

Towards Specifying Swarm-Based Systems using

Categorical Modeling Language: A Case Study

Noorulain Khurshid

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Software Engineering) at

Concordia University

Montreal, Quebec, Canada

August 2011

© Noorulain Khurshid, 2011

 ii

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Noorulain Khurshid

Entitled: Towards Specifying Swarm-Based Systems using Categorical Modeling

 Language: A Case Study

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

_________________________________ Chair

 Dr. Nematollaah Shiri

_________________________________ Examiner

Dr. Terry Fancott

_________________________________ Examiner

Dr. Joey Paquet

_________________________________ Supervisor

Dr. Olga Ormandjieva

_________________________________ Supervisor

Dr. Stan Klasa

Approved By ___

 Chair of Department or Graduate Program Director

_____________ 20_____ ___

Dr. Robin A. L. Drew, Dean

 Faculty of Engineering and Computer Science

 iii

ABSTRACT

Towards Specifying Swarm-Based Systems using

Categorical Modeling Language: A Case Study

Noorulain Khurshid

One of the solutions to the software complexity crisis of this era is the proposition of self-

managing systems like autonomous and autonomic systems. The idea has gained wide

acceptance in the IT industry but it has also introduced the challenge of specification and

development of such systems. Swarm intelligence is finding its applications in research

and design of self-managing systems because of the coincidental resemblance between

the two domains. However, specification of a swarm-based self-managing system is

faced with the difficulty of specifying the complex evolving behavior.

This thesis presents an adaptation of a mathematical technique known as Category

Theory to serve as a „reasoning and modeling‟ paradigm for specifying high-level

behavioral patterns of a swarm-based self-managing systems. The crux of this paradigm

is the formal categorical modeling language (CML). CML syntax and semantics have

been defined using an EBNF-based context-free grammar. The language helps to

generate a formal specification of different scenarios/behavioral patterns of a swarm-

based system. Moreover, a prototype tool has been implemented as part of this research

work to serve as a modeling tool based on CML. In this thesis, NASA‟s ANTS-based

Prospecting Asteroid Mission (PAM) serves as a case study to analyze the applicability

and usability of CML as a formal method of choice.

 iv

Table of Contents

LIST OF FIGURES .. VIII

LIST OF TABLES ... X

LIST OF ACRONYMS .. XI

1 INTRODUCTION ... 1

1.1 RESEARCH CONTEXT .. 1

1.2 MOTIVATIONS ... 3

1.3 OBJECTIVES & CONTRIBUTIONS .. 4

1.4 THESIS ORGANIZATION ... 6

2 BACKGROUND & RELATED WORK .. 8

2.1 INTRODUCTION ... 8

2.2 SELF-MANAGING SYSTEMS & BEHAVIORAL COMPLEXITY .. 8

2.2.1 Reactive Systems .. 9

2.2.2 Autonomous Systems ... 10

2.2.3 Autonomic Systems .. 11

2.3 SWARM INTELLIGENCE ... 12

2.3.1 Social Insects, Social Swarm, Social Behavior.. 12

2.4 AUTONOMOUS NANO TECHNOLOGY SWARMS .. 14

2.4.1 Prospecting Asteroid Mission, A Case Study... 15

2.5 WHAT IS A FORMAL METHOD? ... 16

2.6 WHY AND WHAT TO SPECIFY? .. 16

2.7 SPECIFYING SWARM BEHAVIOR .. 17

 v

2.7.1 Attributes of a Formal Method for Spe*cifying PAM .. 17

2.8 RELATED WORK ... 20

2.8.1 Communicating Sequential Processes (CSP) .. 20

2.8.2 Weighted Synchronous Calculus of Sequential Systems (WSCCS) .. 21

2.8.3 X-Machines .. 21

2.8.4 Unity Logic .. 22

2.8.5 Temporal Logic ... 22

2.8.6 Autonomic System Specification Language (ASSL) ... 22

2.8.7 Dynamic Emergent System Modeling Language (DESML) ... 23

2.8.8 Process Transition Networks (PTN) .. 23

2.9 CATEGORY THEORY .. 23

2.9.1 Social Life in CAT ... 24

2.9.2 CAT, A Formal Method, A Reasoning Framework ... 24

2.10 CATEGORICAL MODELING LANGUAGE (CML) ... 25

3 CATEGORY THEORY .. 27

3.1 CATEGORY AND SOCIAL LIFE ... 27

3.2 TYPED CATEGORY .. 30

3.2.1 Objects & Morphisms .. 31

3.2.2 Composition & Associativity ... 33

3.3 CATEGORY THEORY CONSTRUCTS .. 35

3.3.1 Diagram... 35

3.3.2 Functor .. 36

3.3.3 Index Category .. 38

3.3.4 Natural Transformation ... 39

3.3.5 Cone & Co-cone .. 41

3.3.6 Limit & Co-limit .. 42

3.3.7 Product & Co-product ... 43

 vi

3.4 CONCLUSION ... 44

4 CATEGORICAL MODELING LANGUAGE .. 46

4.1 INTRODUCTION ... 46

4.2 GRAPHICAL MODELS .. 46

4.3 FORMAL SPECIFICATION LANGUAGE .. 47

4.3.1 Grammar for CML .. 48

4.4 GRAMMAR STRUCTURE & CONVENTIONS ... 49

4.5 FUNCTOR .. 52

4.6 NATURAL TRANSFORMATION ... 54

4.7 DIAGRAM .. 56

4.8 CONE .. 58

4.9 CO-CONE .. 60

4.10 LIMIT .. 61

4.11 CO-LIMIT .. 63

4.12 PRODUCT .. 65

4.13 CONCLUSION ... 66

5 CASE STUDY: PAM ... 67

5.1 PROSPECTING ASTEROID MISSION .. 67

5.1.1 Asteroid Exploration and PAM Sciencecrafts ... 67

5.2 PAM SWARM .. 68

5.2.1 CML Model for PAM Sub-swarm Organization .. 69

5.2.2 CML Model for PAM Team Organization ... 72

5.2.3 PAM Self-Configuration / Team Relocation Scenario ... 74

5.2.4 PAM Spacecraft Role Change Scenario .. 76

5.2.5 PAM Team Messenger Cooperation .. 80

5.2.6 PAM Self-Protection Scenario ... 82

 vii

5.2.7 Leader Spacecraft Receiving Data Scenario ... 83

5.2.8 PAM Sciencecraft Cooperation ... 85

5.3 CONCLUSION ... 87

6 CATCANVAS: CAT MODELING TOOL .. 88

6.1 INTRODUCTION ... 88

6.2 ARCHITECTURE OF CATCANVAS .. 90

6.3 LIST OF FEATURES .. 91

6.3.1 Titlebar and Toolbar ... 91

6.3.2 Main Window .. 92

6.3.3 TabStrip ... 92

6.3.4 Tool Pane .. 92

6.3.5 Drawing Canvas .. 94

6.3.6 Category Properties .. 95

6.3.7 Adding an Object ... 95

6.3.8 Object Properties... 96

6.3.9 Adding a Morphism ... 97

6.3.10 Morphism Properties .. 98

6.3.11 Category XML Export ... 100

6.3.12 Functor Tab .. 102

6.3.13 Functor Mapping .. 103

6.3.14 Functor XML Export ... 107

6.3.15 Saving PNG Image ... 108

6.4 CONCLUSION ... 109

7 CONCLUSION & FUTURE WORK ... 110

8 REFERENCES .. 114

9 APPENDIX. .. 121

 viii

List of Figures

FIGURE 2.1: BLOCK DIAGRAM OF A TYPICAL REACTIVE SYSTEM .. 9

FIGURE 2.2: INTERACTING ANTS .. 13

FIGURE 3.1: CATEGORY HB ... 28

FIGURE 3.2: SOCIAL LIFE –TYPED CATEGORY HB ... 30

FIGURE 3.3: (A) OBJECT NOTATION; (B) MORPHISM NOTATION; (C) MORPHISM W/ SOURCE-TARGET

OBJECTS, IDENTITY MORPHISM; (D) MATHEMATICAL NOTATION FOR MORPHISMS 31

FIGURE 3.4: (A) COMPOSITION OF M1 & M2; (B) ASSOCIATIVITY FOR M1, M2 & M3 .. 33

FIGURE 3.5: COMPOSITION OF C1 & C2 , C3 & C4 , H1 & C3, H1 & C4 AND H1 & C1; ASSOCIATIVITY FOR H1, C1 & C2

IN CATEGORY HB ... 34

FIGURE 3.6: DIAGRAM D, COMMUTES IN HB ... 36

FIGURE 3.7: FUNCTOR F MAPPING ANT TO HB ... 37

FIGURE 3.8: FUNCTOR F MAPPING FROM INDEX CATEGORY I TO TARGET CATEGORY HB2 38

FIGURE 3.9: (A) FUNCTORS F AND G FROM ANT TO HB; (B) NATURAL TRANSFORMATION 40

FIGURE 3.10: (A) CONE; (B) CO-CONE .. 41

FIGURE 3.11: (A) LIMIT; (B) CO-LIMIT .. 43

FIGURE 3.12: (A) PRODUCT OF OBJECTS W1, W2; (B) PRODUCT OF OBJECTS A1, A4; 44

FIGURE 4.1: CML GRAMMAR START SYMBOL ... 49

FIGURE 4.2: GRAMMAR FOR TYPED-CATEGORY CONSTRUCT .. 52

FIGURE 4.3: GRAMMAR FOR FUNCTOR CONSTRUCT ... 53

FIGURE 4.4: GRAMMAR FOR NATURAL TRANSFORMATION CONSTRUCT.. 55

FIGURE 4.5: GRAMMAR FOR DIAGRAM CONSTRUCT .. 57

FIGURE 4.6: GRAMMAR FOR CONE CONSTRUCT ... 59

FIGURE 4.7: GRAMMAR FOR CO-CONE CONSTRUCT .. 60

FIGURE 4.8: GRAMMAR FOR LIMIT CONSTRUCT... 62

 ix

FIGURE 4.9: GRAMMAR FOR CO-LIMIT CONSTRUCT .. 64

FIGURE 4.10: GRAMMAR FOR PRODUCT CONSTRUCT ... 66

FIGURE 5.1: ANTS BASED PAM CONCEPT .. 68

FIGURE 5.2: CML SPECIFICATION MODEL OF A PAM SWARM SCENARIO ... 71

FIGURE 5.3: CML GRAPHICAL MODEL OF A PAM SWARM SCENARIO... 71

FIGURE 5.4: CML GRAPHICAL MODEL OF THE PETROLOGIST TEAM ORGANIZATION SCENARIO 72

FIGURE 5.5: CML SPECIFICATION OF THE PETROLOGIST TEAM ORGANIZATION SCENARIO 74

FIGURE 5.6: CML MODEL FOR TEAM RELOCATION SCENARIO .. 76

FIGURE 5.7: CML MODEL FOR TEAM RELOCATION SCENARIO .. 77

FIGURE 5.8: CML MODEL FOR SPACECRAFT ROLE CHANGE SCENARIO .. 78

FIGURE 5.9: CML MODEL FOR ROLE CHANGE SCENARIO IN PAM .. 80

FIGURE 5.10: PAM TEAM MESSENGER COMMUNICATING TO THE TEAM ... 80

FIGURE 5.11: CML GRAPHICAL MODEL OF A PAM TEAM MESSENGER COMMUNICATION 81

FIGURE 5.12: PAM TEAM MESSENGER RECEIVING DATA FROM THE TEAM .. 81

FIGURE 5.13: CML MODEL FOR PAM SELF-PROTECTION ... 83

FIGURE 5.14: CML MODEL FOR PAM SELF-PROTECTION ... 83

FIGURE 5.15: LEADER SPACECRAFT MODEL IN PAM .. 85

FIGURE 5.16: LEADER SPACECRAFT MODEL IN A PAM SUB-SWARM ... 85

FIGURE 5.17: PAM TEAM COOPERATION BEHAVIOR SPECIFICATION .. 86

FIGURE 5.18: PAM TEAM COOPERATION GRAPHICAL MODEL .. 86

 x

List of Tables

TABLE 2.1:ATTRIBUTES OF SPECIFICATION METHODOLOGIES FOR SWARM-BASED SYSTEMS 26

TABLE 4.1: CML GRAPHICAL NOTATION .. 47

TABLE 4.2: CML GRAMMAR CONVENTIONS .. 48

TABLE 6.1: CATCANVAS VS. CATEGORY THEORY 3.0 [56] ... 89

 xi

List of Acronyms

Acronym Definition

CAT Category Theory

SI Swarm Intelligence

NASA National Aeronautics and Space Administration

ANTS Autonomous Nano Technology Swarms

PAM Prospecting Asteroid Mission

SARA Saturn Autonomous Ring Array

LARA ANTS Application Lunar Base Activities

CSP Communicating Sequential Processes

WSCCS Weighted Synchronous Calculus of Sequential Systems

DESML Dynamic Emergent System Modeling Language

PTN Process Transition Networks

CML Categorical Modeling Language

ASSL Autonomic System Specification Language

EBNF Extended Backus-Naur Form

 1

1 Introduction

This chapter presents a synopsis of the context of this research work, the motivations that

drove it, a mention of the objectives and contributions followed by the organization of

this thesis.

1.1 Research Context

The computing systems of this era have introduced amongst many other challenges, the

challenge of managing systems with ever growing complexity. Systems such as

enterprise systems, sensor networks, grid systems and storage systems comprise of a

large number of heterogeneously interacting components. This renders the system fault-

prone and very dynamic. Consequently, it becomes very difficult to manage and

configure these systems. Researchers have proposed a way to deal with this complexity

by enabling the systems to manage themselves or with very little human intervention.

The idea of self-managing systems finds its shape in the form of reactive, autonomous

and autonomic systems. All these systems incorporate different levels of self-

management properties. Reactive systems are the most widely known systems that have

the ability to respond to the dynamic changes in their environment demonstrating

intelligent emergent behavior. Autonomous systems can handle major uncertainties in the

system and the environment and have the capability to successfully recover from system

failures without external intervention. Autonomic systems are based on the concept of

 2

how the human nervous system works. Self-management in an autonomic system is

defined in terms of the self-* properties which include self-configuration, self-

optimization, self-protection and self-healing. Self-managing systems exhibit patterns of

intelligent behavior which is analogous to the concept of swarms and swarm intelligence.

Swarm intelligence is motivated by the concept of the collective behavior of a social

insect colony towards achieving a goal or a set of goals [10]. Swarm intelligence is

extensively being used in problem solving particularly solving optimization problems. In

addition to that, swarm intelligence is finding its applications in self-managing systems

because of the similarity of the two domains. A swarm comprises of a large number of

small entities with local interactions amongst themselves and the environment. Inside a

swarm, the agents work in a set of teams exhibiting independent as well as group

intelligence. Collectively these local interactions exhibit a very complex and intelligent

behavior. Specification of this behavioral complexity is challenging and existing formal

methods are being evaluated by researchers to find a favourable approach for specifying

the behavioral/structural complexity of swarm-based systems with self-* properties. The

NASA has initiated a mission architecture known as Autonomous Nano Technology

Swarm that is based on swarm intelligence and possesses the self-* properties.

In this thesis, NASA‟s ANTS-based Prospecting Asteroid Mission (PAM) has been

selected as the case study. PAM being a concept mission consists of different classes of

spacecraft with different set of responsibilities and goals, both individual and collective.

Some spacecraft carry science instruments and are also called sciencecraft; others only

serve the purpose of communication or control.

 3

1.2 Motivations

This thesis presents the work done in presenting Category Theory as a formal method and

a reasoning framework for identifying and specifying the patterns of behavior of a

swarm-based PAM with self-* properties. Category Theory or CAT in mathematics is

used to reason about structures at a very abstract level of detail. As discussed in detail in

section 2.6, in order to specify the behavior of a system, representation of

structure/behavioral details of the system are of vital importance and this is best dealt

with functions abstraction from mathematics. This ideal matured to be the first and the

most driving motivation for the work done in this research.

A Category in CAT consists of objects and relations between them known as morphisms

representing structure of the category. The relations of objects with other objects in a

category define their social life. This social life concept is similar to the social behavior

of entities inside a swarm and laid another foundation, another motivation, for this

research.

Lastly and most importantly, another motive that guided this research was to follow-up

on the remark in [21] on the possibility of using CAT as a formal method for specifying

ANTS-based missions.

 4

1.3 Objectives & Contributions

This research started off as a study on application of CAT to the software engineering

domain. Soon after the list of objectives started taking shape when Emil Vassev [38]

presented his work on ASSL specification with ANTS as a case-study:

1. Study CAT as a Formal Method, as a Reasoning Framework

The first and most important objective was to study CAT from the point of view

of a „Reasoning Framework‟ based on the ideal of reasoning about structures from

CAT. Next, the goal was to study CAT as a formal method and application of

CAT as a formal method for the behavioral specification of a swarm-based

system. After reasoning about the ANTS-based mission scenarios in CAT, only a

subset of CAT constructs were selected to study the possibility of using CAT for

the behavioral specification of the mission scenarios.

2. Proposition of a Modeling Language based on CAT

After doing a thorough study on CAT as a formal method and a reasoning

framework, we felt the need to come up with a formal specification language

based on CAT mathematical definitions. As part of the work done in constructing

the modeling language named Categorical Modeling Language (CML), the

following contributions have been made:

a. Construction of a grammar for the specification language in order to

construct “well-formed” specification in the language.

 5

b. Defining the visual/graphical model notation.

3. Application of the proposed modeling language to ANTS case study

a. Choice of a subset of ANTS-based mission scenarios.

b. Choice of a subset of CML constructs for the chosen mission scenarios.

c. Formal specification of the selected mission scenarios using CML.

4. Tool Support for CML

Another important landmark of this research work was the implementation of a

prototype modeling tool, named CATCanvas, to support the categorical modeling

language. The contribution/highlights of the tool are:

a. Separate workspace for Category and Functor Constructs.

b. Ability to draw the visual models on a canvas.

c. An intelligent mapping tool for the functor construct.

d. Generate XML specification for a constructed model.

e. Import XML specification to render the graphical model.

f. PNG Export for the graphical models.

g. Web-based Rich UI.

h. Web-based application available online.

 6

Throughout this research, in addition to the mentioned objectives, an inherent objective

was to choose only the very basic CAT constructs for research and application to the case

study. In addition to that, the primary goal was to convey CAT as a formal method to

researchers in software engineering domain without overwhelming them with lengthy and

complex mathematical details/definitions.

1.4 Thesis Organization

This thesis is organized into seven chapters in total. Chapter 1 presents an outline of the

problem domain, the proposed solution and list of objectives to be achieved during the

course of this research. Chapter 2 has two parts; the first part presents a discussion of

self-managing systems, swarm and swarm intelligence and the attributes of a formal

method for specifying the PAM. The second part includes a discussion on application of

existing formal methods/modeling methodologies for specification of swarm-based

systems, in particular, the PAM. The chapter concludes with a comparison of the existing

methodologies against a subset of formal method attributes discussed in the first part.

Chapter 3 consists of the basic categorical definitions along with examples for the

constructs used in the rest of the chapters. Chapter 4 introduces the Categorical

Modeling Language along with the grammar for the language. Chapter 5 presents the

case study: Specification of PAM using CML, where different mission scenarios have

been modeled using different CML constructs. Chapter 6 presents a discussion of the

working of the CAT modeling tool, CATCanvas, in the form of a list of features. Finally

chapter 7 consists of the conclusion statement followed by a list of possibilities for future

 7

work. The appendix consists of some other CAT constructs that were studied as part of

this research but not included in this thesis.

