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ABSTRACT 

Towards Specifying Swarm-Based Systems using  

Categorical Modeling Language: A Case Study 

 

Noorulain Khurshid 

 

 

One of the solutions to the software complexity crisis of this era is the proposition of self-

managing systems like autonomous and autonomic systems. The idea has gained wide 

acceptance in the IT industry but it has also introduced the challenge of specification and 

development of such systems. Swarm intelligence is finding its applications in research 

and design of self-managing systems because of the coincidental resemblance between 

the two domains. However, specification of a swarm-based self-managing system is 

faced with the difficulty of specifying the complex evolving behavior.  

This thesis presents an adaptation of a mathematical technique known as Category 

Theory to serve as a „reasoning and modeling‟ paradigm for specifying high-level 

behavioral patterns of a swarm-based self-managing systems. The crux of this paradigm 

is the formal categorical modeling language (CML). CML syntax and semantics have 

been defined using an EBNF-based context-free grammar. The language helps to 

generate a formal specification of different scenarios/behavioral patterns of a swarm-

based system. Moreover, a prototype tool has been implemented as part of this research 

work to serve as a modeling tool based on CML. In this thesis, NASA‟s ANTS-based 

Prospecting Asteroid Mission (PAM) serves as a case study to analyze the applicability 

and usability of CML as a formal method of choice.            
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1 Introduction 

This chapter presents a synopsis of the context of this research work, the motivations that 

drove it, a mention of the objectives and contributions followed by the organization of 

this thesis.  

1.1 Research Context 

The computing systems of this era have introduced amongst many other challenges, the 

challenge of managing systems with ever growing complexity. Systems such as 

enterprise systems, sensor networks, grid systems and storage systems comprise of a 

large number of heterogeneously interacting components. This renders the system fault-

prone and very dynamic. Consequently, it becomes very difficult to manage and 

configure these systems.  Researchers have proposed a way to deal with this complexity 

by enabling the systems to manage themselves or with very little human intervention. 

The idea of self-managing systems finds its shape in the form of reactive, autonomous 

and autonomic systems. All these systems incorporate different levels of self-

management properties. Reactive systems are the most widely known systems that have 

the ability to respond to the dynamic changes in their environment demonstrating 

intelligent emergent behavior. Autonomous systems can handle major uncertainties in the 

system and the environment and have the capability to successfully recover from system 

failures without external intervention. Autonomic systems are based on the concept of 
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how the human nervous system works. Self-management in an autonomic system is 

defined in terms of the self-* properties which include self-configuration, self-

optimization, self-protection and self-healing. Self-managing systems exhibit patterns of 

intelligent behavior which is analogous to the concept of swarms and swarm intelligence.     

Swarm intelligence is motivated by the concept of the collective behavior of a social 

insect colony towards achieving a goal or a set of goals [10]. Swarm intelligence is 

extensively being used in problem solving particularly solving optimization problems. In 

addition to that, swarm intelligence is finding its applications in self-managing systems 

because of the similarity of the two domains. A swarm comprises of a large number of 

small entities with local interactions amongst themselves and the environment. Inside a 

swarm, the agents work in a set of teams exhibiting independent as well as group 

intelligence. Collectively these local interactions exhibit a very complex and intelligent 

behavior. Specification of this behavioral complexity is challenging and existing formal 

methods are being evaluated by researchers to find a favourable approach for specifying 

the behavioral/structural complexity of swarm-based systems with self-* properties. The 

NASA has initiated a mission architecture known as Autonomous Nano Technology 

Swarm that is based on swarm intelligence and possesses the self-* properties. 

In this thesis, NASA‟s ANTS-based Prospecting Asteroid Mission (PAM) has been 

selected as the case study. PAM being a concept mission consists of different classes of 

spacecraft with different set of responsibilities and goals, both individual and collective. 

Some spacecraft carry science instruments and are also called sciencecraft; others only 

serve the purpose of communication or control.  
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1.2 Motivations  

This thesis presents the work done in presenting Category Theory as a formal method and 

a reasoning framework for identifying and specifying the patterns of behavior of a 

swarm-based PAM with self-* properties. Category Theory or CAT in mathematics is 

used to reason about structures at a very abstract level of detail. As discussed in detail in 

section 2.6, in order to specify the behavior of a system, representation of 

structure/behavioral details of the system are of vital importance and this is best dealt 

with functions abstraction from mathematics. This ideal matured to be the first and the 

most driving motivation for the work done in this research. 

A Category in CAT consists of objects and relations between them known as morphisms 

representing structure of the category. The relations of objects with other objects in a 

category define their social life. This social life concept is similar to the social behavior 

of entities inside a swarm and laid another foundation, another motivation, for this 

research.  

Lastly and most importantly, another motive that guided this research was to follow-up 

on the remark in [21] on the possibility of using CAT as a formal method for specifying 

ANTS-based missions.     
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1.3 Objectives & Contributions 

This research started off as a study on application of CAT to the software engineering 

domain. Soon after the list of objectives started taking shape when Emil Vassev [38] 

presented his work on ASSL specification with ANTS as a case-study: 

1. Study CAT as a Formal Method, as a Reasoning Framework 

The first and most important objective was to study CAT from the point of view 

of a „Reasoning Framework‟ based on the ideal of reasoning about structures from 

CAT. Next, the goal was to study CAT as a formal method and application of 

CAT as a formal method for the behavioral specification of a swarm-based 

system. After reasoning about the ANTS-based mission scenarios in CAT, only a 

subset of CAT constructs were selected to study the possibility of using CAT for 

the behavioral specification of the mission scenarios.  

2. Proposition of a Modeling Language based on CAT 

After doing a thorough study on CAT as a formal method and a reasoning 

framework, we felt the need to come up with a formal specification language 

based on CAT mathematical definitions. As part of the work done in constructing 

the modeling language named Categorical Modeling Language (CML), the 

following contributions have been made:  

a. Construction of a grammar for the specification language in order to 

construct “well-formed” specification in the language. 
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b. Defining the visual/graphical model notation.  

3. Application of the proposed modeling language to ANTS case study 

a. Choice of a subset of ANTS-based mission scenarios. 

b. Choice of a subset of CML constructs for the chosen mission scenarios. 

c. Formal specification of the selected mission scenarios using CML. 

4. Tool Support for CML 

Another important landmark of this research work was the implementation of a 

prototype modeling tool, named CATCanvas, to support the categorical modeling 

language. The contribution/highlights of the tool are: 

a. Separate workspace for Category and Functor Constructs.  

b. Ability to draw the visual models on a canvas. 

c. An intelligent mapping tool for the functor construct. 

d. Generate XML specification for a constructed model. 

e. Import XML specification to render the graphical model. 

f. PNG Export for the graphical models. 

g. Web-based Rich UI. 

h. Web-based application available online. 
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Throughout this research, in addition to the mentioned objectives, an inherent objective 

was to choose only the very basic CAT constructs for research and application to the case 

study. In addition to that, the primary goal was to convey CAT as a formal method to 

researchers in software engineering domain without overwhelming them with lengthy and 

complex mathematical details/definitions.  

1.4 Thesis Organization 

This thesis is organized into seven chapters in total. Chapter 1 presents an outline of the 

problem domain, the proposed solution and list of objectives to be achieved during the 

course of this research. Chapter 2 has two parts; the first part presents a discussion of 

self-managing systems, swarm and swarm intelligence and the attributes of a formal 

method for specifying the PAM. The second part includes a discussion on application of 

existing formal methods/modeling methodologies for specification of swarm-based 

systems, in particular, the PAM. The chapter concludes with a comparison of the existing 

methodologies against a subset of formal method attributes discussed in the first part. 

Chapter 3 consists of the basic categorical definitions along with examples for the 

constructs used in the rest of the chapters.  Chapter 4 introduces the Categorical 

Modeling Language along with the grammar for the language. Chapter 5 presents the 

case study: Specification of PAM using CML, where different mission scenarios have 

been modeled using different CML constructs. Chapter 6 presents a discussion of the 

working of the CAT modeling tool, CATCanvas, in the form of a list of features. Finally 

chapter 7 consists of the conclusion statement followed by a list of possibilities for future 
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work. The appendix consists of some other CAT constructs that were studied as part of 

this research but not included in this thesis.  
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2 Background & Related Work 

2.1 Introduction 

The background section in this chapter presents a brief discussion of self-managing 

systems, swarms and swarm intelligence, ANTS-based PAM and attributes of a formal 

method for specifying PAM. The section on related work includes a discussion on 

existing formal methods that have been used to specify swarm-based systems, in 

particular, the PAM. The last section presents an evaluation of the existing formal 

methods against the attributes discussed earlier. 

2.2 Self-managing Systems & Behavioral Complexity 

In 2001, IBM declared a manifesto according to which the tens of millions of lines of 

code of this era of computing systems present a threat to halt the progress in computing. 

They define this halt in progress as the result of the difficulty of managing complex 

computing systems, for example, a system that requires integrating several heterogeneous 

environments into corporate-wide computing systems that extend into the Internet [1]. 

Researchers have started to realize the need for self-controlling systems, or in simpler 

words, systems that can manage themselves. Solutions are being proposed to develop 

systems that are independent of human intervention. If not completely independent, the 

human involvement is at a very high level and the low-level complex tasks are handled 

by the system itself.  
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This hypothesis of completely independent systems is still in its infancy but the idea finds 

its applications in reactive, autonomous and autonomic systems. The hypothesis though 

presents a worthwhile solution to the crisis of handling large scale computing systems, 

but at the same time it also introduces the challenge of specifying the now more complex 

emergent behavior of a self-managing system. This section includes an introduction to 

reactive, autonomic and autonomous systems highlighting the inherent behavioral 

complexity.  

2.2.1 Reactive Systems 

A system that must respond to dynamic changes in its environment is termed to be 

reactive [39].  The complexity of a reactive system stems from an on-going interactivity 

with its environment, complex computations, concurrent response to sensory data and 

management of dataflow are amongst the numerous other contributing factors.  

 

Figure 2.1: Block Diagram of a Typical Reactive System 

REACTIVE 

SYSTEM 

ENVIRONMENT 

COMPONENT 

INPUT 

COMPONENT 

SENSOR 
SENSOR 

OUTPUT 
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An on-going interaction is similar to that of an infinite loop with a desire of non-

termination. A sensor for instance is constantly transmitting data to the process loop that 

triggers relevant actuators and the entire process goes on to loop forever [40]. The system 

is thus constantly exchanging information with its environment and demonstrates a very 

complex emergent behavior because of the ever-changing sensory data. Figure 2.1 shows 

a block diagram of a classic reactive system and its interaction with its environment.   

2.2.2 Autonomous Systems  

Currently, most of the self-managing systems materialize themselves in the form of 

autonomous systems. These systems are increasingly being used in the industrial and 

commercial domains [8]. Autonomous systems are designed to perform well under 

significant uncertainties in the system and the environment for extended periods, and they 

have the ability to compensate for system failures without external intervention [9]. 

Every entity in the system has a certain degree of autonomy assigned to it for self-

management and self-configuration at the entity level. In most of the systems, this degree 

of autonomy ranges to interactions of the entity with the environment as well.  

Taking example of Microsoft Windows, in a windows environment the system has an 

ability to recover from failures to a certain extent. In addition, depending on the number 

of processes in the queue it regulates the CPU usage and performs memory allocation at 

runtime. Another example of a self-managing or self-configuring system could be that of 

the intelligent routing of network traffic. The network traffic monitors sense the 

bottleneck and route the traffic to the relatively less busy routes. Autonomous systems 
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have the ability to carry out self-management tasks; self-management is classified into a 

set of properties in “Autonomic System”.   

2.2.3 Autonomic Systems  

In the light of what they refer to as the “looming software complexity crisis”, IBM 

proposed a new paradigm of computing known as “Autonomic Computing” drawing an 

analogy between the software systems and the human autonomic nervous system [2, 3].  

The human nervous system is a master-controller that keeps track of the changes inside 

the human body and its environment. It gets data from the net of different sensors 

installed all over the body and sends appropriate response to maintain a certain state of 

balance inside the body [6]. This state of stable equilibrium is important for survival of a 

human being. Similarly, for a computing system, it is vital that the system maintains a 

certain state of equilibrium by protecting itself from crashes, has the ability to recover 

from a failure, and has the capability to reconfigure as required and when required. While 

in the process of maintaining a certain state of equilibrium, the system has to analyze the 

situation and choose a behavior from a set of behaviours in order to bring the system to a 

desired state. “Sensing”, “Analyzing”, “Planning” and “Execution” are the keywords 

used in literature to discuss an autonomic system [7, 2]. In an autonomic system the self-

management properties are termed as the self-* properties. These include self-awareness, 

self-configuration, self-optimization, self-protection and self-healing [4, 5].  
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As we know from the introduction chapter, the discussions presented in this thesis are 

based on the NASA‟s ANTS-based PAM mission. ANTS being a swarm-based mission 

architecture, defines a swarm to be autonomous and autonomic.   

2.3 Swarm Intelligence 

„Swarm Intelligence‟ (SI) is a mindset rather than a technology. It provides a foundation 

to explore collective (or distributed) problem solving without centralized control or the 

provision of a global model. SI is being used to understand and explore reactive, 

autonomous and autonomic systems because of the similarity of behavioral complexity. 

A swarm comprises of a large number of small entities with local interactions amongst 

themselves and the environment [11]. The authors in [10] call these small entities 

„unsophisticated agents‟ that interact locally amongst themselves and with the 

environment causing collective behavioural patterns to emerge globally. The local 

interactions between these agents demonstrate simple behavior, but the combination of 

these simple behaviours result in emergence of very complex behavior [15]. Inside a 

swarm, the agents work in a set of teams exhibiting independent as well as group 

intelligence [12]. The central idea of SI has been inspired by how social insects operate in 

an insect colony and demonstrate a certain hive culture.  

2.3.1 Social Insects, Social Swarm, Social Behavior  

An insect colony is analogues to the way reactive, autonomous and autonomic systems 

are built and work. Inside an insect colony, be that an ants‟ colony or a beehive, these 
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insects interact to achieve a goal or a set of goals. The colony can respond to external 

challenges as well as internal perturbations and is robust, in that, tasks are completed 

upon failure of an individual, indicating the ability of the swarm entities to self-heal. In 

addition, an insect colony does not have a central controller in the colony that directs the 

workflow towards achievement of a goal. Lastly, paths to a solution are emergent rather 

than being predefined which indicates to the ability of the swarm entities to self-organize.    

The individual ants when seen interacting inside a group or swarm working to achieve a 

target demonstrate a social life, social behavior or structure of that swarm. The collective 

behavior or structure looks very complex and presents challenges on understanding the 

inherent goals of the swarm. 

 

Figure 2.2: Interacting Ants 
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In view of this, specification of this social behavior or structure of a swarm in a swarm-

based system is a challenge. The following points should be kept in mind while 

specifying the social behavior of a swarm [10]: 

1. It is difficult to predict collective behavior from simple/individual rules. 

2. Modeling of group-level behavior is possible through bottom-up approach.   

3. A participant/agent inside a swarm is unaware of the function of the group. 

4. Slight changes in the rules result in a different group level behavior. 

5. Efficient control of organization or manipulation of groups inside a swarm is 

possible through simple rules.  

The challenge of modeling and specification of a swarm-based system actually comes 

from the difficulty in specifying the social behavior of the swarm along with the self-* 

properties.  

2.4 Autonomous Nano Technology Swarms 

Autonomous Nano Technology Swarms or ANTS is a swarm-based mission architecture 

for concept mission by the NASA driven by the need to collect more data than is possible 

by a single spacecraft. The missions based on ANTS will be unmanned and highly 

autonomous. In an ANTS mission a hundred or even thousand picospacecraft weighing 

less than or equal to 1Kg moving in a swarm, will work cooperatively in order to explore 

the space entities (planets, asteroid belt, moon depending on the mission). The spacecraft 

must work both individually and collectively and must also possess autonomic self-* 

properties in order to endure the harsh space environment [15, 17].  ANTS consists of a 
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number of concept missions: The Saturn Autonomous Ring Array (SARA), ANTS 

Application Lunar Base Activities (LARA) and Prospecting Asteroid Mission (PAM). 

For the course of this thesis, Prospecting Asteroid Mission will serve as the baseline case 

study. 

2.4.1 Prospecting Asteroid Mission, A Case Study 

PAM, an ANTS-based concept mission is a future autonomous robotic mission for 

exploration of the asteroid belt [17, 18]. The mission will comprise of a swarm of 

autonomous pico-class spacecraft, weighing approximately 1kg, which will explore the 

asteroid belt for asteroids with certain characteristics such as mass, density, morphology, 

and chemical composition. A few of these spacecraft will form teams and for example 

use their scientific instruments to record properties of the asteroid(s). Other spacecraft 

will communicate with the data collectors and send updates to Earth station [15]. The 

teams and groups formed inside a swarm may be ad-hoc and temporary depending on the 

requirements of the mission, for example, sharing of resources or surveying a new 

asteroid [16].  

The mission is discussed in detail in chapter 5. The discussions in the rest of the sections 

are related to specification of the PAM, discussion of what a formal method is, what is a 

formal specification, and what are the attributes of a formal method in relation to 

specifying PAM.  Section 2.5 and 2.6 are mainly based on the discussions in [20]. 
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2.5 What is a Formal Method? 

Applying a formal method is using mathematical techniques like abstract algebra, logic 

and discrete mathematics for representing information required to build software systems.  

