sequence, to action 1
of P; followed by actions 1 through 3 of P,. The equivalent strategic representation
of P3’s utilities is shown in Figure 12 where the two matrices correspond to P;’s
actions and the row and column players are P; and P, respectively. We note that
the first row of the first matrix is scaled by a factor of 2 (corresponding to the two
equi-probable actions of Py) and the last three rows in both matrices are scaled by
3 (corresponding to the three equi-probable actions of P,). It is easy to see that all

actions, regardless of the player, have an expected utility of 1.

4.2.3 Analysis of the game

We now prove that the defined game has a unique, full-support Nash equilibrium

distribution given by «*. We start by proving in Lemma 4.2.1 that «* is indeed a
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1 2 3 1 2 3
1/2 2 2 1/0 0 O
2(3 0 O 213 0 O
310 3 0 30 3 0
4\0 0 3 4\0 0 3

1 2

Figure 12: P3’s utilities

Nash equilibrium for the specified game; a sequence of subsequent lemmas (Lem-

mas 4.2.3 to 4.2.10) will establish that it is unique.

Lemma 4.2.1. The distribution «* 1s a Nash equilibrium for the specified game.

Proof. We show that under o*, each player gets the same utility from all its pure
actions. Recall that the utility of any action a for player P; is the expected value
(under the joint product distribution for the players) of the sum of the utilities ac-
crued from all distinct non-zero utility (sub)matrix entries corresponding to action
profiles in which P; chooses action a.

Since the reciprocals of the «* probabilities were used to scale the entries in our
construction, it is easy to see that while taking expectations, these probabilities (of
dependent actions) cancel out and hence, the utility values are simply obtained by

summing over the relevant unscaled utilities in expectation.

1. For players P; and Py, the unscaled utilities are simply entries in an appropri-
ately constructed identity matrix (Figures 10 and 11). A simple calculation
shows that all pure actions for players P; and P, have the same expected

utility 1.
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2. Consider player P; where 2 <j < k—1. From the construction in the previous

section, any action of P; that is aligned with an action of its predecessor P;_;
gets expected utility 1 for choosing this action, which corresponds to the first
row of four matrices in Figure 11 in Example 1. Otherwise, the action has
expected utility given by the summation of four terms (obtained from the four

contributing parts in the construction in subsection 4.2.1).

Consider action q of player P; and let q be the action of Py that is aligned

with q. Then, part (a) of the construction has expected utility

bell,ny] % dniq) bell,ny]
= 1
while part (b) contributes expected utility
* * —1 *
(@ ) b)) = — > o y(b)
bell,n_1] () bell,n;
M1 elln;_q]

Thus, the first two parts cancel out in expectation. Meanwhile, the choice of
constants x; and y; in parts (c) and (d) of the construction implies that the

expected utility from part (c) is

I A R

bEBj_] CEH,TIJ‘_1] bEBj,]

= xj(mj —mj_)
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and the expected utility from part (d) is

> oy oclt(b)oq_mc)-agfg) = Y

bEBj CEH,TI]‘_]] bEBj

= —yi(my —my).

Thus, using Equation (15), we conclude that all four contributions for the
expected utility of P; for action q sum to 1. In all cases, therefore, a pure

action for player P; accrues the same expected utility 1.

From Lemma 3.1.1, we conclude that «* is indeed a Nash equilibrium of the

game. |

We now argue by contradiction that o is the only equilibrium for the game.
Consider any fixed distribution profile « over the given domain of action sets, and
assume that o # o is also a Nash equilibrium for the game. For any player P;
and any action a € [1,ny], we define the ratio rj(a) = o5(a)/o; (a) that quantifies
the relative difference between the probabilities assigned to action a by two distri-
butions. We say that action a is deficient for P; if rj(a) < 1 and unsupported for
P; if o5(a) = 1j(a) = 0. Note that the definition of deficiency in the subsequent
argument uses the assumed distribution « implicitly.

Our argument proceeds in essentially three steps. We first show that if any player
has a deficient action, then the deficiency propagates forward to Py, viz. that Py
must also have a deficient action. Next, we prove that any deficient, block B; action
for player Py implies that the entire block of B; actions cannot be in the support
of «y, the distribution for Py’s actions. In other words, each block consists either

entirely of unsupported actions, or entirely of non-deficient actions for player Py.
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As a final step, we show that it is impossible for Py to have the property described
in the previous sentence, i.e. simultaneously having an completely unsupported
block and a block containing only non-deficient actions leads to a contradiction.
As a consequence, we can conclude that the distribution « cannot differ from o*
anywhere, and hence that «* is unique for the game.

A simple observation is recorded here for future use:

Lemma 4.2.2. For any player P;, there 1s an action a such that vj(a) < 1 if

and only if for some other action b # a, it holds that r;(b) > 1.

Proof. This follows easily from the fact that «; and «; are both probability distri-

butions summing to 1. O

Forward Propagation

Lemma 4.2.3. For anyj: 1<j<L-—1, +f an action a s deficient for P; then

o (a) =0.

Proof. A similar result was proved in Chapter 3, but we will reprise it here for
completeness. Note that the actions of P; form an initial prefix of the actions of
P;.1 in the given range for j. Hence, for the given action a, player Pj;;’s expected
utility for action a is equal to rj(a) < 1 (since a is deficient for P; by assumption).
Then, by Lemma 4.2.2, there must be an action b # a for P; such that rj(b) > 1.
Since the expected utility of P;,; for action b equals 7j(b), it implies that action
a for Pj;; has strictly smaller expected utility than action b for Pj,;. Under the
claimed equilibrium profile «, action a must therefore be unsupported for Pj,;. A
transitive application of the same argument will lead us eventually to the conclusion

that o (a) =0. O
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Lemma 4.2.4. Consider player Py’s utility for some action c and suppose that
it depends only on the corresponding aligned action c}< for the nearest preceding

player Py with L <j <k. If c}< 15 deficient for Pj, then oy (c) =0.

Proof. For the given actions c (of Py) and c}‘ (of P;), it follows that Py’s expected
utility for c is given by rﬂc}‘). This latter quantity is less than one by assumption
that c}‘ is deficient for P;. We will now show that there is another action b of Py
such that P,’s expected utility for b equals or exceeds one. By appealing to the
equilibrium property of distribution «, we can conclude that o (c) = 0.

Indeed, the desired action b will be one of P,’s actions in the interval [my_,, my_1].
This interval overlaps exactly with all the actions of player P, ; and hence, the ex-
pected utility is just ry_1(bf ;) (recall that b} ; is the corresponding aligned action
of Py_1). By Lemma 4.2.2, there must be an action among Py _;’s actions which is

not deficient; we let by ; be one such action. a

So far, we have established that most of the forward dependencies propagate
deficiencies along the aligned actions. The only remaining forward dependencies

that we need to address are:

1. foreachj: L+ 1 <j <k—2, the dependence of Pj,;’s utility for action 1 on

P;’s action n;, and

2. the dependence of P;.;’s utilities for each of its actions in the interval that

overlaps with P;’s actions (see Figure 1).

Consider the first of these dependencies. We show that if action n; for P; is defi-
cient, then that causes the corresponding aligned action m; of Py to be unsupported.

In turn, this implies that the entire block B; is unsupported.
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Lemma 4.2.5. For j: L+ 1 <j < k-2, if action n; s deficient for P;, then

some action in the range [my_,, My 4] is unsupported for Py.

Proof. If action n; is deficient for Pj, then there exists an action b < n; with
15(b) > 1 (by Lemma 4.2.2). Note that action b of P; defines the expected utility
of the corresponding aligned action bL of Py via a forward dependency. Hence, the
expected utility of action b{'< is 15(b) and since « is an equilibrium, this means that
every supported action of Py has expected utility greater than or equal to 1j(b), and
hence, greater than one.

On the other hand, there exists some action a of P,_; such that r_;(a) < 1.
From this, we conclude that the corresponding aligned action a{j—] € [my_2, my_4]

has expected utility less than rj(b) which implies, via equilibrium considerations,

that ak_1 in the desired range is unsupported for P,. O

The following notational abbreviation is used in calculating utilities. For any

player P;,

aell,ny]

is the sum of its ; values over all its actions.

Lemma 4.2.6. For j: L+1<j <k-—1, consider block B; and an action a in
the block. If either j =k —1 (the last block) or a =m; (the last action in the

block), and a is unsupported for Py, then the entire block B; is unsupported.

Proof. Suppose that action a = m; is unsupported in block B;, and assume that

action 1+ m;_; is supported for P,. Consider the corresponding aligned actions
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n; and 2 for player P;. The difference in expected utilities for these actions can be

shown to be:

W, () —UL(2) = Riq(r(1 4+ myq) —re(my))

> 0

where the last inequality follows from the assumption above. Consequently, action
2 must be unsupported for Pj since it is dominated by action n;. By Lemma 4.2.4,
action 1+m;_; is unsupported for P,. The same argument, used inductively, allows
us to show that each action in block Bj is unsupported.

In the special case of the last block By_;, the argument holds for an arbitrary
initial action a that is known to be unsupported in the block. This is because the
forward deficiency propagation has already been established for that entire block
via Lemma 4.2.4, whereas there is no direct way to prove that a deficiency in action

n; for P; propagates to the next aligned action 1 for Pj,;. O
The preceding two lemmas can be combined as follows.

Lemma 4.2.7. Forj: L+1<j<k—1, if action n; 1s deficient for P;, then all

the blocks Bj, Bj.1,...,Byx_1 are unsupported for Py.