 8

2 Background & Related Work

2.1 Introduction

The background section in this chapter presents a brief discussion of self-managing

systems, swarms and swarm intelligence, ANTS-based PAM and attributes of a formal

method for specifying PAM. The section on related work includes a discussion on

existing formal methods that have been used to specify swarm-based systems, in

particular, the PAM. The last section presents an evaluation of the existing formal

methods against the attributes discussed earlier.

2.2 Self-managing Systems & Behavioral Complexity

In 2001, IBM declared a manifesto according to which the tens of millions of lines of

code of this era of computing systems present a threat to halt the progress in computing.

They define this halt in progress as the result of the difficulty of managing complex

computing systems, for example, a system that requires integrating several heterogeneous

environments into corporate-wide computing systems that extend into the Internet [1].

Researchers have started to realize the need for self-controlling systems, or in simpler

words, systems that can manage themselves. Solutions are being proposed to develop

systems that are independent of human intervention. If not completely independent, the

human involvement is at a very high level and the low-level complex tasks are handled

by the system itself.

 9

This hypothesis of completely independent systems is still in its infancy but the idea finds

its applications in reactive, autonomous and autonomic systems. The hypothesis though

presents a worthwhile solution to the crisis of handling large scale computing systems,

but at the same time it also introduces the challenge of specifying the now more complex

emergent behavior of a self-managing system. This section includes an introduction to

reactive, autonomic and autonomous systems highlighting the inherent behavioral

complexity.

2.2.1 Reactive Systems

A system that must respond to dynamic changes in its environment is termed to be

reactive [39]. The complexity of a reactive system stems from an on-going interactivity

with its environment, complex computations, concurrent response to sensory data and

management of dataflow are amongst the numerous other contributing factors.

Figure 2.1: Block Diagram of a Typical Reactive System

REACTIVE

SYSTEM

ENVIRONMENT

COMPONENT

INPUT

COMPONENT

SENSOR
SENSOR

OUTPUT

 10

An on-going interaction is similar to that of an infinite loop with a desire of non-

termination. A sensor for instance is constantly transmitting data to the process loop that

triggers relevant actuators and the entire process goes on to loop forever [40]. The system

is thus constantly exchanging information with its environment and demonstrates a very

complex emergent behavior because of the ever-changing sensory data. Figure 2.1 shows

a block diagram of a classic reactive system and its interaction with its environment.

2.2.2 Autonomous Systems

Currently, most of the self-managing systems materialize themselves in the form of

autonomous systems. These systems are increasingly being used in the industrial and

commercial domains [8]. Autonomous systems are designed to perform well under

significant uncertainties in the system and the environment for extended periods, and they

have the ability to compensate for system failures without external intervention [9].

Every entity in the system has a certain degree of autonomy assigned to it for self-

management and self-configuration at the entity level. In most of the systems, this degree

of autonomy ranges to interactions of the entity with the environment as well.

Taking example of Microsoft Windows, in a windows environment the system has an

ability to recover from failures to a certain extent. In addition, depending on the number

of processes in the queue it regulates the CPU usage and performs memory allocation at

runtime. Another example of a self-managing or self-configuring system could be that of

the intelligent routing of network traffic. The network traffic monitors sense the

bottleneck and route the traffic to the relatively less busy routes. Autonomous systems

 11

have the ability to carry out self-management tasks; self-management is classified into a

set of properties in “Autonomic System”.

2.2.3 Autonomic Systems

In the light of what they refer to as the “looming software complexity crisis”, IBM

proposed a new paradigm of computing known as “Autonomic Computing” drawing an

analogy between the software systems and the human autonomic nervous system [2, 3].

The human nervous system is a master-controller that keeps track of the changes inside

the human body and its environment. It gets data from the net of different sensors

installed all over the body and sends appropriate response to maintain a certain state of

balance inside the body [6]. This state of stable equilibrium is important for survival of a

human being. Similarly, for a computing system, it is vital that the system maintains a

certain state of equilibrium by protecting itself from crashes, has the ability to recover

from a failure, and has the capability to reconfigure as required and when required. While

in the process of maintaining a certain state of equilibrium, the system has to analyze the

situation and choose a behavior from a set of behaviours in order to bring the system to a

desired state. “Sensing”, “Analyzing”, “Planning” and “Execution” are the keywords

used in literature to discuss an autonomic system [7, 2]. In an autonomic system the self-

management properties are termed as the self-* properties. These include self-awareness,

self-configuration, self-optimization, self-protection and self-healing [4, 5].

 12

As we know from the introduction chapter, the discussions presented in this thesis are

based on the NASA‟s ANTS-based PAM mission. ANTS being a swarm-based mission

architecture, defines a swarm to be autonomous and autonomic.

2.3 Swarm Intelligence

„Swarm Intelligence‟ (SI) is a mindset rather than a technology. It provides a foundation

to explore collective (or distributed) problem solving without centralized control or the

provision of a global model. SI is being used to understand and explore reactive,

autonomous and autonomic systems because of the similarity of behavioral complexity.

A swarm comprises of a large number of small entities with local interactions amongst

themselves and the environment [11]. The authors in [10] call these small entities

„unsophisticated agents‟ that interact locally amongst themselves and with the

environment causing collective behavioural patterns to emerge globally. The local

interactions between these agents demonstrate simple behavior, but the combination of

these simple behaviours result in emergence of very complex behavior [15]. Inside a

swarm, the agents work in a set of teams exhibiting independent as well as group

intelligence [12]. The central idea of SI has been inspired by how social insects operate in

an insect colony and demonstrate a certain hive culture.

2.3.1 Social Insects, Social Swarm, Social Behavior

An insect colony is analogues to the way reactive, autonomous and autonomic systems

are built and work. Inside an insect colony, be that an ants‟ colony or a beehive, these

 13

insects interact to achieve a goal or a set of goals. The colony can respond to external

challenges as well as internal perturbations and is robust, in that, tasks are completed

upon failure of an individual, indicating the ability of the swarm entities to self-heal. In

addition, an insect colony does not have a central controller in the colony that directs the

workflow towards achievement of a goal. Lastly, paths to a solution are emergent rather

than being predefined which indicates to the ability of the swarm entities to self-organize.

The individual ants when seen interacting inside a group or swarm working to achieve a

target demonstrate a social life, social behavior or structure of that swarm. The collective

behavior or structure looks very complex and presents challenges on understanding the

inherent goals of the swarm.

Figure 2.2: Interacting Ants

 14

In view of this, specification of this social behavior or structure of a swarm in a swarm-

based system is a challenge. The following points should be kept in mind while

specifying the social behavior of a swarm [10]:

1. It is difficult to predict collective behavior from simple/individual rules.

2. Modeling of group-level behavior is possible through bottom-up approach.

3. A participant/agent inside a swarm is unaware of the function of the group.

4. Slight changes in the rules result in a different group level behavior.

5. Efficient control of organization or manipulation of groups inside a swarm is

possible through simple rules.

The challenge of modeling and specification of a swarm-based system actually comes

from the difficulty in specifying the social behavior of the swarm along with the self-*

properties.

2.4 Autonomous Nano Technology Swarms

Autonomous Nano Technology Swarms or ANTS is a swarm-based mission architecture

for concept mission by the NASA driven by the need to collect more data than is possible

by a single spacecraft. The missions based on ANTS will be unmanned and highly

autonomous. In an ANTS mission a hundred or even thousand picospacecraft weighing

less than or equal to 1Kg moving in a swarm, will work cooperatively in order to explore

the space entities (planets, asteroid belt, moon depending on the mission). The spacecraft

must work both individually and collectively and must also possess autonomic self-*

properties in order to endure the harsh space environment [15, 17]. ANTS consists of a

 15

number of concept missions: The Saturn Autonomous Ring Array (SARA), ANTS

Application Lunar Base Activities (LARA) and Prospecting Asteroid Mission (PAM).

For the course of this thesis, Prospecting Asteroid Mission will serve as the baseline case

study.

2.4.1 Prospecting Asteroid Mission, A Case Study

PAM, an ANTS-based concept mission is a future autonomous robotic mission for

exploration of the asteroid belt [17, 18]. The mission will comprise of a swarm of

autonomous pico-class spacecraft, weighing approximately 1kg, which will explore the

asteroid belt for asteroids with certain characteristics such as mass, density, morphology,

and chemical composition. A few of these spacecraft will form teams and for example

use their scientific instruments to record properties of the asteroid(s). Other spacecraft

will communicate with the data collectors and send updates to Earth station [15]. The

teams and groups formed inside a swarm may be ad-hoc and temporary depending on the

requirements of the mission, for example, sharing of resources or surveying a new

asteroid [16].

The mission is discussed in detail in chapter 5. The discussions in the rest of the sections

are related to specification of the PAM, discussion of what a formal method is, what is a

formal specification, and what are the attributes of a formal method in relation to

specifying PAM. Section 2.5 and 2.6 are mainly based on the discussions in [20].

 16

2.5 What is a Formal Method?

Applying a formal method is using mathematical techniques like abstract algebra, logic

and discrete mathematics for representing information required to build software systems.

The word “formal” from “formal logic” indicates the ability to reason using “structure”

and not the “content”. A specification based on a formal method has to be a “well-

formed” mathematical set of statements and is verifiable by logical deduction in the

formal method.

2.6 Why and What to Specify?

From Engineering, Architecture and Software domain, a specification is a description of

the structure and behavior of the product to be developed. The word complexity in this

thesis refers to the structural and behavioral complexity of a software system. A proper

specification can help represent and control complexity of a software. The most familiar

and effective way of dealing with complexity is via „abstraction‟ while

behavioral/structural complexity is best dealt with function abstractions from

Mathematics.

The very first level of specification of a software system is the precise and unambiguous

description of the system behavior in terms of externally observable functional

characteristics. In this thesis, the word specification refers to the behavioral specification

only and should not be confused with the design specification.

 17

2.7 Specifying Swarm Behavior

From the previous text, we witness the challenges of specifying complex emergent

behavior of a swarm and a swarm-based system per se. Specification of the swarm

behavior is challenging because of the very nature of the interactivity of its entities and

the resulting behavior at different levels of hierarchy in the system. This section includes

the characteristics of a formal method in general and for specifying PAM in particular.

2.7.1 Attributes of a Formal Method for Specifying PAM

A formal method‟s characteristic whether its language is graphical or whether its

underlying logic is first-order influences the style in which user applies it [24]. Formal

methods are proven approaches for ensuring the correct operation of complex interacting

systems. Once written, a formal specification can be used to prove properties of a system

correct and check for particular types of errors (e.g., race conditions), and can be used as

input to a model checker. Verifying emergent behaviour is one area that, unfortunately,

most formal methods have not addressed well [23]. In [22], the authors have combined

several methodologies for specification of the PAM swarm and conclude that integration

of the evaluated methods seems to be the best approach so far.

This section includes a list of attributes coming from both the solution presented in this

research and the problem domain. Together these characteristics advocate for a formal

method to be termed as a favourable approach for specifying swarm-based PAM mission.

 18

Formal Basis

Like most of the modeling paradigms, formalization of the semantics should have a

mathematical basis [20]. This includes logic, algebra or any other mathematical theory. It

is thus important to take note of the fact that visual modeling methodologies without a

mathematical basis could not qualify as a formal method.

Language Abstraction

Abstraction promotes the declarative specification in a language. This property supports

powerful primitives for defining and manipulating information and data at the logical

level. Logical data definition should not imply any specific data representation [20].

Modularity

A specification language allows construction of large and complex specification by

assembling smaller constructs. This attribute supports modular design and incremental

specification that in turn adds to the expression power of the language [20].

Adaptability to Programming

All kind of computer system specifications find home in some sort of program/algorithm.

It is thus necessary for the specification to be adaptable to the requirements of a computer

program [21].

Reasoning

It is desirable for the methodology used for specifying PAM to enable intelligent

reasoning with possibly inconsistent and uncertain information [21].

 19

Visual Formalism

“A picture is worth a thousand words”. A modeling paradigm that has visual models aids

the process of representing complexity of a system with interacting components and

organization of these components to demonstrate local and global behaviours [25].

Hierarchical Abstraction

Inside a PAM swarm, there are different levels of hierarchical distributions of the

spacecraft. This granularity demands specification at different levels of hierarchy rather

than a few defined architectural levels. Abstraction of details while representing a certain

system scenario is desirable. The idea follows from the basic human direction of problem

solving: “Divide and Conquer”. Breaking a bigger problem into manageable smaller

problem, the bigger problem still in mind could aid in representation of complex behavior

by representation of simple behavior and deductions at a local level [30].

Ease of Comprehension

Most of the modeling methodologies suffer from complexity of constructs either

mathematical or algorithmic. This affects the ability of the formalism to be used as a

favourite approach especially in computer science and software engineering domains

[25].

Tool Support

Model-checking and verification of the specification is of vital importance, especially in

the case of verifying the complex behaviour specification. Tool support with the formal

method makes it possible to verify a generated specification [21].

 20

Emergent Behavior Specification & Verification

One of the most important attributes of a formal method for specifying a PAM is its

ability to predict and verify emergent behavior [21]. Prediction of emergent behavior has

come across as an enormous challenge to researchers to date.

Specification of Probability or Frequency

A means of expressing the probability of certain actions, and the frequency with which

they will occur is desired to be specified [21].

2.8 Related Work

This section presents different approaches that have been used to model swarm-based

systems; in particular, NASA‟s ANTS based missions.

2.8.1 Communicating Sequential Processes (CSP)

Communicating Sequential Processes, or CSP [27], is a language used to describe the

patterns of interaction between a set of interacting entities. CSP [28] has been used for

specifying NASA‟s PAM in [29]. In [28] each of the spacecraft is assigned goals to fulfill

their mission and the emergent behavior of all these goals is considered equal to the goals

of the mission. The specification makes use of the CSP command language. CSP has also

been suggested as a preferred approach in [22] for specification and verification of the

emergent behavior of intelligent swarms.

 21

2.8.2 Weighted Synchronous Calculus of Sequential Systems (WSCCS)

WSCCS is a process algebra proposed by the author in [35] and was used to model social

insects. Tofts [35] specified models where ants were the components, and all the component

ants together composed the entire colony. WSCCS was also used in combination with a

dynamical systems method for analyzing the nonlinear characteristics of social insects

[34]. WSCCS has been used as one of the favoured formal methods for specification and

verification of the NASA‟s swarm-based missions [21, 28, 29, 22].

2.8.3 X-Machines

Introduced by Eilenberg [36], X-machines is a specification formalism [59] capable of

modelling both the data and the control. X-machines is a diagrammatic approach, which

is an extension to the finite state automata. Transitions between states are in X-machines

are not performed through simple input symbols but through the application of functions.

These functions specify the processing of the data and are written in a formal notation. X-

machines have memory attached in order to hold data. Functions receive symbols and

memory values as input, and produce output modifying the memory values wherever

required. X-Machines is claimed to provide a highly executable environment for

specifying the ANTS spacecraft. It enables data storage in the memory and represents the

transition between states as functions involving inputs and outputs. This aids keeping

track of the actions of the ANTS spacecraft as well as memory keeping of every step of

the goals. This ability makes X-Machines highly effective for tracking and affecting

changes in the goals and the model [21, 28, 29, 22].

 22

2.8.4 Unity Logic

Unity Logic makes use of the propositional logic syntax for reasoning about the ANTS

spacecraft and the states they imply. It can also be used for defining specific

mathematical, statistical and other simple calculations to be performed. Though, unity

logic is not expressive enough to allow easy specification and validation of more abstract

concepts such as mission goals. It can serve as a good candidate for specifying and

validating the actual reasoning programming portion of the ANTS Leader spacecraft, if

and when required in future [21, 28].

2.8.5 Temporal Logic

Formal specification frequently witnesses the use of temporal logic. It has also been used

to specify the swarm behaviours including emergent behaviours. The author in [19]

explores linear time temporal logic for the formal specification of the behaviour exhibited

by the swarm robots. The swarm robots have been modeled as concurrent processes.

Temporal logic is a favoured approach but it tends to ignore the multi-level,

compositional nature of a swarm-based system.

2.8.6 Autonomic System Specification Language (ASSL)

The author in [37] has proposed a framework called Autonomic System Specification

Language (ASSL) for formal specification and generation of autonomic systems. ASSL

makes it possible to specify high-level behavior policies, as part of overall system

behavior. ASSL has been accepted as a very suitable candidate for specifying the

 23

autonomic behavior of swarm-based missions and has been applied to specify self-

configuration, self-healing, and safety properties of NASA‟s swarm-based missions [38].

ASSL is directed towards the system‟s specification at the design level.

2.8.7 Dynamic Emergent System Modeling Language (DESML)

The author in [31] has proposed a variant of UML called DESML providing several new

graphical constructs to the basic UML. DESML was mainly proposed for specification of

emerging distributed systems, and swarm-based systems [21]. The author has indicated it

in [15] to be a possible candidate for specifying NASA‟s swarm-based systems.

2.8.8 Process Transition Networks (PTN)

PTN is a graphical language for specifying behavior of entities in an autonomous system.

PTN has formal semantics and enables simultaneous behavioral specification of

independent components of a system and the environment. PTN does not have the ability

to represent hierarchical abstractions and thus PTN specifications are more flat than that

of Statecharts [26].

2.9 Category Theory

Category theory, concisely, is an advanced mathematical formalism, independent of any

modeling or programming paradigm, capable of representing “structure” [41, 42, 43]. In

mathematics, category theory is an abstract way of agreement between various

mathematical structures and relationships between them. Everything is abstracted from its

 24

original meaning to a corresponding categorical meaning. For example, sets in set theory

abstract to objects in category theory and functions over those sets abstract to morphisms

in categorical terminology. Therefore, the category named SET will have objects that are

sets and morphisms or arrows as all of the functions over those set objects. Although

category theory is a relatively new domain of mathematics, introduced and formulated in

1945 [44], categories have been frequently discussed and used to relate sets, vector spaces,

groups, and topological spaces all of which naturally correspond to distinct categories

[45].

2.9.1 Social Life in CAT

The concept of social life is innate to the structure inside and outside of a category of

related entities and is analogous to the social life theory in swarms. Entities in real world

may or may not interact with each other. This presence or absence of interaction of an

entity with other entities defines the way an entity behaves socially. This social

“behavior” or in broad terms the social life of an entity is mainly defined by its role in the

group it belongs to. A group in category theory represents a structure and presents ground

for reasoning about this structure in relation to other structures.

2.9.2 CAT, A Formal Method, A Reasoning Framework

Based on the basic definition in 2.5, CAT qualifies as a formal method but in order to

specify the complex behavior of a software system the CAT specification language does

not have any metalanguage or grammar to construct „well-formed” specification

statements. The mathematical formula/notations used to specify models in CAT are not

 25

standard and expressive enough. There is a need for a specification language for CAT-

based specifications in order to construct well-formed specification.

CAT enables expression of semantics for interconnection, theory, instantiation, and

composition. For all these attributes are of significance when reasoning about a swarm-

based system.

2.10 Categorical Modeling Language (CML)

In this thesis, a specification language for CAT has been proposed along with the

grammar for constructing well-formed sentences in the language. The language is named

Categorical Modeling Language, in short, CML. A CML model includes a formal

specification as well as a graphical model of the problem domain. A modeling tool for

CML is also written as part of this research. The tool also serves as a static verifier of the

imported CML specification in XML format.