The word “formal” from “formal logic” indicates the ability to reason using “structure” 

and not the “content”.  A specification based on a formal method has to be a “well-

formed” mathematical set of statements and is verifiable by logical deduction in the 

formal method.     

2.6 Why and What to Specify? 

From Engineering, Architecture and Software domain, a specification is a description of 

the structure and behavior of the product to be developed. The word complexity in this 

thesis refers to the structural and behavioral complexity of a software system. A proper 

specification can help represent and control complexity of a software. The most familiar 

and effective way of dealing with complexity is via „abstraction‟ while 

behavioral/structural complexity is best dealt with function abstractions from 

Mathematics.  

The very first level of specification of a software system is the precise and unambiguous 

description of the system behavior in terms of externally observable functional 

characteristics. In this thesis, the word specification refers to the behavioral specification 

only and should not be confused with the design specification.  
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2.7 Specifying Swarm Behavior  

From the previous text, we witness the challenges of specifying complex emergent 

behavior of a swarm and a swarm-based system per se. Specification of the swarm 

behavior is challenging because of the very nature of the interactivity of its entities and 

the resulting behavior at different levels of hierarchy in the system. This section includes 

the characteristics of a formal method in general and for specifying PAM in particular.  

2.7.1 Attributes of a Formal Method for Specifying PAM 

A formal method‟s characteristic whether its language is graphical or whether its 

underlying logic is first-order influences the style in which user applies it [24]. Formal 

methods are proven approaches for ensuring the correct operation of complex interacting 

systems. Once written, a formal specification can be used to prove properties of a system 

correct and check for particular types of errors (e.g., race conditions), and can be used as 

input to a model checker. Verifying emergent behaviour is one area that, unfortunately, 

most formal methods have not addressed well [23]. In [22], the authors have combined 

several methodologies for specification of the PAM swarm and conclude that integration 

of the evaluated methods seems to be the best approach so far.  

This section includes a list of attributes coming from both the solution presented in this 

research and the problem domain. Together these characteristics advocate for a formal 

method to be termed as a favourable approach for specifying swarm-based PAM mission. 
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Formal Basis  

Like most of the modeling paradigms, formalization of the semantics should have a 

mathematical basis [20]. This includes logic, algebra or any other mathematical theory. It 

is thus important to take note of the fact that visual modeling methodologies without a 

mathematical basis could not qualify as a formal method.   

Language Abstraction 

Abstraction promotes the declarative specification in a language. This property supports 

powerful primitives for defining and manipulating information and data at the logical 

level. Logical data definition should not imply any specific data representation [20].  

Modularity 

A specification language allows construction of large and complex specification by 

assembling smaller constructs. This attribute supports modular design and incremental 

specification that in turn adds to the expression power of the language [20].  

Adaptability to Programming 

All kind of computer system specifications find home in some sort of program/algorithm. 

It is thus necessary for the specification to be adaptable to the requirements of a computer 

program [21].  

Reasoning 

It is desirable for the methodology used for specifying PAM to enable intelligent 

reasoning with possibly inconsistent and uncertain information [21]. 
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Visual Formalism 

“A picture is worth a thousand words”. A modeling paradigm that has visual models aids 

the process of representing complexity of a system with interacting components and 

organization of these components to demonstrate local and global behaviours [25]. 

Hierarchical Abstraction 

Inside a PAM swarm, there are different levels of hierarchical distributions of the 

spacecraft. This granularity demands specification at different levels of hierarchy rather 

than a few defined architectural levels. Abstraction of details while representing a certain 

system scenario is desirable. The idea follows from the basic human direction of problem 

solving: “Divide and Conquer”. Breaking a bigger problem into manageable smaller 

problem, the bigger problem still in mind could aid in representation of complex behavior 

by representation of simple behavior and deductions at a local level [30]. 

Ease of Comprehension 

Most of the modeling methodologies suffer from complexity of constructs either 

mathematical or algorithmic. This affects the ability of the formalism to be used as a 

favourite approach especially in computer science and software engineering domains 

[25]. 

Tool Support 

Model-checking and verification of the specification is of vital importance, especially in 

the case of verifying the complex behaviour specification. Tool support with the formal 

method makes it possible to verify a generated specification [21]. 
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Emergent Behavior Specification & Verification  

One of the most important attributes of a formal method for specifying a PAM is its 

ability to predict and verify emergent behavior [21]. Prediction of emergent behavior has 

come across as an enormous challenge to researchers to date. 

Specification of Probability or Frequency 

A means of expressing the probability of certain actions, and the frequency with which 

they will occur is desired to be specified [21]. 

2.8 Related Work 

This section presents different approaches that have been used to model swarm-based 

systems; in particular, NASA‟s ANTS based missions.  

2.8.1 Communicating Sequential Processes (CSP) 

Communicating Sequential Processes, or CSP [27], is a language used to describe the 

patterns of interaction between a set of interacting entities. CSP [28] has been used for 

specifying NASA‟s PAM in [29]. In [28] each of the spacecraft is assigned goals to fulfill 

their mission and the emergent behavior of all these goals is considered equal to the goals 

of the mission. The specification makes use of the CSP command language. CSP has also 

been suggested as a preferred approach in [22] for specification and verification of the 

emergent behavior of intelligent swarms.  
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2.8.2 Weighted Synchronous Calculus of Sequential Systems (WSCCS) 

WSCCS is a process algebra proposed by the author in [35] and was used to model social 

insects. Tofts [35] specified models where ants were the components, and all the component 

ants together composed the entire colony. WSCCS was also used in combination with a 

dynamical systems method for analyzing the nonlinear characteristics of social insects 

[34]. WSCCS has been used as one of the favoured formal methods for specification and 

verification of the NASA‟s swarm-based missions [21, 28, 29, 22].  

2.8.3 X-Machines 

Introduced by Eilenberg [36], X-machines is a specification formalism [59] capable of 

modelling both the data and the control. X-machines is a diagrammatic approach, which 

is an extension to the finite state automata. Transitions between states are in X-machines 

are not performed through simple input symbols but through the application of functions. 

These functions specify the processing of the data and are written in a formal notation. X-

machines have memory attached in order to hold data. Functions receive symbols and 

memory values as input, and produce output modifying the memory values wherever 

required. X-Machines is claimed to provide a highly executable environment for 

specifying the ANTS spacecraft. It enables data storage in the memory and represents the 

transition between states as functions involving inputs and outputs. This aids keeping 

track of the actions of the ANTS spacecraft as well as memory keeping of every step of 

the goals. This ability makes X-Machines highly effective for tracking and affecting 

changes in the goals and the model [21, 28, 29, 22]. 
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2.8.4 Unity Logic 

Unity Logic makes use of the propositional logic syntax for reasoning about the ANTS 

spacecraft and the states they imply. It can also be used for defining specific 

mathematical, statistical and other simple calculations to be performed. Though, unity 

logic is not expressive enough to allow easy specification and validation of more abstract 

concepts such as mission goals. It can serve as a good candidate for specifying and 

validating the actual reasoning programming portion of the ANTS Leader spacecraft, if 

and when required in future [21, 28]. 

2.8.5 Temporal Logic  

Formal specification frequently witnesses the use of temporal logic. It has also been used 

to specify the swarm behaviours including emergent behaviours. The author in [19] 

explores linear time temporal logic for the formal specification of the behaviour exhibited 

by the swarm robots. The swarm robots have been modeled as concurrent processes. 

Temporal logic is a favoured approach but it tends to ignore the multi-level, 

compositional nature of a swarm-based system. 

2.8.6 Autonomic System Specification Language (ASSL) 

The author in [37] has proposed a framework called Autonomic System Specification 

Language (ASSL) for formal specification and generation of autonomic systems. ASSL 

makes it possible to specify high-level behavior policies, as part of overall system 

behavior. ASSL has been accepted as a very suitable candidate for specifying the 
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autonomic behavior of swarm-based missions and has been applied to specify self-

configuration, self-healing, and safety properties of NASA‟s swarm-based missions [38]. 

ASSL is directed towards the system‟s specification at the design level.  

2.8.7 Dynamic Emergent System Modeling Language (DESML)  

The author in [31] has proposed a variant of UML called DESML providing several new 

graphical constructs to the basic UML. DESML was mainly proposed for specification of 

emerging distributed systems, and swarm-based systems [21]. The author has indicated it 

in [15] to be a possible candidate for specifying NASA‟s swarm-based systems.  

2.8.8   Process Transition Networks (PTN) 

PTN is a graphical language for specifying behavior of entities in an autonomous system. 

PTN has formal semantics and enables simultaneous behavioral specification of 

independent components of a system and the environment. PTN does not have the ability 

to represent hierarchical abstractions and thus PTN specifications are more flat than that 

of Statecharts [26].  

2.9 Category Theory 

Category theory, concisely, is an advanced mathematical formalism, independent of any 

modeling or programming paradigm, capable of representing “structure” [41, 42, 43]. In 

mathematics, category theory is an abstract way of agreement between various 

mathematical structures and relationships between them. Everything is abstracted from its 
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original meaning to a corresponding categorical meaning. For example, sets in set theory 

abstract to objects in category theory and functions over those sets abstract to morphisms 

in categorical terminology. Therefore, the category named SET will have objects that are 

sets and morphisms or arrows as all of the functions over those set objects. Although 

category theory is a relatively new domain of mathematics, introduced and formulated in 

1945 [44], categories have been frequently discussed and used to relate sets, vector spaces, 

groups, and topological spaces all of which naturally correspond to distinct categories 

[45]. 

2.9.1 Social Life in CAT 

The concept of social life is innate to the structure inside and outside of a category of 

related entities and is analogous to the social life theory in swarms. Entities in real world 

may or may not interact with each other. This presence or absence of interaction of an 

entity with other entities defines the way an entity behaves socially. This social 

“behavior” or in broad terms the social life of an entity is mainly defined by its role in the 

group it belongs to. A group in category theory represents a structure and presents ground 

for reasoning about this structure in relation to other structures. 

2.9.2 CAT, A Formal Method, A Reasoning Framework 

Based on the basic definition in 2.5, CAT qualifies as a formal method but in order to 

specify the complex behavior of a software system the CAT specification language does 

not have any metalanguage or grammar to construct „well-formed” specification 

statements. The mathematical formula/notations used to specify models in CAT are not 
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standard and expressive enough. There is a need for a specification language for CAT-

based specifications in order to construct well-formed specification.  

CAT enables expression of semantics for interconnection, theory, instantiation, and 

composition. For all these attributes are of significance when reasoning about a swarm-

based system. 

2.10  Categorical Modeling Language (CML) 

In this thesis, a specification language for CAT has been proposed along with the 

grammar for constructing well-formed sentences in the language. The language is named 

Categorical Modeling Language, in short, CML. A CML model includes a formal 

specification as well as a graphical model of the problem domain. A modeling tool for 

CML is also  written as part of this research. The tool also serves as a static verifier of the 

imported CML specification in XML format.  

CML can prove to be a viable candidate for specification of swarm-based systems along 

with other mentioned methodologies. Table 2.1 evaluates the strengths of the mentioned 

methodologies along with CML against a subset of attributes discussed earlier in this 

chapter.  From the table, we can compare CML with the rest of the methodologies to 

conclude that CML can qualify as a favourable approach for specification of swarm-

based systems. The one attribute that CML currently lacks is the verification of the 

emergent behavior in a swarm-based system. This is discussed further in chapter 7, 

conclusion and future work. The other attributes of CML are discussed in the subsequent 

chapters. 
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Table 2.1: Attributes of Specification Methodologies for Swarm-based Systems 

 Formal 

Basis 

Visual 

Formalism 

Adaptability 

to 

Programming 

Tool 

Support 

Modularity Emergent 

Behavior 

Verification 

CSP 
      

WSCCS 
      

Temporal 

Logic 
      

X-Machines 
      

Unity Logic 
      

ASSL 
      

PTN 
      

DESML 
      

CML 
     

* 
* Verification of emergent behavior is the next step and part of the future work 
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3 Category Theory  

This chapter presents a subset of the different constructs in Category theory. These 

constructs serve to both abstract and unify many concrete theories in diverse branches of 

mathematics. The definitions have been supplemented with easy to understand examples 

avoiding extensive mathematical details. 

3.1 Category and Social Life 

The central notion in CAT is the interesting concept of a „Category‟. Obvious by its 

name, a category is a class or group of entities related to each other in some way that 

defines the category they belong to, and the reason why they belong to that category. In 

the previous chapter, we briefly discussed how category theory or in short CAT talks 

about objects living a social life in a category, defined by the relationships between these 

objects. Keeping in view the coincidental similarity of the insect swarms, the swarm-

based systems and the categorical social life, this chapter refers to hive culture of insect 

swarms in support to explain the different constructs of CAT.  

Let us try to look at the biological classification of species in terms of categories in CAT. 

A category of all species consists of some 7 - 100 million species [32]. Likewise, a 

category of insects consists of only the species that are characterized as insects. Further, 

down the classification of insects, a honey bee category is different from category bumble 

bee, and so on. The noticeable attribute of this example is the abstraction of the category 
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construct. The notation used in this chapter when talking about a category would be bold 

capital letters, e.g. HB for category honeybee. As social insects living in a colony, honey 

bees must communicate with one another using movement, odour cues, and even food 

exchanges to share information.  

 

Figure 3.1: Category HB 
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Figure 3.1 shows a snapshot of the social life in a category honey bee, HB. The objects 

being honeybees and relationships/morphisms between these object representing 

communication in the form of signals [33]. The readers should keep in mind while going 

through this thesis that only an instance of a category has been included in the 

diagrams/examples for the purpose of discussions and not the entire category.  For 

example, Figure 3.1 shows a category of only six bees and some morphisms between 

them, not the entire category HB.  

Formally, a category C consists of: 

1. A collection Obj (C) of objects. 

2.  x,y Obj(C) a collection C(x,y) of morphisms. 

3. Identity:   x Obj(C), a morphism Id(x): x  x, Id(x)  Identity(C) 

4. Composition:  x,y,z Obj(C), then we have a function (composition), 

 C(x,y)  C(y,z)  C(x,z) 

5. Following axioms hold true:  

a. Identity:  x,y Obj(C), f  C(x,y), f: x  y,  

   Id(x): x  x, Id(y): y  y and Id(x), Id(y)  Identity (C) then, 

   Id(y)  f = f = f  Id(x) 

b. Associativity:  x,y,z  Obj(C),  f,g,h  C(x,y), and   

              f: x → y, g: y → z and h: z → m, then, 

                         h  (g  f) = (h  g)  f 

The definition is explained in detail in sections to follow.  
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3.2 Typed Category 

A category typically declares all objects belonging to that category to be of one type. For 

instance, the category SET has all objects that are sets. However, every set could also be 

defined to be of a certain type. For example, a set can be of type integer or natural 

numbers and so on. This classification of objects inside a category into types promotes 

the need for the Typed Category construct.  A typed category is not native to the category 

theory but is a result of the requirements that arose during this research to better adapt to 

modeling of the swarm-based systems.  

 

Figure 3.2: Social Life –Typed Category HB  
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Along with objects, morphisms too can have certain types. Every morphism thus belongs 

to a certain type and each type of morphism consists of a set of morphism instances under 

it. For the most part of this thesis, categories would be typed categories. Figure 3.2 re-

demonstrates an instance of category HB but with typed objects and typed morphisms. 

3.2.1 Objects & Morphisms 

In categorical terminology, the entities we have been referring to in the social life 

phenomenon are called objects. The diagrammatical notation for a category object 

typically is a circle with name of the object inside the circle. For the most part of this 

thesis, for consistency, we have used the circle notation to represent an object. Capital 

letters up to three letters followed by a subscript, if any, have been used to name objects 

in the course of this thesis. The abstract notion of an object enables reuse of the very 

concept, to give it any form possible. Figure 3.3 (a) shows an object in diagrammatical 

representation. The mathematical representation of an object follows the diagrammatical 

naming convention. Figure 3.3 (d) shows the mathematical representation of a category.  

 

 

Figure 3.3: (a) Object Notation; (b) Morphism Notation; (c) Morphism w/ Source-

Target Objects, Identity Morphism; (d) Mathematical Notation for Morphisms   

 O1 

(a) 

m1 

(b) (c) 

 O1  O2 
m1 
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m1 : O1 → O2 

I2 : O2 → O2 

 

I2 
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A relationship between two objects is termed as a „morphism‟ in category theory. A set of 

morphisms between two objects comprises of all morphisms between those two objects. 

The directions of morphisms are of significance since they determine the overall structure 

of the category they reside in. The object from which a morphism originates is called the 

domain or source object. The object to which the morphism is directed to is called the co-

domain or the target object. Morphisms define how one category is different from 

another. The entire structure inside a category takes its shape from these interactions or 

morphisms. The ideal behind the concept of a morphism being plain interaction in simple 

terms makes it possible to apply the concept in any scenario where a possible interaction 

between entities could be represented/modeled. Figure 3.3(b) shows the diagrammatical 

notation of morphisms. The arrow represents the direction, the name of a morphism in 

this thesis is always in lower case letters up to three letters followed by a subscript, if 

any. Morphisms have also been referred to as arrows in literature. Mathematically, name 

of a morphism follows the same naming convention as its diagrammatical counterpart 

followed by a colon. The source object name comes next to the colon followed by an 

arrow to the target object. Figure 3.3 (c), (d) shows the diagrammatical and mathematical 

morphisms respectively. A special kind of morphism with each object is identity 

morphism. The identity morphisms are seldom shown on a category diagram. It is 

assumed to be present, to avoid cluttering the diagram with an identity morphism for each 

object. The notation for identity morphism is a looped arrow with source and target being 

the same object. The name for an identity morphism starts with an italicized capital I 

followed by the object‟s subscript. Object O2 in Figure 3.3(d) shows identity morphism I2 

for Object O2.        
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3.2.2 Composition & Associativity 

Inside a category, two composable arrows compose together to form a composition 

morphism. Composition morphism is an alternative path to the target object and is 

present for every pair of composable arrows. The absence of composition morphism for 

any pair of composable arrows compromises the definition of a category. Composition of 

an identity morphism with any morphism results into the latter morphism.  