Proof. We proceed by backward induction on the sequence of blocks. Consider
block By_j; we know from Lemma 4.2.5 that if n; is deficient, then either my_,
is unsupported or some action in block By ; is unsupported (meaning the entire
block By ; is unsupported by Lemma 4.2.6). We show that in both cases, all the

actions in [my_,, my_;] are unsupported. Assume to the contrary. There are two
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possibilities: either the entire block B, _; is unsupported and action my_, is not or
action my_, is unsupported but the entire block B, ; is supported.

Assume first that block By, ; is unsupported and action my_, is not. Let us
compare the utilities for actions 1 and 2 of Py_;. For every action of Py, the utility
of action 1 of P,_; is equal to the vector E, for each one of Py’s actions. On the
other hand, action 2 of P,_; is aligned with the first action in block By _; and all
actions in the block have zero probability. Hence, from the row vector definition
of utilities, it follows that action 2 of P,_; has non-zero contributions only from
parts (a) E, from each one of Py’s actions and (c) x;T,, for each one of P’s actions
in block By ;. By assumption, my_, is supported and being part of block By ,,
provides a strictly positive contribution to the utility of action 2. Thus, action 2
dominates action 1 in utility and hence, action 1 must be unsupported. Applying
Lemma 4.2.4, we conclude that action my_, is unsupported, a contradiction.

Similarly, if my_, is unsupported and the entire block By ; is supported, by
Lemma 4.2.6 it follows that the entire block By , is unsupported. It is easy to
observe from the row vector definition of utilities that in this case action 1 of Py_;
dominates its action 2, and, by Lemma 4.2.4 P,’s action m;_, 4+ 1 is unsupported,
which again is a contradiction.

We have shown that if n; is unsupported for Pj, then action my_, as well all
actions in By_; are unsupported for P,. Applying Lemma 4.2.6, we get the basis case
for our induction: viz. all of block By , is unsupported. The inductive argument
now mimics the reasoning in the previous paragraph to show that blocks By 3,

By_3,...,B; will all be unsupported. O

We now verify that any deficiency, for an action of player P, that overlaps with
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an action of Pr.;, propagates forward to the aligned action of P, and thence to
the whole block containing that action. Observe that there may be several action
blocks Bj, with j < L, that overlap with the interval [d + 1,n] - the range of P’s

action aligned with corresponding actions of P ..

Lemma 4.2.8. Let a be an action of Py in the range [d+1,n]. If a is deficient

for PL then the corresponding aligned action of Py given by af is unsupported.

Proof. By Lemma 4.2.2, there must be another action b # a such that r; (b) is
greater than 1. If b also lies among the actions in the overlap range, viz. [d+1,n],
then it follows that b’s aligned action for P;,; dominates a’s aligned action for Py ;
and consequently, that latter action is unsupported for P;,;. By Lemma 4.2.4, the
action af is unsupported.

Otherwise, all the actions of P, in the overlap range are deficient, and hence by
Lemma 4.2.2, there must be an action in the range [1,d] for P, with ratio greater
than 1. We now have a situation that is very similar to the one analyzed in Lemmas
4.2.5, 4.2.6 and 4.2.7; without repeating all the details, we can conclude in a like
manner that every block of Py, overlapping with the range of actions [d + 1,n] for

player Py, is not supported in this latter case. O

The preceding sequence of results collectively assert that forward deficiencies
propagate from any player’s deficient action to the corresponding aligned action of

Py (Figure 13).

72



1 mj—nj+1
2 mj—nj+2
n m.

Figure 13: Forward Propagation of Deficiencies

Backward Propagation

We next show that every block B; of player Py is either completely unsupported or
is completely non-deficient. Lemma 4.2.6 already establishes part of this assertion;
we now establish it by showing that the proof of Lemma 4.2.6 goes through in full
generality.

Consider any block B; with 1 <j < k — 1: this block corresponds to the action

interval (m;_;, m;] for player Py.

Lemma 4.2.9. It 1s impossible to have both deficient and non-deficient actions

for player P, in block B;.

Proof. Assume to the contrary and without loss of generality, let action a in B; be
such that a is deficient for player Py but a + 1 (interpreted circularly within the
block B;) is not. Consider the corresponding aligned actions a}‘ and 1+ a}< for Pj.
The difference in expected utilities for these actions are, by definition:

U (af) =W (1 +qf) = Rig(r(a+1)—rc(a))

> 0

where the inequality follows from the assumption above. Consequently, action
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1+ a}‘ must be unsupported for Pj since it is dominated by action a}ﬂ Deficiencies,
therefore, propagate backward as shown in Figure 14. The forward propagation
argument implies - 1n all cases - that action a+ 1 1s unsupported, and hence,

deficient for Py. This contradicts our assumption regarding action a + 1 for Py.

P, P,
gnj—mﬁ—mj,ﬁl m_,+1l>
o+, +2 m; ;+2>
B,
— . ;
L F —~_>
‘nj mj)

Figure 14: Backward Propagation of Deficiencies

O

Note that we needed to develop all the machinery in the previous subsection for
the italicized statement in the last paragraph to hold unconditionally. To summarize
thus far, we have now shown that either block B; contains only deficient actions or

that it contains only non-deficient ones.
Lemma 4.2.10. Every action of player Py 1s non-deficient.

Proof. Suppose player P, has a deficient action. Then without loss of generality,
it follows from Lemma 4.2.9 that there must be two consecutive blocks B;_; and
B; (with the subscripts interpreted circularly in the range [1,k — 1]) such that all
actions in B;_; are deficient and all actions in Bj are non-deficient.

In particular, action m;_; (the last one in block B;_;) is deficient, while action
m;_1+1 (the first action in B;) is non-deficient. Consider the corresponding aligned

consecutive) actions a and a + 1 for player P;, i.e. al, the action of Py aligned
j k
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with action a of Pj, is identically equal to m;_;. We now examine the difference in
utilities for player P; between actions a and a + 1.

The utility of action a + 1 can be seen as a set of row vectors, which can be
partitioned into three subsets. The first subset corresponds to the actions of player
Py in block B;_;, and is identically [x;,x;,... 1+ %;] (comprising contributions from
components labeled (a) and (c) in the definition of utilities). The second subset
corresponds to the actions of player Py in block Bj: the row vector corresponding to
action my_; +11is [-1 —y;,—1 —yj,...,—Y;] (comprising contributions from com-
ponents (a), (b), and (d)) and all other row vectors in this subset are identically
[—Yj, —Yj, ... 1 —y;] (comprising contributions from components (a) and (d)). Fi-
nally, the third subset of row vectors corresponds to all the remaining actions of
player Py and is identically E,,_, (comprising contributions only from component
(a)).

Recall that a is the last action of P; that overlaps with player P;_; and therefore
its row vectors are all identically E,, | regardless of the actions of player Py. There-
fore, any difference in utility between action a and a+1 for player P; is contributed
entirely by the first two subsets of row vectors, corresponding to player Py’s actions
in blocks B;_; and B;.

Let the sum of the 1, values over the action block B; for player k be defined as:

R, = Z m(a)

U.EB]‘

Similarly, RF is the sum of the 7, values over the action block Bj_; for player k.

Observe that since block Bj_; is entirely deficient for player k, it must be the case
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that

R];:] = Z T‘k(b)

beB; 4
< | Bj_1|

= (my_1 —my_,)

Similarly, RL > (my —my_;) and m(my_; + 1) > 1 since block Bj; is assumed to be
wholly non-deficient.
Putting these inequalities together, we can simplify and show that the required

difference in utilities

W(a)—UWla+1) = RilyRL +re(mjy + 1) — xR, ]
> Rilyy(my —my—q) + 1T —x5(my—; — my—,)]

=0

where the last step above follows directly from (15) that holds for the chosen values
of x; and y;.

The difference being positive, implies that action a+1 for player P; is dominated
in utility by action a. Hence, by Lemma 3.1.1, we conclude that action a + 1
is unsupported for P;. Forward propagation now ensures that the aligned action
m;_; + 1 for Py is also unsupported, which contradicts the assumption that action

m;_; + 1 is non-deficient. O

We have established that all actions of P, are non-deficient. By Lemma 4.2.2,

all the ratios 7 (-) must be identically equal to 1. In other words, o coincides with
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its counterpart oy in the desired Nash equilibrium profile.

Furthermore, if any of the remaining players P; for 1 <j < k exhibit a deficient
action, then the forward propagation results from the last subsection ensure that
the corresponding, aligned action of Py is deficient; we know that this is impossible
courtesy Lemma 4.2.10 above. As a consequence, every component, «;, coincides
with its counterpart o'

Lemmas 4.2.1 to 4.2.10 establish Theorem 4.2.11.

Theorem 4.2.11. If the cardinalities of the action sets satisfy

k—1
> > me+(k—2) (16)

i=1

then for any given full-support distribution «* on the action sets, it 1s possible

to construct a game such that «* 1s the unique Nash equilibrium for the game.