CML can prove to be a viable candidate for specification of swarm-based systems along

with other mentioned methodologies. Table 2.1 evaluates the strengths of the mentioned

methodologies along with CML against a subset of attributes discussed earlier in this

chapter. From the table, we can compare CML with the rest of the methodologies to

conclude that CML can qualify as a favourable approach for specification of swarm-

based systems. The one attribute that CML currently lacks is the verification of the

emergent behavior in a swarm-based system. This is discussed further in chapter 7,

conclusion and future work. The other attributes of CML are discussed in the subsequent

chapters.

 26

Table 2.1: Attributes of Specification Methodologies for Swarm-based Systems

 Formal

Basis

Visual

Formalism

Adaptability

to

Programming

Tool

Support

Modularity Emergent

Behavior

Verification

CSP

WSCCS

Temporal

Logic

X-Machines

Unity Logic

ASSL

PTN

DESML

CML

*
* Verification of emergent behavior is the next step and part of the future work

 27

3 Category Theory

This chapter presents a subset of the different constructs in Category theory. These

constructs serve to both abstract and unify many concrete theories in diverse branches of

mathematics. The definitions have been supplemented with easy to understand examples

avoiding extensive mathematical details.

3.1 Category and Social Life

The central notion in CAT is the interesting concept of a „Category‟. Obvious by its

name, a category is a class or group of entities related to each other in some way that

defines the category they belong to, and the reason why they belong to that category. In

the previous chapter, we briefly discussed how category theory or in short CAT talks

about objects living a social life in a category, defined by the relationships between these

objects. Keeping in view the coincidental similarity of the insect swarms, the swarm-

based systems and the categorical social life, this chapter refers to hive culture of insect

swarms in support to explain the different constructs of CAT.

Let us try to look at the biological classification of species in terms of categories in CAT.

A category of all species consists of some 7 - 100 million species [32]. Likewise, a

category of insects consists of only the species that are characterized as insects. Further,

down the classification of insects, a honey bee category is different from category bumble

bee, and so on. The noticeable attribute of this example is the abstraction of the category

 28

construct. The notation used in this chapter when talking about a category would be bold

capital letters, e.g. HB for category honeybee. As social insects living in a colony, honey

bees must communicate with one another using movement, odour cues, and even food

exchanges to share information.

Figure 3.1: Category HB

 29

Figure 3.1 shows a snapshot of the social life in a category honey bee, HB. The objects

being honeybees and relationships/morphisms between these object representing

communication in the form of signals [33]. The readers should keep in mind while going

through this thesis that only an instance of a category has been included in the

diagrams/examples for the purpose of discussions and not the entire category. For

example, Figure 3.1 shows a category of only six bees and some morphisms between

them, not the entire category HB.

Formally, a category C consists of:

1. A collection Obj (C) of objects.

2. x,y Obj(C) a collection C(x,y) of morphisms.

3. Identity: x Obj(C), a morphism Id(x): x x, Id(x) Identity(C)

4. Composition: x,y,z Obj(C), then we have a function (composition),

 C(x,y) C(y,z) C(x,z)

5. Following axioms hold true:

a. Identity: x,y Obj(C), f C(x,y), f: x y,

 Id(x): x x, Id(y): y y and Id(x), Id(y) Identity (C) then,

 Id(y) f = f = f Id(x)

b. Associativity: x,y,z Obj(C), f,g,h C(x,y), and

 f: x → y, g: y → z and h: z → m, then,

 h (g f) = (h g) f

The definition is explained in detail in sections to follow.

 30

3.2 Typed Category

A category typically declares all objects belonging to that category to be of one type. For

instance, the category SET has all objects that are sets. However, every set could also be

defined to be of a certain type. For example, a set can be of type integer or natural

numbers and so on. This classification of objects inside a category into types promotes

the need for the Typed Category construct. A typed category is not native to the category

theory but is a result of the requirements that arose during this research to better adapt to

modeling of the swarm-based systems.

Figure 3.2: Social Life –Typed Category HB

 31

Along with objects, morphisms too can have certain types. Every morphism thus belongs

to a certain type and each type of morphism consists of a set of morphism instances under

it. For the most part of this thesis, categories would be typed categories. Figure 3.2 re-

demonstrates an instance of category HB but with typed objects and typed morphisms.

3.2.1 Objects & Morphisms

In categorical terminology, the entities we have been referring to in the social life

phenomenon are called objects. The diagrammatical notation for a category object

typically is a circle with name of the object inside the circle. For the most part of this

thesis, for consistency, we have used the circle notation to represent an object. Capital

letters up to three letters followed by a subscript, if any, have been used to name objects

in the course of this thesis. The abstract notion of an object enables reuse of the very

concept, to give it any form possible. Figure 3.3 (a) shows an object in diagrammatical

representation. The mathematical representation of an object follows the diagrammatical

naming convention. Figure 3.3 (d) shows the mathematical representation of a category.

Figure 3.3: (a) Object Notation; (b) Morphism Notation; (c) Morphism w/ Source-

Target Objects, Identity Morphism; (d) Mathematical Notation for Morphisms

 O1

(a)

m1

(b) (c)

 O1 O2
m1

(d)

m1 : O1 → O2

I2 : O2 → O2

I2

 32

A relationship between two objects is termed as a „morphism‟ in category theory. A set of

morphisms between two objects comprises of all morphisms between those two objects.

The directions of morphisms are of significance since they determine the overall structure

of the category they reside in. The object from which a morphism originates is called the

domain or source object. The object to which the morphism is directed to is called the co-

domain or the target object. Morphisms define how one category is different from

another. The entire structure inside a category takes its shape from these interactions or

morphisms. The ideal behind the concept of a morphism being plain interaction in simple

terms makes it possible to apply the concept in any scenario where a possible interaction

between entities could be represented/modeled. Figure 3.3(b) shows the diagrammatical

notation of morphisms. The arrow represents the direction, the name of a morphism in

this thesis is always in lower case letters up to three letters followed by a subscript, if

any. Morphisms have also been referred to as arrows in literature. Mathematically, name

of a morphism follows the same naming convention as its diagrammatical counterpart

followed by a colon. The source object name comes next to the colon followed by an

arrow to the target object. Figure 3.3 (c), (d) shows the diagrammatical and mathematical

morphisms respectively. A special kind of morphism with each object is identity

morphism. The identity morphisms are seldom shown on a category diagram. It is

assumed to be present, to avoid cluttering the diagram with an identity morphism for each

object. The notation for identity morphism is a looped arrow with source and target being

the same object. The name for an identity morphism starts with an italicized capital I

followed by the object‟s subscript. Object O2 in Figure 3.3(d) shows identity morphism I2

for Object O2.

 33

3.2.2 Composition & Associativity

Inside a category, two composable arrows compose together to form a composition

morphism. Composition morphism is an alternative path to the target object and is

present for every pair of composable arrows. The absence of composition morphism for

any pair of composable arrows compromises the definition of a category. Composition of

an identity morphism with any morphism results into the latter morphism.

Figure 3.4: (a) Composition of m1 & m2; (b) Associativity for m1, m2 & m3

The composition of two arrows is represented with the symbol „‟. Graphically, the

composition arrow is just another arrow with name consisting of the two arrows

composed together „m2 m1‟ (see Figure 3.4 (a)) or equivalent composition morphism

name. The composition arrow m2 m1 is read m1 composed with m2 keeping in view the

direction of composition. Composing three arrows in a direction leads to a complex

composition and has to evaluate true for associativity property. Let us assume we have

another object O4 and three morphisms such that, m1: O1 → O2, m2 : O2 → O4 and m3 :

O4 → O3. So, m1, m2, m3 have compositions to give a path such that m3 (m2 m1) =

 O1

 O2

 O3

m1

m2

m2 m1

 O1

 O2

 O3

 O4

(m3 m2) m1

(b)

 m1

 m2

 m3

m2 m1

m3 m2

(a)

 34

(m3 m2) m1 (see Figure 3.4 (b)). For every morphism between two objects, e.g. m3 :

O4 → O3, there exists composition of m3 with the identity morphisms I3 , I4 of objects

O3 , O4 respectively, such that:

I3 m3 = m3 = m3 I4

Let us consider a scenario of honeybees in the category of honeybees for composition and

associativity. The interaction from a queen to a worker and from a worker to another

worker has an equivalent interaction from the queen to the other worker. Similarly, the

path of interactions from queen to the last worker has an equivalent interaction from the

queen to that last worker. Figure 3.5 demonstrates this concept with categorical

explanation in text to follow.

Figure 3.5: Composition of c1 & c2 , c3 & c4 , h1 & c3, h1 & c4 and h1 & c1; Associativity

for h1, c1 & c2 in Category HB

h1

c1

c2

 Q

 W1

 W2 W3

 W4

c3

c4

h2

c3 h1

c4 h2

c1 h1

c4 c3

c2 c1

 (c2 c1) h1

 35

In category HB, the set of objects O = {Q, W1, W2, W3, W4) where Q is the Queen

honey bee object and W1, W2, W3, W4 worker honeybees. The interaction between the

queen bee and the worker bees is of the type honey collection and that between the

workers of type cooperation. In the category HB, the set of morphisms m = {c1, c2, c3, c4,

h1, h2}. The composition morphisms in the category honeybee are (c4 c3), (c2 c1), (c4

h1), (c3 h1) and (c1 h1). The associativity property could be easily proved for

(c2 c1) h1 = c2 (c1 h1) from the diagram.

3.3 Category Theory Constructs

This section includes definitions of each construct used in the course of this thesis along

with adequate examples.

3.3.1 Diagram

Diagram advocates for the concept of a structure within a structure. It is often used for

stating and proving properties of other categorical constructs [6]. A diagram consists of a

collection of certain objects and morphisms in a category having indices to the parent

category. In other words, a diagram consists of objects and morphisms indexed by its

parent category. This choice of collection of objects/morphisms is up to the scenario,

which considers that structure of a diagram in the parent structure (category). For

example, objects W1, W2, W3, W4 along with morphisms c1, c2, c3, c4 form a diagram D

in category HB. A diagram is said to commute when proving properties of a categorical

construction. Formally, a diagram D in category HB is said to commute if all paths

 36

between two objects are equal, in the sense that each path in D determines a morphism

these morphisms are equal in HB [6]. Figure 3.6 shows a diagram D that commutes in

HB.

Figure 3.6: Diagram D, Commutes in HB

3.3.2 Functor

A diagram D could also be seen as a mapping from of the objects and morphisms inside

the diagram to the objects and morphisms inside the parent category HB such that the

structure in D is preserved in HB. This kind of mapping of a structure onto another in

category theory is performed with the help of the functor construct. Mapping categories

of different types with similarity in structures, while preserving the original structures

demonstrates the power of category theory to better reason about the behaviours that

result from each structure. A functor is shown diagrammatically as an arrow between the

source and target category with the name of the functor on top of the arrow.

 W1

 W2
 W3

c1

c3 c4

c2

 W4

c3

 c2 c1

c4

 37

Figure 3.7: Functor F mapping ANT to HB

The name of the functor helps tag or index the mapped objects in target category with the

indices of objects and morphisms in the source category. Category ANT in Figure 3.7

shows a scenario of ants working towards achieving a goal. Ants exhibit a social life in

the spirit of a hive culture or ants colony and bears similarity with the social life inside a

j0 j1

j1

j0

 A1

 A2

 A3

c1

c2

h1
h2

 Q

 W1

 W2 W3

 W4

c4

c4 h2

c1 h1

c4 c3

c2 c1

c3 c3 h1

(c2 c1) h1

F

F(A2)

F(A3)

F(A1)

F(h1)

F(h2)

F(h2 h1)

HB

ANT

 38

honeybee hive. Figure 3.7 demonstrates the mapping of all objects and morphisms in

source category HB to a subset of objects and morphisms in target category ANT through

functor F. Preservation of structure of HB could be seen in ANT through F.

3.3.3 Index Category

The diagram and functor constructs give birth to the concept of an Index category. An

index category is like a diagram, where its objects and morphisms reflect the structure

inside some category but unlike the diagram, the objects and morphisms are

labeled/named as indices instead of the labels of its parent category.

Figure 3.8: Functor F mapping from index category I to target category HB2

The resulting index category is used in the functor construct as a source category, being

mapped to a structure in some target category. An index category could be thought of as a

stencil for a structure using which that structure could be traced inside another structure.

This makes intuitive relating of two structures with some similarity. This construct comes

c1

c2

c2 c1

W3

W1

c4 c3

W4

c3 HB
2

W2

c4

F(I2)

F(i1)

F(i2)

F(i2 i1)

F(I3)

F(I1)

i2 i1

i1

i2

 I1

 I2

 I3

I

F

 39

in handy for reasoning about an occurrence of a behavior in different scenarios. Figure

3.8 shows an index category drawn out using category HB, which acts as a source for

functor F.

3.3.4 Natural Transformation

One of the basic and important notions in category theory is that of a natural

transformation. It offers a way to transform a functor into another while preserving the

structure of the two categories involved. In other words, a natural transformation could be

thought of as morphism of functors [7]. Figure 3.9(a) shows two functors F, and G from

ANT category to HB category. Figure 3.9(b) shows the natural transformation from F

functor to G functor in such a way that the natural transformation morphisms are specific

to objects in source category mapped to the target category. Therefore, (A3) is a natural

transformation from object A3 in HB mapped by functors F and G. Similarly, (A1) is a

natural transformation from object A1 in HB mapped by functors F and G and so on for

all objects in source category ANT mapped by functors F and G in the target category

HB. Evident from it name, a natural transformation occurs naturally and defines the

change in an object because of its mapping by two different functors.

The diagram in Figure 3.9(b) commutes such that all directed paths in the diagram with

the same endpoints lead to the same result by composition. A natural transformation

provides adequate means of reasoning about two structures mapped using different

functors.

 40

Figure 3.9: (a) Functors F and G from ANT to HB; (b) Natural Transformation

j0 j1

j1

j0

 A1

 A2

 A3

c1

c2

h1
h2

 Q

 W1

 W2 W3

 W4

c4

c4 h2

c1 h1

c4 c3

c2 c1

c3 c3 h1

(c2 c1) h1

F

F(A2)

F(A3)

F(A1)

F(j1)

F(j0)

F(j0 j1)

HB

ANT

G

G(A3)

G(j1)

G(j0)

G(j0 j1)

G(A2)

G(A1)

F(j0)

 F(A3)

 F(A1)

 G(A3)

 G(A1)

G(j0)

 (A3)

 (A1)

(a)

(b)

…

…

…

 41

3.3.5 Cone & Co-cone

The diagram construct is further used in another categorical construct called cone. Co-

cone is the inverse or dual of the cone concept. A cone consists of one other object apart

from the objects inside a diagram, and additional morphisms going from diagram objects

to this other object forming a cone-like shape. This cone object has also been referred to

as an apical object in some literature because of its position in the apex of the cone.

Figure 3.10(a) shows a cone inside category HB where Q would be the apical object and

h1, h2, h3 morphisms from Q to diagram D. The morphisms in bold represent apical

object or cone morphisms to differentiate from the diagram morphisms.

Figure 3.10: (a) Cone; (b) Co-cone

c2

c1

c2 c1

 Q

 W1

 W2
 W3

h1
h2

h3

j1

 A2

 A1

 A3

j0

j2

(a) (b)

 42

The direction of morphisms from the objects of the diagram to the apical object forms a

cone and morphisms coming from the apical object going to the objects inside the

diagram form a co-cone. Hence, cone and co-cone are dual of each other. Figure 3.10(b)

shows a co-cone in ANT. The diagram in this co-cone comprises of objects A2, A3 and

morphism j0. The apical object from this co-cone is A1 with apical morphisms j1 and j2 in

ANT. The cone construct offers a technique to represent the behavior of a group of

objects both collectively and individually. The nature of the apical object with its

morphisms to and from a group of other objects is similar to that of a host or

representation entity for the group with which it forms a structure. This hierarchy of

structural representation effectively suits our need for representation of complex

structures such as computer networks or autonomic systems.

3.3.6 Limit & Co-limit

A category could possibly house a number of cones and co-cones. Limit is a universal

cone such that all other cones factor through it. In this manner, limit is like a specialized

cone amongst all cones. Further simplifying the concept, the apical object of the Limit

cone has a unique morphism to the apical object of every other cone. Limit construct adds

another level to the cone, the limit being on the top. Together this hierarchy results into a

very complex structure. The limit construct thus enables representation of an equivalently

complex structure therefore modeling the behavior exhibited by that structure. A Limit is

diagrammatically represented as shown in Figure 3.11(a). The inverse or dual of a limit is

a co-limit. A co-limit makes use of the co-cone construct. A co-limit for that reason is a

universal co-cone such that every other co-cone factors through it, or is recognized by a

 43

unique morphism from the apical object of the co-limit to every other co-cone. Figure

3.11(b) shows the co-limit in category ANT.

Figure 3.11: (a) Limit; (b) Co-limit

3.3.7 Product & Co-product

Product construct is a special case of limit and a co-product that of a co-limit. Product in

category theory follows the idea of the cartesian product of sets. A product construct

consists of a limit cone with apical object being the product of objects in diagram or base

of the cone such that for any other cone, there exists a unique morphism to the limit cone

such that the triangles commute. To better understand the concept, Figure 3.12 shows the

 W2
 W3

 Q

c2

c1 c2 c1

 W5

W1

h1
h3

h2

h6

h5 h3 u

j4

j2

u

j1

j0

 A2

 A1

 A3

 A0

j3

(a) (b)

 44

diagrammatical product and its dual co-product. Product and co-product in Figure 3.12

represent the cooperation of the entities towards achieving a goal. The product object

represents the collective behavior of the involved entities/objects. The product is denoted

; if I = {1,…,n}, then, product is X1 … Xn. The unique morphism u is the

product of morphisms h1 and h2.

Figure 3.12: (a) Product of objects W1, W2; (b) Product of objects A1, A4;

3.4 Conclusion

The purpose of this chapter was to present the readers with a precise introduction to the

CAT constructs along with examples from biological swarms. This chapter lays the

foundation for the grammar discussed in chapter 4 and the case study presented in chapter

(a) (b)

u

j2 j4

A1 A4

 A2

 A1
 A4

1 2

u

h1 h2

W1 W2

 Q

 W1
 W2

1 2

 45

5. The readers of these chapters can always refer to chapter 3 in order to refresh the

definitions.

 46

4 Categorical Modeling Language

4.1 Introduction

In the previous chapters we presented a discussion of category theory along with a sub set

of its constructs that have been studied for this research. We also mentioned in chapter 2

that CAT formalism is not powerful enough to serve as a specification language. A part

of this thesis goes into construction of a grammar for what we call the Categorical

Modeling language or in short CML. Together with the specification language and the

visual/graphical modeling notation, CML will serve as a powerful modeling language, its

formal basis coming from the category theory.

4.2 Graphical Models

A very important aspect of the CML is the support of a graphical model with a formal

specification. The conventions for the graphical model are an adaptation of the category

theory conventions where a circle represents an object in a category and a directed arrow

represents a morphism. A category in CML can be represented with a square but

specifically in the case where a functor is to be represented between two categories.

Otherwise, enclosing objects and morphism of a category in a square limits the available

drawing space and is therefore avoided. Functors and natural transformations are

represented as arrows too. A functor is a triangle shaped filled arrowhead and for the

natural transformation, the arrowhead is an unfilled triangle. A unique morphism is

 47

represented with a dashed directed arrow with the name of the morphism represented

together with the letter u in bold. Table 4.1 lists the graphical/visual notation for CML

models. The examples of the visual models could be found in both chapter 5 and chapter

6.