 

Figure 3.4: (a) Composition of m1 & m2; (b) Associativity for m1, m2 & m3  

The composition of two arrows is represented with the symbol „‟. Graphically, the 

composition arrow is just another arrow with name consisting of the two arrows 

composed together „m2  m1‟ (see Figure 3.4 (a)) or equivalent composition morphism 

name.  The composition arrow m2  m1 is read m1 composed with m2 keeping in view the 

direction of composition. Composing three arrows in a direction leads to a complex 

composition and has to evaluate true for associativity property. Let us assume we have 

another object O4 and three morphisms such that, m1: O1 → O2,  m2 : O2 → O4  and m3 : 

O4 → O3. So, m1, m2, m3 have compositions to give a path such that m3  (m2  m1)  =  

 O1 

 O2 

 O3 

m1 

m2 

m2  m1 

 O1 

 O2 

 O3 

 O4 

(m3  m2) m1 

(b) 

 m1 

 m2 

 m3 

m2  m1 

m3  m2 
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(m3  m2 )  m1  (see Figure 3.4 (b)). For every morphism between two objects, e.g. m3 : 

O4 → O3, there exists composition of m3 with the identity morphisms I3 , I4 of objects  

O3 , O4 respectively, such that: 

I3    m3  =  m3  =   m3    I4 

Let us consider a scenario of honeybees in the category of honeybees for composition and 

associativity. The interaction from a queen to a worker and from a worker to another 

worker has an equivalent interaction from the queen to the other worker. Similarly, the 

path of interactions from queen to the last worker has an equivalent interaction from the 

queen to that last worker. Figure 3.5 demonstrates this concept with categorical 

explanation in text to follow.  

 

Figure 3.5: Composition of c1 & c2 , c3 & c4 , h1 & c3, h1 & c4 and h1 & c1; Associativity 

for h1, c1 & c2 in Category HB 
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In category HB, the set of objects O = {Q, W1, W2, W3, W4) where Q is the Queen 

honey bee object and W1, W2, W3, W4 worker honeybees. The interaction between the 

queen bee and the worker bees is of the type honey collection and that between the 

workers of type cooperation. In the category HB, the set of morphisms m = {c1, c2, c3, c4, 

h1, h2}. The composition morphisms in the category honeybee are (c4   c3), (c2   c1), (c4   

h1), (c3   h1) and (c1   h1). The associativity property could be easily proved for             

(c2   c1) h1 =  c2   (c1 h1) from the diagram.  

3.3 Category Theory Constructs 

This section includes definitions of each construct used in the course of this thesis along 

with adequate examples.     

3.3.1 Diagram 

Diagram advocates for the concept of a structure within a structure. It is often used for 

stating and proving properties of other categorical constructs [6]. A diagram consists of a 

collection of certain objects and morphisms in a category having indices to the parent 

category. In other words, a diagram consists of objects and morphisms indexed by its 

parent category. This choice of collection of objects/morphisms is up to the scenario, 

which considers that structure of a diagram in the parent structure (category). For 

example, objects W1, W2, W3, W4 along with morphisms c1, c2, c3, c4 form a diagram D 

in category HB. A diagram is said to commute when proving properties of a categorical 

construction. Formally, a diagram D in category HB is said to commute if all paths 
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between two objects are equal, in the sense that each path in D determines a morphism 

these morphisms are equal in HB [6]. Figure 3.6 shows a diagram D that commutes in 

HB.  

 

Figure 3.6: Diagram D, Commutes in HB  

3.3.2 Functor 

A diagram D could also be seen as a mapping from of the objects and morphisms inside 

the diagram to the objects and morphisms inside the parent category HB such that the 

structure in D is preserved in HB. This kind of mapping of a structure onto another in 

category theory is performed with the help of the functor construct. Mapping categories 

of different types with similarity in structures, while preserving the original structures 

demonstrates the power of category theory to better reason about the behaviours that 

result from each structure. A functor is shown diagrammatically as an arrow between the 

source and target category with the name of the functor on top of the arrow. 
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Figure 3.7: Functor F mapping ANT to HB  

The name of the functor helps tag or index the mapped objects in target category with the 

indices of objects and morphisms in the source category. Category ANT in Figure 3.7 

shows a scenario of ants working towards achieving a goal. Ants exhibit a social life in 

the spirit of a hive culture or ants colony and bears similarity with the social life inside a 
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honeybee hive. Figure 3.7 demonstrates the mapping of all objects and morphisms in 

source category HB to a subset of objects and morphisms in target category ANT through 

functor F. Preservation of structure of HB could be seen in ANT through F.   

3.3.3 Index Category 

The diagram and functor constructs give birth to the concept of an Index category. An 

index category is like a diagram, where its objects and morphisms reflect the structure 

inside some category but unlike the diagram, the objects and morphisms are 

labeled/named as indices instead of the labels of its parent category.   

 

Figure 3.8: Functor F mapping from index category I to target category HB2  

The resulting index category is used in the functor construct as a source category, being 

mapped to a structure in some target category. An index category could be thought of as a 

stencil for a structure using which that structure could be traced inside another structure. 
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in handy for reasoning about an occurrence of a behavior in different scenarios. Figure 

3.8 shows an index category drawn out using category HB, which acts as a source for 

functor F.  

3.3.4 Natural Transformation 

One of the basic and important notions in category theory is that of a natural 

transformation. It offers a way to transform a functor into another while preserving the 

structure of the two categories involved. In other words, a natural transformation could be 

thought of as morphism of functors [7]. Figure 3.9(a) shows two  functors F, and G  from 

ANT category to HB category. Figure 3.9(b) shows the natural transformation from F 

functor to G functor in such a way that the natural transformation morphisms are specific 

to objects in source category mapped to the target category. Therefore, (A3) is a natural 

transformation from object A3 in HB mapped by functors F and G. Similarly, (A1) is a 

natural transformation from object A1 in HB mapped by functors F and G and so on for 

all objects in source category ANT mapped by functors F and G in the target category 

HB. Evident from it name, a natural transformation occurs naturally and defines the 

change in an object because of its mapping by two different functors.  

The diagram in Figure 3.9(b) commutes such that all directed paths in the diagram with 

the same endpoints lead to the same result by composition. A natural transformation 

provides adequate means of reasoning about two structures mapped using different 

functors.  
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Figure 3.9: (a) Functors F and G from ANT to HB; (b) Natural Transformation  
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3.3.5 Cone & Co-cone 

The diagram construct is further used in another categorical construct called cone. Co-

cone is the inverse or dual of the cone concept. A cone consists of one other object apart 

from the objects inside a diagram, and additional morphisms going from diagram objects 

to this other object forming a cone-like shape. This cone object has also been referred to 

as an apical object in some literature because of its position in the apex of the cone. 

Figure 3.10(a) shows a cone inside category HB where Q would be the apical object and 

h1, h2, h3 morphisms from Q to diagram D. The morphisms in bold represent apical 

object or cone morphisms to differentiate from the diagram morphisms.  

 

Figure 3.10: (a) Cone; (b) Co-cone  
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The direction of morphisms from the objects of the diagram to the apical object forms a 

cone and morphisms coming from the apical object going to the objects inside the 

diagram form a co-cone. Hence, cone and co-cone are dual of each other. Figure 3.10(b) 

shows a co-cone in ANT. The diagram in this co-cone comprises of objects A2, A3 and 

morphism j0. The apical object from this co-cone is A1 with apical morphisms j1 and j2 in 

ANT. The cone construct offers a technique to represent the behavior of a group of 

objects both collectively and individually. The nature of the apical object with its 

morphisms to and from a group of other objects is similar to that of a host or 

representation entity for the group with which it forms a structure. This hierarchy of 

structural representation effectively suits our need for representation of complex 

structures such as computer networks or autonomic systems.       

3.3.6 Limit & Co-limit 

A category could possibly house a number of cones and co-cones. Limit is a universal 

cone such that all other cones factor through it. In this manner, limit is like a specialized 

cone amongst all cones. Further simplifying the concept, the apical object of the Limit 

cone has a unique morphism to the apical object of every other cone. Limit construct adds 

another level to the cone, the limit being on the top. Together this hierarchy results into a 

very complex structure. The limit construct thus enables representation of an equivalently 

complex structure therefore modeling the behavior exhibited by that structure. A Limit is 

diagrammatically represented as shown in Figure 3.11(a). The inverse or dual of a limit is 

a co-limit. A co-limit makes use of the co-cone construct. A co-limit for that reason is a 

universal co-cone such that every other co-cone factors through it, or is recognized by a 
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unique morphism from the apical object of the co-limit to every other co-cone. Figure 

3.11(b) shows the co-limit in category ANT. 

 

 

Figure 3.11: (a) Limit; (b) Co-limit  
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Product construct is a special case of limit and a co-product that of a co-limit. Product in 

category theory follows the idea of the cartesian product of sets. A product construct 

consists of a limit cone with apical object being the product of objects in diagram or base 

of the cone such that for any other cone, there exists a unique morphism to the limit cone 

such that the triangles commute. To better understand the concept, Figure 3.12 shows the 
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diagrammatical product and its dual co-product. Product and co-product in Figure 3.12 

represent the cooperation of the entities towards achieving a goal. The product object 

represents the collective behavior of the involved entities/objects. The product is denoted 

; if I = {1,…,n}, then, product is X1 … Xn. The unique morphism u is the 

product of morphisms h1 and h2. 

 

Figure 3.12: (a) Product of objects W1, W2; (b) Product of objects A1, A4; 

3.4 Conclusion 

The purpose of this chapter was to present the readers with a precise introduction to the 

CAT constructs along with examples from biological swarms. This chapter lays the 
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5. The readers of these chapters can always refer to chapter 3 in order to refresh the 

definitions. 
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4 Categorical Modeling Language 

4.1 Introduction 

In the previous chapters we presented a discussion of category theory along with a sub set 

of its constructs that have been studied for this research. We also mentioned in chapter 2 

that CAT formalism is not powerful enough to serve as a specification language. A part 

of this thesis goes into construction of a grammar for what we call the Categorical 

Modeling language or in short CML. Together with the specification language and the 

visual/graphical modeling notation, CML will serve as a powerful modeling language, its 

formal basis coming from the category theory.   

4.2 Graphical Models 

A very important aspect of the CML is the support of a graphical model with a formal 

specification. The conventions for the graphical model are an adaptation of the category 

theory conventions where a circle represents an object in a category and a directed arrow 

represents a morphism. A category in CML can be represented with a square but 

specifically in the case where a functor is to be represented between two categories. 

Otherwise, enclosing objects and morphism of a category in a square limits the available 

drawing space and is therefore avoided. Functors and natural transformations are 

represented as arrows too. A functor is a triangle shaped filled arrowhead and for the 

natural transformation, the arrowhead is an unfilled triangle. A unique morphism is 
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represented with a dashed directed arrow with the name of the morphism represented 

together with the letter u in bold. Table 4.1 lists the graphical/visual notation for CML 

models. The examples of the visual models could be found in both chapter 5 and chapter 

6. 

Table 4.1: CML Graphical Notation 

Notation                                                                             Description 

 
 
 

 

 Object 

 
 

 

Morphism 
 

  

Category 

  

Functor 

  

Natural Transformation 

  

Composition Morphism 

  

Universal Morphism 

4.3 Formal Specification Language 

Along with the graphical modelling tools, CML boasts a formal specification language. A 

CML specification is constructed using the CML formal grammar. The grammar also 

serves as a basis for generating the XML for the CML models constructed using the tool 
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discussed in chapter 6. This section introduces the grammar for all of the CML constructs 

presented in chapter 3. The models constructed using the language are discussed in 

chapter 5 in detail and would be referenced to wherever required. 

4.3.1 Grammar for CML 

CML makes use of the Extended Backus-Naur Form (EBNF) for the grammar notation. 

The grammar can be used to determine the exact syntax for any category construct. An 

EBNF based grammar consists of “non-terminals” and “terminals.” Non-terminals are 

symbols within a BNF definition, also defined in the grammar. Terminals are endpoints 

in BNF definition, consisting of CAT keywords. In this section, all non-terminals appear 

in brackets < > and all terminals appear without brackets.  

Table 4.2: CML Grammar Conventions 

Attribute                                                                             Description 

<Non-terminal> Indicates non-terminal symbols 

Terminal Indicates terminal symbols 

CONSTRUCT Terminals in bold face type are reserved words for basic constructs  

Construct-Entity Terminals in bold & italics face are reserve words for parts of a 
construct  

::= Indicates non-terminal symbol followed by the production rule or 
expression 

| Vertical bar indicates choice of rules  

{ }
+
 Braces with a plus sign indicates at least one or more 

{ }* Braces with an asterisk indicates zero or more 

: ( ) → = , Terminals (For separation) 

[ ] Indicates optional expression 

; Indicates end of line for a production rule 

<Type> <Id>   

<*_type_Id> <Id>  (* indicates all) 

<*_name> <Id>   

<*_instance_Id> <Id> 

<*_Id> <Id> 

 Empty String 
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Table 4.2 includes a complete list of the grammar conventions for CML grammar along 

with their description for reference in this chapter and everywhere else in the thesis. The 

start symbol in the CML grammar corresponds to a list of non-terminals each of which 

translates to a model in the CML. Sections 4.6 through 4.14 include the grammar for all 

the symbols in the rule listed in figure 4.1. 

<Start>::=      <Typed_Category> | <Functor> | <N_Trans>  |  

                <Diagram>  | <Cone> | <Co-Cone> | <Limit> |  

                <Co-Limit> | <Product> | <Co-Product>; 

Figure 4.1: CML Grammar Start Symbol 

4.4 Grammar Structure & Conventions 

This section includes an explanation of the way the grammar has been composed and 

makes use of the <Typed_Category> grammar for the explanation of the structure and the 

conventions used in the discussions to follow. The basic structure of all of the non-

terminals in the production rule in Figure 4.1 is the same. There are some differences that 

will be explained along with the description of each grammar. Readers can always refer 

back to this section to find the underlying structure of all of the grammar to follow.  

<Typed_Category> consists of the keyword TYPED-CATEGORY followed by the non-

terminals for the name of the category and the Id of the category in parenthesis. The 

keyword Types of Objects serves as a heading for a list of object types. Enclosing braces 

with a plus {}
+ 

means there should be at least one type defined for objects of this 

category. The keyword Objects with the notation for set of objects in the category is 



 

 

   50 

followed by a list of objects inside this category. Similarly, the non-terminals for types of 

morphism and the list of instance morphisms for each type would be what comes after. 

Identity morphisms exist for each object in the category and Composition contains the 

pairs of composable morphisms. Lastly, the grammar ends with a list of axioms that hold 

true for the constructed model or in this case the typed category model. Figure 4.2 lists 

the complete grammar for the non-terminal <Typed_Category> in Figure 4.1.  