4.3 Discussion

All of the results presented so far in this thesis are based on game-theoretic tech-
niques. The main disadvantage of the game-theoretic approaches is that they often
involve complex, time-consuming and resource intensive techniques, which could ob-
struct the implementation of such schemes in the world of wireless communications
where limited resources are always a concern and events occur within microseconds.
Moreover, such methods are based on the game-theoretic assumption that the nodes
are rational. In practice, however, it might happen that some nodes are greedy but

not necessarily rational.
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Finally, recall that the game-theoretic framework that we have developed is for
an abstracted, single-round version of the backoff procedure. As previously men-
tioned, the nature of the medium access contention resembles a dynamic game. In
dynamic games, a player’s strategy specifies the actions the player will take at each
stage, for each possible history of play thus far. A subgame is a piece of the game
that remains to be played beginning at any point at which the complete history of
the game is common knowledge among the players. A Nash equilibrium is subgame-
perfect if the players’ strategies constitute a Nash equilibrium in every subgame.
Thus, subgame-perfect Nash equilibrium is a refinement of Nash equilibrium which
eliminates noncredible threats.

The dynamic nature of the CSMA /CA backoff procedure could be captured, for
example, as a repeated game. A repeated game is a game which consists in some
number of repetitions of some base game (called a stage game). In the CSMA/CA
context, a new stage (subgame) begins whenever a transmission occurs on the chan-
nel. All players make their moves simultaneously at each subgame and their actions
are the choices of backoff values.

In a finitely repeated game (with any finite number of stages), if all stage games
have a unique Nash equilibrium, the repeated game has a unique subgame-perfect
outcome. Thus, to achieve unique subgame-perfect Nash equilibrium of the dynamic
game, the utilities at each subgame can be distributed according to our static game
model.

More precisely, for the players whose backoff counters are greater than zero the
utilities at each stage can be implemented as dominant strategies , whereas for the

nodes that have participated in the transmission attempt and must choose new
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backoff values, the utilities could be distributed according to the scheme presented
in this chapter.

Note that on the top of the complexity of calculating the equilibrium in the static
game, implementing such a repeated game would be difficult because the backoft
counter state (or at least the choice of a backoff value of all stations) must be
known to everybody, which is not possible when the uniform distribution is used,
as specified in the IEEE 802.11 standard. Furthermore, the CSMA/CA backoff
procedure can be looked at as an infinitely repeated game (as we do not know
when the nodes will have no more data to transmit). Unfortunately, in the infinite-
horizon case, even if all stage games have a unique Nash equilibrium, there might

be subgame-perfect outcomes in which no stage’s outcome is a Nash equilibrium.
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Chapter 5

Selfishness Detection for Backoff

Algorithms in Wireless Networks

Game-theoretic approaches are complex in nature. Furthermore, such mechanisms
are often based on unrealistic assumptions, so their practical implementation might
not be feasible. For example, the repeated game model mentioned in Section 4.3
requires that the backoff values of the participating nodes are known to all stations,
which is generally impossible in the standard IEEE 802.11 backoff procedure. In
this chapter we investigate more practical methods to detect selfish misbehavior on
the data link layer.

As already discussed, in IEEE 802.11 the backoff procedure specifies that the
participants should choose a backoff value uniformly at random from a given interval
[0, CW]. We call this backoff procedure UVBEB (Uniform Value Binary Exponential
Backoff). A misbehaving node might choose smaller backoff values more often than
would be dictated by pure chance. Detecting this kind of misbehavior is far from

obvious as it is not always possible to deduce the backoff values used by a wireless
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node.

Any scheme that requires the participants to delay transmission according to
voluntarily chosen random backoff values is susceptible to selfish behavior. In this
chapter, we study methods to detect such selfish behavior. There are two problems
in detecting whether the node is following the backoft algorithm, namely, backoff
value deduction and sample validation. Backoff value deduction concerns deduc-
ing the backoff values chosen by an observed node over a period of time, based
on observations of transmissions and collisions over the medium. In the absence
of collisions, it is easy to deduce the backoff values chosen by the observed node:
simply count the number of empty slots between successive transmissions by the
node. However, in the presence of collisions, and the absence of knowledge of the
identity of colliding nodes, the problem of deducing the backoff value chosen by the
node is far from obvious. Once the backoff values are known, the sample validation
problem lies in detecting whether they are in fact valid samples drawn from the
random distribution specified by the backoff procedure. We claim that both these
problems are hard to solve for UVBEB, which makes it difficult to track down selfish
nodes.

To overcome this obstacle, we propose a new backoff algorithm called XVBEB
(eXtreme Value BEB), in which both backoff deduction and sample validation are
easier to solve. In XVBEB, a node has only 2 choices of backoff value: 0 and CW.
Given a specified probability q, a node chooses backoft value 0 with probability 1—q
and backoff value CW with probability q. As in UVBEB, when a node encounters a
collision, the value of CW is doubled up to a maximum value of CW,,4, and upon

successful transmission, the value of CW is reset to CW,in.
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In this chapter, we analyze the behavior of XVBEB from the perspective of self-
ishness detection. First, we present an algorithm for backoff value deduction for the
XVBEB protocol. In effect, we show how the backoff values of an XVBEB station
can be derived from the number of empty slots between the station’s two successive
successful transmissions and the collision timeline for that time period. At the same
time, we explain the difficulty of backoff value deduction for the UVBEB scheme.
Second, we present a statistical test for sample validation, that determines with a
desired degree of accuracy whether an XVBEB or a UVBEB node is behaving self-
ishly or if the deviation from the a priori specified distribution profile could be due
to chance. We show that the sample size needed to perform the test to a desired
degree of accuracy is more for UVBEB than for XVBEB in higher backoff stages.
Together, the results show that selfishness detection is feasible for an XVBEB-based

protocol, and can be performed more efficiently than for UVBEB .

5.1 Backoff value deduction

In this section we investigate whether it is possible to deduce the backoff values
choices of a particular monitored node by observing the events occurring on the
wireless medium. To analyze these events, we use the notion of virtual slots. As
defined in [DVO05], there are several types of virtual slots, depending on the access
method. For example, in Basic access, there are five types of virtual slots: empty (all
stations are backing off or idling), collision, data errors, ACK errors and successful
transmission slots.

During channel contention, the number of collisions and the number of empty
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slots between two successive successful transmissions of a station are always known.
Indeed, there are two possible outcomes following a communication attempt: failed
or successful transmission. In the case of a successful attempt, the identity of the
transmitting node is contained within the packet and becomes known to everyone
within its transmission range. If the failure is due to a collision, however, there is
no information about the identity of the colliding nodes. If an agent participates in
a collision, it chooses a new backoff value; if not, it has to keep counting down after
the collision virtual slot expires. Due to this limitation, in UVBEB it is almost
always impossible to decompose the number of empty slots in a way to deduce the
backoff value choices of a given station.

As an example, consider a simple 802.11 contention timeline as shown on Fig-

ure 15.

transmission collision collision transmission
] 222222222 22222222222
t t+p t+p+3 t+p+c+3 t+p+c+11  t+p+2c+11  t+p+2c+30

Figure 15: 802.11 contention timeline

A node being monitored starts transmission at time at time t for a duration of
time p. Then, there are 3 empty slots followed by a collision slot at time t+p + 3
which lasts time c, followed by another collision after 8 empty slots. Finally, 19
empty slots after the second collision, the monitored node successfully transmits
another packet. There might have been other types of virtual slots initiated by
other nodes and which contained identity information, but we omit all frames in
which the monitoring node had no implication. There are several possibilities for

the node’s backoff values depending on whether the station has participated in some
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of the collisions:

e The station has not participated in any of the collisions, meaning the node

has a single backoff value of 30.

e The station has been involved in the first collision only, so its backoff values

are 3 and 27.

e The node has contributed to the second collision only. In this case, 11 and 19

are its backoff values.

e The observed node has participated in both collisions. Here, the backoff values

are 3, 8 and 19.

This example serves to illustrate that we cannot make any conclusions about
the nodes’ choices of backoff values in UVBEB. In fact, a deduction would only be
possible if there were no collisions between two successful transmissions of the same
node. With the XVBEB algorithm, however, it turns out it is always possible to
deduce the backoff values of a station.

To illustrate how the number of empty slots can be uniquely decomposed to
obtain the backoff values of an observed station, we examine all possible channel
contention outcomes. Consider the contention tree shown on Figure 16. It illus-
trates all possible contention paths (for up to 6 successive collisions) following a
successful transmission (the root node) provided the first backoff value choice of an
XVBEB node is 0. The vertices represent transmission attempts, and the number
at a vertex represents the total number of empty slots needed to get to the vertex.

The number x/y at an arc indicates the node’s backoff value x while the current
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size of the contention window was y. An observed node follows a path in the tree
based on its choice of backoff values and whether or not it experiences a collision
when it tries to transmit.

However, the observing authority does not know the exact path followed by
a given node. Yet, it does know the number of idle slots between two successive
successful transmissions and when collisions occurred (without knowing the identity
of the colliding nodes). It turns out that this information along with the nature of
the XVBEB procedure allows us to decompose the number of empty slots between
a node’s successful transmissions.

For example, suppose the number of idle slots between a nodes’ two consecutive
successful transmission attempts is 190 and there have been exactly 2 collisions in
between. We can certainly conclude that the node has collided two times in a row
with backoff values of 0,63, and 127.

Consider the scenario of 190 empty slots and 3 collisions. Here, some ambiguity
may arise. For example, the observed station might have participated in all three
collisions before succeeding with backoff values 0, 63,127,0 or it might have partici-
pated in only two of the collisions with 0,63, and 127 as backoff values (some other
nodes participated in the third collision). Fortunately, it is possible to distinguish
between the 2 possibilities by observing the collision timeline: 0,63,127,0 implies
a collision slot right before the successful transmission, whereas 0, 63,127 implies
an empty slot before the second successful transmission. Similarly, if there were
5 or more collisions and 190 empty slots, the number of successive collision slots
right before the transmission allow to deduct the backoff values. For instance, 3

collision slots indicate 0, 63,127,0, 0,0 backoftf values. The decomposition as a sum
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of powers of two in conjunction with the collision timeline guarantees the unique
and correct deduction of the station’s backoff values.