Table 4.1: CML Graphical Notation

Notation Description

 Object

Morphism

Category

Functor

Natural Transformation

Composition Morphism

Universal Morphism

4.3 Formal Specification Language

Along with the graphical modelling tools, CML boasts a formal specification language. A

CML specification is constructed using the CML formal grammar. The grammar also

serves as a basis for generating the XML for the CML models constructed using the tool

u

NT

F

Cat

c2 c1

c4

 W1

 48

discussed in chapter 6. This section introduces the grammar for all of the CML constructs

presented in chapter 3. The models constructed using the language are discussed in

chapter 5 in detail and would be referenced to wherever required.

4.3.1 Grammar for CML

CML makes use of the Extended Backus-Naur Form (EBNF) for the grammar notation.

The grammar can be used to determine the exact syntax for any category construct. An

EBNF based grammar consists of “non-terminals” and “terminals.” Non-terminals are

symbols within a BNF definition, also defined in the grammar. Terminals are endpoints

in BNF definition, consisting of CAT keywords. In this section, all non-terminals appear

in brackets < > and all terminals appear without brackets.

Table 4.2: CML Grammar Conventions

Attribute Description

<Non-terminal> Indicates non-terminal symbols

Terminal Indicates terminal symbols

CONSTRUCT Terminals in bold face type are reserved words for basic constructs

Construct-Entity Terminals in bold & italics face are reserve words for parts of a
construct

::= Indicates non-terminal symbol followed by the production rule or
expression

| Vertical bar indicates choice of rules

{ }
+
 Braces with a plus sign indicates at least one or more

{ }* Braces with an asterisk indicates zero or more

: () → = , Terminals (For separation)

[] Indicates optional expression

; Indicates end of line for a production rule

<Type> <Id>

<*_type_Id> <Id> (* indicates all)

<*_name> <Id>

<*_instance_Id> <Id>

<*_Id> <Id>

 Empty String

 49

Table 4.2 includes a complete list of the grammar conventions for CML grammar along

with their description for reference in this chapter and everywhere else in the thesis. The

start symbol in the CML grammar corresponds to a list of non-terminals each of which

translates to a model in the CML. Sections 4.6 through 4.14 include the grammar for all

the symbols in the rule listed in figure 4.1.

<Start>::= <Typed_Category> | <Functor> | <N_Trans> |

 <Diagram> | <Cone> | <Co-Cone> | <Limit> |

 <Co-Limit> | <Product> | <Co-Product>;

Figure 4.1: CML Grammar Start Symbol

4.4 Grammar Structure & Conventions

This section includes an explanation of the way the grammar has been composed and

makes use of the <Typed_Category> grammar for the explanation of the structure and the

conventions used in the discussions to follow. The basic structure of all of the non-

terminals in the production rule in Figure 4.1 is the same. There are some differences that

will be explained along with the description of each grammar. Readers can always refer

back to this section to find the underlying structure of all of the grammar to follow.

<Typed_Category> consists of the keyword TYPED-CATEGORY followed by the non-

terminals for the name of the category and the Id of the category in parenthesis. The

keyword Types of Objects serves as a heading for a list of object types. Enclosing braces

with a plus {}
+

means there should be at least one type defined for objects of this

category. The keyword Objects with the notation for set of objects in the category is

 50

followed by a list of objects inside this category. Similarly, the non-terminals for types of

morphism and the list of instance morphisms for each type would be what comes after.

Identity morphisms exist for each object in the category and Composition contains the

pairs of composable morphisms. Lastly, the grammar ends with a list of axioms that hold

true for the constructed model or in this case the typed category model. Figure 4.2 lists

the complete grammar for the non-terminal <Typed_Category> in Figure 4.1.

<Object_Type> consists of the list of the type names and Ids for each type and a list of

object type instances with name and Id for each instance. An object type instance adds

another level of type definition for expression of a scenario that demands such hierarchy

of types. Object_Type_Instances expression is optional in the grammar as it is

surrounded by []. <Object> consists of the object type name and Id followed by the

instance objects for this type. Similarly, <Morphism_Type> consists of the name of the

morphism type followed by a list of morphisms for that type. <Morphism> is

<Mor_Instance> that is the list of morphism instances for each morphism type followed

by <Mor_Identity>. <Mor_Identity> is the list of Identity morphisms for each object

instance in <Object>. <Axiom> consists of all of the properties that must hold true in

order to prove the correctness of the models according to CAT. It consists primarily of

<Property> that is <Identity> and <Associativity>. <Id> is the symbol for construction of

the names and Ids in CML. It consists of one or more characters. The non-terminal

<Character> consists of all of the alphabets along with digits from 0 to 9. <Empty>

facilitates the termination of a name or Id with an empty space denoted by .

 51

<Typed_Category>::= TYPED-CATEGORY <Cat_name>(<Cat_Id>)

 Types of Objects {<Object_Type>} +

 Objects: Obj(<Cat_Id>){<Object>} +
 Types of Morphisms {<Morphism_Type>} +
 Morphisms: Mor(<Cat_Id>)<Morphism>

 Composition <Composition>

 Axioms <Axiom> ;

<Object_Type>::= Object_Type: <Obj_type_name>(<Obj_type_Id>)

 [Object_Type_Instances:

 <Obj_type_name>(<Obj_type_Id>)

 {,<Obj_type_name>(<Obj_type_Id>)}*] ;

<Object>::= <Obj_type_Id>:

 <Obj_type_Id><Obj_instance_Id>

 {,<Obj_type_Id><Obj_instance_Id>}* ;

<Morphism_Type>::= Morphism_Type: <Mor_type_name>(<Mor_type_Id>):

 {<Obj_type_Id> → <Obj_type_Id>}+ ;

<Morphism>::= <Mor_Instance><Mor_Identity> ;

<Mor_Instance>::= <Mor_type_Id><Mor_instance_Id>

 (Obj_type_Id><Obj_instance_Id>) =

 <Obj_type_Id><Obj_instance_Id>

 {, <Mor_type_Id><Mor_instance_Id>

 (<Obj_type_Id><Obj_instance_Id>) =

 <Obj_type_Id><Obj_instance_Id>}+ ;

<Mor_Identity>::= Identity: Identity(<Cat_Id>)

 Id (<Obj_type_Id><Obj_instance_Id>):

 <Obj_type_Id><Obj_instance_Id> →
 <Obj_type_Id> <Obj_instance_Id>

 {, Id (<Obj_type_Id><Obj_instance_Id>):

 <Obj_type_Id><Obj_instance_Id> →
 <Obj_type_Id> <Obj_instance_Id>} + ;

<Composition>::= (<Mor_type_Id> <Mor_instance_Id> о

 <Mor_type_Id> <Mor_instance_Id>) =

 <Mor_type_Id> <Mor_instance_Id>

 {, (<Mor_type_Id> <Mor_instance_Id> о

 <Mor_type_Id> <Mor_instance_Id>) =

 <Mor_type_Id> <Mor_instance_Id>} + ;

<Axiom>::= <Property> ;

<Property>::= Identity:{<Identity>} + |

 Associativity:{<Associativity>}+;

<Identity>::= x Identity(<Cat_Id>), y Mor(<Cat_Id>),
 x о y = y = y о x ;

 52

<Associativity>::= <Mor_type_Id> <Mor_instance_Id> о

 (<Mor_type_Id> <Mor_instance_Id> о

 <Mor_type_Id> <Mor_instance_Id>) =

 (<Mor_type_Id> <Mor_instance_Id> о

 <Mor_type_Id> <Mor_instance_Id>) о

 <Mor_type_Id> <Mor_instance_Id> ;

<Id>::= <Character><Id> | <Empty> ;

<Character>::= A | B | C |... |Z | a | b | c |... | z |

 0 | 1 | 2 |... | 9 ;

<Empty>::= ;

Figure 4.2: Grammar for Typed-Category Construct

Chapter 5 includes an example of a CML model constructed using <Typed_Category>

grammar. Please refer to section 5.2.1 for a detailed discussion with an example from the

case study.

4.5 Functor

The grammar for functor construct starts with the symbol <Functor> listed in Figure 4.4.

<Functor> comprises of a source and target category constructed using

<Typed_Category> grammar followed by the Ids of the source and target categories

respectively. This is followed by the keyword FUNCTOR and the functor definition in

parenthesis. The functor definitions consist of functor type name and Id followed by the

Ids of the source and target category. The rest of the grammar structure is same as the

<Typed_Category> grammar. The objects and morphisms for the functor, as well as the

axioms that hold true for the constructed functor succeed the functor definitions using

non-terminals <F_Object>, <F_Morphism> and <F_Axioms> respectively. <F_Object>

 53

is different from <Object> in the sense that it consists of <Obj_mapp> instead of the

object type instances in Figure 4.2.

<Obj_mapp> consists of the source category mapping object type and instance Id

enclosed in functor Id parenthesis followed by the mapping and mapped objects separated

by an arrow. The mapped object is represented with the functor representation of the

mapping object. Similarly, <F_Morphism> consists of <Mor_mapp> that is comprised of

the mapped and mapping morphisms in the source and target category respectively for all

mapped morphisms. The mapping morphism is also represented using the functor.

<Functor>::= Categories: <Typed_Category> <Typed_Category>

 Category Source: <Cat_Id>

 Category Target: <Cat_Id>

 FUNCTOR(<Func_type_name>,<Func_Id>,

 <Cat_Id>,<Cat_Id>)

 Functor Objects {<F_Object>}+
 Functor Morphisms {<F_Morphism>}+

 Functor Composition {<F_Composition>}+

 Functor Axioms <F_Axioms> ;

<F_Object>::= <Obj_type_name>: <Obj_mapp> {, <Obj_mapp>}* ;

<Obj_mapp>::= <Func_Id>(<Obj_type_Id><Obj_instance_Id>):

 <Cat_Id>(<Obj_type_Id><Obj_instance_Id>))→ <Cat_Id>
 (<Func_Id>(<Obj_type_Id><Obj_instance_Id>):

 <Obj_type_Id><Obj_instance_Id>);

<F_Morphism>::= <Mor_type_name>: <Mor_mapp> {, <Mor_mapp>}* ;

<Mor_mapp>::= <Func_Id>(<Mor_type_Id><Mor_instance_Id>):

 <Cat_Id>(<Obj_type_Id><Obj_instance_Id>,

 <Obj_type_Id><Obj_instance_Id>,

 <Mor_type_Id><Mor_instance_Id>) →
 <Cat_Id>(<Func_Id>(<Obj_type_Id><Obj_instance_Id>):

 <Obj_type_Id><Obj_instance_Id>,

 <Func_Id>(<Obj_type_Id><Obj_instance_Id>):

 <Obj_type_Id><Obj_instance_Id>,

 <Func_Id>(<Mor_type_Id><Mor_instance_Id>):

 <Mor_type_Id><Mor_instance_Id>) ;

 54

<F_Composition>::=<Func_Id>(

 <Mor_type_Id><Mor_instance_Id> о

 <Mor_type_Id><Mor_instance_Id>) =

 <Func_Id>(

 <Mor_type_Id> <Mor_instance_Id>) о

 <Func_Id>(

 <Mor_type_Id> <Mor_instance_Id>) =

 <Func_Id>(

 <Mor_type_Id> <Mor_instance_Id>) ;

<F_Axioms>::= <F_Identity> ;

<F_Identity>::= Identity: {<Func_Id>(

 Id(<Obj_type_Id><Obj_instance_Id>)) =

 Id(<Func_Id>(<Obj_type_Id>

 <Obj_instance_Id>))}+ ;

Figure 4.3: Grammar for Functor Construct

<F_Axioms> is similar to the <Axioms> in Figure 4.2 except for the functor

representation for the Id and composition morphisms. A model constructed using functor

grammar in Figure 4.3 is included in section 5.2.3 as part of the case study.

4.6 Natural Transformation

The start symbol for natural transformation is <N_Trans> as shown in Figure 4.5.

<N_Trans> consists of the source and target category constructed using

<Typed_Category> followed by the list of functors for the natural transformation. The

functors are constructed using <Functor> grammar discussed earlier. After that comes the

definition of the natural transformation that consists of the keyword

NAT_TRANSFORMATION followed by the name and Id of the natural transformation

in parenthesis. The keyword NTrans Functors is followed by the <NT_Functor> which

consists of the functor type names followed by the functor type instances. The expression

 55

ends with a {}
+
 indicating the requirement of at least two functors be defined. The

keyword NTrans Objects is followed by the non-terminals <NT_Objects> and

<Obj_Mapping>. <NT_Object> consists of the source category followed by a list of

mapped objects. <Obj_Mapping> in <N_Trans> consists of the natural transformation Id

followed by the object mapped by the two functors in parenthesis.

<N_Trans>::= Categories: <Typed_Category> <Typed_Category>

 Category Source: <Cat_Id>

 Category Target: <Cat_Id>

 Functors: <Functor> <Functor>

 Functor Ids: <Func_Id>,<Func_Id>

 NAT_TRANSFORMATION (<NTrans_name>, <NTrans_Id>)

 NTrans Functors <NT_Functor>

 NTrans Objects <NT_Object>

 NTrans Mapping Function {<Obj_Mapping>}+

 NTrans Morphisms <NT_Morphism>

 NTrans Axioms <NT_Axioms> ;

<NT_Functor>::= <Func_type_name>:

 <Func_name>(<Func_Id>): <Cat_Id> <Cat_Id>
 {, <Func_type_name>:

 <Func_name>(<Func_Id>): <Cat_Id> <Cat_Id>}+ ;

<NT_Object>::= <Cat_Id>:

 {<Obj_type_name>:<Obj_type_Id><Obj_instance_Id>

 { , <Obj_type_Id><Obj_instance_Id}* }+ ;

<Obj_Mapping>::= <NTrans_Id>(<Obj_type_Id><Obj_instance_Id>):

 <Func_Id>(<Obj_type_Id><Obj_instance_Id)

 <Func_Id>(<Obj_type_Id><Obj_instance_Id) ;

<NT_Morphism>::= {<Mor_type_Id>:<NT_Arrows>}+ ;

<NT_Arrows>::= <Func_Id>(<Mor_type_Id><Mor_instance_Id>):

 <Func_Id>(<Obj_type_Id><Obj_instance_Id) →
 <Func_Id>(<Obj_type_Id><Obj_instance_Id)

 {, <AT_Arrows> }* ;

<NT_Axioms>::= Commutativity:

 x,y Obj(<Cat_Id>), f : x → y Mor(<Cat_Id>),

 <Func_Id>(f) о <NTrans_Id>(x) =

 <NTrans_Id>)(y) о <Func_Id>(f) ;

Figure 4.4: Grammar for Natural Transformation Construct

 56

This is followed by the same object represented in terms of the functors separated by an

arrow . <NT_Morphism> consists of name of the source category for all the functors

followed by <NT_Arrows> that comprises of all of the morphisms between the mapped

objects in the source category represented using functors. The | symbol indicate the

alternate rule for <NT_Arrows> that is used to construct the identity arrows for all

NTrans objects. The grammar ends with <NT_Axioms> that comprises of commutativity

for every pair of natural transformation mapping function and morphism.

The model constructed using the grammar in Figure 4.4 is given in section 5.2.4 as part

of the PAM case study.

4.7 Diagram

The „Diagram‟ construct as discussed in section 3.3.1 is mostly used for stating and

proving properties of other categorical constructs. The grammar listed in Figure 4.5 for

the „Diagram‟ construct would in turn be a part of the grammar for <Cone>, <Co-cone>,

<Limit> and <Co-Limit>. The start symbol <Diagram> consists of the grammar for the

index category, the grammar for the target category followed by the Ids of the two

categories. After that comes the keyword DIAGRAM followed by the definition of the

diagram in parenthesis. The definition consists of the name, and Id of the diagram and the

Ids of the index and target categories respectively. Then comes the typical listing of the

objects of the diagram using the keyword Diagram Objects followed by one or more

objects constructed using <D_Object>.

 57

<Diagram>::= Categories: <Typed_Category> <Typed_Category>

 Index Category: <Cat_Id>

 Target Category: <Cat_Id>

 DIAGRAM (<Diag_Id>,<Cat_Id>,<Cat_Id>)

 Diagram Objects {<D_Object>}+
 Diagram Morphisms {<D_Morphism>}+ ;

<D_Object>::= <Obj_type_name>: <Obj_indexing>

 {, <Obj_indexing>}* ;

<Obj_indexing>::= <Diag_Id>(<Vertex_index_Id>):

 <Cat_Id>(<Vertex_index_Id>) →
 <Cat_Id>(<Diag_Id> (<Obj_type_Id>

 <Obj_instance_Id>)) ;

<D_Morphism>::= <Mor_type_name>: <Mor_indexing>

 {, <Mor_indexing>}* ;

<Mor_indexing>::= <Diag_Id>(<Edge_index_Id>):

 <Cat_Id>(<Vertex_index_Id>,

 <Vertex_index_Id>,<Edge_index_Id> →
 <Cat_Id>(<Diag_Id>(

 <Obj_type_Id><Obj_instance_Id>),

 <Diag_Id>(<Obj_type_Id><Obj_instance_Id>)) ;

Figure 4.5: Grammar for Diagram Construct

<D_Object> consists of the keyword Object_Type followed by the type name, a colon

and one or more <Obj_indexing> separated by a comma „,‟. <Obj_indexing> comprises

of the diagram Id followed by the id of the index vertex in parenthesis. The mapping of

the index object follows this from the index category to the target category, the mapping

separated by an arrow and the diagram index and the mapping separated by a colon „:‟.

The grammar ends with the keyword Diagram Morphisms followed by one or more

morphisms in the diagram constructed using <D_Morphism>. <D_Morphism> consists

of the keyword Morphism_Type followed by a colon and the morphisms type Id and

another colon followed by one or more indexing morphisms constructed using

<Mor_indexing>. <Mor_indexing> consists of the diagram representation of the index

 58

edge Id followed by a three-tuple index category representation and a three-tuple target

category representation separated by an arrow. The three-tuple for index category

consists of the index category Id followed by the index source vertex, the index target

vertex and the edge index Id enclosed in parenthesis. Similarly, the three-tuple for the

target category consists of the target category Id followed by the source object, the target

object and the name of the morphism enclosed in parenthesis.

An example of a model constructed using the <Diagram> grammar is included in section

5.2.2 as part of the PAM case-study. Readers are suggested to refer back to this section

for explanation of the grammar.

4.8 Cone

The grammar for the Cone construct discussed in section 3.3.5 is listed in Figure 4.6.

The start symbol <Cone> consists of the grammar for the category using the symbol

<Typed_Category> followed by the grammar for the diagram in the category. This is

followed by the keyword Category Id and the category Id separated by a colon „:‟ and the

keyword Diagram Id followed by the Id of the diagram. The keyword CONE indicates

the start of the definition for cone followed by the non-terminal <Cone_Obj>.

<Cone_Obj> consists of the type and instance Id of the object in the cone external to the

diagram. This is followed by a list of diagram objects for the cone constructed using

<C_Object>. <C_Object> consists of the diagram Id followed by the index category

vertex Id in parenthesis for all diagram objects in the cone. The grammar ends with the

 59

keyword Cone Morphisms followed by the non-terminal <C_Morphism> for all

morphism types.