<Object_Type> consists of the list of the type names and Ids for each type and a list of 

object type instances with name and Id for each instance. An object type instance adds 

another level of type definition for expression of a scenario that demands such hierarchy 

of types. Object_Type_Instances expression is optional in the grammar as it is 

surrounded by [ ]. <Object> consists of the object type name and Id followed by the 

instance objects for this type. Similarly, <Morphism_Type> consists of the name of the 

morphism type followed by a list of morphisms for that type. <Morphism> is 

<Mor_Instance> that is the list of morphism instances for each morphism type followed 

by <Mor_Identity>. <Mor_Identity> is the list of Identity morphisms for each object 

instance in <Object>. <Axiom> consists of all of the properties that must hold true in 

order to prove the correctness of the models according to CAT. It consists primarily of 

<Property> that is <Identity> and <Associativity>. <Id> is the symbol for construction of 

the names and Ids in CML. It consists of one or more characters. The non-terminal 

<Character> consists of all of the alphabets along with digits from 0 to 9. <Empty> 

facilitates the termination of a name or Id with an empty space denoted by . 
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<Typed_Category>::=    TYPED-CATEGORY <Cat_name>(<Cat_Id>) 

                       Types of Objects {<Object_Type>} + 

                                       Objects: Obj(<Cat_Id>){<Object>} + 
                       Types of Morphisms {<Morphism_Type>} + 
                       Morphisms: Mor(<Cat_Id>)<Morphism> 

                       Composition <Composition> 

                       Axioms <Axiom> ; 

<Object_Type>::=       Object_Type: <Obj_type_name>(<Obj_type_Id>)  

                      [Object_Type_Instances:  

                      <Obj_type_name>(<Obj_type_Id>)                                                                

                    {,<Obj_type_name>(<Obj_type_Id>)}*] ; 

<Object>::=           <Obj_type_Id>:  

                      <Obj_type_Id><Obj_instance_Id>  

                    {,<Obj_type_Id><Obj_instance_Id>}* ; 

<Morphism_Type>::=     Morphism_Type: <Mor_type_name>(<Mor_type_Id>): 

                     {<Obj_type_Id> → <Obj_type_Id>}+ ; 

<Morphism>::=         <Mor_Instance><Mor_Identity> ; 

<Mor_Instance>::=     <Mor_type_Id><Mor_instance_Id>  

                      (Obj_type_Id><Obj_instance_Id>) =                                                           

                      <Obj_type_Id><Obj_instance_Id> 

                      {, <Mor_type_Id><Mor_instance_Id>  

                        (<Obj_type_Id><Obj_instance_Id>) =                                                           

                         <Obj_type_Id><Obj_instance_Id>}+ ; 

<Mor_Identity>::=      Identity: Identity(<Cat_Id>)  

                       Id (<Obj_type_Id><Obj_instance_Id>):                                                

                      <Obj_type_Id><Obj_instance_Id> →  
                      <Obj_type_Id> <Obj_instance_Id> 

              {, Id (<Obj_type_Id><Obj_instance_Id>):                                                

                           <Obj_type_Id><Obj_instance_Id> →  
                           <Obj_type_Id> <Obj_instance_Id>} + ; 

<Composition>::=     (<Mor_type_Id> <Mor_instance_Id> о  

                      <Mor_type_Id> <Mor_instance_Id>) =  

                      <Mor_type_Id> <Mor_instance_Id>  

                  {, (<Mor_type_Id> <Mor_instance_Id> о  

                      <Mor_type_Id> <Mor_instance_Id>) =  

                      <Mor_type_Id> <Mor_instance_Id>} + ; 

<Axiom>::=            <Property> ; 

<Property>::=          Identity:{<Identity>} +   |                

                       Associativity:{<Associativity>}+; 

 

<Identity>::=           x  Identity(<Cat_Id>), y  Mor(<Cat_Id>), 
                       x о y =  y =  y о x ; 
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<Associativity>::=    <Mor_type_Id> <Mor_instance_Id> о  

                     (<Mor_type_Id> <Mor_instance_Id> о  

                      <Mor_type_Id> <Mor_instance_Id>) =  

                     (<Mor_type_Id> <Mor_instance_Id> о  

                      <Mor_type_Id> <Mor_instance_Id>) о  

                      <Mor_type_Id> <Mor_instance_Id> ;   

<Id>::=               <Character><Id> | <Empty> ; 

<Character>::=        A | B | C |... |Z | a | b | c |... | z |  

                      0 | 1 | 2 |... | 9 ; 

<Empty>::=             ; 
 

Figure 4.2: Grammar for Typed-Category Construct 

Chapter 5 includes an example of a CML model constructed using <Typed_Category> 

grammar. Please refer to section 5.2.1 for a detailed discussion with an example from the 

case study.  

4.5 Functor 

The grammar for functor construct starts with the symbol <Functor> listed in Figure 4.4. 

<Functor> comprises of a source and target category constructed using 

<Typed_Category> grammar followed by the Ids of the source and target categories 

respectively. This is followed by the keyword FUNCTOR and the functor definition in 

parenthesis. The functor definitions consist of functor type name and Id followed by the 

Ids of the source and target category. The rest of the grammar structure is same as the 

<Typed_Category> grammar. The objects and morphisms for the functor, as well as the 

axioms that hold true for the constructed functor succeed the functor definitions using 

non-terminals <F_Object>, <F_Morphism> and <F_Axioms> respectively. <F_Object> 
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is different from <Object> in the sense that it consists of <Obj_mapp> instead of the 

object type instances in Figure 4.2.  

<Obj_mapp> consists of the source category mapping object type and instance Id 

enclosed in functor Id parenthesis followed by the mapping and mapped objects separated 

by an arrow. The mapped object is represented with the functor representation of the 

mapping object. Similarly, <F_Morphism> consists of <Mor_mapp> that is comprised of 

the mapped and mapping morphisms in the source and target category respectively for all 

mapped morphisms. The mapping morphism is also represented using the functor.  

 
 

<Functor>::=       Categories: <Typed_Category> <Typed_Category> 

                   Category Source: <Cat_Id>   

                   Category Target: <Cat_Id> 

                   FUNCTOR(<Func_type_name>,<Func_Id>, 

                           <Cat_Id>,<Cat_Id>)  

                   Functor Objects {<F_Object>}+ 
                   Functor Morphisms {<F_Morphism>}+  

                   Functor Composition {<F_Composition>}+  

                   Functor Axioms <F_Axioms> ; 

<F_Object>::=     <Obj_type_name>: <Obj_mapp> {, <Obj_mapp>}* ; 

 

<Obj_mapp>::=     <Func_Id>(<Obj_type_Id><Obj_instance_Id>):                                                                                   

                  <Cat_Id>(<Obj_type_Id><Obj_instance_Id>))→ <Cat_Id> 
                 (<Func_Id>(<Obj_type_Id><Obj_instance_Id>): 

                  <Obj_type_Id><Obj_instance_Id>);  

<F_Morphism>::=   <Mor_type_name>: <Mor_mapp> {, <Mor_mapp>}* ; 

<Mor_mapp>::=     <Func_Id>(<Mor_type_Id><Mor_instance_Id>):                                                       

                  <Cat_Id>(<Obj_type_Id><Obj_instance_Id>,  

                  <Obj_type_Id><Obj_instance_Id>,                                                       

                  <Mor_type_Id><Mor_instance_Id> ) →                                                                                            
                  <Cat_Id>(<Func_Id>(<Obj_type_Id><Obj_instance_Id>): 

                  <Obj_type_Id><Obj_instance_Id>,                                                       

                  <Func_Id>(<Obj_type_Id><Obj_instance_Id>): 

                  <Obj_type_Id><Obj_instance_Id>, 

                  <Func_Id>(<Mor_type_Id><Mor_instance_Id>): 

                  <Mor_type_Id><Mor_instance_Id> ) ; 
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<F_Composition>::=<Func_Id>( 

                             <Mor_type_Id><Mor_instance_Id> о                                                             

                             <Mor_type_Id><Mor_instance_Id>) =                                                             

                             <Func_Id>(  

                             <Mor_type_Id> <Mor_instance_Id>) о                                                             

                             <Func_Id>( 

                             <Mor_type_Id> <Mor_instance_Id>) =                                                            

                             <Func_Id>( 

                             <Mor_type_Id> <Mor_instance_Id>) ; 

<F_Axioms>::=     <F_Identity> ; 

<F_Identity>::=    Identity: {<Func_Id>( 

                          Id(<Obj_type_Id><Obj_instance_Id>)) =                                                                       

                          Id(<Func_Id>(<Obj_type_Id> 

                             <Obj_instance_Id>))}+ ; 

 

  

Figure 4.3: Grammar for Functor Construct 

<F_Axioms> is similar to the <Axioms> in Figure 4.2 except for the functor 

representation for the Id and composition morphisms. A model constructed using functor 

grammar in Figure 4.3 is included in section 5.2.3 as part of the case study. 

4.6 Natural Transformation 

The start symbol for natural transformation is <N_Trans> as shown in Figure 4.5. 

<N_Trans> consists of the source and target category constructed using 

<Typed_Category> followed by the list of functors for the natural transformation. The 

functors are constructed using <Functor> grammar discussed earlier. After that comes the 

definition of the natural transformation that consists of the keyword 

NAT_TRANSFORMATION followed by the name and Id of the natural transformation 

in parenthesis. The keyword NTrans Functors is followed by the <NT_Functor> which 

consists of the functor type names followed by the functor type instances. The expression 
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ends with a {}
+
 indicating the requirement of at least two functors be defined. The 

keyword NTrans Objects is followed by the non-terminals <NT_Objects> and 

<Obj_Mapping>. <NT_Object> consists of the source category followed by a list of 

mapped objects. <Obj_Mapping> in <N_Trans> consists of the natural transformation Id 

followed by the object mapped by the two functors in parenthesis. 

 

<N_Trans>::=         Categories: <Typed_Category> <Typed_Category> 

               Category Source: <Cat_Id> 

                     Category Target: <Cat_Id> 

                     Functors: <Functor> <Functor> 

               Functor Ids: <Func_Id>,<Func_Id> 

                     NAT_TRANSFORMATION (<NTrans_name>, <NTrans_Id>) 

                     NTrans Functors <NT_Functor> 

                     NTrans Objects <NT_Object>  

                     NTrans Mapping Function {<Obj_Mapping>}+  

                     NTrans Morphisms <NT_Morphism>  

                     NTrans Axioms <NT_Axioms> ; 

 

<NT_Functor>::=     <Func_type_name>:  

                    <Func_name>(<Func_Id>): <Cat_Id>   <Cat_Id>    
                 {, <Func_type_name>:  

                    <Func_name>(<Func_Id>): <Cat_Id>   <Cat_Id>}+ ;    

<NT_Object>::=      <Cat_Id>:  

                    {<Obj_type_name>:<Obj_type_Id><Obj_instance_Id>  

                                { , <Obj_type_Id><Obj_instance_Id}* }+ ; 

<Obj_Mapping>::=    <NTrans_Id>(<Obj_type_Id><Obj_instance_Id>):  

                    <Func_Id>(<Obj_type_Id><Obj_instance_Id)   

                    <Func_Id>(<Obj_type_Id><Obj_instance_Id) ; 

<NT_Morphism>::=   {<Mor_type_Id>:<NT_Arrows>}+ ; 

<NT_Arrows>::=      <Func_Id>(<Mor_type_Id><Mor_instance_Id>):  

                    <Func_Id>(<Obj_type_Id><Obj_instance_Id) →  
                    <Func_Id>(<Obj_type_Id><Obj_instance_Id) 

                 {, <AT_Arrows> }* ; 

                                        

<NT_Axioms>::=       Commutativity:  

                x,y  Obj(<Cat_Id>), f : x → y  Mor(<Cat_Id>), 

                    <Func_Id>(f) о <NTrans_Id>(x)  =   

                    <NTrans_Id>)(y) о <Func_Id>(f ) ; 

 

Figure 4.4: Grammar for Natural Transformation Construct 
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This is followed by the same object represented in terms of the functors separated by an 

arrow . <NT_Morphism> consists of name of the source category for all the functors 

followed by <NT_Arrows> that comprises of all of the morphisms between the mapped 

objects in the source category represented using functors. The | symbol indicate the 

alternate rule for <NT_Arrows> that is used to construct the identity arrows for all 

NTrans objects.  The grammar ends with <NT_Axioms> that comprises of commutativity 

for every pair of natural transformation mapping function and morphism.  

The model constructed using the grammar in Figure 4.4 is given in section 5.2.4 as part 

of the PAM case study. 

4.7 Diagram 

The „Diagram‟ construct as discussed in section 3.3.1 is mostly used for stating and 

proving properties of other categorical constructs. The grammar listed in Figure 4.5 for 

the „Diagram‟ construct would in turn be a part of the grammar for <Cone>, <Co-cone>, 

<Limit> and <Co-Limit>. The start symbol <Diagram> consists of the grammar for the 

index category, the grammar for the target category followed by the Ids of the two 

categories. After that comes the keyword DIAGRAM followed by the definition of the 

diagram in parenthesis. The definition consists of the name, and Id of the diagram and the 

Ids of the index and target categories respectively. Then comes the typical listing of the 

objects of the diagram using the keyword Diagram Objects followed by one or more 

objects constructed using <D_Object>.  
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<Diagram>::=          Categories: <Typed_Category> <Typed_Category> 

                      Index Category: <Cat_Id> 

                      Target Category: <Cat_Id> 

                      DIAGRAM (<Diag_Id>,<Cat_Id>,<Cat_Id>)  

                      Diagram Objects {<D_Object>}+ 
                      Diagram Morphisms {<D_Morphism>}+ ; 

<D_Object>::=        <Obj_type_name>: <Obj_indexing> 

                                   {, <Obj_indexing>}* ; 

<Obj_indexing>::=    <Diag_Id>(<Vertex_index_Id>):  

                     <Cat_Id>(<Vertex_index_Id>) →                                                                        
                     <Cat_Id>(<Diag_Id> (<Obj_type_Id> 

                     <Obj_instance_Id>)) ; 

<D_Morphism>::=      <Mor_type_name>: <Mor_indexing>  

                                   {, <Mor_indexing>}* ; 

<Mor_indexing>::=    <Diag_Id>(<Edge_index_Id>):  

                     <Cat_Id>(<Vertex_index_Id>, 

                     <Vertex_index_Id>,<Edge_index_Id> →                                      
                     <Cat_Id>(<Diag_Id>( 

                     <Obj_type_Id><Obj_instance_Id>), 

                     <Diag_Id>(<Obj_type_Id><Obj_instance_Id>)) ; 

 

Figure 4.5: Grammar for Diagram Construct 

<D_Object> consists of the keyword Object_Type followed by the type name, a colon 

and one or more <Obj_indexing> separated by a comma „,‟. <Obj_indexing> comprises 

of the diagram Id followed by the id of the index vertex in parenthesis. The mapping of 

the index object follows this from the index category to the target category, the mapping 

separated by an arrow and the diagram index and the mapping separated by a colon „:‟. 

The grammar ends with the keyword Diagram Morphisms followed by one or more 

morphisms in the diagram constructed using <D_Morphism>. <D_Morphism> consists 

of the keyword Morphism_Type followed by a colon and the morphisms type Id and 

another colon followed by one or more indexing morphisms constructed using 

<Mor_indexing>. <Mor_indexing> consists of the diagram representation of the index 
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edge Id followed by a three-tuple index category representation and a three-tuple target 

category representation separated by an arrow.  The three-tuple for index category 

consists of the index category Id followed by the index source vertex, the index target 

vertex and the edge index Id enclosed in parenthesis. Similarly, the three-tuple for the 

target category consists of the target category Id followed by the source object, the target 

object and the name of the morphism enclosed in parenthesis.   

An example of a model constructed using the <Diagram> grammar is included in section 

5.2.2 as part of the PAM case-study. Readers are suggested to refer back to this section 

for explanation of the grammar. 

4.8 Cone 

The grammar for the Cone construct discussed in section 3.3.5 is listed in Figure 4.6.  

The start symbol <Cone> consists of the grammar for the category using the symbol 

<Typed_Category> followed by the grammar for the diagram in the category. This is 

followed by the keyword Category Id and the category Id separated by a colon „:‟ and the 

keyword Diagram Id followed by the Id of the diagram. The keyword CONE indicates 

the start of the definition for cone followed by the non-terminal <Cone_Obj>.  

<Cone_Obj> consists of the type and instance Id of the object in the cone external to the 

diagram. This is followed by a list of diagram objects for the cone constructed using 

<C_Object>.  <C_Object> consists of the diagram Id followed by the index category 

vertex Id in parenthesis for all diagram objects in the cone. The grammar ends with the 
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keyword Cone Morphisms followed by the non-terminal <C_Morphism> for all 

morphism types.                  

 

<Cone>::=             Diagram: <Diagram>  

                      Category Id: <Cat_Id> 

                      Diagram Id:  <Diag_Id> 

                      CONE (Object:<Cone_Obj>)   

                      Cone Objects <C_Object> 

                      Cone Morphisms {<C_Morphism>}+ ;  

<Cone_Obj>::=         <Obj_type_Id><Obj_instance_Id> ; 

<C_Object>::=         <Diag_Id>(<Vertex_index_Id>)  

                   {, <Diag_Id>(<Vertex_index_Id>)}* ; 

<C_Morphism>::=       <Mor_type_name>: <Cone_Obj>(<Vertex_index_Id>): 

                      <Cone_Obj> → <Diag_Id>(<Vertex_index_Id>) 
                   {, <Cone_Obj>(<Vertex_index_Id>):                                                                   

                      <Cone_Obj> → <Diag_Id>(<Vertex_index_Id>)}* | 
                      <Mor_type_name>: <Diag_Id>(<Edge_instance_Id>):                                         

                      <Diag_Id>(<Vertex_index_Id>) →                                               
                      <Diag_Id>(<Vertex_index_Id>)  

                   {, <Diag_Id>(<Edge_instance_Id>):                                                                             

                      <Diag_Id>(<Vertex_index_Id>) →                                                                             
                      <Diag_Id>(<Vertex_index_Id>)}* ; 

 

Figure 4.6:Grammar for Cone Construct 

<C_Morphism> has two rules as indicated by the „|‟. <C_Morphism> for all cone 

morphisms, comprises of the morphism type name followed by colon preceding the cone 

object type and instance Id with the vertex Id in parenthesis. This is succeeded by the 

morphism source object and morphism target object separated by an arrow.  

<C_Morphism> for all diagram morphisms, comprises of the morphism type name 

followed by colon preceded diagram Id and edge instance Id in parenthesis. This is 

followed by the source and target objects in the diagram for this morphism separated by 
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an arrow.  For an example of a model constructed using grammar listed in Figure 4.6, 

please refer to section 5.2.5, Figure 5.5. The example is part of the PAM case study.  

4.9 Co-Cone 

The grammar for co-cone is very similar to that of a cone except for some significant 

differences. Figure 4.7 includes the grammar for constructing a model based on a co-cone  

construct. The start symbol <Co-Cone> has a similar pattern to <Cone> except for the 

difference in name and rules of some non-terminals. This section is going to discuss only 

these differences. <Co-Cone> consists of the grammar for <Typed_Category>, and 

<Diagram> followed by the Ids of the category and diagram respectively.  

