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ABSTRACT 

Computational Simulation of a Gene Regulatory Network Implementing 

an Extendable Synchronous Single-Input Delay Flip-Flop 

Imad Hoteit 

 

We present a detailed and extendable design of the first 

synchronous single-input delay flip-flop implemented as a gene 

regulatory network in Escherichia coli (E. coli). The device, which we 

call the BioD, has one data input (trans-acting RNA), one clock input 

(far-red light) and an output that reports the state of the device using 

green fluorescent protein (GFP). The proposed design builds on 

Gardner’s toggle switch, to provide a more sophisticated device that 

can be synchronized with other devices within or without the same 

cell, and which requires only one data input. We provide a 

mathematical model of the system and simulation results. The results 

show that the device behaves in line with desired functionality. 

Further, we discuss the constraints of the design, which pertain to 

ranges of parameter values. The BioD is extended via the addition of 

an update function and input and output interfaces. The result is the 

BioFSM, which constitutes a synchronous and modular finite state 

machine, which uses an update function to change its state, stored in 

the BioD. The BioFSM uses its input and output interfaces for inter-
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cellular communications. This opens the door to the design of a 

circular cellular automata (the BioCell), which is envisioned as a 

number of communicating E. coli colonies, each made of clones of one 

BioFSM. 
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CHAPTER 1.  

INTRODUCTION 

Known as the “building blocks of life”, the cells of an organism are 

identical in the genetic information they hold but can be quite different 

in their shape and in the functionality they provide. They are in fact 

the smallest unit of life, and can either separately be an independent 

organism or, they can be a small part of an intricate whole composed 

of different types of cells which is called a multi-cellular organism. 

1.1 Cell and Genome 

Cells are the structural and functional units of all living organisms. 

Each cell can take in nutrients, convert these nutrients into energy, 

carry out specialized functions, and reproduce as necessary. 

Furthermore, each cell stores its own set of instructions for carrying 
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out each of these activities. 

There are two general categories of cells: prokaryotes and 

eukaryotes. Bacteria are the best known and most studied form of 

prokaryotic organisms. Prokaryotes are unicellular organisms and are 

distinguished from eukaryotes on the basis of nuclear organization, 

specifically their lack of a nuclear membrane. Prokaryotes also lack 

any of the intracellular organelles and structures that are characteristic 

of eukaryotic cells.  

Eukaryotes include fungi, animals, and plants as well as some 

unicellular organisms. Eukaryotic cells contain a nucleus, a membrane-

delineated compartment that houses the eukaryotic cell’s DNA1. 

Eukaryotic organisms also have other specialized structures, called 

organelles, which are small structures within cells that perform 

dedicated functions. For a descriptive listing of eukaryotic organelles, 

the reader is referred to (Mullock and Luzio, 2005). 

It is worth noting that eukaryotes use the same genetic code 

and metabolic processes as prokaryotes. Whether they come from the 

same organism or belong to different ones, of similar type or 

unrelated, prokaryotes or eukaryotes, all cells hold within them the 

genome of the organism. The genome2 guides and drives the 

behaviour and functionality of the cell. It is the entire set of hereditary 

                                   
1 A nucleic acid that carries the genetic information in the cell and is capable of self-replication and 

synthesis of RNA. The abbreviation stands for deoxyribonucleic acid. 
2 The full complement of genetic material within an organism. 
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instructions for building, running, and maintaining an organism, and 

passing life on to the next generation. 

The information in the genome is organized in logical sub-units. 

In a few words, the genome is divided into chromosomes, 

chromosomes contain genes, and genes are made of DNA. A 

chromosome is made of DNA and protein. It is a package containing 

some of an organism's genes. Chromosomes help a cell to keep a large 

amount of genetic information neat, organized, and compact as well as 

guide the separation and flow of genetic material during cell division 

(Hartwell et al., 2010). Genes are found on chromosomes and are 

made of DNA. Different genes determine the different characteristics, 

or traits, of an organism. One gene might determine the colour of a 

bird's feathers, while another gene would determine the shape of its 

beak. Most genes however, code for much more specialized 

functionality; a protein to catalyze a reaction, the production of a 

required substance or even a protein needed for the regulation of 

another protein. Regulatory proteins are discussed in more detail a 

couple of sections ahead. 

1.2 Genome and Regulation 

A gene regulatory network or GRN is a set of genes which interact with 

each other and with other substances in the cell, thereby governing 



4 
 

the rates at which genes in the network are transcribed into mRNAs 

or/and the rate at which mRNAs is translated into proteins. 

The genome of a cell (or its DNA) holds most of the information 

needed for a cell to function. That genetic material contains blocks of 

information called genes which encode specific proteins that determine 

function and behaviour. They do so by producing specific proteins and 

by releasing them in the cellular cytoplasm. Found on the DNA, a gene 

needs to be transcribed into an mRNA strand and, before it can be 

translated into a protein. Each mRNA has, in addition to the open 

reading frame or ORF (the region encoding the amino acid sequence 

making up the protein), a region called Ribosome Binding Site (RBS) 

to which the Ribosome binds before starting the process of translation 

of the ORF into the corresponding protein.  

 

Gene regulation adds levels of control to this process. The DNA 

strands are not always transcribed without regulation (i.e. 

constitutively) but are almost always controlled by other molecules 

such as activators and repressors. These work by binding to specific 

sequences on the DNA called operators, and hence affecting the 

process of transcription of the mRNA; other molecules bind to specific 

DNA RNA Protein 
Transcribe Translate 

Gene Expression 
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sites on the mRNA and hence influence the process of translation 

1.2.1 Operon Structure 

A typical operon has three distinct parts or regions. The promoter 

region is recognized by RNA Polymerase (RNAP), thus allowing the 

initiation of transcription. The operator region serves as a stage for 

repression or activation of transcription. The structural genes region 

contains the genes that are co-regulated by the same promoter. 

 

 

 

Figure  1-1. Operon structure. Operator sites can be located before, inside or after 

the promoter. More than one operator site can be occupied simultaneously. 

 

The expression of the genes of the operon is regulated by the 

repressors and activators acting at and around the promoter region. 

The following section describes the four types of regulation 

encountered. 

1.2.2 Types of Regulation 

There are many levels of regulation of gene expression. We highlight 

four main categories: 

Transcriptional regulation is the change in gene expression levels 

by altering transcription rates i.e. controlling the production of mRNA 

OPERATOR 
Site 

OPERATOR
Site 

GENE nGENE 1 • • • PROMOTER

OPERATOR 
Site 
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mainly using transcription factors (explained below). 

Post-transcriptional regulation is the control of gene expression 

at the RNA level, therefore between the transcription and the 

translation of the gene. The main tool in this category is RNA 

interference (RNAi). 

Translational regulation refers to the control of the levels of 

protein synthesized from its mRNA. The corresponding mechanisms 

are primarily targeted on the control of ribosome recruitment on the 

initiation codon, but can also involve modulation of the elongation or 

termination of protein synthesis. In most cases, translational 

regulation involves specific RNA secondary structures on the mRNA. 

Post-translational regulation refers to the control of the levels of 

active protein. There are several forms. It is performed either by 

means of reversible events (Post-translational modifications, such as 

Phosphorylation or sequestration) or by means of irreversible events 

(proteolysis). 

1.2.3 Transcriptional Regulation 

Since the overwhelming type of regulation used in this thesis is 

transcriptional, that regulation is discussed in more detail, and we 

classify it as follows. Transcriptional regulation of genes and operons is 

categorized into four different modes: negative inducible, negative 

repressible, positive inducible and positive repressible. 
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Negative Regulation 

Negative regulation occurs in operons whose operator sites bind a 

repressor protein. A repressor protein typically denies RNAP from 

binding and initiating transcription of the genes on the operon. 

 

Figure  1-2. Simple negative regulation. 

No transcription occurs in the presence of the repressor. 

 

a. Negative Inducible Operons 

In these operons, the repressor protein is normally bound to the 

operator site and prevents transcription. However, if an inducer 

molecule is introduced, it binds to the repressor protein. This binding 

changes the latter’s configuration, so it can no longer bind to the 

operator, thus inducing transcription. 

Transcription

Repressor

Promoter  Operator Structural genes 

RNA 

Polym‐

erase 
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Figure  1-3. Negative inducible regulation. 

Transcription is OFF in the presence of the repressor. The inducer causes a 

conformational change in the repressor protein, preventing repression, thus inducing 

transcription. 

 

b. Negative Repressible Operons 

In these operons, transcription normally takes place. The repressor 

protein cannot bind to the operator site in its normal configuration. 