<Cone>::= Diagram: <Diagram>

 Category Id: <Cat_Id>

 Diagram Id: <Diag_Id>

 CONE (Object:<Cone_Obj>)

 Cone Objects <C_Object>

 Cone Morphisms {<C_Morphism>}+ ;

<Cone_Obj>::= <Obj_type_Id><Obj_instance_Id> ;

<C_Object>::= <Diag_Id>(<Vertex_index_Id>)

 {, <Diag_Id>(<Vertex_index_Id>)}* ;

<C_Morphism>::= <Mor_type_name>: <Cone_Obj>(<Vertex_index_Id>):

 <Cone_Obj> → <Diag_Id>(<Vertex_index_Id>)
 {, <Cone_Obj>(<Vertex_index_Id>):

 <Cone_Obj> → <Diag_Id>(<Vertex_index_Id>)}* |
 <Mor_type_name>: <Diag_Id>(<Edge_instance_Id>):

 <Diag_Id>(<Vertex_index_Id>) →
 <Diag_Id>(<Vertex_index_Id>)

 {, <Diag_Id>(<Edge_instance_Id>):

 <Diag_Id>(<Vertex_index_Id>) →
 <Diag_Id>(<Vertex_index_Id>)}* ;

Figure 4.6:Grammar for Cone Construct

<C_Morphism> has two rules as indicated by the „|‟. <C_Morphism> for all cone

morphisms, comprises of the morphism type name followed by colon preceding the cone

object type and instance Id with the vertex Id in parenthesis. This is succeeded by the

morphism source object and morphism target object separated by an arrow.

<C_Morphism> for all diagram morphisms, comprises of the morphism type name

followed by colon preceded diagram Id and edge instance Id in parenthesis. This is

followed by the source and target objects in the diagram for this morphism separated by

 60

an arrow. For an example of a model constructed using grammar listed in Figure 4.6,

please refer to section 5.2.5, Figure 5.5. The example is part of the PAM case study.

4.9 Co-Cone

The grammar for co-cone is very similar to that of a cone except for some significant

differences. Figure 4.7 includes the grammar for constructing a model based on a co-cone

construct. The start symbol <Co-Cone> has a similar pattern to <Cone> except for the

difference in name and rules of some non-terminals. This section is going to discuss only

these differences. <Co-Cone> consists of the grammar for <Typed_Category>, and

<Diagram> followed by the Ids of the category and diagram respectively.

<Co-Cone>::= Diagram: <Diagram>

 Category Id: <Cat_Id>

 Diagram Id: <Diag_Id>

 CO-CONE (Object: <Co-Cone_Obj>)

 Co-Cone Objects <CC_Object>

 Co-Cone Morphisms {<CC_Morphism>}+ ;

<Co-Cone_Obj>::= <Obj_type_Id><Obj_instance_Id> ;

<CC_Object>::= <Diag_Id>(<Vertex_index_Id>)

 {, <Diag_Id>(<Vertex_index_Id>)}* ;

<CC_Morphism>::= <Mor_type_name>: <Co-Cone_Obj><Vertex_index_Id>):

 <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>
 {, <Co-Cone_Obj>(<Vertex_index_Id>):

 <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>}* |
 <Mor_type_name>: <Diag_Id>(<Edge_instance_Id>):

 <Diag_Id> (<Vertex_index_Id>) →
 <Diag_Id> (<Vertex_index_Id>)

 {, <Diag_Id> (<Edge_instance_Id>):

 <Diag_Id> (<Vertex_index_Id>) →
 <Diag_Id> (<Vertex_index_Id>)}* ;

Figure 4.7: Grammar for Co-Cone Construct

 61

The definition of a co-cone begins with the keyword CO-CONE followed by the <Co-

Cone_Obj>. <Co-Cone_Obj> is similar to <Cone_Obj> except for the name difference.

This is followed by the keyword Co-Cone Objects followed by the objects in the diagram

constructed using <CC_Object>. <CC_Object> is similar to <C_Object> except for the

name difference. The grammar ends with the keyword Co-Cone Morphisms followed by

the non-terminal <CC_Morphism> for all morphism types. <CC_Morphism> is different

from <C_Morphism> and thus differentiates a cone from a co-cone.

<CC_Morphism> has two rules as indicated by the „|‟. <CC_Morphism> for all co-cone

morphisms, comprises of the morphism type name followed by colon preceding the co-

cone object type and instance Id with the vertex Id in parenthesis. This is succeeded by

the morphism source object and morphism target object separated by an arrow. The

source object in case of a co-cone is the vertex in the diagram unlike the source object in

a cone, which is the cone object. <CC_Morphism> for all diagram morphisms, comprises

of the morphism type name followed by colon preceding the diagram Id and edge

instance Id in parenthesis. This is followed by the source and target objects in the

diagram for this morphism separated by an arrow. An example model constructed using

the <Co-Cone> grammar is included in section 5.2.5 Figure 5.6. The example is part of

the PAM case study.

4.10 Limit

The grammar for the limit construct is given in Figure 4.8 with the start symbol being

<Limit>. <Limit> comprises of the grammar for the typed category and the diagram for

 62

the limit along with the keywords Category and Diagram. This is followed by the

keyword Cones along with the grammar for all cones in the typed category. After that

comes the keyword Category Id with the Id of the category, the keyword Diagram Id

with the diagram Id and the keyword Cone Ids with the ids of all of the cones of the

diagram in the category.

<Limit>::= Diagram: <Diagram>

 Cones: <Cone> {<Cone>}+

 Category Id: <Cat_Id>

 Diagram Id: <Diag_Id>

 Cone Ids: <Obj_type_Id><Obj_instance_Id>

 {,<Obj_type_Id><Obj_instance_Id>}+

 LIMIT (Terminal Object: <Terminal_Obj>,

 Unique Morphism(u): <Mor_Unique>)

 Limit Objects <L_Object>

 Limit Morphisms {<L_Morphism>}+

 Limit Axioms {<L_Axiom>}+ ;

<Terminal_Obj>::= <Obj_type_Id><Obj_instance_Id> ;

<Mor_Unique>::= <Mor_type_Id><Mor_instance_Id>:

 <Cone_Obj> → <Terminal_Obj>;

<L_Object>::= <Diag_Id>(Vertex_index_Id>)

 {, <Diag_Id>(Vertex_index_Id>)}* ;

<L_Morphism>::= <Mor_type_name>:<Cone_Obj>(<Vertex_index_Id>):

 <Cone_Obj> → <Diag_Id>(<Vertex_index_Id>)
 {, <Cone_Obj>(<Vertex_index_Id>):

 <Cone_Obj> → <Diag_Id>(<Vertex_index_Id>)}* |
 <Mor_type_name>:<Diag_Id>(<Edge_instance_Id>):

 <Diag_Id>(<Vertex_index_Id>) →
 <Diag_Id>(<Vertex_index_Id>)

 {, <Diag_Id>(<Edge_instance_Id>):

 <Diag_Id>(<Vertex_index_Id>) →
 <Diag_Id>(<Vertex_index_Id>)}* ;

<L_Axiom>::= <Mor_Unique> о <Cone_Obj>(<Vertex_index_Id>) =

 <Cone_Obj>(<Vertex_index_Id>) ;

Figure 4.8: Grammar for Limit Construct

 63

The definition of the limit follows this with the keyword LIMIT followed by the non-

terminal <Terminal_Obj> and <Mor_Unique> separated by a comma „,‟ and enclosed in

parenthesis. <Terminal_Obj> consists of the object type Id and object instance Id and

<Mor_Unique> consists of the morphisms type Id followed by a colon separating the

arrow from source object that is the cone object to the target object that is terminal object.

This is followed by the keyword Limit Objects along with the non-terminal <L_Object>

for all limit objects. <L_Object> consists of the diagram Id followed by the index

category vertex Id. The keyword Limit Morphisms is followed by <L_Morphism> for all

morphism types. <L_Morphism> is similar to <C_Morphism> with the cone being the

limit cone. The grammar ends with axioms that hold true for the limit indicated with the

keyword Limit Axioms followed by the symbol <L_Axiom>. <L_Axiom> comprises of

the composition of the unique morphism with the cone morphism to be equal to the cone

morphism for all cones. Section 5.2.6, Figure 5.7 includes an example of a model

constructed using the grammar <Limit>. The example is part of the PAM case study.

Readers may refer back to this section for clarity of the constructed model.

4.11 Co-Limit

The grammar for the co-limit construct is given in Figure 4.9. The grammar is very

similar to the grammar for the limit construct with a few significant differences. Please

read section 3.5.6 to find the differences between the two constructs. For the grammar,

the start symbol for a co-limit is <Co-Limit>. <Co-Limit> consists of the typed category

 64

or index category grammar followed by the grammar for the diagram in the category

along with the respective keywords Category and Diagram.

<Co-Limit>::= Diagram: <Diagram>

 Co-Cones: <Co-Cone> {<Co-Cone>}+

 Category Id: <Cat_Id>

 Diagram Id: <Diag_Id>

 Co-Cone Ids: <Obj_type_Id><Obj_instance_Id>

 {,<Obj_type_Id><Obj_instance_Id>}+

 CO-LIMIT (Initial Object: <Initial_Obj>,

 Unique Morphism(u): <CL_Mor_Unique>)

 Co-Limit Objects <CL_Object>

 Co-Limit Morphisms {<CL_Morphism>}+

 Co-Limit Axioms {<CL_Axiom>}+ ;

<Initial_Obj>::= <Obj_type_Id><Obj_instance_Id> ;

<CL_Mor_Unique>::= <Mor_type_Id>: <Initial_Obj> →
 <Cone_Obj>(<Vertex_index_Id>) ;

<CL_Object>::= <Diag_Id>(Vertex_index_Id>)

 {, <Diag_Id>(Vertex_index_Id>)}* ;

<CL_Morphism>::= <Mor_type_name>:

 <Co-Cone_Obj>(<Vertex_index_Id>):

 <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>
 {, <Co-Cone_Obj>(<Vertex_index_Id>):

 <Diag_Id>(<Vertex_index_Id>) → <Co-Cone_Obj>}* |
 <Mor_type_name>:<Diag_Id>(<Edge_instance_Id>):

 <Diag_Id>(<Vertex_index_Id>) →
 <Diag_Id>(<Vertex_index_Id>)

 {, <Diag_Id>(<Edge_instance_Id>):

 <Diag_Id>(<Vertex_index_Id>) →
 <Diag_Id>(<Vertex_index_Id>)}* ;

<CL_Axiom>::= <Co-Cone_Obj>(<Vertex_index_Id>) о <Mor_Unique> =

 <Co-Cone_Obj>(<Vertex_index_Id>) ;

Figure 4.9: Grammar for Co-Limit Construct

This is succeeded by the grammar for all co-cones for the diagram with the keyword Co-

Cones. The definition of the co-limit starts with the keyword CO-LIMIT followed by

<Initial_Obj> and <Mor_Unique> separated by a comma „,‟ enclosed in parenthesis. This

 65

is followed by the keyword Co-Limit objects and the non-terminal <CL_Object>.

<CL_Object> is similar to <CC_Object> for all co-limit objects. The keyword Co-Limit

Morphisms consists of <CL_Morphism> for all morphism types. <CL_Morphism> is

similar to <CC_Morphism> with the co-cone being the co-limit co-cone. The grammar

ends with axioms that hold true for the co-limit indicated with the keyword Co-Limit

Axioms followed by the symbol <CL_Axiom>. <CL_Axiom> comprises of the

composition of the unique morphism with the co-cone morphism to be equal to the co-

cone morphism for all co-cones. The example for the co-limit construct is included in

section 5.2.7, Figure 5.8 as part of the PAM case study. Readers are suggested to refer

back to this section for questions on the constructed model based on the grammar.

4.12 Product

The grammar for the product construct starts with the symbol <Product> as shown in

Figure 4.10.

<Product>::= Category: <Typed_Category>

 Category Id: <Cat_Id>

 PRODUCT(<Prod_name>,<Cat_Id>)

 Product Objects

 {<Obj_type_name>: <Prod_Obj>{,<Prod_Obj>}+

 Product:<P_Obj> }+

 Product Morphisms {<Prod_Morphism>}+

 Product Axioms {<Prod_Axiom>}+ ;

<Prod_Obj>::= <Obj_type_Id><Obj_instance_Id> ;

<P_Obj>::= < <Obj_type_Id><Obj_instance_Id>

 <Obj_type_Id><Obj_instance_Id> > ;

 66

<Prod_Morphism>::= <Mor_type_name>:<Mor_type_Id>:

 <Obj_P> → <Prod_Object> |
 <Mor_type_name>:<Mor_Unique>:

 <Prod_Object> → <Obj_P> ;

<Prod_Axiom>::= Composition:

 <Mor_Unique > о <Mor_type_Id> = <Mor_type_Id> ;

Figure 4.10: Grammar for Product Construct

<Product> consists of the keyword Category followed by the grammar for the typed

category. This is succeeded by the keyword Category Id along with the Id of the category

constructed using the grammar for typed category. The definition of the product construct

begins with the keyword PRODUCT followed by the name of the product and Id of the

category separated by a comma „,‟ enclosed in parenthesis. The keyword Product Objects

is followed by the object type name and list of <Prod_Obj> for all object types.

4.13 Conclusion

This chapter presents the grammar for the different constructs of CML along with a

detailed explanation of the production rules in the grammar. The chapter does not include

any example specification to avoid repetition. The examples are a part of the case study

in chapter 6 and have been referred to with all the grammar constructs.

 67

5 Case Study: PAM

In chapter 1, we discussed the different objectives of this research. Application of the

category theory and CML to NASA‟s Prospecting Asteroid Mission was amongst the

primary objectives. This chapter includes an introduction of the PAM, the mission‟s core

goals followed by a discussion on modeling of some of the PAM scenarios using CML.

5.1 Prospecting Asteroid Mission

We have already seen an introductory discussion of PAM in chapter 1 and 2. This section

is going to elicit the mission‟s details relevant to the modeling exercises included in

section 5.2. The case study is based on the operational characteristics and mission

scenarios of the PAM as discussed in [15], [16], [18], [47], [48], [51], [52], [53] and [54].

5.1.1 Asteroid Exploration and PAM Sciencecrafts

The ANTS based PAM mission is an advanced mission concept for the 2020s. Its

primary objective is the exploration of the resource potential of the solar system‟s

asteroid belt beyond Mars. The availability of these resources would facilitate

uninterrupted presence of humans in space. The asteroid belt consists of thousands of

individual asteroids widely separated across the belt. To target these thousands of distinct

asteroids, a large group of specialized autonomous workers are required. The concept of

PAM is directed towards this requirement of individual workers carrying out a systematic

study of the entire population of asteroids. In PAM, these individual workers materialize

 68

themselves in the form of intelligent and autonomous bodies termed as Spacecraft or

Sciencecraft. Each of these Sciencecraft have specialized instrument capability and

heuristics systems that are both evolvable and adaptable.

We saw in chapter 2 and 3 that ANTS is analogous to the social insect swarms. These

Sciencecraft operate in the form of subswarms for the purpose of gathering the

measurements of their target asteroids. A PAM swarm consists of 1000 such spacecraft

based on the carbon-based NEMS [50] technology utilizing Super Miniaturized

Addressable Reconfigurable Technology (SMART) [49].

5.2 PAM Swarm

The swarm comprises of science specialist classes with approximately 100 members in

each class. The members are identical except for each carrying a specialized „instrument‟.

Figure 5.1: ANTS based PAM Concept

 69

The classes of spacecraft include the processors or the CPU known as Rulers, the

communication spacecraft known as Messengers, and sciencecraft or Workers including

imagers, various spectrometers, altimeters, radio science, and magnetometers. The swarm

consists of subswarms with approximately same number of classes in each subswarm. All

subswarms inside a swarm operate in parallel. Figure 5.1 provides an overview of the

PAM mission concept [15].

The first phase of a PAM mission is to travel from Earth‟s Lagrange point along with the

rest of the swarm. Next, after having raised their orbits to a certain AU level, the

Messengers and Rulers position themselves to provide communications and control to the

swarm. Workers set about their jobs of detecting and obtaining information about Main

Belt asteroids. Some Workers work alone, others are continually forming „Virtual Teams‟

[51, 52] to perform science encounters including orbital operations. „Virtual Instrument

Teams‟ would be formed from those within each class, in order to optimize the

accumulation of the data. On occasion, the PAM swarm will send a representative back to

Earth or another communication node to report on swarm findings.

5.2.1 CML Model for PAM Sub-swarm Organization

Figure 5.2 (a) and (b) include the CML specification and the visual model respectively

for a typical PAM sub-swarm organization. The model is constructed using the typed

category construct grammar given in section 4.2 and captures only a part of a typical

PAM sub-swarm organization. This model doesn‟t consider workers‟ working alone

rather depicts organization of workers in the form of a team. The Messengers are

 70

represented at two levels of hierarchy, one for the sub-swarms and the other at the team

level. The Ruler is present at the swarm level and has interaction with messengers and

workers. The typed-category model given in Figure 5.2 obeys all the axioms for it to

qualify as a category, i.e. composition, associativity and identity properties.

TYPED-CATEGORY

PAM Sub-swarm (S1)

Types of Objects

Object_Type: Ruler (R)

Object_Type_Instances: Leader (L)

Object_Type: Messenger (M)

Object_Type_Instances: Team Messenger (TM),

 Sub-Swarm Messenger (SM)

Object_Type: Worker (W)

Object_Type_Instances: X-Ray (WXR),

 Gamma Ray(WGR),

 Infra-Red(WIR),

 Altimeter(WAL)

Objects: Obj(S1)

R: L1

TM: TM1, TM2

SM: SM1

WXR: WXR1, WXR3

WGR : WGR1

WIR : WIR1

WIR : WAL1

Type of Morphisms

Morphism_Type: Management (m):

L → TM, L → SM, L → W

Morphism_Type: Cooperation (c):

W → W, TM → W, W → TM

Morphism_Type: Communication (cu):

TM → SM, TM → TM , W → SM, TM → L

Morphisms: Mor(S1)

m1 (L1) = TM2, m2 (L1) = SM1,

m3 (L1) = WXR1, m4 (L1) = WGR1,

m5 (L1) = WIR1, m7 (L1) = TM1,

c1 (WXR1) = WGR1, c2 (TM2) = WXR1,

c3 (WIR1) = WGR1, c4 (TM2) = WIR1,

c5 (TM2) = WGR1, c6 (WAL1) = TM1,

c7 (WXR3) = TM1, c8 (WXR3) = WAL1,

cu1 (TM2) = TM1, cu2 (TM1) = SM1,

cu3 (TM2) = SM1, cu4 (WXR3) = SM1,

cu5 (WAL1) = SM1, cu8 (TM2) = L1

Identity: Identity(S1)

Id(L1): L1 → L1 , Id(SM1): SM1 → SM1,

Id(TM1): TM1 → TM1, Id(TM2): TM2 → TM2,

Id(WXR1): WXR1 → WXR1, Id(WXR3): WXR3 → WXR3,

Id(WAL1): WAL1 → WAL1, Id(WGR1): WGR1 → WGR1,

Id(WIR1): WIR1 → WIR1

 71

Composition

(c3 о m5) = m4, (c1 о m3) = m4, (c4 о m1) = m5, (c2 о

m1) = m3, (c1 о c2) = c5, (cu1 о m1) = m7,

(cu2 о m7) = m2, (m2 о cu8) = cu3,

(m3 о cu8) = c2, (m4 о cu8) = c5, (m5 о cu8) = c4,

(cu2 о c7) = cu4, (cu5 о c8) = cu4, (c6 о c8) = c7, (cu2

о c6) = cu5, (c3 о c4) = c5, (cu2 о cu1) = cu3, (cu3 о

m1) = m2, (m7 о cu8) = cu1

Axioms

Identity: x Identity(S1) , y Mor(S1),

 x о y = y = y о x

Associativity: c1 о (c2 о m1) = (c1 о c2) о m1

 c3 о (c4 о m1) = (c3 о c4) о m1

 c1 о (m3 о cu8) = (c1 о m3) о cu8

 c3 о (m5 о cu8) = (c3 о m5) о cu8

 cu2 о (cu1 о m1) = (cu2 о cu1) о m1

 cu2 о (m7 о cu8) = (cu2 о m7) о cu8

 cu2 о (c6 о c8) = (cu2 о c6) о c8

Figure 5.2: CML Specification Model of a PAM Swarm Scenario

Figure 5.3 shows the graphical model for the specification in Figure 5.2.