 

<Co-Cone>::=           Diagram: <Diagram>  

                       Category Id: <Cat_Id> 

                       Diagram Id:  <Diag_Id> 

                       CO-CONE (Object: <Co-Cone_Obj>)   

                       Co-Cone Objects <CC_Object> 

                       Co-Cone Morphisms {<CC_Morphism>}+ ;    

<Co-Cone_Obj>::=      <Obj_type_Id><Obj_instance_Id> ; 

<CC_Object>::=        <Diag_Id>(<Vertex_index_Id>)   

                   {, <Diag_Id>(<Vertex_index_Id>)}* ; 

<CC_Morphism>::=      <Mor_type_name>: <Co-Cone_Obj><Vertex_index_Id>):                                                                                 

                      <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>                                                                                  
                   {, <Co-Cone_Obj>(<Vertex_index_Id>):                                                                                   

                      <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>}* | 
                      <Mor_type_name>: <Diag_Id>(<Edge_instance_Id>):                                                                                  

                      <Diag_Id> (<Vertex_index_Id>) →                                                                                 
                      <Diag_Id> (<Vertex_index_Id>)  

                   {, <Diag_Id> (<Edge_instance_Id>):                                                                               

                      <Diag_Id> (<Vertex_index_Id>) →                                                                                
                      <Diag_Id> (<Vertex_index_Id>)}* ; 

 

Figure 4.7: Grammar for Co-Cone Construct 
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The definition of a co-cone begins with the keyword CO-CONE followed by the <Co-

Cone_Obj>. <Co-Cone_Obj> is similar to <Cone_Obj> except for the name difference. 

This is followed by the keyword Co-Cone Objects followed by the objects in the diagram 

constructed using <CC_Object>. <CC_Object> is similar to <C_Object> except for the 

name difference. The grammar ends with the keyword Co-Cone Morphisms followed by 

the non-terminal <CC_Morphism> for all morphism types. <CC_Morphism> is different 

from <C_Morphism> and thus differentiates a cone from a co-cone.  

<CC_Morphism> has two rules as indicated by the „|‟. <CC_Morphism> for all co-cone 

morphisms, comprises of the morphism type name followed by colon preceding the co-

cone object type and instance Id with the vertex Id in parenthesis. This is succeeded by 

the morphism source object and morphism target object separated by an arrow.  The 

source object in case of a co-cone is the vertex in the diagram unlike the source object in 

a cone, which is the cone object. <CC_Morphism> for all diagram morphisms, comprises 

of the morphism type name followed by colon preceding the diagram Id and edge 

instance Id in parenthesis. This is followed by the source and target objects in the 

diagram for this morphism separated by an arrow. An example model constructed using 

the <Co-Cone> grammar is included in section 5.2.5 Figure 5.6. The example is part of 

the PAM case study. 

4.10  Limit 

The grammar for the limit construct is given in Figure 4.8 with the start symbol being 

<Limit>. <Limit> comprises of the grammar for the typed category and the diagram for 
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the limit along with the keywords Category and Diagram. This is followed by the 

keyword Cones along with the grammar for all cones in the typed category. After that 

comes the keyword Category Id with the Id of the category, the keyword Diagram Id 

with the diagram Id and the keyword Cone Ids with the ids of all of the cones of the 

diagram in the category.  

 

<Limit>::=             Diagram: <Diagram> 

                       Cones: <Cone> {<Cone>}+ 

                       Category Id: <Cat_Id> 

                       Diagram Id: <Diag_Id> 

                       Cone Ids: <Obj_type_Id><Obj_instance_Id> 

                               {,<Obj_type_Id><Obj_instance_Id>}+                        

                       LIMIT (Terminal Object: <Terminal_Obj>,  

                              Unique Morphism(u): <Mor_Unique>) 

                       Limit Objects <L_Object> 

                       Limit Morphisms {<L_Morphism>}+  

                       Limit Axioms {<L_Axiom>}+ ; 

<Terminal_Obj>::=      <Obj_type_Id><Obj_instance_Id> ; 

<Mor_Unique>::=        <Mor_type_Id><Mor_instance_Id>:  

                       <Cone_Obj> → <Terminal_Obj>;   

<L_Object>::=          <Diag_Id>(Vertex_index_Id>)  

                    {, <Diag_Id>(Vertex_index_Id>)}* ; 

<L_Morphism>::=        <Mor_type_name>:<Cone_Obj>(<Vertex_index_Id>):                                                                                 

                       <Cone_Obj> → <Diag_Id>(<Vertex_index_Id>)                                                                                 
                    {, <Cone_Obj>(<Vertex_index_Id>):                                                                                      

                       <Cone_Obj>  → <Diag_Id>(<Vertex_index_Id>)}*  | 
                       <Mor_type_name>:<Diag_Id>(<Edge_instance_Id>):                                                                                   

                       <Diag_Id>(<Vertex_index_Id>) →                                                                                 
                       <Diag_Id>(<Vertex_index_Id>)  

                    {, <Diag_Id>(<Edge_instance_Id>):                                                                                  

                       <Diag_Id>(<Vertex_index_Id>) →                                                                               
                       <Diag_Id>(<Vertex_index_Id>)}* ; 

<L_Axiom>::=           <Mor_Unique> о <Cone_Obj>(<Vertex_index_Id>) =    

                       <Cone_Obj>(<Vertex_index_Id>) ; 

   

Figure 4.8: Grammar for Limit Construct 
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The definition of the limit follows this with the keyword LIMIT followed by the non-

terminal <Terminal_Obj> and <Mor_Unique> separated by a comma „,‟ and enclosed in 

parenthesis. <Terminal_Obj> consists of the object type Id and object instance Id and 

<Mor_Unique> consists of the morphisms type Id followed by a colon separating the 

arrow from source object that is the cone object to the target object that is terminal object. 

This is followed by the keyword Limit Objects along with the non-terminal <L_Object> 

for all limit objects. <L_Object> consists of the diagram Id followed by the index 

category vertex Id. The keyword Limit Morphisms is followed by <L_Morphism> for all 

morphism types. <L_Morphism> is similar to <C_Morphism> with the cone being the 

limit cone. The grammar ends with axioms that hold true for the limit indicated with the 

keyword Limit Axioms followed by the symbol <L_Axiom>. <L_Axiom> comprises of 

the composition of the unique morphism with the cone morphism to be equal to the cone 

morphism for all cones. Section 5.2.6, Figure 5.7 includes an example of a model 

constructed using the grammar <Limit>. The example is part of the PAM case study. 

Readers may refer back to this section for clarity of the constructed model.  

4.11  Co-Limit 

The grammar for the co-limit construct is given in Figure 4.9. The grammar is very 

similar to the grammar for the limit construct with a few significant differences. Please 

read section 3.5.6 to find the differences between the two constructs. For the grammar, 

the start symbol for a co-limit is <Co-Limit>. <Co-Limit> consists of the typed category 
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or index category grammar followed by the grammar for the diagram in the category 

along with the respective keywords Category and Diagram. 

 

<Co-Limit>::=          Diagram: <Diagram> 

                       Co-Cones: <Co-Cone> {<Co-Cone>}+ 

                       Category Id: <Cat_Id> 

                       Diagram Id: <Diag_Id> 

                       Co-Cone Ids: <Obj_type_Id><Obj_instance_Id> 

                               {,<Obj_type_Id><Obj_instance_Id>}+                        

                       CO-LIMIT (Initial Object: <Initial_Obj>,  

                                 Unique Morphism(u): <CL_Mor_Unique>) 

                       Co-Limit Objects <CL_Object>  

                       Co-Limit Morphisms {<CL_Morphism>}+  

                       Co-Limit Axioms {<CL_Axiom>}+ ; 

 

<Initial_Obj>::=       <Obj_type_Id><Obj_instance_Id> ; 

<CL_Mor_Unique>::=     <Mor_type_Id>: <Initial_Obj> →  
                       <Cone_Obj>(<Vertex_index_Id>) ; 

<CL_Object>::=         <Diag_Id>(Vertex_index_Id>)  

                    {, <Diag_Id>(Vertex_index_Id>)}* ; 

<CL_Morphism>::=       <Mor_type_name>:  

                       <Co-Cone_Obj>(<Vertex_index_Id>):  

                       <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>                                                                                   
                    {, <Co-Cone_Obj>(<Vertex_index_Id>):                                                                                   

                       <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>}* | 
                       <Mor_type_name>:<Diag_Id>(<Edge_instance_Id>):                                                                                   

                       <Diag_Id>(<Vertex_index_Id>) →                                                                                 
                       <Diag_Id>(<Vertex_index_Id>)  

                    {, <Diag_Id>(<Edge_instance_Id>):                                                                                  

                       <Diag_Id>(<Vertex_index_Id>) →                                                                               
                       <Diag_Id>(<Vertex_index_Id>)}* ; 

<CL_Axiom>::=         <Co-Cone_Obj>(<Vertex_index_Id>) о <Mor_Unique> =    

                      <Co-Cone_Obj>(<Vertex_index_Id>) ;    

 

Figure 4.9: Grammar for Co-Limit Construct 

This is succeeded by the grammar for all co-cones for the diagram with the keyword Co-

Cones. The definition of the co-limit starts with the keyword CO-LIMIT followed by 

<Initial_Obj> and <Mor_Unique> separated by a comma „,‟ enclosed in parenthesis. This 
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is followed by the keyword Co-Limit objects and the non-terminal <CL_Object>. 

<CL_Object> is similar to <CC_Object> for all co-limit objects. The keyword Co-Limit 

Morphisms consists of <CL_Morphism> for all morphism types. <CL_Morphism> is 

similar to <CC_Morphism> with the co-cone being the co-limit co-cone. The grammar 

ends with axioms that hold true for the co-limit indicated with the keyword Co-Limit 

Axioms followed by the symbol <CL_Axiom>. <CL_Axiom> comprises of the 

composition of the unique morphism with the co-cone morphism to be equal to the co-

cone morphism for all co-cones. The example for the co-limit construct is included in 

section 5.2.7, Figure 5.8 as part of the PAM case study. Readers are suggested to refer 

back to this section for questions on the constructed model based on the grammar.  

4.12  Product 

The grammar for the product construct starts with the symbol <Product> as shown in 

Figure 4.10.  

 

 

<Product>::=          Category: <Typed_Category>  

                      Category Id: <Cat_Id>  

                      PRODUCT(<Prod_name>,<Cat_Id>)  

                      Product Objects  

                      {<Obj_type_name>: <Prod_Obj>{,<Prod_Obj>}+  

                       Product:<P_Obj> }+  

                      Product Morphisms {<Prod_Morphism>}+  

                      Product Axioms {<Prod_Axiom>}+ ; 

<Prod_Obj>::=        <Obj_type_Id><Obj_instance_Id> ; 

 

<P_Obj>::=         < <Obj_type_Id><Obj_instance_Id>   

                     <Obj_type_Id><Obj_instance_Id> > ; 
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<Prod_Morphism>::=    <Mor_type_name>:<Mor_type_Id>:  

                                      <Obj_P> → <Prod_Object>  | 
                      <Mor_type_name>:<Mor_Unique>: 

                                      <Prod_Object> → <Obj_P> ;   

<Prod_Axiom>::=       Composition: 

                      <Mor_Unique > о <Mor_type_Id> = <Mor_type_Id> ;  

 

Figure 4.10: Grammar for Product Construct 

<Product> consists of the keyword Category followed by the grammar for the typed 

category. This is succeeded by the keyword Category Id along with the Id of the category 

constructed using the grammar for typed category. The definition of the product construct 

begins with the keyword PRODUCT followed by the name of the product and Id of the 

category separated by a comma „,‟ enclosed in parenthesis. The keyword Product Objects 

is followed by the object type name and list of <Prod_Obj> for all object types.    

4.13  Conclusion 

This chapter presents the grammar for the different constructs of CML along with a 

detailed explanation of the production rules in the grammar. The chapter does not include 

any example specification to avoid repetition. The examples are a part of the case study 

in chapter 6 and have been referred to with all the grammar constructs.    
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5 Case Study: PAM 

In chapter 1, we discussed the different objectives of this research. Application of the 

category theory and CML to NASA‟s Prospecting Asteroid Mission was amongst the 

primary objectives.  This chapter includes an introduction of the PAM, the mission‟s core 

goals followed by a discussion on modeling of some of the PAM scenarios using CML.  

5.1 Prospecting Asteroid Mission 

We have already seen an introductory discussion of PAM in chapter 1 and 2. This section 

is going to elicit the mission‟s details relevant to the modeling exercises included in 

section 5.2.  The case study is based on the operational characteristics and mission 

scenarios of the PAM as discussed in [15], [16], [18], [47], [48], [51], [52], [53] and [54].   

5.1.1 Asteroid Exploration and PAM Sciencecrafts 

The ANTS based PAM mission is an advanced mission concept for the 2020s. Its 

primary objective is the exploration of the resource potential of the solar system‟s 

asteroid belt beyond Mars. The availability of these resources would facilitate 

uninterrupted presence of humans in space. The asteroid belt consists of thousands of 

individual asteroids widely separated across the belt. To target these thousands of distinct 

asteroids, a large group of specialized autonomous workers are required. The concept of 

PAM is directed towards this requirement of individual workers carrying out a systematic 

study of the entire population of asteroids. In PAM, these individual workers materialize 
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themselves in the form of intelligent and autonomous bodies termed as Spacecraft or 

Sciencecraft. Each of these Sciencecraft have specialized instrument capability and 

heuristics systems that are both evolvable and adaptable.  

We saw in chapter 2 and 3 that ANTS is analogous to the social insect swarms. These 

Sciencecraft operate in the form of subswarms for the purpose of gathering the 

measurements of their target asteroids. A PAM swarm consists of 1000 such spacecraft 

based on the carbon-based NEMS [50] technology utilizing Super Miniaturized 

Addressable Reconfigurable Technology (SMART) [49]. 

5.2 PAM Swarm 

The swarm comprises of science specialist classes with approximately 100 members in 

each class. The members are identical except for each carrying a specialized „instrument‟.  

 

Figure 5.1: ANTS based PAM Concept 
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The classes of spacecraft include the processors or the CPU known as Rulers, the 

communication spacecraft known as Messengers, and sciencecraft or Workers including 

imagers, various spectrometers, altimeters, radio science, and magnetometers. The swarm 

consists of subswarms with approximately same number of classes in each subswarm. All 

subswarms inside a swarm operate in parallel. Figure 5.1 provides an overview of the 

PAM mission concept [15].  

The first phase of a PAM mission is to travel from Earth‟s Lagrange point along with the 

rest of the swarm. Next, after having raised their orbits to a certain AU level, the 

Messengers and Rulers position themselves to provide communications and control to the 

swarm. Workers set about their jobs of detecting and obtaining information about Main 

Belt asteroids. Some Workers work alone, others are continually forming „Virtual Teams‟ 

[51, 52] to perform science encounters including orbital operations. „Virtual Instrument 

Teams‟ would be formed from those within each class, in order to optimize the 

accumulation of the data. On occasion, the PAM swarm will send a representative back to 

Earth or another communication node to report on swarm findings.   

5.2.1 CML Model for PAM Sub-swarm Organization 

Figure 5.2 (a) and (b) include the CML specification and the visual model respectively 

for a typical PAM sub-swarm organization. The model is constructed using the typed 

category construct grammar given in section 4.2 and captures only a part of a typical 

PAM sub-swarm organization. This model doesn‟t consider workers‟ working alone 

rather depicts organization of workers in the form of a team. The Messengers are 
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represented at two levels of hierarchy, one for the sub-swarms and the other at the team 

level. The Ruler is present at the swarm level and has interaction with messengers and 

workers.  The typed-category model given in Figure 5.2 obeys all the axioms for it to 

qualify as a category, i.e. composition, associativity and identity properties. 

TYPED-CATEGORY 

PAM Sub-swarm (S1) 

Types of Objects  

Object_Type:                    Ruler (R) 

Object_Type_Instances:   Leader (L)                    

Object_Type:                    Messenger (M) 

Object_Type_Instances:  Team Messenger (TM), 

                                          Sub-Swarm Messenger (SM) 

Object_Type:                     Worker (W) 

Object_Type_Instances:    X-Ray (WXR), 

                                           Gamma Ray(WGR), 

                                           Infra-Red(WIR), 

                                           Altimeter(WAL) 

 

Objects: Obj(S1) 

R: L1 

TM: TM1, TM2 

SM: SM1 

WXR: WXR1, WXR3 

WGR : WGR1  

WIR : WIR1 

WIR : WAL1 

 

 

Type of Morphisms 

Morphism_Type: Management (m):         

L → TM, L → SM, L → W              

Morphism_Type: Cooperation (c):            

W → W, TM → W, W → TM 

Morphism_Type: Communication (cu):  

TM → SM, TM → TM , W → SM, TM → L 

Morphisms: Mor(S1) 

m1 (L1) = TM2, m2 (L1) = SM1,  

m3 (L1) = WXR1, m4 (L1) = WGR1,  

m5 (L1) = WIR1, m7 (L1) = TM1,  

c1 (WXR1) = WGR1, c2 (TM2) = WXR1,  

c3 (WIR1) = WGR1, c4 (TM2) = WIR1, 

c5 (TM2) = WGR1, c6 (WAL1) = TM1,  

c7 (WXR3) = TM1, c8 (WXR3) = WAL1,   

cu1 (TM2) = TM1, cu2 (TM1) = SM1,   

cu3 (TM2) = SM1, cu4 (WXR3) = SM1,  

cu5 (WAL1) = SM1, cu8 (TM2) = L1 

Identity:  Identity(S1) 

Id(L1): L1 → L1 , Id(SM1): SM1 → SM1,   

Id(TM1): TM1 → TM1,  Id(TM2): TM2 → TM2,  

Id(WXR1): WXR1 → WXR1, Id(WXR3): WXR3 → WXR3,  

Id(WAL1): WAL1 → WAL1, Id(WGR1): WGR1 → WGR1,  

Id(WIR1): WIR1 → WIR1 
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Composition 

(c3  о  m5) =  m4, (c1  о  m3) =  m4, (c4  о  m1) =  m5, (c2  о  

m1) =  m3, (c1  о  c2) =  c5, (cu1  о  m1) =  m7, 

(cu2  о  m7) =  m2, (m2  о  cu8) =  cu3,  

(m3  о  cu8) =  c2, (m4  о  cu8) =  c5, (m5  о  cu8) =  c4, 

(cu2  о  c7) =  cu4, (cu5  о  c8) =  cu4, (c6  о  c8) =  c7, (cu2  

о  c6) =  cu5, (c3  о  c4) =  c5, (cu2  о  cu1) =  cu3, (cu3  о  

m1) =  m2, (m7  о  cu8) =  cu1 

  

 

Axioms 

Identity:   x  Identity(S1) , y   Mor(S1), 

                  x о y  = y = y о x 

Associativity:  c1 о  (c2  о  m1) = (c1 о  c2 ) о m1  

                        c3 о  (c4  о  m1) = (c3 о  c4 ) о m1 

                        c1 о  (m3  о  cu8) = (c1 о  m3 ) о cu8 

                        c3 о  (m5  о  cu8) = (c3 о  m5 ) о cu8 

                        cu2 о  (cu1  о  m1) = (cu2 о  cu1 ) о m1 

                        cu2 о  (m7  о  cu8) = (cu2 о  m7 ) о cu8 

                        cu2 о  (c6  о  c8) = (cu2 о  c6 ) о c8 

Figure 5.2: CML Specification Model of a PAM Swarm Scenario  

Figure 5.3 shows the graphical model for the specification in Figure 5.2. 