To summarize, our backoff value deduction scheme works as follows. Denote
the number of empty slots between two successful transmissions from the same
node as E. This number is decomposed to determine all possible paths that the
node’s choices could produce on the collision tree. In 802.11b for example, where
CWiin = 31 and CW,,o = 1023 (6 backoff stages), the decomposition of E is done

by finding all possible solutions to Equation 17:

E = 31vg+63vy +127v, + 255v3 + 511v4 + 1023v5

, Where

e vi, 0 <1i<4iseither 0 or 1, where 1 represents the possibility that a node

opts for CW;, as a backoff value at stage i.

e v5, 0<v5 < % is the number of times a node that is backing off at the last

stage chooses its backoff value as CW/, .

This decomposition represents the shortest path to a vertex of the contention
tree containing E. Further, the collision timelime is checked to determine whether
other vertices containing E are reached with backoff value of zero . This ensures that
that the number of empty slots is correctly decomposed to determine the node’s

backoff values.
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5.2 Sample validation for XVBEB

We have already shown in Section 5.1 how to collect samples in a XVBEB network
and explained why this is not possible with the UVBEB scheme. We will now
investigate the sample validation problem for XVBEB. The problem is approached
using the x> goodness-of-fit test. We start by giving a general description of how

to use the test and proceed by describing the application to XVBEB.

5.2.1 Goodness-of-tit test

The Goodness-of-fit x* test is used to compare observed data with expected results
and aims to determine whether the difference between the two is a result of chance
or other factors. One can take the null hypothesis to be that there is a significant
difference between the expected and the observed result. Alternatively, the null
hypothesis could be that there is no significant difference between expectations and
the observations. The x? test is a test to verify the null hypothesis in either way.
Several steps are involved in conducting a x* goodness-of-fit test: stating the
hypotheses, defining the test parameters, analyzing the sample data and interpret-

ing results:

e Hypothesis statement. Two hypothesis testing approaches exist. One ap-
proach is to form the null hypothesis Hy, as something that is the logical
opposite of what the actual belief is. Once the observation data is gathered,
the researcher’s goal is to show that most likely H, is false, and, therefore,
should be rejected. This is called Reject-Support testing (RS testing). The

opposite approach is to accept as Hy what the actual belief is and try to show
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that Hy is true. That is called Accept-Support testing (AS testing).

For example, suppose that the purpose of a test is to determine whether a
coin is fair. If the belief is that the coin is fair and RS testing approach is
followed, Hy would state that the coin is not fair and the goal would be to

reject Hy using the x? test.

Test parameters definition. To test a hypothesis against collected sample data,
a parameter called significance level needs to be specified. The significance
level of a test represents the maximum probability of mistakenly rejecting the
null hypothesis. The lower the level, the less chances are that H, is rejected
(stronger evidence is required to reject the null hypothesis). If one argues there
is only one chance in a hundred this could have happened by coincidence, it
implies a significance level of one percent (& = 0.01). There is a trade-off
associated with smaller significance levels because it increases the chances of
failure to reject a false null hypothesis. Often, researchers choose significance

levels equal to 0.01 or 0.05, but any value between 0 and 1 could be used.

Analysis of the observed data. The analysis of the test results consist in
calculating the following three values: the degrees of freedom, test statistic
and the p-value associated with the test statistic. The degrees of freedom is
equal to the number of levels of the categorical variable minus 1. In the coin
flipping example, there are two categorical variables, but knowing that the
number of heads is 42 out of 100 tosses, the number of tails is determined to
be 58. Hence, there is one degree of freedom. Similarly, a fair six-sided dice

problem has 5 degrees of freedom.
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The test statistic X?, also called Pearson’s cumulative test statistic, which

asymptotically approaches a x? distribution and is calculated by the formula:

X2 i (0; — Ey)?

where O; is the observed frequency, E; is the expected frequency as stated in
the null hypothesis and n is the number of the categorical variables. In the

fair coin case, the test statistic is

(42 — 50)? n (58 —50)% 128

2 __
Xt = 50 50 50

Finally, the p-value of the test is the probability that values bigger or equal
to the test statistic could be observed in a x? distribution and is defined
as p = 1 — cdf (cumulative distribution function). The cdf expresses he
probability of having obtained a value less extreme than the parameter x. The

cdf of the x? distribution with k degrees of freedom is given by Equation 17:

v(k/2,x/2)

CDFe = (17)

, where I'(k) is the Gamma function and y(k,x) is the lower incomplete

Gamma function.

Acceptance or rejection of the null hypothesis. Once the p-value for the test
statistic is determined, it is compared against the significance level. If the

value is greater than the significance level, the null hypothesis would not be
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rejected. If the p-value is smaller than the significance level, H, is rejected. In
our coin flipping example, the p-valueis 1 - 0.89 = 0.11, so we would conclude

that the coin is fair even at significance level of 0.1.

In some situations, undesirable results might occur. There are two possible
erroneous outcomes. Type I error (false positive) happens when H, is true, but the
test claims it is false. The probability of committing Type I error is in fact the
significance level «.

There exists another possible error a test could produce: the test could confirm
the null hypothesis, whereas in reality it is false. This is called Type II or 3-error
(false negative). The possibility of committing Type II error is calculated using the
power of the test and is denoted as 3. The power of a test is the probability that
the test would not accept untruthfully an alternative hypothesis and is equal to
1—p.

Researchers’ goal should be to minimize both errors. As previously noted, there
is a trade off between Type I and Type II errors. Table 1 summarizes the possible

outcomes of a statistical test [KMWO8]:

True state of population
Ho H,
Hy | Correct Acceptance | Type II Error (3)
H; | TypeI Error (x) | Correct Rejection

Conclusion

Table 1: Possible outcomes of a statistical test

The Type II error of a test is calculated using the power of the test. The power
of a test is a function of the number of observations, the size of the effect in the

population and the standards or criteria used to test statistical hypotheses:

91



e Number of samples. The most efficient way of increasing the power of a test

is by increasing the number of observations.

e Size of the effect. The size of the effect is the magnitude of the expected

results. The larger the effect size (larger deviation) the higher the power.

e Test parameters. Higher significance levels (i.e. the easier to reject Hy) in-

crease the power of a test.

To calculate the exact power, a particular alternative hypothesis H, (or a set of
alternatives) has to be specified and the probability of accepting the null hypothe-
sis if in fact the alternative had been evaluated as being truthful. To calculate the
probability 3 of committing Type II error against the alternative hypothesis, a gen-
eralization of the x? distribution is used, called noncentral x* distribution [Fer96].
Designate the null hypothesis as a distribution y° = {r{,19,...,12} and the alter-
native as y¢ = {r{,r%,...,1¢}. Let &; = \/N(rj“ — r?) (where N is the number of
samples). The noncentrality parameter A of the noncentral x? distribution is a

function of the number of samples and is given by Equation 18.

K
A=) s ()
=1
For example, to calculate A for a fair coin (0.5/0.5) against the alternative
(0.4/0.6) for 100 tosses, Equation 18 writes as:

~100(0.4—05)2  100(0.6 —0.5)2

A 05 + 05 =2+2=4

Once the noncentrality parameter A is derived from Equation 18, it is substituted
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in Equation 19, which defines the cumulative distribution function of the noncentral

x* distribution (CDF,.) and represents the power of the test against y:

= A/2)t
CDFnc(x; A k) = Z em(i/—,)CDFC(x; k + 2i) (19)
i=0 ’

where CDF.(x; k) is the cdf of the central x? distribution for k degrees of freedom.
Finally, the possibility of committing Type II error is approximated as f = 1 —
CDF,..

Thus, the number of samples needed to perform the test is calculated numerically
according to the desired acceptable T'ype I and II error levels and some predefined
alternative behavior. First, the quantile of the central x? is calculated for the
specified «. The quantile function is the inverse of the cdf; it specifies the maximum
value of the random variable for some given probability. Then, given the centrality
quantile, the equation for the cumulative distribution function of the noncentral x?
is solved for A to meet the desired Type II error level 3. Once the value of A is
derived, the necessary number of observations is determined by Equation 18.

It needs to be mentioned that the sampling distribution of the test statistic that
is calculated is only approximately equal to the theoretical chi-squared distribution.
The approximation is inadequate when sample sizes are small, or the data is very
unequally distributed. The approximation is poor when the expected cell counts
are small. There are different rules of thumb of what the number of samples should
be, with the most common (and conservative) one being that the expected cell
frequency for each cell should be at least 1 (Nr; > 1) and no more than 20% of the
cells should have an expexted count of less than 5 [Ros04].

Hence, the number of samples needed to achieve certain power and confidence
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level should be the greater of the values calculated by Equation 18 and the number

of samples needed to satisfy the x? approximation.

5.2.2 Application to XVBEB

When XVBEB is used as a backoff procedure, the null hypothesis H, states that for
backoff level i, the collected sample data is distributed according to (1—q;,0,0,...,0, gi)
distribution over the [0, CW; — 1] range. Since any backoff value different than O or
CW; —1 results in immediate detection of misbehavior, Hy that needs be evaluated
becomes simply (1 — gy, qi) over the two values 0 and CW,; — 1.