Figure 5.3: CML Graphical Model of a PAM Swarm Scenario

 72

5.2.2 CML Model for PAM Team Organization

A typical PAM Petrologist consists of an X-ray worker, a Near Infrared worker, a Gamma-ray

worker, a Thermal IR worker, and a wide field imager worker separated by tens of kilometers.

The target or goals of the Petrologist team include determination of the abundances and

distribution of elements, minerals, and rocks present, from which the nature of geochemical

differentiation, origin, and history of the object, and its relationship to a 'parent body' could be

inferred. The team also has one worker acting as a team messenger, which both communicates

and cooperates with the sciencecraft. The team is part of a sub-swarm that has a ruler and a

messenger spacecraft outside the team level. This section includes a model of the Petrologist team

constructed using the Diagram construct grammar in section 4.7. Figure 5.4 includes the CML

graphical model for PAM Petrologist team organization scenario.

Figure 5.4: CML Graphical Model of the Petrologist Team Organization Scenario

 73

Categories:

TYPED-CATEGORY

Petrologist Team (PT1)

Types of Objects

Object_Type: Messenger (M)

Object_Type_Instances: Team Messenger (TM),

Object_Type: Worker (W)

Object_Type_Instances: X-Ray (WXR),

 Gamma Ray(WGR),

 Infra-Red(WIR)

Objects: Obj(PT1)

TM: TM2

WXR: WXR1

WGR : WGR1

WIR : WIR1

Type of Morphisms

Morphism_Type: Cooperation (c):

W → W, TM → W

Morphisms: Mor(PT1)

c1 (WXR1) = WGR1, c2 (TM2) = WXR1,

c3 (WIR1) = WGR1, c4 (TM2) = WIR1,

c5 (TM2) = WGR1

Identity: Identity(PT1)

Id(TM2): TM2 → TM2, Id(WIR1): WIR1 → WIR1 ,

Id(WXR1): WXR1 → WXR1, Id(WGR1): WGR1 → WGR1

Composition

 (c3 о c4) = c5, (c1 о c2) = c5

Axioms

Identity: x Identity(PT1) , y Mor(PT1),

 x о y = y = y о x

TYPED-CATEGORY

Index Category (IC)

Types of Objects

Object_Type: Index (I)

Objects: Obj(IC)

I: i, j, k

Type of Morphisms

Morphism_Type:

Index(ind): I → I

Morphisms: Mor(IC)

α (i) = j, β (k) = j

Identity: Identity(IC)

Id(i): i → i, Id(j): j → j, Id(k): k→ k

Axioms

Identity: x Identity(IC) , y Mor(IC),

 x о y = y = y о x

Category Source: IC

Category Target: PT1

 74

DIAGRAM (D, IC, PT1)

Diagram Objects

Gamma Ray: D(i): IC(i) → PT1(D(WXR1))

X-Ray: D(j): IC(j) → PT1(D(WGR1))

Infra-red: D(k): IC(k) → PT1(D(WIR1))

Diagram Morphisms

Cooperation:

D(α): IC(j, i, α) → PT1(D(WXR1), D(WGR1))

D(β): IC(j, k, β) → PT1(D(WIR1), D(WGR1))

Figure 5.5: CML Specification of the Petrologist Team Organization Scenario

The typed category in the CML model listed in Figure 5.5 is the PAM Petrologist Sub-

swarm category. To avoid repetition, wherever applicable the definition of a typed-

category is followed by (…) referring to the models constructed in the previous sections.

5.2.3 PAM Self-Configuration / Team Relocation Scenario

The virtual teams of spacecraft are configured to carry out optimal science operations on

the target asteroids. When the operations are complete, the team breaks up for possible

reconfiguration at another asteroid site. This reconfiguring continues throughout the life

of the swarm. Reconfiguring may also be required as the result of a failure or anomaly of

some sort. For example, when a worker‟s instrument is damaged or the team is without a

messenger. This section includes a model that represents the Petrologist team‟s

reconfiguration or relocation to a new sub-swarm where some of the spacecraft have been

damaged or sent to accomplish new mission goals. The specification in Figure 5.6

captures the behavior of a team relocating to a new position in the sub-swarm.

 75

Categories:

TYPED-CATEGORY

Petrologist Team (PT1) …

TYPED-CATEGORY

PAM Sub-swarm (S2)

Types of Objects

Object_Type: Ruler (R)

Object_Type_Instances: Leader (L)

Object_Type: Messenger (M)

Object_Type_Instances: Team Messenger (TM),

 Sub-Swarm Messenger (SM)

Object_Type: Worker (W)

Object_Type_Instances: Radio Sound (WRS),

 Imager(WIM),

 Infra-Red(WIR),

 Helper(WH)

Objects: Obj(S2)

R: L1

SM: SM1, SM3

WRS: WRS1

WIM : WIM3

WIR : WIR3

WH : WH1

Type of Morphisms

Morphism_Type: Data Update (du):

W → L

Morphism_Type: Management (m):

L → SM

Morphism_Type: Cooperation (c):

W → W

Morphism_Type: Communication (cu):

SM → SM, W → SM , SM → L

Morphisms: Mor(S2)

m7 (L1) = SM1, c11 (WH1) = WIR3,

c12 (WRS1) = WIR3, c9 (WH1) = WRS1,

c10 (WH1) = WIM3, c8 (WRS1) = WIM3,

cu10 (WRS1) = SM1, cu11 (WRS1) = SM3,

cu12 (SM3) = SM1, cu13 (WH1) = SM1

Identity: Identity(S2)

Id(L1): L1 → L1 , Id(SM1): SM1 → SM1,

Id(SM3): SM3 → SM3, Id(WRS1): WRS1 → WRS1,

Id(WH1): WH1 → WH1, Id(WIM3): WIM3 → WIM3,

Id(WIR3): WIR3 → WIR3

Composition

(c8 о c9) = c10, (c12 о c9) = c11,

(m7 о du1) = cu13, (cu10 о c9) = cu13,

(cu11 о c9) = cu14, (cu12 о cu11) = cu10,

(cu12 о cu14) = cu13, (cu15 о cu11) = cu13,

(cu13 о cu9) = cu14, (c13 о c9) = c16,

(cu15 о cu14) = cu16

Axioms

Identity: x Identity(S2) , y Mor(S2),

 x о y = y = y о x

Associativity:

cu12 о (cu11 о c9) = (cu12 о cu11) о c9

cu15 о (cu11 о c9) = (cu15 о cu11) о c9

Category Source: PT1

Category Target : S2

FUNCTOR (Team Relocation, R, PT1, S2)

 76

Functor Objects

Messenger:

R(TM2): PT1 (TM2) → S2 (R(TM2):WH1)

X-Ray:

R(WXR1): PT1 (WXR1) → S2 (R(WXR1) :WRS1)

Infra-red:

R (WIR1): PT1 (WIR1) → S2 (R(WIR1) :WIR3)

Gamma Ray:

R(WGR1): PT1 (WGR1) → S2 (R(WGR1) :WIR3)

Functor Morphisms

Cooperation:

R(c1): PT1 (WXR1, WGR1, c1) →

S2(R(WXR1): WRS1, R(WGR1): WIR3, R(c1): c12),

R(c2): PT1 (TM2, WXR1, c2) →

S2(R(TM2): WH1, R (WXR1) :WRS1, R(c2): c9),

R(c3): PT1 (WIR1, WGR1, c3) →

S2(R(WIR1): WIR3, R(WGR1) : WIR3, R(c3): Id(WIR3)),

R(c4): PT1 (TM2, WIR1, c4) →

S2(R(TM2): WH1 , R(WIR1): WIR3, R(c4): c11),

R(c5): PT1 (TM2, WGR1, c5) →

S2(R(TM2): WH1, R(WGR1): WIR3, R(c5): c11)

Functor Composition

R (c3 о c4) = R (c3) о R(c4) = R(c5)

R (c1 о c2) = R (c1) о R(c2) = R(c5)

Functor Axioms

Identity: R(Id(TM2)) = Id(R(TM2))

 R(Id(WXR1)) = Id(R(WXR1))

 R(Id(WIR1)) = Id(R(WIR1))

 R(Id(WGR1)) = Id(R(WGR1))

Figure 5.6: CML Model for Team Relocation Scenario

The model makes use of the functor construct grammar given in section 4.5 to specify the

explained scenario. The graphical model for the specification in Figure 5.6 is given in

Figure 5.7.

5.2.4 PAM Spacecraft Role Change Scenario

As the teams change from one configuration to another, the responsibilities of the

spacecraft in that team could possibly change. This could be specified as the change of

role that is a result of the reconfigurations. Figure 5.9 includes a CML model that

specifies this scenario using the natural transformation grammar discussed in section 4.6.

Natural transformation as explained in chapter 3 is the relationship between two functors

where the source and target categories are the same for each functor.

 77

Figure 5.7: CML Model for Team Relocation Scenario

 78

The graphical model for the specification in Figure 5.9 is given in Figure 5.8.

Figure 5.8: CML Model for Spacecraft Role Change Scenario

 79

Categories:

TYPED-CATEGORY

Petrologist Team (PT1) …

TYPED-CATEGORY

PAM Sub-Swarm (S2) …

Category Source: PT1

Category Target : S2

Functors:

FUNCTOR (Reconfiguration, R, PT1, S2)…

FUNCTOR (Team Relocation, R2, PT1, S2)

Functor Objects

Messenger:

R2 (TM2): PT1 (TM2) → S2 (R2(TM2):WRS1)

X-Ray:

R2 (WXR1): PT1 (WXR1) → S2 (R2 (WXR1):TM3)

Infra-red:

R2 (WIR1): PT1 (WIR1) → S2 (R2 (WIR1) :SM3)

Gamma Ray:

R2 (WGR1): PT1 (WGR1) → S2 (R2 (WGR1) :TM3)

Functor Morphisms

Cooperation:

R2 (c1): PT1 (WXR1, WGR1, c1) →

S2(R2 (WXR1): TM3, R2 (WGR1): TM3,

R2 (c1): Id(TM3)),

R2 (c2): PT1 (TM2, WXR1, c2) →

S2(R2 (TM2): WRS1, R2 (WXR1) : TM3, R2 (c2): c13),

R2 (c3): PT1 (WIR1, WGR1, c3) →

S2(R2 (WIR1): SM3, R2 (WGR1) : TM3, R2 (c3): cu15),

R2 (c4): PT1 (TM2, WIR1, c4) →

S2(R2 (TM2): WRS1 , R2 (WIR1): SM3, R2 (c4): cu11),

R2 (c5): PT1 (TM2, WGR1, c5) →

S2(R2 (TM2): WRS1, R2 (WGR1): TM3, R2 (c5): c13)

Composition

 R2 (c3 о c4) = R2 (c3) о R2 (c4) = R2 (c5),

 R2 (c1 о c2) = R2 (c1) о R2 (c2) = R2 (c5)

Functor Axioms

Identity: R2 (Id(TM2)) = Id(R2 (TM2))

 R2 (Id(WXR1)) = Id(R2 (WXR1))

 R2 (Id(WIR1)) = Id(R2 (WIR1))

 R2 (Id(WGR1)) = Id(R2 (WGR1))

Functor Ids: R, R2

NAT_TRANSFORMATION (Role Change,)

NTrans Functors

Reconfiguration:

Relocation (R): PT1 S2 ,

Relocation (R2): PT1 S2

NTrans Objects

PT1:

Messenger: TM2,

Worker: WXR1, WIR1, WGR1

NTrans Mapping Function

 (TM2) : R(TM2) R2(TM2)
 (WXR1) : R(WXR1) R2(WXR1)

 (WIR1) : R(WIR1) R2(WIR1)
 (WGR1) : R(WGR1) R2(WGR1)

NTrans Morphisms

Cooperation: R(c1): R(WXR1) → R(WGR1),

 R(c2): R(TM2) → R(WXR1),
 R(c3): R(WIR1) → R(WGR1),
 R(c4): R(TM2) → R(WIR1),
 R(c5): R(TM2) → R(WGR1),

 R2(c1): R2 (WXR1) → R2 (WGR1),

 R2 (c2): R2 (TM2) → R2 (WXR1),
 R2 (c3): R2 (WIR1) → R2 (WGR1),
 R2 (c4): R2 (TM2) → R2 (WIR1),
 R2 (c5): R2 (TM2) → R2 (WGR1)

 80

NTrans Axioms

Commutativity:

 x, y Obj(PT1), f : x → y Mor(PT1),

R2(f) о (x) = (y) о R (f)

Figure 5.9: CML Model for Role Change Scenario in PAM

5.2.5 PAM Team Messenger Cooperation

The cooperation of the PAM Petrologist Team Messenger cooperating with the team

workers is specified using the cone construct grammar included in section 4.8. The

inverse scenario could be modeled using the co-cone construct grammar listed in section

4.9. Together the two models represent the complete working scenario of a Petrologist

team messenger, or any team messenger for that matter. Figures 5.10 and 5.12 include the

CML specification of a typical PAM team messenger cooperation scenario. The

specification in Figure 5.10 captures the behavior of the team messenger communicating

information to the team while Figure 5.12 specifies the behavior of a team messenger

receiving data from the team.

Diagram:

DIAGRAM (D, IC, PT1) …

Category Id: PT1

Diagram Id: D

CONE (Object: TM2)

Cone Objects

D(i), D(j), D(k)

Cone Morphisms

Cooperation: TM2(k): TM2 → D(k),
 TM2(j): TM2 → D(j),

 TM2(i): TM2 → D(i)

Cooperation: D(α): D(i) → D(j)

 D(β): D(k) → D(j)

Figure 5.10: PAM Team Messenger Communicating to the Team

 81

Figure 5.11 and 5.13 include the graphical models for the specification in Figure 5.10 and

5.12.

Figure 5.11: CML Graphical Model of a PAM Team Messenger Communication

Diagram:

Category Source: IC3

Category Target: S1

DIAGRAM (D3, IC3, S1)

Diagram Id: D3

Diagram Objects

X-Ray: D3(i): IC(i) → S1(D3(WXR3))

Altimeter: D3(j): IC(j) → S1(D3(WAL1))

Diagram Morphisms

Cooperation:

D3(α): IC(i, j, α) → S1(D3(WXR3), D3(WAL1))

CO-CONE (Object: TM1)

Co-Cone Objects

D3(i), D3(j)

Co-Cone Morphisms

Cooperation: TM1(j): D3(j) → TM1,

 TM1(i): D3(i) → TM1,

Cooperation: D3(α): D3(i) → D3(j)

Figure 5.12: PAM Team Messenger Receiving Data from the Team

 82

5.2.6 PAM Self-Protection Scenario

Besides avoiding collisions with asteroids and other spacecraft, PAM teams must protect

themselves from solar storms, where charged particles can destroy the sensors and

electronic mechanisms, and damage the solar sails. In such situations, PAM spacecraft

must re-organize their trajectories, or, in worst-case scenarios, must go into the “stand

by” mode to protect their sails and instruments and other subsystems.

After receiving a confirmation from a sub-swarm leader regarding a solar storm, a sub-

swarm messenger communicates this information to the other sub-swarm messengers. All

sub-swarm messengers inform their team messengers which in turn inform all the

workers in the team. Each spacecraft after receiving a warning message and performing

necessary communication puts itself to a “stand by” mode. Figure 5.13 includes a CML

model for this scenario constructed using the limit construct grammar discussed in

chapter 4 section 4.10. The graphical model for the specification in Figure 5.13 is given

in Figure 5.14.

Diagram:

DIAGRAM (D, IC, S1)…

Cones:

CONE (Object: TM2)…

CONE (Object: L1)

Co-Cone Objects

D(k), D(j), D(i),

Co-Cone Morphisms

Management: L1(k): L1 → D(k),
 L1(j): L1 → D(j),

 L1(i): L1 → D(i)

Communication: D(α): D(k) → D(l)

 D(β): D(j) → D(k)

Category Id: S1

Diagram Id: D

Cone Ids: TM2, L1

LIMIT

Terminal Object: TM2

Unique Morphism(u): m1: L1 → TM2

Limit Objects

D(i), D(j), D(k)

 83

Limit Morphisms

Management: L1(k): L1 → D(k),
 L1(j): L1 → D(j),

 L1(i): L1 → D(i)

Cooperation: TM2(k): TM2 → D(k),
 TM2(j): TM2 → D(j),

 TM2(i): TM2 → D(i),

 D(α): D(i) → D(j),

 D(β): D(j) → D(k)

Limit Axioms

m1 о L1(i) = TM2(i)

m1 о L1(j) = TM2(j)

m1 о L1(k) = TM2(k)

Figure 5.13: CML Model for PAM Self-Protection

Figure 5.14: CML Model for PAM Self-Protection

5.2.7 Leader Spacecraft Receiving Data Scenario

This section includes the specification of a scenario for a PAM Sub-Swarm Leader

spacecraft receiving data from the team messengers. The scenario is from the sub-swarm

S4. The typed-category specification for S4 is not included to avoid repetition of the PAM

 84

Sub-swarm specification. The model is constructed using the co-limit construct grammar

discussed in section 4.11 in chapter 4. Figure 5.15 includes the complete model of the

mentioned scenario. The graphical model for the specification in Figure 5.15 is shown in

Figure 5.16.

Diagram:

Categories:

TYPED-CATEGORY

PAM Sub-swarm (S4)…

TYPED-CATEGORY

Index Category (IC2)

Types of Objects

Object_Type: Index (I)

Objects: Obj(IC2)

I: k, l

Type of Morphisms

Morphism_Type:

Index(ind): I → I

Morphisms: Mor(IC2)

α (k) = l

Identity: Identity(IC2)

Id(k): k → k, Id(l): l → l

Axioms

Identity: Id(k) о α = α = α о Id(k)

Category Source: IC2

Category Target: S4

DIAGRAM (D, IC, S4)

Diagram Objects

Team-Messenger: D(k): IC2(k) → S4(D(TM2))

Altimeter: D(l): IC2(l) → S4(D(TM1))

Diagram Morphisms

Cooperation:

D(α): IC2(k, l, α) → S4(D(TM2), D(TM1))

Communication: D(α): D(k) → D(l)

Co-Cones:

CO-CONE (Object: L1)…

CO-CONE (Object: SM1)

Co-Cone Objects

D(k), D(l)

Co-Cone Morphisms

Communication: SM1(k): D(k) → SM1,
 SM1(l): D(l) → SM1

Communication: D(α): D(k) → D(l)

Category Id: S4

Diagram Id: D

Co-Cone Ids: L1, SM1

CO-LIMIT

Initial Object: SM1

Unique Morphism(u): SM1 → L1

Co-Limit Objects

D(k), D(l)

 85

Co-Limit Morphisms

Cooperation: L1(k): D(k) → L1,
 L1(l): D(l) → L1

 SM1(k): D(k) → SM1,
 SM1(l): D(l) → SM1

 D(α): D(k) → D(l)

Co-Limit Axioms

L1(k) о u = SM1(k)

L1(l) о u = SM1(l)

Figure 5.15: Leader Spacecraft Model in PAM

Figure 5.16: Leader Spacecraft Model in a PAM Sub-swarm

5.2.8 PAM Sciencecraft Cooperation

Sciencecraft cooperation to achieve the 3D Model data of an asteroid is shown in Figure

5.17. The model has been constructed using the product construct grammar given in

section 4.12.

