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ABSTRACT 
 

Comparative Performance of Different Statistical Models for Predicting  

Ground-Level Ozone (O3) and Fine Particulate Matter (PM2.5) Concentrations  

in Montréal, Canada 

 

Edouard Philippe Martin 

 

 

Ground-level ozone (O3) and fine particulate matter (PM2.5) are two air pollutants known 

to reduce visibility, to have damaging effects on building materials and adverse impacts 

on human health. O3 is the result of a series of complex chemical reactions between 

nitrogen oxides (NOx) and volatile organic compounds (VOCs) in the presence of solar 

radiation. PM is a class of airborne contaminants composed of sulphate, nitrate, 

ammonium, crustal components and trace amounts of microorganisms. PM2.5 is the 

respirable subgroup of PM having an aerodynamic diameter of less than 2.5 μm. 

Development of effective forecasting models for ground-level O3 and PM2.5 is important 

to warn the public about potentially harmful or unhealthy concentration levels.   

The objectives of this study is to investigate the applicability of Multiple Linear 

Regression (MLR), Principle Component Regression (PCR), Multivariate Adaptive 

Regression Splines (MARS), feed-forward Artificial Neural Networks (ANN) and hybrid 

Principal Component – Artificial Neural Networks (PC-ANN) models to predict 

concentrations of O3 and PM2.5 in Montréal (Canada). Air quality and meteorological 

data is obtained from the Réseau de surveillance de la qualité de l’air (RSQA) for the 

Airport Station (45°28′N, 73°44′W) and the Maisonneuve Station (45°30′N, 73°34′W) for 

the period January 2004 to December 2007. Air pollution data include concentration 
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values for nitrogen monoxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO) and 

142 different volatile organic compounds. Meteorological data include solar irradiation 

(SR), temperature (Temp), pressure (Press), dew point (DP), precipitation (Precip), wind 

speed (WS) and wind direction (WD).  

Analysis of the available volatile organic compound data expressed on a 

propylene-equivalent concentration indicated that m/p-xylene, toluene, propylene and 

(1,2,4)-trimethylbenzene were species with the most significant ozone forming potential 

in the study area.  

Different models and architectures have been investigated through five case 

studies. Predictive performances of each model have been measured by means of 

performance metrics and forecast success rates. Overall, MARS models allowing second 

order interaction of independent basis functions yielded lower error, higher correlation 

and higher forecast success rates. This study indicates that models based on statistical 

methods can be cost-effective tools to forecast ground-level O3 and PM2.5 in Montréal 

and to provide support for decision makers in protecting human health. 
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Chapter 1 

Introduction  

 

 

 

1.1 Background 

  

In Canada, both the public and private sectors have a long track record in developing 

strategies to control air pollution. Despite the coordinated implementation of these 

strategies and advances in technology over the past years, ozone and particulate matter 

are still prevalent in Eastern Canada (Brook and Dann, 2002).  Because these two air 

pollutants are known to reduce visibility, to have damaging effects on building materials 

and to have adverse impacts on human health (Seinfeld and Pandis, 1998), they remain 

important areas of concern for the scientific and engineering communities.  

Ground-level ozone is the result of a series of complex chemical reactions 

between precursor species, namely nitrogen oxides (NOx) and volatile organic 

compounds (VOCs) in the presence of solar radiation (Nazaroff and Alvarez-Cohen, 

2001). 

Particulate matter is an intricate mixture of solid and liquid chemical elements, 

organic compounds and biological species that vary in size and remain suspended in the 
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air. Precursor species to particulate matter are known to include NOx, VOCs, sulphur 

dioxide (SO2) and ammoniac (NH3) (Stanier, 2003). 

While ozone and particulate matter are a common problem to almost all major 

cities in Eastern Canada, the magnitude of the problem varies regionally and locally. 

Development of effective forecasting models at the local level to predict concentrations 

of ozone and particulate matter is important because the information provided allows 

people within a community to take precautionary measures to avoid or limit their 

exposure to unhealthy levels of air quality (Karatzas and Kaltsatos, 2007). 

Air pollution forecasting strategies can be divided in two broad categories: 

deterministic and statistical. In deterministic models, prior knowledge about the 

underlying chemical and physical processes governing air pollution is described by 

means of differential equations with boundary condition (Liu, 2007). Statistical 

models are more pragmatic mathematical descriptions of how the data can 

conceivably be produced. Statistical models are used to a greater extent at trend 

estimation and to a lesser degree at elucidating underlying mechanisms.  

Deterministic models are commonly divided in three broad categories, 

namely: Gaussian, Lagrangian and Eulerian models (Su, 2004). A number of 

working deterministic platforms have been developed for air pollution monitoring, 

namely the “Regional Climate Model” (Caya et al., 1995), the “Multiscale Air 

Quality Simulation Platform” (Odman and Ingram, 1996), the “Goddard Earth 

Observing System-Chemistry” (Garner et al., 2005) and the “Global Environmental 

Multi-Scale - Modelling Air Quality and Chemistry” (Talbot et al., 2008), which is 
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the current operational large-scale model used by Environment Canada to predict 

ozone and particulate matter.  

Deterministic models predict air pollution at the regional scale, but are less 

suited to capture variance at the local level due to their higher-level spatial resolution 

(Vautard et al, 2008). In practice, it is seldom feasible to construct a strictly 

deterministic model to forecast air pollution at the local scale because it requires 

extensive knowledge of site-specific chemical and physical phenomena, and the 

collection of a prohibitively large dataset (USEPA, 2003). Often, the complexity of the 

equations used in deterministic models to represent air pollution dynamics renders 

analytic solution impossible. In such cases, the model is treated as a black box and 

numerical algorithms are used to estimate the parameters of the differential 

equations. One way to improve the computation of parameters in deterministic 

models is to combine model outputs with measurements from monitoring stations 

for air pollutants and other meteorological variables (Liu, 2007).  

Statistical models offer an alternative to deterministic models for predicting ozone 

and fine particulate matter as they require only a limited number of mathematical 

assumptions about the physical behaviour of the system (Turalığlu et al., 2005). 

There are two complementary but often overlapping approaches in statistical 

modelling: model-driven and data-driven (Solaiman et al., 2008). Model driven 

approaches are based on mathematical or probabilistic methods, simple or 

sophisticated, that capture the main features of the data. Once the model is 

specified, analyses are driven by that model. The validity of these analyses depends 

upon assumptions of additivity of effect and homogeneity of error variance.  Some 
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inferences are strictly valid under further assumptions of normality of residuals. The 

majority of model-driven approaches are in some sense regression-based, with 

varying degrees of complexity (Thompson et al., 2001). Model-driven methods 

include Multiple Linear Regression, Nonlinear Regression, Piecewise Regression 

and Quantile Regression. Data-driven approaches comprise of analytic processes 

designed to explore data in search of consistent patterns and/or systematic 

relationships between variables without an explicit model characterization 

(Solaiman et al., 2008). Data-driven models are also to a great extent user-centric 

and interactive processes which leverage analysis technologies and machine 

computing power. Data-driven methods include Classification and Regression 

Trees, Cluster Analysis, Fuzzy Inference Systems, Artificial Neural Networks, 

Bayesian Networks and Multivariate Adaptive Regression Splines. 

Over the years, a number of statistical approaches, both model and data 

driven, have been proposed to forecast ground-level ozone and particulate matter. 

Despite their evident useful contributions, no a priori conclusion can be drawn with 

respect to their overall performance considering different geographic locations and 

meteorological conditions (Sousa et al., 2007). In other words, conclusions drawn 

from a specific study cannot be extrapolated to other sites due to area specificities. 

Only through model development and performance assessment can we conclude 

which model is best suited for a specific location.   

To this date, no comparative assessment of different statistical models for 

short-term prediction of ground level ozone and particulate matter in Montréal 

(Canada) has been undertaken.  
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While public health imperative provides one motivation for this study, the 

challenge of developing accurate air pollution forecasting models provides another. 

 

1.2 Objectives and Scope of This study 

 

The main purpose of this study is to gain understanding of air quality and how 

concentration levels of air pollutants can be forecasted. In order to investigate this, 

the thesis takes its analytic departure in an extensive amount of empirical data. The 

data consist of four years of air quality and meteorological data. In this way, we 

analyse and incorporate both chemical and physical measurements.  

The objectives of this study are to determine seasonal and diurnal patterns of 

ground-level ozone (O3) and fine particulate matter (PM2.5); to investigate the ozone 

forming potential of different volatile organic compound species in the city and to 

assess the suitability of different statistical methods for short-term forecast.  

The reason for focusing on ozone and fine particulate matter (rather than any 

other known air pollutants) stems from the fact that O3 and PM2.5 are secondary air 

pollutants (i.e. not emitted from sources) and highly dependent of precursor species 

and meteorological conditions.  

The study area is limited to the most densely populated areas of Montréal. 

The air quality and meteorological data used in this thesis has been measured and 

validated by the Réseau de surveillance de la qualité de l'air (RSQA) for the period 

covering January 2004 to December 2007, inclusively. 
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Data processing, statistical analysis and model development has been carried 

out using two commercially available statistical softwares, namely “Salford Predictive 

Miner” from Salford Systems (San Diego, CA, USA) and “JMP Version 5.1.2” from SAS 

Institute Inc. (Cary, NC, USA). 

 

1.3 Methodology  

 

The proposed methodology comprises the following eight steps:  

 

1. Review the chemical and physical processes involved in the formation of ozone 

and particulate matter; 

2. Identify the potential air pollution and meteorological variables for building 

prediction models; 

3. Obtain relevant data covering a representative period of time; 

4. Develop different predictive models based on statistical methods; 

5. Define an appropriate set of performance metrics; 

6. Assess each model in terms of performance metrics;  

7. Determine the best model for short-term forecasting of ozone and particulate 

matter; and 

8. Gauge the performance the developed models in comparison to literature 

data. 
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1.4 Value of Results and Contribution to Research 

 

This work contributes to research by a) increasing domain knowledge related to 

secondary air pollution in Montréal and b) setting the stage for comparative assessment 

of different models for short-term forecast of secondary air pollution in Montréal.  

  

The following advances over previous air quality studies will be achieved: 

 

1. Statistical analysis of air pollution and meteorological data putting in evidence  

seasonal and diurnal patterns in Montréal; 

2. Comparison of air pollution levels in different areas of the city;  

3. Development of different prediction models based on statistical methods for 

forecasting of ozone and fine particulate matter;  

4. Determination of the ozone-forming potential of different VOC species; and  

5. Determination of which statistical method best supports short-term forecast of O3 

and PM2.5 locally in Montréal given the area’s specific geography and site 

conditions.  

 

The results of this study can be of interest as a reference and benchmark for future 

research.  
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1.5 Organisation of this Thesis 

 

This thesis is organized as follows: 

Chapter 1 is the introductory section. It provides the reader with the background 

and rationale for this study as well this research’s objectives and scope. Then, it sheds 

light on the proposed methodology to achieve our objectives.  

The literature survey in Chapter 2 provides the reader with an appropriate level of 

knowledge about the several topics included in this thesis. First, we review the structure 

of the Earth’s atmosphere. Then, we review the main chemical and physical processes 

involved in formation of ozone and particulate matter. Thirdly, we review the current 

understanding of the impacts on health due to different levels of ambient O3 and PM2.5. 

After that, we review the standards related to air quality standards in Montréal. And 

lastly, we survey the most recent studies dealing with short-term prediction of ozone and 

fine particulate matter.  

Chapter 3 focuses on the experimental methods of this thesis. It first introduces 

moment statistics recurrent in this study. Then, it formally introduces the statistical 

methods used for building forecasting models. After that it describes the models 

developed in this thesis and the set of metrics for performance assessment.    

Chapter 4 presents the investigation area and the set of data collected for this 

study. We start by discussing the quality of the data, and then follow by characterizing 

the data and specifying the procedure used for building different datasets.   

Chapter 5 is the model validation section of this study. We provide the results of 

five different case studies with comparison to literature data.  
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Chapter 6 summarizes the main findings of this research and provides 

recommendation for future work.  
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Chapter 2 
Literature Review 
 

 

 

The purpose of this literature survey is to give the reader sufficient background 

information on the structure and properties of the different layers in the Earth’s 

atmosphere; on the different chemical and physical processes involved in formation of 

ozone and fine particulate matter; on the current body of knowledge pertaining to the 

health impacts of these secondary air pollutants,  on the current framework of air quality 

in Montréal; and finally, to provide the reader with a survey of the most recent studies 

dealing with short-term prediction of ozone and fine particulate matter. A discussion and 

a summary are provided at the end of the chapter. 

 

2.1 Earth’s Atmosphere 

 

The Earth’s atmosphere is composed of four main layers covering our planet to a height 

of approximately 100 km (Barry and Chorlet, 2003). It consists of a mixture of gases held 

by gravitational attraction to Earth and that is compressed under its own weight. These 

four layers vary in density with altitude, temperature and water content. The genesis of 

Earth’s atmosphere dates back some 3 billion years (Dalrymple, 2004). Figure 2.1 shows 
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the four main layers of the atmosphere (i.e. thermosphere, mesosphere, stratosphere and 

troposphere) and their temperature profile. 

 

 

Figure 2.1 Earth’s atmosphere (Seinfeld and Pandis, 1998) 

 

The troposphere is the most superficial layer of the atmosphere. It extends from 

the sea level to an average height of 11 km. Greatest heights occur at the tropics where 

warm temperatures cause vertical expansion of the lower atmosphere. The thickness of 

the troposphere varies with solar intensity, as gas expands with increasing levels of 

absorbed energy. The intensity of solar irradiation is greater near the equator than the 
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poles. From a mere 7 km at the poles, it becomes gradually thicker to reach 18 km at the 

equator. All meteorological phenomena (clouds, depressions, rain, thunders, tornados, 

cyclone, etc…) occur in the troposphere since it is here that approximately 80% of 

atmospheric air and water vapour are found. At sea level, the composition by volume of 

dry atmospheric air is composed of 78% nitrogen (N2), 21% oxygen (O2), 0.8 argon (Ar), 

0.03 carbon dioxide (CO2),  with trace amounts of neon (Ne), helium (He), methane 

(CH4), krypton (Kr), hydrogen (H2), carbon monoxide (CO), xenon (Xe), ozone (O3) and 

radon (Rn) totalling less than 0.0003%. The atmosphere contains water vapour in 

amounts up to 4% by weight (Hutcheon and Handegord, 1995). 

The density of the atmosphere decreases exponentially with altitude, but vertical 

circulation produces vigorous mixing sufficient to maintain an uniform composition up to 

about 75 km (Hutcheon and Handegord, 1995). The dominant influence is the heating of 

the earth’s surface by incoming solar radiation. Air at the surface is heated, expands, and 

becomes buoyant. As the buoyancy rises, it expands and cools down in response to the 

lower atmospheric pressure at elevated heights. As altitude increases, constituent gases 

become scarcer. Tropospheric temperature decreases with height at a rate of -6.5 oC/km. 

This phenomenon is commonly called the “Environmental Lapse Rate” (Seinfeld and 

Pandis, 1998). At the uppermost height of the troposphere (tropopause), temperature 

reaches -56oC at an average height of 8.7 km above the sea level. The total mass of the 

troposphere is estimated to 5.3 x 1018 kg (Nazaroff and Alvarez-Cohen, 2001). 

Above the troposphere is the stratosphere. This second layer extends from an 

average altitude of 11 to 50 km. Comparatively, very little weather related events occur in 

the stratosphere as it contains about 19.9 % of the total mass of the atmospheric 
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constituent gases (Seinfeld and Pandis, 1998). The lower portion of the stratosphere is 

influenced by the polar jet stream and subtropical jet stream. It is only on occasion that 

the top portions of thunderstorms breach the stratosphere.  

There is an isothermal layer in the first 9 km, where temperature remains 

relatively constant with height. From an altitude of 20 to 50 km, temperature increases 

with an increase in height. The higher temperatures found in this region of the 

stratosphere occurs because of a localized ozone gas concentration.  

This area of localized ozone is paramount to life on Earth as it shields the Earth’s 

surface from excessive solar irradiation (ultraviolet rays) creating heat energy that warms 

the stratosphere. Ozone is primarily found in the atmosphere at varying concentrations 

between the altitudes of 10 to 50 km. A transition zone the stratopause separates the 

mesosphere from the stratosphere.  

In the mesosphere, the atmosphere reaches -90°C at an altitude of 80 km. At the 

top of the mesosphere is another transition zone known as the mesopause. 

At an altitude greater than 80 km sits the most external layer of the atmosphere 

called the thermosphere. Temperatures in this layer can be as high as 1200°C generated 

from the absorption of solar radiation by oxygen molecules (Barry and Chorlet, 2003). 

The air in the thermosphere is extremely thin with individual gas molecules being 

separated from each other by large distances. 

 
2.2 Ozone (O3) 

 

The ozone (O3) molecule, also referred to as triatomic oxygen, consists of three oxygen 

atoms bound together. O3 is a powerful oxidizing agent unlike diatomic oxygen (O2). 
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Ozone is a reactive oxidant that forms in two parts of the atmosphere: the stratosphere 

and the troposphere. Naturally occurring stratospheric ozone shields life on earth from 

the harmful effects of the sun’s ultraviolet radiation, but at the troposphere, ozone can 

have damaging effects on building materials and be harmful to human beings.  

Tropospheric ozone is a secondary photochemical pollutant: secondary in the 

sense that ozone in the troposphere is not emitted from anthropogenic or biogenic 

sources; and photochemical in the sense that the chemical reactions that lead to its 

production are driven by energy from the sun (Seinfeld and Pandis, 1998).  

Ground-level ozone is the result of a series of complex chemical reactions 

between precursor species, namely nitrogen oxides (NOx) and volatile organic 

compounds (VOCs) in the presence of solar irradiation (Nazaroff and Alvarez-Cohen, 

2001). While the chemistry of ozone formation is complex, the main features are well 

established.  

The formation and destruction of ground-level O3 is governed by the following set 

of three reactions known as the “primary photolytic cycle” (Nazaroff and Alvarez-Cohen, 

2001): 

 

NO2 + hv → NO + O•        (2.1)   

O• + O2 + M → O3 + M        (2.2) 

O3 + NO → NO2 + O2        (2.3) 

  

In the first reaction, nitrogen dioxide (NO2) absorbs the energy of a photon light (hv) and 

dissociates into nitric oxide (NO) and an oxygen radical (O•).  In the second reaction, the 
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oxygen radical combines with a diatomic oxygen (O2) in the presence of a third “body” 

(M) to form ozone (O3). In air, the “body” is a non-specific molecule containing nitrogen 

or oxygen atoms or fine suspended particulate matter. The “body” absorbs energy from 

the exothermic chemical reaction that combines O• and O2 into O3. In the third reaction, 

ozone oxidises nitric oxide to nitrogen dioxide and is converted back to molecular 

oxygen.  

Reaction (2.1) is the primary source of oxygen radicals. Reaction (2.2) is the only 

significant means by which ozone is formed and reaction (2.3) is the most important 

ozone removal mechanism. The NO2 photolysis reaction (2.1) depends on sunlight and 

the rate of this reaction (k1) can be as high as 0.5 min-1 during daylight hours. Reactions 

(2.2) and 2.3 are comparatively fast, the reactions rates (k2 and k3) are 21.8 ppm-1 min-1 

and 26.8 ppm-1 min-1 respectively (Nazaroff and Alvarez-Cohen, 2001). 

Considering that the nitrogen cycle operates fast enough to operate in steady state 

balance, the photostationary-state relation is derived:  

 

[ O3 ] = ( k1 / k3 ) x [ NO2 ] / [ NO ]       (2.4) 

 

Three important points emerge from the photostationary-state relation. First, the 

level of O3 depends directly on sunlight intensity (rate constant k1). Second, the ozone 

level depends on the relative amounts of NO2 and NO. A higher NO2/NO result in higher 

O3 concentration and vice-versa. Third, there must be other reactions allowing NO 

conversion back into NO2 without destroying O3.  
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 The first process allowing NO-to-NO2 conversion is the oxidation of carbon 

monoxide (CO): 

 

CO + OH• → CO2 + H•                   (2.5) 

H• + O2 → HO2•        (2.6) 

HO2• + NO → NO2 + OH•       (2.7) 

 

In reaction (2.5), CO is oxidized by hydroxyl radical (OH•) to form carbon dioxide (CO2) 

and a free hydrogen atom (H•). In reaction (2.6), H• and O2 combine to form a peroxy 

radical (HO2•). In reaction (2.7), NO-to-NO2 conversion occurs as HO2• is transformed 

into OH•.  

Recall reactions (2.1) and (2.2): 

 

NO2 + hv → NO + O•        (2.1)   

O• + O2 + M → O3 + M        (2.2) 

 

The net effect of the oxidation of CO is:  

 

CO + 2O2 → O3 + CO2       (2.8) 

 

The second process allowing NO-to-NO2 conversion is the oxidation of VOCs: 

 

RH + OH• → H2O + R•                    (2.9) 
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R• + O2 → RO2•        (2.10) 

RO2• + NO → NO2 + RO•       (2.11) 

 

In reaction (2.9), the organic compound RH is oxidized by OH• to form a water molecule 

(H2O•) and an organic fragment (R•). In reaction (2.10), R• combines with oxygen to 

form an organic peroxy radical (RO2•). In reaction (2.11), NO-to-NO2 conversion occurs 

as RO2• is transformed into an organic alkoxy radical (RO•).  

The net effect of the oxidation process of VOCs is:  

 

RH + OH• + 2O2 → O3 + H2O +RO •     (2.12) 

 

The third process allowing NO-to-NO2 conversion is photolysis of VOCs: 

 

HCHO + hv → H• + HCO•            (2.13) 

H• + O2 → HO2•        (2.14) 

HCO• + O2 → HO2• + CO       (2.15) 

 

In reaction (2.13), formaldehyde (HCHO) absorbs the energy of a photon light (hv) and 

dissociates into molecular hydrogen (H•) and aldehyde radical (HCO•). Reactions (2.14) 

and (2.15) are intermediate but important steps as they show how molecular oxygen 

reacts with H• and HCO• to form peroxy radicals (HO2•) and CO.  

The net effect of the photolysis of formaldehyde is the production of two peroxy 

radicals (HO2•) as shown in reaction (2.16).  
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HCHO + hv + 2O2 → 2HO2• + CO         (2.16) 

 

Recall reactions (2.7), (2.1) and (2.2) and multiply by a factor of two and re-write: 

 

2NO + 2HO2• → 2NO2 + 2OH•       (2.17) 

2NO2 + hv → 2NO + 2O•       (2.18)   

2O• + 2O2 + M → 2O3 + M        (2.19) 

 

The net effect of the photolysis of VOC (described by formaldehyde reactions) is:  

 

HCHO + 4O2 + hv → 2O3 + CO + 2OH•     (2.20) 

 

Ozone removal from the troposphere takes place primarily in the following 

manner: 

 

O3 + hv → O2 + O•        (2.21)  

HO2• + O3 → OH• + 2O2       (2.22) 

OH• + O3 → HO2• + O2        (2.23) 

 

Ozone precursors have both anthropogenic and biogenic origins. In urban and 

industrialized areas, CO, NOx and VOCs are produced mainly during the combustion of 

fossil fuels and thus associated with transportation sector and manufacturing (Barry and 



19 
 

Chorlet, 2003). The dominant CO and NOx sources are combustion processes, including 

industrial and electrical generation processes, and mobile sources such as automobiles.  

Mobile sources, chemical industries and refineries or others that use solvents account for 

a large portion of VOC emissions. VOCs may be classified under four different groups, 

namely alkanes, alkenes, alkynes and aromatic hydrocarbons. Biogenic VOCs include the 

highly reactive compound isoprene (Zheng et al., 2009). Ground-level concentrations of 

biogenic VOCs are typically lower than anthropogenic VOCs.  

 

2.3 Particulate Matter (PM) 

 

Particulate matter (PM) is a broad and important class of air contaminants comprised of 

physical, chemical and biological substances existing as discreet particles in the 

atmosphere (Stanier, 2003). Particulate matter emitted directly from sources is referred to 

“primary particulate matter”’ while particulate matter that is formed from precursor 

species by means of transformation processes is referred to “secondary particulate 

matter”. Airborne particulate matter (also referred as aerosols) may be in either in the 

liquid or solid state.  

Particulate matter composition includes a wide range of chemical elements, 

organic compounds and biological species that may occur in the particulate phase.  The 

individual particles may be pure substances or, more typically, complex mixtures of 

chemical element and compounds. Particulate matter also typically contains a variety of 

inorganic ions, metals, water, soot, oxides and hundreds of organic compounds found as 

solids, dilute or highly concentrated solutions and multiphase particles. Major 
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components include sulphate, nitrate, ammonium, crustal components and trace amounts 

of microorganisms, such as bacteria and viruses (Akyüz and Çabuk, 2009). 

Particulate matter size ranges from a molecular cluster of a few nanometres to 

particles of size in the order of 1000 μm. Particulate matter can be further categorized 

with respect to size distribution, either in terms of “number size distribution”, “surface 

size distribution” and “mass size distribution”. Particle sizes are often indicated in the 

literature as a subscript. For example, PM10 refers to the PM mass with an aerodynamic 

diameter of less than 10 μm, while PM2.5 refers to the mass of particle matter with sizes 

smaller than 2.5 μm.  

Particulate matter larger than 2.5 μm are mostly the result of physical breakdown 

of larger particles into smaller ones such as windblown soil, sea salt spray, and dust from 

quarrying operations. This type of particulate matter is considered coarse mode or 

sedimentation. Fine particulate matter (PM2.5) is the respirable subgroup of airborne 

particulate matter having an aerodynamic diameter of less than 2.5 μm (Diaz-Roblez et 

al., 2008). The fine particle mode is often subdivided into the accumulation mode (0.1 – 

2.5 µm) and the nucleation mode with particle dimension less than 0.1 µm (Nazaroff and 

Alvarez-Cohen, 2001).  

Some PM2.5 is emitted directly into the atmosphere as particles from primary 

sources but in most cases they are the result of chemical reaction, coagulation and 

condensation of gases. Some processes that emit fine particle include motor vehicle 

emissions, incomplete combustion, tire and break wear, vehicular activity resulting in 

road and pavement dust, erosion, manufacturing processes such as smelting and cement 

manufacturing. The PM2.5 composition is primarily elemental carbon, organic carbon, 
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mineral components of soil, nitrates and sulphates from reactions involving nitrogen 

oxides, ammoniac (NH3) and sulphur dioxide (SO2). Particulates are commonly classified 

in the following three classes: sulphates, nitrates and organics (Seinfeld and Pandis, 

1998).  

Sulphate particulate matter arises mainly from sulphuric acid which can be 

formed through different pathways. In the atmosphere, sulphuric acid droplets react with 

ammonia or metal oxides to form sulphate salts, such as: 

 

H2SO4 + NH3 → NH4HSO4 (ammonium sulphate)   (2.24) 

 

Nitrate particulate matter is formed from nitric acid (HNO3). It is produced in the 

atmosphere following this series of reaction: 

 

NO2 + O3 → NO3 + O2      (2.25) 

NO2 + NO3 → N2O5       (2.26) 

N2O5 + H2O → 2HNO3      (2.27) 

 

Nitric acid could also result from the reaction of NO2 with hydroxyl radicals 

 

NO2 + OH• → HNO3       (2.28) 

 

The subsequent reaction of nitric acid with ammonia leads to the formation of 

ammonium nitrate: 
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HNO3 + NH3 → NH4NO3 (ammonium nitrate)   (2.29) 

 

Reaction times for sulphate precursors show that oxidation of sulphate occurs at 

an average rate of 0.1 to 1 percent of sulphate per hour. Nitrates continuously change 

between the gas and condensed phases in the atmosphere, so a reaction time is nearly 

impossible to quantify (Barnard and Hodan, 2004).  

Organic particulate matter spring from highly reactive hydrocarbon species in the 

atmosphere. Their lifetimes due to the reaction with hydroxyl radical and ozone are 

relatively short except for low carbon number alkanes. Volatile organic compounds are 

important sources of fine particular matter. VOCs are removed primarily by oxidation 

and conversion to CO2, Oxidation of VOC typically leads to a large number of products. 

Often, at least some of the products of the VOC oxidation are more volatile than the 

reactant gas. Accordingly, some of the products partition between the gas and aerosol 

phases. Measuring and predicting the partitioning of the products is a key problem in 

understanding secondary organic aerosol formation.  

The formation of PM2.5 from organic compounds depends on four factors: its 

atmospheric abundance, its chemical activity, the availability of oxidants, and the 

volatility of the products. All these factors contribute to reaction times, but volatility 

plays a predominant role, since highly volatile chemicals such as alkanes and alkenes 

with less than six carbon atoms are unlikely to form PM2.5 (Barnard and Hodan, 2004). 

Most recently, there has been increased interest in organic aerosols derived from 

biogenic volatile organic compounds which are emitted from vegetation. This interest is 



23 
 

due to the reactivity of biogenic compounds, their flux to the atmosphere (7 to 10 times 

anthropogenic emissions on a global scale) and their potentially large impact on global 

and regional air pollutions (Griffin et al., 1999).  

 

2.4 Influence of Meteorology on O3 and PM  

 

The previous two sections have shown that formation mechanisms of ozone and 

particulate matter are dependent on precursor species. Previous studies have shown that 

concentration levels do not always increase in direct proportion to amounts of precursor 

species (Slini et al., 2002; Lu and Wang, 2004; Kuo et al., 2008).  The relationship is in 

fact non-linear and highly dependent on meteorological conditions. Generally speaking, 

the prime meteorological condition for formation of both of these air pollutants are high 

temperature, high pressure, light surface winds and low relative humidity (Pires et al., 

2008a; Pires et al., 2008b; Salazar-Ruiz et al., 2008).  

The reaction rates in ozone formation as well as in sulphate, nitrate and organic 

aerosol formation, increase as ambient temperature increases. While evaporative 

emissions of VOCs generally increase with increased temperature, the relationship is 

different depending if the VOC is volatile or semivolatile. Production of ground-level 

ozone and fine particulate matter is dependent on meteorological conditions and the 

supply of VOC species. The rate of O3 and PM2.5 production from a given VOC is a 

function of the species' volatility, temperature, atmospheric mixing and its OH-reactivity 

(rate of reaction with hydroxyl radicals).  
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Aloft temperatures inversions can trap precursor below inversion point and inhibit 

vertical mixing. Ambient temperature also has an indirect effect on precursor availability. 

Cloud cover can limit daily temperature rise and maximum temperature. Pressure has an 

effect on the atmospheric lapse rate, on stability and the extent of vertical mixing.  

Precipitation scavenging is the primary processes by which fine particulate are 

eventually removed from the atmosphere. Relative humidity plays an important role in 

particulate matter formation. Particles (such as sulphates and nitrates) remain dry with 

increasing relative humidity until their deliquescent point is reached, at which time a 

sudden uptake of water occurs with a corresponding increase in particle size (Stanier, 

2003).  

Particles larger than 2.5 μm (the sedimentation or coarse mode) are efficiently 

removed by gravitational settling, and therefore remain in the atmosphere for shorter 

periods of a few hours to a few days (HCEC, 1998). As wind speed and wind direction 

dictates to a great extent the degree of mixing, the prevalence of wind will ultimately 

determine the persistence of fine particulate matter and ozone precursor species. Calm or 

light winds produce weak ventilation and allow localized accumulation of precursor 

species. Table 2.1 shows the residency time and transport distance versus particle size.  

Due to wind and pressure systems, airborne particles found in the nuclei mode are subject 

to random motion and to coagulation processes in which particles collide to quickly yield 

larger particles. Consequently, these tiny particles will have short atmospheric residence 

times. Particles in the size range of 0.1–2.5 μm (the accumulation mode) result from the 

coagulation of particles in the nuclei mode and from the condensation of vapours onto 

existing particles which then grow into this size range.  
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The condensation of vapour is dependent on pressure, wind and temperature. 

Particulate matter in the accumulation mode account for most of the particle surface area 

and much of the particle mass in the atmosphere since atmospheric removal processes are 

least efficient in this size range. These fine particles can remain in the atmosphere for 

days to weeks depending on favourable weather conditions. The same can be said for 

ozone precursor species. 

 

Particle Diameter Settling Velocity Residence Time Transport Distance 
(μm) (m/min) (t50%) (L50%) 

1000 200 1 min 1 km 

100 20 10 min 10 km 

10 0.2 1 day 1,000 km 

1 0.002 3 months 100,000 km 

 
Table 2.1 Residency time and transport distance versus PM particle size (Patel, 2004) 

 

 

2.5 Impact of O3 and PM on Human Health 

 

The detrimental health effects of ozone and particulate matter on human health are well 

known and have been extensively documented (Mayer, 1999; Bernstein et al, 2004; 

Maynard, 2004; Kampa and Castanas, 2008). Tables 2.2 and 2.3 summarize the definite, 

probable and possible impacts of O3 and PM2.5 on human health.  

The symptoms of excessive exposure are cough, shortness of breath, increases in 

airway resistance and bronchial responsiveness to stimuli; and airway inflammation 
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(Bernstein et al, 2004), cause-specific mortality (Goldberg et al., 2000a; Goldberg et al., 

2006) or non-accidental mortality (Goldberg et al., 2000b; Goldberg et al., 2003).  

Correlations between increased levels of ambient air pollution and hospital 

admissions have been shown for certain sensitive subgroups of the population, 

specifically those with cardiac and respiratory conditions (Delphino, 1998; Deschamps, 

2003).  Other epidemiological studies have linked O3 and PM2.5 to changes in pulmonary 

function, respiratory irritation, asthma, chronic bronchitis and even mortality (Maynard, 

2004). 

The adverse effects on human health of increased levels of ozone and particulate 

matter are mainly via the respiratory system (Kampa and Castanas, 2008). PM2.5 

penetrates the alveolar epithelium (Ghio and Huang, 2004) and ozone initiate lung 

inflammation (Uysal and Schapira, 2003).  

Adverse health effects due to ozone depend on concentration, duration of exposure, and 

degree of exercise. Ozone exposure of less than 0.50 ppm without exercise typically has 

no effect on lung function; however, ozone exposure with exercise results in decreased 

respiratory frequency, decreased forced vital capacity, an increase in airway resistance 

and symptoms (Bernstein et al., 2004). Ozone exposure ranging from 0.10 to 0.4 ppm is 

traditionally accompanied with neutrophilic inflammation as early as one hour after 

exposure and can persist for up to 24 hours (Nightingale et al., 1999).  