Note that there are many ways a station can alter its distribution profile, so
we focus our analysis on rational cheaters that aim to increase their throughput.
The misbehavior is generalized as follows: in each backoff level i a cheater would
increase the probability of choosing the backoff value O by a positive value w; and
decrease the probability of choosing CW; by that same amount. Thus the alternative
hypothesis H, becomes (1 — q; + wy, gi — wy).

The ultimate goal is to accept or reject the null hypothesis that the nodes are
behaving according to the backoff procedure. While doing this, we want to minimize
both Type I («) and Type II () errors: that is identifying normally behaving nodes
as cheaters and vice-versa.

The non-centrality parameter for the XVBEB algorithm is shown in Equation 20.
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N{WBEB“ —qi +wi— 1+ Qi)z

A= +
1_qi
NXVBEB (g 1y, — q;)?
N (i — wi — qi)
di
XVBEB ,,,2
R (20)
qi(1—qi)

Hence, Equation 21 allows us to calculate the number of samples needed to
detect selfish behavior:

Aqi(1—qi)
Ni(VBEB — q . q (21)

Wy

It is worth noting that the number of samples needed in the XVBEB case de-
pends on the choice of ;. More observations are needed to achieve the same power
when q; is close to 0.5 (worst case being q; = 0.5). Almost three times fewer samples
are needed when q; = 0.1 compared to the q; = 0.5 case.

To illustrate this result, we examine some particular cases. For simplicity, sup-
pose the stations are required to choose according to the (0.5,0.5) distribution
at all backoff stages and that three types of alternative behaviors are evaluated:
(0.6,0.4),(0.75,0.25) and (0.9,0.1) at three different error levels: « = = 0.05,
x=f=0.01 and x =3 = 0.001.

Table 2 shows the numerically calculated values for A given these error levels
and one degree of freedom.

By substituting the values from Table 2 in Equation 21, we obtain the number

of samples needed to detect each type of misbehavior, as shown in Table 3.

Note that the greedier the station becomes (the larger the effect size), the easier
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o =p =0.05
12.9947

o=p =0.01
24.0313

o= p = 0.00]1
40.7141

Table 2: Noncentrality parameter with one degree of freedom

x=B=0.05] a=p=0.01] c=p =0.001
(0.6,0.4) 325 601 1018
(0.75,0.25) 52 96 163
(0.9,0.1) 20 38 64

Table 3: Number of samples needed to detect selfish XVBEB nodes

it becomes to detect misbehavior.
Once the required samples are collected, it is straightforward to put the station

to the x* test and determine whether the station is misbehaving.

5.3 XVBEB and UVBEB comparison

In Section 5.1, we showed how to obtain samples for the XVBEB procedure and
explained why it is rarely possible to do the same with the UVBEB scheme. In
this section, XVBEB and UVBEB are compared against each other in terms of the
number of samples needed to detect selfishness, assuming the backoff values of a
monitored UVBEB node are somehow known.

In Section 5.2, the null hypothesis for XVBEB nodes was shown to be (1—qs, q;)
over the two values 0 and CW;—1. In the UVBEB procedure, the expected distribu-

tion profile is uniform, so the null hypothesis Hy, would be that node is choosing its

1 1

backoff values according to the probability distribution (=, &y ---» o)

, Where

CW, is the current size of the contention window for the i'" backoff stage.
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In XVBEB we have only 1 degree of freedom, whereas in UVBEB there are
different degrees of freedom at the different backoff stages (31 for the first backoff
stage, 63 for the second, etc). Therefore, to compare the schemes, we propose a
generalized cheating model that fits both procedures. The XVBEB selfish behavior
described in Section 5.2 can be looked at as if a cheater assigns higher probability
on the values of the first half of the contention window range and less on the
second. The equivalent misbehavior for a UVBEB station is in each backoff level
1 to increase the probability of choosing each value in the first half of the backoff
range by a positive value €; and decrease the probability of choosing each value in
the second half by that same amount. Thus the alternative hypothesis H, for the
UVBEB scheme is that a node would choose each value in [0.. [(CW; —1)/2]] with
probability CLWL + €; and each remaining value with probability of c+v1 — €.

The non-centrality parameter in XVBEB is given by Equation 20, whereas Equa-

tion 22 presents the expression for A in UVBEB.

cw, NE™ (g +e— ) ows MY gy — e o)’

1 1
2 o 2 ow;

— NUVBEB 2O (22)

Thus, the number of samples needed to detect selfishness for the XVBEB and

UVBEB procedure are given by Equation 21 and 23 respectively.

A
Nuvees — 2 23

To compare the number of samples needed to detect selfishness, we look at a few
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particular examples. Again, we have to model the behavior in a way to be able to
compare both schemes. We establish the correspondence between the parameters €;
and w; in terms of the transmission probability T, that is, they are chosen so as to
achieve the same transmission probability. For simplicity, the models are compared
in saturated conditions. The q; parameter in the XVBEB algorithm is set to 0.5
at all backoff stages, which is shown in Chapter 6 to be equivalent to the UVBEB
backoff in terms of saturation throughput. As noted previously, this is also the
worst case scenario for the number of samples needed to detect selfishness. Solving
numerically Bianchi’s equation for the transmission probability [Bia00| of normally
behaving UVBEB nodes yields the values for T in Table 4, which is the same for

the XVBEB mechanism with q; = 0.5 as shown in [GNA11].

number of nodes T

3 0.0537218
5 0.0478464
10 0.0373051
20 0.0264229
30 0.0209678
40 0.0176494
50 0.0153917

Table 4: Values of T in a system of well behaving nodes

For the purpose of stating the alternative hypotheses, the three degrees of cheat-
ing are defined as: low level cheaters increase their transmission probability T by
10%, medium by 50% and high by 90%. The level of cheating represents the effect

size: cheating becomes easier to detect (fewer samples are needed) as nodes become

98



greedier and aim for higher transmission probabilities. To influence its transmis-
sion probability, a node following the UVBEB algorithm modifies its €; parameters;
XVBEB nodes change their w;. Table 5 reflects the numerically calculated values of
€o needed for the nodes to increase their transmission probabilities by 10, 50 and 90
percent. The table shows the values of € for the zero backoff stage. For simplicity,
we assume that the e;,; values of the upper backoff stages are half the €; value
of the previous backoff stage. Different € assignments may lead to other possible
cheating strategies, such as a mix of normal and selfish behavior. An example of
such a mixed cheating strategy would be to behave normally (e = 0) in the lower
backoff stages (e.g. CW =32, CW = 64) and misbehave in the higher stages. A not
very aggressive cheater might not mind waiting for 31 slots, but the idea of waiting
1023 slots would not seem highly attractive. Such behavior can be also specified as

an alternative hypothesis and put to the x? test.

number of nodes | €y (low T) | €y (medium 7) | €y (high T)
3 0.00583862 0.0214084 0.0304224
5 0.00582102 0.0213439 0.0303308
10 0.00578986 0.0212294 0.030168
20 0.005758 0.0211123 0.0300017
30 0.005742 0.021054 0.0299189
40 0.00573257 0.0210189 0.0298689
50 0.00572593 0.0209949 0.0298349

Table 5: Values of € required to increase T as desired

The w; values can either be calculated numerically or expressed as function
of €; by incorporating them into the XVBEB and UVBEB transmission probabil-

ity equations as derived in Chapter 6 and [Bia00]. To obtain equal transmission
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probability, for all backoff stages (i € (0,5)) they must satisfy:

Wi
(T—di—wi) + (qi —wi)Wi = k(—i+€1)+ Z k(Wi_el)
2
Wi+ _e.Wf
B 2 f 4

Thus, the general link between w; and €; in terms of saturated transmission

probability is given in Equation 24.

EiWiz + 4qui — ZWl + 3— 4(.]1
i AW, — 1 (24)

In the q; = 0.5 case, Equation 24 becomes:

eW2 — 1
w; = ————

AW — 1 (25)

Table 6 shows the values of w, calculated by Equation 25 needed for the nodes
to increase their transmission probabilities by 10, 50 and 90 percent in the XVBEB

case at the zero backoff stage.

number of nodes | wy (low T) | wy (medium 7) | wy (high T)
3 0.048215701 0.176791948 0.251230142
5 0.048070359 0.176259303 0.250473703
10 0.047813037 0.175313755 0.24912929
20 0.047549935 0.174346735 0.247755974
30 0.047417806 0.17386529 0.247072206
40 0.047339933 0.173575432 0.246659303
50 0.047285099 0.173377239 0.246378529

Table 6: Values of w required to increase T as desired
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Since the distribution profiles must remain valid (i.e. the probabilities should
not be more 1 or less than 0), the €; values are constrained by €; < 1/32 = 0.03125
and the w; values by w; < 0.5. However, €; and w; should satisfy one additional
requirement. Since w; > w; Vi € (0,4), the condition (as found in Chapter 6)
for a unique solution of the transmission/collision probability system of equations
is satisfied. It is easy to show that in the UVBEB procedure with the €; = 2€; 4
assignment, the system has a unique solution.

Tables 5 and 6 allow us to express the alternative hypotheses. For example, H,
for the first backoff stage and low level of cheating with 3 nodes would correspond
to assigning 1/32+ 0.00583862 on the first 16 backoff values and 1/32 —0.00583862
on the second half. Thus the corresponding alternative distribution profile would
be (0.03708862,...,0.03708862,0.02541138,...,0.02541138).