However, with the introduction of a certain molecule called a co-

repressor, which binds to the repressor protein, the configuration can 

be changed such that it can bind to the operator site and repress 

transcription. 

Promoter 

Operator Structural genes 

RNA 

Polym‐

erase 

Repressor

Inducer 

Transcription
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Figure  1-4. Negative Repressible regulation. 

Transcription is ON in the presence of the repressor. The introduction of another 

repressor, which binds to the first and causes a conformational change, allows for 

repression to occur and transcription is stopped. 

 

Positive Regulation 

Positive regulation occurs in operons whose DNA binds an activator 

protein3. Activator proteins either induce or stimulate transcription. An 

operon that binds an activator protein can vastly increase production 

(more than a thousand fold).  

                                   
3 Activator proteins usually bind at a site other than the operator. For simplicity however, the figures in 

Table 1 do not display that difference. 

Promoter  Operator

RNA 

Polym‐

erase 
Repressor

Transcription
Structural genes 
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Figure  1-5. Simple positive regulation. 

Transcription is significantly boosted in the presence of the activator. 

 

a. Positive Inducible Operons 

In these operons, the activator protein cannot bind to the DNA in its 

normal configuration. However, with the introduction of an inducer 

molecule, which binds to the activator protein, the configuration can 

be changed such that it can bind to the operator site and activates or 

stimulates transcription. 

Little or No Transcription

Operator Structural genes 

RNA 

Polym‐

erase 

Promoter  Activator

Transcription
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Figure  1-6. Positive inducible regulation. 

Transcription is OFF in the presence of the activator. The introduction of the inducer, 

which causes a conformational change in the activator, allows for activation to occur 

and transcription is induced. 

 

b. Positive Repressible Operons 

In these operons, the activator protein is normally bound to the 

operator site. However, if a co-repressor molecule is introduced, it 

binds to the activator protein. This binding changes the latter’s 

configuration, so it can no longer bind to the DNA, thus stopping 

transcription. 

Operator Structural genes 

RNA 

Polym‐

erase

Little or No Transcription

Promoter 

Transcription
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Figure  1-7. Positive repressible regulation. 

Transcription is ON in the presence of the activator. The repressor causes a 

conformational change in the activator protein, preventing binding, thus repressing 

transcription. 

1.3 Need for Simulation 

When designing new systems, or deciding which route to take in a 

project, even when testing for failure points, simulation of any kind 

has always been a desirable tool to making sure we build what we 

intended to build. There are various reasons for this not the least of 

which are cost effectiveness, speed, and the inability to test in real 

time. 

Simulation is also an appropriate proof of concept. An “analytic” 

model is appropriate when mathematics can be used to find the exact 

(deterministic) or probable (stochastic) values of the measures of 

Promoter 

Little or No Transcription

Structural genes Operator

Transcription
RNA 

Polym‐

erase 

Activator
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performance. 

In the case of GRNs, many simulation methods exist that are 

deterministic or stochastic, discrete or continuous, static or dynamic, 

and qualitative or quantitative. 

The following section discusses the simulations methods we 

applied in the thesis. We used ordinary differential equations (ODEs) to 

generate two types of simulations that were deterministic and 

stochastic, while being discrete dynamic and quantitative. 

1.4 Hill Equation 

Please note that from this moment on, the promoter is taken to mean 

both the promoter and operator regions of an operon. The reason is 

because the operator sites can be found either before the promoter 

site, or after it (or much after it) and sometimes in it (between the -10 

and -35 sites). Thus both sites are in effect the same region and we 

understand that any “regulated” promoter has to have the required 

operator sites for said regulation. 

The most direct way of modelling the changes in concentrations 

of substances in a network is using the Hill equation. Consider the case 

in Figure  1-8 of an unregulated (or constitutively expressed) gene. 
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Figure  1-8. Unregulated operon. 

DNA strand that notably contains a promoter and the coding sequence of a protein, 

thus forming a constitutively expressed gene. 

 

The promoter region of this gene is not sensitive to any stimulus, 

negative or positive, and is therefore continually working. RNAP 

attaches itself unobstructed to its binding sites in the promoter and 

proceeds to transcribe this gene. This is followed by another RNAP 

molecule and so on and so forth, only limited by (i) the strength of the 

promoter and by (ii) the availability of building blocks. 

The strength of a promoter is defined as the strength of the 

binding that occurs with the RNAP. The stronger the binding, the more 

likely it is to occur, and the less likely it is to dissociate once occurred. 

Each promoter (Q) has a specific strength which we model as the 

transcription rate ߩொ. Thus a constitutively expressed gene X is 

transcribed according to 

 ݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

 
( 1.1) 

 

where [mX] is the concentration of the mRNA transcripts of gene X.  

Since mRNA transcripts have a limited half life, their total 
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concentration is better approximated in equation ( 1.2) where a 

degradation term is added that is proportional to the concentration of 

existing transcripts. 

 ݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

െ ߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

 
( 1.2) 

 

This equation is read as: the change in the concentration gene X 

mRNA transcripts per unit of time is equal to the transcription rate of 

the promoter Q, minus the degradation rate of the existing transcripts. 

The most common regulation comes in the form of a repressor 

which inhibits transcription by binding to its operator site and prevents 

RNAP from binding to the promoter and begin transcription (see Figure 

 1-9). 

 

 

Figure  1-9. Negative regulation. 

The repressor R binds to its operator site and prevents RNAP from binding to the 

promoter, effectively inhibiting transcription. 

 

The transcription rate ߩொ is now influenced by [R], the 
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concentration of the repressor R in the system. This dynamic is 

modelled as follows 

 
݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

· ൮
1

1 ൅ ൬
ሾܴሿ
ோܭ

൰
௡ೃ

൲

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
inhibition from R

െ ߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

 
( 1.3) 

 

where ܭோ and ݊ோ are the dissociation constant of R and the Hill 

cooperativity coefficient of R respectively. 

The dissociation constant generally termed ܭௗ, measures the 

strength of the binding of the repressor to the operator. This is 

described in further detail in section  4.1.5 below, and its effect on the 

shape of the curve is displayed in Figure  1-10. 
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Figure  1-10. Effect of the dissociation constant 

on the speed of the inhibition. 

  

The Hill cooperativity coefficient here reflects the manner 

(positive, negative or non-cooperative) in which the repressor is 

binding to the operator site on the DNA strand. In biochemistry, 

complex molecules and multimers often are assembled using their 

binding sites one block at a time. That assembly, or distributed 

process of binding can be enhanced or inhibited after the first (or 

later) binding(s). This is known as cooperative binding and the Hill 

coefficient provides a way to quantify that effect. When the binding is 
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enhanced and we have a positively cooperative reaction, ݊ௗ ൐ 1; when 

the binding is inhibited and we have a negatively cooperative reaction, 

݊ௗ ൏ 1; when the binding is unaffected and we have a non-cooperative 

reaction, ݊ௗ ൌ 1. Its effect on the sigmoid is illustrated in Figure  1-11. 

 

 

Figure  1-11. Effect of the Hill coefficient 

on the slope of the sigmoidal curve created by the Hill equation. 

 

Biological systems are inherently imprecise, and gene regulation 

is no different. Indeed, for realistic simulations, the designs must 

incorporate the notion of leakage in the equation. That is, when a 
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repressor R is present in a high enough concentration to completely 

inhibit the transcription of gene X, that transcription is almost never 

shutdown completely. Rather it is brought down to a very low but still 

present basal level due to the leakage of the repression. We modify 

equation ( 1.3) to incorporate a leakage term as follows 

 

݀ሾ݉ܺሿ
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·
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ۇ
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൲
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ۋ
ۋ
ۊ

െ ߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

 ( 1.4) 

 

where 0 ൑ ܽ ൑ 1 represents the leakage percentage, typically (but not 

necessarily) 1%. 

It is possible to have more than one repressor regulate the same 

gene. The promoter region can be designed to have more than one 

operator binding sites for different repressors. Figure  1-12 displays the 

common case of dual repression. Two different repressors R1 and R2, 

bind to their respective operator sites in promoter Q and inhibit 

transcription of gene X. 

 

Figure  1-12. Dual repression. 
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The above configuration yields the strongest transcription in the 

absence of R1 and R2 and the strongest repression in their dual 

presence. The presence of just one of the repressors yields a weaker 

repression. This dynamic is modelled as follows 
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 ( 1.5) 

 

The last case we will see used in this thesis is the activation and 

repression by two different substances of the same transcription 

process. 

 

Figure  1-13. Activation and repression. 