  

Figure 5.3: CML Graphical Model of a PAM Swarm Scenario  
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5.2.2 CML Model for PAM Team Organization  

A typical PAM Petrologist consists of an X-ray worker, a Near Infrared worker, a Gamma-ray 

worker, a Thermal IR worker, and a wide field imager worker separated by tens of kilometers. 

The target or goals of the Petrologist team include determination of the abundances and 

distribution of elements, minerals, and rocks present, from which the nature of geochemical 

differentiation, origin, and history of the object, and its relationship to a 'parent body' could be 

inferred. The team also has one worker acting as a team messenger, which both communicates 

and cooperates with the sciencecraft. The team is part of a sub-swarm that has a ruler and a 

messenger spacecraft outside the team level. This section includes a model of the Petrologist team 

constructed using the Diagram construct grammar in section 4.7. Figure 5.4 includes the CML 

graphical model for PAM Petrologist team organization scenario.   

 

Figure 5.4: CML Graphical Model of the Petrologist Team Organization Scenario 
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Categories:  

TYPED-CATEGORY 

Petrologist Team  (PT1) 

Types of Objects  

Object_Type:                      Messenger (M) 

Object_Type_Instances:     Team Messenger (TM), 

Object_Type:                      Worker (W) 

Object_Type_Instances:     X-Ray (WXR), 

                                            Gamma Ray(WGR), 

                                            Infra-Red(WIR) 

Objects: Obj(PT1) 

TM: TM2 

WXR: WXR1 

WGR : WGR1  

WIR : WIR1 

Type of Morphisms 

Morphism_Type: Cooperation (c):            

W → W, TM → W 

Morphisms: Mor(PT1) 

c1 (WXR1) = WGR1,  c2 (TM2) = WXR1,  

c3 (WIR1) = WGR1, c4 (TM2) = WIR1, 

c5 (TM2) = WGR1 

Identity: Identity(PT1) 

Id(TM2): TM2 → TM2,  Id(WIR1): WIR1 → WIR1 , 

Id(WXR1): WXR1 → WXR1, Id(WGR1): WGR1 → WGR1 

Composition 

 (c3  о  c4) =  c5,  (c1  о  c2) =  c5 

 

 

Axioms 

Identity:   x  Identity(PT1) , y   Mor(PT1), 

                  x о y  = y = y о x  

 

TYPED-CATEGORY 

Index Category (IC) 

Types of Objects  

Object_Type:    Index (I) 

Objects: Obj(IC) 

I: i, j, k 

Type of Morphisms 

Morphism_Type: 

Index(ind):      I → I                                                                 

Morphisms: Mor(IC) 

α (i) = j, β (k) = j  

Identity: Identity(IC) 

Id(i): i → i, Id(j): j → j,  Id(k): k→ k   

Axioms 

Identity:   x  Identity(IC) , y   Mor(IC), 

                  x о y  = y = y о x  

 

Category Source: IC 

Category Target: PT1 
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DIAGRAM (D, IC, PT1) 

Diagram Objects 

Gamma Ray:         D(i): IC(i) → PT1(D(WXR1)) 

X-Ray:                  D(j): IC(j) → PT1(D(WGR1)) 

Infra-red:               D(k): IC(k) → PT1(D(WIR1)) 

 

Diagram  Morphisms 

Cooperation:  

D(α):  IC( j, i, α) → PT1(D(WXR1), D(WGR1)) 

D(β):  IC( j, k, β) → PT1(D(WIR1), D(WGR1)) 

Figure 5.5: CML Specification of the Petrologist Team Organization Scenario 

The typed category in the CML model listed in Figure 5.5 is the PAM Petrologist Sub-

swarm category.  To avoid repetition, wherever applicable the definition of a typed-

category is followed by (…) referring to the models constructed in the previous sections.  

5.2.3 PAM Self-Configuration / Team Relocation Scenario 

The virtual teams of spacecraft are configured to carry out optimal science operations on 

the target asteroids. When the operations are complete, the team breaks up for possible 

reconfiguration at another asteroid site. This reconfiguring continues throughout the life 

of the swarm. Reconfiguring may also be required as the result of a failure or anomaly of 

some sort. For example, when a worker‟s instrument is damaged or the team is without a 

messenger. This section includes a model that represents the Petrologist team‟s 

reconfiguration or relocation to a new sub-swarm where some of the spacecraft have been 

damaged or sent to accomplish new mission goals.  The specification in Figure 5.6 

captures the behavior of a team relocating to a new position in the sub-swarm. 
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Categories:  

TYPED-CATEGORY 

Petrologist Team (PT1) … 

TYPED-CATEGORY 

PAM Sub-swarm (S2) 

Types of Objects  

Object_Type:                    Ruler (R) 

Object_Type_Instances:   Leader (L)                    

Object_Type:                    Messenger (M) 

Object_Type_Instances:  Team Messenger (TM), 

                                               Sub-Swarm Messenger (SM) 

Object_Type:                   Worker (W) 

Object_Type_Instances:   Radio Sound (WRS), 

                                          Imager(WIM), 

                                          Infra-Red(WIR), 

                                          Helper(WH) 

Objects: Obj(S2) 

R: L1 

SM: SM1, SM3 

WRS: WRS1 

WIM : WIM3  

WIR : WIR3 

WH : WH1 

Type of Morphisms 

Morphism_Type: Data Update (du):         

W → L  

Morphism_Type: Management (m):         

L → SM  

Morphism_Type: Cooperation (c):            

W → W 

Morphism_Type: Communication (cu):  

SM → SM, W → SM , SM → L 

Morphisms: Mor(S2) 

m7 (L1) = SM1, c11 (WH1) = WIR3,  

c12 (WRS1) = WIR3, c9 (WH1) = WRS1,  

c10 (WH1) = WIM3, c8 (WRS1) = WIM3,  

cu10 (WRS1) = SM1, cu11 (WRS1) = SM3,   

cu12 (SM3) = SM1, cu13 (WH1) = SM1 

Identity:  Identity(S2) 

Id(L1): L1 → L1 , Id(SM1): SM1 → SM1,   

Id(SM3): SM3 → SM3,  Id(WRS1): WRS1 → WRS1, 

Id(WH1): WH1 → WH1,  Id(WIM3): WIM3 → WIM3,  

Id(WIR3): WIR3 → WIR3 

Composition 

(c8  о  c9) =  c10, (c12  о  c9) =  c11,  

(m7  о  du1) =  cu13, (cu10  о  c9) =  cu13,  

(cu11  о  c9) =  cu14,  (cu12  о  cu11) =  cu10,  

(cu12  о  cu14) =  cu13, (cu15  о  cu11) =  cu13, 

(cu13  о  cu9) =  cu14,  (c13  о  c9) =  c16,  

(cu15  о  cu14) =  cu16 

Axioms 

Identity:   x  Identity(S2) , y   Mor(S2), 

                  x о y  = y = y о x  

Associativity:   

cu12 о  (cu11  о  c9) = (cu12 о  cu11 ) о c9 

cu15 о  (cu11  о  c9) = (cu15 о  cu11 ) о c9 

 

Category  Source: PT1 

Category  Target : S2 

 

FUNCTOR (Team Relocation, R, PT1, S2) 
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Functor Objects 

 

Messenger:             

R(TM2): PT1 (TM2) → S2 (R(TM2):WH1) 

X-Ray:                   

R(WXR1): PT1 (WXR1) → S2 (R(WXR1) :WRS1) 

Infra-red:               

R (WIR1): PT1 (WIR1) → S2 (R(WIR1) :WIR3) 

Gamma Ray:               

R(WGR1): PT1 (WGR1) → S2 (R(WGR1) :WIR3) 

 

Functor Morphisms 

 

Cooperation:          

R(c1): PT1 (WXR1, WGR1, c1) →  

S2(R(WXR1): WRS1, R(WGR1): WIR3, R(c1): c12), 

R(c2): PT1 (TM2, WXR1, c2) →  

S2(R(TM2): WH1, R (WXR1) :WRS1, R(c2): c9), 
 

 

R(c3): PT1 (WIR1, WGR1, c3) →  

S2(R(WIR1): WIR3, R(WGR1) : WIR3, R(c3): Id(WIR3)), 

R(c4): PT1 (TM2, WIR1, c4) →  

S2(R(TM2): WH1 , R(WIR1): WIR3, R(c4): c11), 

R(c5): PT1 (TM2, WGR1, c5) →  

S2(R(TM2): WH1, R(WGR1): WIR3, R(c5): c11) 

 

 

Functor Composition       
 

R (c3 о c4)  =  R (c3) о R(c4)  =  R(c5) 

R (c1 о c2)  =  R (c1) о R(c2)  =  R(c5)  

 

Functor Axioms 

 

Identity:                R(Id(TM2))  =  Id(R(TM2))  

                              R(Id(WXR1))  =  Id(R(WXR1))  

                              R(Id(WIR1))  =  Id(R(WIR1))  

                              R(Id(WGR1))  =  Id(R(WGR1))   

Figure 5.6: CML Model for Team Relocation Scenario 

The model makes use of the functor construct grammar given in section 4.5 to specify the 

explained scenario. The graphical model for the specification in Figure 5.6 is given in 

Figure 5.7. 

5.2.4 PAM Spacecraft Role Change Scenario  

As the teams change from one configuration to another, the responsibilities of the 

spacecraft in that team could possibly change. This could be specified as the change of 

role that is a result of the reconfigurations. Figure 5.9 includes a CML model that 

specifies this scenario using the natural transformation grammar discussed in section 4.6. 

Natural transformation as explained in chapter 3 is the relationship between two functors 

where the source and target categories are the same for each functor. 
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Figure 5.7: CML Model for Team Relocation Scenario 
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The graphical model for the specification in Figure 5.9 is given in Figure 5.8. 

 

Figure 5.8: CML Model for Spacecraft Role Change Scenario 
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Categories:  

TYPED-CATEGORY 

Petrologist Team (PT1) … 

TYPED-CATEGORY 

PAM Sub-Swarm (S2) … 

Category  Source: PT1 

Category  Target : S2 

 

Functors:  

 

FUNCTOR (Reconfiguration, R, PT1, S2)… 

 

FUNCTOR (Team Relocation, R2, PT1, S2) 

 

Functor Objects 

 

Messenger:             

R2 (TM2): PT1 (TM2) → S2 (R2(TM2):WRS1) 

X-Ray:                   

R2 (WXR1): PT1 (WXR1) → S2 (R2 (WXR1):TM3) 

Infra-red:                

R2 (WIR1): PT1 (WIR1) → S2 (R2 (WIR1) :SM3) 

Gamma Ray:               

R2 (WGR1): PT1 (WGR1) → S2 (R2 (WGR1) :TM3) 

 

Functor Morphisms 

 

Cooperation:          

R2 (c1): PT1 (WXR1, WGR1, c1) →  

S2(R2 (WXR1): TM3, R2 (WGR1): TM3,  

R2 (c1): Id(TM3)), 

 

R2 (c2): PT1 (TM2, WXR1, c2) →  

S2(R2 (TM2): WRS1, R2 (WXR1) : TM3, R2 (c2): c13), 

R2 (c3): PT1 (WIR1, WGR1, c3) →  

S2(R2 (WIR1): SM3, R2 (WGR1) : TM3, R2 (c3): cu15), 

R2 (c4): PT1 (TM2, WIR1, c4) →  

S2(R2 (TM2): WRS1 , R2 (WIR1): SM3, R2 (c4): cu11), 

R2 (c5): PT1 (TM2, WGR1, c5) →  

S2(R2 (TM2): WRS1, R2 (WGR1): TM3, R2 (c5): c13) 

 

 

 

Composition       
 

 R2 (c3 о c4)  =  R2 (c3) о R2 (c4)  =  R2 (c5),  

 R2 (c1 о c2)  =  R2 (c1) о R2 (c2)  =  R2 (c5)  

 

Functor Axioms 

 

Identity:                R2 (Id(TM2))  =  Id(R2 (TM2))  

                              R2 (Id(WXR1))  =  Id(R2 (WXR1))  

                              R2 (Id(WIR1))  =  Id(R2 (WIR1))  

                              R2 (Id(WGR1))  =  Id(R2 (WGR1))   

 

Functor Ids: R, R2 

 

NAT_TRANSFORMATION (Role Change,  )  

 

NTrans Functors 

 

Reconfiguration: 

Relocation (R): PT1  S2 , 

Relocation (R2): PT1  S2 

 

 

NTrans Objects 

 

PT1:    

Messenger: TM2,  

Worker: WXR1, WIR1, WGR1 

 

NTrans Mapping Function 

 

 ( TM2) : R(TM2)  R2(TM2)  
 ( WXR1) : R(WXR1)  R2(WXR1)  

 ( WIR1) : R(WIR1)  R2(WIR1)  
 ( WGR1) : R(WGR1)  R2(WGR1)  

 

 

NTrans Morphisms 

 

Cooperation:         R(c1):  R(WXR1) → R(WGR1), 

   R(c2):  R(TM2) → R(WXR1), 
  R(c3):  R(WIR1) → R(WGR1), 
  R(c4):  R(TM2) → R(WIR1), 
  R(c5):  R(TM2) → R(WGR1), 

                              R2(c1):  R2 (WXR1) → R2 (WGR1), 

   R2 (c2):  R2 (TM2) → R2 (WXR1), 
  R2 (c3):  R2 (WIR1) → R2 (WGR1), 
  R2 (c4):  R2 (TM2) → R2 (WIR1), 
  R2 (c5):  R2 (TM2) → R2 (WGR1) 
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NTrans Axioms 

 

Commutativity:         

 

 x, y  Obj(PT1), f : x → y  Mor(PT1), 

R2(f ) о  ( x)  =   ( y) о R (f ) 

 

 

Figure 5.9: CML Model for Role Change Scenario in PAM 

5.2.5 PAM Team Messenger Cooperation 

The cooperation of the PAM Petrologist Team Messenger cooperating with the team 

workers is specified using the cone construct grammar included in section 4.8. The 

inverse scenario could be modeled using the co-cone construct grammar listed in section 

4.9. Together the two models represent the complete working scenario of a Petrologist 

team messenger, or any team messenger for that matter. Figures 5.10 and 5.12 include the 

CML specification of a typical PAM team messenger cooperation scenario. The 

specification in Figure 5.10 captures the behavior of the team messenger communicating 

information to the team while Figure 5.12 specifies the behavior of a team messenger 

receiving data from the team.  

 

Diagram:  

DIAGRAM (D, IC, PT1) … 

Category Id:  PT1 

Diagram Id:  D 

 

CONE (Object: TM2) 

 

 

 

Cone Objects 

D(i), D(j), D(k) 

 

Cone  Morphisms 

 

Cooperation:         TM2(k): TM2  → D(k), 
                              TM2(j): TM2  → D(j), 

                              TM2(i): TM2  → D(i) 

Cooperation:         D(α):  D(i) → D(j) 

                              D(β):  D(k) → D(j) 

Figure 5.10: PAM Team Messenger Communicating to the Team 
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Figure 5.11 and 5.13 include the graphical models for the specification in Figure 5.10 and 

5.12. 

 

Figure 5.11: CML Graphical Model of a PAM Team Messenger Communication 

 

Diagram:  

Category Source: IC3 

Category Target: S1  

DIAGRAM (D3, IC3, S1) 

Diagram Id: D3 

 

Diagram Objects 

X-Ray:                   D3(i): IC(i) → S1(D3(WXR3)) 

Altimeter:              D3(j): IC(j) → S1(D3(WAL1)) 

 

 

 

Diagram  Morphisms 

Cooperation:  

D3(α):  IC( i, j, α) → S1(D3(WXR3), D3(WAL1)) 

 

CO-CONE (Object: TM1) 

 

Co-Cone Objects 

 

D3(i), D3(j) 

 

Co-Cone  Morphisms 

 

Cooperation:        TM1(j):  D3(j)  → TM1, 

                             TM1(i): D3(i)  → TM1, 

Cooperation:        D3(α):  D3(i) → D3(j) 

 

Figure 5.12: PAM Team Messenger Receiving Data from the Team 



 

 

   82 

5.2.6 PAM Self-Protection Scenario 

Besides avoiding collisions with asteroids and other spacecraft, PAM teams must protect 

themselves from solar storms, where charged particles can destroy the sensors and 

electronic mechanisms, and damage the solar sails. In such situations, PAM spacecraft 

must re-organize their trajectories, or, in worst-case scenarios, must go into the “stand 

by” mode to protect their sails and instruments and other subsystems.  