Now that all parameters are established to define equivalent behavior in both
XVBEB and UVBEB algorithms, as in Section 5.2, the number of samples needed is
calculated for three different acceptable error levels: o« = 3 = 0.001,0.01, and 0.05.
The non-centrality parameter (A) values corresponding to the degrees of freedom
and error levels are numerically calculated in Table 7

The values in Tables 5, 6 and 7 allow us to calculate the number of samples
required to remain within the acceptable error levels for the three degrees of cheating
at the different backoff stages.

As it turns out that there is not much of a difference between the number of
required samples to detect selfishness for different numbers of nodes, we only show
the results for three nodes. Figures 17, 18 and 19 illustrate the volume needed to

determine whether a node is misbehaving or not at low, medium and high degree of
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DF | a=p=0001 | «=p =001 | x=p =0.05
1 40.7141 24.0313 12.9947
31 83.3501 56.465 35.9491
63 104.601 72.3987 47.1527
127 134.246 94.6259 62.7991
255 175.8 125.806 84.7757
511 234.232 169.69 115.74
1023 |  316.568 231.577 159.442

Table 7: Noncentrality parameter for different degrees of freedom

cheating at o« = 3 = 0.001 precision levels. The values in Figures 18 and 19 reflect
the fact that the number of observations needed as derived by Equation 18 is smaller
than the number needed to satisfy the approximation rule. Only the numbers
obtained from Equation 18 are shown in Figure 17 because the approximation
condition is already satisfied. For example, at the zero backoff stage with error
rates of 0.001, 64 samples are needed to detect high level of misbehavior for three
nodes in UVBEB by Equation 18; however, the approximation would only be good
if 160 samples have been collected, which is the same number needed to detect
selfishness in a XVBEB node.

Finally, note that the number of samples needed to detect misbehavior in
UVBEB mode drastically increases when CW increases. Table 8 illustrates the
percentage of the time 10 competing nodes spend in the different backoff stages
obtained by simulations. It is no surprise that the nodes spend most of their time
in the first two backoff stages, so the time needed to collect the required number of
samples at these stages is not a concern. On the contrary, the number of samples

required drastically increases at the higher backoff stages for the UVBEB backoft
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algorithm. This trend along with the fact that the nodes spend only small por-

tion of their contention time at the higher backoff stages would make the sample

collection process extremely time consuming for the UVBEB protocol.

Number of Attempts | UVBEB nodes | XVBEB nodes
1 72.0% 86.8%
2 20.0% 6.3%
3 5.5% 3.1%
4 1.7% 1.8%
5 or more 0.6% 2.0%

Table 8: Backoff stage profiles for 10 nodes
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Chapter 6

Performance Evaluation of Backoft
Algorithms for Medium Access in

Wireless Networks

In Chapter 5, we defined an alternative backoff procedure for IEEE 802.11 stations
to make possible the detection of selfish nodes. Yet, the gain in reliability would be
negated if the procedure resulted in poorer use of the network resources. Therefore,
we study the performance of the 802.11 MAC protocol using XVBEB as the backoft
scheme and compare it against the classic IEEE 802.11 protocol, which uses UVBEB
as a backoff scheme. For convenience, we call the modified protocol the XVBEB
protocol, reiterating that the only difference between the XVBEB protocol and
the 802.11 protocol is in the backoff scheme. We provide a theoretical analysis of
the throughput of the XVBEB protocol in saturation conditions and prove that
the throughput of our protocol with q = 1/2 exactly matches the throughput of

the 802.11 protocol. We show that the value of q that maximizes the saturation
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throughput is a function of the number of the nodes in the network. In the absence
of knowledge of number of nodes, there is no single value of q that maximizes the
throughput for all network sizes. If the nodes have access to the number of nodes
in the network, then we prove that it is possible to obtain an improvement over
the optimal version of 802.11 in which contention window sizes can be changed as
a function of the number of nodes in the network.

We validate our model with extensive simulations using ns-2. In fact, our pro-
tocol enjoys a higher throughput in simulations than the model predicts, both in
the case when there is no knowledge of the number of nodes and the case when
the number of nodes is known, for saturated CBR traffic. The pattern of access
appears different for the two protocols; in our protocol, nodes display a limited
amount of channel capture compared to 802.11; however, simulation results show
that our protocol enjoys a high fairness index. We simulated both algorithms for
VBR (video) traffic as well as VoIP traffic. In both cases, the XVBEB protocol (op-
timized and non-optimized versions) demonstrates a lower packet loss rate, packet
delay, and packet delay variation than the 802.11 protocol for a variety of load

conditions for different numbers of nodes.

6.1 Analytical modeling

In this section, we analyze the behavior of a node following the XVBEB protocol
using a Markov model, similar to the model used in [Bia00]. In fact, we model a
somewhat more general protocol, in which at a given backoff stage i, we choose to

delay transmission with probability q;. In other words, the probability of delaying
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transmission can be different in different backoff stages. We obtain the transmission
probability T of a node in a slot time, independently of details of the protocol such
as time necessary to sense the channel, the access mechanism etc. We proceed to
express the throughput as a function of the computed value t. We assume that there
are n stations in saturation conditions, that is, each station always has a packet for
transmission immediately after it successfully transmits. Let p be the conditional
collision probability, assumed to be constant and independent for all nodes, and
let m be the maximum number of backoff stages, that is, CWiox = 2™MCWipin.
We denote the backoff value in stage i1 by W;. It follows that W, = CW,,;,, and
W; = 2'W, for 0 < i < m. Finally, we denote the probability of choosing the
backoff value W; in stage i to be q;. Clearly the probability of choosing the backoff
value O in stage i is then 1 — q;. The Markov chain corresponding to such behavior
in saturated conditions is shown in Figure 20.

Let b;y be the stationary distribution of the chain. When 1 <i < m —1 we

have:

biwi—1 = qi p bi_1p

biw,2 = qiPp bisip

bi = (i p bi_1p

bio = (1—=qi+qi) pbiip

Hence, for 1 <1 <m —1, since bjp =p bi_1,

W;—1
bix =bio(l — qi +W; q3) (26)

)

k=

o
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Figure 20: Markov chain for the XVBEB protocol
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Similarly, for the first backoff stage (i = 0)

bow,—1 = qo (1—7p) th,o
1=0

bow,—2 = qo (1—p) > by
=0

bo,1 = qo (1—p) X b
=0

bo,o = (1—qo+qo) (1—p) > b
=0

Here again, because

m
boo = (1 —p) th,o
=0

we derive
Wo—1

Z box = boo (1 —qo+Ws qo) (27)
=0

Finally, for the last backoff stage m, we have

bm,Wmfl = dqm P (bmf1,0 + bm,O)

bm,WmfZ = dqm P (bmf1,0 + bm,O)

bm,] = (dm P (bm—1,0 + bm,O)

bm,O - (] —(m + qm) P (bm—1,0 + bm,O)

Since by = bm_10 P+ P bmpo
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Wi —1
Z bm,k - bm,O (1 - qm + Wm qm) (28)
k=0

From equations 26, 27, 28 and the fact that b;y = pi.bO,O and by = %-bo,o, the

normalization condition can be written as

m W;—1
1T =) > by
i=0 k=0
m—1 pm
— bOO Pl (]_q1+W1 q1)+b0,0]_p (]_qm+Wm qm)
i=0

As in [Bia00], the stationary distributions of the chain allow us to express the

transmission probability of a node T as a function of q; (Equation 29).

1
T= — (29)
(1—p) ZO pt (1 —qi + Wiqi) + p™(1 — qm + WinQm)

Clearly, the collision probability is given by:

p=1-(1—1" (30)

Inverting Equation 30 to ™ (p) =1 — (1 — p)ﬁ) allows to conclude that t(p)
is a continuous and monotone increasing function in (0, 1) with extremes t(0) =0
and t(1) = 1.

In contrast to [Bia00|, the transmission probability in the XVBEB scheme
(Equation 29) also depends on ¢;. Thus, it cannot be claimed that t(p) is de-

creasing in (0,1). In fact, it is easy to give a counterexample in which the function
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will not be decreasing. For two backoff stages, let qo = 1/2 and q; = 1/8. The

. . oqe o ‘I o ‘I
transmission probability becomes T = AW /s aw/s)» SO T(0) = TIWE and

(1) = m Therefore, for W > 2, 7(0) < 1(1).

By imposing certain conditions on q;, however, we are able to ensure that func-

QWi g1

wi o1 dis Vi € (1,m). Designate

tion is non increasing in (0,1). Let qi 1 <
«; =1 —q; + W; q; for each backoff level i. With these qg; values, we observe that

Vie (1, m):

®i1— o = qig (Wisg — 1) — qi(2Wi — 1)

2Wi 4 —1

< m%(wiq —1) — qi(2Wi 1 — 1)

=0 (31)

To prove that in Equation 29 t(p) is non increasing, we need to show that g—g <0
for p € (0,1). The denominator of the partial derivative is always positive and the

numerator N is:

N =oo—(1T—2p)x; — (2p —3p*Joy — ... — (M —1)p —mp™ oty — mp™ oty

= (oo — 1) +2plog — o) + ..o+ (MP™ ) (&1 — i)

By Equation 31, N < 0 for p € (0,1), and therefore, the function is non increas-
ing.
Since the extreme values 7(0) = ——— > 0 and 7(1) = ——— < 1, the

1—qo+Wqo T—qm+2mWqm

system of Equations 29 and 30 has a unique solution.
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By choosing ¢; = 1/2 for all i in the range 0 < i < m, and substituting W; = 2'W
in Equation 29, the expression for the transmission probability becomes the same

as the one for UVBEB as found in [Bia00].