 86

Category:

TYPED-CATEGORY

PAM Sub-Swarm (S1) …

Category Id: S1

PRODUCT (Imaging Cooperation, S1)

Product Objects

Worker: WIM3, WRS1, WH1

Product: WIM3 WRS1

Product Morphisms

Projection: pIM3 : WIM3 WRS1 → WIM3

 pRS1 : WIM3 WRS1 → WRS1

Cooperation: c9: WH1 → WRS1

 c10: WH1 → WIM3

Unique: u: WH1 → WIM3 WRS1

Product Axioms

Composition: pIM3 о u = c10

 pRS1 о u = c9

Figure 5.17: PAM Team Cooperation Behavior Specification

Figure 5.18: PAM Team Cooperation Graphical Model

 87

The unique morphism u in the model specifies the role of the sub-swarm Leader in this

cooperation scenario where the leader is supervising the cooperation of the sciencecraft to

gather the optimal data. The graphical model for the specification in Figure 5.17 is given

in Figure 5.18.

5.3 Conclusion

This chapter includes a discussion on different CML models constructed for different

mission scenarios of the PAM. The models correspond to the patterns of behavior or

high-level behavior policies of the PAM.

 88

6 CATCanvas: CAT Modeling Tool

6.1 Introduction

This chapter includes a concise discussion on the CAT modeling tool written as a part of

this research. The name of this modeling tool is CATCanvas inspired from the way the

CAT visual models are constructed on a drawing canvas. So far two constructs of CAT

have been implemented in CATCanvas, that is, the Category and Functor construct. For

every construct there is a separate view and separate drawing canvases. The CAT model

could be either drawn manually on the respective canvas or imported from an xml file to

the canvas. Similarly, the model could be exported in xml format. The tool is also capable

of saving the constructed model as a „png‟ image.

The need for implementing CATCanvas is two-fold. First and most important of all

reasons is the absence of an existing tool of this nature for constructing CAT diagrams.

There is one tool known as Category Theory 3.0 [56] that is also a graphical

diagramming tool like CATCanvas with the differences between the two listed in Table

6.1. To summarize, CATCanvas is a UI friendly web-based tool aimed at computer

science audience rather than mathematicians. It makes use of the abstraction power of

category theory and enables one to create typed categories and functors. The second and

most important reason for the implementation of CATCanvas is its use by our research

group for easy construction/drawing of the CML-based CAT models and porting these

 89

models from this tool to other tools. Figure 6.1 consists of a snapshot of the default view

of the CATCanvas.

Table 6.1: CATCanvas vs. Category Theory 3.0 [56]

CATCanvas Category Theory 3.0

Category is typed and one could construct

and work with any type of category

Work with a certain group of Categories

in Math (finitely generated Abelian

Groups [57], Vector Spaces, Finitely

Generated Algebra, Finite Sets

Computer Science Friendly Very Math Extensive

Powerful Functor Mapping with

Source/Target categories in view and UI

friendly mapping of objects and

morphisms

Functors Generated using Mathematical

Calculation

Math symbols available in objects and

morphisms properties editor

Formula Editor for Objects and

Morphism

Two Category Constructs Available More Category Constructs Available

Naming Flexibility (Objects, Morphisms,

Category, Functor)

Pre-defined Naming (Objects, Morphism,

Category, Functor)

Powerful Drawing Canvas with ability to

curve the morphism arrows and choose

colors for objects/morphisms.

Very Limited drawing Canvas with pre-

defined color‟s and straight lines for

morphisms

XML Import Export Available XML Import/Export Not Available

Ability to Save PNG Images Cannot Save Image File

Available Online Desktop Application

CATCanvas is a Flex-based web application running in flash player 10.0. The reason for

choosing Adobe Flex [58] for CATCanvas was mainly because of the tools availability

online and for the quality purposes of the flex‟s flash-based graphics/drawing library.

 90

Figure 6.1: CATCanvas Default View

The choice of the development platform was made after writing comparison prototypes in

both Java and Flex.

6.2 Architecture of CATCanvas

CATCanvas is a web-based application running in a flash player. The UI is a flex-based

Web UI built using mxml controls. The drawing tools on the Web UI use the graphics

library for rendering the diagrams on the canvas. There is a „Rules Engine‟ in

CATCanvas that is responsible for the construction of categorically correct models. The

„Rules Engine‟ plays an active role when performing functor mappings. For the

constructed diagrams/models, the XML generator can generate XML specification and

send to the Web UI in order to export the specification to a file. The XML parser can

parse an XML file and send the data to the Web UI to render the graphical model with the

 91

help of the „Graphical API‟. Figure 6.2 shows a block diagram of the architecture of the

tool.

Figure 6.2: Architecture of CATCanvas

6.3 List of Features

In Figure 6.1 we can see the layout of the tool in the form of named views. The look and

feel of the application is that of a windows application but these are actually panels/views

in Flex. The discussion in this section consists of the explanation of every view along

with the list of features contained in that view. Some of the views will in turn have sub-

views that would be explained whenever required.

6.3.1 Titlebar and Toolbar

Unlike traditional web application, CATCanvas consists of a title bar and a toolbar. The

title bar has a black background with name and icon of the tool in an orange foreground.

CATCanvas

Web UI

Graphics
API

 XML Parser &

Generator

Rules
Engine

 92

Just below the title bar comes the toolbar that consists of the traditional „New‟,

„Open‟, „Save‟ and „Print‟ buttons for CAT constructs, category and

functor.

6.3.2 Main Window

Under the Toolbar, there is a Tool Pane and a Main Window. The Main Window consists

of the TabStrip for Category and Functor views. Switching between the Category Tab

and the Functor Tab has an impact on the content/views inside the tabs and on the Tool

Pane as well. For the functor tab, the layout is very different from that of a category tab.

6.3.3 TabStrip

The TabStrip consists of two tabs, that is, the Category Tab and the Functor Tab. Each

tab in turn consists of drawing areas also known as the canvas and a properties panel with

different views for each tab based on the requirement of the construct. The views on each

tab have horizontal and vertical dividers in between each view that enable

resizing of the view as well.

6.3.4 Tool Pane

The Tool Pane consists of a basic set of tools for working in each tab. Figure 6.3 (a)

shows the Tool Pane for the Category Tab and Figure 6.3 (b) consists of the Tool Pane

for the Functor Tab.

 93

Figure 6.3: (a) Tool Pane Category Tab; (b) Tool Pane Functor Tab

Category Tool Pane

This tool pane consists of five buttons/tools. The shaded „Reset/New Category‟ tool

is used to create a new typed category. Selecting this tool also wipes out the current

model under construction. The shaded tool represents the current tool roll-over for

scrolling through the tools on the Tool Pane. The next tool is the „Add an Object‟

tool used to add a new object to the model being constructed on the canvas.

„Import XML‟ from its name is the button used to import a file from the library.

Similarly, „Export XML‟ is used to export the xml for the constructed model.

Finally, „Export PNG‟ is used to export an image of the visual model.

Functor Tool Pane

This tool pane consists of seven buttons/tools in total. „Reset/New Functor‟ is used to

reset the screen and create a new functor. Pressing this button resets all the panes and sets

 94

the canvases ready for a new model. „Import Source XML‟, and „Import

Target XML‟ are used to for importing source and target category xml into the tool.

Similarly, „Export Functor XML‟ is used to export the xml for the constructed

functor. , , are used to export png image for source category, target category

and the functor mapping table respectively.

6.3.5 Drawing Canvas

The panel window inside the tab window consists of the name of the category on the

panel title bar and the model is constructed on the canvas with a white background. For

Category tab there is only a single canvas available. For the Functor tab there are two

canvases, one for the source category and the other for the target category. It is possible

to zoom and pan on the canvases. The canvases also have vertical and horizontal

scrollbars to accommodate models requiring more page space.

Zoom In/ Zoom Out

It is possible to zoom-in and zoom-out on the models constructed on the canvas using the

lever shown in Figure 6.4. The level sits on top of the canvas and is part of the canvas

itself.

Figure 6.4: Canvas Zoom In/Zoom Out

 95

The default and the maximum zoom is 100% and as the minus „-‟ button is pressed, the

zoom percentage decreases. This is a nifty tool and comes in handy if the canvas is

longer/wider than the viewport.

6.3.6 Category Properties

Figure 6.5 (a) shows the canvas panel where the name of the category appears. Tapping

once on the canvas panel with a mouse-click shows the Category Properties property

window shown in Figure 6.5(b). By default, the name of a category is „Category – New

Category‟.

Figure 6.5: (a) Canvas Panel w/ Name of the Category in the Title; (b) Property

Window Category Properties

6.3.7 Adding an Object

We saw earlier while discussing the Tool Pane for category tab the tool used to add an

object. Figure 6.6 shows a snapshot of an object being adding to My CAT category

canvas using the „Add an Object‟ button. The object is added with a default color that is

yellow with a black outline.

 96

Figure 6.6: Adding an Object to My CAT

6.3.8 Object Properties

In order to customize an object, click on the object on the canvas with a single mouse

click which will pop-up the property window „Object Properties‟ shown in Figure 6.7 (a).

Figure 6.7: (a) Object Properties; (b) List of Symbols; (c) Color-pickers

The name of an object could be up to three characters and can include mathematical

symbols as well. The drop-down right next to the name input field consists of a list of

some basic mathematical symbols available to be inserted, Figure 6.7 (b). The type field

 97

has a drop-down for values. This drop-down is populated using the type creation view.

The two color-pickers in the bottom are for background and foreground color selection

respectively Figure 6.7 (c). The three buttons on the right present three different views.

enables you to delete the object as shown in Figure 6.8(a). is to switch back to

„Object Properties default view given in Figure 6.7 (a). Finally, is used to select the

view used to add a new object type for the model being constructed. The view is shown

in Figure 6.8 (b).

Figure 6.8: (a) Delete Object View; (b) Add Another Type View

To create a new type a type name and a type color is to be assigned/ defined. On pressing

„OK‟ the name and color defined for this type is saved and the type appears in the type

drop-down box in „Object Properties‟. This enables definition of types separately and

effectively for separate models.

6.3.9 Adding a Morphism

Self-morphisms are not supported in CATCanvas to avoid cluttering the diagram. So, in

order to add a morphism, at least two objects should be present on the canvas. A

 98

morphism could be created from the source object, hovering over the source object shows

an arrow tool . Figure 6.9(a) shows the popping-up of the arrow tool upon hovering

over the source object. In order to draw the morphism, the arrow tool is clicked and

pressed till the target object and released. This finishes drawing/adding of the morphism

between two objects in a category. Figure 6.9 (b) shows the morphism added using the

arrow tool to category My CAT between objects i and j.

Figure 6.9: (a) Arrow Tool; (b) Morphism b/w Objects i and j

6.3.10 Morphism Properties

Similar to „Object Properties‟ morphism properties could also be defined using a property

window named „Morphism Properties‟ shown in Figure 6.10 (a). The property window

will appear whenever a morphism is clicked once. Similar to property window for an

object, this also has three buttons for the three different views „Morphism Properties‟,

„Add a Type‟ and „Delete the Morphism‟.

 99

Figure 6.10: (a) Morphism Properties; (b) Morphism Type Definition;

(c) Deleting a Morphism

Figure 6.11 includes a customized morphism based on the properties set using the

property window „Morphism Properties‟ view. The name of the morphism consists of a

mathematical symbol π.

Figure 6.11: Morphism Properties Set Using the Property Window

Deleting a morphism does not delete the source and target objects. Type definition comes

in handy when working with typed categories but is not shown in the form of labels in the

visual model. The color of the arrow serves the purpose here. Figure 6.12 includes a

complete category constructed using CATCanvas on the Category tab. Identity and

 100

composition morphisms are not shown in the visual model to avoid cluttering the model

but are assumed present. The colors of the objects and morphisms indicate types.

Figure 6.12: Category PAM Team Constructed using CATCanvas

6.3.11 Category XML Export

Figure 6.13 shows the XML export scenario for category given in Figure 6.12.

 101

Figure 6.13: PAM Team XML Export – Save File

Figure 6.14 includes a snapshot of the exported XML specification for the PAM model in

Figure 6.12.

Figure 6.14: PAM Team XML Export Output

 102

6.3.12 Functor Tab

The Functor tab as mentioned earlier consists of two canvases, one for the source

category and another for the target category. There are no property windows in this tab.

The source and target categories are imported from XML files and based on the input, the

models are constructed. It is not possible to make changes to the category models in this

tab. Figure 6.15 shows the layout of the Functor tab.

Figure 6.15: CATCanvas Functor Tab

 103

6.3.13 Functor Mapping

From the definition of a Functor in chapter 3, a functor maps all objects in source

category to selected objects of the target category. This is done in the panel “Functor

Mapping (F)” shown in Figure 6.15. The „refresh‟ button updates the table with data from

the imported files. The purpose of the „undo‟ button is to revert a wrongly done mapping.

„Undo‟ is like a queue working on the „last in last out‟ principle until the very first

mapping. Figure 6.16 shows the first few steps in construction of a functor.

Figure 6.16: Source and Target Categories Imported

 104

To begin the mapping, first the morphism row to be mapped is selected from the „Source

Category‟ table in the Functor Mapping Panel. To perform the mapping the selected row

is dragged using the mouse click from the „Source Category‟ table and dropped onto a

morphism row in the „Target Category‟ table. As soon as the morphism row starts

dragging, an indicator icon appears by its side indicating whether it is possible to drop the

row at the point it is currently at. A red indicator icon with a white cross indicates it is not

possible to drop the row or do the mapping, while a green icon with a white plus indicates

the possibility of a mapping.

Figure 6.17: Source Morphism Row being Dragged with a Red Indicator Icon

While the morphisms are being mapped in this process, the source and target objects of

the morphisms are mapped as well. Figure 6.17 shows the dragging row with a red

indicator icon. Figure 6.18 shows a row being dragged with a green indicator icon.

Figure 6.18: Source Morphism Row being Dragged with a Green Indicator Icon

 105

As soon as the source category morphism row is dropped onto the target category

morphism row, the table Functor Objects/Morphism is instantly populated with the

freshly done mapping. Also, the „Source Category‟ table gets updated with the mapped

objects indicating the target category mapped object. Similarly, the mapped morphism in

the „Source Category‟ gets updated with the mapping information similar to this

m6:Id(I1). This also helps the user performing the mapping to know what objects and

morphism have been mapped already. Figure 6.19 shows a successful morphism/object

mapping.

Figure 6.19: Fist Morphism/Object Mapping

For the morphism that has not yet been mapped but the source and/or target objects have

been mapped already in the first mapping, the mapping would be intelligent to restrict the

mapping wherever necessary. For example, in Figure 6.18 morphism m1 has not been

mapped yet but in the first mapping, object O1 in source category was mapped to object

I1 in target, so the possible mappings for m1 would be n1, n6 and Id(I1) in the target

category. The tool will restrict the mapping for any other morphism as show in Figure

6.20 and Figure 6.21.

 106

Figure 6.20: Attempt to Map m1 in Source Category to Id(I3) in Target Category

Figure 6.21: Mapping m1 in Source Category to n6 in Target Category

Figure 6.22: Successful Mapping of m1 in Source Category to n6 in Target Category

 107

Figure 6.23: Functor Mapping Complete

The mapping of the morphisms continues as shown in Figure 6.22 until there are no more

morphisms and objects left to be mapped.

6.3.14 Functor XML Export

Figure 6.24: Functor XML Import Save File

 108

Once the mapping is complete, it is possible to generate the XML for the constructed

Functor to an output file. Figure 6.24 shows a „save‟ dialog box for the generated XML.

The XML specification for the constructed functor is included in Figure 6.25.

Figure 6.25: Functor Exported XML

6.3.15 Saving PNG Image

The tool makes it possible to save a snapshot of the constructed graphical model in .png

format for the source category, the target category and the mapping table.

Figure 6.26: Functor – Source Category PNG

 109

Figure 6.26, 6.27 and 6.28 show the captured snapshot for the source category, the target

category and the mapping table respectively.

Figure 6.27: Functor – Target Category PNG

Figure 6.28: Functor – Functor Mapping Panel PNG

6.4 Conclusion

The chapter presented a concise discussion of the first release of the CATCanvas, the

CAT modeling tool. An attempt has been made to include a list of all available features.

The functionality that will be developed in the future releases of the tool along with a list

of possible extensions is included in chapter 7.

 110

7 Conclusion & Future Work

Swarm-based systems are based on the concept of an insect swarm depicting entities of

the swarm interacting to accomplish a set of goals. To achieve a behavior similar to an

insect colony, a swarm-based system is inherently autonomous and autonomic. Because

of the behavioral complexity, modeling and specification of such systems is a challenge.

This thesis proposes a modeling language termed Categorical Modeling Language or in

short, CML for specification of the complex behavior of a swarm-based system, for

example, ANTS-based PAM. CML is primarily based on Category Theory (CAT) in

mathematics. The contributions of the work presented in this thesis are summarized

below:

1. Study the application of CAT to software engineering domain.

2. Application of CAT as a formal method for behavioral specification of swarm-

based systems.

3. Proposing a modeling language based on CAT as a formal method.

a. Construction of a grammar for the specification language.

b. Defining the visual/graphical model notation.

4. Application of the proposed modeling language to NASAs PAM case study.

5. Development of a modeling tool for the proposed modeling language.

 111

CAT and swarm-based systems have the social life concept in common which laid the

foundation for this research. The case study, NASA‟s PAM concept mission is based on

NASA‟s swarm-based ANTS architecture. The researchers at NASA in [21, 22, 23] also

indicated the possibility of CAT to serve as a formal method for the behavioral

specification of swarm-based systems including PAM. CAT consists of a set of

constructs that are applicable to the concept of a category. Each construct consists of a set

of axioms that must hold true for the application of that construct. For the course of this

research, only a subset of CAT constructs were studied for application to the case study.

CML introduced in this thesis is proposed as a model-based specification language based

on CAT as a formal method for behavioral specification. The language consists of visual

models as well as specification of the visual models. A significant portion of the work

done in this research goes into writing of an EBNF based grammar for the CML

specification. Together with the visual models and the specification, CML could prove to

be a promising methodology for reasoning about swarm-based systems and for

behavioral specification of such systems. As for the future work, the above-mentioned list

of goals could be used as a point of reference.

Verifying Emergent Behavior

One of the few challenges of specifying a swarm-based system is specification and

verification of the emergent behavior. CML has not yet been studied to verify the

specified emergent behavior of a system. This could be a possible path for future

research.

 112

CAT as a Formal Method

One of the possible directions for future work could be conducting further study on

category theory constructs not included in this thesis.

CML to Include More Constructs

So far CML doesn‟t include the grammar for all of the CAT constructs. In future, all of

the remaining CAT constructs could be included in CML.

Specifying Autonomic Behavior

In this thesis only two of the self-* autonomic properties of PAM were studied and

modelled using CML. In future, the other properties could be studied and modelled using

CML.