In a recent Montréal study, it was concluded that the mean percent change of 

asthma related daily hospital admissions decreased by -4.86 (95% CI: -7.17 - -2.50) given 

a change of -21.4 μg/m3 in ozone concentration (Deschamps, 2003). Ozone’s more 
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dramatic effect in asthmatic subjects is most likely a result of existing chronic 

inflammation in the lower airways (Vagaggini et al., 2002).  

 

 
Definite Effect Probable Effect Possible Effect 

 
Aggravation of 
asthma 
 
Increased hospital 
admissions for 
respiratory and 
cardiac conditions 
 
Acute and chronic 
depressed lung 
function in children 
 
Increased prevalence 
of bronchitis 
 
Increased risk of lung 
cancer 
 
 

 
Aggravation of acute 
respiratory infections 
 
Increased risk of 
wheezy bronchitis in 
infants 4-12 months 
 
Decreased rate of 
lung growth in 
children 
 
Tachycardia in the 
elderly 
 
Reduced heart rate 
variability 
 
Increased blood 
vessel constriction 
 

 
Decreased birth 
weight 
 
Increased blood 
fibrinogen 
 
Increased asthma 
prevalence 

 

Table 2.2 Summary of O3 impacts on human health (adapted from NRTEE, 2008) 

 

 
Definite Effect Probable Effect Possible Effect 

 
Increase hospital 
admissions for acute 
respiratory diseases 
 
Aggravation of 
asthma 
 
Increased bronchial 
responsiveness 
 
Reduced lung function 
 

 
Effect on mortality 
 
Increased sensitivity 
to allergens 

 
Aggravation of 
acute respiratory 
infections 
 
Chronic 
bronchiolitis with 
repetitive exposure 
 
Increased 
prevalence of 
asthma 

 

Table 2.3 Summary of PM2.5 impacts on human health (adapted from NRTEE, 2008) 
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Figure 2.2 Human respiratory system  (HCEC, 1998) 

 

Environment Canada has considered the mortality associated with mean ozone 

concentrations (daily one-hour maximum) that situate between 20 and 75 ppb. There is 

evidence to show that ozone concentration response relationship is approximately linear, 

down to 10 ppb, but no evidence of thresholds at low concentration. Furthermore, the risk 

for non-accidental mortality is 0.79% (95% CI: 0.59-0.99%) for every 10 ppb increase in 

ozone (daily 1-hour maximum). The weighted mean for respiratory hospitalizations per 

10 ppb increase in ozone (daily 1-hour maximum) is 1.12% (95% CI 0.73-1.51%) 

(HCEC, 1999).  
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Environment Canada states that the magnitude of the risk of mortality associated 

with PM10 varies by an average 0.8% (95% CI: 0.4% - 1.7%) per 10 μg/m3 increase for 

concentrations averaging 25–78 μg/m3; and that overall rate in mortality increases 1.5% 

(95% CI: 0.85 – 22%) per 10 μg/m3 increase in PM2.5 for concentrations averaging 11 – 

30 μg/m3 (HCEC, 1998). The increase in PM2.5 related risk of mortality is thus about 

twice that for PM10. In a recent Montréal study, it was concluded that the mean percent 

change of asthma related daily hospital admissions was -0.71 (95% CI: -5.23 – 4.03) 

given a change of -17.5 μg/m3 in PM10 concentration (Deschamps, 2003). There is little 

evidence in the PM10 and PM2.5 data to include a threshold in the dose-response curve. 

The response was observed to increase monotonically with increasing concentration, in 

the PM10 concentration range below 80–100 μg/m3 and average PM2.5 concentrations 

14.7–21 μg/m3 (HCEC, 1998). The lack of a threshold down to low concentrations 

suggests that it will be difficult to identify a level at which no adverse effects would be 

expected to occur as a result of exposure to particulate matter.  

So far, no single component has been identified that could explain most of the 

PM2.5 effects. Among the parameters that play an important role for eliciting health 

effects are the size and surface of particles, their number and their composition. As 

explained in previous section, the composition of PM2.5 varies, as they can absorb and 

transfer a multitude of pollutants. There is strong evidence to support that ultra fine and 

fine particles are more hazardous than larger ones (coarse particles), in terms of mortality 

and cardiovascular and respiratory effects (Kampa and Castanas, 2008). In addition, the 

metal fraction, the presence of polycyclic aromatic hydrocarbons and other organic 

components such as endotoxins, mainly contribute to PM2.5 toxicity (Maynard, 2004). All 
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of these constitute the evident epidemiological motivation to consider PM2.5 a special 

class of suspended particulate matter.  

The bulk of prior research has focused on mass concentration of fine suspended 

particles perhaps because a measure of mass of PM2.5 in air is straightforward (particles 

caught in a filter and weighted). Recently, research has begun to focus more on the 

number concentration of fine suspended particles, the formation and emissions of fresh 

aerosols particles and the health effects of particles very small, which by their nature can 

be found in high concentrations without significantly increasing fine particulate matter 

mass concentration (Stanier, 2003). This focus on particles that can be found in high 

concentrations but relatively low mass concentrations is supported by recent health 

studies that show that for a given mass concentration, health effects are larger for smaller 

particles sizes (Donaldson and McNee, 1998).  

 

2.6 Air Quality Standards for O3 and PM 

 

In Canada, national ambient air quality objectives (NAAQOs) were first established by 

the federal government in 1969 under the Clean Air Act. In 1976, standards for ozone 

and particulate matter were established under this act. In 1988, the Canadian 

Environmental Protection Act (CEPA) was passed into law, replacing the Clean Air Act. 

As it was, the NAAQOs were revised under the CEPA by a federal/provincial advisory 

committee known as the “Working Group on Air Quality Objectives and Guidelines” 

(WGAQOG).   
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The WGAQOG’s objectives were intended to represent national goals for outdoor 

air quality, to protect public health and the environment, while ensuring some degree of 

uniformity across the country. In 1999, the WGAQOG revised the daily 1-hour maxima 

for O3 and PM objectives and set a range of levels (rather than specific values) as 

follows:  

 

• 40 – 50 μg/m3 (20 – 25 ppb) for O3  

• 35 – 40 μg/m3 for PM10  

• 20 – 25 μg/m3 for PM2.5  

 

In 2000, CEPA was revised, introducing a new framework for setting ambient air 

quality objectives. It provided a uniform structure for assessing air quality to guide 

governments in the risk management process by bringing into play local standards and 

local control strategies. Recognizing the need for a more collaborative national approach 

on standards setting, Canada’s environment ministers, under the auspices of the Canadian 

Council of Ministers of the Environment (CCME), agreed to new Canada Wide 

Standards (CWS) in 2000:  

 

• The CWS for ozone is 65 ppb — an 8-hour average, with achievement based on 

the fourth-highest level measured annually over three years. 

• The CWS for PM2.5 is 30 μg/m3 — a 24-hour average. 
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Currently, the actual setting of ambient air quality objectives in Canada is the dual 

responsibility of both the federal government and provincial/territorial governments. In 

addition, while provinces have the responsibility and authority to set and enforce air 

quality objectives, local and regional governments have the authority to pass bylaws that 

may restrict activities contributing to air pollution emissions in their jurisdiction. 

Furthermore, provincial and territorial governments have the authority to delegate 

primary responsibility for air quality management to regional or municipal jurisdictions. 

For example, the government of Québec has delegated air quality management 

responsibilities to the Montréal Urban Community.  

In Montréal, the 24-hr average objective for O3 and PM2.5 is 50 and 25 μg/m3, 

respectively.  

Table 2.4 summarizes a few of the existing Canadian and international objectives, 

standards, guidelines, goals, and reference levels for ozone.  
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Table 2.4 Existing air quality objectives, standards and guidelines in Montréal, Canada  

                 and United States 

 

2.7 Statistical Models used in O3 and PM2.5 Forecasting  

 

Generally speaking, model-driven statistical approaches are methods aimed at fitting 

a curve (not necessarily a straight line) through a set of points using some goodness-

of-fit criterion. The majority of model-driven approaches are in some sense 

regression-based, with varying degrees of complexity. Model-driven models include 

Multiple Linear Regression, Nonlinear Regression, Piecewise Regression and 

Quantile Regression.   

ppb ug/m3 ppb ug/m3 ppb ug/m3

NO 1 h 1000 1300
1 h 213 400 213 400
24 h 106 200 106 200

1 year 53 100 53 100 53 100
1 h 30000 35000 30000 35000 35000 40000
8 h 13000 15000 13000 15000 9000 10000
1 h 500 1300 344
24 h 100 260 110 140

1 year 20 52 20 30
1 h 82 160 82 160 120 234
8 h 38 75 65 127*** 80 156
24 h 25 50 25 50
3 h 35
24 h 25 30*** 35

1 year 15
* Maximum acceptable level
** US EPA National Ambient Air Quality

*** CWS

CO

O3

NO2

PM2.5

SO2

Montreal Canada* United States**
Pollutant Period
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Linear Regression is the most common type of regression. In Linear 

Regression, the dependent variable is modeled by a function which is a linear 

combination of the independent variables. The most common techniques to estimate 

the model parameters are method of moments, Method of Maximum Likelihood and 

Ordinary Least Squares (OLS). Among these, OLS is the most widely used due to 

its intuitive derivation and intrinsic simplicity.  Linear Regression has been widely 

used in air quality forecasting (Cuhadaroğlu and Demirci, 1997; Lu and Wang, 

2004; Turalığlu et al., 2005).  

In Nonlinear Regression, the dependent variable is modeled by a function 

which is a nonlinear combination of the model parameters and depends on one or 

more independent variables. Nonlinear models are more difficult to fit than linear 

models. They require specification of the model and an initial guess for parameter 

values. Iterative numerical methods are used to search for the least-squares 

estimates, and there is no guarantee that a solution will be found. Indeed it is 

possible to diverge, or even to converge on a local solution that is not the least-

squares solution. Nonlinear fits do not have some of the nice properties that linear 

models have, and the results must be interpreted with caution. Nonlinear models 

have been developed to forecast O3 (Novara et al., 2007; Xing et al., 2010) and 

PM2.5 (Lin, 2007; Cobourn, 2010). 

Piecewise Regression is an extension of the two previous regression 

approaches. In piecewise regression models, the domain of independent variable 

space is divided into a number of regions; and for each region, the relationship 

between the dependent and independent variable is derived by least square fit. 
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Piecewise regression has been used for the forecast of O3 (Vyushin et al., 2007) and 

PM2.5 (Lykoudis et al., 2008).  

Quantile Regression represents conditional quantiles as functions of predictors. 

While linear, nonlinear and piecewise regression models specify the change in the 

conditional mean of the dependent variable associated with a change in the covariates, the 

quantile-regression model specifies changes in the conditional quantile (Hao and Naiman, 

2007). Quantile-regression models can be easily fit by minimizing a generalized measure 

of distance using algorithms based on linear programming. Potentialities of quantile 

regression to predict ozone concentrations have been investigated (Sousa et al., 2009). 

Multicollinearity (or the high correlation between independent variables) 

may cause instability in regression models. The instability is in part reflected by 

large standard errors in the values of regression parameters. Principal Component 

Analysis (PCA) is one technique used to lessen the degree of multicollinearity from 

a given dataset. In PCA, a set of correlated variables is transformed into a new set of 

uncorrelated variables. In Principal Component Regression (PCR), instead of regressing 

the independent variables on the dependent variable directly, the principal components of 

the independent variables are used. Often only the principal components with the highest 

variance are selected (Karatzas and Kaltsatos, 2007). However, the use of low-variance 

principal components may also be, in some cases, important. Principal Component 

Regression models have been developed for air quality forecasting (Statherpoulos et 

al., 1998; Al-Alawi et al., 2008)  

In contrast to model-driven, data-driven approaches comprise of analytic 

processes designed to explore data in search of consistent patterns and/or systematic 



36 
 

relationships between variables without an explicit model characterization. Data-

driven approaches use some sort of recurrence relation so that an entire class of 

objects can be built up from a few initial values and a small number of rules 

(Solaiman et al., 2008). Data-driven methods include Classification and Regression 

Trees, Cluster Analysis, Fuzzy Inference Systems, Artificial Neural Networks, 

Bayesian Networks and Multivariate Adaptive Regression Splines. 

Classification and Regression Trees is a non-parametric learning technique 

(Kim, 2010) that produces either classification or regression trees, depending on 

whether the dependent variable is categorical or numeric, respectively. Decision 

trees are formed by a collection of rules based on values of certain variables in the 

modeling data set. Rules are selected based on how well they split the data into 

different segment based on variables’ values. Each segment is defined by a node. 

Once a rule and corresponding nodes are selected, matching segments are split into 

two, and the same logic is applied to each “child” node in a recursive procedure. 

Splitting stops when no further gain can be made, or some pre-set stopping rules are 

met. Each branch of the tree ends in a terminal node uniquely defined by a set of 

rules, and each observation falls into one and exactly one terminal node. Some 

researchers have proposes the use of classification trees as a suitable technique for 

forecasting the daily exceedance of ozone (Bruno et al., 2004; Kim, 2010). 

Cluster Analysis is an exploratory data-driven approach which aims at 

sorting different objects into groups in a way that the degree of association between 

two objects is maximal if they belong to the same group and minimal otherwise. 

There is some overlapping in the motivation behind Cluster Analysis and 
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Classification and Regression Trees in the extent that both use algorithms to group 

objects of similar kind into respective categories and are used to discover structures 

in data without providing an explanation/interpretation. The main categories of 

cluster analysis methods include Two-way Joining (Block Clustering), and k-Means 

Clustering. Recent researchers have applied Cluster Analysis to ozone formation in 

the atmosphere (Johnson et al., 2007; Tarasova et al., 2007). 

In Fuzzy Inference Systems the formulation of the mapping of independent 

variables to the output variable is achieved using fuzzy logic. This mapping process 

involves membership functions, logical operations, and if-then rules; and provides a 

basis from which patterns can be discerned. The most common Fuzzy Inference 

Systems are Mamdani-type and Sugeno-type. Recent interest in Fuzzy Inference 

Systems has lead researches to examine its applicability to air pollution modelling 

(Mintz et al., 2005; Nooria et al., 2010) 

In essence, Artificial Neural Networks are a set of simple calculation units 

that build a non-linear mapping of input vectors to a specified output. Nodes (or 

neurons) receive an input vector; sums weighted input values and apply a mapping 

operator to the sum. Nodes are assembled in layers (input, hidden and output) and 

weights are associated to each node. The objective is to find the optimum set of 

weights that minimise the overall prediction error. Weight optimization is achieved 

through an user-specified training algorithm. There are four fundamental types of 

learning rules: error correction, Hebbian, Boltzmann and competitive learning (Su, 

2004). The most commonly used learning algorithm is known as Generalized Delta 

Rule (or backpropagation). The Generalized Delta Rule is a form of error correction 
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algorithm. Different artificial neural networks models to forecast O3 and PM2.5 have 

been proposed. (Prybutok et al., 2000; Slini et al., 2006; Sofuoglu et al., 2006; 

Wang and Lu, 2006; Brunelli et al., 2007). 

Bayesian Networks belong to the family of probabilistic graphical models. 

These graphical structures are used to represent knowledge about an uncertain 

domain. In particular, each node in the graph represents a random variable and has a 

finite set of mutually exclusive states. The edges between the nodes represent 

probabilistic dependencies among the corresponding random variables. The 

variables together with the directed edges form an acyclic directed graph networks 

(Jensen and Nielsen, 2007). The conditional dependencies in the graph are often 

estimated by using known statistical and computational methods such as maximum 

likelihood and gradient descent (Ben-Gal, 2007). Solaiman et al. (2008) have 

investigated a Bayesian neural network model in for ozone forecast in which the 

conventional learning process is implemented, but probability distribution of 

weights were considered instead of single set of weights. 

Multivariate Adaptive Regression Splines is a nonparametric regression 

procedure that makes no assumption about the underlying functional relationship 

between the dependent and independent variables. In this approach, the relationship 

between the target and predictor variables is constructed by means of basis 

functions and weights. The basis functions are entirely driven from the dataset and 

subsequently used in a regression model. Multivariate Adaptive Regression Splines 

has become particularly popular in the area of data mining because it does not 

assume or impose any particular type or class of relationship (e.g., linear, logistic) 
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between the predictor variables and the dependent variable. Instead, models are 

derived even in situations where the relationship between the predictors and the 

dependent variables is non-monotone and difficult to approximate with parametric 

models (Hastie et al., 2001). One study has investigated Multivariate Regression 

Splines for forecast of 1-hour and 8-hour ahead ozone concentrations in an urban 

center (Bordignon et al., 2002). 

Within the context of statistical modelling of O3 and PM2.5, the data used in 

the studies surveyed vary widely both in terms of the considered precursor species 

and meteorological variables. Precursor species include nitrogen monoxide (NO), 

nitrogen dioxide (NO2), sulphur dioxide (SO2) and carbon monoxide (CO). Surface 

meteorological data includes solar irradiation, temperature, pressure, relative humidity, 

dew point, precipitation, wind speed (WS) and wind direction (WD).  

In some studies (e.g. Solaiman et al., 2008; Tsai et al., 2009) lagged 

observations of target variables and actual values of precursor species and meteorological 

inputs corresponding to forecast time are included to account for atmospheric pollution 

persistence. Su (2004) included dummy variables to represent day of week and time of 

day.  

There are further distinctions within each category as per which method 

meteorological variables are introduced (i.e. directly or via dimension reduction; 

using discreet or fuzzy datasets) and the incorporation of temporal and spatial 

dependence. It has been noted that any time series can be transformed using an 

appropriate level of power transform as to change the variable’s distribution in order to 

achieve a higher degree of normality (Yeo and Johnson, 2000). In the studies surveyed 
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relating to air pollution forecasting, some transformations, such as square root or 

logarithm, are used but data is most often modeled in terms of original 

concentration scales (µg/m3, ppm or ppb). The appropriate transformation depends 

on the temporal and spatial scale of the particular analysis, with greater spatial and 

temporal averaging domains generally resulting in more nearly Gaussian 

distributions.  

 Studies most commonly consider single monitoring stations located in an 

urban area as representative of a city. Others consider a network of monitoring 

stations and compare the underlying patterns. Separate modeling of the impacts of 

some meteorological parameters on air pollutants concentrations at an unique 

monitoring station is the simplest and most common approach to analysis (Turalığlu 

et al., 2005). However, this approach may overlook precursor availability and 

certain dynamics found at the regional level; and may therefore result in a 

statistically less significant model and be possibly misleading as an assessment of 

regional trend. From the conclusions of two previous studies in Montréal (Gilbert et 

al., 2005; Crouse et al., 2009), it seems clear that, in the context of estimating air 

pollution, that both spatial and seasonal variability must be considered.  

The forecast windows for forecasting air pollution range from 5 min to 48-

hour ahead. The most common windows are the 1-hour ahead and daily maximum.  

 

  



41 
 

2.8 Discussion 

 

In this study, “ground-level” refers to the “surface boundary layer” which is the region of 

the lower atmosphere up to about 100 metres in altitude. The surface boundary layer is 

comprised of the “laminar layer” and “roughness layer” (Rohli and Vega, 2008) 

The laminar layer is the part of the atmosphere that is nearest to the surface. The 

laminar layer is characterized by smooth flow that parallels the features of the surface 

over which it moves. This layer is only a few millimetres thick. The features of this layer 

are considered in studies related to plant physiology and durability of building materials 

because the atmospheric flow over the surfaces is an important factor affecting tissue 

water loss and chemical oxidation of materials. The parameters describing the laminar 

layer are less important for processes governing air pollution.  

The roughness layer is a zone of strong convection or turbulence. It is 

characterized by a large component of vertical motion compared to horizontal motion. 

The turbulence in this layer is almost entirely mechanical in origin. Mechanical 

turbulence is convection caused by the friction, irregular flow, and vertical gradients of 

momentum associated with the roughness of topographic elements such as hills and 

buildings. The roughness layer may extend up to 50 to 100 metres above surface. It is 

taller by day than by night because of the increased differences of surface heating across 

space during daylight hours.  These processes are important factor governing air pollution 

processes at the local scale. 

The surface boundary layer is very important from an energy perspective. The 

vertical motion that dominates this zone transports energy used to drive atmospheric 
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processes between the surface and the atmosphere above this layer. In most cases, 

especially in daylight hours, the surface is warmer than the atmosphere above it as energy 

is transported upward via the turbulent flux of sensible heat. The most intense turbulence 

is associated with situations when the temperature difference between the surface and the 

air above is large. 

 From the information in the literature review, ozone concentration in Montréal is 

expected to be largest during summer months and lowest in winter. Also, ozone levels are 

expected to be lowest in early morning, to increase gradually (over one or two hours) 

during the wee hours of the morning with increased vehicular traffic, to peak in late 

afternoon, and then decrease gradually during evening hours to reach an overnight 

minimum. Ozone concentrations are expected to vary locally within the Montréal area 

due to the city’s uneven landscape, land use and traffic patterns. Given VOC limited 

conditions, ozone is expected to be highest in suburban locations than in the downtown 

core due to ozone scavenging driven by high NOx levels. 

We have seen that, due to its low settling velocity, PM2.5 has longer atmospheric 

lifetime compared to coarse particles. Longer atmospheric lifetime translates into 

increased residence time and more likelihood to negatively impact human health. 

Therefore, the PM2.5 class of particulate matter is of great concern and will be the object 

of this study. PM2.5 is linked with vehicular traffic, and as such it is expected to be 

greatest in the city’s high-volume and congested areas. Minimal diurnal cycle of PM2.5 is 

expected in Montréal. 

At this point, we deliberately ascertain that the meteorological condition does not 

create ozone or particulate matter by its own. In the strict sense of the term, no causal 
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relationship can be inferred between meteorology variables and target pollution 

concentration. While one can argue that this statement can be relaxed when considering 

solar radiation and temperature because of their direct effect on chemical reaction rates, 

we will take a more precautionary stand and formally consider that target pollutant 

concentrations modulates the effect of the precursor emission and the meteorological 

fluctuation. Since meteorology and topography affect both the reaction rate and transport 

of ozone as well as precursors, we will consider this urban study on a station-by-station 

basis.  

As hourly means of ozone, fine particulate matter, sulphur dioxide, nitrogen 

monoxide, nitrogen dioxide and carbon monoxide have been identified as either target 

pollutants or chemical precursors, they will be considered in this study.  

The transport distance of both ozone and fine particulate matter is high, and both 

local and regional parameters should be considered. However, given that this study is 

focuses on short-term prediction, no regional parameters will be included. While direct 

transport of stratospheric ozone is responsible for about 10% of global tropospheric 

ozone (Bailey et al., 2002), previous studies have shown that its contribution to ground-

level O3 in the North America (even at relatively remote locations) is of minor 

importance (Altshuller, 1984). Therefore, there is no reason to believe that the forecasting 

performance of statistical models would be improved at the local scale with inclusion of 

stratospheric ozone.  

Solar radiation, temperature, dew point, pressure, precipitation, wind speed and 

wind direction values are expected to be correlated at all stations within the city of 

Montréal therefore the same values will be used throughout this study. Aloft pressure 
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measurements, higher altitude winds speed and direction are excluded. More than 100 

different volatile organic compounds are systematically measured in Montréal; however 

measurements take place every six days and return as daily averages.  

The incorporation of VOC data in O3 and PM2.5 forecasting models is warranted. 

This can be achieved by means of three contrasting methods. The first comprises 

introducing VOC data as standalone independent variables. This method is not ideal as 

inclusion of hundreds of additional independent variables may generate ill-conditioned 

statistical models. The second, which is the simplest and the most often adopted, is a 

concentration-based method. The multiple VOC readings are combined into one single 

independent variable. This is achieved by converting individual VOC species 

concentration to an equivalent carbon equivalent concentration (Cj) measured in ppbC as 

shown in equation (2.30) and summing up each value to an equivalent total volatile 

organic compound (TVOC) measurement expressed in ppbC. 

 

Cj = Cj
∗ × 1

MW
× Rg × Ta

Pa
× Nc      (2.30) 

 

where C*
j is the quantified concentration of species J in expressed in μg/m3, MW is 

molecular weight in g/mole, Rg is the ideal gas constant (8.31 L kPa mol-1 K-1), Ta is 

ambient air temperature in K, Pa is pressure in kPa and Nc is the number of carbon atoms 

in analyzed species.  

The third method is an OH-reactivity-based method which takes into account for 

the combined effect concentration on carbon-atom basis and OH-reactivity. This  method 

recognizes that VOC species with a large concentration values are not necessarily 
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important precursor to O3 or PM2.5 if it is unreactive; conversely, another with a small 

concentration can be important if it is extremely reactive. An example is methane, 

typically the most abundant VOC in the atmosphere but of negligible importance in 

producing ozone on urban or regional scales because of its extremely low reactivity. An 

air mass can have a large total VOC concentration but a low ozone-producing capacity if 

the VOCs present are relatively unreactive. The concentration-based method described 

above does not account for the different reactivities of the various VOC species. It can be 

misleading about the involvement of the various species in ozone formation. As such, 

TVOC expressed on a carbon-atom concentration basis may not be correlated to ozone.  

Chameides et al. (1992) proposed a method for normalizing the concentration of each 

hydrocarbon to that of propylene.  In this method, a propylene-equivalent concentration 

(propy-equiv) for each VOC species is defined by equation (2.31). 

 

Propy − Equiv (J) =  CJ × KOH(J)
KOH(C3H6)

      (2.31) 

 

where CJ is the quantified ppbC concentration of species J, KOH is the reaction rate of 

individual VOC species with OH• radical and KOH(C3H6) is equal to the rate constant for 

propylene with OH•. Rate constants can be obtained from Atkinson (1990). The propy-

equiv concentration takes into account the combined effect of hydrocarbon concentration 

and reactivity with OH•. Choosing the compound propylene for normalizing VOC 

concentration is justified by the fact that equivalent to propylene corresponds to the  

upper limit of potential ozone formation (Evtyugina et al., 2009). A compound twice as 
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reactive as propylene would have a propy-equiv concentration twice its ambient 

concentration.  

The basic assumption made when forecasting ozone and fine particulate matter is 

that, there is always an underlying pattern which describes the time series. This pattern 

can be reasonably expected to repeat in the future, given similar conditions. The general 

idea behind this study involves the following points: 

 

1. Analysis of past data in order to identify (and capture) the pattern of behaviour  

2. Assumption that the pattern that has been identified will remain significantly  

unchanged 

3. Extrapolation of the pattern to successive points on the time series  

  

When using statistical models, the assumption of the pattern that has been 

identified remains significantly unchanged is of vital importance. The forecasting of the 

proposed models may not hold true if there is a significant change in pattern of ozone and 

particulate matter formation. 

Statistical models are capable of providing a complete and parsimonious 

description of the relationship between predictor variables and their covariates. Model-

driven approaches lead to estimators that possess attractive statistical properties, are easy 

to calculate, and are straightforward to interpret. Nonlinear, Piecewise and Quantile 

regression have become increasingly popular because the central-tendency and 

homoscedasticity assumptions are seldom met in the real world. However, Linear 

Regression has been applied widely in environmental sciences and is seen as an essential 
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analysis and prediction tool. For this reason the Multiple Linear Regression model is 

retained.  

The Multiple Linear Regression framework has inherent limitations. First, when 

summarizing the response for fixed values of predictor variables, the model cannot be 

readily extended to non-central locations, which is precisely where the interests of air 

pollution forecast reside. Thus, we will incorporate Piecewise Regression, within the 

Multivariate Adaptive Regression Splines framework, to this study.  

Data-driven models have been shown to perform better under given heavy-tailed 

distributions which commonly occur in air pollution and meteorology phenomena 

(Solaiman et al., 2008). Among the data-driven models surveyed, Principal Component 

Analysis and Artificial Neural Networks are the ones that held our interest. Principal 

Component Analysis alleviates the expected issues with multicollinearity and principal 

components can be used as independent variables in linear regression. In this case we 

build a model based on Principal Component Regression (PCR). Artificial Neural 

Networks are one of the least black box approaches within this category. Moreover, 

Artificial Neural Networks have been rigorously demonstrated to be theoretically capable 

of approximating any measurable function to any desired degree of accuracy (Fonseca, 

2003) and have been found extensive utilisation in air pollution forecasting. 

Should the underlying mechanisms of ground-level O3 and PM2.5 formation 

be reasonably captured by these proposed methods; and should these models yield 

satisfactory results in predicting extreme concentration levels, they could arguably 

be incorporated into an air quality management framework to assess potential 
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compliance or non-compliance and most importantly be used for warning the public 

of unhealthy pollution levels.  

With respect to public health; most committees appointed to set standards for 

ozone and fine particulate matter, recommend a range of 41 to 65 ppb (based on 8-hr 

average) for O3 and a range of 25 to 35 μg/m3 (based on 24-hour averages) for PM2.5. The 

review of the legislative framework on air quality across Canada and the United States 

indicated absence of a consensus as to what level the goal of ambient concentrations for 

this two air pollutants should be. In Canada, different levels of Government try to balance 

the need to address public health concerns against O3 and PM2.5 levels and what can be 

reasonably achieved. Provincial and territorial governments are able to adopt the Canada 

Wide Standards or not, or to use them as benchmarks for differing provincial standards 

that take into account different priorities and circumstances. In most jurisdictions, the 

numerical values chosen for particular standards or guidelines reflect political and/or 

economic considerations. Overall, there are multiple and inconsistent objectives in 

Canada and it would be to best interest of Canadians if the legislative frameworks were 

standardized. In Montréal, the 24-hr average objective for O3 and PM2.5 is 50 and 25 

μg/m3, respectively. These values are well aligned with the other values noted during our 

benchmarking exercise.  

 
2.9 Summary 

 

In summary, tropospheric ozone is formed when a mixture of nitrogen oxides and other 

organic gases are exposed to sunlight. The sunlight causes NO2 to liberate an oxygen 

radical that combines with O2, to produce O3. At the same time, sunlight also causes other 
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organic gases, such as aldehydes, to dissociate producing in the progress peroxy radicals 

that ultimately convert NO to NO2. This step increases the rate at which O3 is produced 

by NO2 photolysis and decreases the rate at which it is consumed by reaction with NO.  

Fine particulate matter (PM2.5) is the respirable subgroup of airborne particulate 

matter having an aerodynamic diameter of less than 2.5 μm. PM2.5 is mostly the result of 

physical processes, coagulation and chemical reaction involving sulphates, nitrates and 

volatile organic compounds. Atmospheric processes such as the oxidation of sulphur 

dioxide, oxidation of hydrocarbons to low-vapour-pressure organics, and the formation of 

aerosol salts (e.g. ammonium nitrate and ammonium sulphate) may also contribute to 

suspended particles. 

Chemical processes interact over a wide range of temporal and spatial scales. Fast 

reactions have a direct impact in the locality of the emissions and can be strongly 

affected by atmospheric mixing. On the other hand, slow reactions are relatively 

insensitive to local mixing and affect a wider, regional or global spatial area. The 

rate of these reactions, in addition to rates of the competing transport and 

scavenging processes, vary widely in accordance with the site-specific 

meteorological and photolytic conditions. For all these reasons, the development of 

forecasting models for maximum daily concentrations of O3 and PM2.5 is 

acknowledged to be a very challenging undertaking.   

Ozone and particulate matter are two air pollutants with non-threshold adverse effects 

on human beings and the environment. In Montréal, the 24-hr average objective for O3 

and PM2.5 is 50 and 25 μg/m3, respectively.  
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Researchers recognized that it is seldom feasible to construct strictly deterministic 

models to forecast O3 and PM2.5 at the local scale. Previous research show that statistical 

models yield satisfactory results to when applied in forecasting O3 and PM2.5 using air 

quality and meteorological data as covariates.  Following the review of the statistical 

methods used in the development of air pollution forecasting models, we have decided to 

retain the following four methods: 

 
1. Multiple Linear Regression (MLR) 

2. Principal Component Regression (PCR) 

3. Multivariate Adaptive Regression Splines (MARS) 

4. Artificial Neural Networks (ANN) 

 

To this date, no comparative assessment of different statistical models for short-

term prediction of ground level ozone and particulate matter in Montréal has been 

undertaken. 
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Chapter 3 

Methods and Performance Metrics 

 

 

 

In this chapter, we first lay out our convention on mathematical notation. Then, we 

introduce the concept of time series and define the moment statistics recurrent in this 

study. After that, we describe Principal Component Analysis. Following this, we 

introduce the seven models considered in this thesis for short-tem forecast of O3 and 

PM2.5. Then, we formally define the four statistical methods on which our models are 

based, namely Multiple Linear Regression (MLR), Principal Component Regression 

(PCR), Multivariate Regression Splines (MARS) and Artificial Neural Networks (ANN). 

Lastly, we describe the performance metrics considered.  

 

3.1 Preliminaries 

 

3.1.1 Conventions 

 

In the pages that follow, the following conventions will be used: 
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• Scalars are represented in lower case (e.g. x, σ, s, r)  

• Matrices are represented in bold upper case (e.g. A, B, S, R, V) 

• The identity matrix is denoted I 

• The transpose of a matrix A is denoted AT 

• Vectors will be in bold lower case (e.g. a, t) and assumed to be a column oriented; 

row vectors are represented with the transpose operator aT 

• It is assumed that the rows of a given data matrix represent observations and 

columns independent variables 

 

3.1.2 Time Series Data 

 

Time series data, as the name suggests, are data collected over a period of time on one or 

more variables. Time series data have a particular time interval of observations associated 

with them. The frequency is simply a measure of the regularity with which the data is 

collected. In air quality monitoring, the time interval is usually 1 hour. 

Let time series denote either the sequence of dependent y or independent x 

variables. Let n denote the number of observations. Let yt and yt+1 denote observations of 

y at time t and t + 1, respectively.   
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3.1.3 Moment Statistics and Other Measurements  

 

Moment statistics are those that are formed from sums of power of the data’s values. The 

first moment is the sample mean 𝑥̅, which is calculated from a sum of values to the first 

power  and measures the center of the distribution.  

 

𝑥̅ =
1
𝑛

�(𝑥𝑖)
𝑛

𝑖=1

 (3.1) 

 

The second moment is the sample variance s2, which is calculated from sums of 

the values to the second power and measures the spread of the distribution.  

 

𝑠2 =
1

𝑛 − 1
�(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 (3.2) 

 

The covariance between two variables x1 and x2 is given by: 

 

𝑠𝑥1,𝑥2
2 =

1
𝑛 − 1

� ��𝑥1,𝑖 − 𝑥1�����𝑥2,𝑖 − 𝑥2�����
𝑛

𝑖=1

 (3.3) 

 

The third moment is skewness, which is calculated from sums of values to the 

third power and measures the asymmetry of the distribution.  