1
T = m—1
(1—p) Zo PP =g+ Wi q)+p™ (1= dm+ Wi qn)
B 1
B m—1
(T—p) X pt(1=1/24+Wy/2)+p™ (1 =1/24+Wpn/2)
i=0
B 2
o m—1
(T—=p™)+ (1 —-pW ZO (2p)t+p™+ W(2Zp)™)
2
= — (32)
T+W+pW Y (2p)t+pm
i=0
The expression for system throughput S has been derived in [Bia00]:
E
S - TS _ TC + G(]fptr)/Ptr‘i’Tc (33)

Ps

where E is the average payload size, T is the average time the channel is sensed
busy because of a successful transmission, T. is the average time the channel is
sensed busy because of a collision, Py, is the probability that there is at least one
transmission in the considered slot time, and P is the probability that a transmis-
sion occurring on the channel is successful and o is the duration of an empty slot
time. Since E, T, T. are all constants depending on the access scheme (Basic Ac-
cess or RTS/CTS, for example), the throughput is maximized when the following

quantity is maximized. Let
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P

M =
(1 - Ptr)/Ptr + TC/G

As M depends only on T, and the transmission probability for the XVBEB
scheme with probabilities q; = 1/2 is the same as that of 802.11, the following

somewhat surprising result follows:

Theorem 6.1.1. The XVBEB protocol with probabilities q; = 0.5, for0 <i<m

yields the same saturated system throughput as the 802.11 protocol.

Next we study how changing the q; probabilities influences the system through-
put. One might ask the question whether there exist universal values of q; such
that the XVBEB protocol would yield better throughput than 802.11 for all num-
bers of nodes for fixed CW,,;» and CW,,«. Figure 21 is a simple illustration
of the numerically calculated system throughput for the XVBEB scheme with
qi = 0.1,0.25,0.5,0.75,0.9 for all backoff stages in an 1Mbps RTC/CTS enabled
network with 3, 5, 10, 20 and 30 nodes. As expected, decreasing the q; (assigning
higher probabilities to the O backoff values) works better with smaller number of
nodes while increasing the q; helps with higher number of nodes.

To prove why no universal q; values that improve the throughput regardless of
the number of nodes exist, we examine the impact of changing the transmission

probability on the system throughput. Let t* solve Equation 34:

(1—t) —Tnt —[1— (1 —7)") =0 (34)

Lemma 6.1.2. The expression M = 18 a decreasing function of T

Ps
“7Ptr)/Ptr+Tc/0'

in [t%,1] and an increasing function in [0, T*].
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Figure 21: Calculated saturated throughput for different q;
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Proof. To prove that the expression is decreasing in [t*, 1], we need to look at the

sign of the slope of the tangent line. The derivate of M with respect to 7 is:

aM * n * *
a—Tz(l—TC)U—T) —Tnt+T;

We need to show that %‘(T* +e)<O0for0<e<1—1"

%(T* +e)=(1-THA -7t —e)"=Tn(t" +€)+ T}

=(1-TH1 =1 —€e)" =Tn(t"+€)+ T —

—(1-THO =)+ Tnt" —T;
=(T—1D((T =)= (1—71"—¢€)") —Tine
1

= (T =De Y (=) -7 — e ~Trne
0

=

-~
I

< (T —T)ne—Tine

<0

The proof that M is increasing of T in [0, T*] is similar.

O

Note that in the 802.11 protocol, the transmission probability depends only

on the number of nodes and the contention window. In contrast, in the XVBEB

protocol it also depends on ;. Thus by fixing W and n, one could still influence

T, and, therefore, the system throughput. Lemma 6.1.2 allows us to establish the

behavior of the system throughput for changing transmission probabilities.

Theorem 6.1.3. For fized number of nodes n and minimum contention window
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W the saturated system throughput S using a XVBEB profile increases if T 18

increased in [0..t*] or decreased in [t*..1] and vice-versa.

Proof. As we already know, the system throughput S can be expressed as:

E X
Ts o Tc + 0(1=Pir)/Per+Te Ts _ Tc + O-]M

S

S =

By Lemma 6.1.2, S is an increasing function of T in [0,7*] and a decreasing

function in [t*, 1]. O

It is now easy to show that there is no q; assignment such that the XVBEB
profile would produce better throughput than the uniform distribution regardless
of the number of nodes for a given minimum contention window. Indeed, by ob-
serving Equation 29, we conclude that no matter how we change the q; values, the
transmission probability will either increase for any number of nodes or decrease no
matter how many nodes are involved in a competition. By Theorem 6.1.3, increas-
ing T benefits the scenario where 1" (obtained from Equation 34) is higher than the
current transmission probability and vice versa. For example, in a 1Mbit RTS/CTS
enabled network with 6 backoff stages " for 3 nodes is 0.158557, whereas for 30
nodes it is less than one-tenth of that values: 0.0142753. In an XVBEB scheme
with CW,,,;,=32 and q; = 0.5 Vi € [0..5], the transmission probability for 3 nodes
becomes 0.0515231 and 0.0208665 for 30 nodes. Obviously, any changes to q; that
lead to the increase of T would bring the transmission probability closer to T, but,
will on the other hand, make things worse for the 30 nodes network, which is the

result observed in Figure 21.
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6.2 Optimizing throughput

In this section we study the maximum achievable saturation throughput of the
XVBEB protocol. In [Bia00], it was already shown that it is possible to compute
the optimal transmission probability for a given number of nodes. Assuming the
number of competing nodes is known, Bianchi showed that the optimal transmission
probability is the solution to Equation 34: (1 —t*)" — T {nt* —[1— (1 —1*)"]} = 0).
An interesting question is whether we can find an assignment of g; to achieve a
certain transmission probability (in turn to achieve a maximum throughput for
given number of nodes). Due to the limitation 0 < q; < 1, it turns out this is
not always possible if the size of the contention window stays fixed. For example,
if we wanted to achieve system throughput of 0.83649 for thirty 1Mbps RTS/CTS
enabled nodes, this corresponds to T = 0.0142753. Then using CW,;, = 32, at
least one q; value would have to be bigger than 1 (if all q; = q, then q would be
1.13526).

In [Bia00] it is shown that once the optimal transmission probability T* is calcu-
lated, the throughput can be optimized by finding the optimal minimum contention

window W* from the system of Equations 35 and 36:

T = 2 — (35)
T4 We 4 p W Y (2p7)F
=0
pr=1—(1—-1)" (36)

However, W* is unlikely to be an integer, so in practice it needs to be rounded

up to some value W as all the values in the backoff interval must be integers. In the
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XVBEB scheme, the expression for the transmission probability also includes the
distributions q; (Equation 29). The easiest way to achieve the same throughput as
the optimal 802.11 protocol follows directly from Theorem 6.1.1. To achieve the
same throughput at the optimal 802.11, the XVBEB protocol is run with q; = 0.5
and minimum contention window of W. However, since the optimal contention
window has been rounded up to an integer, the throughput in both uniform and
XVBEB profiles will be slightly lower than the theoretical maximum. However,
since in the XVBEB scheme the transmission probability also depends on the q;
values, it is possible to change them in a way to make up for rounding of the optimal
value W*. Let Wi = 2'W* and W; = 2'W.

Theorem 6.2.1. The saturated throughput in the XVBEB scheme with qi =

%, Vi € [0..m], and minimum contention window wW produces higher through-

put than 802.11 with the same minimum contention window.
Proof. The transmission probability of the XVBEB scheme is:

— 1
Tq =

m—1

(=pa) X pi (Wi ai)+pg (1+(Wm—T)am)

1

m=l (Wi —1) (Wi 1) (Win—1) (W%, —1)
(=pa) X P4+ —5np oy P 5y =)

1
m=1wi
(1-pq) ‘Zo Py (—5—)+pq
&

Wi +1
(—3—)

2
m—1 .
T+WH4pgW* 3 (2pq)*
=0
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such that p; = 1— (1 —t,)""'. Bianchi showed that the system of Equations 35

and 36 has a unique solution in [0..1]; therefore, T, = T*. O

6.3 Simulation results

We now evaluate some aspects of both backoff approaches. To illustrate the differ-
ences between 802.11 and the XVBEB protocols, we first examine through simula-
tions how the stations compete for access to the channel.

The transmission attempts of three competing nodes on a 1Mbps basic access
channel over a period of 1 second is illustrated in Figures 22 and 23: the XVBEB
protocol allows the nodes to send more successive packets, but they end up in the
backoff procedure for more extended periods of time compared to the 802.11 pro-
tocol, where most often a node sends only one packet and then waits its turn to
send subsequent packets. Intuitively, a node has a chance q = 1/2 in our experi-
ments of being able to re-transmit immediately after a successful transmission in
the XVBEB protocol, whereas in 802.11, it has only a 1/CW chance of immediate
re-transmission.

To compare the performance of XVBEB and 802.11 the following aspects are
evaluated in ns-2: saturation bandwidth, fairness (of the bandwidth), packet loss,
delay and delay variation. Since the only difference between XVBEB and 802.11 is
in the way the backoff values are selected, the single change in ns-2 to implement
XVBEB involves the modification of the MAC timers.