After receiving a confirmation from a sub-swarm leader regarding a solar storm, a sub-

swarm messenger communicates this information to the other sub-swarm messengers. All 

sub-swarm messengers inform their team messengers which in turn inform all the 

workers in the team. Each spacecraft after receiving a warning message and performing 

necessary communication puts itself to a “stand by” mode. Figure 5.13 includes a CML 

model for this scenario constructed using the limit construct grammar discussed in 

chapter 4 section 4.10. The graphical model for the specification in Figure 5.13 is given 

in Figure 5.14. 

 
Diagram:  

DIAGRAM (D, IC, S1)… 

Cones: 

CONE (Object: TM2)… 

CONE (Object: L1) 

 

Co-Cone Objects 

D(k), D(j), D(i), 
 

Co-Cone  Morphisms 

 

Management:        L1(k): L1  → D(k), 
                              L1(j): L1  → D(j), 

                              L1(i): L1  → D(i) 

 

Communication:   D(α):  D(k) → D(l) 

                              D(β):  D(j) → D(k) 

 

 

Category Id: S1 

Diagram Id:  D 

Cone Ids: TM2, L1 

 

LIMIT 

Terminal Object: TM2 

Unique Morphism(u): m1: L1 → TM2 

 

Limit  Objects 

D(i), D(j), D(k) 
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Limit  Morphisms 

 

Management:        L1(k): L1  → D(k), 
                              L1(j): L1  → D(j), 

                              L1(i): L1  → D(i) 

 

Cooperation:         TM2(k): TM2  → D(k), 
                              TM2(j): TM2  → D(j), 

                              TM2(i): TM2  → D(i), 

                              D(α):  D(i) → D(j), 

                              D(β):  D(j) → D(k) 

 

 

 

Limit  Axioms 

 

m1  о L1(i)  = TM2(i)    

m1  о L1(j)  = TM2(j)    

m1  о L1(k)  = TM2(k)    

Figure 5.13: CML Model for PAM Self-Protection 

 

Figure 5.14: CML Model for PAM Self-Protection 

5.2.7 Leader Spacecraft Receiving Data Scenario 

This section includes the specification of a scenario for a PAM Sub-Swarm Leader 

spacecraft receiving data from the team messengers. The scenario is from the sub-swarm 

S4. The typed-category specification for S4 is not included to avoid repetition of the PAM 
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Sub-swarm specification. The model is constructed using the co-limit construct grammar 

discussed in section 4.11 in chapter 4. Figure 5.15 includes the complete model of the 

mentioned scenario. The graphical model for the specification in Figure 5.15 is shown in 

Figure 5.16. 

 

Diagram:  

Categories: 

TYPED-CATEGORY 

PAM Sub-swarm (S4)… 

TYPED-CATEGORY 

Index Category (IC2) 

Types of Objects  

Object_Type:    Index (I) 

Objects: Obj(IC2) 

I: k, l 

Type of Morphisms 

Morphism_Type: 

Index(ind):      I → I                                                                 

Morphisms: Mor(IC2) 

α (k) = l 

Identity: Identity(IC2) 

Id(k): k → k, Id(l): l → l  

Axioms 

Identity:  Id(k)  о α  = α = α о Id(k)  

 

Category Source: IC2 

Category Target: S4 

 

DIAGRAM (D, IC, S4) 

Diagram Objects 

Team-Messenger:   D(k): IC2(k) → S4(D(TM2)) 

Altimeter:               D(l): IC2(l) → S4(D(TM1)) 

Diagram  Morphisms 

Cooperation:  

D(α):  IC2( k, l, α) → S4(D(TM2), D(TM1)) 

Communication:  D(α):  D(k) → D(l) 

 

Co-Cones: 

CO-CONE (Object: L1)… 

CO-CONE (Object: SM1) 

 

Co-Cone Objects 

D(k), D(l) 

 

Co-Cone  Morphisms 

 

Communication:   SM1(k): D(k)  → SM1, 
                              SM1(l):  D(l)  → SM1 

Communication:   D(α):  D(k) → D(l) 

Category Id: S4 

Diagram Id:  D 

Co-Cone Ids: L1, SM1 

 

CO-LIMIT 

Initial Object: SM1 

Unique Morphism(u): SM1 → L1 

 

Co-Limit  Objects 

D(k), D(l) 
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Co-Limit  Morphisms 

 

Cooperation:         L1(k): D(k)  → L1, 
                              L1(l):  D(l)  → L1 

                              SM1(k): D(k)  → SM1, 
                              SM1(l):  D(l)  → SM1 

                              D(α):  D(k) → D(l) 

 

 

  

Co-Limit  Axioms 

 

L1(k)   о u =  SM1(k)    

L1(l ) о u =  SM1(l)   

Figure 5.15: Leader Spacecraft Model in PAM 

 

Figure 5.16: Leader Spacecraft Model in a PAM Sub-swarm 

5.2.8 PAM Sciencecraft Cooperation  

Sciencecraft cooperation to achieve the 3D Model data of an asteroid is shown in Figure 

5.17. The model has been constructed using the product construct grammar given in 

section 4.12.  
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Category:  

TYPED-CATEGORY 

PAM Sub-Swarm (S1) … 

Category Id: S1 

 

PRODUCT (Imaging Cooperation, S1) 

 

Product Objects 

 

Worker: WIM3, WRS1, WH1 

Product: WIM3   WRS1 

 

 

Product Morphisms 

 

Projection:           pIM3  : WIM3   WRS1 → WIM3 

                             pRS1  : WIM3   WRS1 → WRS1 

    

Cooperation:        c9: WH1 → WRS1 

   c10: WH1 → WIM3 

 

Unique:                 u: WH1 → WIM3   WRS1 

 

Product Axioms 

 

Composition:        pIM3  о  u =  c10 

     pRS1  о  u =  c9 

Figure 5.17: PAM Team Cooperation Behavior Specification 

 

Figure 5.18: PAM Team Cooperation Graphical Model 
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The unique morphism u in the model specifies the role of the sub-swarm Leader in this 

cooperation scenario where the leader is supervising the cooperation of the sciencecraft to 

gather the optimal data.  The graphical model for the specification in Figure 5.17 is given 

in Figure 5.18. 

5.3 Conclusion 

This chapter includes a discussion on different CML models constructed for different 

mission scenarios of the PAM. The models correspond to the patterns of behavior or 

high-level behavior policies of the PAM.    
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6 CATCanvas: CAT Modeling Tool 

6.1 Introduction 

This chapter includes a concise discussion on the CAT modeling tool written as a part of 

this research. The name of this modeling tool is CATCanvas inspired from the way the 

CAT visual models are constructed on a drawing canvas. So far two constructs of CAT 

have been implemented in CATCanvas, that is, the Category and Functor construct. For 

every construct there is a separate view and separate drawing canvases. The CAT model 

could be either drawn manually on the respective canvas or imported from an xml file to 

the canvas. Similarly, the model could be exported in xml format. The tool is also capable 

of saving the constructed model as a „png‟ image.  

The need for implementing CATCanvas is two-fold. First and most important of all 

reasons is the absence of an existing tool of this nature for constructing CAT diagrams. 

There is one tool known as Category Theory 3.0 [56] that is also a graphical 

diagramming tool like CATCanvas with the differences between the two listed in Table 

6.1. To summarize, CATCanvas is a UI friendly web-based tool aimed at computer 

science audience rather than mathematicians. It makes use of the abstraction power of 

category theory and enables one to create typed categories and functors. The second and 

most important reason for the implementation of CATCanvas is its use by our research 

group for easy construction/drawing of the CML-based CAT models and porting these 
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models from this tool to other tools. Figure 6.1 consists of a snapshot of the default view 

of the CATCanvas. 

Table 6.1: CATCanvas vs. Category Theory 3.0 [56] 

CATCanvas Category Theory 3.0                                                                          

Category is typed and one could construct 

and work with any type of category  

Work with a certain group of Categories 

in Math (finitely generated Abelian 

Groups [57], Vector Spaces, Finitely 

Generated Algebra, Finite Sets 

Computer Science Friendly Very Math Extensive 

Powerful Functor Mapping with 

Source/Target categories in view and UI 

friendly mapping of objects and 

morphisms 

Functors Generated using Mathematical 

Calculation  

Math symbols available in objects and 

morphisms properties editor 

 

Formula Editor for Objects and 

Morphism 

Two Category Constructs Available More Category Constructs Available 

Naming Flexibility (Objects, Morphisms, 

Category, Functor) 

Pre-defined Naming (Objects, Morphism, 

Category, Functor) 

Powerful Drawing Canvas with ability to 

curve the morphism arrows and choose 

colors for objects/morphisms. 

Very Limited drawing Canvas with pre-

defined color‟s and straight lines for 

morphisms  

XML Import Export Available XML Import/Export Not Available  

Ability to Save PNG Images Cannot Save Image File 

Available Online Desktop Application 

CATCanvas is a Flex-based web application running in flash player 10.0. The reason for 

choosing Adobe Flex [58] for CATCanvas was mainly because of the tools availability 

online and for the quality purposes of the flex‟s flash-based graphics/drawing library. 
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Figure 6.1: CATCanvas Default View 

The choice of the development platform was made after writing comparison prototypes in 

both Java and Flex.  

6.2 Architecture of CATCanvas 

CATCanvas is a web-based application running in a flash player. The UI is a flex-based 

Web UI built using mxml controls. The drawing tools on the Web UI use the graphics 

library for rendering the diagrams on the canvas. There is a „Rules Engine‟ in 

CATCanvas that is responsible for the construction of categorically correct models. The 

„Rules Engine‟ plays an active role when performing functor mappings. For the 

constructed diagrams/models, the XML generator can generate XML specification and 

send to the Web UI in order to export the specification to a file.  The XML parser can 

parse an XML file and send the data to the Web UI to render the graphical model with the 
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help of the „Graphical API‟. Figure 6.2 shows a block diagram of the architecture of the 

tool. 

 

Figure 6.2: Architecture of CATCanvas 

6.3 List of Features 

In Figure 6.1 we can see the layout of the tool in the form of named views. The look and 

feel of the application is that of a windows application but these are actually panels/views 

in Flex. The discussion in this section consists of the explanation of every view along 

with the list of features contained in that view. Some of the views will in turn have sub-

views that would be explained whenever required.  

6.3.1 Titlebar and Toolbar 

Unlike traditional web application, CATCanvas consists of a title bar and a toolbar. The 

title bar has a black background with name and icon of the tool in an orange foreground. 

CATCanvas 

Web UI 

Graphics  
API 

 XML Parser & 

Generator 

Rules 
Engine 
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Just below the title bar comes the toolbar that consists of the traditional  „New‟, 

„Open‟, „Save‟ and  „Print‟ buttons for CAT constructs, category and 

functor.  

6.3.2 Main Window 

Under the Toolbar, there is a Tool Pane and a Main Window. The Main Window consists 

of the TabStrip for Category and Functor views. Switching between the Category Tab 

and the Functor Tab has an impact on the content/views inside the tabs and on the Tool 

Pane as well. For the functor tab, the layout is very different from that of a category tab. 

6.3.3 TabStrip 

The TabStrip consists of two tabs, that is, the Category Tab and the Functor Tab. Each 

tab in turn consists of drawing areas also known as the canvas and a properties panel with 

different views for each tab based on the requirement of the construct. The views on each 

tab have horizontal  and vertical  dividers in between each view that enable 

resizing of the view as well.  

6.3.4 Tool Pane 

The Tool Pane consists of a basic set of tools for working in each tab. Figure 6.3 (a) 

shows the Tool Pane for the Category Tab and Figure 6.3 (b) consists of the Tool Pane 

for the Functor Tab.  
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Figure 6.3: (a) Tool Pane Category Tab; (b) Tool Pane Functor Tab 

Category Tool Pane  

This tool pane consists of five buttons/tools. The shaded  „Reset/New Category‟ tool 

is used to create a new typed category. Selecting this tool also wipes out the current 

model under construction. The shaded tool represents the current tool roll-over for 

scrolling through the tools on the Tool Pane.  The next tool is the  „Add an Object‟ 

tool used to add a new object to the model being constructed on the canvas.  

„Import XML‟ from its name is the button used to import a file from the library. 

Similarly,  „Export XML‟ is used to export the xml for the constructed model. 

Finally,  „Export PNG‟ is used to export an image of the visual model.  

Functor Tool Pane 

This tool pane consists of seven buttons/tools in total. „Reset/New Functor‟ is used to 

reset the screen and create a new functor. Pressing this button resets all the panes and sets 
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the canvases ready for a new model.  „Import Source XML‟, and  „Import 

Target XML‟ are used to for importing source and target category xml into the tool. 

Similarly,  „Export Functor XML‟ is used to export the xml for the constructed 

functor. , ,  are used to export png image for source category, target category 

and the functor mapping table respectively.  

6.3.5 Drawing Canvas 

The panel window inside the tab window consists of the name of the category on the 

panel title bar and the model is constructed on the canvas with a white background. For 

Category tab there is only a single canvas available. For the Functor tab there are two 

canvases, one for the source category and the other for the target category. It is possible 

to zoom and pan on the canvases. The canvases also have vertical and horizontal 

scrollbars to accommodate models requiring more page space. 

Zoom In/ Zoom Out 

It is possible to zoom-in and zoom-out on the models constructed on the canvas using the 

lever shown in Figure 6.4. The level sits on top of the canvas and is part of the canvas 

itself.  

 

Figure 6.4: Canvas Zoom In/Zoom Out 
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The default and the maximum zoom is 100% and as the minus „-‟ button is pressed, the 

zoom percentage decreases. This is a nifty tool and comes in handy if the canvas is 

longer/wider than the viewport.  

6.3.6 Category Properties 

Figure 6.5 (a) shows the canvas panel where the name of the category appears. Tapping 

once on the canvas panel with a mouse-click shows the Category Properties property 

window shown in Figure 6.5(b). By default, the name of a category is „Category – New 

Category‟.  

        

Figure 6.5: (a) Canvas Panel w/ Name of the Category in the Title; (b) Property 

Window Category Properties 

6.3.7 Adding an Object  

We saw earlier while discussing the Tool Pane for category tab the tool used to add an 

object. Figure 6.6 shows a snapshot of an object being adding to My CAT category 

canvas using the „Add an Object‟ button. The object is added with a default color that is 

yellow with a black outline.  
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Figure 6.6: Adding an Object to My CAT 

6.3.8 Object Properties 

In order to customize an object, click on the object on the canvas with a single mouse 

click which will pop-up the property window „Object Properties‟ shown in Figure 6.7 (a). 

 

      

Figure 6.7: (a) Object Properties; (b) List of Symbols; (c) Color-pickers 

The name of an object could be up to three characters and can include mathematical 

symbols as well. The drop-down right next to the name input field consists of a list of 

some basic mathematical symbols available to be inserted, Figure 6.7 (b). The type field 
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has a drop-down for values. This drop-down is populated using the type creation view. 

The two color-pickers in the bottom are for background and foreground color selection 

respectively Figure 6.7 (c). The three buttons on the right present three different views. 

enables you to delete the object as shown in Figure 6.8(a). is to switch back to 

„Object Properties default view given in Figure 6.7 (a). Finally, is used to select the 

view used to add a new object type for the model being constructed. The view is shown 

in Figure 6.8 (b). 

                

 

Figure 6.8: (a) Delete Object View; (b) Add Another Type View 

To create a new type a type name and a type color is to be assigned/ defined. On pressing 

„OK‟ the name and color defined for this type is saved and the type appears in the type 

drop-down box in „Object Properties‟. This enables definition of types separately and 

effectively for separate models.  

6.3.9 Adding a Morphism 

Self-morphisms are not supported in CATCanvas to avoid cluttering the diagram. So, in 

order to add a morphism, at least two objects should be present on the canvas. A 
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morphism could be created from the source object, hovering over the source object shows 

an arrow tool . Figure 6.9(a) shows the popping-up of the arrow tool upon hovering 

over the source object. In order to draw the morphism, the arrow tool is clicked and 

pressed till the target object and released. This finishes drawing/adding of the morphism 

between two objects in a category. Figure 6.9 (b) shows the morphism added using the 

arrow tool to category My CAT between objects i and j.  

 

            

Figure 6.9: (a) Arrow Tool; (b) Morphism b/w Objects i and j 

6.3.10  Morphism Properties 

Similar to „Object Properties‟ morphism properties could also be defined using a property 

window named „Morphism Properties‟ shown in Figure 6.10 (a). The property window 

will appear whenever a morphism is clicked once. Similar to property window for an 

object, this also has three buttons for the three different views  „Morphism Properties‟, 

„Add a Type‟ and „Delete the Morphism‟.  
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Figure 6.10: (a) Morphism Properties; (b) Morphism Type Definition;  

(c) Deleting a Morphism 

Figure 6.11 includes a customized morphism based on the properties set using the 

property window „Morphism Properties‟ view. The name of the morphism consists of a 

mathematical symbol π.  