 



54 
 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑛

(𝑛 − 1)(𝑛 − 2) � �
𝑥𝑖 − 𝑥̅

𝑠 �
3𝑛

𝑖=1

 (3.4) 

 

where s is the sample standard deviation defined below. 

The fourth moment is kurtosis, which is calculated from sums of values to the 

fourth power and measures the relative shape of the middle and tails of the distribution.  

 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) � �
𝑥𝑖 − 𝑥̅

𝑠 �
4𝑛

𝑖=1

 (3.5) 

 

The standard deviation s is the square-root of the variance. 

 

𝑠 = �𝑠2 = �
1

𝑛 − 1
�(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

 (3.6) 

 

Covariance gives little information about the relationship between two variables 

because it is sensitive to both their standard deviation. By dividing the covariance by the 

respective two standard deviations, we compute the correlation r between the two 

variables.  

 

𝑟𝑥1,𝑥2 =
𝑠𝑥1,𝑥2

2

𝑠𝑥1 × 𝑠𝑥2

=
∑ ��𝑥1,𝑖 − 𝑥1�����𝑥2,𝑖 − 𝑥2�����𝑛

𝑖=1

�∑ �𝑥1,𝑖 − 𝑥1����2𝑛
𝑖=1 ×  ∑ �𝑥2,𝑖 − 𝑥2����2𝑛

𝑖=1

 
(3.7) 
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Correlation is a measure of the dependence between two variables which indicates 

that a linear relationship exists between the two variables if the value obtained is different 

than zero. 

 

3.1.4 Principal Component Analysis (PCA) 

 

PCA is, in principle, a data reduction technique and a tool for information extraction. 

Specifically, Data compression is achieved with the application of eigenvector 

decomposition to the covariance of the process variable and finding linear combinations 

of the original variables. Successive linear combinations or principal components (PC) 

are extracted in such a way that they are perpendicular (uncorrelated) to one another and 

account for successive smaller amounts of the total variance.  

Given a matrix X comprised of p different variables (x1, x2, x3, ... xp) with n 

different observations. The matrix X can be autoscaled to achieve zero mean and unit 

variance. Autoscaling is achieved by (a) subtracting from each element the mean of their 

respective column vector and (b) dividing each mean centered elements by the standard 

deviation of their respective column vector. Call the autoscaled matrix Z. The variance of 

Z is denoted Sz and is given by: 

  

𝐒𝐳 =
1

𝑛 − 1
𝐙𝐓𝐙 (3.8) 
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The main idea behind PCA is to find an orthonormal matrix V where  

 

Y = ZV             (3.9) 

 

so that the elements of SY are uncorrelated and of maximum variance.  This is the same as 

saying that we want V such that SY is a diagonal matrix. This is called an orthogonalizing 

transformation. The correlation matrix SY in terms of V is as follows:  

 

𝐒𝐘 =
1

𝑛 − 1
𝐘𝐓𝐘 (3.10) 

 

But,  

 

1
𝑛 − 1

𝐘𝐓𝐘 =
1

𝑛 − 1
(𝐙𝐕)𝐓(𝐙𝐕) = 𝐕𝐓(

1
𝑛 − 1

𝐙𝐓𝐙)𝐕 (3.11) 

 

Therefore, 

 

𝐒𝐘 = 𝐕𝐓(𝐒𝐙)𝐕 (3.12) 

 

There are an infinite number of values for V that will produce a diagonal SY for 

any correlation matrix SZ, but a unique solution maximizing variance. This unique 

solution is obtained is given by principal component (Jolliffe, 1989). The principal 

component solution put forward the sum of the squares of the coefficients in the first 



57 
 

column of V, (denoted by v1). Expressed mathematically, we wish to maximize equation 

(3.13) subject to equation (3.14): 

 

𝐯𝟏
𝐓𝐒𝐳𝐯𝟏 =

1
𝑛

�(𝑦𝑖,1
2

𝑛

𝑖=1

) (3.13) 

  

𝐯𝟏
𝐓 𝐯𝟏 = 1 (3.14) 

 

Malinowski and Howery (1980) have shown that this optimisation can be 

achieved by introducing the restriction via the Lagrange multiplier approach as shown in 

equation (3.15) and then setting the vector of partial derivatives shown in equation (3.16) 

to zero. By doing so, we get equation (3.17).  

  

𝐮𝟏 = 𝐯𝟏
𝐓𝐒𝐙𝐯𝟏 − 𝝀(𝐯𝟏

𝐓𝐯𝟏 − 1) (3.15) 

 

𝛿(𝐮𝟏)
𝛿𝐯𝟏

= 2𝐒𝐳𝐯𝟏 − 2𝜆𝐯𝟏 (3.16) 

 

(𝐒𝐙𝐯𝟏 − λ𝐈)𝐯1 = 0 (3.17) 

 

where 𝜆 is an eigenvalue. 

From equation (3.17), we build a set of p homogeneous equation which can be 

solved by expanding equation (3.18). The solution of this equation is obtained by solving 

the characteristic equations for the eigenvalues λ1, λ2, λ3, …, λp.  
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|𝐒𝐘 − 𝜆𝐈| = 0 (3.18) 

 

With these results, we consider a diagonal matrix L and a orthonormal matrix V 

such that (a) the diagonal elements of L are the eigenvalues λ1, λ2, λ3, …, λp,  and (b) the 

eigenvectors v1, v2, v3,…, vp are the vector columns of V. The relationship between V and 

L is given by: 

 

𝐕𝐓(𝐒𝐳)𝐕 = 𝐋         (3.19) 

 

The principal components (PC) of matrix Z are the eigenvalues which comprise 

the diagonal elements of L. Finally, the factor score 𝐘� matrix is defined as: 

 

𝐘� = 𝐙𝐕 (3.20) 

 

The number of eigenvalues used in computing the factor score matrix determines 

the dimensionality of the set of factor scores.  

If we recapitulate the main steps to obtain the eigenstructure for a correlation 

matrix and find the principal components:   

 

• Given an original data matrix X containing n rows and p columns, compute the 

autoscaled data matrix Z and the correlation matrix SZ 
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• Obtain the characteristic equation of Sz which is a polynomial of degree p 

obtained from the expansion of the determinant of | Sz - λ I| = 0 and solve for the 

roots λi, (i = 1, 2, 3, …, p) called eigenvalues 

• Solve for the columns of the V matrix and (v1, v2, v3, …, vp) which are called 

eigenvectors 

• For dimensionality  reduction, we may select only the principal components with 

eigenvalues greater than unity 

 

A numerical example of Principal Component Analysis is presented in Appendix B1. 

 

3.2 Methods 

 

These are the seven models included in our study: 

 

1. The Multiple Linear Regression (MLR) model:  

 

The MLR model is based on Multiple Linear Regression method with Ordinary 

Least Square estimates. It will have air quality and meteorological variables (at time t) as 

input and either O3 or PM2.5 (at time t + 1) as output.  
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2. The Principal Component Regression (PCR) model: 

 

The PCR model is based on Principal Component Analysis and Multiple Linear 

Regression method with Ordinary Least Squares. It will have the principal components 

obtained from the set of air quality and meteorological variables (at time t) as input 

(regardless of the size of their eigenvalue) and either O3 or PM2.5 (at time t + 1) as output.  

 

3. The Multivariate Adaptive Regression Splines with First Order Interaction 

(MARS 1) model: 

 

The MARS 1 model is based on Multiple Linear Regression method with 

Ordinary Least Squares. It will have basis functions obtained from the set of air quality 

and meteorological variables (at time t) as input (given the constraint of first order 

interaction) and either O3 or PM2.5 (at time t + 1) as output.  

 

4. The Multivariate Adaptive Regression Splines with Second Order Interaction 

(MARS 2) model: 

 

The MARS 2 model is based on Multiple Linear Regression method with 

Ordinary Least Squares. It will have basis functions obtained from the set of air quality 

and meteorological variables (at time t) as input (given the constraint of second order 

interaction) and either O3 or PM2.5 (at time t + 1) as output.  
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5. The Artificial Neural Network (ANN) model:  

 

The ANN model is based on Artificial Neural Networks method. It is a three 

layered feed-forward ANN. It will have air quality and meteorological variables (at time 

t) as input and either O3 or PM2.5 (at time t + 1) as output. Each node in the hidden layer 

will contain a sigmoid activation function. The optimum number of hidden nodes and 

model parameters are determined by trial and error using the Gradient Descent Rule 

while protecting against model overfit.  

 

6. The Hybrid Principal Components and Artificial Neural Network (PC-ANN) 

model  

 

The PC-ANN model is based Principal Component Analysis and Artificial Neural 

Network methods.  It will have all the principal components (i.e. regardless of the size of 

their eigenvalue) obtained from the set of air quality and meteorological variables (at 

time t) as input to a three layered ANN. The output of the ANN is either O3 or PM2.5 (at 

time t + 1). Each node in the hidden layer will contain a sigmoid activation function. The 

optimum number of hidden nodes and model parameters are determined by trial and error 

using the Gradient Descent Rule while protecting against model overfit.  
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7. The Reduced Hybrid Principal Components and Artificial Neural Network 

(PC*-ANN) model  

 

The PC*-ANN model is based Principal Component Analysis and Artificial 

Neural Network methods.  It will have principal components with eigenvalues greater 

than unity obtained from the set of air quality and meteorological variables (at time t) as 

input to a three layered ANN. The output of the ANN is either O3 or PM2.5 (at time t + 1). 

Each node in the hidden layer will contain a sigmoid activation function. The optimum 

number of hidden nodes and model parameters are determined by trial and error using the 

Gradient Descent Rule while protecting against model overfit.  

We will run MLR, PCR, ANN, PC-ANN and PC*-ANN with “JMP Version 

5.1.2”. Then, we will run MARS 1 and MARS 2 with “Salford Predictive Miner”.  

 

3.2.1 Multiple Linear Regression (MLR) 

 

Multiple linear regression is concerned with describing and evaluating the relationships 

between a given variable and one or more other variables. More specifically MLR 

attempts to explain movements in a variable by reference to movements in one or more 

variables by fitting a straight line through the time series. 

The general form of the MLR model is: 

 

𝑦 = 𝛽0 + �(𝛽𝑖𝑥𝑖)
𝑝

𝑖=1

+ 𝜀 (3.21) 
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where y is the dependent variable, x are the independent variables, β is a coefficient, p is 

the number of dependent variables and  ε is the random error. The multiple linear 

regression is built under the four assumptions with respect to the disturbance term ε, 

namely  

 

1. the random errors have zero mean; 

2. the variance of the random errors is constant and finite; 

3. the random errors are linearly independent of one another; and  

4. there is no relationship between the error and the covariates.  

 

In mathematical notation:  

 

E(εt) = 0   (3.22) 

var (εt) = σ2  (3.23) 

cov (εt , εt-1) = 0 (3.24) 

cov (εt , xt) = 0 (3.25) 

 

There are a number of methods for determining the appropriate values of the 

coefficients β given a sample with n different observations. Ordinary least square method 

entails taking vertical distance from points to the fitted line, squaring it and then 

minimising the total sum of the areas of the squares. The least square estimate equation 

is: 
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𝑦� = 𝛽𝑜� + ��𝛽𝚤� 𝑥𝑖�
𝑝

𝑖=1

+ 𝑒 (3.26) 

 

where ŷt is the estimated dependent variable, x are the independent variables, 𝛽𝚤�  are the 

estimated coefficient, p is the number of dependent variables and  e  is the sample error 

(or residual). Note that the residual is the difference between the observed and estimated 

– i.e ( yt - ŷt ).  

There are various ways to describe the ordinary least squares technique. In the 

lines that follow, we will summarize this simple yet often misunderstood technique. In 

matrix form we can write: 

 

𝐘 = 𝐗𝛃 (3.27) 

𝐘� = 𝐗𝛃� + 𝐞 (3.28) 

𝐞 = 𝐘 − 𝐘� (3.29) 

 

Let L be the sum of squares cost function which is the sum of the squares of 

residuals 

 

𝐋𝐬𝐬 = 𝐞𝐓𝐞 = �𝐘 − 𝐗𝛃��
𝐓

�𝐘 − 𝐗𝛃�� = 𝐘𝐓𝐘 − 2𝛃�𝐓𝐗𝐓𝐘 + 𝛃�𝐓𝐗𝐓𝐗𝛃� (3.30) 

 

In order to obtain the parameter estimates the residual sum of squares cost 

function must be minimized with respect to all the elements. By differentiating L and 
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setting all partial derivatives to zero, we find the parameter values that minimise the 

residual sum of squares.  

 

∂𝐋𝐬𝐬

∂𝛃�
= −2𝐗𝐓𝐘 + 2𝐗𝐓𝐗𝛃� = 0 (3.31) 

This leads to: 

𝐗𝐓𝐘 = 𝐗𝐓𝐗𝛃� (3.32) 

Multiplying both sides by the inverse of XTX, we get: 

𝛃� = (𝐗𝐓𝐗)−1𝐗𝐓𝐘
 

(3.33) 

 

Statistical significance at 0.05 confidence level is established by two-tailed p-test 

statistic and overall significance by F-test. 

 

3.2.2 Principal Component Regression (PCR) 

 

Principal component regression models it the response variable by means of a multiple 

linear regression based on principal components PCi instead of using xi to obtain:  

 

𝑦� = 𝛽0� + ��𝛽𝚤� 𝑃𝐶𝑖�
𝑝

𝑖=1

+ 𝑒 (3.34) 
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Statistical significance at 0.05 confidence level is established by two-tailed p-test 

statistic and overall significance by F-test. 

 

3.2.3 Multivariate Adaptive Regression Splines (MARS) 

 

The MARS algorithm consists in fitting multiple piecewise linear functions at different 

regions of the domain of each independent variables. Through the additive effect of these 

different linear functions, a global non-linear relationship between the independent 

variables and the target variable can be established. The MARS model is a spline 

regression model that uses a specific class of basis functions as predictors in place of the 

original data.  

The linear functions used in the MARS approach are hinge-type basis functions 

which have the form: 

 

BFi (x) = max (0, x - c) or 

 = max (0, c - x) 
(3.35) 

 

where x is one value of the independent variables and c is one knot. The returned value of 

BFi (x) is 0 for all values of xi up to some threshold value c and BFi (xi) is equal to xi for 

all values of xi greater than c. The hinge-type basis functions partition the data space into 

disjoint regions, each of which can be treated independently. A knot marks the end of one 

region and the beginning of another. Thus, the knot is where the behaviour of the 

function changes.  
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In classical splines, the knots are predetermined and evenly spaced. Finding the 

best basis functions given a predetermined number (and location) of knots is a 

straightforward optimisation problem consisting in examining a number of potential basis 

functions and selecting the one with the best coefficient of determination. However, 

finding the best basis functions when the location and number of knots are unknown is a 

more challenging task (Nedjah and Mourelle, 2005). This is exactly what MARS 

achieves through its stepwise forward/backward search procedure. 

In the forward pass, MARS starts the model with just a constant. The constant (or 

intercept term) is the mean of the response values. Then, MARS begins to search for a 

variable-knot combination that most improves the model’s performance. In this context, 

performance improvement means maximum reduction in sum-of-squares residual error.   

Adding a basis function always reduces the MSE. MARS searches for a pair of hinge-

type basis functions, the primary and mirror image. This search is then repeated, with 

MARS searching for the best variable to add given the basis functions already in the 

model. This process of adding terms continues until the change in residual error is too 

small to continue or until the maximum number of terms is reached. The maximum 

number of terms is specified by the user before model building starts.  

A key property of MARS, is its ability to uncover a number of subregions of 

predictors with different interaction patterns. This allows MARS to pragmatically model 

non-linear relationships between variables. MARS achieves that by allowing inclusion of 

interaction terms, such that any given basis function can be a function of another basis 

functions which is active in a localized region of the variables involved.  
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After implementing the forward stepwise selection of basis functions, a backward 

procedure is applied in which the model is pruned by removing those basis functions that 

are associated with the smallest increase in the (least squares) goodness-of-fit. The so-

called Generalized Cross Validation error is a measure of the goodness of fit that takes 

into account not only the residual error but also the model complexity (Hastie et al., 

2001). It is given by: 

 

𝐺𝐶𝑉 =
∑ (𝑦𝑖 − 𝑦𝚤�)2𝑛

𝑖=1

�1 −
1 + 𝑐𝑝𝑑

𝑛 �
2 

(3.36) 

 

where n is the number of observations in the data set, d is the effective degrees of 

freedom, which is equal to the number of independent basis functions. The quantity cp is 

the penalty for adding a basis function. The penalty factor is usually between 2 and 3 

(Hastie et al, 2001). The model that minimises GCV is chosen as “best” and defined as 

final fit. 

MARS will ultimately fit y by means of a multiple linear regression on BFj (xi) 

(instead of using xi) to obtain:  

 

𝑦� = 𝛽̂0 + ��𝛽̂𝑖𝐵𝐹𝑖�
𝑝

𝑖=1

+ 𝑒 (3.37) 

 

Statistical significance at 0.05 confidence level is established by two-tailed p-test 

statistic and overall significance by F-test. 
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3.2.4 Artificial Neural Networks (ANN) 
 

A general definition of artificial neural networks (ANN) is a set of simple calculation 

units, which can mimic complex global behaviour by computing a solution based on its 

relationship to other units and exterior stimulus. These calculation units are called 

neurons (or nodes). Each neuron receives an input vector, sums weighted input values 

and apply a mapping operator, F, to the sum. Thus artificial neurons build a non-linear 

mapping of input vectors xi to output y. 

 

𝑦 = 𝐹 �� 𝑤𝑖

𝑝

𝑖=1

𝑥𝑖� (3.38) 

 

In this most general form, artificial neural networks model are designed to mimic 

the behaviour of the brain. These networks resemble the human brain in two respects. 

First, they can recognize trends and patterns; and second, they can learn from their 

interactions with the environment. It is however important not to take this resemblance 

too far, because there is only limited similarities between artificial and biological neural 

networks. In particular, while the human brain contains billions of neurons, ANN usually 

contain less then 100 equivalent units. The way in which artificial networks store and 

manipulate information is an over simplification of the way in which networks of 

biological neurons functions. The analogy, while not literal, is a strong one and it allows 

us to refer to models based on artificial networks as intelligent models. 

The information-processing properties of neural networks depend mainly on two 

factors: the network architecture (i.e. the scheme used to connect elements), and the 
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training algorithm (rules) employed to specify the values of the weights connecting the 

nodes. 

In multilayer neural network, there is one input layer, a number of hidden layers 

and one output layer; each consisting of a number of nodes (i.e. artificial neurons) as 

shown in Figure 3.1. The input nodes are the interface through which a dataset is entered 

in the network. Input nodes transmit real-valued signal to each of the nodes in the first 

hidden layer. Each hidden node produces a single real-valued output and transmits in turn 

to nodes in successive hidden layers.  The number of nodes in the input layer is equal to 

the number of input variables, with each node paired to a single input variable. The 

number of nodes in the output layer is equal to the number of output variables, with each 

of the nodes expressing the value of one distinct parameter being modelled. By 

parsimony, networks are built to model a specific dependent variable and therefore there 

is often a single node in the output layer. 

The most widely studied activation functions having infinite domain of input 

values are the hyperbolic tangent (tanh) and sigmoid (logistic) functions. There is no a 

priori method known in choosing which of these functions is most suited to a given 

problem (Su, 2004).  
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Figure 3.1 Artificial Neural Network architecture 

 

Training neural networks requires optimising the synaptic weights so that the 

systems’ overall energy E is minimized. Expressed mathematically: 

 

𝑚𝑖𝑛(𝐸) = 𝑚𝑖𝑛( � 𝐸𝑖

𝑛

𝑖=1

) =
1
2

𝑚𝑖𝑛 �(𝑦𝚤� − 𝑦𝑖)2
𝑛

𝑖=1

 (3.39) 

 

where y real observed data and 𝑦� is output. 

The most popular method used for minimising the overall energy is the Gradient 

Descent Rule (sometimes referred to as the Delta Rule algorithm). Gradient Descent is 

based on evaluating the direction of the error function, and updating the weight by 

backpropagation. 
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Δ𝑤1 = 𝜂
𝛿𝐸

𝛿𝑤1
 (3.40) 

 

where 𝜂 is the learning rate. 

The algorithm starts at the last output neuron, evaluates the error energy at the 

neurons, minimises the energy by changing the weights. Then evaluates the next neuron 

in the chain until reaching the first hidden neuron. The training process is repeated until 

the outputs have reached a satisfactory level.  

The final form of the artificial neural network containing one hidden layer is: 

 

𝑦� = � ��𝛼𝑖,𝑗𝑓�𝑤�𝑖,𝑗𝑥𝑖,𝑗� + 𝜃𝑞� + 𝑒   

𝑝

𝑖=1

𝑞

𝑗=0

 (3.41) 

 

where 𝑦� is the forecasted dependent variable, x is independent variable, p is the number 

of independent variables, q is the number of hidden nodes, f is activation function and (α, 

θ) are a set of parameters determined using the observed data (training phase) and 

minimizing the prediction error function (Nedjah and Mourelle, 2006). 

We provide the derivation of the Gradient Descent Rule using the sigmoid 

activation function in Appendix A. Also, we provide a numerical example of Artificial 

Neural Network methodology in Appendix B2. 
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3.3 Performance Metrics 

 

The analysis of prediction performance typically involves calculation of errors between 

observed y and predicted 𝑦� values. Some of the traditional statistical forecasting error 

measures are listed below:  

 

1. MBE: Mean Bias Error 

 

𝑀𝐵𝐸 =
1
𝑛

�(𝑦𝑖 − 𝑦𝚤�)
𝑛

𝑖=1

 (3.42) 

 

MBE averages the prediction error averaged over n points. MBE indicates if the 

observed concentrations are being over or under-estimated. 

 
2. MAE: Mean Absolute Error 

 

𝑀𝐴𝐸 =
1
𝑛

�|𝑦𝑖 − 𝑦𝚤�|
𝑛

𝑖=1

 (3.43) 

 

MAE is the absolute value of prediction error averaged over n points. MAE indicates 

the mean order of magnitude of residuals.
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3. MAPE: Mean Absolute Percent Error 

 

𝑀𝐴𝑃𝐸 =
1
𝑛

� �
𝑦𝑖 − 𝑦𝚤�

𝑦𝑖
�  x 100%

𝑛

𝑖=1

 (3.44) 

 

MAPE averages the ratio of the prediction error to the observed value over n points. 

MAPE allows comparison between different models with different means of response.    

 

4. RMSE: Root Mean Squared Error 

 

𝑅𝑀𝑆𝐸 = �
1
𝑛

�(𝑦𝑖 − 𝑦𝚤�)2

𝑛

𝑖=1

 (3.45) 

 

RMSE averages the square of the prediction error over n points. 

  

5. R2: Coefficient of Determination 

 

𝑅2 =
𝑛 ∑ (𝑦𝑖𝑦𝚤�) − ∑ (𝑦𝑖)𝑛

𝑖=1 ∑ (𝑦𝚤�)𝑛
𝑖=1

𝑛
𝑖=1

�𝑛[∑ (𝑦𝑖
2)𝑛

𝑖=1 − (∑ (𝑦𝑖)𝑛
𝑖=1 )2]�𝑛 ∑ �𝑦𝚤�2� − (∑ (𝑦𝚤�)𝑛

𝑖=1 )2𝑛
𝑖=1 �

 
(3.46) 

 

R2 measures the variability of the data that is accounted for by the statistical model. 
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In addition to the five traditional metrics listed above, three other metrics are used for 

performance evaluation of forecasting models.  

 

6. TPR: True Positive Rate 

 

𝑇𝑃𝑅 =
𝐴
𝑀

 (3.47) 

 

TPR corresponds to the fraction of correctly predicted exceedances, where A 

represents the correctly predicted exceedances and M is all observed exceedances.  

 

7. FPR: False Positive Rate 

 

𝐹𝑃𝑅 =
𝐹 − 𝐴
𝑛 − 𝑀

 (3.48) 

 

FPR corresponds to the fraction of falsely predicted exceedances, where F is all 

predicted exceedances. 

 

8. SI: Success Index 

 

𝑆𝐼 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅 (3.49) 

 

The SI is the difference between TPR and FPR.  
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All the above performance metrics will be considered in this study and will be 

reported for each prediction model for O3 and PM2.5 with respect to training and 

validation phase.  

 

3.4 Discussion 

 

O3 and PM2.5 formation are time dependent. O3 follows the photostationary-state relation 

described in equation (2.4), which is a function of two reaction rates. The time required 

for the PM2.5 precursors to react and form PM2.5 is highly variable, and depends on the 

specific precursor chemical, temperature, and humidity.  

 Inclusion of lagged values of the target variable (or of the independent variables) 

in statistical models may capture important dynamic structure of O3 and PM2.5 formation. 

Often a change in the value of one of the air quality or meteorological data (explanatory 

variables) does not affect the dependent variable immediately during one time period, but 

rather with a lag over several time periods. Should we include lagged values, then by 

definition the values of O3 (or PM2.5) at time t would be partly determined by the random 

error term, and so its lagged values could not be non-stochastic. Moving from a purely 

static model to one which allows for lagged effect is likely to reduce serial correlation; 

however, inclusion of lagged values of the dependent variables violates the mathematical 

assumptions of the statistical methods included in this thesis. Precisely, the assumption 

that the explanatory variables are non-stochastic (i.e. there is no relationship between the 

error and the corresponding dependent variable) is being violated.  For that reason, we 

decided to exclude lagged values. Moreover, a model which contains lagged values may 
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solve a statistical problem (autocorrelated residuals) at the expense of creating an 

interpretational one.  

Su (2004) noted that forecast models should exclude actual values of precursor 

species and meteorological inputs corresponding to forecast time. The inclusion of 

dummy variables to represent time of day (or day of week) improves the performance of 

forecasting models, but on the other it is difficult to argue that either O3 or PM2.5 is truly 

a function of “hour” (or “day of week”). For these reasons, we decided to exclude actual 

values and dummy variables in this study. 

From the literature survey, we identified that forecasting windows examined by 

previous studies study range from 5 minutes to 24 hours ahead, with 1-hour ahead being 

the most common. This choice is justified because chemical and physical processes 

governing ozone and fine particulate matter can be observed within this time frame. Also 

within this time frame, forecast models based on statistical methods yield satisfactory 

results with the exclusion of lagged variables. Moreover, it allows relatively ample time 

to regulatory bodies to issue warnings and for the public to take precautionary measures 

to avoid exposure to unhealthy levels of air pollution.  

There are no formal requirements with respect to Gaussian distribution of 

variables employed in models based on MLR, PCR, MARS or ANN. MLR, PCR and 

MARS rely on central-tendencies of the data. Transformation of the data through an 

appropriate level of a power transform alleviates deviations to normality (Yeo and 

Johnson, 2000) and may yield air pollution forecasting models with improved 

performance (Al-Alawi et al., 2008). We found through literature review that it is not 

unusual to pre-process the data for ozone and particulate matter by means of power 
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transforms (usually square root and log), though this practice was found to be sporadic 

and non-standard. 

In the preliminary stages of this study, the following parametric power transform 

was considered:  

 

𝑦𝑇 =

⎩
⎨

⎧
𝑦𝜑 − 1

𝜑 × 𝑦̇(𝜑−1)     𝑖𝑓 𝜑 ≠ 0

𝑦̇ ln(𝑦)     𝑖𝑓 𝜑 ≠ 0

 (3.50) 

 

where 𝑦̇ is the geometric mean of the data series. Then, the transformed data was rescaled 

to fall in the 0.1 to 0.9 range as follows: 

 

𝑦𝑇∗ = 0.8 × �
𝑦𝑇 − 𝑦𝑚𝑖𝑛

𝑇

𝑦𝑚𝑎𝑥
𝑇 − 𝑦𝑇� + 0.1 (3.51) 

 

We found minimal improvements in the forecasting capabilities. Also, this pre-

processing modifies the units of the variables and renders model interpretation more 

difficult. For this reason, we decided to exclude it from this study. We acknowledge, 

however, its importance and benefits.  

There are a number of statistical tools available to determine the contribution of 

an independent variable in a regression model. One of the popular ones is the t-ratio.  

 

𝑡 − 𝑟𝑎𝑡𝑖𝑜 =
𝛽̂𝑖

𝑆𝐸𝑖
 (3.52) 



79 
 

 

where 𝛽̂ is the least square estimate of the coefficient βi, and SEi is the standard error of 

the estimate. The t-ratio described in equation (3.52) measures the importance of a 

particular independent variable xi in describing the dependent variable y, in the multiple 

regression model. As a rule of thumb, the independent variable xi is said have a 

significant importance if  

 

|𝑡 − 𝑟𝑎𝑡𝑖𝑜| > 𝑡2.5(𝑛 − (𝑝 − 1)) (3.53) 

 

where 𝑡2.5(𝑛 − (𝑝 − 1)) is the point on the scale of t-distribution having (𝑛 − (𝑝 − 1)) 

degrees of freedom such that an area of 0.025 exists under the curve of this t-distribution 

between t2.5 and ∞. 

This brings us to our next point in this discussion. The strength of principal 

component analysis is that it is a non-parametric analysis yielding an unique answer 

independent of the user. In other words, there are no parameters that need to be optimized 

or coefficients to be adjusted based on user experience. On the other hand, there are three 

assumptions that need some clarifications.  

First, PCA is based on the Principle of Linearity. There is no a priori reason to 

challenge the applicability of principal component analysis for air quality modelling 

based on PCA’s reliance on Principles of Linearity. Mathematically speaking, this is what 

allows us to (a) interpolate between individual data points, (b) to establish a 

transformation relationship between the input variables and principal component and (c) 

re-express the data as a linear combination of its basis vectors. Second, is the assumption 
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that principal components are truly orthogonal. This assumption provides an intuitive 

simplification that makes PCA solvable with linear algebra decomposition techniques. 

Third, is that the variance of the noise in the original dataset is negligible compared to the 

variance of the principal components. This is what leads us to say that the covariance and 

underlying dynamics between column vectors of the dataset can be effectively singled out 

from noise.   

It has been suggested to retain the number of principal components with 

eigenvalues larger than unity (Karatzas and Kaltsatos, 2007). This practice is warranted 

for achieving reduction in the dimensionality of the dataset. On the other hand, it hinders 

the forecasting capabilities of the models. We will give this special consideration in our 

case studies.   

The attractiveness of feed-forward artificial neural networks comes from their 

remarkable information processing characteristics pertinent mainly to nonlinearity, high 

parallelism, fault and noise tolerance, and learning and generalization capabilities 

(Basheer and Hajmeer, 2000).  The main disadvantage of feed-forward neural networks is 

that the error associated with the network’s computed output can potentially be large 

since they cannot look forward and correct estimates. Also, the training phase may take 

quite a long time before completion and may not find an optimal configuration. However, 

when there are outliers or multicollinearity in the data, neural networks significantly 

outperforms linear regression models (Al-Alawi et al., 2008).   

As previously noted, the process of building data-driven models, such as the 

feed-forward Artificial Neural Network, is to a great extent user centric. Therefore, we 

must consider the following issues.  
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1. The composition and size of the learning set 

 

Networks with significantly different performances can result from training using 

different learning cases. Some studies have suggested the cross validation technique, in 

which an algorithm makes different learning and testing datasets from available 

observations (Setiono, 2006). In such cases, ANN models are trained multiple times with 

different datasets and their predictive performance assessed given the multiple testing 

datasets and outputs. The architecture yielding the overall best performance (i.e. best 

generalization capability) is retained. 

In our study, we have decided to employ a random two-way split of the 

observations into learning and testing (validation) dataset, while ensuring that high and 

low concentration values are included in each.  

 
2. The number of hidden layers and the number of nodes for each hidden layer 

 

Determining the optimum number of hidden layers and number of nodes in each 

hidden layer is not straightforward (Su, 2004). Algorithms that automatically determine 

the optimum number of hidden nodes in single hidden layer ANN have been proposed 

(Setiono, 2006). Yet, most models for forecasting ozone and particulate matter have one 

hidden layer with variable number of hidden nodes.  

In our study, we have opted to investigate the one single hidden layer architecture. 

Furthermore, we will resort to the trial and error technique, that is, starting with only one 

hidden node and then adding additional nodes stepwise while ensuring that the network's 
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predictive accuracy has improved.  The ANN based model will eventually overfit using 

the training dataset and lose its generalisation abilities. This can be seen by the 

continuous increase in R2 using the training dataset and decrease in R2 using the testing 

dataset. It is useful also to consider an error metric (such as RMSE) for both the training 

and validation run to check for overfit.  

 

3. The learning rate (𝜂) 

 

The learning algorithm searches the space of weight values for an optimal solution, 

using a gradient descent approach. In all gradient methods, a small value for the learning 

rate will make the convergence of the network towards a solution slow, whereas a large 

value may cause the weights in the network to ‘jump’ back and forth over the appropriate 

value. We will assume slow convergence and therefore use a small learning rate of 0.001.  

 

4. The type of nonlinear activation function.  

 

As there is no theoretical argument why one function is better than the other, we have 

selected sigmoid activation function. The sigmoid function described by equation (3.54) 

is a standard choice due to its attractive properties, namely unipolarity (i.e. 0 < fsig(x) < 1) 

and simple differentiation as shown in equation (3.55).  

 

𝑓𝑠𝑖𝑔(𝑥) =
1

1 + 𝑒−∝𝑥 (3.54) 
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𝑓𝑠𝑖𝑔
′ (𝑥) = 𝛼𝑓𝑠𝑖𝑔(𝑥) �1 − 𝑓𝑠𝑖𝑔(𝑥)� (3.55) 

 

When using the sigmoid activation function equation (3.40) reduces to: 

 

Δ𝑤1 = 𝛼𝑦𝚤�𝜂 ��𝑦𝚤�(1 − 𝑦𝑖)(𝑦𝚤� − 𝑦𝑖)�
𝑝

𝑖=𝑖

 (3.56) 

    
 

 

More detailed information on training ANN model can be found elsewhere 

(Egmont-Petersen et al., 1994; Nedjah and Mourelle, 2006).  

The identification of patterns in model-driven approaches is based on the 

optimisation of a cost function while in data-driven techniques such as Multivariate 

Regression Splines and Artificial Neural Networks, on training. The performance of 

regression models is largely dependent on the complexity of the pattern itself. On the 

other hand, the performance of the ANN approach depends largely on the learning 

algorithm and on the architecture of the network and its parameters. The strength of data-

driven approaches is that the analysis yields an unique answer independent (to some 

extent) of the user.  