 

The activation term in the equation below is the inverse form of 

the Hill equation. At low concentrations of the activator A, the 

transcription is reduced to basal level, while an increase in the 

concentration of A increases the transcription rate. 
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 ( 1.6) 

 

1.5 Law of Mass Action 

The law of mass action is a mathematical model that explains and 

predicts behaviours of solutions in dynamic equilibrium. It can be 

described with two aspects: 1) the equilibrium aspect, concerning the 

composition of a reaction mixture at equilibrium and 2) the kinetic 

aspect concerning the rate equations for elementary reactions. 

The law states that the rate of an elementary reaction is 

proportional to the product of the concentrations of the participating 

molecules. 

 
Receptor ൅ Ligand 

௄ೀಿ
ሱۛሮ

௄ೀಷಷ
ርۛ ሲۛ Receptor  Ligand ( 1.7) 

 

Equilibrium is reached when the rate at which new 

ligandreceptor complexes are formed equals the rate at which the 

ligandreceptor complexes dissociate. At equilibrium: 
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 ሾLigandሿ. ሾReceptorሿ. ைேܭ ൌ ሾLigand  Receptorሿ. ைிிܭ  ( 1.8) 

 

That derivation is used to generate equation ( 3.15) below. 

1.6 Michaelis-Menten Kinetics 

Enzymes are molecules that act as catalysts to a reaction. Enzymatic 

reactions abound in a cell and are very different from the transcript 

generating process described above; hence the equation follows a 

different mathematical model. 

An enzyme E helps turn a substrate S into a product P but is not 

consumed by the process. Rather, the enzyme binds (in a reversible 

process) to the substrate forming a complex ES which in turn is 

converted into a product P and the enzyme.  

 
ܧ ൅ ܵ

௞೑
ሱۛ ሮۛ

௞ೝ
ርۛ ሲۛܵܧ

௞೎ೌ೟
ሱۛሮ ܧ ൅ ܲ ( 1.9) 

 

where ݇௙, ݇௥ and ݇௖௔௧ denote the forward, reverse and catalysed 

reaction rate constants respectively. 
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Figure  1-14. Michaelis-Menten Kinetics4 

Saturation curve for an enzyme (substrate concentration vs reaction rate). 

 

The reaction rate is given with respect to the concentration ߥ଴ of 

a substrate ܵ. The formula is given by 

 
଴ߥ ൌ mܸaxሾܵሿ

ெܭ ൅ ሾܵሿ
 ( 1.10) 

 

where mܸax is the maximum rate achieved by the system, i.e. during 

saturated substrate concentrations. ܭெ is the Michaelis constant, and is 

defined as the substrate concentration at which the reaction rate is 

half of mܸax. 

                                   
4 Image taken from Wikipedia: “http://en.wikipedia.org/wiki/Enzyme_kinetics” 
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CHAPTER 2.  

LITERATURE REVIEW 

Most of the complex processes that take place in a cell are governed 

by gene expression, which is regulated at several levels along the 

pathway leading from DNA to protein. Gene expression may be 

regulated during transcription and post-transcriptionally, including 

during protein translation and via post-translational modification of 

proteins. Notably, much of the control of gene expression is done 

either by regulatory proteins or by RNAs, which are themselves the 

products of genes. Hence, the interactions between DNA, RNAs, 

proteins, and other molecules, form natural gene regulatory networks 

(or GRNs) of varied complexity.  

While studying these networks and their components provides 

invaluable information, it is essential to: (a) thoroughly investigate 

these components in different environments, while performing 

different functions, and (b) integrate this knowledge to build new 

synthetic gene regulatory networks and other devices. The discipline of 

Synthetic Biology aims at systematically designing, building, combining 

and testing new biological functions and systems that do not occur in 

nature. Indeed, individual parts such as promoters and protein coding 
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sequences can be assembled into GRNs that perform desired 

functionalities, such as computing machines. 

 

 

Figure  2-1. Gene expression in a eukaryote cell.5 

The various steps in the gene expression can all be regulated. Inducers, repressors, 

activators, RNA interference and various other substances can be used to either 

inhibit or enhance this path. 

2.1 Computing machines 

The synthesis of computing machines via the manipulation of DNA 

within or without living organisms, started in 1994 when Adleman 

                                   
5 Image taken from the genetics website of Professor Robert S. Winning at Eastern Michigan University: 

“http://www.emunix.emich.edu/~rwinning/genetics/eureg.htm” 
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executed an experimental procedure that used DNA, in vitro, to solve 

an instance of the directed Hamiltonian path problem (Adleman, 

1994). In contrast, in vivo cell-based or cellular computing started in 

1998 with the modification of the genome of the prokaryote E. coli, to 

realize 1- and 2-input combinatorial Boolean logic gates (e.g. NOT, 

AND and IMPLIES) (Knight, Jr. and Sussman, 1998; Weiss et al., 

1998); a similar feat was achieved with eukaryotic cells by Kramer et 

al. (Kramer et al., 2004). Along another dimension, time-dependant or 

sequential Boolean logic devices have also been implemented in living 

cells, starting with a hysteretic 2-input toggle switch by Gardner et al. 

(Gardner et al., 2000), a synthetic oscillator by Elowitz and Leibler 

(Elowitz and Leibler, 2000), and followed by Becskei et al.’s (Becskei 

et al., 2001) yeast-based memory device using positive feedback. 

In one decade this field has grown to generate many elementary 

devices (Drubin et al., 2007; Boyle and Silver, 2009; Tigges et al., 

2009; Haynes and Silver, 2009), including band-pass filters (Basu et 

al., 2005) and counters (Friedland et al., 2009). More complicated 

devices such as engineered multi-cellular pulse and pattern generators 

(Basu et al., 2004; Basu et al., 2005), single cell biosensors (Levskaya 

et al., 2005; Tecon et al., 2006), tumour-targeting bacteria (Anderson 

et al., 2006), and cell-based computers (Cox et al., 2007; Balagadde 

et al., 2008) have also been synthesized or proposed. 
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2.2 Simulation and Modelling 

In parallel to advances in GRN design, mathematical modelling and 

simulation tools have been developed to help make approximate 

predictions of the behaviour of GRNs before significant resources are 

allotted to their synthesis. These include, but are not limited to, 

deterministic (Hindmarsh et al., 2005) and stochastic simulation 

algorithms (Gillespie, 1977), metabolic control analysis (MCA) (Olivier 

et al., 2005), structural analysis (Olivier et al., 2005) and flux-balance 

analysis (FBA) (Orth et al., 2010). Deterministic simulation models 

include differential equations, Boolean networks, logical networks and 

rule-based formalisms (de Jong, 2002). Stochastic models include 

Bayesian networks and master equations (de Jong, 2002). MCA 

quantifies how variables, such as fluxes and species concentrations, 

depend on network parameters. Structural analysis is mostly used for 

genome-scale models to determine reduced stoichiometric matrices. 

FBA is used for optimizing the growth rate of a modelled organism, 

while falling within the constraints of its internal metabolites. 

2.3 Switch and Oscillator Designs 

In the particular case of switching devices, there has been a fair 

number of switches built or theorized, which involve (a) DNA 
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modification (e.g. using invertases), (b) regulation of the process of 

transcription, (c) post-transcriptional regulation (involving various RNA 

molecules), as well as (d) post-translational regulation (by changing 

the state of expressed proteins). 

2.3.1 DNA Level Using Flipase Protein 

The first example of the use of invertases is Ham et al. (Ham et al., 

2006), which places the promoter of a gene between two specific 

elements targeted by the FimE flipase. The flipase inverts the inversion 

region between these two elements (including them). This completely 

disables transcription from that promoter, rendering the associated 

gene silent. This is a unidirectional operation and it does not require 

qualification by a clock. In 2008, Ham et al. (Ham et al., 2008) 

expanded their initial concept by using both the hin and fimE 

inversion mechanisms. This allowed them to use the relative positions 

of the elements marking the inversion regions to propose three- and 

five-state machines, which rely completely on the two flipases to 

change state. It is worth noting that this method of defining state is 

heritable as changes to the DNA are permanent and hence, inherited 

by the offspring. 

2.3.2 Transcription Level 

The most prominent example of a toggle switch that is transcriptionally 
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controlled is that of Gardner et al. (Gardner et al., 2000). However, 

this toggle switch requires two inputs and operates asynchronously (is 

not controlled by a clock input).  

 

Figure  2-2. Toggle switch design.6 

Repressor 1 inhibits transcription from Promoter 1 and is induced by Inducer 1. 

Repressor 2 inhibits transcription from Promoter 2 and is induced by Inducer 2. 