 

Figure 6.11: Morphism Properties Set Using the Property Window 

Deleting a morphism does not delete the source and target objects. Type definition comes 

in handy when working with typed categories but is not shown in the form of labels in the 

visual model. The color of the arrow serves the purpose here. Figure 6.12 includes a 

complete category constructed using CATCanvas on the Category tab. Identity and 
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composition morphisms are not shown in the visual model to avoid cluttering the model 

but are assumed present. The colors of the objects and morphisms indicate types. 

 

Figure 6.12: Category PAM Team Constructed using CATCanvas 

6.3.11  Category XML Export 

Figure 6.13 shows the XML export scenario for category given in Figure 6.12.  
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Figure 6.13: PAM Team XML Export – Save File 

Figure 6.14 includes a snapshot of the exported XML specification for the PAM model in 

Figure 6.12. 

 

Figure 6.14: PAM Team XML Export Output 
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6.3.12  Functor Tab 

The Functor tab as mentioned earlier consists of two canvases, one for the source 

category and another for the target category. There are no property windows in this tab. 

The source and target categories are imported from XML files and based on the input, the 

models are constructed. It is not possible to make changes to the category models in this 

tab. Figure 6.15 shows the layout of the Functor tab. 

 

 

Figure 6.15: CATCanvas Functor Tab 
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6.3.13  Functor Mapping 

From the definition of a Functor in chapter 3, a functor maps all objects in source 

category to selected objects of the target category. This is done in the panel “Functor 

Mapping (F)” shown in Figure 6.15. The „refresh‟ button updates the table with data from 

the imported files. The purpose of the „undo‟ button is to revert a wrongly done mapping. 

„Undo‟ is like a queue working on the „last in last out‟ principle until the very first 

mapping. Figure 6.16 shows the first few steps in construction of a functor. 

 

 

Figure 6.16: Source and Target Categories Imported 
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To begin the mapping, first the morphism row to be mapped is selected from the „Source 

Category‟ table in the Functor Mapping Panel. To perform the mapping the selected row 

is dragged using the mouse click from the „Source Category‟ table and dropped onto a 

morphism row in the „Target Category‟ table. As soon as the morphism row starts 

dragging, an indicator icon appears by its side indicating whether it is possible to drop the 

row at the point it is currently at. A red indicator icon with a white cross indicates it is not 

possible to drop the row or do the mapping, while a green icon with a white plus indicates 

the possibility of a mapping.  

 

Figure 6.17: Source Morphism Row being Dragged with a Red Indicator Icon 

While the morphisms are being mapped in this process, the source and target objects of 

the morphisms are mapped as well. Figure 6.17 shows the dragging row with a red 

indicator icon. Figure 6.18 shows a row being dragged with a green indicator icon.  

 

Figure 6.18: Source Morphism Row being Dragged with a Green Indicator Icon 
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As soon as the source category morphism row is dropped onto the target category 

morphism row, the table Functor Objects/Morphism is instantly populated with the 

freshly done mapping. Also, the „Source Category‟ table gets updated with the mapped 

objects indicating the target category mapped object. Similarly, the mapped morphism in 

the „Source Category‟ gets updated with the mapping information similar to this 

m6:Id(I1). This also helps the user performing the mapping to know what objects and 

morphism have been mapped already. Figure 6.19 shows a successful morphism/object 

mapping. 

 

Figure 6.19: Fist Morphism/Object Mapping 

For the morphism that has not yet been mapped but the source and/or target objects have 

been mapped already in the first mapping, the mapping would be intelligent to restrict the 

mapping wherever necessary. For example, in Figure 6.18 morphism m1 has not been 

mapped yet but in the first mapping, object O1 in source category was mapped to object 

I1 in target, so the possible mappings for m1 would be n1, n6 and Id(I1) in the target 

category. The tool will restrict the mapping for any other morphism as show in Figure 

6.20 and Figure 6.21.    
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Figure 6.20: Attempt to Map m1 in Source Category to Id(I3) in Target Category 

 

Figure 6.21: Mapping m1 in Source Category to n6 in Target Category 

 

Figure 6.22: Successful Mapping of m1 in Source Category to n6 in Target Category 
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Figure 6.23: Functor Mapping Complete  

The mapping of the morphisms continues as shown in Figure 6.22 until there are no more 

morphisms and objects left to be mapped. 

6.3.14  Functor XML Export 

 

Figure 6.24: Functor XML Import Save File 
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Once the mapping is complete, it is possible to generate the XML for the constructed 

Functor to an output file.  Figure 6.24 shows a „save‟ dialog box for the generated XML. 

The XML specification for the constructed functor is included in Figure 6.25.   

  

Figure 6.25: Functor Exported XML 

6.3.15   Saving PNG Image 

The tool makes it possible to save a snapshot of the constructed graphical model in .png 

format for the source category, the target category and the mapping table. 

 

Figure 6.26: Functor – Source Category PNG 
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Figure 6.26, 6.27 and 6.28 show the captured snapshot for the source category, the target 

category and the mapping table respectively.  

 

Figure 6.27: Functor – Target Category PNG 

 

Figure 6.28: Functor – Functor Mapping Panel PNG 

6.4 Conclusion 

The chapter presented a concise discussion of the first release of the CATCanvas, the 

CAT modeling tool. An attempt has been made to include a list of all available features. 

The functionality that will be developed in the future releases of the tool along with a list 

of possible extensions is included in chapter 7.  
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7 Conclusion & Future Work 

Swarm-based systems are based on the concept of an insect swarm depicting entities of 

the swarm interacting to accomplish a set of goals. To achieve a behavior similar to an 

insect colony, a swarm-based system is inherently autonomous and autonomic.  Because 

of the behavioral complexity, modeling and specification of such systems is a challenge. 

This thesis proposes a modeling language termed Categorical Modeling Language or in 

short, CML for specification of the complex behavior of a swarm-based system, for 

example, ANTS-based PAM. CML is primarily based on Category Theory (CAT) in 

mathematics. The contributions of the work presented in this thesis are  summarized 

below: 

1. Study the application of CAT to software engineering domain. 

2. Application of CAT as a formal method for behavioral specification of swarm-

based systems. 

3. Proposing a modeling language based on CAT as a formal method.   

a. Construction of a grammar for the specification language. 

b. Defining the visual/graphical model notation.  

4. Application of the proposed modeling language to NASAs PAM case study. 

5. Development of a modeling tool for the proposed modeling language.  
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CAT and swarm-based systems have the social life concept in common which laid the 

foundation for this research. The case study, NASA‟s PAM concept mission is based on 

NASA‟s swarm-based ANTS architecture. The researchers at NASA in [21, 22, 23] also 

indicated the possibility of CAT to serve as a formal method for the behavioral 

specification of swarm-based systems including PAM. CAT consists of a set of 

constructs that are applicable to the concept of a category. Each construct consists of a set 

of axioms that must hold true for the application of that construct. For the course of this 

research, only a subset of CAT constructs were studied for application to the case study.  

CML introduced in this thesis is proposed as a model-based specification language based 

on CAT as a formal method for behavioral specification. The language consists of visual 

models as well as specification of the visual models. A significant portion of the work 

done in this research goes into writing of an EBNF based grammar for the CML 

specification. Together with the visual models and the specification, CML could prove to 

be a promising methodology for reasoning about swarm-based systems and for 

behavioral specification of such systems. As for the future work, the above-mentioned list 

of goals could be used as a point of reference.  

Verifying Emergent Behavior 

One of the few challenges of specifying a swarm-based system is specification and 

verification of the emergent behavior. CML has not yet been studied to verify the 

specified emergent behavior of a system. This could be a possible path for future 

research. 
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CAT as a Formal Method 

One of the possible directions for future work could be conducting further study on 

category theory constructs not included in this thesis.  

CML to Include More Constructs 

So far CML doesn‟t include the grammar for all of the CAT constructs. In future, all of 

the remaining CAT constructs could be included in CML. 

Specifying Autonomic Behavior 

In this thesis only two of the self-* autonomic properties of PAM were studied and 

modelled using CML. In future, the other properties could be studied and modelled using 

CML.  

CATCanvas 

The modeling tool presented in this thesis known as CATCanvas has room for additions 

and improvements: 

a. So far only typed category and functor constructs have been implemented. Future 

work can include implementation of Natural Transformation, Limit and Co-Limit. 

b.  The tool generates XML specification at this point. In the future, the tool could 

be extended to include the CML specification as well. 

c. Some bugs in the current version could be fixed in the future versions: 

1. Deleting an object 

2. Upon deletion of morphism, the morphism name should be removed as 

well. 
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d. Layouts for the visual models  

e. The tool could be extended to save project files in addition to xml output. 
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9 Appendix. 

Pull-Back 

 

<Pull-Back>::=            Category: <Typed_Category> (<Cat_name> , <Cat_Id>)  

                                     PULLBACK (Pullback Object: <Obj_Pullback>,  

                                                             Triplet Object: <Obj_Triplet>, 

                                                             Pullback Morphisms: <PB_Mor>, <PB_Mo> 

                                                             Triplet Morphisms: <T_Mor>, <T_Mo> 

                                                             Unique Morphism: <PB_Mor_Unique>) 

                                      Diagram Objects <PB_Object><PB_Object><PB_Object> 

                                      Diagram Morphisms <PB_Morphism><PB_Morphism> 

                                      Pullback Axiom  {<PB_Axiom>}
+
 

 

<Obj_Pullback>::=      <Obj_Terminal> 

 

<Obj_Terminal>::=      <Obj_type_Id><Obj_instance_Id> 

 

<Obj_Triplet>::=          <Obj_type_Id><Obj_instance_Id> 

 

<PB_Mor>::=               <Mor_type_Id><Mor_instance_Id>:   

                                     <Obj_Pullback>  →  <Obj_type_Id> <Obj_instance_Id> 

 

<T_Mor>::=                 <Mor_type_Id><Mor_instance_Id>:   

                                     <Obj_Triplet>  → <Obj_type_Id> <Obj_instance_Id> 

 

<PB_Mor_Unique>::= <Mor_Id>: <Obj_type_Id> <Obj_instance_Id>  →  <Obj_Pullback>   

 

<PB_Object>::=            Obj_Type: <Obj_type> <Obj_type_Id><Obj_instance_Id>   

                                                      {,<Obj_type_Id><Obj_instance_Id>}* 

 

<PB_Morphism>::=      Mor_Type: <Mor_type> : <Mor_type_Id><Mor_instance_Id>:   

                                     <Obj_type_Id> <Obj_instance_Id>  →  <Obj_type_Id> <Obj_instance_Id> 

 

<PB_Axiom>:=           <PB_Mor> о <PB_Morphism>  =  <PB_Mor> о <PB_Morphism>     

                                  

 

PAM Petrologist Team Messenger Scenario Modeled using PULLBACK construct  

 

Category :(Photogeologist Team, PGT) 

PULLBACK 

Pullback Object: TM3, 

Triplet Object: L2, 

Pullback Morphisms: tm1 : TM3  → WIR2, 

                                   tm2 : TM3  → WIM2 

Triplet Morphisms:    l1 : L2  → WIR2, 

                                   l2 : L2  → WIM2 

Unique Morphisms:   u: L2 → TM3 
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Diagram  Objects 

Worker: WIM2, WIR2, WRS2 

 

Diagram  Morphisms 

Cooperation:         c21: WIM2  → WRS2 , 
                              c18: WIR2  → WRS2 

 

Pullback  Axiom 

tm1  о c18  = tm2  о c21   

 

 

 

 

 

 

 

Push-Out 

 

<Push-Out >::=            Category: <Typed_Category> (<Cat_name> , <Cat_Id>)  

                                     PUSHOUT(Pushout Object: <Obj_Pushout>,  

                                                        Triplet Object: <Obj_Triplet_PO>, 

                                                        Pushout  Morphisms: <PO_Mor>, <PO_Mo> 

                                                        Triplet Morphisms: <POT_Mor>, <POT_Mo> 

                                                        Unique Morphism: <PO_Mor_Unique>) 

                                     Diagram Objects <PO_Object><PO_Object><PO_Object> 

                                     Diagram Morphisms <PO_Morphism><PO_Morphism> 

                                     Pullback Axiom  {<PO_Axiom>}
+
 

 

<Obj_Pushout>::=      <Obj_Initial> 

 

<Obj_Initital>::=        <Obj_type_Id><Obj_instance_Id> 

 

<Obj_Triplet_PO>::= <Obj_type_Id><Obj_instance_Id> 

 

<PO_Mor>::=             <Mor_type_Id><Mor_instance_Id>:  <Obj_type_Id> <Obj_instance_Id> →  

                                                                                                 <Obj_Pushout>   

 

<POT_Mor>::=          <Mor_type_Id><Mor_instance_Id>:   <Obj_type_Id> <Obj_instance_Id> →   

                                                                                                 <Obj_Triplet_PO>     

 

<PO_Mor_Unique>::= <Mor_Id>: <Obj_Pushout>  →  <Obj_type_Id> <Obj_instance_Id>   

 

<PO_Object>::=             Obj_Type: <Obj_type> <Obj_type_Id><Obj_instance_Id>   

                                                       {,<Obj_type_Id><Obj_instance_Id>}* 

Pullback TM3 

  

 

u 

TM3 

   L2 

WIM2 WIR2 

WRS2 

tm1 tm2 

l1 l2 

c21 c18 
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<PO_Morphism>:=        Mor_Type: <Mor_type> : <Mor_type_Id><Mor_instance_Id>:   

                                     <Obj_type_Id> <Obj_instance_Id>  →  <Obj_type_Id> <Obj_instance_Id> 

 

<PO_Axiom>:=           <PO_Morphism> о <PO_Mor> =  <PO_Morphism> о <PO_Mor> 

                                  

 

 

 

 
 

 

 

PAM Sub-Swarm Leader Team Messenger Scenario Modeled using PUSHOUT construct  

 

Category :(Sub-Swarm, S3) 

PUSHOUT 

Pushout Object: L2, 

Triplet Object: SM4, 

Pushout Morphisms:  l1 : TM4  → L2, 

                                   l2 : TM5  → L2 

Triplet Morphisms:    sm2 : TM5  → SM4, 

                                   sm1 : TM4  → SM4 

Unique Morphisms:   u: L2 → SM4 

 

Diagram  Objects 

Messenger: TM4, TM5, TM6 

 

Diagram  Morphisms 

Communication:        cu1: TM6  → TM4, 
                                   cu2: TM6  → TM5 

 

Pullback  Axiom 

cu2  о l2  = cu1  о l1   
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Co-Product 

 

<Co-Product>::=          Category: <Typed_Category> (<Cat_name> , <Cat_Id>)  

                                      CO-PRODUCT (<Co-Prod_name> , <Cat_Id>)  

                                      Co-Product Objects {Obj_Type: <Obj_type>: <Prod_Object>,}
+
  

                                                                         Co-Product: <Obj_CP>   

                                      Co-Product Morphisms {<Co-Prod_Morphisms>}
+
  

                                      Co-Product Axioms <Co-Prod_Axioms> 

 

<Co-Prod_Object>::=        <Obj_type_Id> <Obj_instance_Id> 

 

<Obj_CP>::=                    <<Obj_type_Id><Obj_instance_Id> x <Obj_type_Id><Obj_instance_Id>> 

 

<Co-Prod_Morphisms>::=   Mor_Type: <Mor_type> :<Mor_type_Id> : <Obj_CP>  →  <Co-Prod_Object> 

                                                          |    <Mor_type> :<Mor_type_Id> : <Obj_CP>  →  <Co-Prod_Object>                     

                                                          |    <Mor_type> :  <Mor_unique_Id>: <Co-Prod_Object>  →   

                                                               <Obj_CP>   

 

<Co-Prod_Axioms>::=         Composition: 

                                            <Mor_Id>  о <Mor_unique_Id> = <Mor_Id>  

 

Slice 

 

<Slice>::=                     Category: <Typed_Category> (<Cat_name> , <Cat_Id>)  

                                      SLICE CATEGORY (<Cat_name> , <Slice_Object>)  

                                      Slice Category Objects Obj_Type: {<S_Cat_Object>,}
+
    

                                      Slice Category Morphisms {<S_Cat_Morphism>}
+
  

                                      Slice Category  Axioms <S_Cat_Axiom> 

 

<Slice_Object>::=       <Cat_Id>/ <Obj_type_Id> <Obj_instance_Id> 

 

<S_Cat_Object>::=     <Obj_type>: (<Obj_type_Id><Obj_instance_Id> ,   

                                                                             <Slice_Object>, <Mor_type_Id><Mor_instance_Id>) 

 

<S_Cat_Morphism>::= Mor_Type: <Mor_type> :<Mor_type_Id><Mor_instance_Id> :  

                                                                                <Obj_type_Id><Obj_instance_Id> →                         

                                                                                <Obj_type_Id><Obj_instance_Id> 

 

<S_Cat_Axiom>:=     Composition: <S_Cat_Morphism> о  <S_Cat_Object>  = <S_Cat_Object>   

 

 

 

 

PAM Leader-Messenger-Worker Collaboration  Scenario Modeled using SLICE CATEGORY 

construct  

 

Category: (Sub-Swarm, S4)  

SLICE CATEGORY (Imager  Collaboration,S4/WIM4)  
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 Slice Category Objects 

Obj_Type:  Management:  (L3, WIM4, m13), 

                   Cooperation: (TM5, WIM4, c20),   

 

 Slice Category Morphisms 

Mor_Type: Management:  m1:  L1  → TM1    

 

 Slice Category  Axioms  
Composition: m14 о c20 = m13    
 

c20 

m13 

WIM4 

   L3 

TM5 

m14 

Slice Category S4/WIM4 