 
3.5 Summary 

 

In this section, we formally defined the concepts of time series, moment statistics, 

correlation and standard deviation. Then, laid the mathematical foundation and 

formulation for principal component analysis and discussed how it could be applied 

to reduce the dimensionality and address potential multicollinearity in the dataset. 
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After that, we introduced the seven different models included in this study, namely: 

MLR, PCR, MARS 1, MARS 2, ANN, PC-ANN and PC*-ANN. Then, we directed our 

efforts in describing in mathematical terms Multiple Linear Regression (MLR), 

Principal Component Regression (PCR) Multivariate Regression Splines (MARS) 

and Artificial Neural Networks (ANN). Following this, we presented the seven 

different metrics to be used in the comparative model performance assessment. 

 Our discussion focused first on the benefits of power transform which can be an 

important tool to improve linear models. Then, we developed on the implicit assumptions 

of the Principal Component Analysis. And finally we considered both the attractiveness 

and challenges associated with the user-centric exploratory ANN development process. 

 In spite of its evident success in many applications, linear model-driven 

approaches such as MLR and PCR face serious shortcomings. To a great extent, their 

inadequacy arises from its linear representation of non-linear systems and 

multicollinearity. Multicollinearity, or the high correlation between independent 

variables in a regression equation, makes it difficult to correctly identify the most 

important contributors for prediction; and given the pre-assumed linear form, no 

complex nonlinear patterns can be captured. PCR is not expected to be affected by 

multicollinearity and yield better results than MLR.  

Data-driven models such as MARS and ANN are empirical in nature. They can 

provide pragmatic accurate solutions for phenomena forecasted through experimental 

data and field observations. The attractiveness of applying MARS and ANN to air 

pollution forecasting includes their ability to handle nonlinearity and high parallelism as 

well as imprecise information. Both MARS and ANN are considered are considered in 
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this study. The use of these two data-driven models is desirable because (i) bring 

nonlinearity may allows a better fit to the input data, (ii) noise-insensitivity might provide 

more accurate prediction in the presence of measurement errors, (iii) their high 

parallelism implies fast processing and hardware failure-tolerance, (iv) they allow 

generalization enabling application of the model to unlearned data. 
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Chapter 4 

Investigation Area and Data 

 

 

 

4.1 Investigation Area 

 

Montréal (45°30′N, 73°35′W) is situated in the southwest of the province of Québec, in 

Eastern Canada. The city is situated on the Island of Montréal on the Saint Lawrence 

River.  

 

Figure 4.1 Map of Canada (HRSDC, 2004) 
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The 30-year (1971-2000) monthly daily means, maxima, minima and extremes 

temperatures are shown in Table 4.1 below. The mean 30-year average annual 

temperature is 6.2oC.  Typical temperatures in the summer range from 16oC – 26oC and 

in the winter from -5oC to -15oC. Temperature in spring and fall are mild, but with 

frequent dire differentials. Extreme temperatures are experienced in mid-August and mid-

January, when extreme temperatures have reached 37.6oC and -37.8oC respectively.  

 

 

Table 4.1 Montréal 30-year (1971-2000) temperature averages (EC, 2011) 

 

Total 30-year (1971-2000) monthly cumulative means of rainfall, snowfall and 

precipitation are shown in Table 4.2. Precipitation as rainfall and snowfall average 763.8 

mm and 217.5 cm respectively.  

 

 

Table 4.2 Montréal 30-year (1971-2000) rainfall, snowfall and precipitation averages  

     (EC, 2011) 

 

Temperature Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Daily  (°C) -10.2 -8.4 -2.3 5.7 13.4 18.2 20.9 19.6 14.6 8.1 1.6 -6.3 6.2

Stand. Deviation 2.9 3.0 2.3 1.7 1.7 1.2 1.0 1.1 1.4 1.6 1.6 3.2 0.9
Daily Max (°C) -5.7 -3.9 2.2 10.7 19.0 23.6 26.2 24.8 19.7 12.7 5.3 -2.2 11.1
Daily Min (°C) -14.7 -12.9 -6.7 0.6 7.7 12.7 15.6 14.3 9.4 3.4 -2.1 -10.4 1.4

Extreme Max (°C) 13.9 15.0 25.6 30.0 33.9 35.0 35.6 37.6 33.5 28.3 21.7 18.0
Extreme Min (°C) -37.8 -33.9 -29.4 -15.0 -4.4 0.0 6.1 3.3 -2.2 -7.2 -19.4 -32.4

Precipitation Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year
Rainfall (mm) 27.2 19.8 35.8 63.9 76.1 83.1 91.3 92.7 92.6 75.4 71.2 35.1 763.8
Snowfall (cm) 52.5 43.3 36 13.1 0.2 0 0 0 0 2.2 21.9 48.3 217.5

Precipitation (mm) 78.3 61.5 73.6 78 76.3 83.1 91.3 92.7 92.6 77.8 92.6 81.3 978.9
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In 2001, the population in Montréal was estimated at 1,812,723 inhabitants (City 

of Montréal, 2003). The density of the population is shown in Figure 4.2.  

 

 

Figure 4.2 Population density Montréal (MTL, 2003) 

 

Some 600,000 people live within the boundaries of the boroughs of Mont-Royal, 

Côte-Saint-Luc, Ville-Marie and Le Plateau. Population densities in these boroughs range 

from 20,000 to 40,000 inhabitants per km2. It is in this south-eastern region of the island 

where most of the businesses, academic institutions and entertainment centers are 

located. Another 400,000 people live in the western region of the city. The density in the 

west ranges from 1,000 to 5,000 inhabitants per km2. The Kirkland – Ville-Marie corridor 

is an important commuter’s route.  
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There air quality monitoring stations in Montréal as shown in Figure 4.3. These 

monitoring stations are part of the  Réseau de surveillance de la qualité de l’air de la ville 

de Montréal (RSQA) and integrated to Environment Canada’s National Air Pollution 

Surveillance (NAPS) network. 

 

 

 Figure 4.3 RSQA Monitoring Stations in Montréal, adapted from (RSQA, 2007) 

 

Given the demographic considerations explained earlier, we collected 

meteorological and air quality data from the (Montréal Pierre Elliott Trudeau) Airport 

Station (45°28′N, 73°44′W) and the Maisonneuve Station (45°30′N, 73°34′W) for the 

period January 2004 to December 2007.  
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4.2 Data Collection and Quality Analysis 
 

Hourly means of ozone (O3), fine particulate matter (PM2.5), nitrogen monoxide (NO), 

nitrogen dioxide (NO2),  and carbon monoxide (CO) are available daily at the Airport and 

Maisonneuve monitoring stations. As these pollutants have been identified as either target 

pollutants or chemical precursors, they are considered in this study.  In addition, solar 

irradiation (SR), temperature (Temp), pressure (Press), dew point (DP), precipitation 

(Precip), wind speed (WS) and wind direction (WD) are monitored at Airport station. As 

these were identified as having an influence in the formation of both O3 and PM2.5, they 

are also considered in this study.   

O3 concentrations are monitored by ultra-violet absorption photometry; PM2.5 

concentrations are monitored by dichotomous sampling; NO and NO2 concentrations are 

monitored by chemiluminescence method; and CO concentrations are monitored by 

infrared absorption photometry. All equipments are calibrated periodically and submitted 

to rigorous preventive maintenance program. Monitoring is continuous and hourly mean 

values are recorded.  

All observations have been validated by RSQA and used for reporting (RSQA, 

2004; RSQA, 2005; RSQA 2006; RSQA, 2007). We cross checked the monthly and 

annual averages obtained by our statistical analysis with values reported by RSQA and 

have obtained agreement at three decimal digits.  

There would be a total of 35,064 hourly observations within the period January 

1st, 2004 to December 31st, 2007, but there were missing values. The completeness of the 

data (expressed by percent, by month) for air pollution readings at Airport and 
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Maisonneuve stations as well as for meteorological data at Airport station are shown in 

Appendix C.  

It is noted that at least 50% of the air quality data is missing at the Airport station 

for: 

 

1.  O3 (from January to June 2004 );  

2. PM2.5 (for June – July 2004);  

3. NO (for March and June 2004);  

4. NO2 (in June 2004); and  

5. CO (in June 2004).  

 

Also, it is noted that at least 50% of the air quality data are missing at the 

Maisonneuve station for PM2.5 (for June – August 2005 and December 2007).  

In addition, it is noted that at least 50% of the meteorological data are missing at 

Airport Station for: 

 

1. SR (October – November 2006, February – May 2007 and October – 

December 2007); and  

2. DP (in November 2006).  

 

To ensure consistency with the values reported by RSQA, these months have not 

been removed from the main dataset. This writer and the reader will exercise caution 

when interpreting moment statistics presented in the next section. 
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 VOC data is available for 142 different species as daily (24-hour) averages, 

computed from 0h00-23h00 on each day at six days intervals. As such, the maximum 

number of observations during the period January 2004 to December 2007 is 243. There 

are 22 days with missing values. 

 

4.3 Data Characterization  

  

Monthly means of O3 are consistently higher at Airport than at the Maisonneuve station, 

see Figure 4.4. Ozone demonstrates a clear seasonal pattern for both stations, with highest 

monthly means in March to June and lowest in November to January. There is a moderate 

correlation between values at the two stations (r = 0.70). Figure 4.5 show the monthly 

means of O3 at Airport and Maisonneuve stations by month. Monthly mean O3 

concentration is highest at Airport in May at 57.4 μg/m3 (95% CI: 56.2 – 58.6 μg/m3) and 

lowest in November at 27.5 μg/m3 (95% CI: 26.8 – 28.2 μg/m3).  Monthly mean O3 at  

Maisonneuve is highest in June at 37.5 μg/m3 (95% CI: 36.6 – 38.5 μg/m3) and lowest in 

November at 15.1 μg/m3 (95% CI: 14.7 – 15.5 μg/m3).   

Monthly daily-means of PM2.5 are generally higher at Maisonneuve than at the 

Airport station, see Figure 4.6.  Fine particulate matter monthly daily-means do not show  

  



93 
 

 
 

Figure 4.4 Monthly means of O3 at Airport and Maisonneuve stations 
 
 

 
 

Figure 4.5 Monthly means of O3 at Airport and Maisonneuve stations by month 
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Figure 4.6 Monthly means of PM2.5 at Airport and Maisonneuve stations 
 
 

  
 

Figure 4.7 Monthly means of PM2.5 at Airport and Maisonneuve stations by month 
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clear seasonal pattern for either stations. There is a weak correlation between values at 

the two stations (r = 0.20). Figure 4.7 show the monthly means of PM2.5 at Airport and 

Maisonneuve stations by month.  

Monthly means of NO are consistently higher at Maisonneuve than at the Airport 

station, see Figure 4.8. NO demonstrates a clear seasonal pattern for both stations, with 

highest monthly means in October to February and lowest in June to August. There is a 

moderate correlation between values at the two stations (r = 0.63). Figure 4.9 show the 

monthly means of NO at Airport and Maisonneuve stations by month. Monthly mean NO 

concentration is highest at Airport in February at 17.5 μg/m3 (95% CI: 17.1 – 17.9 μg/m3) 

and lowest in July at 2.7 μg/m3 (95% CI: 2.8 – 2.9 μg/m3).  Monthly mean NO at 

Maisonneuve is highest in February at 43.1 μg/m3 (95% CI: 42.2 – 44.0 μg/m3) and 

lowest in July at 15.9 μg/m3 (95% CI: 15.5 – 16.2 μg/m3).   

Monthly means of NO2 are consistently higher at Maisonneuve than at the Airport 

station, see Figure 4.10. NO2 demonstrates a clear seasonal pattern for both stations, with 

highest monthly means in November to March and lowest in July to September. There is 

a moderate correlation between values at the two stations (r = 0.58). Figure 4.11 show the 

monthly means of NO2 at Airport and Maisonneuve stations by month. Monthly mean 

NO2 concentration is highest at Airport in January at 33.0 μg/m3 (95% CI: 32.3 – 33.7).  

μg/m3) and lowest in July at 17.0 μg/m3 (95% CI: 16.6 – 17.4 μg/m3).  Monthly mean 

NO2 at Maisonneuve is highest in March at 54.0 μg/m3 (95% CI: 52.8 – 55.2 μg/m3) and 

lowest in July at 35.7 μg/m3 (95% CI: 34.9 – 36.5 μg/m3).   
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Figure 4.8 Monthly means of NO at Airport and Maisonneuve stations 
 
 

  
 

Figure 4.9 Monthly means of NO at Airport and Maisonneuve stations by month 
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Figure 4.10 Monthly means of NO2 at Airport and Maisonneuve stations  
 
 

 
 

Figure 4.11 Monthly means of NO2 at Airport and Maisonneuve stations by month 
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Monthly means of CO are consistently higher at Maisonneuve than at the Airport 

station, see Figure 4.12. Fine particulate matter monthly daily-means do not show clear 

seasonal pattern for either stations. Carbon monoxide does not show clear seasonal 

pattern for either stations. There is a moderate correlation between values at the two 

stations (r = 0.61). Figure 4.13 show the monthly means of CO at Airport and 

Maisonneuve stations by month.  

SR demonstrates a clear seasonal pattern (see Figure 4.14) with highest monthly 

means in October to December and lowest in March to May. Figure 4.15 show the 

monthly means of SR at Airport stations by month. Monthly mean SR levels is highest in 

November at 934.7 (95% CI: 920.6 – 948.7 W/m2) and lowest in April at 156.5 μg/m3 

(95% CI: 154.1 – 158.8 μg/m3).  

Temp and DP demonstrate a clear seasonal pattern (see Figures 4.16 and 4.18) 

with highest monthly means in June to August and lowest in March to May. Figure 4.17 

and 4.19 show the monthly means of Temp and DP at Airport stations by month, 

respectively. Monthly mean Temp and DP levels are highest in July at 21.9 oC (95% CI: 

21.4 – 22.4 oC) and 15.8 oC (95% CI: 15.3 – 16.3 oC), in that order.  Monthly mean Temp 

and DP levels are lowest in January -9.2 oC (95% CI: -9.6 – -8.8 oC) and -13.7 μg/m3 

(95% CI: -14.1 – -13.2 oC), respectively.    

Monthly means of Press and Precip do not show clear seasonal pattern for either 

station, see Figures 4.20 and 4.22.  

 



99 
 

 
 

Figure 4.12 Monthly means of CO at Airport and Maisonneuve stations 
 
 

 
 

Figure 4.13 Monthly means of CO at Airport and Maisonneuve stations by month 
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Figure 4.14 Monthly means of SR at Airport station 
 
 

 
 

Figure 4.15 Monthly means of SR at Airport station by month 
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Figure 4.16 Monthly means of Temp at Airport station 
 
 

 
 

Figure 4.17 Monthly means of Temp at Airport station by month 
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Figure 4.18 Monthly means of DP at Airport station 
 
 

 
 

Figure 4.19 Monthly means of DP at Airport station by month 
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Figure 4.20 Monthly means of Press at Airport station 
 

 

 
 

Figure 4.21 Monthly means of Press at Airport station by month 
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Figure 4.22 Monthly means of Precip at Airport station 
 

 

 
 

Figure 4.23 Monthly means of Precip at Airport and stations by month 
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The wind direction is reported by RSQA as (NE, E, SE, S, SW, W, NW, N). We 

transformed these values to (1, 2, 3, 4, 5, 6, 7, 8) respectively. The corresponding mean 

values of the daily maximum 1-h ozone concentration between January 2004 and 

December 2007 were plotted as a function of the transformed numerical values of wind 

direction. Results are tabulated in Appendix G. Then, we followed the procedure 

described in Chaloulakou et. al (2003) to derive the wind direction index (WDI). The 

rationale of this procedure is to remove the discontinuity of the wind direction angle at 

360o by fitting the following sinusoidal function:  

 

𝑊𝐷𝐼 = 1 + sin (ψ−𝜃𝑤𝜋) (4.1) 

 

where θw is the wind direction expressed in radians (with 0o corresponding to the North) 

and ψ is an estimated parameter accounting for the phase shift.  

The inclusion of wind speed and wind direction in this study does not violate the 

assumption of non-stochasticity of input variablesfor the regression models. The pseudo-

randomness of WS and WDI is smoothed over the 1-hour averaging period of the data 

collection. Both variables WS and WDI point out to the role, which is primarily of 

physical transport of precursor species and mixing, that wind plays in the surface 

boundary layer with respect to the formation of ozone and fine particulate matter. 

The value of ψ has been determined to be -0.79 for both Airport and Maisonneuve 

stations. From the definition of the index, it emerges that when the wind is southwesterly 

(i.e. WD is 5), WDI is 2.0 (maximum value). Conversely, when the wind is northeasterly 

(i.e. WD is 1), WDI is 0.0 (minimum value). These wind directions correspond to the 

maximum and minimum values of the daily 1-h maximum O3, respectively.  
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Figure 4.24 WDI and maximum 1-hour O3 at Airport station by WD 

 

The monthly means of all variables considered in this study for each month in the 

January 2004 to December 2007 period are presented in Appendix D. The typical 

monthly averages observed in the 2004-2007 time series are presented in Appendix E.  

Given the seasonal pattern of air pollution and meteorological data at both 

stations, we have decided to consider two different seasons, namely summer and winter. 

The summer season corresponds to May, June and July. In summer; O3 and Temp are 

especially high, and NO, NO2 are especially low.  The winter season corresponds to 

months of November, December and January. In winter, O3 and Temp are especially low, 

and NO, NO2 are especially high. This confirms the working of the photostationary 

equations.   
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 Figure 4.25 WDI and maximum 1-hour O3 at Maisonneuve station by WD 

 

4.4 Diurnal Cycles  

 

Summer hourly means of air quality data at Airport and Maisonneuve stations are given 

in Figures 26 and 28, respectively. Winter hourly means of air quality data at Airport and 

Maisonneuve stations are given in Figures 27 and 29, respectively. Hourly means of 

meteorological data at Airport station are given in Figures 30 to 33. Numerical values for 

each hour are given in Appendix F and the distribution by season is given in Appendix H. 
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Figure 4.26 Diurnal cycle of O3, PM2.5, NO, NO2 and CO (in μg/m3) at Airport station  
        (Summer)  

 

 

Figure 4.27 Diurnal cycle of O3, PM2.5, NO, NO2 and CO (in μg/m3) at Airport station  
       (Winter)  

 



109 
 

 
 
Figure 4.28 Diurnal cycle of O3, PM2.5, NO, NO2 and CO (in μg/m3) at Maisonneuve  

        station (Summer) 
 

 
 
Figure 4.29 Diurnal cycle of O3, PM2.5, NO, NO2 and CO (in μg/m3) at Maisonneuve  

        station (Winter) 
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Figure 4.30 Diurnal cycle of Temp and DP (oC); and Press (kPa) at Airport station  

        (Summer) 
 

 
 
Figure 4.31 Diurnal cycle of Temp and DP (oC); and Press (kPa) at Airport station  

        (Winter) 
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Figure 4.32 Diurnal cycle of Precip (mm) and SR (W/m2) at Airport station (Summer) 
 
 

 
 

Figure 4.33 Diurnal cycle of Precip (mm) and SR (W/m2) at Airport station (Winter) 
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On a typical early-morning in Montréal - that is between 05h00 and 07h00; NO, 

NO2 and CO concentrations peak with increased vehicular traffic. At twilight, the 

nitrogen dioxide photolysis (dissociation of nitrogen dioxide into nitric oxide and oxygen 

radical) is limited due to low solar radiation (and temperature). At the same time, O3 

concentrations decreases because i) ozone oxidises NO to NO2 and is converted back to 

molecular oxygen, ii) solar radiation and temperature are still low limiting the amount of 

free energy for NO2 dissociation, iii) to low VOC levels (given low VOC volatility), and 

iii) limited  photolysis of VOC allowing the alternate pathway of NO conversion to NO2. 

After 07h00, with increased solar irradiation and temperature, NO and NO2 

decrease and O3 concentrations increase. O3 increases because during the day light hours, 

i) NO2 absorbs the energy of a photon light and dissociates into NO and an oxygen 

radical, then the oxygen radical combines with O2 to form O3, and ii) because of the 

increased VOC levels (higher volatility) which enables the oxidation process of 

hydrocarbons by hydroxyl radical (OH•) offering another pathway which converts NO to 

NO2.  

We note that O3 peaks at 15h00. Then, in the afternoon, with decreasing solar 

irradiation, ozone concentrations decrease to stabilize at 21h00 in summer and 17h00 in 

winter. NO, NO2 and CO increases with vehicular traffic peak at 21h00 in summer and 

18h00 in winter. At sunset, the NO2 dioxide photolysis is again limited due to low solar 

irradiation. At these times of day, ozone and nitric oxide combine to yield nitrogen 

dioxide and oxygen. The data confirms these important ozone formation mechanisms in 

Montréal. 
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O3 levels in Maisonneuve are lower than at Airport.  The data indicates that at 

Airport, with lower NO and NO2 concentrations, NOx makes a net positive contribution 

to photochemical ozone formation, but at Maisonneuve with higher concentrations, 

typical of downtown Montréal, the balance is shifted to ozone consumption. The data 

confirms that NOx scavenging occur in the city as higher NOx emissions locally decrease 

ozone.  

Given the diurnal pattern of air pollution and meteorological data at both stations, 

we have decided consider two different periods in our study, namely day and night. The 

day period corresponds to 11h00 to 16h00.  The night period corresponds to 22h00 to 

04h00.   

Tables 4.3 to 4.6 show the correlation between variables for summer and winter 

seasons by day and night periods. Correlation coefficients between pollutants and 

meteorological variables were analysed to evaluate the influence of each variable on O3 

and PM2.5 concentration. These coefficients provide a measure of the linear relation 

between two variables and also indicate the existence of collinearity between the 

explanatory variables. 

At Airport station, summer ozone concentrations were correlated with PM2.5 and 

temperature during day time; and with NO2 and wind speed during night time. Winter 

ozone concentrations were negatively correlated with PM2.5, NO, NO2 and CO during 

both day and night time. At Maisonneuve station, ozone concentrations were correlated 

with NO during both day and night periods. During daylight hours, ozone was correlated 

with temperature. Overall, the correlations of ozone with meteorological variables were 

generally weak.   
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At Airport station, summer PM2.5 concentrations were correlated with O3, CO and 

temperature during both day and night periods. Winter PM2.5 concentrations were 

negatively correlated with PM2.5, NO, NO2 and CO during both day and night time. High 

correlation was found between PM2.5 and O3, NO, NO2 at Maisonneuve during both 

periods in winter. The correlations of PM2.5 with meteorological variables were generally 

weak.  

Cross correlation between precursor species were identified, such as NO and CO 

(0.70), O3 and NO2 (-0.70) and NO and NO2 (0.65), demonstrating the existence of 

collinearity between the variables. Also, the correlation between temperature and dew 

point was positive and highly significant, as expected. 
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Table 4.3 Correlation of variables (Summer / Day) 
 
 

 
 

Table 4.4 Correlation of variables (Summer / Night) 
 
  

Summer/Day O3 (Airport) PM2.5 (Airport) O3 (Maison) PM2.5 (Maison)
O3 (Airport) 1.00 0.51 0.90 0.49
PM2.5 (Airport) 0.51 1.00 0.44 0.92
NO (Airport) -0.34 0.09 -0.28 0.03
NO2 (Airport) -0.16 0.31 -0.18 0.28
CO (Airport) 0.10 0.62 0.08 0.60
O3 (Maison) 0.90 0.44 1.00 0.39
PM2.5 (Maison) 0.49 0.92 0.39 1.00
NO (Maison) -0.55 -0.18 -0.71 -0.14
NO2 (Maison) 0.32 0.37 0.01 0.46
CO (Maison) -0.09 0.21 -0.30 0.27
SR -0.05 0.01 0.04 0.00
Temp 0.62 0.50 0.58 0.48
DP 0.27 0.55 0.26 0.55
Press 0.27 -0.05 0.30 -0.08
Precip -0.20 -0.07 -0.22 -0.04
WS -0.05 -0.13 -0.03 -0.15
WDI 0.30 0.12 0.25 0.11

Summer/Night O3 (Airport) PM2.5 (Airport) O3 (Maison) PM2.5 (Maison)
O3 (Airport) 1.00 0.12 0.85 0.21
PM2.5 (Airport) 0.12 1.00 0.23 0.89
NO (Airport) -0.35 0.09 -0.22 0.05
NO2 (Airport) -0.54 0.34 -0.29 0.23
CO (Airport) -0.22 0.61 -0.09 0.53
O3 (Maison) 0.85 0.23 1.00 0.23
PM2.5 (Maison) 0.21 0.89 0.23 1.00
NO (Maison) -0.31 -0.03 -0.49 0.03
NO2 (Maison) -0.22 0.33 -0.31 0.36
CO (Maison) -0.04 0.09 -0.15 0.13
SR -0.04 0.04 -0.07 0.06
Temp 0.26 0.50 0.23 0.51
DP 0.09 0.46 0.06 0.47
Press -0.19 0.07 -0.07 0.02
Precip 0.05 0.05 0.02 0.07
WS 0.44 -0.28 0.31 -0.25
WDI 0.37 0.06 0.26 0.12
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Table 4.5 Correlation of variables (Winter / Day) 
 

 

 
 

Table 4.6 Correlation of variables (Winter / Night) 
 

  

Winter/Day O3 (Airport) PM2.5 (Airport) O3 (Maison) PM2.5 (Maison)
O3 (Airport) 1.00 -0.54 0.80 -0.51
PM2.5 (Airport) -0.54 1.00 -0.40 0.79
NO (Airport) -0.48 0.74 -0.32 0.51
NO2 (Airport) -0.74 0.74 -0.53 0.62
CO (Airport) -0.64 0.79 -0.43 0.61
O3 (Maison) 0.80 -0.40 1.00 -0.48
PM2.5 (Maison) -0.51 0.79 -0.48 1.00
NO (Maison) -0.43 0.43 -0.61 0.58
NO2 (Maison) -0.26 0.42 -0.52 0.53
CO (Maison) -0.53 0.48 -0.66 0.64
SR -0.03 0.03 -0.07 0.06
Temp -0.36 0.05 -0.41 0.09
DP -0.51 0.14 -0.52 0.17
Press 0.24 0.04 0.24 -0.01
Precip -0.20 -0.03 -0.13 -0.04
WS 0.31 -0.38 0.34 -0.39
WDI 0.41 -0.32 0.13 -0.30

Winter/Night O3 (Airport) PM2.5 (Airport) O3 (Maison) PM2.5 (Maison)
O3 (Airport) 1.00 -0.60 0.79 -0.52
PM2.5 (Airport) -0.60 1.00 -0.53 0.74
NO (Airport) -0.46 0.70 -0.39 0.41
NO2 (Airport) -0.80 0.70 -0.56 0.55
CO (Airport) -0.55 0.79 -0.43 0.49
O3 (Maison) 0.79 -0.53 1.00 -0.59
PM2.5 (Maison) -0.52 0.74 -0.59 1.00
NO (Maison) -0.44 0.46 -0.56 0.60
NO2 (Maison) -0.56 0.57 -0.69 0.61
CO (Maison) -0.39 0.46 -0.52 0.57
SR -0.03 -0.06 -0.02 -0.04
Temp -0.13 -0.07 -0.24 0.00
DP -0.21 -0.01 -0.30 0.06
Press -0.11 0.19 -0.01 0.12
Precip -0.03 -0.08 0.00 -0.07
WS 0.60 -0.42 0.50 -0.34
WDI 0.27 -0.19 0.08 -0.15
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4.5 Dataset Preparation 

 

Data from Airport station (O3, PM2.5, NO, NO2, CO, SR, Temp, Press, DP, Precip, WS 

and WDI) and from Maisonneuve station (O3, PM2.5, NO, NO2 and CO) observed in 

summer/winter seasons and in day/night periods at time t (present time) were set in a 

matrix form. Then we added columns to indicate the observed values of O3 and PM2.5 at t 

+ 1 (future time, 1-hour window). The 1-hour ahead values of O3 and PM2.5 were referred 

to as OP and PP, respectively. Each variable carried a subscript “Airport” or “Maison” to 

indicate its source. 

 We eliminated the rows of each pattern where there was at least one observation 

missing, from either station. The resulting matrix contained 17 columns and 

4,976 rows. At this point, we made an informed decision not to include a “production” 

subset in order to simplify subsequent analysis.  Then, we randomly selected rows in the 

matrix for either learning or testing in such a way that the selection was uniformly 

distributed. We applied a subroutine such that:  

 

1. at least 50% (but no more than 55%) of the observations were tagged as 

“learning”; 

2. 50% of the top 50 observations for each variable were tagged “testing”; 

3. 50% of the bottom 50 observations for each variable were tagged “testing”  

 

The learning dataset was used for model training and the testing dataset was used for 

model validation. All models were trained and validated using the same datasets. Table. 
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4.7 summarises the final split count of the main observation matrix into the learning and 

testing datasets used for forecasting (Case Studies 1 through 4 inclusively). 

 
 

 

Table 4.7 Learning and testing counts 
 

The dataset used in Case Study 5 differed from the previous datasets as the 

objective of this case study was to model daily means of ozone at Maisonneuve station 

with inclusion of available VOC data. In addition to the set of air quality and 

meteorological data used in the previous four case studies, the concentration values of 

142 different VOC species that were available at six days interval were included. The 

original dataset with no missing values contained 186 rows of observations. The same 

subroutine was applied. The dataset was split into training and validation datasets 

containing 102 and 84 observations, respectively. 

 
 
 

  

Period Cases Learning Testing
Summer

Day 1002 506 496
Night 1224 629 595

Winter
Day 1231 650 581
Night 1519 796 723

Total 4976 2581 2395
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Chapter 5 

Results 

 

 

 

In this section we present the result of four case studies. In Case Study 1, we investigate 

O3 at Airport. In Case Study 2, we investigate PM2.5 at Airport. In Case Study 3, we 

investigate O3 at Maisonneuve. In Case Study 4, we investigate PM2.5 at Maisonneuve.  

For each case study we consider different model configuration for summer-day, 

summer-night, winter-day and winter-night. The model outputs for Case Study 1 are 

presented in Appendix I. Error diagnostics for Case Study 1 are presented in Appendix J.  

 

5.1 Case Study 1: O3 Forecast at Airport Station   

 

5.1.1 Summer 

 

Different models to forecast 1-hour ahead O3 concentrations at Airport station during the 

summer season were developed. We considered two distinct periods, namely day and 

night-time. The developed models were based on MLR, PCR, MARS 1, MARS 2, ANN, 

PC-ANN and PC*-ANN methods.  
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The observed means of the O3 responses were 78.9 and 37.0 μg/m3 during the day 

and night-time respectively. The 75% percentile of O3 concentrations were 96 and 55 

μg/m3 for the day and night-time period, in that order. The overall performance metrics 

and the success forecasting rates at the 75% percentile concentrations obtained with the 

learning dataset are shown in Table 5.1 (PCR and MARS 1), Table 5.2 (MLR, MARS 2 

and ANN) and Table 5.3 (PC-ANN and PC*-ANN).  

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.4 (PCR and MARS 1), Table 5.5 

(MLR, MARS 2 and ANN) and Table 5.6 (PC-ANN and PC*-ANN).  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.48 – 0.68) with a corresponding r in the (0.69 – 0.82) range. In terms 

of these two metrics, PC-ANN performed the best, closely followed by MARS 1.  

2. MAPE ranged (14% – 15%). All models yielded values in the same order of 

magnitude. 

3.  MBE ranged (-3.0 – -0.8), MAE ranged (13.0 – 15.5) and RMSE ranged (16.6 – 

21.5). In terms of these three metrics, MARS 1 performed the best, closely 

followed by PC-ANN and MARS 2.  

4. TPR ranged (0.59 – 0.73), FPR ranged (0.07 – 0.12) and SI ranged (0.51 – 0.65). 

In terms of these three metrics, MARS 1 performed the best, closely followed by 

MARS 2 and PC-ANN. 
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Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.51 – 0.69) with a corresponding r in the (0.71 – 0.83) range. In terms 

of these two metrics, ANN performed the best, closely followed by MARS 2 and 

PC-ANN.  

2. MAPE ranged (20% – 31%). In terms of this metric, MARS 2 performed the best 

closely followed by PC-ANN. 

3.  MBE ranged (-0.9 – 0.3), MAE ranged (11.5 – 14.1) and RMSE ranged (15.2 – 

18.9). In terms of these three metrics, ANN performed the best, closely followed 

by MARS 2.  