 

Elowitz and Leibler (Elowitz and Leibler, 2000) synthesized a 

three gene oscillator (plus an additional gene for reporting), dubbed 

repressilator. The product of each of the three genes represses the 

next gene in a loop, with the last gene repressing the first one. The 

repressilator is not a bi-stable switch but rather a self-maintaining 

oscillator that proceeds from one state to the next, autonomously and 

without the need for any clock input. Becskei et al. (Becskei et al., 

2001) presented a bi-stable positive feedback loop expressed in yeast 

in which a tetracycline-dependent activator turns on its own 

expression. They discussed how positive auto-regulation in GRNs can 

                                   
6 Figure taken from (Gardner et al., 2000) 
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turn an analogue input such as the concentration of a signalling 

molecule into a stepped (or digital) response with multiple steady 

states, allowing the pathway to be used as a memory element. 

Kobayashi et al. (Kobayashi et al., 2004) utilized slightly modified 

versions of Gardner’s toggle switch as memory modules of larger 

networks that sensed specific events (e.g. DNA damage) and 

generated particular responses (e.g. biofilm formation). In this case, 

the toggle switch is, by default, in one specific state, which flips in 

response to the sensed event. It does not have two inputs, but it does 

not have two stable states either. And, as is the case with Gardner’s 

switch, it operates asynchronously. Stricker et al. (Stricker et al., 

2008) synthesized a two gene oscillating network, where one gene is 

responsible for the activation of both genes, and the other gene is 

responsible for repressing both genes. This network improves on the 

repressilator in terms of speed, durability of the oscillation and the 

ability to externally tune its oscillations. Nevertheless, this network is 

not a switch that can be used as a memory module, such as Gardner’s 

toggle. Lou et al. (Lou et al., 2010) propose a single-input toggle 

switch, made of a Gardner-like two-gene memory module and a 

single-gene NOR gate module. The memory module is, by default, in a 

particular stable state. Upon the introduction of a UV input, several 

proteins degrade, which causes the memory module, with help from 
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the NOR module to switch to a new state and maintain it. This is, in 

fact, a single-input switch, but it lacks a clock input. 

2.3.3 Post-Transcription Level 

One very significant work of RNA-based switching behavior is that of 

Bayer and Smolke (Bayer and Smolke, 2005). They present devices 

that are regulated post-transcriptionally using RNA riboswitches. A 

riboswitch is an RNA molecule containing two domains: (i) a ligand-

binding aptamer domain and (ii) an antisense regulator domain. The 

latter is used to block the ribosome binding site (RBS) and prevent 

translation, while the former binds a ligand that triggers a 

conformational change in the riboswitch, resulting in either the 

covering or uncovering of the anti-sense regulator domain. 

Riboswitches have the advantage that they can be designed and/or 

evolved to respond to many ligands including proteins and RNA 

molecules. Riboswitches have been synthesized to respond to one or 

more inputs (ligands). Although current riboswitches change state uni-

directionally, it is possible to imagine riboswitches that respond to 

inducible small protein ligands. So far, riboswitches act 

asynchronously. Another type of oscillations was demonstrated by 

Swinburne et al. (Swinburne et al., 2008) who proposed a self-

repressed device containing an intron. An intron is any nucleotide 

sequence within a gene that is removed post-transcriptionally by RNA 
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splicing to generate the final mature RNA product of a gene. The 

device demonstrated pulses of expression in mammalian cells. The 

frequency of the pulses was dependent on intron length. 

2.3.4 Protein Level 

Finally, a good example of how switches can be regulated at the 

protein level is the work of Dueber et al. (Dueber et al., 2003), which 

modified the natural N-WASP allosteric switch to synthesize 1- and 2-

input synthetic protein switches. In the 2-input switch, the hybrid 

protein was engineered to have two A-terminal auto-inhibitory 

domains that correspond to the output domain and a C-terminal 

domain on the protein. The way in which the protein responded to the 

two input ligands (PDZ and Cdc42) relied on the relative positioning of 

the four domains. They used this to synthesize various switches, 

whose state (active or not) depended on combinatorial functions of the 

two inputs. All of their devices are asynchronous and unidirectional. 

2.4 Making the Case 

Despite the many works on genetic switches (also called flip-flops), all 

published synthesized and proposed designs work asynchronously, 

usually utilizing more than one external logical input. Lack of 

synchronization-ability entails that the operation of a flip-flop cannot 
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be synchronized with the operation of other parts of a larger system, 

using a single global clock. Also, a true delay flip-flop has but one 

logical input. Though the use of a single input complicates design, it 

does simplify use and allow for easier expansion of function.   

 

Table  2-1. Summary of Properties of Different Proposed Switching and 

Oscillating Circuits 
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Gardner et al. 2000   
Elowitz et al. 2000  
Becskei et al. 2001  
Dueber et al. 2003  
Kobayashi et al. 2004   
Bayer and Smolke 2005  
Ham et al. 2006   
Swinburne et al. 2008  
Stricker et al. 2008  
Lou et al. 2010    
Hoteit et al. 2011      

 

Table  2-1 lists a selection of proposed switches and highlights their 

publication year and five of their properties: 

– 2-way Switching: The circuit can switch more than once, from state 

A to B or from state B to A. 

– 1-Logical Input: Switching occurs using the same single input from 
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state A to B or from state B to A. 

– Bi-stability: The switch is stable in state A, or in state B, before or 

after switching. 

– Synchronous: The switch works on a clock. 

– Realized: The design was realized in a lab, in vitro or in vivo. 

We call the proposed GRN embodying a synchronous single-input 

delay flip-flop the BioD. It is, in summary, a novel GRN that changes 

states in response to a single logical input, and only on the rising edge 

of a clock signal. Its specification and detailed design, modelling and 

simulation results follow. 
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CHAPTER 3.   

NETWORK DESIGN AND MODELLING 

In abstract terms, the BioD is a gene regulatory network acting as a 

delay flip-flop. By delay flip-flop, we mean a logical device that has an 

input (D), a clock (CLK), and an output (Q) equal to its state (S); see 

the logical block diagram in Figure  3-1 (Q is the second output and is 

equal to the logical complement of Q). The state of the delay switch is 

held constant unless and until its input differs from its state, on the 

rising edge of the clock. In that case, the next state of the delay 

switch will copy the value of the input (i.e., Q = D). Hence, a cell that 

acts as a delay switch is effectively a 1-bit memory device, controlled 

by an input and a clock. The BioD also exhibits its state by expressing 

(or not) a fluorescent protein. This was the specification of the BioD; 

following is its internal design. 

3.1 BioD 

The BioD has two (logical and control) inputs: trans-activating RNA or 

taRNA as input D, and the presence or absence of far-red (FR) light as 

the clock (CLK). It has two complementary outputs (Q and Q) defining 

the state of the flip-flop: the ON state is indicated by the presence, in 
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high concentrations, of green fluorescent protein (GFP), while the OFF 

state is indicated by its absence. As with its electronic equivalent, the 

BioD’s output follows the input on the rising edge of the clock. As 

shown in Figure  3-2, the gene regulatory network implementing the 

BioD is comprised of three major parts: the INPUT genes, SELECTION 

genes and STATE genes.  

 
Figure  3-1. The Logical Block Diagram for BioD. 

Please note that the design involves several operons that include 

more than one protein coding sequence. To simplify our language 

without loss of accuracy, we refer to both genes and operons as genes 

(there are seven of them, numbered 1 to 7). Kindly note that we use 

italicized courier new for gene names (e.g. TetR) and courier new for 

proteins (e.g. TetR) as well as protein complexes. We also use 

italicized courier new for RNAs other than transcripts (e.g. taR12), 

while distinguishing transcripts by attaching an “m” prefix to their 

names (e.g. mTetR). 
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Figure  3-2. The gene regulatory network of the BioD.  

The real genes selected to realize this network are just one possible implementation of the logical device (see Figure  3-3). 

The network consists of three segments. The STATE genes reflect the state of the network. The SELECTION genes 

determine the next state of the network by regulating the STATE genes, but only when the clock has just turned ON. The 

external logical input to the whole network goes through the INPUT genes, which in turn affect the SELECTION genes. 
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Figure  3-3. A logical circuit representation of the BioD. 