Thus, four protocols are simulated:
e 802.11: all nodes behave according to the IEEE 802.11 standards.
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Figure 22: XVBEB channel access
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Figure 23: 802.11 channel access
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e XVBEB : all nodes use the XVBEB approach with CW,,;, =32 and q; = 1/2.

e Optimal 802.11: all nodes choose randomly from 0 to CW,,i, = |W*], where

W* is a function of the number of competing nodes.

e Optimal XVBEB : all nodes use the XVBEB approach, with CW/,,;;, = [W*],
where W* is a function of the number of competing nodes, and using proba-

bility q* as in Theorem 6.2.1.

The system parameters we use are as specified in the standard and are given in

Table 9.
Parameters 1Mbps 11Mbps
packet payload 8184 bits 8184 bits
MAC header 272 bits 224 bits
PHY header 128 bits 72bits@1 + 48bits@2
ACK 112 bits + PHY 112 bits + PHY
RTS 160 bits + PHY 160 bits + PHY
CTS 112 bits + PHY 112 bits + PHY
Channel bit rate 1 Mbps 11 Mbps
Propagation delay 1 us 1 us
Slot time 50 us 20 us
SIF'S 28 us 10 us
DIFS 128 us 50 ps
Table 9: System parameters used for calculations
6.3.1 Saturation throughput

The values in Table 9 yield the following collision and successful transmission times:
T]MBasic — 8713, TIMBasic — 8087 TIMRTS — 417 and TIMRTS = 9568. In the 11mbit

case, the values are: T!MBasic — 977 TITMBasic — 71130 TIMRTS — 307 and T™MRTS —
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1616. These values are substituted in Equation 33 to numerically calculate the
expected saturation throughput in each scenario.

To evaluate the throughput via simulations in ns-2, an extra node is set as a
sink that acts exclusively as a recipient to all data packets. Saturation conditions
are ensured as each node is offered the exact same load, which is 1.5 times the
channel bandwidth divided by the number of nodes. For example, in the case of
three 1Mbps nodes, each node has an attached CBR agent generating packets at
0.5Mbps rate; in the case of five 11Mbps nodes, the CBR agents generate traffic
at 3Mbps. In all graphs illustrating throughput results, the expected (calculated)
system throughput is represented by dashed lines, whereas the actual simulation
results are given by solid lines. To avoid UDP packet segmentation, we increase the
maximum UDP packet size.

Figures 24 and 25 represent the simulation results for 1Mbps and 11Mbps
channel for the 802.11 and the XVBEB protocols while Figures 26 and 27 illustrate
the optimized 802.11 and XVBEB protocols (requiring knowledge of the number of
nodes) in RT'S/CTS enabled networks.

As illustrated, both regular and optimal XVBEB outperform 802.11, and the
ns-2 saturated throughput simulation results for both XVBEB and 802.11 miss
the expected theoretical calculations. This is likely due to several assumptions in
the Markov chain model, such as the assumption that all nodes collide with same
conditional collision probability or to some other model inaccuracies.

The same trend is observed with the basic access mechanism, as illustrated in

Figures 28, 29, 30 and 31.
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6.3.2 Fairness index

To compare the fairness of the saturation throughput, Jain’s fairness index [JCH98|

1s used:

where n is the number of users and x; is the throughput of the i'" connection.
The value of ] lies between 0 and 1, with 1 representing the best possible fairness.

Figures 32 and 33 exhibit the fairness index in 1Mbps and 11Mbps RTS enabled
networks. The index is better for the optimal XVBEB compared to the optimal
802.11 protocol. The throughput fairness of the regular 802.11 is better than the
regular XVBEB algorithm; however, this could be expected given the big improve-
ment in performance of the XVBEB scheme. As with the saturation throughput,

the trend is similar in basic access networks (Figures 34 and 35).

6.3.3 Packet loss

To analyze the performance in terms of packet loss, the behavior of the protocols
is evaluated for video and voice traffic.

First, video traffic is simulated in ns-2 using the TES based MPEG4 model [ML].
All participating nodes send video to a sink at the frame rate. Two load scenarios
are tested for streams with low, medium and high bit rates on an 11Mbit channel.

As illustrated in Figures 36, 37, 38, 39, 40 and 41, both the regular and optimal
XVBEB algorithms perform better than both 802.11 protocols in terms of packet

loss regardless of the offered load and the channel access method.
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Figure 32: Fairness index, 1mb RTS
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Figure 38: Packet loss ratio, medium bitrate video, RTS/CTS
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Further, the packet loss ratio is evaluated for voice traffic patterns. The VOIP
model in NS2 is based on a statistical model presented in [nCKO02]. Since voice
traffic uses only small portion of the available bandwidth, the simulations are done
on a 1Mbps channel. In fact, it turns out that even when there are 50 nodes with one
voice channel per node, competition for channel resources rarely occurs. Therefore,
to ensure the backoff scheme is called often enough to evaluate its performance, the
network is offered 300 voice channels. For example, when there are 3 competing
nodes, each node maintains 100 voice channels.

As observed in Figures 42 and 43, the XVBEB protocol again outperforms

802.11.
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Figure 42: Packet loss ratio, voice traffic, RT'S/CTS
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Figure 43: Packet loss ratio, voice traffic, basic access

6.3.4 Packet delay

As in Section 6.3.3, the packet delay and delay variation are evaluated based on the

relevant video and voice traffic patterns. The packet delay variation is measured

as an average of the inter-packet delay variations as defined in [DC02|. Here again

the access point acts a sink, all participating nodes generate video or voice traffic

at the previously defined rates.

Figures 44, 45, 46, 47, 48 and 49 illustrate that the both XVBEB algorithms

exhibit lower delay than both 802.11 protocols for low medium and high bit rate

144



video streams in both channel access methods.
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Figure 44: Packet delay, low bitrate video, RT'S/CTS

No change in packet delay performance is being noticed when voice traffic is
simulated in ns-2; again, XVBEB (Figures 50 and 51) does better than 802.11.

Finally, as observed in Figures 52 to 59, packet delay variation is the only
evaluated parameter where 802.11's performance is comparable to XVBEB. Yet,

the XVBEB procedure manifests superior performance at many points.
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Figure 55: Packet delay variation, medium bitrate video, basic access

156



pdv (sec)

2.0
1.8 /
1.6 /

1.4

1.2

X
1.0 ~ 8 XVBEB
7 =-802.11
V- Optimal 802.11

7 =¥ Optimal XVBEB

0.8

3 5 10 20 30

number of nodes

Figure 56: Packet delay variation, high bitrate video, RT'S/CTS

157



pdv (sec)

1.6

[ ]
1.4 /
1.2
1.0
0.8 48 XVBEB
~-802.11
0.6 V- Optimal 802.11
' » ¥ Optimal XVBEB
X
0.4 v -
-
-
>3
_ -
02 v/; -
-— = =&
P =
0.0
3 5 10 20 30

number of nodes
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Chapter 7

Conclusions

In this thesis, we analyzed the problem of selfishness detection and prevention on
behalf of the wireless nodes. In particular, we focused our attention on greedy nodes
that misbehave by deviating from the 802.11 backoff procedure.

We first used a game-theoretic framework to represent a snapshot version of the
media access contention resolution algorithm as a static strategic game. Further,
we established an exact condition based on the number of the players and their
strategies under which it is possible to design utility function such that the players’
unique best response would be to choose their strategies according to a desired a pri-
ori specified distribution. We explicitly illustrated how to design the utilities when
the condition is satisfied. In terms of the abstracted CSMA /CA backoff procedure,
the unique Nash equilibrium of the game corresponds to protocol compliance on
behalf of the wireless stations.

We also investigated practical methods for selfishness detection. We proposed
a new protocol called XVBEB that allows to detect selfish stations based on the

choices of their backoff values, which is not generally possible in IEEE 802.11. We
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showed how to deduce the backoft value choices of a node employing XVBEB using
the timeline of channel events. Then, we demonstrated how to determine with a
desired degree of accuracy whether the difference in the collected backoff values
from the expected sample distribution is due to chance or because a station is
misbehaving. Finally, we evaluated the performance of XVBEB and compared it
with IEEE 802.11. Our simulations showed that XVBEB outperforms IEEE 802.11
in terms of saturated throughput, packet loss and delay in various situations.

Future works aims at using the game theoretic results to design a mechanism that
could be used to provide incentives to players (nodes) in order to induce protocol
compliance. There are several challenges to overcome. First, the dynamic nature of
the CSMA /CA backoff procedure needs to be addressed, possibly by enhancing the
repeated game model discussed in Section 4.3. A second challenge is the fact that a
player’s strategy is essentially its backoff value, and complete or perfect knowledge
about backoff values used by players is unlikely to be available. Finally, the games
we design focus exclusively on the utility function of players, which in fact is the
sum of the payoffs used to incentivize participants and their internal valuation. The
model should perhaps be extended to take into account the internal valuations. For
example, in terms of the CSMA /CA procedure, urgent (real-time) traffic would be
valued higher than regular data packets.

Another extension to the work in this thesis seeks to assess further the perfor-
mance of the XVBEB protocol by providing theoretical and experimental analysis
for the expected number of collisions and access patterns. Furthermore, the be-
havior of XVBEB should be evaluated in the quality of service context in order to

determine how the protocol deals with changing priority traffic. Additionally, more
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attention should be brought to different misbehaving patterns, such as following
the specifications in the lower backoff stages (e.g. CW =32, CW = 64) and acting
selfishly in the higher backoff stages (CW =512, CW = 1024).

Finally, other backoff algorithms should be examined for resilience against selfish
behavior and their performance should be evaluated. One such possibility is to

require the nodes to choose only prime numbers as their backoff values.
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