4. TPR ranged (0.46 – 0.67), FPR ranged (0.07 – 0.12) and SI ranged (0.39 – 0.59). 

In terms of these three metrics, PC-ANN performed the best, closely followed by 

MARS 2.  
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Table 5.1 Forecasting summer O3 at Airport with PCR and MARS 1 (Training) 
 
 

 
 

Table 5.2 Forecasting summer O3 at Airport with MLR, MARS 2 and ANN (Training) 
 
 

 
 

Table 5.3 Forecasting summer O3 at Airport with PC-ANN and PC*-ANN (Training) 
 

O3 Airport (Training)
Summer PCR MARS 1 PCR MARS 1

Overall Performance Metrics
Coefficient of Determination (R2) 0.68 0.74 0.55 0.64
Correlation Coefficient (r) 0.82 0.86 0.74 0.80
Mean Absolute Percent Error (MAPE) 15% 14% 28% 25%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 13.9 12.3 13.5 12.0
Root Mean Squared Error (RMSE) 17.3 15.5 17.0 15.3

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.62 0.71 0.47 0.55
False Positive Rate (FPR) 0.06 0.09 0.08 0.07
Success Index (SI) 0.55 0.62 0.39 0.48

Day Night

O3 Airport (Training)
Summer MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.68 0.73 0.80 0.55 0.66 0.73
Correlation Coefficient (r) 0.82 0.85 0.89 0.74 0.82 0.85
Mean Absolute Percent Error (MAPE) 15% 14% 12% 29% 25% 20%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 14.0 12.3 9.8 13.4 11.4 10.5
Root Mean Squared Error (RMSE) 17.3 15.7 13.0 17.0 14.7 13.3

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.63 0.74 0.75 0.49 0.57 0.64
False Positive Rate (FPR) 0.07 0.08 0.06 0.07 0.07 0.07
Success Index (SI) 0.57 0.66 0.69 0.42 0.50 0.57

Day Night

O3 Airport (Training)
Summer PC - ANN PC*-ANN PC - ANN PC*-ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.86 0.64 0.70 0.48
Correlation Coefficient (r) 0.93 0.80 0.83 0.69
Mean Absolute Percent Error (MAPE) 11% 15% 22% 31%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 9.1 14.2 10.8 14.1
Root Mean Squared Error (RMSE) 11.2 18.3 14.0 18.3

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.77 0.62 0.59 0.37
False Positive Rate (FPR) 0.07 0.09 0.07 0.08
Success Index (SI) 0.71 0.53 0.52 0.29

Day Night
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Table 5.4 Forecasting summer O3 at Airport with PCR and MARS 1 (Validation) 
 
 

 
 

Table 5.5 Forecasting summer O3 at Airport with MLR, MARS 2 and ANN (Validation) 
 
 

 
 
 

Table 5.6 Forecasting summer O3 at Airport with PC-ANN and PC*-ANN (Validation) 
  

O3 Airport (Validation)
Summer PCR MARS 1 PCR MARS 1

Overall Performance Metrics

Coefficient of Determination (R2) 0.48 0.68 0.60 0.65
Correlation Coefficient (r) 0.69 0.82 0.78 0.81
Mean Absolute Percent Error (MAPE) 14% 14% 25% 22%
Mean Bias Error (MBE) -3.0 -1.3 -0.6 0.3
Mean Absolute error (MAE) 15.5 13.0 13.2 12.3
Root Mean Squared Error (RMSE) 21.5 16.6 17.0 16.0

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.62 0.72 0.54 0.59
False Positive Rate (FPR) 0.08 0.07 0.08 0.07
Success Index (SI) 0.54 0.65 0.46 0.52

Day Night

O3 Airport (Validation)
Summer MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.48 0.66 0.58 0.60 0.68 0.69
Correlation Coefficient (r) 0.69 0.81 0.76 0.77 0.83 0.83
Mean Absolute Percent Error (MAPE) 14% 14% 15% 25% 20% 21%
Mean Bias Error (MBE) -2.5 -1.3 -1.7 -0.6 -0.2 -0.1
Mean Absolute error (MAE) 15.4 13.2 13.1 13.2 11.5 11.8
Root Mean Squared Error (RMSE) 21.5 17.2 18.9 17.2 15.2 15.2

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.59 0.73 0.65 0.53 0.63 0.65
False Positive Rate (FPR) 0.08 0.10 0.09 0.08 0.08 0.12
Success Index (SI) 0.51 0.63 0.54 0.45 0.55 0.53

Day Night

O3 Airport (Validation)
Summer PC - ANN PC*-ANN PC - ANN PC*-ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.68 0.56 0.68 0.51
Correlation Coefficient (r) 0.83 0.75 0.83 0.71
Mean Absolute Percent Error (MAPE) 15% 15% 21% 31%
Mean Bias Error (MBE) -0.8 -1.8 -0.9 0.0
Mean Absolute error (MAE) 13.3 15.0 11.8 14.1
Root Mean Squared Error (RMSE) 16.9 19.5 15.3 18.9

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.72 0.66 0.67 0.46
False Positive Rate (FPR) 0.09 0.12 0.08 0.07
Success Index (SI) 0.63 0.54 0.59 0.39

Day Night
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These results indicate that i) the performance of PCR is not significantly better 

than the performance of MLR, ii) MARS 2 marginally outperforms MARS 1, iii) PC-

ANN marginally outperforms ANN, iv) while successfully achieving reduction in the 

dimensionality of the input vector, PC*-ANN is outperformed by ANN. Therefore, we 

have opted to focus our attention on MLR, MARS 2 and ANN models for subsequent 

analysis related to ozone.  
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5.1.2 Winter 
 

MLR, MARS 2 and ANN models were developed to forecast 1-hour ahead O3 

concentrations at Airport station during the winter season. We considered two distinct 

periods, namely day and night-time.  

The observed means of the O3 responses were 36.9 and 29.5 μg/m3 during the day 

and night-time respectively. The 75% percentile of O3 concentrations were 55 and 44 

μg/m3 for the day and night-time period, in that order. The overall performance metrics 

and the success forecasting rates at the 75% percentile concentrations obtained with the 

learning dataset are shown in Table 5.7. 

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.8.  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.70 – 0.78) with a corresponding r in the (0.84 – 0.88) range. In terms 

of these two metrics, MARS 2 performed the best.  

2. MAPE ranged (11% – 16%). In terms of this metric, MARS 2 performed the best.  

3. MBE ranged (-3.0 – -0.5), MAE ranged (7.1 – 8.3) and RMSE ranged (9.1 – 

10.7). In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.43 – 0.66), FPR ranged (0.05 – 0.07) and SI ranged (0.39 – 0.59). 

In terms of these three metrics, ANN performed the best.  
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Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.73 – 0.77) with a corresponding r in the (0.85 – 0.88) range. In terms 

of these two metrics, ANN model performed the best.  

2. MAPE ranged (14% – 17%). In terms of this metric, MARS 2 performed the best.  

3.  MBE ranged (-0.5 – 0.6), MAE ranged (7.0 – 7.9) and RMSE ranged (9.1 – 

10.1). In terms of these three metrics, ANN performed the best.  

4. TPR ranged (0.65 – 0.75), FPR ranged (0.08 – 0.09) and SI ranged (0.57 – 0.65). 

In terms of these three metrics, ANN performed the best.  
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Table 5.7 Forecasting winter O3 at Airport with MLR, MARS 2 and ANN (Training) 
 
 

 
 

Table 5.8 Forecasting winter O3 at Airport with MLR, MARS 2 and ANN (Validation) 
 

 

 

 

  

O3 Airport (Training)
Winter MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.73 0.81 0.82 0.74 0.80 0.82
Correlation Coefficient (r) 0.85 0.90 0.91 0.86 0.89 0.90
Mean Absolute Percent Error (MAPE) 13% 9% 9% 15% 12% 12%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 7.9 6.7 6.6 7.7 6.6 6.3
Root Mean Squared Error (RMSE) 10.4 8.7 8.4 9.6 8.5 8.0

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.54 0.74 0.78 0.62 0.72 0.76
False Positive Rate (FPR) 0.04 0.06 0.07 0.04 0.04 0.07
Success Index (SI) 0.49 0.68 0.71 0.58 0.68 0.69

NightDay

O3 Airport (Validation)
Winter MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.70 0.78 0.77 0.73 0.76 0.77
Correlation Coefficient (r) 0.84 0.88 0.88 0.85 0.87 0.88
Mean Absolute Percent Error (MAPE) 16% 11% 11% 17% 14% 15%
Mean Bias Error (MBE) 0.5 -0.3 -0.3 -0.6 -0.5 -0.6
Mean Absolute error (MAE) 8.3 7.1 7.2 7.9 7.3 7.0
Root Mean Squared Error (RMSE) 10.7 9.1 9.3 10.1 9.4 9.1

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.43 0.63 0.66 0.65 0.69 0.75
False Positive Rate (FPR) 0.05 0.06 0.07 0.08 0.09 0.09
Success Index (SI) 0.39 0.56 0.59 0.57 0.60 0.65

Day Night
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5.2 Case Study 2: PM2.5 Forecast at Airport Station   

 

5.2.1 Summer 

 

Different models to forecast 1-hour ahead PM2.5 concentrations at Airport station during 

the summer season were developed. We considered two distinct periods, namely day and 

night-time. The developed models were based on MLR, PCR, MARS 1, MARS 2, ANN, 

PC-ANN and PC*-ANN methods.  

The observed means of the PM2.5 responses were 10.7 and 8.2 μg/m3 during the 

day and night-time respectively. The 75% percentile of PM2.5 concentrations were 11 and 

12 μg/m3 for the day and night-time period, in that order. The overall performance 

metrics and the success forecasting rates at the 75% percentile concentrations obtained 

with the learning dataset are shown in Table 5.9 (PCR and MARS 1), Table 5.10 (MLR, 

MARS 2 and ANN) and Table 5.11 (PC-ANN and PC*-ANN).  

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.12 (PCR and MARS 1), Table 5.13  

(MLR, MARS 2 and ANN) and Table 5.14 (PC-ANN and PC*-ANN).  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.48 – 0.74) with a corresponding r in the (0.69 – 0.86) range. In terms 

of these two metrics, PC-ANN performed the best.  
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2. MAPE ranged (44% – 67%). In terms of this metrics, MARS 2 performed the 

best.  

3. MBE ranged (-3.0 – 0.5), MAE ranged (3.1 – 4.0) and RMSE ranged (4.9 – 6.7). 

In terms of these three metrics, PC-ANN performed the best, closely followed by 

MARS 2.  

4. TPR ranged (0.77 – 0.88), FPR ranged (0.06 – 0.13) and SI ranged (0.70 – 0.75). 

In terms of these three metrics, MARS 2 performed the best, closely followed by 

ANN. 

 

Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.47 – 0.57) with a corresponding r in the (0.68 – 0.75) range. In terms 

of these two metrics, ANN model performed the best, closely followed by MARS 

2.  

2. MAPE ranged (47% – 56%). In terms of this metric, ANN performed the best. 

3. MBE ranged (-0.2 – 0.1), MAE ranged (3.7 – 4.0) and RMSE ranged (5.6 – 6.5). 

In terms of these three metrics, ANN performed the best, closely followed by 

MARS 1.  

4. TPR ranged (0.73 – 0.86), FPR ranged (0.08 – 0.16) and SI ranged (0.64 – 0.70). 

In terms of these three metrics, ANN performed the best, closely followed by 

MARS 2.  
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These results indicate that i) the performance of PCR is not significantly better 

than the performance of MLR, ii) MARS 2 marginally outperforms MARS 1, iii) PC-

ANN marginally outperforms ANN, iv) while successfully achieving reduction in the 

dimensionality of the input vector, PC*-ANN is outperformed by ANN. Therefore, we 

have opted to focus our attention on MLR, MARS 2 and ANN models for subsequent 

analysis related to particulate matter.  
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Table 5.9 Forecasting summer PM2.5 at Airport with PCR and MARS 1 (Training) 
 
 

 
 

Table 5.10 Forecasting summer PM2.5 at Airport with MLR, MARS 2 and ANN  
       (Training) 

 
 

 
 

Table 5.11 Forecasting summer PM2.5 at Airport with PC-ANN and PC*-ANN (Training) 
 

PM2.5 Airport (Training)
Summer PCR MARS 1 PCR MARS 1

Overall Performance Metrics
Coefficient of Determination (R2) 0.66 0.77 0.51 0.57
Correlation Coefficient (r) 0.81 0.88 0.71 0.75
Mean Absolute Percent Error (MAPE) 60% 39% 60% 51%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 3.7 2.8 4.3 3.8
Root Mean Squared Error (RMSE) 5.0 4.1 6.1 5.8

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.90 0.91 0.85 0.76
False Positive Rate (FPR) 0.14 0.08 0.18 0.14
Success Index (SI) 0.77 0.83 0.67 0.62

Day Night

PM2.5 Airport (Training)
Summer MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.66 0.84 0.84 0.51 0.60 0.56
Correlation Coefficient (r) 0.81 0.92 0.91 0.71 0.78 0.75
Mean Absolute Percent Error (MAPE) 59% 35% 36% 59% 50% 48%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 3.7 2.4 2.5 4.2 3.8 3.9
Root Mean Squared Error (RMSE) 5.0 3.4 3.5 6.1 5.5 5.8

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.90 0.90 0.90 0.83 0.73 0.73
False Positive Rate (FPR) 0.14 0.05 0.06 0.15 0.09 0.12
Success Index (SI) 0.77 0.84 0.84 0.69 0.64 0.61

Day Night

PM2.5 Airport (Training)
Summer PC - ANN PC*-ANN PC - ANN PC*-ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.88 0.73 0.60 0.50
Correlation Coefficient (r) 0.94 0.85 0.77 0.70
Mean Absolute Percent Error (MAPE) 33% 43% 45% 49%
Mean Bias Error (MBE) 0.0 0.0 -0.2 0.0
Mean Absolute error (MAE) 2.2 3.0 3.6 4.1
Root Mean Squared Error (RMSE) 3.0 4.4 5.6 6.2

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.91 0.87 0.75 0.72
False Positive Rate (FPR) 0.05 0.06 0.12 0.16
Success Index (SI) 0.86 0.80 0.63 0.56

Day Night
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Table 5.12 Forecasting summer PM2.5 at Airport with PCR and MARS 1 (Validation) 
 
 

 
Table 5.13 Forecasting summer PM2.5 at Airport with MLR, MARS 2 and ANN  

       (Validation) 
 
 

 
 
Table 5.14 Forecasting summer PM2.5 at Airport with PC-ANN and PC*-ANN  

       (Validation) 
  

PM2.5 Airport (Validation)
Summer PCR MARS 1 PCR MARS 1

Overall Performance Metrics

Coefficient of Determination (R2) 0.48 0.48 0.54 0.55
Correlation Coefficient (r) 0.69 0.69 0.74 0.74
Mean Absolute Percent Error (MAPE) 67% 46% 56% 52%
Mean Bias Error (MBE) 0.3 0.5 0.1 -0.1
Mean Absolute error (MAE) 4.0 3.4 4.0 3.9
Root Mean Squared Error (RMSE) 6.7 6.7 5.7 5.7

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.88 0.80 0.86 0.77
False Positive Rate (FPR) 0.13 0.08 0.16 0.14
Success Index (SI) 0.75 0.72 0.70 0.63

Day Night

PM2.5 Airport (Validation)
Summer MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.48 0.63 0.55 0.54 0.54 0.57
Correlation Coefficient (r) 0.69 0.79 0.74 0.74 0.74 0.75
Mean Absolute Percent Error (MAPE) 67% 44% 45% 56% 51% 47%
Mean Bias Error (MBE) 0.3 0.3 -0.2 0.1 0.0 0.0
Mean Absolute error (MAE) 4.0 3.2 3.3 3.9 3.9 3.7
Root Mean Squared Error (RMSE) 6.7 5.7 6.6 5.7 5.8 5.6

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.88 0.83 0.81 0.82 0.75 0.73
False Positive Rate (FPR) 0.13 0.08 0.06 0.13 0.10 0.08
Success Index (SI) 0.75 0.75 0.75 0.69 0.64 0.65

Day Night

PM2.5 Airport (Validation)
Summer PC - ANN PC*-ANN PC - ANN PC*-ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.74 0.48 0.47 0.51
Correlation Coefficient (r) 0.86 0.69 0.69 0.71
Mean Absolute Percent Error (MAPE) 47% 51% 50% 50%
Mean Bias Error (MBE) -0.3 0.0 -0.2 -0.1
Mean Absolute error (MAE) 3.1 3.7 4.0 4.0
Root Mean Squared Error (RMSE) 4.9 6.7 6.5 6.0

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.83 0.77 0.76 0.74
False Positive Rate (FPR) 0.08 0.07 0.09 0.15
Success Index (SI) 0.75 0.70 0.67 0.59

Day Night
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5.2.2 Winter 

 

MLR, MARS 2 and ANN models were developed to forecast 1-hour ahead PM2.5 

concentrations at Airport station during the winter season. We considered two distinct 

scenarios, namely day and night-time.  

The observed means of the PM2.5 responses were 8.3 and 5.5 μg/m3 during the 

day and night-time respectively. The 75% percentile of PM2.5 concentrations were 8.0 

and 10.0 μg/m3 for the day and night-time period, in that order. The overall performance 

metrics and the success forecasting rates at the 75% percentile concentrations obtained 

with the learning dataset are shown in Table 5.15. 

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.16.  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.64 – 0.71) with a corresponding r in the (0.80 – 0.84) range. In terms 

of these two metrics, ANN performed the best.  

2. MAPE ranged (44% – 50%). In terms of this metric, MARS 2 performed the best.  

3. All models averaged 0.1 for MBE, MAE ranged (2.8 – 3.1) and RMSE ranged 

(3.9 – 4.4). In terms of these three metrics, ANN performed the best.  

4. TPR ranged (0.67 – 0.75), FPR ranged (0.10 – 0.14) and SI ranged (0.54 – 0.65). 

In terms of these three metrics, ANN performed the best.  
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Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.66 – 0.68) with a corresponding r in the (0.81 – 0.83) range. In terms 

of these two metrics, MARS 2 model performed the best.  

2. MAPE ranged (46% – 50%). In terms of this metric, MARS 2 performed the best.  

3.  MBE ranged (0.0 – 0.2), MAE ranged (3.0 – 3.3) and RMSE ranged (4.3 – 4.5). 

In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.75 – 0.78), FPR ranged (0.10 – 0.11) and SI ranged (0.65 – 0.68). 

In terms of these three metrics, MARS 2 performed the best.  
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Table 5.15 Forecasting winter PM2.5 at Airport with MLR, MARS 2 and ANN (Training) 

 
 

 
 

Table 5.16 Forecasting winter PM2.5 at Airport with MLR, MARS 2 and ANN 
(Validation) 

 

 

 
  

PM2.5 Airport (Training)
Winter MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.68 0.74 0.76 0.62 0.70 0.64
Correlation Coefficient (r) 0.82 0.86 0.87 0.79 0.84 0.80
Mean Absolute Percent Error (MAPE) 45% 38% 41% 53% 46% 47%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 2.9 2.6 2.5 3.1 2.8 3.0
Root Mean Squared Error (RMSE) 4.3 3.9 3.8 4.3 3.8 4.2

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.74 0.69 0.75 0.75 0.77 0.71
False Positive Rate (FPR) 0.13 0.09 0.10 0.11 0.10 0.10
Success Index (SI) 0.60 0.60 0.65 0.64 0.67 0.62

NightDay

PM2.5 Airport (Validation)
Winter MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.64 0.70 0.71 0.66 0.68 0.67
Correlation Coefficient (r) 0.80 0.83 0.84 0.81 0.83 0.82
Mean Absolute Percent Error (MAPE) 50% 44% 45% 53% 46% 47%
Mean Bias Error (MBE) 0.1 0.1 0.1 0.1 0.2 0.0
Mean Absolute error (MAE) 3.1 2.9 2.8 3.3 3.0 3.1
Root Mean Squared Error (RMSE) 4.4 4.0 3.9 4.5 4.3 4.4

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.69 0.67 0.75 0.77 0.78 0.75
False Positive Rate (FPR) 0.14 0.13 0.10 0.11 0.10 0.10
Success Index (SI) 0.55 0.54 0.65 0.66 0.68 0.65

Day Night



136 
 

5.3 Case Study 3: O3 Forecast at Maisonneuve Station  

 

5.3.1 Summer  

 

Different models to forecast 1-hour ahead O3 concentrations at Maisonneuve station 

during the summer season were developed. We considered two distinct scenarios, namely 

day and night-time. The developed models were based on MLR, MARS 2 and ANN.  

The observed means of the O3 responses were 49.5 and 31.1 μg/m3 during the day 

and night-time respectively. The 75% percentile of O3 concentrations were 65 and 44 

μg/m3 for the day and night-time period, in that order. The overall performance metrics 

and the success forecasting rates at the 75% percentile concentrations obtained with the 

learning dataset are shown in Table 5.17.  

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.18.  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.61 – 0.70) with a corresponding r in the (0.78 – 0.84) range. In terms 

of these two metrics, MARS 2 performed the best. 

2. MAPE ranged (24% – 30%). In terms of these two metrics, MARS 2 performed 

the best. 

3. MBE ranged (0.3 – 0.7), MAE ranged (10.0 – 11.6) and RMSE ranged (12.9 – 

14.8). In terms of these three metrics, MARS 2 performed the best. 
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4.  TPR ranged (0.50 – 0.62), FPR ranged (0.07 – 0.10) and SI ranged (0.41 – 0.56). 

In terms of these three metrics, MARS 2 performed the best. 

 

Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.48 – 0.65) with a corresponding r in the (0.70 – 0.80) range. In terms 

of these two metrics, ANN performed the best. 

2. MAPE ranged (36% – 42%). In terms of this metric, ANN performed the best. 

3. MBE ranged (-0.6 – -0.3), MAE ranged (9.8 – 11.8) and RMSE ranged (12.5 – 

15.1). In terms of these three metrics, MARS 2 performed the best. 

4. TPR ranged (0.47 – 0.57), FPR ranged (0.05 – 0.07) and SI ranged (0.41 – 0.50). 

In terms of these three metrics, MARS 2 performed the best.  
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Table 5.17 Forecasting summer O3 at Maisonneuve with MLR, MARS 2 and ANN  
       (Training) 

 
 

 
 
Table 5.18 Forecasting summer O3 at Maisonneuve with MLR, MARS 2 and ANN  

        (Validation) 
 

 

  

O3 Maisonneuve (Training)
Summer MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.61 0.73 0.64 0.44 0.62 0.68
Correlation Coefficient (r) 0.78 0.85 0.80 0.66 0.79 0.83
Mean Absolute Percent Error (MAPE) 30% 24% 28% 39% 32% 30%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 11.6 9.9 11.1 11.7 9.5 8.7
Root Mean Squared Error (RMSE) 15.2 12.7 14.6 15.0 12.3 11.2

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.55 0.64 0.63 0.43 0.57 0.58
False Positive Rate (FPR) 0.08 0.08 0.11 0.09 0.07 0.05
Success Index (SI) 0.47 0.56 0.52 0.35 0.50 0.53

Day Night

O3 Maisonneuve (Validation)
Summer MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.61 0.70 0.65 0.48 0.65 0.63
Correlation Coefficient (r) 0.78 0.84 0.81 70% 80% 80%
Mean Absolute Percent Error (MAPE) 29% 24% 26% 0.4 0.4 0.4
Mean Bias Error (MBE) 0.3 0.4 0.7 -0.3 -0.3 -0.6
Mean Absolute error (MAE) 11.6 10.0 11.0 11.8 9.8 10.2
Root Mean Squared Error (RMSE) 14.8 12.9 14.0 15.1 12.5 13.0

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.50 0.62 0.62 0.47 0.57 0.53
False Positive Rate (FPR) 0.09 0.07 0.10 0.07 0.07 0.05
Success Index (SI) 0.41 0.56 0.53 0.41 0.50 0.48

Day Night
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5.3.2 Winter  

 

MLR, MARS 2 and ANN models were developed to forecast 1-hour ahead O3 

concentrations at Maisonneuve station during the winter season. We considered two 

distinct scenarios, namely day and night-time.  

The observed means of the O3 responses were 17.4 and 21.1 μg/m3 during the day 

and night-time respectively. The 75% percentile of O3 concentrations were 27.0 and 31.0 

μg/m3 for the day and night-time period, in that order. The overall performance metrics 

and the success forecasting rates at the 75% percentile concentrations obtained with the 

learning dataset are shown in Table 5.19. 

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.20.  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.58 – 0.68) with a corresponding r in the (0.76 – 0.82) range. In 

terms of these two metrics, ANN performed the best.  

2. MAPE ranged (25% – 29%). In terms of this metric, MARS 2 performed the best.  

3. MBE ranged (-0.1 – 0.3), MAE ranged (4.7 – 5.6) and RMSE ranged (6.4 – 6.5). 

In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.53 – 0.67), FPR ranged (0.05 – 0.06) and SI ranged (0.47 – 0.61). 

In terms of these three metrics, MARS 2 performed the best.  
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Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.63 – 0.71) with a corresponding r in the (0.80 – 0.84) range. In terms 

of these two metrics, MARS 2 model performed the best.  

2. MAPE ranged (25% – 28%). In terms of this metric, MARS 2 performed the best.  

3. MBE ranged (-0.9 – 0.8), MAE ranged (5.4 – 6.1) and RMSE ranged (7.1 – 7.9). 

In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.61 – 0.67), FPR ranged (0.05 – 0.09) and SI ranged (0.55 – 0.60). 

In terms of these three metrics, MARS 2 performed the best.  
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Table 5.19 Forecasting winter O3 at Maisonneuve with MLR, MARS 2 and ANN  

        (Training) 
 
 

 
 
Table 5.20 Forecasting winter O3 at Maisonneuve with MLR, MARS 2 and ANN  

        (Validation) 
 

 

 

  

O3 Maisonneuve (Training)
Winter MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.67 0.80 0.83 0.65 0.72 0.75
Correlation Coefficient (r) 0.82 0.89 0.91 0.81 0.85 0.87
Mean Absolute Percent Error (MAPE) 26% 23% 22% 27% 26% 25%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 5.2 4.2 3.9 5.9 5.3 4.9
Root Mean Squared Error (RMSE) 6.8 5.3 4.9 7.4 6.7 6.3

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.68 0.77 0.78 0.58 0.68 0.69
False Positive Rate (FPR) 0.04 0.04 0.04 0.05 0.05 0.07
Success Index (SI) 0.65 0.73 0.75 0.53 0.63 0.62

NightDay

O3 Maisonneuve (Validation)
Winter MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.58 0.67 0.68 0.63 0.71 0.71
Correlation Coefficient (r) 0.76 0.82 0.82 0.80 0.84 0.84
Mean Absolute Percent Error (MAPE) 29% 25% 27% 28% 25% 26%
Mean Bias Error (MBE) 0.3 0.0 -0.1 -0.9 -0.8 -0.8
Mean Absolute error (MAE) 5.6 4.7 4.9 6.1 5.5 5.4
Root Mean Squared Error (RMSE) 7.3 6.5 6.4 7.9 7.1 7.1

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.53 0.67 0.64 0.61 0.67 0.66
False Positive Rate (FPR) 0.05 0.06 0.06 0.05 0.07 0.09
Success Index (SI) 0.47 0.61 0.58 0.55 0.60 0.57

Day Night
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5.4 Case Study 4: PM2.5 Forecast at Maisonneuve   

 

5.4.1 Summer  

 

Different models to forecast 1-hour ahead PM2.5 concentrations at Maisonneuve station 

during the summer season were developed. We considered two distinct scenarios, namely 

day and night-time. The developed models were based on MLR, MARS 2 and ANN.  

The observed means of the PM2.5 responses were 8.6 and 9.2 μg/m3 during the 

day and night-time respectively. The 75% percentile of PM2.5 concentrations were 13 and 

11 μg/m3 for the day and night-time period, in that order. The overall performance 

metrics and the success forecasting rates at the 75% percentile concentrations obtained 

with the learning dataset are shown in Table 5.21. 

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.22.  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.44 – 0.47) with a corresponding r in the (0.66 – 0.68) range. In terms 

of these two metrics, MARS 2 performed the best. 

2. MAPE ranged (48% – 58%). In terms of this metrics, MARS 2 performed the 

best.  

3. MBE ranged (-0.1 – 0.2), MAE ranged (4.0 – 4.4) and RMSE ranged (6.7 – 6.9). 

In terms of these three metrics, MARS 2 performed the best. 
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4. TPR ranged (0.69 – 0.82), FPR ranged (0.11 – 0.15) and SI ranged (0.58 – 0.67). 

In terms of these three metrics, ANN performed the best. 

 

Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.44 – 0.53) with a corresponding r in the (0.66– 0.73) range. In terms 

of these two metrics, MARS 2 model performed the best.  

2. MAPE ranged (48% – 57%). In terms of this metric, ANN performed the best. 

3. MBE ranged (-0.1 – 0.1), MAE ranged (3.6 – 3.9) and RMSE ranged (5.2 – 5.7). 

In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.71 – 0.74), FPR ranged (0.11 – 0.16) and SI ranged (0.56 – 0.62). 

In terms of these three metrics, MARS 2 performed the best.  
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Table 5.21 Forecasting summer PM2.5 at Maisonneuve with MLR, MARS 2 and ANN  

       (Training) 
 
 

 
 
Table 5.22 Forecasting summer PM2.5 at Maisonneuve with MLR, MARS 2 and ANN  

        (Validation) 
 

  

PM2.5 Maisonneuve (Training)
Summer MLR MARS ANN MLR MARS ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.61 0.72 0.67 0.41 0.56 0.51
Correlation Coefficient (r) 0.78 0.85 0.82 0.64 0.75 0.72
Mean Absolute Percent Error (MAPE) 57% 44% 46% 61% 54% 50%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 4.2 3.5 3.7 4.0 3.4 3.7
Root Mean Squared Error (RMSE) 5.8 4.9 5.3 5.9 5.1 5.4

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.83 0.76 0.74 0.75 0.75 0.72
False Positive Rate (FPR) 0.13 0.07 0.08 0.16 0.11 0.13
Success Index (SI) 0.70 0.68 0.66 0.59 0.64 0.59

Day Night

PM2.5 Maisonneuve (Validation)
Summer MLR MARS ANN MLR MARS ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.44 0.47 0.46 0.44 0.53 0.48
Correlation Coefficient (r) 0.66 0.68 0.68 0.66 0.73 0.69
Mean Absolute Percent Error (MAPE) 58% 48% 48% 57% 56% 48%
Mean Bias Error (MBE) -0.1 0.2 0.0 0.0 -0.1 0.1
Mean Absolute error (MAE) 4.4 4.0 4.0 3.9 3.6 3.8
Root Mean Squared Error (RMSE) 6.9 6.7 6.8 5.7 5.2 5.4

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.82 0.69 0.78 0.72 0.74 0.71
False Positive Rate (FPR) 0.15 0.11 0.11 0.16 0.11 0.12
Success Index (SI) 0.67 0.58 0.67 0.56 0.62 0.59

Day Night

              2 

             2               2 

              2 
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5.4.2 Winter  
 

MLR, MARS 2 and ANN models were developed to forecast 1-hour ahead PM2.5 

concentrations at Maisonneuve station during the winter season. We considered two 

distinct scenarios, namely day and night-time.  

The observed means of the PM2.5 responses were 6.9 μg/m3 in both day and night-

time periods. The 75% percentile of PM2.5 concentrations were 10.0 and 9.0 μg/m3 for the 

day and night-time period, respectively. The overall performance metrics and the success 

forecasting rates at the 75% percentile concentrations obtained with the learning dataset 

are shown in Table 5.23. 

Model suitability was assessed considering the overall performance metrics and 

the success forecasting rates at the 75% percentile concentrations obtained in the 

validation phase. These results are shown in Table 5.24.  

Closely studying day-time results, the following inferences have been made:  

 

1. R2 ranged (0.44 – 0.47) with a corresponding r in the (0.66 – 0.68) range. In terms 

of these two metrics, MARS 2 performed the best.  

2. MAPE ranged (48% – 58%). In terms of this metric, MARS 2 performed the best.  

3. MBE ranged (-0.1 – 0.2), MAE ranged (4.0 – 4.4) and RMSE ranged (6.7 – 6.9). 

In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.82 – 0.78), FPR ranged (0.11 – 0.15) and SI ranged (0.58 – 0.67). 

In terms of these three metrics, ANN performed the best.  
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Similarly, the following inferences have been made with respect to night-time 

results: 

 

1. R2 ranged (0.44 – 0.53) with a corresponding r in the (0.66 – 0.73) range. In terms 

of these two metrics, MARS 2 model performed the best.  

2. MAPE ranged (48% – 57%). In terms of this metric, MARS 2 performed the best.  

3. MBE ranged (-0.1 – 0.1), MAE ranged (3.6 – 3.9) and RMSE ranged (5.2 – 5.7). 

In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.71 – 0.74), FPR ranged (0.11 – 0.16) and SI ranged (0.56 – 0.62). 

In terms of these three metrics, MARS 2 performed the best.  

 
 
 
  



147 
 

 

 
 
Table 5.23 Forecasting winter PM2.5 at Maisonneuve with MLR, MARS 2 and ANN  

        (Training) 
 
 

 
 
Table 5.24 Forecasting winter PM2.5 at Maisonneuve with MLR, MARS 2 and ANN  

        (Validation) 
 

 
 
  

PM2.5 Maisonneuve (Training)
Winter MLR MARS ANN MLR MARS ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.52 0.65 0.59 0.42 0.60 0.62
Correlation Coefficient (r) 0.72 0.81 0.77 0.65 0.78 0.79
Mean Absolute Percent Error (MAPE) 57% 46% 47% 58% 50% 46%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 3.7 3.1 3.3 3.0 2.5 2.4
Root Mean Squared Error (RMSE) 4.8 4.1 4.4 4.1 3.4 3.3

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.69 0.71 0.60 0.50 0.63 0.68
False Positive Rate (FPR) 0.16 0.12 0.12 0.09 0.06 0.05
Success Index (SI) 0.54 0.59 0.48 0.42 0.57 0.62

NightDay

PM2.5 Maisonneuve (Validation)
Winter MLR MARS ANN MLR MARS ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.49 0.51 0.55 0.50 0.57 0.57
Correlation Coefficient (r) 0.70 0.71 0.74 0.71 0.75 0.76
Mean Absolute Percent Error (MAPE) 59% 55% 51% 53% 48% 45%
Mean Bias Error (MBE) -0.1 -0.3 -0.2 0.2 0.3 0.1
Mean Absolute error (MAE) 3.9 3.7 3.5 3.1 2.8 2.7
Root Mean Squared Error (RMSE) 5.2 5.2 4.9 4.3 3.9 3.9

Exceedance of 75%  Precentile
True Positive Rate (TPR) 0.74 0.75 0.66 0.56 0.60 0.64
False Positive Rate (FPR) 0.18 0.14 0.12 0.09 0.07 0.09
Success Index (SI) 0.56 0.61 0.54 0.48 0.53 0.55

Day Night

           2            2 

           2           2 
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5.5 Case Study 5: Daily O3 at Maisonneuve and VOC Data 

 

The objective of this case study was to model daily means of ozone at Maisonneuve 

station. In addition to the set of air quality and meteorological data used in the previous 

four case studies, the concentration values of 142 different VOC species that were 

available at six days interval were included. The original dataset with no missing values 

contained 186 rows of observations. The dataset was split into training and validation 

datasets containing 102 and 84 observations, respectively. 

The observed mean of the O3 response was 26.9 μg/m3. The 75% percentile of O3 

concentrations was 35 μg/m3. TVOC concentration measured a carbon-atom basis ranged 

(30.1 – 294.8 ppbC) with an average of 34.4.6 ppbC. TVOC measured by OH-reactivity 

weighted method ranged (9.6 – 106.6 propy-equiv ppbC) with an average of 34.4 propy-

equiv ppbC. 