Logically, this circuit behaves like the GRN of Figure  3-2. It is not an exact 

representation, but it is useful in following the steps the BioD network takes when 

changing state. The gene numbers in Figure  3-2 match gate numbers here. A low 

CLK signal disables SELECTION gates 4 and 5, and sends a high signal (identity for 

NAND gates) to the STATE gates 6 and 7, maintaining their state. Since the outputs 

of INPUT gates 1 and 2 are complements, when the CLK signal is turned ON, only 

one of gates 4 and 5 becomes active and thus (i) affects one of the STATE gates (6 

or 7) and (ii) disables its enabling INPUT gate (1 or 2). The INPUT gates are re-

enabled after the CLK goes low, leaving them free to respond to new input values (at 

D). 

3.1.1 INPUT Genes 

The INPUT genes convey to the SELECTION genes whether an input 

signal is present or not. They do so by tipping the dynamic balance 

between the two mutually-repressed genes, 4 and 5; this process is 

detailed in section 3 below. 

In order to sense input D, gene 1 is designed to be self-

repressed, and this self-repression can only be lifted through the 
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introduction of input D. To achieve this, a form of ribo-regulation is 

used called cis. This cis-regulation or in our case, cis-repression 

prevents the translation of the transcript of gene 1, as part of the 

transcript bends over to hybridize with the ribosome binding site 

(RBS), effectively locking it. The key comes in the form of trans-

activating RNA (taRNA), which hybridizes with a particular location on 

the transcript in a manner that frees the RBS site from its cis-

repression. This allows the ribosome to bind at the RBS and start the 

process of translation (Isaacs et al., 2004). The taRNA chosen for 

input D is taR12 which is specifically designed to unlock the cis-

repression of (the transcript of) gene 1, called crR12. 

When input D is present, the transcript of gene 1 gets translated 

into the cI repressor (originally, from the λ phage). cI in turn 

represses gene 2. In the absence of input D, however, the cis-

repressed transcript of gene 1 does not get translated into the 

corresponding repressor protein. This leads to the lifting of repression 

of gene 2, and hence the expression of its own repressor protein, cII 

(originally, from the P22 phage).  

In summary, the presence of input D results in the production of 

the cI protein, while its absence leads to the production of the cII 

protein. 
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3.1.2 STATE Genes 

The STATE genes have an analogous configuration to that of Gardner’s 

toggle. They consist of two co-repressed genes, and as such define the 

state of the BioD device. The products of genes 7 and 6 represent 

complementary outputs Q and Q, respectively. The presence of a 

green fluorescent protein (GFP) signals the presence of logical output 

Q, while its absence signals the presence of its logical complement Q. 

The co-repressed nature of the toggle switch means that when either 

gene is active, the toggle enters into a stable steady state. In the 

context of the BioD, only the SELECTION genes can perturb the 

stability of the SELECTION genes.  

Two important points need to be made here. First, the 

SELECTION genes can affect the STATE genes, independently of the 

current state of the BioD. Second, genes 4 and 5 are mutually 

exclusive, which renders it impossible for the SELECTION genes to set 

the state of the STATE genes to both ON and OFF, simultaneously. 

Which of the two genes (4 or 5) is activated depends on the state of 

the INPUT genes at the time the CLK signal is turned ON. 

3.1.3 SELECTION Genes 

The SELECTION genes are always OFF until turned ON by FR light (the 

CLK input). In the absence of FR light, genes 4 and 5 are always 
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repressed by the phosphorylated version of OmpR, i.e. OmpRP. Gene 3 is 

constitutively expressed and produces OmpR. OmpR is phosphorylated in 

the presence of the EnvZ enzyme. EnvZ is connected to Cph1, which in 

the presence of FR light, induces a conformational change in EnvZ 

preventing the phosphorylation of OmpR. The genes that produce EnvZ 

and Cph1 (and others needed for the light response system) are not 

shown in Figure  3-2. See reference (Levskaya et al., 2005) for a fully 

detailed explanation. 

The phosphorylation of OmpR is dominant in the absence of FR 

light and negligible in its presence. Therefore, the FR light signal 

causes a drop in OmpRP levels and a corresponding rise in OmpR levels. 

This drop results in partial lifting of the repression of both genes 4 and 

5, as their promoter ompf, is both repressed by OmpRP and activated by 

OmpR. Both the functionality of ompf and the complementary levels of 

OmpR and OmpRP result in a system that is quick to start or stop 

transcription of both genes 4 and 5. 

The SELECTION genes also respond to and affect the INPUT 

genes. As previously stated, the BioD is an edge-triggered device, i.e. 

it responds to the input when the CLK signal turns ON, but not when 

the CLK signal is ON. If the CLK signal is ON and either gene 4 (or 5) is 

ON, then gene 4 (or 5) would be repressing the genes that could 

potentially repress it. Namely, gene 4 would repress genes 2 and 5, 
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and gene 5 would repress genes 1 and 4. As a result, any change due 

to input D, when the CLK signal is already ON, does not propagate to 

the SELECTION genes. For a toggle (ON) input signal to affect the 

current state of the SELECTION genes, the CLK signal must first turn 

OFF for a period then ON again. 

Table  3-1. State Transition Table 
“X” is don’t care. “=” is no change. 
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1 0 0 X

0 0 0 X

1

0

0

0

1

0

1

0

1

1

1

X

X

X

0

1

0

1

0

X

NEXT STATE

0 1 0 0 = =

DCLK

1 0 0 X

=

0 1 0 1 1 0

1 0 0 0 =

1

= = = = = =

1 0 1 0 0

=1 0 0 0 =

=

0 1 0 0 = =

= = = = =

 

Given that the dynamics of such a gene network are non-trivial, 

we provide a summary of its operation using a state transition table 

(Table  3-1) plus a single fully detailed scenario, tracing through one 

typical sequence of transitions. The scenario is that of a change of 

state, from OFF to ON, in response to a turned ON input (D), whose 
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level must stabilize, prior to the introduction of the CLK signal (FR 

light).  

When the state of the BioD is OFF, gene 6 is ON, expressing two 

products. Since one of them (TetR) is repressing gene 7, gene 7 is 

considered OFF. In the absence of FR light, the constitutively 

expressed (and subsequently phosphorylated) repressor (OmpRP) 

blocks any production from the SELECTION genes (4 and 5). Hence, 

the status quo of the STATE genes is maintained. Lastly, gene 1 is ON, 

induced by input (D), while gene 2 is OFF, repressed by the product of 

gene 1, cI.  After clocking, the concentration of OmpRP (which was 

repressing genes 4 and 5) starts falling. The only other repressor of 

gene 4 (i.e. cII from gene 2) is already OFF. So gene 4 can start 

producing, and as such, it starts repressing gene 5, which is still 

repressed by cI from gene 1. At this point in time, gene 1 is ON, gene 

2 is OFF, gene 4 is ON, gene 5 is OFF, while gene 6 is still ON and 

gene 7 is still OFF. Turning our attention to gene 4, note that one of 

the repressors it produces is identical to the one generated by gene 7, 

namely LacI. Its production starts switching off gene 6, resulting in a 

gradual increase in the expression of gene 7. Once gene 7 is fully 

expressed, its product (LacI) represses gene 6, ensuring the 

continuation of gene 7’s new ON state. Hence, we have achieved a 

change of network state (indicated by GFP) from OFF to ON (following 
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the value of the input (D)).  

As long as the CLK signal is ON, the new state will be 

maintained. If a significant change in the input level occurs while the 

clock is ON, the repressions of genes 2 and 5 would not disappear, 

since gene 4 is ON and produces cI. Indeed, as long as gene 4 is ON, 

it has the ability to keep itself from being repressed by other genes, 

that is, by repressing them. It is only when the CLK signal is removed 

and both genes 4 and 5 are OFF that the system is again free to 

respond to input (D), upon the re-introduction of the CLK signal. 

Model 

The gene regulatory network of Figure  3-2 is simulated 

deterministically and stochastically, following a mathematical model. 

The model is shown below as (a) a system of ordinary differential 

equations (ODEs) modelling the production of mRNA transcripts, and 

(b) a system of ODEs modelling the translation of the transcripts into 

their respective proteins. 

The same system of ODEs constitutes the basis of the stochastic 

simulation used to generate the data for Figure  4-1, Figure  4-5 and 

Figure  4-6. We used the tau-leaping algorithm (Cao et al., 2007), 

which achieves fast and accurate simulation by taking large time steps 

that leap over individual reactions. We chose to show the results of the 

stochastic simulation because they are similar to, but are more 
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realistic than the deterministic ones. 

We define the following terms and chemical species: ݉ݎܿܫܥ is the 

cis-repressed mRNA transcript of gene 1; ݉ܺ is the mRNA transcript 

for the protein ܺ; ீ݀݋ݎ݌௘௡௘௑ is the amount of transcripts produced by 

gene ܺ at any given time; ߩ௑ is the maximum transcription rate of the 

promoter of gene ܺ; while ߱௑, ݊௑, ܭ௑ and ሾܺሿ are, respectively, the 

degradation constant, the Hill cooperativity coefficient, the dissociation 

constant and the concentration of substance ܺ. 