CATCanvas

The modeling tool presented in this thesis known as CATCanvas has room for additions

and improvements:

a. So far only typed category and functor constructs have been implemented. Future

work can include implementation of Natural Transformation, Limit and Co-Limit.

b. The tool generates XML specification at this point. In the future, the tool could

be extended to include the CML specification as well.

c. Some bugs in the current version could be fixed in the future versions:

1. Deleting an object

2. Upon deletion of morphism, the morphism name should be removed as

well.

 113

d. Layouts for the visual models

e. The tool could be extended to save project files in addition to xml output.

 114

8 References

[1] J. O. Kephart, D. M. Chess, The Vision of Autonomic Computing, Computer,

Volume 36, No. 1, January 2003, pp:41- 43.

[2] P. Horn, Autonomic Computing: IBM's perspective on the state of information

technology, Technical report, IBM T. J. Watson Laboratory, October 2001.

[3] A. G. Ganek, T. A. Corbi, The Dawning of the Autonomic Computing Era, IBM

Systems Journal, Volume 42, No. 1, January 2003.

[4] Sterritt, R. and Bustard, D., Autonomic Computing - A Means of Achieving

Dependability?, Proceedings of IEEE International Conference on the Engineering of

Computer Based System (ECBS'03), Huntsville, Alabama, USA; April 2003.

[5] Sterritt, R., Parashar, M., Tianfield, H., and Unland, R. A Concise Introduction to

Autonomic Computing. Adv. Eng. Informatics 19, 2005, pp:2.

[6] M. Parashar and S. Hariri. Autonomic Computing: An overview. Hot Topics,

Springer LNCS, www.caip.rutgers.edu/TASSL/Papers/automate-upp-overview-05.pdf.

[7] IBM Corporation. An Architectural Blueprint for Autonomic Computing. April 2003.

[8] P. Faratin, C. Sierra and N.R. Jennings, Negotiation decision functions for

autonomous agents. Robotics and Autonomous Systems. 1998, pp: 2,3.

[9] P.J. Antsaklis and K.M. Passino. Towards Intelligent Autonomous Control Systems:

Architecture and Fundamental Issues. Journal of Intelligent and Robotic Systems, Vol. 1,

1989.

 115

[10] E. Bonabeau, M. Dorigi, G. Theraulaz, Swarm Intelligence. From Natural to

Artificial Systems. Oxford University Press, Oxford, 1999, pp:1-9.

[11] G. Beni. The Concept of Cellular Robotics. In Proc. 1988 IEEE International

Symposium on Intelligent Control, Los Alamitos, 1988.

[12] G. Beni and J. Want. Swarm Intelligence. In Proc. Seventh Annual Meeting of the

Robotics Society of Japan, Tokyo, 1989, pp:1,2.

[13] P.J. Antsaklis and K.M. Passino. Towards Intelligent Autonomous Control Systems:

Architecture and Fundamental Issues. Journal of Intelligent and Robotic Systems, Vol. 1,

1989, pp:315-320.

[14] E. Bonabeau and G. Théraulaz. Swarm Smarts. Scientific American, March 2000.

[15] W. Truszkowski, M. Hinchey, J. Rash, C. Rouff, NASA‟s swarm missions: The

challenge of building autonomous software. IEEE IT Professional Mag 2004;

September/October, pp:51–6.

[16] S. A. Curtis, W. F. Truszkowski, M. L. Rilee, and P. E. Clark, ANTS for the human

exploration and development of space. In Proc. IEEE Aerospace Conference, 2003, pp: 3-

5.

[17] M.G. Hinchey, J.L. Rash, W.F. Truszkowski, C.A. Rouff and R. Sterritt,

Autonomous and Autonomic Swarms, In Proceedings of Autonomic & Autonomous

Space Exploration Systems (A&A-SES-1) at 2005 International Conference on Software

Engineering Research and Practice (SERP'05), Las Vegas, June, 2005.

[18] W. F. Truszkowski, J. L. Rash, C. A. Rouff, and M. G. Hinchey. Asteroid

Exploration with Autonomic Systems. In Proc. 11th IEEE International Conference and

 116

Workshop on the Engineering of Computer-Based Systems (ECBS), Workshop on

Engineering of Autonomic Systems (EASe), Brno, May 2004.

[19] A. F. T. Winfield, J. Sa, M-C Fernandez Gago, C. Dixon, and M. Fisher. On formal

specification of emergent behaviours in swarm robotic systems. International Journal of

Advanced Robotic Systems, December 2005, pp: 364-366.

[20] V. S. Alagar and K. Periyasamy, Specification of Software Systems, New York,

Springer, 2
nd

 Edition, 2011, pp: 12,13,38.

[21] M. G. Hinchey, Requirements of an integrated formal method for intelligent swarms,

presented at the Proceedings of the 10th international workshop on Formal methods for

industrial critical systems, Lisbon, 2005.

[22] Rouff, C., Hinchey, M., Truszkowski, T., and Rash, J. (2004). Formal methods for

autonomic and swarm-based systems. In 1
st
 International Symposium on Leveraging

Applications of Formal Methods, Cyprus, 2004, pp:2-6.

[23] C. Rouff, W. Truszkowski, J. Rash, and M. Hinchey, Formal approaches to

intelligent swarms. In IEEE/NASA Software Engineering Workshop, 2003.

[24] M. Wing. Jeannette, A specifier‟s introduction to formal methods, September 1990,

pp: 10-11.

[25] N. Khurshid, O. Ormandjieva, S. Klasa, Towards a Tool Support for Specifying

Complex Software Systems using Categorical Modeling Language, Springer LNCS, 8
th

ACIS Conference on Software Engineering Research, Management and Applications

(SERA‟10) Montreal, 2010.

 117

[26] H. Shu and J. Malec, From Process Transition Networks to Behavior Automata. In

Proceedings of the IEEE International Symposium on Intelligent Control, Arlington,

1991.

[27] C.A.R. Hoare, Communicating Sequential Processes. Communications of the ACM,

August, 1978.

[28] C. Rouff, A. Vanderbilt, M. Hinchey, W. Truszkowski, and J. Rash, Properties of a

Formal Method for Prediction of Emergent Behaviors in Swarm-based Systems, 2nd

IEEE International Conference on Software Engineering and Formal Methods, Beijing,

September, 2004, pp:7-9.

[29] C. A. Rouff, W. F. Truszkowski, M. G. Hinchey, and J. L. Rash. Verification of

emergent behaviors in swarm based systems. In Proc. 11th IEEE, International

Conference on Engineering Computer- Based Systems (ECBS), Workshop on

Engineering Autonomic Systems (EASe), Brno, Czech Republic, May 2004. IEEE

Computer Society Press, pp:446-448.

[30] M. Kloetzer and C. Belta, Temporal logic planning and control of robotic swarms by

hierarchical abstractions, In IEEE Conference on Decision and Control, pp: 2619–2624,

San Diego, 2006.¸

[31] J. R. Kiniry. The specification of dynamic distributed component systems. Master‟s

thesis, California Institute of Technology, 1998.

[32] Number of Species on Earth, Current Results, January 2007,

http://www.currentresults.com/Environment-Facts/Plants-Animals/number-species.php.

[33] Honey Bee Communication, December 2010,

http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/B/BeeDances.html

 118

[34] D. J. T. Sumpter, G. B. Blanchard, and D. S. Broomhead, Ants and agents: a process

algebra approach to modelling ant colony behaviour, Bulletin of Mathematical Biology,

September 2001, pp:951-960.

[35] C. Tofts, Describing social insect behavior using process algebra, Transactions on

Social Computing Simulation, 1991, pp:227-283.

[36] S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic press, N.Y.

1974.

[37] E. Vassev, J. Paquet, ASSL - Autonomic System Specification Language,

Proceedings of the 31st IEEE Software Engineering Workshop, March 2007, pp:300-309.

[38] E. Vassev, M. Hinchey, and J. Paquet, Towards an ASSL Specification Model for

NASA Swarm-Based Exploration Missions, In Proceedings of the 23rd Annual ACM

Symposium on Applied Computing (SAC 2008), ACM, 2008.

[39] Reino Kurki-Suonio. A Practical Theory of Reactive Systems. Springer, 2005.

[40] L. Aceto, A. Ingolfsdottir, K. G. Larsen, and J. Srba. Reactive Systems: Cambridge

University Press, 2007.

[41] S. Whitmire. Object Oriented Design Measurement. Whiley C. P. New York, 1997.

[42] M. Barr, C. Wells. Category Theory for Computing Science. Prentice-Hall, NJ,

1990.

[43] J. Fiadeiro. Categories for Software Engineering. Springer. Berlin Heidelberg, 2005.

[44] S. Eilenberg, S. Mac Lane. General Theory of Natural Equivalences. Transactions of

the American Mathematical Society, vol. 58, pp. 231–294, 1945.

[45] Mac Lane, Saunders, Basic Category Theory for Computer Scientists, 1998.

 119

[46] Categories for the Working Mathematician. Graduate Texts in Mathematics.

Springer-Verlag.

[47] S.A. Curtis, M.L. Rilee, P.E. Clark, and G.C. Marr, Use of Swarm Intelligence in

Spacecraft Constellations for the Resource Exploration of the Asteroid Belt, Third

International Workshop on Satellite Constellations and Formation Flying, 2003.

[48] Clark, P E, et al. SMART Power Systems for ANT Missions. Chantally, VA: 2004.

[49] M.L. Rilee, S.A. Curtis, P.E. Clark, C.Y. Cheung, W. Truszkowski, From Buses to

Bodies: SMART Matter for System Applications, IAC Proceedings, 2004.

[50] M.L. Rilee, S.A. Curtis, P.E. Clark, C.Y. Cheung, W. Truszkowski, An

Implementable Pathway to SMART Matter for Adaptive Structures, IAC Proceedings,

2004.

[51] P.E. Clark, J. Iyengar, M.L. Rilee, W. Truszkowski, S.A. Curtis, A Conceptual

Framework for Developing Intelligent Software Agents as Space Explorers, 2002.

[52] P.E. Clark, M.L. Rilee, S.A. Curtis, C.Y. Cheung, G. Marr, W. Truszkowski, M.

Rudisill, PAM: Biologically Inspired Engineering and Exploration Mission Concept,

Components and Requirements for Asteroid Population Survey, IAC Proceedings, IAC-

04-Q5.07, 2004.

[53] R. Cervenka, D. Greenwood, and I. Trencansky, The AML Approach to Modeling

Autonomic Systems, Proceedings of the 1
st

 International Conference on Autonomic and

Autonomous Systems, Silicon Valley, USA, 2006.

[54] S. A. Curtis, J. Mica, J. Nuth, G. Marr, M. L. Rilee, and M. K. Bhat. ANTS

(Autonomous Nano-Technology Swarm): An Artificial Intelligence Approach to Asteroid

 120

Belt Resource Exploration, In Proc. Int‟l Astronautical Federation, 51st Congress,

October 2000.

[55] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouff. Autonomous and

Autonomic Systems: A Paradigm for Future Space Exploration Missions. IEEE

Transactions on Systems, Man and Cybernetics, Part C, 2006.

[56] P. Ivankov, Category Theory, http://www.mathframe.com/downloads/categorytheory

 /index.html

[57] J.A. Beachy, Abelian Groups, http://www.math.niu.edu/~beachy/rings_modules/notes

 /03.pdf

[58] Adobe Flex, http://www.adobe.com/products/flex/

[59] M. Holcombe, X-Machines as basis for dynamic systems specification, Software

Engineering Journal, Vol. 3, No. 2, 1988.

 121

9 Appendix.

Pull-Back

<Pull-Back>::= Category: <Typed_Category> (<Cat_name> , <Cat_Id>)

 PULLBACK (Pullback Object: <Obj_Pullback>,

 Triplet Object: <Obj_Triplet>,

 Pullback Morphisms: <PB_Mor>, <PB_Mo>

 Triplet Morphisms: <T_Mor>, <T_Mo>

 Unique Morphism: <PB_Mor_Unique>)

 Diagram Objects <PB_Object><PB_Object><PB_Object>

 Diagram Morphisms <PB_Morphism><PB_Morphism>

 Pullback Axiom {<PB_Axiom>}
+

<Obj_Pullback>::= <Obj_Terminal>

<Obj_Terminal>::= <Obj_type_Id><Obj_instance_Id>

<Obj_Triplet>::= <Obj_type_Id><Obj_instance_Id>

<PB_Mor>::= <Mor_type_Id><Mor_instance_Id>:

 <Obj_Pullback> → <Obj_type_Id> <Obj_instance_Id>

<T_Mor>::= <Mor_type_Id><Mor_instance_Id>:

 <Obj_Triplet> → <Obj_type_Id> <Obj_instance_Id>

<PB_Mor_Unique>::= <Mor_Id>: <Obj_type_Id> <Obj_instance_Id> → <Obj_Pullback>

<PB_Object>::= Obj_Type: <Obj_type> <Obj_type_Id><Obj_instance_Id>

 {,<Obj_type_Id><Obj_instance_Id>}*

<PB_Morphism>::= Mor_Type: <Mor_type> : <Mor_type_Id><Mor_instance_Id>:

 <Obj_type_Id> <Obj_instance_Id> → <Obj_type_Id> <Obj_instance_Id>

<PB_Axiom>:= <PB_Mor> о <PB_Morphism> = <PB_Mor> о <PB_Morphism>

PAM Petrologist Team Messenger Scenario Modeled using PULLBACK construct

Category :(Photogeologist Team, PGT)

PULLBACK

Pullback Object: TM3,

Triplet Object: L2,

Pullback Morphisms: tm1 : TM3 → WIR2,

 tm2 : TM3 → WIM2

Triplet Morphisms: l1 : L2 → WIR2,

 l2 : L2 → WIM2

Unique Morphisms: u: L2 → TM3

 122

Diagram Objects

Worker: WIM2, WIR2, WRS2

Diagram Morphisms

Cooperation: c21: WIM2 → WRS2 ,
 c18: WIR2 → WRS2

Pullback Axiom

tm1 о c18 = tm2 о c21

Push-Out

<Push-Out >::= Category: <Typed_Category> (<Cat_name> , <Cat_Id>)

 PUSHOUT(Pushout Object: <Obj_Pushout>,

 Triplet Object: <Obj_Triplet_PO>,

 Pushout Morphisms: <PO_Mor>, <PO_Mo>

 Triplet Morphisms: <POT_Mor>, <POT_Mo>

 Unique Morphism: <PO_Mor_Unique>)

 Diagram Objects <PO_Object><PO_Object><PO_Object>

 Diagram Morphisms <PO_Morphism><PO_Morphism>

 Pullback Axiom {<PO_Axiom>}
+

<Obj_Pushout>::= <Obj_Initial>

<Obj_Initital>::= <Obj_type_Id><Obj_instance_Id>

<Obj_Triplet_PO>::= <Obj_type_Id><Obj_instance_Id>

<PO_Mor>::= <Mor_type_Id><Mor_instance_Id>: <Obj_type_Id> <Obj_instance_Id> →

 <Obj_Pushout>

<POT_Mor>::= <Mor_type_Id><Mor_instance_Id>: <Obj_type_Id> <Obj_instance_Id> →

 <Obj_Triplet_PO>

<PO_Mor_Unique>::= <Mor_Id>: <Obj_Pushout> → <Obj_type_Id> <Obj_instance_Id>

<PO_Object>::= Obj_Type: <Obj_type> <Obj_type_Id><Obj_instance_Id>

 {,<Obj_type_Id><Obj_instance_Id>}*

Pullback TM3

u

TM3

 L2

WIM2 WIR2

WRS2

tm1 tm2

l1 l2

c21 c18

 123

<PO_Morphism>:= Mor_Type: <Mor_type> : <Mor_type_Id><Mor_instance_Id>:

 <Obj_type_Id> <Obj_instance_Id> → <Obj_type_Id> <Obj_instance_Id>

<PO_Axiom>:= <PO_Morphism> о <PO_Mor> = <PO_Morphism> о <PO_Mor>

PAM Sub-Swarm Leader Team Messenger Scenario Modeled using PUSHOUT construct

Category :(Sub-Swarm, S3)

PUSHOUT

Pushout Object: L2,

Triplet Object: SM4,

Pushout Morphisms: l1 : TM4 → L2,

 l2 : TM5 → L2

Triplet Morphisms: sm2 : TM5 → SM4,

 sm1 : TM4 → SM4

Unique Morphisms: u: L2 → SM4

Diagram Objects

Messenger: TM4, TM5, TM6

Diagram Morphisms

Communication: cu1: TM6 → TM4,
 cu2: TM6 → TM5

Pullback Axiom

cu2 о l2 = cu1 о l1

 124

Co-Product

<Co-Product>::= Category: <Typed_Category> (<Cat_name> , <Cat_Id>)

 CO-PRODUCT (<Co-Prod_name> , <Cat_Id>)

 Co-Product Objects {Obj_Type: <Obj_type>: <Prod_Object>,}
+

 Co-Product: <Obj_CP>

 Co-Product Morphisms {<Co-Prod_Morphisms>}
+

 Co-Product Axioms <Co-Prod_Axioms>

<Co-Prod_Object>::= <Obj_type_Id> <Obj_instance_Id>

<Obj_CP>::= <<Obj_type_Id><Obj_instance_Id> x <Obj_type_Id><Obj_instance_Id>>

<Co-Prod_Morphisms>::= Mor_Type: <Mor_type> :<Mor_type_Id> : <Obj_CP> → <Co-Prod_Object>

 | <Mor_type> :<Mor_type_Id> : <Obj_CP> → <Co-Prod_Object>

 | <Mor_type> : <Mor_unique_Id>: <Co-Prod_Object> →

 <Obj_CP>

<Co-Prod_Axioms>::= Composition:

 <Mor_Id> о <Mor_unique_Id> = <Mor_Id>

Slice

<Slice>::= Category: <Typed_Category> (<Cat_name> , <Cat_Id>)

 SLICE CATEGORY (<Cat_name> , <Slice_Object>)

 Slice Category Objects Obj_Type: {<S_Cat_Object>,}
+

 Slice Category Morphisms {<S_Cat_Morphism>}
+

 Slice Category Axioms <S_Cat_Axiom>

<Slice_Object>::= <Cat_Id>/ <Obj_type_Id> <Obj_instance_Id>

<S_Cat_Object>::= <Obj_type>: (<Obj_type_Id><Obj_instance_Id> ,

 <Slice_Object>, <Mor_type_Id><Mor_instance_Id>)

<S_Cat_Morphism>::= Mor_Type: <Mor_type> :<Mor_type_Id><Mor_instance_Id> :

 <Obj_type_Id><Obj_instance_Id> →

 <Obj_type_Id><Obj_instance_Id>

<S_Cat_Axiom>:= Composition: <S_Cat_Morphism> о <S_Cat_Object> = <S_Cat_Object>

PAM Leader-Messenger-Worker Collaboration Scenario Modeled using SLICE CATEGORY

construct

Category: (Sub-Swarm, S4)

SLICE CATEGORY (Imager Collaboration,S4/WIM4)

 125

 Slice Category Objects

Obj_Type: Management: (L3, WIM4, m13),

 Cooperation: (TM5, WIM4, c20),

 Slice Category Morphisms

Mor_Type: Management: m1: L1 → TM1

 Slice Category Axioms
Composition: m14 о c20 = m13

c20

m13

WIM4

 L3

TM5

m14

Slice Category S4/WIM4