Tables 5.25 and 5.26 show VOC ranked by concentration in carbon-atom basis 

(ppbC) and by concentration normalized by OH-reactivity (propy-equiv ppbC) 

respectively. In these tables, molecular weight (MW) is in g mol-1, KOH (from Atkinson 

(1990)) is in 1012 cm3 molecule-1 s-1.Toluene, isopentane, ethylene and m/p-xylene were 

found to be, in that order, the most abundant VOC species measured by ppbC. In another 

hand, m/p-xylene, toluene, propylene and (1,2,4)-trimethylbenzene were found to be the 

most reactive as measured by propy-equiv ppbC.  
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Table 5.25 VOC species at Maisonneuve ranked by ppbC (KOH from Atkinson (1990)) 
 

 
 
Table 5.26 VOC species at Maisonneuve ranked by propy-equiv ppbC (KOH from  

        Atkinson (1990)) 
 

Alkanes were found to be the most abundant hydrocarbon group but also the least 

reactive. As a group, alkanes represented approximately 47% of TVOC as ppbC and 16% 

as propy-equiv ppbC. Alkenes were found to be the least abundant group but most 

reactive. Alkenes represented approximately 15% of TVOC as ppbC and 44% as propy-

VOC species MW KOH ppbc Propy-Equiv ppbc rank Propy-Equiv rank
Toluene 92.1 5.96 11.6 2.63 1 2
Isopentane 72.2 3.94 7.2 1.08 2 10
Ethylene 28.1 8.52 6.3 2.05 3 5
m/p-Xylene 106.2 18.95 5.8 4.16 4 1
Butane 58.1 2.54 5.6 0.54 5 18
Ethane 30.1 0.268 5.2 0.05 6 1
Propane 44.1 1.15 5.0 0.22 7 1
Isobutane 58.1 2.54 4.8 0.47 8 23
Acetylene 26.0 0.9 3.5 0.12 9 1
Benzene 78.1 1.23 3.1 0.15 10 1
Pentane 72.2 3.94 3.0 0.45 11 24
2-Methylpentane 86.2 5.6 2.4 0.52 12 19
Propylene 42.1 26.3 2.2 2.21 13 3
o-Xylene 106.2 13.7 1.9 0.99 14 14
Ethylbenzene 106.2 7.1 1.9 0.50 15 20
1,2,4-Trimethylbenzene 120.2 32.5 1.7 2.15 16 4
3-Methylpentane 86.2 5.7 1.7 0.36 17 25
Hexane 86.2 5.61 1.5 0.33 18 26
1-Butene/Isobutene 56.1 31.4 1.4 1.73 19 7
3-Ethyltoluene 120.2 15 1.0 0.57 20 17

VOC species MW KOH ppbc Propy-Equiv ppbc rank Propy-Equiv rank
m/p-Xylene 106.2 18.95 5.8 4.16 4 1
Toluene 92.1 5.96 11.6 2.63 1 2
Propylene 42.1 26.3 2.2 2.21 13 3
1,2,4-Trimethylbenzene 120.2 32.5 1.7 2.15 16 4
Ethylene 28.1 8.52 6.3 2.05 3 5
Isoprene 68.1 101 0.5 1.82 30 6
1-Butene/Isobutene 56.1 31.4 1.4 1.73 19 7
2-Methyl-2-butene 70.1 61 0.5 1.22 26 8
trans-2-Butene 56.1 64 0.5 1.20 28 9
Isopentane 72.2 3.94 7.2 1.08 2 10
1,3,5-Trimethylbenzene 120.2 57.5 0.5 1.07 29 11
trans-2-Pentene 72.2 67 0.4 1.06 32 12
1,3-Butadiene 54.1 66.6 0.4 1.04 33 13
o-Xylene 106.2 13.7 1.9 0.99 14 14
cis-2-Butene 56.1 56.4 0.4 0.79 38 15
2-Methyl-1-butene 70.1 61 0.3 0.68 40 16
3-Ethyltoluene 120.2 15 1.0 0.57 20 17
Butane 58.1 2.54 5.6 0.54 5 18
2-Methylpentane 86.2 5.6 2.4 0.52 12 19
Ethylbenzene 106.2 7.1 1.9 0.50 15 20
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equiv ppbC. Aromatic hydrocarbons contributed to 33% of TVOC and 39% of propy-

equiv concentrations. Alkynes contributed to less than 4% of TVOC but did not influence 

total propy-equiv levels. 

The potential influence of OH• radical reactivity on ozone production is most 

evident for the biogenic species isoprene. Isoprene ranked 30th for ppbC and sixth for 

average propy-equiv ppbC concentration. As evidence by these rankings, isoprene has 

more impact on ozone production in Montréal than some of the most common 

anthropogenic VOC such as butane (ranked fifth as ppbC and 18th as propy-equiv), 

propane (ranked seventh as ppbC and  31st as propy-equiv) or ethane (ranked 6th as ppbC 

and 47th as propy-equiv). The Isoprene is an important biogenic VOC high reactivity with 

OH• radical (KOH = 78×1012 cm3 molecule-1 s-1) suggest that isoprene may be the most 

important naturally emitted compound in Montréal.  

A MLR model without inclusion of VOC data was first considered to model O3 

levels at Maisonneuve. The resulting model (which included PM2.5, NO, Temp, DP, and 

WS as statistically significant independent variables) yielded a R2 of 0.75 and RMSE of 

6.5 μg/m3.  

Then, VOC data was introduced in MLR by including TVOC concentrations first 

on a carbon-atom basis (i.e ppbC) and then on weighted OH-reactivity (i.e propy-equiv  

ppbC). TVOC on a carbon-atom basis was not found to be statistically significant. TVOC 

measured on weighted OH-reactivity was found to be statistically significant in the 

regression model with an associated t-ratio of -2.06. The resulting MLR model yielded an 

improved R2 of 0.76 and RMSE of 6.4 μg/m3.  
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Subsequent analysis involved MARS 2 and ANN models including TVOC 

measured as propy-equiv ppbC. The overall performance metrics and the success 

forecasting rates at the 75% percentile concentrations obtained with the learning dataset 

are shown in Table 5.27. Model suitability was assessed considering the overall 

performance metrics and the success forecasting rates at the 75% percentile 

concentrations obtained in the validation phase. These results are shown in Table 5.28.  

Closely studying the results obtained using the test dataset (which incorporated 

OH-reactivity of VOC data), the following inferences have been made:  

 

1. R2 ranged (0.63 – 0.75) with a corresponding r in the (0.79 – 0.87) range. In terms 

of these two metrics, MARS 2 performed the best.  

2. MAPE ranged (29% – 46%). In terms of this metric, MARS 2 performed the best.  

3. MBE ranged (-0.8 – 0.2), MAE ranged (5.4 – 7.3) and RMSE ranged (7.5 – 9.1). 

In terms of these three metrics, MARS 2 performed the best.  

4. TPR ranged (0.70 – 0.75), FPR ranged (0.02 – 0.03) and SI ranged (0.67 – 0.73). 

In terms of these three metrics, MARS 2 performed the best.  
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Table 5.27 Predicting O3 at Maisonneuve with MLR, MARS 2 and ANN including VOC  

       data (Training) 
 

 
 
Table 5.28 Predicting O3 at Maisonneuve with MLR, MARS 2 and ANN including VOC  

       data (Validation) 
 

Overall, the inclusion of VOC data measured on weighted OH-reactivity yielded 

improved results during both training and validation phases. There is however an implicit 

assumption stemming from the fact that i) VOC data was available only as mean daily 

values and that ii) corresponding daily averages for air pollution and meteorological data 

was used for modelling O3 at Maisonneuve station. This assumption is that VOC/NOx 

and total OH-reactivity at Maisonneuve is constant. Anthropogenic VOC flux at 

Maisonneuve is expected to be correlated to traffic flow, and biogenic VOC flux is 

expected to peak with increased temperature and solar radiation. As such, VOC and NOx 

O3 Maisonneuve (Training)
MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics
Coefficient of Determination (R2) 0.75 0.87 0.83 0.76 0.88 0.84
Correlation Coefficient (r) 0.86 0.93 0.91 0.87 0.94 0.92
Mean Absolute Percent Error (MAPE) 26% 20% 22% 25% 18% 21%
Mean Bias Error (MBE) 0.0 0.0 0.0 0.0 0.0 0.0
Mean Absolute error (MAE) 5.0 3.8 4.3 4.8 3.6 4.1
Root Mean Squared Error (RMSE) 6.5 4.7 5.3 6.4 4.5 5.2

Above 75%  Quantile
True Positive Rate (TPR) 0.58 0.62 0.65 0.58 0.73 0.69
False Positive Rate (FPR) 0.09 0.09 0.13 0.11 0.11 0.13
Success Index (SI) 0.48 0.52 0.52 0.47 0.63 0.56

Without VOC data With VOC data (as propy-equiv)

O3 Maisonneuve (Validation)
MLR MARS 2 ANN MLR MARS 2 ANN

Overall Performance Metrics

Coefficient of Determination (R2) 0.62 0.70 0.69 0.63 0.75 0.70
Correlation Coefficient (r) 0.79 0.84 0.83 0.79 0.87 0.83
Mean Absolute Percent Error (MAPE) 44% 37% 35% 46% 29% 37%
Mean Bias Error (MBE) -0.3 -0.7 -0.5 -0.7 0.2 -0.8
Mean Absolute error (MAE) 7.2 6.3 6.3 7.3 5.4 6.5
Root Mean Squared Error (RMSE) 9.2 8.2 8.4 9.1 7.5 8.3

Above 75%  Quantile
True Positive Rate (TPR) 0.70 0.75 0.70 0.75 0.75 0.70
False Positive Rate (FPR) 0.05 0.06 0.03 0.03 0.02 0.03
Success Index (SI) 0.65 0.69 0.67 0.72 0.73 0.67

Without VOC data With VOC data (as propy-equiv)
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fluxes are expected to vary depending on time of day, so are the values of the VOC/NOx 

ratio and the relative importance of VOC measured as propy-equiv ppbC in ozone 

formation. Due to data availability, we were not able to characterize diurnal patterns of 

VOC fluxes at Maisonneuve station.  

From the available data, we can infer that the area near Maisonneuve station is 

characterized by low propy-equiv ppbC levels and low average daily VOC/NOx ratios, 

which suggests that area is VOC-limited. In this region, hydroxyl radicals (OH•) are 

scavenged by NO2. NO2 scavenging of OH• slows down the oxidation process of 

hydrocarbons. The alternative pathway for NO-to-NO2 conversion which yields organic 

peroxy radical (RO2) as by-products is limited. As the OH• radical pool is exhausted, 

ozone formation is dictated primarily by NO2 photolysis.  

The fact that ozone formation process at Maisonneuve is driven by NO2 

photolysis and that levels of reactive VOC are relatively low explains why the inclusion 

of propy-equiv ppbC values during model training resulted in marginal improvement of 

the forecasting performance.   

 
 
  



154 
 

5.6 Comparison to Literature Data  
 

The performance of the models developed in this thesis are compared with results from 

similar studies found in the literature. Table 5.29 and 5.30 summarizes the performance 

of O3 and PM2.5, respectively, from other studies.  

 

 

Table 5.29 Performance of O3 forecasting methods from other studies 

 

 

Table 5.30 Performance of PM2.5 forecasting methods from other studies 

 

The performance of MLR models for O3 in this study are comparable to the 

results obtained by Agirre-Basurko et al. (2006) and Kovac-Andric et al. (2009) in terms 

of R2.  Kovac-Andric et al. (2009) obtained better results in the season of lowest mean 

O3, which correlates to our own findings. It should be noted that while Agirre et al. 

Source Year Season Period Window Site Type Target Mean R2 MAE RMSE
Agirre-Basurko et al. 2006 All All 1 Bilbao (Spain) MLR O3 43 0.771 - -
Kovac-Andic et al. 2009 Spring Day 0 Osijek (Croatia) MLR O3 78 0.680 - -
Kovac-Andic et al. 2009 Summer Day 0 Osijek (Croatia) MLR O3 46 0.780 - -
Bordignon et al. 2002 All All 1 Padova (Italy) MARS 2 O3 110 0.659 15.5 -
Bordignon et al. 2002 All All 1 Padova (Italy) ANN O3 110 0.623 15.99 -
Su 2004 All All 1 Calgary (Canada) ANN O3 63 0.870 4.00 5.00
Su 2004 All All 1 Edmonton ANN O3 72 0.890 4.00 5.00
Patel 2004 Summer Day 0 Port Arthur (USA) ANN O3 80 0.770 - -
Patel 2004 Summer Night 0 Port Arthur (USA) ANN O3 42 0.750 - -
Corani 2005 All All 1 Milan (italy) ANN O3 52 0.689 17.02 -
Agirre-Basurko et al. 2006 All All 1 Bilbao (Spain) ANN O3 43 0.835 - -
Tsai et al. 2009 All All 0 Chou Ying (Taiwan) ANN O3 - 0.846 - -
Tsai et al. 2009 All All 0 Chou Ying (Taiwan) PC-ANN O3 - 0.879 - -

Source Year Season Period Window Site Type Target Mean R2 MAE RMSE
Ordieres et al. 2005 All All 8 El Paso (United States) MLR PM2.5 24 0.398 0.02 0.27
Diaz-Robles et al. 2008 Summer All 8 Temuco (Chile) MLR PM10 48.5 0.779 20.83 28.39
Akyuz and Cabuk 2009 Winter All 0 Zonguldak (Turkey) MLR PM10 44.1 0.805 4.07 5.36
Akyuz and Cabuk 2009 Winter All 0 Zonguldak (Turkey) MLR PM2.5 28.1 0.811 3.74 5.00
He 2004 All All 0 Fort McKay (Canada) ANN PM2.5 4 0.430 - -
Patel 2004 Summer Day 0 Port Arthur (USA) ANN PM2.5 7 0.735 - -
Patel 2004 Summer Night 0 Port Arthur (USA) ANN PM2.5 15 0.470 - -
Corani 2005 All All 1 Milan (italy) ANN PM10 52 0.774 8.59 -
Ordieres et al. 2005 All All 8 El Paso (United States) ANN PM2.5 24 0.381 0.00 0.00
Diaz-Robles et al. 2008 Summer All 8 Temuco (Chile) ANN PM10 48.5 0.777 20.65 28.57
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(2006) forecasted O3 at 1 to 8-hour window, they incorporated observed NO2 values 

corresponding to the forecast window.  

Patel (2004) and Tsai et al. (2009) O3 ANN models outperformed our models in 

terms of R2. However, their result refers to performance of ANN models in the training 

phase which includes meteorological data observed at the same time when ozone was 

being predicted. Our O3 ANN models underperformed in terms of R2 compared to 

Agirre-Basurko et al. (2006). Agirre-Basurko et al. (2006) included 15 lagged 

observations of O3.  

The ANN models to forecast O3 developed in this thesis outperform the similar 

model developed by Bordignon et al. (2002) in terms of R2 and RMSE.  Our models are 

comparable to Su (2004) in terms of MAE and RMSE, but inferior in terms of R2. Su 

(2004) included additional independent variables, namely “time of day”, “mixing height” 

and “total hydrocarbons”.  

The MARS 2 model developed by Bordignon et. al (2009) outperformed the ANN 

model, which supports the findings of this thesis. Moreover, the R2 in our both studies are 

comparable. The PC-ANN model proposed by Tsai et al. (2009) outperformed the ANN 

model developed in the same study, which is aligned with our own findings.   

Generally speaking, PM2.5 forecasting models achieve lower performance when 

compared to O3 models.  This is due chaotic nature of PM2.5 time series which stems 

from the random motion of airborne particles found in the nuclei mode in addition to the 

complex formation mechanisms of and nitrate particulate matter in the size range of 0.1–

2.5 μm (the accumulation mode) in the atmosphere. For that reason, caution must be 

exercised when comparing forecasting performances of PM2.5 and PM10 models.  
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Our MLR models outperformed the model developed by Ordieres et al. (2005) to 

forecast PM2.5 with a 8 hour window with MLR which yielded an R2 of 0.398. Akyuz and 

Cabuk (2009) achieved high R2 with relatively low RMSE and MAE for MLR to predict 

PM2.5 and PM10. In that study, polycyclic aromatic hydrocarbons were included as 

independent variables and forecast window was 0. Diaz-Roblez et al. (2008) PM10 MLR 

model achieved high R2 for an 8-hour window. Our PM2.5 MLR models achieved 

comparable MAE and RMSE values compared to Diaz-Roblez et al. (2008) mean of 

response. 

Diaz-Roblez et al. (2008) PM10 ANN models performed comparably to their own 

MLR models. Ordieres et al. (2005) PM2.5 ANN model underperformed in terms of R2 

compared to their MLR models, but yielded better performance in terms of MAE and 

RMSE. In this thesis, PM2.5 ANN models outperformed MLR models in terms of all 

performance metrics and success rates. Corani (2005) included SO2 as input and achieved 

a relatively high R2 and low RMSE for PM10 ANN model. In addition, Corani (2005) 

reported SI of 0.68, 0.73 and 0.60 for exceedances above and 40, 50 and 60 μg/m3 

respectively. Patel (2004) considered different ANN architectures for summer day and 

night periods and achieved high R2, but this model includes meteorological data observed 

at the same time when PM2.5 was being predicted. In addition to all precursor species and 

meteorological inputs included in this thesis; He (2004) included total hydrocarbon, total 

reduced sulphur and SO2 but obtained a relatively low R2 for year round PM2.5 ANN 

model. While the PM2.5 ANN developed in the course of our case studies performed 

comparably regardless of season or period of day (at both Airport and Maisonneuve), our 

findings should not be generalized.  
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5.7 Summary 

 

We developed seven model types in this thesis namely: MLR, PCR, MARS 1, MARS 2, 

ANN, PC-ANN and PC*-ANN. All models were developed with the learning datasets 

and their performance considered with the testing dataset. 

We assessed the performance of MLR models, and used their results as baseline.  

Then, we conducted principal component analysis. The calculated principal components 

were used in regression (PCR) for the both O3 and PM2.5 at Airport station. We did not 

see benefits in terms of improved performance using PC, but saw increase in the 

statistical significance of the independent variables as measured by the t-ratio. After, we 

introduced the MARS method. We considered first and second order interaction and thus 

developed MARS 1 and MARS 2 models respectively. We applied both MARS models 

to prediction of O3 and PM2.5 at Airport station during summer season (day and night 

periods). MARS 1 model yielded less satisfactory results than MARS 2, and was ruled 

out from subsequent analysis. After, we applied the trial and error methodology to train 

ANN models. The results of ANN models were comparable of these of MARS 2 models. 

Finally we considered two hybrid approaches, which are the PC-ANN and PC*-ANN 

models. In PC-ANN, all principal components were used as input into ANN, while only 

the principal components with eigenvalues greater than unity were employed in PC*-

ANN. Our rationale for PC*-ANN was to reduce the dimensionality of the dataset while 

keeping knowledge of most of the variability in the data. PC-ANN outperformed PC*-

ANN and only outperformed ANN marginally. Given these results, MLR, MARS 2 and 

ANN models were retained for further analysis. 
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For ozone, MLR models yielded better results in winter for both stations. MLR 

performance at Airport was superior compared to Maisonneuve in day and night periods. 

For PM2.5, MLR models yielded comparable results at Airport and Maisonneuve, 

regardless of season or period considered.  

ANN models outperformed MLR models for O3 and PM2.5 forecasting at both 

stations. For ozone, ANN models performed comparably at both stations, but for PM2.5 

performance was best at Airport.  

MARS 2 models outperformed ANN models. For O3, MARS 2 yielded 

comparable results in both station. For PM2.5, MARS 2 models yielded consistently better 

results at Airport.   

Overall, the MARS 2 and ANN models demonstrated better forecasting potential 

then MLR. This is attributed to the more flexible and data driven learning algorithms 

employed by MARS and ANN. Also, MARS and ANN have more flexibility in terms of 

internal structure to best fit the data. This flexibility, combined with data-driven learning 

algorithms, allow both MARS and ANN to account for nonlinearities in the dataset.  

MARS 2 outperformed ANN. The better performance of MARS 2 over ANN is 

attributed to inclusion of second order interactions of covariates. Second order 

interactions in MARS 2 models allow basis functions to be input into other basis 

functions. MARS 2 was empowered the uncovering of subregions in the time series 

where precursors of O3 and PM2.5 have recursive in addition to nonlinear relationships.  

Case Study 5 was concerned with characterizing VOC data at Maisonneuve 

station and with modelling of daily averages of ozone. VOC concentration levels were 

considered as measure by ppbC and propy-equiv ppbC. For ozone modeling, we first 



159 
 

considered a MLR without the inclusion of VOC data. We observed a marginal 

improvement of the model’s performance (higher R2 and SI, with lower RMSE) with the 

inclusion of VOC data as measured by propy-equiv ppbC. In addition, we considered a 

MARS 2 and ANN models which included VOC data as propy-equiv ppbC values and 

saw that the best model was MARS 2.  

The detailed comparisons between performance of models developed in this thesis 

and literature data prove that statistical models based on multiple linear regression, 

multivariate adaptive splines and artificial neural networks can perform accurately to 

forecast 1-hour O3 and PM2.5 in Montréal without the inclusion of lagged variables or 

dummy variables as well as daily O3 at Maisonneuve with the inclusion of VOC data 

measured as propy-equiv ppbC. It can therefore be concluded that the parameters in each 

of the models have been correctly estimated to support air pollution forecasting in 

Montréal. 
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Chapter 6 

Conclusion  

 

 

 

6.1 Conclusions 

 

The objectives of this study were to examine air pollution and to evaluate the 

suitability of different models based on statistical methods for short-term prediction 

of O3 and PM2.5 at two different locations within Montréal, namely: Airport Station 

(45°28′N, 73°44′W) and the Maisonneuve Station (45°30′N, 73°34′W). We collected 

relevant air pollution and meteorological data from January 2004 to December 2007.  

To achieve these objectives, the collected data was characterized and 

underlying formation mechanisms of O3 and PM2.5 were identified; models based on 

Multiple Linear Regression (MLR), Multivariate Adaptive Regression Splines 

(MARS) and Artificial Neural Network (ANN) were developed and assessed in 

terms of predictive performance through five different case studies.  

The raw data was analysed using conventional descriptive statistics. The dataset 

was randomly split into a training and validation. Model performance was assessed 

independently for winter/summer seasons as well as day/night periods. For forecasting, 

four different case studies were presented and 64 models were built: 16 were based on 
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MLR, 16 on MARS 2, 16 on ANN, 4 on PCR, 4 on MARS 1, 4 on PC-ANN and 4 on 

PC*-ANN. In total, we conducted 280 forecasting experiments. For modeling, one case 

study was presented and four models were built: two were based on MLR, one MARS 2, 

one on ANN. In total, we conducted 284 experiments. Statistical analysis and 

modelling was carried out using the commercially available statistical software “Salford 

Predictive Miner” from Salford Systems (San Diego, CA, USA) and “JMP Version 5.1.2” 

from SAS Institute Inc. (Cary, NC, USA) 

Stepwise regression technique was used to build MLR models. The different 

MARS models were built using an optimum number of basis functions so that the 

generalized cross validation (GCV) criterion was minimised. Different network 

configurations for ANN were considered and the retained model was the one that 

presented the best goodness of fit and lowest error values. The statistical significance 

of MLR, PCR, MARS 1 and MARS 2 models was analysed. Performance of each model 

was assessed by means of performance metrics and success rates at the 75% percentile 

concentrations.   

Performance metrics included the coefficient of determination (R2), correlation 

coefficient (r), mean bias error (MBE), mean absolute error (MAE), mean absolute 

percent error (MAPE) and square root of the mean square error (RMSE). The optimal 

model for each trial was selected when R2 and r approached unit value and MBE, MAE, 

MAPE and RMSE minimized. Exceedance indicators included true positive rate (TPR), 

false positive rate (FPR) and success index. The optimal model was the one that showed 

evidence of high TPR and low FPR, for a combined highest SI.  
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The forecasting methods discussed in this thesis gave reasonably good predictions 

in terms of the key metrics of error and exceedance levels. The values of the key 

performance indicators were comparable to these found in the literature. MARS 2 models 

performed the best, in terms of accuracy and parsimony, for forecasting ozone and 

fine particulate matter in Montréal in both winter/summer seasons as well as 

night/day periods.    

TVOC measured by OH-reactivity weighted method ranged (9.6 – 106.6 propy-

equiv ppbC) with an average of 34.4 propy-equiv ppbC. The most reactive VOC species 

as measured by propy-equiv ppbC were found to be m/p-xylene, toluene, propylene and 

(1,2,4)-trimethylbenzene. The modeling methods discussed in this thesis also gave 

reasonably good results in terms of the key metrics of error and exceedance levels. 

TVOC measured as propy-equiv ppbC was found to be statistically significant for 

inclusion in statistical modeling. MARS 2 model for modeling O3 at Maisonneuve 

yielded the best performance in terms of accuracy and parsimony. 

This study is the first comparative assessment of different statistical models 

for short-term prediction of ground level ozone and particulate matter in Montréal 

and the first to investigate the ozone forming potential of different volatile organic 

compound species in Montréal.  

This work contributed to research by  

 

1. Statistical analysis of air pollution and meteorological data putting in evidence  

seasonal and diurnal patterns in Montréal; 

2. Comparison of air pollution levels in different areas of the city;  
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3. Development of different prediction models based on statistical methods for 

forecasting of ozone and fine particulate matter;  

4. Determination of the ozone-forming potential of different VOC species; and  

5. Determination of which statistical method best supports short-term forecast of O3 

and PM2.5 locally in Montréal given the area’s specific geography and site 

conditions.  

 

The results of this study can be of interest as a reference and benchmark for future 

research.  

 

6.2 Recommendations for Future Work 
 
 
 
Further research is warranted to increase the collective knowledge of the applicability of 

statistical methods for forecasting ozone and particulate matter in Montréal. The 

following are eight recommendations for future study:  

 

1. Include hourly-average of H2SO4, HNO3, NH3, SO2 and VOC (measured as 

propy-equiv ppbC) as independent variables; 

2. Investigate forecast windows up to 8-hours ahead; 

3. Extend the study area to Montréal East, to South Shore (Longueil, Brossard) and 

North Shore (Laval) as these become increasingly more populated areas; 

4. Investigate the effect on forecasting performance of ANN models by varying 

number of hidden layers, hidden nodes and corresponding activation functions 
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(e.g. step, piece-wise, bipolar sigmoid, hyperbolic tangent, radial basis or conic 

section); 

5. Investigate the effect on forecasting performance of MARS models by allowing 

higher order interaction of basis function; 

6. Quantify uncertainty in both target and prediction variables by using a fuzzy-set 

approach; 

7. Perform sensitivity analysis of target variables to prediction variables; 

8. Investigate performance of models based on other statistical methods (e.g. 

Quantile Regression, Classification and Regression Trees, and Fuzzy Inference 

Systems). 
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Appendix A Derivation of the Gradient Descents Rule Using the 

Sigmoid Activation Function 
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Derive: 
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i

ii w
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Step 1  Write: 

   ( ) ∑
=









∂

∂
−=∆

P

p i

p
i w

E
tw

1
η  

 
Step 2  Apply chain rule:  
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Step 3  Obtain: 
 

( )

( ) ( )

( )pp

pp

pp
pp

p

yy

yy

yy
yy

E

−−=

−×−××=

−
∂
∂

=
∂

∂

ˆ

1ˆ2
2
1

ˆ
2
1 2

 

 
Step 4  Obtain:   
 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 
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Step 5  Rewrite: 
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Step 6  Conclude: 
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(A.9) 

(A.10) 
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Appendix B  Numerical Examples 
 

B.1  A Numerical Example for Principal Component Analysis 
 

 
 
Consider Matrix X from the data in Table B.1 
 
 

Pattern x1,p x2,p x3,p 
1 7 4 3 
2 4 1 8 
3 6 3 5 
4 8 6 1 
5 8 5 7 
6 7 2 9 
7 5 3 3 
8 9 5 8 
9 7 4 5 
10 8 2 2 

 
Table B.1 Data for PCA numerical example 

 
 
Step 1  Calculate the means of each column vector xi,p of matrix X 
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Step 2  Calculate the standard deviation σ of each column vector of matrix X 
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Step 3  Normalize observation data by subtracting from each element the mean 

and by dividing the result by the standard deviation of its respective 
column vector. Thus creating the normalized autoscaled matrix Z 
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(A.14) 

(A.15) 
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=z  ( ) 10.1

81.2
1.52

10,3 −=
−

=z  

 
 
 

Pattern z1,p z2,p z3,p 
1 0.07 0.32 -0.75 
2 -1.90 -1.58 1.03 
3 -0.59 -0.32 -0.04 
4 0.72 1.58 -1.46 
5 0.72 0.95 0.68 
6 0.07 -0.95 1.39 
7 -1.25 -0.32 -0.75 
8 1.38 0.95 1.03 
9 0.07 0.32 -0.04 
10 0.72 -0.95 -1.10 

 
Table B.2 Data for matrix Z in PCA numerical example 

 
 
Step 4  Calculate the covariance s between the jth and kth columns of each column 

vector of the normalized autoscaled matrix Z. Note that sj,k  = sk,j. 
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For j = 1 
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For j = 3 
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Recognise that the covariance s  between the jth and kth column of the normalized 
autoscaled matrix Z s equal to the correlation r . Note that rj,k  = rk,j. 
 
Build the correlation (or covariance) matrix S 
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 z1,p z2,p z3,p 

z1,p 1.00 0.67 -0.10 
z2,p 0.67 1.00 -0.29 
z3,p -0.10 -0.29 1.00 

 
Table B.3 Data for matrix S in PCA numerical example 

 
Step 5 Find the 3 different eigenvalues λi ( i.e. scalars  λ1, λ2 and λ3) and the 3 

different respective eigenvectors vi ( i.e vectors v1 , v2 and  v3 ) such that  
 

( S - λi I ) vi = 0 
 
Expand: 

 
( S - λi I ) vi = 0 
S vi - λi vi = 0 
S vi - λi I vi = 0 

 
Recall: 
 
For all vi which are non-zero, the characteristic equation of S (shown below) is satisfied.  
 

det ( S - λi I ) = 0 for all i = 1 to 3 
 
In this numerical example, the characteristic equation is a 3rd order polynomial in λ 
yielding 3 roots.  These roots are the 3 distinct eigenvalues of S; and for each of these 
eigenvalue there is an associated eigenvector. 
 
  

(A.17) 

(A.18) 

(A.19) 



187 
 

Expand det ( S - λ I ): 
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The roots of the characteristic equation ( i.e. λ1, λ2 and λ3) are the 3 different eigenvalues 
λi   
 
 
 

 
 

Figure B.1 Roots of the characteristic equation 
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Find the local maximum and local minimum 
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Solve for the roots by False Position Method 
 
Consider: 
 

( ) ( )
( ) ( )ul
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ur xfxf

xxxf
xx

−
−

−=  

 
 
The value of xr computed with equation replaces whichever of the two initial guesses, xl 
or xu, yields a function value with the same sign as f(xr). In this way, the values of xl and 
xu always bracket the true root. The process is repeated until the root is estimated 
adequately. The approximate percent error εa is be calculated as in 
 

%0.1%100 ≥×
−

= old
r

old
r

new
r

a x
xx

ε  

 
 
For the left-hand root ( λ1 ), take 
 
 

xl  = λmax - 0.5  
= 0.58 - 0.50  
= 0.08 
 

and xu  = λmax  
= 0.58 

 

(A.20) 

(A.21) 
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Initialisation 
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Iteration 1 
 

Reconsider  
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Iteration 2 
 

Reconsider  
 
xl  = 0.08  

 
xu  = xr  

= 0.37 
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Left-hand root ( λ1 ) 
 
 

Iteration xl xr xu f ( xl ) f ( xr ) f ( xu ) εa 
0 0.08 0.4472 0.58 -0.33 0.091 0.11 - 
1 0.08 0.3670 0.45 -0.33 0.049 0.09 21.87 
2 0.08 0.3290 0.37 -0.33 0.021 0.05 11.53 
3 0.08 0.3136 0.33 -0.33 0.010 0.02 4.93 
4 0.08 0.3076 0.31 -0.33 0.003 0.01 1.92 
5 0.08 0.3042 0.31 -0.33 0.000 0.01 0.72 

 

Table B.4 False Position Method iterations for λ1 in PCA numerical example 
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For the left-hand root ( λ2 ), take 
 

xl  = λmax  
= 0.58  
 

xu  = λmin 
= 1.42 

 
Middle root ( λ2 ) 
 
 

Iteration xl xr xu f ( xl ) f ( xr ) f ( xu ) εa 
0 0.58 0.8917 1.42 0.11 0.018 -0.19 - 
1 0.89 0.9379 1.42 0.02 -0.06 -0.19 4.93 
2 0.89 0.9269 0.94 0.02 0.001 -0.01 1.19 
3 0.93 0.9271 0.94 0.00 0.000 -0.01 0.02 

 

Table B.5 False Position Method iterations for λ2 in PCA numerical example 

 
For the left-hand root ( λ3 ), take 
 

xl  = λmin  
= 1.42  
 

xu  = λmax + 0.5 
= 1.42 + 0.50  
= 1.92 

 
 
Right-hand root ( λ3 ) 
 
 

Iteration xl Xr xu fxl fxr fxu εa 
0 1.42 1.6408 1.92 -0.19 -0.122 0.25 - 
1 1.64 1.7335 1.92 -0.12 -0.0407 0.25 5.348 
2 1.73 1.7601 1.92 -0.04 -0.011 0.25 1.510 
3 1.76 1.7688 1.92 -0.01 0.000 0.25 0.375 

 

Table B.6 False Position Method iterations for λ3 in PCA numerical example 

 
Therefore scalars ( λ1, λ2 , λ3 ) = ( 0.3042, 0.9271, 1.7688) 
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Now, recall that ( S - λi I ) vi = 0 for all i = 1 to 3; can be solved by Cramer’s rule or by 
developing the system of three equations and three unknows. 
 
 
Solution of first column vector v1  
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Solution of second column vector v2  
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Solution of third column vector v3  
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92.0
10.0
38.0

34.0
69.0
64.0

V  

Conclude 

The eigenvalues ( λ1, λ2 , λ3 ) = ( 0.3042, 0.9271, 1.7688 ) 

Eigenvector V = < v1  v2   v3 > 
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Step 6  Get the factor score matrix F = Z V*
 , where V* = [ v1 , v2  ] as the third  

principal component has been disregarded. 

 

Pattern F1,p F2,p 
1 0.51 -0.63 
2 -2.66 0.06 
3 -0.58 -0.29 
4 2.05 -0.91 
5 0.88 0.99 
6 -1.08 1.21 
7 -0.76 -1.20 
8 1.18 1.57 
9 0.27 0.02 
10 0.19 -0.83 

 
Table B.7 Data for matrix F in PCA numerical example 

 
 
Recognise that in this step, we have achieved data compression by transforming matrix Z 
[ 10 x 3 ] into matrix F [ 10 x 2 ]. 
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B.2  A Numerical Example for Artificial Neural Network using  

the Gradient Descent Rule and Sigmoid Activation Function  
 
 
 
Consider  
 
 
 

Pattern x1,p x2,p x3,p ŷp 
1 0.93 0.79 0.66 0.62 
2 0.83 0.80 0.63 0.54 
3 0.96 0.12 0.98 1.20 
4 0.71 0.84 0.03 0.03 
5 0.98 0.14 0.47 0.84 
6 0.59 0.98 0.72 0.37 
7 0.43 0.92 0.61 0.22 
8 0.03 0.90 0.48 -0.10 
9 0.78 0.43 0.79 0.80 
10 0.81 0.46 0.42 0.55 

 

Table B.8 Data for matrix X in ANN numerical example 

 
 
Initialisation 
 
 

Set (randomly): 
  
  w1 = 0.80 

w2 = 0.40 
w3 = 1.00 

 
* Iteration 1 
 
 Calculate the summed weighted inputs Np for each pattern. 
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Calculate the networks output yp for each pattern 
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1
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Calculate the energy level E each output p 
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(A.23) 

(A.24) 

(A.22) 
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Pattern ŷp Np Yp Ep 

1 0.62 1.72 0.85 0.03 
2 0.54 1.61 0.83 0.04 
3 1.20 1.80 0.86 0.06 
4 0.03 0.94 0.72 0.24 
5 0.84 1.31 0.79 0.00 
6 0.37 1.58 0.83 0.11 
7 0.22 1.32 0.79 0.16 
8 -0.10 0.86 0.70 0.32 
9 0.80 1.58 0.83 0.00 
10 0.55 1.25 0.78 0.03 

 
Table B.9 Internal energies at first iteration in ANN numerical example 

 
 

Calculate the network’s total energy ET 

98.0
03.0...04.003.0

1

=
+++=

= ∑
=

P
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pT EE

 

Compute the weight correction coefficients δp. 
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δ
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Compute the summed product of the weight correction coefficient δp and xi. 