Transcription ODEs 

 ݀ሾ݉ݎܿܫܥሿ
ݐ݀

ൌ ௘௡௘ଵீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ݎܿܫܥሿ ( 3.1) 

 

 ݀ሾ݉ܫܥሿ
ݐ݀

ൌ ௘௡௘ସீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫܥሿ ( 3.2) 

 

 ݀ሾ݉ܫܫܥሿ
ݐ݀

ൌ ௘௡௘ଶீ݀݋ݎ݌ ൅ ௘௡௘ହீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫܫܥሿ ( 3.3) 

 

 ݀ሾܱܴ݉݉݌ሿ
ݐ݀

ൌ ௘௡௘ଷீ݀݋ݎ݌ െ ߱௠ோே஺. ሾܱܴ݉݉݌ሿ ( 3.4) 

 

 ݀ሾ݉4݈ܽܩሿ
ݐ݀

ൌ ௘௡௘ହீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉4݈ܽܩሿ ( 3.5) 
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 ݀ሾܴ݉ܶ݁ݐሿ
ݐ݀

ൌ ௘௡௘ହீ݀݋ݎ݌ ൅ ௘௡௘଺ீ݀݋ݎ݌ െ ߱௠ோே஺. ሾܴ݉ܶ݁ݐሿ ( 3.6) 

 

 ݀ሾ݉ܫܿܽܮሿ
ݐ݀

ൌ ௘௡௘ସீ݀݋ݎ݌ ൅ ௘௡௘଻ீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫܿܽܮሿ ( 3.7) 

 

where gene 1 is repressed by Gal4, 

௘௡௘ଵீ݀݋ݎ݌  ൌ
ଵߩ

1 ൅ ൬
ሾ4݈ܽܩሿ
௔௟ସீܭ

൰
௡ಸೌ೗ర ( 3.8) 

 

gene 2 is repressed by cI, 

௘௡௘ଶீ݀݋ݎ݌  ൌ
ଶߩ

1 ൅ ൬
ሾܫܥሿ
஼ூܭ

൰
௡಴಺ ( 3.9) 

 

gene 3 is constitutively expressed, 

௘௡௘ଷீ݀݋ݎ݌  ൌ  ଷ ( 3.10)ߩ

 

gene 4 is repressed by both cII and OmpRP, while being activated by 

OmpR, 

 
௘௡௘ସீ݀݋ݎ݌ ൌ

ସߩ

1 ൅ ൬
ሾܫܫܥሿ
஼ூூܭ

൰
௡಴಺಺

כ
1

1 ൅ ൬
ሾܱܴ݉ܲ݌ሿ
ை௠௣ோ௉ܭ

൰
௡ೀ೘೛ೃು

כ

൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

1 ൅ ൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

 ( 3.11) 
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gene 5 is repressed by both cI and OmpRP, while being activated by 

OmpR, 

 
௘௡௘ହீ݀݋ݎ݌ ൌ

ହߩ

1 ൅ ൬
ሾܫܥሿ
஼ூܭ

൰
௡಴಺

כ
1

1 ൅ ൬
ሾܱܴ݉ܲ݌ሿ
ை௠௣ோ௉ܭ

൰
௡ೀ೘೛ೃು

כ

൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

1 ൅ ൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

 ( 3.12) 

 

gene 6 is repressed by LacI, 

௘௡௘଺ீ݀݋ݎ݌  ൌ
଺ߩ

1 ൅ ൬
ሾܫܿܽܮሿ
௅௔௖ூܭ

൰
௡ಽೌ೎಺ ( 3.13) 

 

and gene 7 is repressed by TetR, 

௘௡௘଻ீ݀݋ݎ݌  ൌ
଻ߩ

1 ൅ ൬
ሾܴܶ݁ݐሿ
௘௧ோ்ܭ

൰
௡೅೐೟ೃ ( 3.14) 

 

Translation ODEs 

 ݀ሾܫܥሿ
ݐ݀

ൌ .஼ூߛ .௧௔ோଵଶܭ ሾ12ܴܽݐሿ. ሾ݉ݎܿܫܥሿ ൅ .஼ூߛ ሾ݉ܫܥሿ െ ߱஼ூ. ሾܫܥሿ ( 3.15) 

 

 ݀ሾܫܫܥሿ
ݐ݀

ൌ .஼ூூߛ ሾ݉ܫܫܥሿ െ ߱஼ூூ. ሾܫܫܥሿ ( 3.16) 
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The ሺ1 െ  ሻ term inserted in the Michaelis-Menten expressions ofܮ

equations ( 3.17) and ( 3.18) enables phosphorylation in the absence of 

FR light, i.e. when L = 0. 

 ݀ሾܱܴ݉݌ሿ
ݐ݀

ൌ .ை௠௣ோߛ ሾܱܴ݉݉݌ሿ െ
.௣௛௢௦ݒ ሺ1 െ .ሻܮ ሾܱܴ݉݌ሿ

݇௣௛௢௦ ൅ ሾܱܴ݉݌ሿ
൅

.ௗ௘௉௛௢௦ݒ ሾܱܴ݉ܲ݌ሿ െ ߱ை௠௣ோ. ሾܱܴ݉݌ሿ
 ( 3.17) 

 

 ݀ሾܱܴ݉ܲ݌ሿ

ݐ݀
ൌ

.௣௛௢௦ݒ ሺ1 െ .ሻܮ ሾܱܴ݉݌ሿ

݇௣௛௢௦ ൅ ሾܱܴ݉݌ሿ
െ

.ௗ௘௉௛௢௦ݒ ሾܱܴ݉ܲ݌ሿ െ ߱ை௠௣ோ௉. ሾܱܴ݉ܲ݌ሿ
 ( 3.18) 

 

 ݀ሾ4݈ܽܩሿ
ݐ݀

ൌ .௔௟ସீߛ ሾ݉4݈ܽܩሿ െ ߱ீ௔௟ସ. ሾ4݈ܽܩሿ ( 3.19) 

 

 ݀ሾܴܶ݁ݐሿ
ݐ݀

ൌ .௘௧ோ்ߛ ሾܴ݉ܶ݁ݐሿ െ ்߱௘௧ோ. ሾܴܶ݁ݐሿ ( 3.20) 

 

 ݀ሾܫܿܽܮሿ
ݐ݀

ൌ .௅௔௖ூߛ ሾ݉ܫܿܽܮሿ െ ߱௅௔௖ூ. ሾܫܿܽܮሿ ( 3.21) 

 

Parameters values are as shown in Table  3-2. Please refer to the 

Discussion section for a discussion of the dissociation constants. The 

degradation rates of various molecules are not known, so we use the 

rates arising from dilution by cell-growth. Somewhat elevated rates 

are used for ߱஼ூ and ்߱௘௧ோ in order to avoid lingering production of cI, 

and TetR, when the state is not favourable. That is feasible because 
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protein degradation rates can be artificially increased by adding to the 

protein coding sequence an SsrA tag, making the modified protein a 

target of various proteases in the cell (Elowitz and Leibler, 2000). 
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Table  3-2. Nominal Values of the Parameters of Transcription  
and Translation Equations 

Parameter Description Value Reference 

 

GENERAL PARAMETERS 
 ଵ max. transcription rate of promoter of gene 1 0.680 [nM/s] Estimateߩ

 ଶ max. transcription rate of promoter of gene 2 0.595  nM/s] Estimateߩ

 ଷߩ
max. transcription rate of constitutive 
promoter of gene 3 

0.085 [nM/s] Estimate 

 ସ max. transcription rate of promoter of gene 4 0.255 [nM/s] Estimateߩ

 ହ max. transcription rate of promoter of gene 5 0.255 [nM/s] Estimateߩ

 ଺ max. transcription rate of promoter of gene 6 0.765 [nM/s] Estimateߩ

 ଻,଼,ଽ,ଵ଴ߩ
max. transcription rate of promoters of genes 
7, 8, 9 and 10 

0.850 [nM/s] Estimate 

γX Translation rate of gene X (any gene) 0.1  Estimate 

υphos Rate of OmpR phosphorylation 20.0  Estimate 

υdePhos Rate of OmpRP de-phosphorylation 0.01  Estimate 

kphos Kinetic phosphorylation constant 1.0  Estimate 

 