  
  With respect to first variable x1,p  

 

( )
( ) ( ) ( ) 23.081.004.0...83.004.093.003.0
1
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=
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p
pp xδ

 

(A.25) 

(A.26) 
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With respect to second variable x2,p 
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With respect to second variable x3,p 
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Find the weight differential 
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Correct the weights  
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Reset : 
  
  w1 = 0.75 

w2 = 0.30 
w3 = 0.96 
 

 
Summary 
 

Iteration w1 w2 w3 ET 
0 0.80 0.40 1.00 0.98 
1 0.75 0.30 0.96 0.91 
2 0.71 0.20 0.92 0.85 
3 0.67 0.10 0.88 0.78 
4 0.63 0.01 0.84 0.72 
5 0.59 -0.09 0.80 0.66 
6 0.56 -0.18 0.77 0.61 
7 0.53 -0.27 0.75 0.56 
8 0.51 -0.36 0.72 0.53 
9 0.49 -0.43 0.70 0.50 
10 0.48 -0.51 0.69 0.47 

   
Table B.10 Weight correction up to 10 iterations in ANN numerical example 
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Appendix C Completeness of the Data  
 
 

 

Table C.1 Completeness of the data for air pollution readings at Airport station 

 

Month O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
Jan-04 0% 100% 100% 100% 100%
Feb-04 0% 99% 100% 100% 100%
Mar-04 0% 99% 36% 100% 97%
Apr-04 0% 99% 100% 100% 100%
May-04 0% 85% 85% 85% 85%
Jun-04 46% 0% 48% 46% 48%
Jul-04 99% 36% 99% 99% 99%
Aug-04 94% 95% 99% 99% 99%
Sep-04 99% 95% 99% 99% 99%
Oct-04 100% 100% 100% 100% 96%
Nov-04 98% 100% 98% 98% 98%
Dec-04 100% 95% 100% 100% 100%
Jan-05 100% 100% 100% 100% 100%
Feb-05 100% 94% 100% 100% 100%
Mar-05 100% 95% 100% 100% 100%
Apr-05 100% 98% 99% 96% 100%
May-05 99% 99% 99% 99% 96%
Jun-05 100% 85% 100% 100% 100%
Jul-05 100% 89% 100% 100% 100%
Aug-05 100% 97% 100% 100% 100%
Sep-05 100% 100% 100% 100% 100%
Oct-05 100% 98% 100% 100% 100%
Nov-05 99% 95% 99% 99% 99%
Dec-05 100% 100% 100% 100% 100%
Jan-06 100% 98% 100% 100% 100%
Feb-06 100% 99% 100% 100% 98%
Mar-06 100% 98% 100% 100% 95%
Apr-06 100% 100% 100% 100% 100%
May-06 100% 98% 100% 100% 100%
Jun-06 100% 97% 100% 100% 100%
Jul-06 99% 99% 99% 99% 99%
Aug-06 100% 99% 100% 100% 99%
Sep-06 99% 98% 99% 99% 99%
Oct-06 100% 100% 100% 100% 100%
Nov-06 99% 96% 98% 98% 98%
Dec-06 99% 99% 99% 99% 97%
Jan-07 100% 99% 100% 100% 100%
Feb-07 100% 99% 94% 94% 100%
Mar-07 100% 100% 100% 100% 100%
Apr-07 100% 100% 100% 100% 100%
May-07 99% 99% 99% 99% 98%
Jun-07 99% 97% 99% 99% 100%
Jul-07 99% 96% 99% 99% 99%
Aug-07 100% 96% 100% 100% 100%
Sep-07 100% 98% 100% 100% 100%
Oct-07 99% 95% 100% 100% 100%
Nov-07 100% 92% 100% 100% 100%
Dec-07 99% 99% 99% 99% 94%
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Table C.2 Completeness of the data for air pollution readings at Maisonneuve station 

 

 

  

Month SR Temp DP Press Precip WS WD
Jan-04 100% 100% 100% 100% 100% 100% 100%
Feb-04 100% 100% 100% 100% 100% 100% 100%
Mar-04 100% 100% 100% 100% 99% 100% 100%
Apr-04 100% 99% 99% 100% 99% 99% 99%
May-04 100% 100% 99% 99% 99% 100% 100%
Jun-04 100% 100% 99% 100% 100% 100% 100%
Jul-04 100% 100% 91% 91% 91% 100% 100%
Aug-04 76% 99% 99% 100% 99% 99% 99%
Sep-04 100% 100% 99% 98% 98% 100% 100%
Oct-04 99% 100% 95% 100% 100% 100% 100%
Nov-04 98% 93% 93% 93% 93% 93% 93%
Dec-04 100% 100% 100% 100% 100% 100% 100%
Jan-05 100% 100% 100% 99% 99% 100% 100%
Feb-05 100% 99% 99% 100% 100% 99% 99%
Mar-05 100% 94% 94% 93% 93% 94% 94%
Apr-05 100% 92% 92% 68% 68% 92% 92%
May-05 100% 100% 100% 100% 100% 100% 100%
Jun-05 100% 100% 99% 99% 99% 100% 100%
Jul-05 100% 100% 100% 100% 99% 100% 100%
Aug-05 100% 100% 97% 100% 100% 100% 100%
Sep-05 99% 100% 100% 99% 99% 100% 100%
Oct-05 100% 100% 97% 100% 99% 100% 100%
Nov-05 100% 73% 70% 73% 73% 73% 73%
Dec-05 100% 100% 100% 100% 100% 100% 100%
Jan-06 100% 100% 100% 96% 95% 100% 100%
Feb-06 100% 100% 96% 96% 96% 100% 100%
Mar-06 100% 100% 100% 100% 100% 100% 100%
Apr-06 100% 100% 100% 100% 100% 100% 100%
May-06 100% 100% 100% 99% 100% 100% 100%
Jun-06 100% 100% 100% 100% 100% 100% 100%
Jul-06 100% 100% 100% 100% 100% 100% 100%
Aug-06 97% 100% 100% 100% 100% 100% 100%
Sep-06 67% 100% 100% 100% 100% 100% 100%
Oct-06 0% 100% 100% 97% 97% 100% 100%
Nov-06 48% 100% 100% 100% 100% 100% 0%
Dec-06 100% 100% 100% 100% 100% 100% 100%
Jan-07 99% 100% 100% 100% 100% 100% 100%
Feb-07 55% 100% 100% 100% 100% 100% 100%
Mar-07 0% 100% 100% 100% 100% 100% 100%
Apr-07 0% 100% 100% 97% 97% 100% 100%
May-07 0% 100% 100% 97% 97% 100% 100%
Jun-07 100% 100% 100% 100% 100% 100% 100%
Jul-07 99% 100% 97% 83% 83% 100% 100%
Aug-07 100% 100% 78% 100% 100% 100% 100%
Sep-07 100% 100% 100% 100% 100% 100% 100%
Oct-07 30% 100% 99% 99% 98% 100% 100%
Nov-07 0% 100% 99% 100% 100% 100% 100%
Dec-07 0% 100% 98% 100% 92% 100% 100%
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Table C.3 Completeness of the data for meteorological readings at Airport station 

 
  

Month SR Temp DP Press Precip WS WD
Jan-04 100% 100% 100% 100% 100% 100% 100%
Feb-04 100% 100% 100% 100% 100% 100% 100%
Mar-04 100% 100% 100% 100% 99% 100% 100%
Apr-04 100% 99% 99% 100% 99% 99% 99%
May-04 100% 100% 99% 99% 99% 100% 100%
Jun-04 100% 100% 99% 100% 100% 100% 100%
Jul-04 100% 100% 91% 91% 91% 100% 100%
Aug-04 76% 99% 99% 100% 99% 99% 99%
Sep-04 100% 100% 99% 98% 98% 100% 100%
Oct-04 99% 100% 95% 100% 100% 100% 100%
Nov-04 98% 93% 93% 93% 93% 93% 93%
Dec-04 100% 100% 100% 100% 100% 100% 100%
Jan-05 100% 100% 100% 99% 99% 100% 100%
Feb-05 100% 99% 99% 100% 100% 99% 99%
Mar-05 100% 94% 94% 93% 93% 94% 94%
Apr-05 100% 92% 92% 68% 68% 92% 92%
May-05 100% 100% 100% 100% 100% 100% 100%
Jun-05 100% 100% 99% 99% 99% 100% 100%
Jul-05 100% 100% 100% 100% 99% 100% 100%
Aug-05 100% 100% 97% 100% 100% 100% 100%
Sep-05 99% 100% 100% 99% 99% 100% 100%
Oct-05 100% 100% 97% 100% 99% 100% 100%
Nov-05 100% 73% 70% 73% 73% 73% 73%
Dec-05 100% 100% 100% 100% 100% 100% 100%
Jan-06 100% 100% 100% 96% 95% 100% 100%
Feb-06 100% 100% 96% 96% 96% 100% 100%
Mar-06 100% 100% 100% 100% 100% 100% 100%
Apr-06 100% 100% 100% 100% 100% 100% 100%
May-06 100% 100% 100% 99% 100% 100% 100%
Jun-06 100% 100% 100% 100% 100% 100% 100%
Jul-06 100% 100% 100% 100% 100% 100% 100%
Aug-06 97% 100% 100% 100% 100% 100% 100%
Sep-06 67% 100% 100% 100% 100% 100% 100%
Oct-06 0% 100% 100% 97% 97% 100% 100%
Nov-06 48% 100% 100% 100% 100% 100% 0%
Dec-06 100% 100% 100% 100% 100% 100% 100%
Jan-07 99% 100% 100% 100% 100% 100% 100%
Feb-07 55% 100% 100% 100% 100% 100% 100%
Mar-07 0% 100% 100% 100% 100% 100% 100%
Apr-07 0% 100% 100% 97% 97% 100% 100%
May-07 0% 100% 100% 97% 97% 100% 100%
Jun-07 100% 100% 100% 100% 100% 100% 100%
Jul-07 99% 100% 97% 83% 83% 100% 100%
Aug-07 100% 100% 78% 100% 100% 100% 100%
Sep-07 100% 100% 100% 100% 100% 100% 100%
Oct-07 30% 100% 99% 99% 98% 100% 100%
Nov-07 0% 100% 99% 100% 100% 100% 100%
Dec-07 0% 100% 98% 100% 92% 100% 100%
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APPENDIX D: Monthly Averages (2004 – 2007 Time Series) 
 
 
D.1 Air Quality Data at Airport 
 
 

 
 

Table D.1 Monthly averages (2004 – 2007) of air quality data at Airport  

  

Month O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
Jan-04 5.8 7.3 28.2 335.2
Feb-04 11.0 22.5 50.0 424.5
Mar-04 9.0 28.2 41.3 421.5
Apr-04 5.6 2.9 27.5 297.3
May-04 7.6 5.1 24.9 254.9
Jun-04 45.4 2.1 19.1 173.2
Jul-04 41.7 10.5 3.6 21.1 282.3
Aug-04 36.3 10.1 4.5 18.8 308.0
Sep-04 30.8 7.6 9.6 21.8 220.5
Oct-04 28.5 7.2 18.3 28.7 227.0
Nov-04 23.4 7.0 21.9 32.9 238.5
Dec-04 32.5 8.3 17.7 35.1 260.5
Jan-05 33.2 8.4 13.1 38.5 284.7
Feb-05 31.2 18.9 30.7 54.9 466.7
Mar-05 57.9 6.7 6.6 30.9 210.3
Apr-05 58.6 5.5 5.0 26.5 212.9
May-05 54.7 5.1 4.8 21.0 200.2
Jun-05 61.3 17.1 4.7 22.0 377.8
Jul-05 52.1 9.4 3.1 17.5 320.7
Aug-05 51.6 10.3 3.7 17.4 378.7
Sep-05 45.0 9.4 3.4 16.9 334.8
Oct-05 29.1 7.8 6.8 22.0 325.6
Nov-05 29.4 6.9 11.8 25.7 350.8
Dec-05 30.4 7.1 13.4 32.3 378.7
Jan-06 27.2 9.8 19.0 39.2 473.4
Feb-06 44.9 6.6 8.3 28.2 385.5
Mar-06 55.7 5.9 5.0 24.0 357.7
Apr-06 57.6 4.2 3.2 21.0 366.4
May-06 52.7 6.8 3.8 20.7 334.0
Jun-06 51.4 7.9 2.7 17.9 305.4
Jul-06 60.6 10.5 1.4 14.2 382.4
Aug-06 43.2 6.8 3.6 15.8 346.7
Sep-06 32.4 6.1 5.0 16.2 339.0
Oct-06 29.4 4.3 8.6 19.9 296.2
Nov-06 21.0 8.0 16.9 25.0 404.3
Dec-06 31.1 5.4 7.1 24.5 326.0
Jan-07 37.9 6.1 9.2 26.0 350.4
Feb-07 46.6 6.2 7.8 26.4 326.7
Mar-07 49.3 5.9 9.0 27.9 335.4
Apr-07 53.4 4.7 3.6 23.0 273.7
May-07 64.9 7.5 2.6 18.9 324.9
Jun-07 60.4 9.0 2.2 15.5 349.0
Jul-07 52.6 9.4 2.5 15.2 354.0
Aug-07 47.8 7.6 5.5 17.3 346.5
Sep-07 46.3 7.2 4.5 16.5 322.3
Oct-07 33.9 6.2 12.6 23.3 360.8
Nov-07 36.0 5.3 10.2 24.1 315.3
Dec-07 35.2 6.0 11.5 32.7 326.4
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D.2 Air Quality Data at Maisonneuve 
 
 

 
 

Table D.2 Monthly averages (2004 – 2007) of air quality data at Maisonneuve  

 
 

  

Month O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
Jan-04 26.1 5.9 41.5 40.8 467.3
Feb-04 21.3 10.3 51.5 50.8 560.7
Mar-04 26.7 8.7 42.3 62.9 503.7
Apr-04 32.5 6.5 33.7 55.9 441.5
May-04 29.2 8.1 30.8 52.3 413.7
Jun-04 36.4 8.9 23.2 41.8 402.4
Jul-04 31.7 11.2 19.2 39.7 350.5
Aug-04 25.1 11.3 25.0 40.0 394.8
Sep-04 19.1 10.0 34.1 41.4 445.1
Oct-04 13.9 7.9 42.3 44.3 456.5
Nov-04 11.9 7.5 49.9 45.0 495.1
Dec-04 18.6 9.2 41.9 47.4 502.4
Jan-05 20.3 8.7 41.7 53.1 511.4
Feb-05 19.2 18.2 60.2 67.4 649.1
Mar-05 37.3 7.9 29.8 55.4 418.7
Apr-05 39.3 6.9 24.3 49.1 426.6
May-05 35.5 6.7 22.9 41.1 389.9
Jun-05 40.7 15.7 19.3 39.6 531.8
Jul-05 36.1 12.2 15.2 34.0 530.0
Aug-05 34.4 12.0 19.5 41.9 558.6
Sep-05 28.1 11.4 21.9 38.9 525.0
Oct-05 17.9 11.3 29.9 38.6 518.3
Nov-05 15.9 7.9 35.6 44.0 613.9
Dec-05 16.2 7.5 36.5 46.9 572.8
Jan-06 17.3 9.9 40.7 51.5 623.5
Feb-06 25.8 7.5 30.5 48.6 569.6
Mar-06 31.8 8.1 28.4 52.1 532.7
Apr-06 38.0 5.5 18.7 41.8 450.2
May-06 36.3 8.0 19.4 37.0 480.8
Jun-06 33.5 7.0 19.9 36.7 561.0
Jul-06 42.3 14.4 34.5 559.2
Aug-06 27.5 21.4 33.8 583.2
Sep-06 18.9 9.7 24.1 33.5 532.3
Oct-06 18.4 7.4 31.5 36.6 515.0
Nov-06 12.2 9.0 40.1 41.0 602.6
Dec-06 18.2 6.2 30.5 41.4 517.6
Jan-07 22.6 6.0 29.6 41.9 509.1
Feb-07 30.7 6.9 29.4 48.6 380.3
Mar-07 32.7 6.4 27.8 45.6 355.7
Apr-07 39.3 5.6 18.1 26.5 277.5
May-07 47.1 8.3 17.4 40.1 273.1
Jun-07 39.4 10.2 19.4 37.6 404.8
Jul-07 36.3 10.8 14.7 34.6 392.8
Aug-07 31.1 7.3 18.5 35.9 400.5
Sep-07 30.6 8.8 16.8 34.2 384.4
Oct-07 19.9 6.4 29.8 42.1 454.2
Nov-07 20.4 5.1 26.1 42.2 338.1
Dec-07 21.4 5.7 27.6 45.1 140.3
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D.3 Meteorological Data at Airport 
 
 

 
 

Table D.3 Monthly averages (2004 – 2007) of meteorological data at Airport 

 
 

  

Month SR Temp DP Press Precip
Jan-04 553.3 -14.8 -20.0 101.0 0.0
Feb-04 460.6 -7.1 -12.7 101.6 0.0
Mar-04 252.6 0.1 -6.8 101.5 0.1
Apr-04 164.7 6.2 -3.2 101.0 0.1
May-04 214.7 14.0 6.9 101.1 0.1
Jun-04 357.1 17.9 10.6 101.0 0.1
Jul-04 631.4 21.6 16.0 100.9 0.2
Aug-04 695.2 19.6 14.5 101.1 0.1
Sep-04 767.0 16.5 11.5 101.6 0.1
Oct-04 883.6 9.3 4.5 101.2 0.0
Nov-04 1201.0 2.2 -2.0 101.5 0.1
Dec-04 808.0 -7.1 -10.1 101.2 0.2
Jan-05 626.8 -10.8 -15.6 102.0 0.1
Feb-05 328.6 -6.2 -10.9 101.6 0.1
Mar-05 193.0 -2.9 -9.8 100.6 0.1
Apr-05 166.7 7.8 -1.1 100.9 0.3
May-05 149.2 11.9 4.4 101.2 0.1
Jun-05 269.7 21.7 14.7 100.9 0.2
Jul-05 435.6 22.7 15.7 101.1 0.2
Aug-05 615.6 22.0 15.6 101.1 0.2
Sep-05 643.6 17.8 12.6 101.3 0.1
Oct-05 759.1 10.2 6.3 101.2 0.2
Nov-05 838.1 4.4 0.1 101.0 0.1
Dec-05 741.8 -5.2 -8.4 101.0 0.1
Jan-06 515.7 -4.5 -7.6 100.9 0.2
Feb-06 308.7 -6.9 -12.3 100.8 0.1
Mar-06 168.1 -0.6 -7.5 101.0 0.0
Apr-06 138.1 8.0 -0.7 101.0 0.1
May-06 165.3 14.6 8.2 100.7 0.2
Jun-06 319.3 19.5 12.9 100.9 0.1
Jul-06 446.7 22.9 16.1 100.9 0.1
Aug-06 468.4 19.7 12.9 101.1 0.2
Sep-06 596.1 15.4 10.9 101.1 0.1
Oct-06 8.1 4.2 100.8 0.2
Nov-06 590.3 4.6 1.4 101.5 0.1
Dec-06 600.9 -0.8 -4.2 101.4 0.1
Jan-07 502.8 -6.9 -11.5 101.1 0.1
Feb-07 396.9 -10.6 -16.4 100.8 0.0
Mar-07 -2.4 -9.1 101.5 0.1
Apr-07 5.9 -0.6 100.7 0.2
May-07 14.1 4.4 101.5 0.1
Jun-07 115.3 20.1 12.8 100.9 0.1
Jul-07 125.8 20.6 15.2 100.9 0.2
Aug-07 145.3 20.5 14.3 101.0 0.1
Sep-07 501.1 17.2 11.3 101.4 0.1
Oct-07 411.6 11.6 7.5 101.2 0.1
Nov-07 1.4 -2.7 101.2 0.2
Dec-07 -6.0 -9.0 101.4
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APPENDIX E Typical Monthly Averages Observed in 
2004 – 2007 Time Series 

 
 
E.1 Air Quality Data at Airport 
 
 

 
 

Table E.1 Averages by month of air quality data at Airport  

 
 

E.2 Air Quality Data at Maisonneuve 
 
 

 
 

Table E.2 Averages by month of air quality data at Maisonneuve  

  

Month O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
1 32.8 7.5 12.1 33.0 360.9
2 40.9 10.6 17.5 40.2 401.2
3 54.3 6.8 9.2 31.0 330.2
4 56.5 5.0 3.7 24.5 287.6
5 57.4 6.7 4.0 21.3 280.0
6 56.1 11.1 3.0 18.5 320.3
7 51.7 9.9 2.7 17.0 334.7
8 44.9 8.7 4.3 17.3 345.1
9 38.7 7.6 5.6 17.9 304.2
10 30.2 6.4 11.6 23.5 303.1
11 27.5 6.8 15.2 26.9 327.3
12 32.3 6.7 12.4 31.1 322.8

Total 42.9 7.7 8.4 25.2 326.3
n 30832 32896 33893 34326 34241

Month O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
1 21.6 7.6 38.6 47.0 528.3
2 24.2 10.8 43.1 53.9 540.7
3 32.1 7.7 32.1 54.0 453.0
4 37.3 6.1 23.7 45.6 394.9
5 37.0 7.8 22.6 42.6 389.8
6 37.5 10.9 20.5 39.0 475.0
7 36.6 11.4 15.9 35.7 458.0
8 29.5 10.4 21.1 37.9 484.3
9 24.2 10.0 24.2 37.0 471.7
10 17.5 8.0 33.4 40.4 486.1
11 15.1 7.4 37.9 43.0 512.0
12 18.6 7.5 34.1 45.2 432.6

Total 27.6 8.6 28.8 43.4 468.7
n 34881 30795 34671 34341 34529
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E.3 Meteorological Data at Airport 
 
 

 
 

Table E.3 Averages by month of meteorological data at Airport 

 
  

Month SR Temp DP Press Precip
1 549.7 -9.2 -13.7 101.3 0.1
2 371.7 -7.7 -13.1 101.2 0.1
3 204.6 -1.4 -8.3 101.2 0.1
4 156.5 7.0 -1.4 100.9 0.2
5 176.4 13.7 5.9 101.1 0.1
6 265.3 19.8 12.7 100.9 0.1
7 410.2 21.9 15.8 100.9 0.2
8 467.8 20.4 14.3 101.1 0.2
9 629.7 16.7 11.6 101.3 0.1
10 767.0 9.8 5.6 101.1 0.2
11 934.7 3.1 -0.9 101.3 0.1
12 717.0 -4.8 -7.9 101.3 0.7

Total 456.2 7.6 1.7 101.1 0.2
n 28963 34692 34239 34145 34042
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APPENDIX F Hourly Averages (2004 – 2007 Time Series) by Season 
 
 
 
 

 
 

Table F.1 Hourly averages of air quality data at Airport (summer) 

 

 
 

Table F.2 Hourly averages of air quality data at Airport (winter) 

Hour O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
0 41.4 8.8 2.5 21.8 329.9
1 40.6 8.9 3.0 20.5 316.1
2 38.7 9.0 2.2 19.8 308.0
3 36.1 9.2 2.3 20.7 306.0
4 33.4 9.6 3.9 22.5 310.0
5 32.5 10.2 7.3 24.2 338.3
6 36.1 10.1 9.7 23.9 351.2
7 41.9 9.8 8.9 21.7 346.9
8 49.3 9.3 6.7 18.9 331.6
9 57.3 9.1 4.8 15.6 312.9
10 66.9 9.0 2.9 12.3 296.7
11 73.1 8.6 2.2 10.9 279.3
12 77.3 8.3 2.1 10.5 275.5
13 78.5 8.3 2.0 10.8 275.0
14 79.4 8.3 2.0 11.0 276.0
15 79.0 8.1 1.7 11.2 268.2
16 76.7 8.0 1.7 13.2 277.1
17 73.9 8.4 1.5 15.2 285.8
18 68.2 8.7 1.1 17.8 299.1
19 57.1 9.1 1.4 25.3 321.3
20 50.0 9.7 1.2 26.9 340.9
21 45.1 9.4 2.1 28.0 344.6
22 42.4 9.0 2.4 26.4 347.3
23 41.3 8.8 2.5 24.2 341.7

Total 54.8 9.0 3.3 18.9 311.7
n 7652 7228 8297 8278 8279

Hour O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
0 28.4 7.6 11.1 30.7 345.7
1 29.2 7.4 10.8 29.2 323.8
2 29.5 6.9 10.1 28.0 314.5
3 29.4 6.3 9.3 27.4 295.6
4 29.1 6.0 9.2 27.3 281.6
5 26.9 6.0 10.4 29.3 283.8
6 24.1 6.5 14.8 33.7 325.7
7 22.8 7.1 20.1 36.5 370.9
8 26.8 7.4 22.6 33.3 384.0
9 31.9 6.9 20.9 28.9 367.8
10 36.5 6.1 17.7 24.0 310.8
11 39.4 5.7 16.2 22.6 297.7
12 41.5 5.9 13.8 21.3 292.4
13 41.5 6.2 12.6 22.6 287.7
14 40.5 6.7 11.6 24.3 311.9
15 37.1 6.6 11.1 27.7 326.5
16 31.3 6.7 11.2 33.4 347.7
17 28.0 7.3 11.9 36.8 388.4
18 27.3 7.8 12.1 37.2 384.9
19 27.3 8.0 12.5 36.4 380.2
20 27.3 8.2 12.6 36.1 369.3
21 27.3 8.5 11.7 34.7 371.2
22 27.3 8.3 11.6 33.8 365.4
23 27.5 8.0 12.0 32.8 363.5

Total 30.7 7.0 13.2 30.4 337.2
n 8030 8627 8770 8770 8720
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Table F.3 Hourly averages of air quality data at Maisonneuve (Summer) 

 
 

 
 

Table F.4 Hourly averages of air quality data at Maisonneuve (Winter) 

 
 
 
 

Hour O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
0 33.9 7.6 11.2 34.1 364.1
1 35.3 7.6 8.9 30.4 327.4
2 33.8 7.6 9.2 30.1 316.3
3 34.4 7.8 6.7 27.3 227.7
4 30.8 8.0 8.8 29.1 228.0
5 25.0 8.4 19.6 35.9 289.1
6 21.2 9.2 31.6 42.0 382.3
7 23.3 9.4 35.4 43.1 440.3
8 27.7 9.2 33.9 42.8 431.8
9 32.9 8.8 29.8 41.8 473.6
10 40.7 9.5 27.2 40.5 463.0
11 47.2 10.5 23.0 38.0 487.1
12 51.1 9.6 21.4 37.9 465.5
13 51.5 8.9 21.5 39.2 465.4
14 50.1 8.9 21.1 40.7 482.2
15 48.4 9.5 21.5 42.7 542.8
16 45.2 10.3 22.1 45.3 598.5
17 47.1 12.0 17.8 41.5 535.2
18 46.0 13.9 14.2 39.6 508.1
19 39.6 15.0 15.4 42.7 525.5
20 32.1 15.0 20.5 47.0 561.8
21 30.5 12.0 19.1 45.5 511.6
22 29.7 9.4 17.2 42.8 499.6
23 31.1 8.0 15.1 38.9 455.1

Total 37.0 9.8 19.6 39.1 440.7
n 8777 7222 8676 8676 8772

Hour O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
0 19.8 5.9 22.6 40.6 425.3
1 21.1 5.9 20.6 39.0 336.2
2 22.1 5.3 20.2 37.6 298.6
3 22.5 4.9 17.5 36.3 287.6
4 23.3 4.5 15.8 35.2 222.2
5 21.8 4.6 17.8 36.6 226.3
6 18.4 5.1 26.0 41.6 280.5
7 15.0 5.9 41.1 47.2 378.0
8 15.1 6.6 53.3 49.1 452.4
9 16.7 6.7 54.0 48.5 471.6
10 18.6 6.6 55.5 47.2 524.8
11 19.6 7.2 54.5 47.0 541.4
12 21.4 8.3 47.5 45.2 574.1
13 21.3 8.4 47.1 46.1 582.8
14 20.5 7.3 47.6 47.1 588.2
15 17.8 7.4 47.8 49.7 636.1
16 15.1 8.1 48.9 52.0 737.9
17 13.6 9.7 49.2 53.2 784.4
18 14.5 11.3 42.4 51.4 678.4
19 15.9 11.7 35.0 48.7 615.0
20 16.9 11.9 32.9 47.4 566.3
21 16.5 10.6 33.8 47.3 577.0
22 17.4 8.7 29.9 45.3 513.4
23 18.4 6.9 25.4 43.0 483.1

Total 18.5 7.5 36.8 45.1 490.4
n 8761 8252 8678 8678 8660
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Table F.5 Hourly averages of meteorological data at Airport (Summer) 

 
 

 
 

Table F.6 Hourly averages of meteorological data at Airport (Winter) 

 
 
  

Hour SR Temp DP Press Precip
0 1.0 16.4 11.1 101.0 0.1
1 1.0 15.9 11.1 101.0 0.1
2 1.0 15.4 11.0 101.0 0.1
3 0.9 15.0 10.9 101.0 0.1
4 0.9 14.6 10.8 101.0 0.1
5 0.9 14.5 10.8 101.0 0.1
6 1.2 15.4 11.1 101.0 0.1
7 20.6 16.3 11.2 101.1 0.1
8 143.7 17.3 11.5 101.1 0.1
9 427.2 18.3 11.7 101.1 0.1
10 734.8 19.3 11.9 101.1 0.1
11 985.2 20.2 12.0 101.1 0.1
12 1122.7 21.0 12.0 101.0 0.2
13 1138.8 21.5 11.9 101.0 0.1
14 1011.3 21.9 11.9 101.0 0.1
15 776.9 22.1 11.7 100.9 0.2
16 475.0 22.0 11.6 100.9 0.2
17 179.7 21.7 11.6 100.9 0.2
18 30.8 21.2 11.5 100.9 0.2
19 1.7 20.3 11.4 100.9 0.1
20 1.3 19.3 11.4 100.9 0.1
21 1.2 18.5 11.5 101.0 0.1
22 1.1 17.7 11.4 101.0 0.1
23 1.1 17.1 11.3 101.0 0.1

Total 294.0 18.5 11.4 101.0 0.1
n 8080 8832 8722 8596 8589

Hour SR Temp DP Press Precip
0 0.4 -4.2 -7.8 101.3 1.1
1 0.4 -4.4 -7.8 101.3 0.7
2 0.4 -4.6 -7.9 101.3 0.1
3 0.4 -4.7 -7.9 101.3 0.1
4 0.4 -4.8 -8.0 101.3 0.1
5 10.6 -5.0 -8.1 101.3 0.1
6 134.8 -5.1 -8.2 101.3 0.1
7 449.4 -5.2 -8.2 101.3 0.1
8 855.3 -5.1 -8.1 101.3 0.1
9 1301.1 -4.5 -7.9 101.3 0.2
10 1680.1 -4.0 -7.8 101.3 0.1
11 1949.1 -3.4 -7.6 101.3 0.1
12 2076.4 -2.9 -7.5 101.2 0.1
13 2063.1 -2.6 -7.5 101.2 0.1
14 1883.8 -2.4 -7.3 101.2 0.1
15 1657.3 -2.4 -7.3 101.2 0.2
16 1279.2 -2.6 -7.4 101.2 0.7
17 857.7 -3.0 -7.5 101.3 0.5
18 449.6 -3.2 -7.5 101.3 0.6
19 142.2 -3.5 -7.7 101.3 0.7
20 15.8 -3.7 -7.7 101.3 0.4
21 0.5 -3.9 -7.8 101.3 0.5
22 0.4 -4.1 -7.9 101.3 0.7
23 0.4 -4.3 -7.9 101.3 0.3

Total 700.8 -3.9 -7.8 101.3 0.3
n 6964 8584 8538 8541 8470



212 
 

APPENDIX G O3 and PM2.5 Averages at Airport and Maisonneuve 
by Wind Direction  (2004 – 2007 Time Series)    

 
 

 
 

Table G.1 O3 and PM2.5 Averages by Wind Direction   

  

Season Period WD O3 (Airport) O3 (Maison) PM2.5 (Airport) PM2.5 (Maison)
0 61.4 34.3 6.0 8.3
1 62.2 40.0 6.5 7.6
2 74.2 52.7 7.5 8.4
3 79.6 53.3 9.7 11.8
4 85.9 54.2 9.5 11.6
5 93.3 62.1 11.5 12.6
6 68.9 40.8 5.8 6.8
7 60.8 31.4 4.5 6.2
8 86.6 49.5 10.2 11.3
0 28.2 24.7 6.7 5.3
1 31.3 26.9 7.6 6.2
2 34.7 35.8 8.3 6.7
3 36.5 30.5 10.1 9.2
4 49.5 37.0 13.3 12.1
5 52.9 42.7 11.0 10.6
6 44.5 36.5 7.8 7.4
7 28.1 22.5 4.9 4.1
8 16.4 22.3 12.0 9.3
0 28.5 14.2 13.0 14.7
1 26.4 19.0 9.4 9.7
2 29.8 23.0 5.1 5.2
3 41.1 19.8 4.9 8.0
4 39.0 13.4 5.4 8.6
5 40.5 17.7 6.6 7.4
6 50.8 24.7 3.2 4.8
7 45.9 17.7 3.4 5.2
8 31.4 13.8 12.6 15.2
0 21.0 16.2 11.9 9.4
1 22.3 21.4 7.8 6.1
2 20.6 22.6 7.0 6.3
3 32.4 18.7 5.5 6.0
4 28.4 11.3 7.3 8.0
5 30.7 19.3 7.4 6.2
6 38.0 27.0 4.7 3.6
7 39.0 25.5 6.3 4.9
8 9.8 12.4 14.2 9.6

Day

Night

Summer

Day

Night

Winter
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APPENDIX H Hourly Averages by Season by Period  
(2004 – 2007 Time Series)    

 
 
H.1 Summer  
 
 

 

 
 

Table H.1 Hourly averages of air quality data at Airport (summer/day) 
 

Summer/Day O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
Moments

Mean 77.3 8.3 1.9 11.3 275.2
Std Dev 28.8 8.5 3.0 8.1 117.1

Std Err Mean 0.7 0.2 0.1 0.2 2.6
upper 95% Mean 78.6 8.7 2.1 11.6 280.2
lower 95% Mean 76.1 7.9 1.8 10.9 270.1

Variance 827.4 72.2 8.7 65.7 13712.6
Skewness 0.2 1.9 6.4 1.6 0.2

Kurtosis 0.1 4.4 65.1 4.0 0.3
n 1903.0 1789.0 2062.0 2058.0 2058.0

Percentiles
100.0% 170.0 55.0 46.0 77.0 799.9
99.5% 162.5 44.0 21.7 41.7 599.9
97.5% 137.4 33.0 8.0 33.0 499.9
90.0% 115.0 19.0 4.0 22.0 399.9
75.0% 96.0 11.0 2.0 15.0 399.9
50.0% 76.0 5.0 1.0 9.0 300.0
25.0% 58.0 3.0 1.0 6.0 200.0
10.0% 43.0 1.0 0.0 3.0 100.0
2.5% 21.0 0.0 0.0 2.0 100.0
0.5% 9.5 0.0 0.0 1.0 0.0
0.0% 5.0 0.0 0.0 0.0 0.0
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Table H.2 Hourly averages of air quality data at Maisonneuve (summer/day) 

 
 
 
  

Summer/Day O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
Moments

Mean 48.9 9.6 21.8 40.6 507.2
Std Dev 23.7 8.7 14.5 15.1 230.1

Std Err Mean 0.5 0.2 0.3 0.3 4.9
upper 95% Mean 49.9 10.0 22.4 41.3 516.8
lower 95% Mean 47.9 9.2 21.2 40.0 497.5

Variance 560.6 76.2 209.0 229.3 52944.7
Skewness 0.4 1.7 1.6 0.7 0.6

Kurtosis 0.4 3.5 4.1 1.0 0.8
n 2192.0 1793.0 2168.0 2168.0 2190.0

Percentiles
100.0% 145.0 54.0 122.0 119.0 1799.7
99.5% 127.1 46.0 84.0 94.2 1204.3
97.5% 98.0 33.0 61.0 73.8 999.8
90.0% 78.0 22.0 40.0 60.0 799.9
75.0% 65.0 13.0 29.0 50.0 699.9
50.0% 48.0 7.0 18.0 40.0 499.9
25.0% 32.0 3.0 11.0 29.0 299.9
10.0% 19.0 2.0 7.0 22.0 200.0
2.5% 6.0 0.0 4.0 15.0 100.0
0.5% 1.0 0.0 2.0 12.9 100.0
0.0% 0.0 0.0 1.0 10.0 0.0
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Table H.3 Hourly averages of meteorological data at Airport (summer/day) 

 
 
 

 
 

Table H.4  Hourly averages of air quality data at Airport (summer/night) 
 
 

 

Summer/Day SR Temp DP Press Precip WS WDI
Moments

Mean 918.7 21.5 11.9 101.0 0.1 17.8 1.3
Std Dev 667.1 5.8 6.3 0.6 0.9 8.3 0.7

Std Err Mean 14.9 0.1 0.1 0.0 0.0 0.2 0.0
upper 95% Mean 947.9 21.7 12.1 101.0 0.2 18.2 1.3
lower 95% Mean 889.6 21.2 11.6 101.0 0.1 17.5 1.3

Variance 445034.6 33.1 39.2 0.4 0.8 68.9 0.5
Skewness 0.6 -0.5 -0.8 -0.2 11.4 0.5 -0.8

Kurtosis -0.5 -0.4 0.3 0.6 171.9 0.0 -1.0
n 2017.0 2208.0 2177.0 2144.0 2143.0 2208.0 2208.0

Percentiles
100.0% 2804.0 32.7 23.2 103.1 19.3 52.0 2.0
99.5% 2739.6 32.0 22.5 102.7 6.0 42.9 2.0
97.5% 2389.2 30.6 21.1 102.3 1.8 37.0 2.0
90.0% 1888.2 28.4 19.0 101.7 0.0 30.0 2.0
75.0% 1382.5 25.8 16.8 101.4 0.0 24.0 2.0
50.0% 818.0 22.4 12.7 101.0 0.0 17.0 1.7
25.0% 328.0 17.6 8.2 100.6 0.0 11.0 1.0
10.0% 138.0 12.7 3.4 100.2 0.0 7.0 0.0
2.5% 61.4 9.2 -3.2 99.6 0.0 4.0 0.0
0.5% 28.1 6.8 -7.4 99.1 0.0 0.0 0.0
0.0% 15.0 5.7 -9.6 98.9 0.0 0.0 0.0

Summer/Night O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
Moments

Mean 39.1 9.0 2.7 22.3 322.7
Std Dev 26.7 8.4 10.7 16.5 138.6

Std Err Mean 0.6 0.2 0.2 0.3 2.8
upper 95% Mean 40.2 9.4 3.1 22.9 328.2
lower 95% Mean 38.0 8.7 2.3 21.6 317.2

Variance 715.3 69.7 115.3 271.3 19198.6
Skewness 0.7 1.9 7.4 1.5 0.8

Kurtosis 0.4 4.7 66.4 2.8 2.2
n 2241.0 2125.0 2435.0 2428.0 2428.0

Percentiles
100.0% 152.0 56.0 148.0 108.0 1099.8
99.5% 123.8 48.0 87.5 89.0 885.4
97.5% 102.0 32.0 28.0 66.0 599.9
90.0% 74.0 20.0 5.0 45.0 499.9
75.0% 55.0 12.0 1.0 29.0 399.9
50.0% 37.0 7.0 0.0 18.0 299.9
25.0% 18.0 3.0 0.0 11.0 200.0
10.0% 5.0 1.0 0.0 7.0 200.0
2.5% 0.0 0.0 0.0 4.0 100.0
0.5% 0.0 0.0 0.0 2.0 0.0
0.0% 0.0 0.0 0.0 0.0 0.0
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Table H.5 Hourly averages of air quality data at Maisonneuve (summer/night) 

 

 

 
 

Table H.6  Hourly averages of meteorological data at Airport (summer/night) 

 
 
  

Summer/Night O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
Moments

Mean 32.7 8.0 11.0 33.2 345.4
Std Dev 21.2 7.7 11.3 15.6 304.3

Std Err Mean 0.4 0.2 0.2 0.3 6.0
upper 95% Mean 33.5 8.3 11.5 33.8 357.1
lower 95% Mean 31.9 7.7 10.6 32.6 333.6

Variance 449.5 59.1 127.0 243.2 92581.4
Skewness 1.0 1.7 4.7 1.3 10.9

Kurtosis 1.6 3.8 47.8 3.8 228.0
n 2575.0 2122.0 2547.0 2547.0 2575.0

Percentiles
100.0% 129.0 46.0 198.0 173.0 7598.7
99.5% 112.1 44.0 66.3 87.3 1199.8
97.5% 85.0 28.0 39.3 72.0 899.9
90.0% 60.0 19.0 22.0 54.0 599.9
75.0% 44.0 11.0 14.0 41.0 499.9
50.0% 30.0 6.0 8.0 30.0 299.9
25.0% 17.0 3.0 5.0 22.0 200.0
10.0% 8.0 1.0 2.0 17.0 100.0
2.5% 1.0 0.0 1.0 12.0 0.0
0.5% 0.0 0.0 1.0 8.0 0.0
0.0% 0.0 0.0 0.0 5.0 0.0

Summer/Night SR Temp DP Press Precip WS WDI
Moments

Mean 1.0 16.0 11.1 101.0 0.1 11.6 1.1
Std Dev 2.9 5.3 6.2 0.6 0.8 7.0 0.8

Std Err Mean 0.1 0.1 0.1 0.0 0.0 0.1 0.0
upper 95% Mean 1.1 16.2 11.3 101.0 0.1 11.8 1.1
lower 95% Mean 0.9 15.8 10.8 101.0 0.1 11.3 1.1

Variance 8.6 28.1 38.3 0.4 0.6 48.4 0.6
Skewness 4.2 -0.4 -0.7 -0.2 11.9 0.7 -0.2

Kurtosis 18.5 -0.4 0.1 1.0 183.0 0.4 -1.6
n 2359.0 2576.0 2549.0 2512.0 2508.0 2576.0 2576.0

Percentiles
100.0% 22.0 27.0 22.3 102.8 17.4 43.0 2.0
99.5% 19.0 26.2 21.6 102.7 5.9 33.0 2.0
97.5% 12.0 24.8 20.2 102.3 1.4 28.0 2.0
90.0% 2.0 22.6 18.3 101.7 0.0 20.6 2.0
75.0% 1.0 20.0 15.9 101.4 0.0 15.0 1.7
50.0% 0.0 16.6 11.8 101.0 0.0 11.0 1.0
25.0% 0.0 12.4 7.6 100.6 0.0 7.0 0.3
10.0% 0.0 8.6 1.9 100.3 0.0 4.0 0.0
2.5% 0.0 4.6 -3.0 99.6 0.0 0.0 0.0
0.5% 0.0 2.3 -7.4 99.1 0.0 0.0 0.0
0.0% 0.0 0.1 -9.3 98.7 0.0 0.0 0.0
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H.2 Winter 
 
 

 
 

Table H.7  Hourly averages of air quality data at Airport (winter/day) 

 

 

Table H.8  Hourly averages of air quality data at Maisonneuve (winter/day) 
 

Winter/Day O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
Moments

Mean 38.5 6.3 12.7 25.4 310.8
Std Dev 19.4 7.3 24.1 19.4 213.6

Std Err Mean 0.4 0.2 0.5 0.4 4.6
upper 95% Mean 39.4 6.6 13.7 26.2 319.8
lower 95% Mean 37.7 6.0 11.7 24.5 301.8

Variance 377.1 53.2 578.4 375.0 45624.2
Skewness -0.3 2.3 5.5 1.2 2.3

Kurtosis -1.0 6.6 45.6 1.0 10.8
n 1986.0 2130.0 2166.0 2166.0 2162.0

Percentiles
100.0% 87.0 47.0 329.0 116.0 2199.6
99.5% 72.0 41.0 147.2 88.2 1199.8
97.5% 68.0 28.0 73.0 73.0 899.9
90.0% 63.0 15.0 33.0 54.0 599.9
75.0% 55.0 8.0 12.0 35.0 399.9
50.0% 42.0 4.0 5.0 20.0 299.9
25.0% 23.0 2.0 2.0 10.0 200.0
10.0% 9.0 0.0 1.0 6.0 100.0
2.5% 3.0 0.0 0.0 3.0 0.0
0.5% 1.0 0.0 0.0 2.0 0.0
0.0% 0.0 0.0 0.0 1.0 0.0

Winter/Day O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
Moments

Mean 19.3 7.8 48.9 47.9 610.6
Std Dev 12.0 7.3 32.4 14.2 296.3

Std Err Mean 0.3 0.2 0.7 0.3 6.4
upper 95% Mean 19.8 8.1 50.3 48.5 623.1
lower 95% Mean 18.8 7.5 47.5 47.3 598.1

Variance 145.1 53.0 1050.7 200.4 87815.5
Skewness 0.4 2.2 2.2 0.3 0.8

Kurtosis -0.6 6.7 9.6 0.0 2.5
n 2185.0 2052.0 2157.0 2157.0 2152.0

Percentiles
100.0% 54.0 62.0 327.0 108.0 2299.6
99.5% 49.0 37.7 224.6 91.0 1723.2
97.5% 45.0 29.0 127.0 77.0 1199.8
90.0% 37.0 17.0 86.0 66.0 999.8
75.0% 27.0 10.0 63.0 57.0 799.9
50.0% 18.0 6.0 43.0 47.0 599.9
25.0% 9.0 3.0 27.0 38.0 399.9
10.0% 4.0 1.0 17.0 30.0 299.9
2.5% 2.0 0.0 10.0 23.0 0.0
0.5% 1.0 0.0 5.8 18.0 0.0
0.0% 0.0 0.0 2.0 13.0 0.0
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Table H.9 Hourly averages of meteorological data at Airport (winter/day) 
 
 
 
 
 
 

 
 

Table H.10 Hourly averages of air quality data at Airport (winter/night) 

 

Winter/Day SR Temp DP Press Precip WS WDI
Moments

Mean 1817.8 -2.7 -7.4 101.2 0.2 18.8 1.1
Std Dev 890.1 8.3 9.1 1.1 4.2 10.1 0.8

Std Err Mean 21.3 0.2 0.2 0.0 0.1 0.2 0.0
upper 95% Mean 1859.6 -2.4 -7.1 101.3 0.4 19.2 1.1
lower 95% Mean 1776.0 -3.1 -7.8 101.2 0.1 18.4 1.1

Variance 792285.9 68.7 83.1 1.1 17.5 101.1 0.6
Skewness 0.1 -0.4 -0.5 -0.2 43.6 0.5 -0.2

Kurtosis -0.2 -0.3 0.0 -0.2 1964.6 0.1 -1.7
n 1743.0 2147.0 2137.0 2134.0 2117.0 2147.0 2208.0

Percentiles
100.0% 4339.0 18.7 15.1 104.1 188.8 63.0 2.0
99.5% 4251.2 15.7 12.5 103.8 4.2 48.0 2.0
97.5% 3749.2 11.0 7.5 103.2 1.8 41.0 2.0
90.0% 2887.4 7.4 3.1 102.6 0.0 32.0 2.0
75.0% 2418.0 3.6 -1.0 102.0 0.0 26.0 1.7
50.0% 1840.0 -1.6 -6.1 101.2 0.0 19.0 1.7
25.0% 1206.0 -8.9 -13.3 100.6 0.0 11.0 0.3
10.0% 538.0 -13.5 -19.0 99.8 0.0 7.0 0.0
2.5% 177.8 -21.1 -29.4 99.0 0.0 0.0 0.0
0.5% 84.7 -24.8 -32.6 98.5 0.0 0.0 0.0
0.0% 24.0 -26.8 -34.3 98.3 0.0 0.0 0.0

Winter/Night O3 (Airport) PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
Moments

Mean 28.6 7.2 10.6 29.9 327.1
Std Dev 19.5 7.7 25.7 20.9 238.0

Std Err Mean 0.4 0.2 0.5 0.4 4.7
upper 95% Mean 29.4 7.5 11.6 30.7 336.4
lower 95% Mean 27.8 6.9 9.6 29.1 317.9

Variance 378.5 59.1 662.8 438.8 56645.0
Skewness 0.1 2.2 4.5 0.7 2.8

Kurtosis -1.2 7.0 26.7 -0.3 13.1
n 2359.0 2532.0 2576.0 2576.0 2555.0

Percentiles
100.0% 78.0 64.0 264.0 116.0 2199.6
99.5% 70.0 45.0 174.5 86.1 1699.7
97.5% 63.0 27.7 87.0 74.6 999.8
90.0% 55.0 17.0 31.0 62.0 599.9
75.0% 44.0 10.0 7.0 45.0 399.9
50.0% 29.0 5.0 1.0 25.0 299.9
25.0% 10.0 2.0 0.0 13.0 200.0
10.0% 3.0 1.0 0.0 6.0 100.0
2.5% 0.0 0.0 0.0 3.0 100.0
0.5% 0.0 0.0 0.0 2.0 0.0
0.0% 0.0 0.0 0.0 1.0 0.0
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Table H.11 Hourly averages of air quality data at Maisonneuve (winter/night) 

 

 
 

Table H.12 Hourly averages of meteorological data at Airport (winter/night) 

 
  

Winter/Night O3 (Maison) PM2.5 (Maison) NO (Maison) NO2 (Maison) CO (Maison)
Moments

Mean 20.7 6.0 21.7 39.6 366.4
Std Dev 13.2 6.5 21.1 14.9 255.5

Std Err Mean 0.3 0.1 0.4 0.3 5.1
upper 95% Mean 21.2 6.3 22.5 40.1 376.4
lower 95% Mean 20.2 5.8 20.9 39.0 356.5

Variance 174.8 41.6 446.5 220.6 65264.0
Skewness 0.3 2.5 3.0 0.5 1.5

Kurtosis -0.9 13.1 12.4 -0.1 5.6
n 2567.0 2411.0 2544.0 2544.0 2546.0

Percentiles
100.0% 58.0 73.0 182.0 98.0 2599.6
99.5% 53.0 30.9 139.5 82.0 1299.8
97.5% 47.0 22.0 84.0 72.0 999.8
90.0% 39.0 14.0 44.0 60.0 699.9
75.0% 31.0 9.0 26.0 50.0 499.9
50.0% 20.0 4.0 15.0 38.0 299.9
25.0% 9.0 2.0 9.0 28.0 200.0
10.0% 4.0 0.0 6.0 21.0 100.0
2.5% 2.0 0.0 3.0 16.0 0.0
0.5% 1.0 0.0 1.0 12.0 0.0
0.0% 0.0 0.0 0.0 10.0 0.0

Winter/Night SR Temp DP Press Precip WS WDI
Moments

Mean 0.4 -4.5 -7.9 101.3 0.4 15.5 1.0
Std Dev 0.8 8.3 9.2 1.0 9.2 9.5 0.8

Std Err Mean 0.0 0.2 0.2 0.0 0.2 0.2 0.0
upper 95% Mean 0.4 -4.1 -7.5 101.3 0.8 15.9 1.1
lower 95% Mean 0.4 -4.8 -8.2 101.2 0.1 15.2 1.0

Variance 0.7 68.8 85.3 1.0 84.4 90.4 0.6
Skewness 3.6 -0.5 -0.6 -0.1 30.9 0.9 -0.1

Kurtosis 19.1 -0.3 0.0 -0.4 1033.0 1.1 -1.7
n 2026.0 2506.0 2490.0 2492.0 2467.0 2505.0 2576.0

Percentiles
100.0% 9.0 16.7 15.4 103.9 350.6 59.0 2.0
99.5% 5.9 12.9 9.1 103.7 4.0 48.0 2.0
97.5% 3.0 8.6 6.7 103.2 1.6 37.0 2.0
90.0% 1.0 5.0 2.5 102.6 0.0 28.0 2.0
75.0% 1.0 1.7 -1.2 102.0 0.0 20.0 1.7
50.0% 0.0 -3.1 -6.2 101.3 0.0 13.0 1.0
25.0% 0.0 -10.3 -14.2 100.6 0.0 9.0 0.3
10.0% 0.0 -15.9 -20.3 99.9 0.0 6.0 0.0
2.5% 0.0 -23.1 -29.8 99.3 0.0 0.0 0.0
0.5% 0.0 -25.9 -32.4 98.6 0.0 0.0 0.0
0.0% 0.0 -27.5 -34.4 98.2 0.0 0.0 0.0
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Appendix I  Sample Model Outputs For Case Study 1  
(Day Period) 

 
 

 
 

Table I.1 Model output MLR 
 

 
 

Table I.2 Model output PCA 

Response OP (Airport) Summer Day

Summary of Fit
R2 0.68
R2 (Adj) 0.67
RMSE 17.44
Mean of Response 78.93
Observations 506

Analysis of Variance DF SS MS F Ratio Prob > F
Model 7 314801 44972 148 <.0001
Error 498 151470 304
C. Total 505 466272

Parameter Estimates Estimate Std Error t Ratio Prob>|t|
Intercept -629.04 149.50 -4.21 <.0001
PM2.5 (Airport) 1.84 0.13 14.52 <.0001
NO (Airport) -1.66 0.23 -7.32 <.0001
CO (Airport) 0.036 0.011 3.29 0.0011
Temp 2.81 0.24 11.66 <.0001
DP -2.90 0.29 -10.09 <.0001
Press 6.50 1.49 4.37 <.0001
WDI 4.53 1.09 4.13 <.0001

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
Eigenvalue 2.97 2.09 1.39 1.05 0.90 0.81 0.53 0.49 0.34 0.30 0.12
Percent 27.02 19.00 12.66 9.59 8.15 7.36 4.86 4.45 3.13 2.73 1.05
Cum Percent 27.02 46.02 58.68 68.27 76.42 83.78 88.64 93.09 96.22 98.95 100.00
PM2.5 (Airpo 0.45 0.17 -0.05 -0.19 0.19 0.15 0.09 -0.36 0.60 -0.41 -0.08
NO (Airport) 0.18 -0.49 0.03 -0.22 -0.25 -0.12 0.32 0.60 0.13 -0.34 0.02
NO2 (Airport 0.28 -0.50 0.05 -0.15 -0.01 0.00 0.16 -0.28 0.18 0.71 -0.02
CO (Airport) 0.47 -0.16 -0.18 -0.06 0.06 0.07 0.08 -0.29 -0.70 -0.25 0.27
SR 0.10 0.04 0.42 0.59 -0.56 0.07 0.25 -0.24 0.06 -0.10 0.10
Temp 0.39 0.39 0.19 -0.04 0.05 0.15 -0.11 0.41 0.09 0.28 0.60
DP 0.50 0.19 -0.04 0.20 -0.05 0.10 -0.12 0.29 -0.17 0.15 -0.71
Press -0.12 0.15 0.62 -0.24 0.39 0.16 0.51 0.02 -0.23 0.01 -0.18
Precip 0.03 -0.22 -0.16 0.66 0.63 -0.06 0.20 0.16 0.12 -0.03 0.10
WS -0.18 0.16 -0.52 0.00 -0.17 0.61 0.49 0.07 0.01 0.14 0.02
WDI 0.09 0.40 -0.25 -0.05 -0.08 -0.72 0.47 -0.05 -0.01 0.14 0.00
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Table I.3 Model output PCR 

Response OP (Airport) Summer Day

Summary of Fit
R2 0.68
R2 (Adj) 0.67
RMSE 17.47
Mean of Response 78.93
Observations 506

Analysis of Variance DF SS MS F Ratio Prob > F
Model 9 314833 34981 115 <.0001
Error 496 151439 305
C. Total 505 466272

Parameter Estimates Estimate Std Error t Ratio Prob>|t|
Intercept 78.93 0.78 101.61 <.0001
Prin Comp 1 6.42 0.45 14.23 <.0001
Prin Comp 2 10.96 0.54 20.38 <.0001
Prin Comp 3 4.29 0.66 6.52 <.0001
Prin Comp 4 -7.58 0.76 -10.01 <.0001
Prin Comp 5 7.69 0.82 9.36 <.0001
Prin Comp 8 -8.57 1.11 -7.71 <.0001
Prin Comp 9 8.87 1.33 6.69 <.0001
Prin Comp 10 -3.81 1.42 -2.69 0.0075
Prin Comp 11 19.38 2.29 8.47 <.0001
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Table I.4 Model identification MARS 1 
 

  

# BFs TotVar DirVar EffPar GCV Learn MSE Test MSE
19 9 9 40.00 278.48 245.91 278.22
18 9 9 37.95 276.05 245.41 278.21
17 9 9 35.89 273.66 244.92 280.36
16 9 9 33.84 271.41 244.54 280.39
15 9 9 31.79 269.85 244.74 278.88
14 9 9 29.74 268.52 245.15 278.46

** 13 8 8 27.68 267.70 246.02 274.81
12 8 8 25.63 266.90 246.89 277.49
11 7 7 23.58 267.61 249.16 274.97
10 7 7 21.53 268.47 251.58 279.33
9 7 7 19.47 269.82 254.48 275.59
8 6 6 17.42 273.43 259.55 279.00
7 6 6 15.37 279.15 266.66 280.35
6 5 5 13.32 290.07 278.86 296.82
5 4 4 11.26 307.07 297.07 336.73
4 4 4 9.21 329.41 320.69 331.50
3 3 3 7.16 365.38 357.95 370.62
2 2 2 5.11 507.81 500.58 522.28
1 1 1 3.05 565.75 561.17 655.35
0 0 0 1.00 925.14 921.49 852.28
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Table I.5 Model output MARS 1 
 

Response OP (Airport) Summer Day

Summary of Fit
R2 0.74
R2 (Adj) 0.73
RMSE 15.68
Mean of Response 78.93
Observations 506

Analysis of Variance DF SS MS F Ratio Prob > F
Model 13 345231 26556 108 <.0001
Error 492 121041 246
C. Total 505 466272

Parameter Estimates Estimate Std Error t Ratio Prob>|t|
Constant 107.34 5.40 19.86 <.0001
BF2 -2.64 0.16 -16.25 <.0001
BF4 -3.48 0.73 -4.76 <.0001
BF5 6.90 1.56 4.42 <.0001
BF6 22.42 8.72 2.57 0.0104
BF8 2.74 0.42 6.50 <.0001
B11 -3.12 0.47 -6.64 <.0001
BF12 2.73 0.31 8.92 <.0001
BF14 -2.57 0.23 -11.35 <.0001
BF15 20.96 6.53 3.21 0.0014
BF16 -2.87 1.24 -2.31 0.0212
BF17 -1.33 0.35 -3.80 0.0002
BF19 0.00 0.00 -1.66 0.0981
BF20 -0.23 0.09 -2.65 0.0083

 BF2 = max ( 0 , 24 - PM2.5 (AIRPORT))

 BF19 = max ( 0, SR - 85.00)

 BF12 = max ( 0, 13.80 - DP)
 BF14 = max ( 0, 28.40 - TEMP)
 BF15 = max ( 0, WDI - 1.71)
 BF16 = max ( 0, 1.71 - WDI)
 BF17 = max ( 0, NO2 (AIRPORT) - 24.00)

 BF11 = max( 0, DP - 13.80)
 BF8 = max ( 0, 11.00 - NO (AIRPORT))
 BF6 = max ( 0, 99.69 - PRESS)
 BF5 = max ( 0, PRESS - 99.69)
 BF4 = max( 0, 6 - NO2 (AIRPORT))

 BF20 = max ( 0, 85 - SR)
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Table I.6 Model identification MARS 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

# BFs TotVar DirVar EffPar GCV Learn MSE Test MSE
20 7 7 54.00 275.73 229.54 310.39
19 7 7 51.35 272.55 229.09 312.95
18 7 7 48.70 269.47 228.68 312.25
17 7 7 46.05 266.83 228.60 313.42
16 7 7 43.40 264.40 228.67 314.71
15 7 7 40.75 263.55 230.09 320.57
14 7 7 38.10 263.13 231.87 319.52
13 7 7 35.45 264.57 235.31 307.84
12 7 7 32.80 266.76 239.45 301.54
11 7 7 30.15 271.64 246.07 300.45

**10 7 7 27.50 277.20 253.40 295.57
9 7 7 24.85 284.71 262.62 299.58
8 6 6 22.20 292.77 272.49 316.68
7 5 5 19.55 299.68 281.42 320.44
6 4 4 16.90 317.61 300.91 358.46
5 4 4 14.25 322.79 308.53 371.09
4 4 4 11.60 362.97 349.98 419.57
3 4 4 8.95 426.75 415.07 525.53
2 3 3 6.30 463.77 454.99 595.38
1 1 1 3.65 567.10 561.17 655.35
0 0 0 1.00 925.14 921.49 852.28
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Table I.7 Model output MARS 2 
 

Response OP (Airport) Summer Day

Summary of Fit
R2 0.73
R2 (Adj) 0.73
RMSE 15.91
Mean of Response 78.93
Observations 506

Analysis of Variance DF SS MS F Ratio Prob > F
Model 10 340838 34084 135 <.0001
Error 495 125434 253
C. Total 505 466272

Parameter Estimates Estimate Std Error t Ratio Prob>|t|
Constant 95.41 4.36 21.88 <.0001
BF2 -1.87 0.17 -11.29 <.0001
BF$ -4.65 0.74 -6.25 <.0001
BF5 7.82 1.50 5.22 <.0001
BF7 0.21 0.02 9.53 <.0001
BF9 -0.28 0.02 -11.77 <.0001
BF10 -0.92 0.21 -4.36 <.0001
BF12 4.06 0.77 5.29 <.0001
BF13 4.72 1.02 4.63 <.0001
BF18 -0.06 0.01 -5.52 <.0001
BF20 2.63 0.45 5.88 <.0001

 BF2 = max ( 0, 24.00 - PM2.5 (AIRPORT))
 BF3 = max ( 0, NO2 (AIRPORT) - 6.00)
 BF4 = max ( 0, 6.00 - NO2 (AIRPORT))
 BF5 = max ( 0, PRESS - 99.69)
 BF7 = max ( 0, TEMP - 12.80) * BF3
 BF9 = max ( 0, DP - 6.40) * BF3
 BF10 = max ( 0, 6.40 - DP) * BF3
 BF12 = max ( 0, 3.99 - NO (AIRPORT))
 BF13 = max ( 0, WDI + 0.01)
 BF18 = max ( 0, 30.30 - TEMP) * BF2
 BF20 = max ( 0, 9.40 - DP)
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Table I.8 Model identification ANN 

 
 

 

 
 

Table I.9 Model output ANN 
 
  

Hidden Nodes R2 SSE R2 SSE
1 0.70 139299 0.54 193565
2 0.77 108684 0.56 185535

**3 0.80 91626 0.58 178059
4 0.82 84669 0.57 182572
5 0.84 73998 0.54 192690
6 0.86 67053 0.49 213601
7 0.87 62547 0.51 206640
8 0.87 58456 0.51 206314
9 0.90 47335 0.54 195838
10 0.90 45519 0.55 189983

Train Test

Hidden Node Multiplier Constant PM2.5 (Airport) NO (Airport) NO2 (Airport) CO (Airport)
1 -1.89 -12.05 -0.10 0.48 -0.06 0.00
2 0.75 1644.35 3.11 -0.89 1.44 -0.07
3 3.79 -48.48 0.02 0.01 -0.04 0.00

Hidden Node SR Temp DP Press Precip WS WDI
1 0.00 0.05 -0.09 0.18 -0.35 0.03 -1.80
2 -0.01 0.48 -1.27 -15.92 -4.60 -0.75 -15.34
3 0.00 0.14 -0.20 0.49 -0.07 0.00 -0.13
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Table I.10 Model identification PC-ANN 
 
 

 
 
 

Table I.11 Model output PC-ANN 
 
 
 
 
  

Hidden Nodes R2 SSE R2 SSE
1 0.70 139299 0.54 193539
2 0.77 108923 0.56 184648
3 0.80 91988 0.57 180726
4 0.83 80759 0.60 171082
5 0.84 74892 0.55 190681
6 0.86 67038 0.56 184314

**7 0.86 63908 0.67 141034
8 0.88 54770 0.51 207795
9 0.90 47915 0.50 210271
10 0.90 45247 0.64 153146

Train Test

Hidden Node Multiplier Constant PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
1 -3.41 -1.09 -0.29 -0.53 -0.53 -0.54 -0.76 -0.23 0.33 -0.92 0.27 -0.44 -1.70
2 -0.76 8.06 0.18 -2.85 2.79 1.23 -0.29 11.16 -5.55 2.22 -2.44 -4.70 -9.36
3 0.62 0.62 3.45 -6.86 -2.78 15.07 12.48 0.28 8.41 11.27 -1.27 -3.52 1.04
4 -2.96 0.28 -0.13 0.04 0.24 0.87 0.97 -0.08 -0.80 1.13 -1.08 2.20 0.89
5 0.87 4.67 -5.66 3.85 0.78 -5.55 2.95 -4.59 5.87 -2.23 -1.81 -1.72 4.96
6 0.83 -2.00 0.47 2.26 1.32 2.24 2.54 -0.25 -8.01 -3.51 -7.75 13.11 -2.67
7 1.31 -0.07 0.32 0.62 0.12 -1.54 0.82 1.62 -2.63 -3.83 2.68 1.96 0.53
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Table I.12 Model identification PC*-ANN 
 
 
 

 
 

Table I.13 Model output PC*-ANN 
 
 
  

Hidden Nodes R2 SSE R2 SSE
1 0.54 212917 0.46 228598
2 0.61 183478 0.53 198867

**3 0.64 168788 0.55 188601
4 0.67 155358 0.52 202941
5 0.68 151507 0.47 223958
6 0.70 140717 0.50 211097
7 0.71 137117 0.50 211988
8 0.71 133552 0.45 232686
9 0.73 124098 0.41 250347
10 0.73 123792 0.45 231049

Train Test

Hidden Node Multiplier Constant PC1 PC2 PC3 PC4
1 3.16 1.42 -0.42 -2.12 0.38 -0.4385472
2 -2.77 1.55 -1.06 -1.41 0.44 -0.5604144
3 -8.21 0.75 -0.06 -0.35 -0.10 0.235713
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Appendix J  Sample Error Diagnostics  
For Case Study 1 (Day Period) 

 
 
 
 

 
 
 

 
 
 

Figure J.1 Residual Moments (MLR, PCR) 
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Figure J.2 Plot O3 observed by O3 predicted (MLR) in μg/m3 
 

 
 

Figure J.3 Plot Residual by O3 predicted (MLR) in μg/m3 
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Figure J.4 Plot O3 observed by O3 predicted (PCR) in μg/m3 
 

 
 

Figure J.5 Plot Residual by O3 predicted (PCR) in μg/m3 
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Figure J.6 Residual Moments (MARS 1, MARS 2) 
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Figure J.7 Plot O3 observed by O3 predicted (MARS 1) in μg/m3 
 

 
 

Figure J.8 Plot Residual by O3 predicted (MARS 1) in μg/m3 
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Figure J.9 Plot O3 observed by O3 predicted (MARS 2) in μg/m3 
 

 
 

Figure J.10 Plot Residual by O3 predicted (MARS 2) in μg/m3 
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Figure J.11 Residual Moments (ANN, PC-ANN) 
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Figure J.12 Plot O3 observed by O3 predicted (ANN) in μg/m3 
 

 
 

Figure J.13 Plot Residual by O3 predicted (ANN) in μg/m3 
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Figure J.14 Plot O3 observed by O3 predicted (PC-ANN) in μg/m3 
 

 
 

Figure J.15 Plot Residual by O3 predicted (PC-ANN) in μg/m3 
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Figure J.16 Residual Moments (PC*-ANN) 
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Figure J.17 Plot O3 observed by O3 predicted (PC*-ANN) in μg/m3 
 

 
 

Figure J.18 Plot Residual by O3 predicted (PC*-ANN) in μg/m3 
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