DEGRADATION CONSTANTS 

ωLacI degradation of LacI 2.31e-3 [1/s] Estimate 

ωTetR degradation of TetR 2.3e-2 [1/s] (Baumeister et al., 
1991) 

ωCI degradation of cI 7e-4 [1/s] (Reinitz and Vaisnys, 
1990) 

ωCII degradation of cII 6.9e-3 [1/s] (Vohradsky, 2001) 

ωOmpR degradation of OmpR 0.13e-2 [1/s] (Zhu et al., 2000) 

ωGal4 degradation of Gal4 2.88e-2 [1/s] Estimate 

ωLexA degradation of LexA 0.0115 
[1/min] 

(Camas et al., 2006) 
(half-life of ~60mins) 

ωLuxR·AHL degradation of LuxR·AHL 1e-3 [1/s] (Goryachev et al., 
2006) 

ωRhlR·AHL degradation of RhlR·AHL 1e-3 [1/s] Estimate 

ωGFP degradation of GFP 0.012 [1/min] (de Jong et al., 2010) 

ωtaR12 degradation of taR12 1.96e-3 [1/s]  (Friedland et al., 2009) 

ωmRNA degradation of an mRNA transcript 2.88e-3 [1/s] (Alon, 2006) 

 

DISSOCIATION CONSTANTS 

KLacI LacI repressor dissociation constant 10 [nM] (Wang et al., 2005) 

KTetR TetR repressor dissociation constant 5.6 [nM] (Stekel and Jenkins, 
2008) 

KCI cI repressor dissociation constant 8 [nM] (Basu et al., 2005) 

KCII cII repressor dissociation constant 50 [nM] Estimate 

KOmpR OmpR repressor dissociation constant 151 [nM] (Head et al., 1998) 

KOmpRP OmpRP repressor dissociation constant 6 [nM] (Head et al., 1998) 

KGal4 Gal4 repressor dissociation constant 24 [nM] (Hong et al., 2008) 

KLexA LexA repressor dissociation constant 20 [nM] (Kuhner et al., 2004) 

KLuxR·AHL LuxR·AHL affinity 10 [nM] (Basu et al., 2005) 

KRhlR·AHL RhlR·AHL affinity 10 [nM] Estimate 

KtaR12 taR12 repressor dissociation constant 80 [nM] (Isaacs et al., 2004) 
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HILL COOPERATIVITY 

nLacI LacI repressor Hill cooperativity 2 (Basu et al., 2005) 

nTetR TetR repressor Hill cooperativity 2 Estimate 

nCI cI repressor Hill cooperativity 2 (Basu et al., 2005) 

nCII cII repressor Hill cooperativity 2 (Shih and Gussin, 
1984) 

nOmpR OmpR repressor Hill cooperativity 2 Estimate 

nOmpRP OmpRP repressor Hill cooperativity 2 Estimate 

nGal4 Gal4 repressor Hill cooperativity 2 Estimate 

nLexA LexA repressor Hill cooperativity 2 (Aksenov, 1999) 

nLuxR·AHL LuxR·AHL Hill cooperativity 1 (Basu et al., 2005) 

nRhlR·AHL RhlR·AHL Hill cooperativity 1 Estimate 

ntaR12 taR12 repressor Hill cooperativity 2 Estimate 
 

3.2 BioFSM 

From a computational point of view, a logical next step to the BioD is 

the design of a GRN embodying a finite state machine, which uses the 

BioD as a 1-bit memory module. We call this design a BioFSM, which is 

also a stand-alone module that can be modified to carry out different 

logical functions and/or to communicate with other modules via inter-

cellular signalling.  

 
Figure  3-4. The Logical Block Diagram for BioFSM. 
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The BioFSM has the following specification, characterized by its 

inputs, clock and current state. When the clock is OFF, there is no 

change in the state of the device. However, when the clock turns ON, 

the next state of the BioFSM is determined by a state update function 

(the UF), which is a function of its external inputs and its own current 

state. 

The design of the BioFSM is shown in Figure  3-4. It  consists of 3 

modules: (a) a BioD, which holds the state of the BioFSM; (b) the 

UpdateFunction/InputInterface (or UF/II) module. The UF determines 

the next state of the BioD. The genes implementing the UF/II implicitly 

include the input interface, as changing any of the two external inputs 

requires a change to the promoter side of the genes (see Figure  3-5b); 

(c) the OutputInterface (OI) module, which is used to enable a chosen 

acyl-homoserine lactone (AHL) molecule as the output of the BioFSM 

(Figure  3-5c); AHLs are a class of small molecules capable of inter-

cellular signalling in E. coli and other bacteria (Fuqua et al., 2001). In 

fact, the two external inputs to the BioFSM are also AHLs. The modular 

design of the BioFSM allows us to alter its logic/inputs or output only 

by changing only its UF/II or OI, respectively. 
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Figure  3-5. UF/II and OI implementing F=A+BC. 

a. Logical block diagram for the UpdateFunction/InputInterface (UF/II). Inputs A and 

C are AHLs coming from neighbouring BioFSMs. They are the left and right inputs, so 

A=AHLL and C=AHLR. Input B is a repressor that reflects the state of the BioFSM and 

comes directly from the STATE genes of the embedded BioD. b. The gene regulatory 

network for the UF/II, where ܨ ൌ ܣ ൅  The output F is the input D (or taR12) to the .ܥܤ

BioD. c. Logical block diagram for the OutputInterface (OI). AHLC (centre) is the 

particular AHL assigned to this BioFSM. It is used to transmit the state of the device 

to its neighbours. The presence of LexA reflects the OFF state (i.e. the QQ output) of 

the BioD. The OI stops production of the AHL when the BioD is in an OFF state. d. 

The gene regulatory network realizing the OI; it is made of one gene. 
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The example shown in Figure  3-5 illustrates a particular UF/II 

and OI. The update function is ܣ ൅  Inputs A and C are the two .ܥܤ

originating from external sources, and are both AHLs, while B 

represents the state of the BioD, and is a repressor. It is worth noting 

here that AHLs can be activators or repressors based on the 

positioning of the binding site of the R-protein/AHL complex within the 

promoter region of the AHL-regulated gene (Anderson et al., 1999; 

Medina et al., 2003). Hence, the logical complements of the external 

inputs, ܣ and ܥ, are readily available, while the state B = LacI and its 

logical complement ܤ = TetR are made available by the BioD. This 

flexibility often allows for the reduction in the number of genes 

required for the implementation of the UpdateFunction. As to the 

OutputInterface, all possible realizations are driven by the BioD’s LexA 

output, but would have different (AHL) products, depending on the 

application. 

Before providing the model, a word about AHLs and the way 

they function. AHLs are capable of inter-cellular signalling partly 

because they are small molecules capable of diffusion across 

membranes. Even though they are small, they are capable of being 

indirectly used as activators or repressors by forming complexes with 

larger proteins called R-proteins. The resulting R-protein-AHL complex 

can activate or repress production of genes by binding to specific 
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operator sites in the promoter region of those genes. There exists many 

different types of AHLs (Fuqua et al., 2001; Shrout and Parsek, 2006; 

Steindler and Venturi, 2007) and each AHL has a particular R-protein 

that it activates. In the design of the BioFSM, we have two external 

AHL input signals and one AHL output signal. Specifically, we use the 

RhlI/RhlR and LasI/LasR pairs for input, and the LuxI/LuxR pair for 

output. 

Model 

The model used for the UF/II and the OI simulations for ܨ ൌ ܣ ൅  is ܥܤ

presented below. The production of the R-proteins is not considered 

here because they are constitutively produced proteins, generated 

without regulation. The protein translation ODEs are not shown 

because there is no post transcriptional regulation. 

Transcription ODEs 

 ݀ሾ12ܴܽݐሿ
ݐ݀

ൌ ௘௡௘଼ீ݀݋ݎ݌ ൅ ௘௡௘ଽீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ12ܴܽݐሿ ( 3.22) 

 

 ݀ሾ݉ܫݏܽܮሿ
ݐ݀

ൌ ௘௡௘ଵ଴ீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫݏܽܮሿ ( 3.23) 

 

where gene 8 is activated by the LuxR·AHL complex, 
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௘௡௘଼ீ݀݋ݎ݌ ൌ ଼ߩ כ
൬

ሾܴݔݑܮ · ሿܮܪܣ
௅௨௫ோ·஺ு௅ܭ

൰
௡ಽೠೣೃ·ಲಹಽ

1 ൅ ൬
ሾܴݔݑܮ · ሿܮܪܣ

௅௨௫ோ·஺ு௅ܭ
൰

௡ಽೠೣೃ·ಲಹಽ
 ( 3.24) 

 

gene 9 is repressed by TetR and activated by the RhlR·AHL complex, 

 

௘௡௘ଽீ݀݋ݎ݌ ൌ
ଽߩ

1 ൅ ൬
ሾܴܶ݁ݐሿ
௘௧ோ்ܭ

൰
௡೅೐೟ೃ

כ
൬

ሾܴ݄݈ܴ · ሿܮܪܣ
ோ௛௟ோ·஺ு௅ܭ

൰
௡ೃ೓೗ೃ·ಲಹಽ

1 ൅ ൬
ሾܴ݄݈ܴ · ሿܮܪܣ

ோ௛௟ோ·஺ு௅ܭ
൰

௡ೃ೓೗ೃ·ಲಹಽ
 ( 3.25) 

 

and gene 10 is repressed by LexA, 

௘௡௘ଵ଴ீ݀݋ݎ݌  ൌ
ଵ଴ߩ

1 ൅ ൬
ሾܣݔ݁ܮሿ
௅௘௫஺ܭ

൰
௡ಽ೐ೣಲ ( 3.26) 

 

3.3 Simulation Methodology 

3.3.1 Language 

The above systems of ODEs were solved using our own 

implementation (written in the C++ programming language) of the 

common forth-order Runge-Kutta method (Kaps and Rentrop, 1979). 

The source code is available in the appendix.   

3.3.2 Inputs and Outputs 

As it stands, when simulating the BioD, the D and CLK inputs are 
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manually set to a particular value before the beginning of every new 

simulation. When simulating the BioFSM, only the CLK input and the 

external AHL inputs are manually assigned.  

The output generated by the program is a matrix of tab 

delimited values representing the state of every differential equation, 

at each step. Every line starts with the time step and is followed by the 

values of every ODE in the system at that time step. 

3.3.3 Tools 

This matrix of values serves as one of two inputs to the plotting 

program, Gnuplot (Janert, 2009), which is used for both results 

plotting and viewing. The other input is a file that holds the details of 

the plot; e.g. plot area, axes, zoom, plot colours and highlighted areas 

(given in appendix). We manually included two types of highlighting 

regions (a red-hue and diagonal-stripes) in the output generated by 

Gnuplot to indicate the time during which the inputs are present. The 

program itself always generates the complete list of values for any 

given simulation. However, in our Gnuplot generated figures, we 

choose to plot only the values of interest. 

3.3.4 Stochastic run 

The systems of ODEs presented in the previous section are the basis of 

the stochastic simulation used to generate Figure  4-1, Figure  4-5 and 
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Figure  4-6. We used the tau-leaping algorithm (Cao et al., 2007), 

which achieves fast and accurate stochastic simulation by taking large 

time steps that leap over individual reactions. During a leap interval (t, 

t + τ) in tau-leaping, each reaction channel operates as a Poisson 

process with a constant intensity. 

3.3.5 Parameters 

The values of τ used in our simulations varied from τ = 5, τ = 10 up to 

τ = 20 in an effort to display the most relevant plots. Increasing the 

value of τ reduces the resolution of the results but reduces the 

computing time of the simulation. 

 

Table  3-3. CPU time (performance) needed to simulate one hour of 

biological time. 

 

Simulation 
Step 

Time  
(in seconds) 

τ = 5 1.181 

τ = 10 0.636 

τ = 20 0.273 

 

In the deterministic run, τ also represents the time step. No 

noticeable performance change was observed between the 

deterministic and stochastic runs of equal time steps. 
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CHAPTER 4.   

SIMULATION RESULTS AND DISCUSSION 

In the sequel, we present the results of simulating the device using a 

system of rate equations. The results confirm our expectation that the 

device will toggle when and only when required – though its speed can 

still be improved. 

4.1 BioD 

The core functionality of our BioD device is illustrated in Figure  4-1. 

The highlighted areas indicate the presence of an input. The reddish 

hue reflects the presence of the clock input (CLK), while the grey 

diagonal pattern reflects the presence of the data input (D). The 

examples provided have two different data cycles intersecting (or not) 

with four different clock cycles. This setting allows us to show that the 

device can indeed go from one state to the other in response to 

nothing more than the introduction of the inputs it was designed to 

respond to. Furthermore, this setting also goes through the various 

permutations of the inputs seen in Table  3-1. 



60 
 

a. 

 

b. 

 

c. 

 

 

Figure  4-1. Stochastic simulation of BioD. 

The three timing diagrams are displaying different signals of the same run. The highlighted areas indicate the presence of 

an input. The red hue indicates the CLK signal (FR light). The grey diagonal pattern indicates the presence of the input D. 

a. Normalized GFP expression b. mRNA levels c. Protein levels. 
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Ideally, with four separate CLK inputs, the state of the device 

should follow the D input four times. In this case, the state should turn 

ON, then OFF, and then OFF again and finally ON. Figure  4-1a displays 

those exact state changes in a stochastic run whose initial condition is 

an OFF state. The normalized GFP expression output follows the input 

only at the rising edge of the clock. However, while the clock is ON or 

is OFF, any changes in the input do not propagate to the output. 

Figure  4-1b shows the changes in the concentrations of the mRNA 

transcripts of the various substances involved. Please note that the 

concentration level of mOmpR is not displayed because this transcript is 

constitutively expressed. Figure  4-1c shows the changes in the protein 

levels; the levels of LexA and GFP were not displayed because they do 

not affect the behaviour of the device. Changes in protein 

concentrations follow changes in corresponding mRNA concentrations, 

except in situations where post-transcriptional regulation is in effect. 

In particular, when mCIcr is expressed in the absence of input D, the 

level of the cI repressor does not subsequently increase. Because of 

this highly correlated relationship between transcript and protein, the 

protein levels are not shown for the rest of the examples. Rather, the 

GFP figure is used to demonstrate the overall input/output relationship. 

The concentration of a molecule is decided, mainly, by its rates 

of synthesis and degradation. Some transcripts have multiple stable 
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levels of expression. Since cI, cII, LacI and TetR are not only 

produced by the SLECTION genes (but can also be produced by some 

of the INPUT or STATE genes) the production of their transcripts is 

significantly increased in the presence of the CLK signal. mTetR has 

four levels of expression: (i) all the genes that can produce it are OFF, 

(ii) gene 6 is ON, (iii) gene 5 is ON, and (iv) genes 5 and 6 are ON. 

mLacI has similar multiple levels of expression, using genes 4 and 7. 

In the case of mCI, however, since gene 4 can only turn ON when 

gene 1 is ON, it only has three levels of expression. The case of mCII 

is analogous to that of mCI. 

Tracing the various signals in Figure  4-1b shows that, the 

simulation starts with three active transcripts, mTetR (the state of the 

device is OFF), mCIcr (unrepressed since the CLK and therefore Gal4 

are OFF) and mCII (unrepressed since input D is OFF). Following, is a 

step-by-step explanation of the changes shown in the timing diagram 

(Figure  4-1b). 

First, input D is introduced, causing the repression of gene 2 (or 

mCII). Since the transcript of gene 1 is translated and gene 2 is OFF, 

gene 4 is on a hair-trigger to be turned ON, while gene 5 is doubly 

repressed by OmpRP and cI. The CLK signal is introduced, stopping the 

phosphorylation of OmpR and activating gene 4. This raises the level of 

mCI and mLacI. The latter represses gene 6 and starts turning the 
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state of the device ON. As TetR degrades, GFP levels increase. Then, 

the CLK signal is turned OFF followed by input D. These two actions 

turn OFF gene 4 and disable gene 1, respectively. With both inputs 

OFF, the cI repressor produced by genes 1 and 4 degrades without 

replacement, allowing mCII to return to its previous level. mLacI, 

which is now produced by gene 7, reaches its unrepressed (ON) state 

equilibrium. 

The second state change occurs when the CLK signal is turned 

ON again. Since mCII is expressed at that time (no input D), gene 5 

turns ON, causing the repression of gene 1 (through mGal4), the 

repression of gene 7 (through mTetR), and an increase in the level of 

mCII (as it is produced by both genes 2 and 5). When the CLK is 

removed, gene 5 is turned OFF, but mCII and mTetR remain high, 

while mGal4 is repressed. This allows the production of mCIcr to start 

again (after Gal4 degrades). Note, however, that mTetR is now 

produced by gene 6, and not by gene 5. 

The third CLK signal starts now. Gene 5 is again turned ON; the 

levels of mCII, mGal4 and mTetR climb; the level of mCIcr drops 

(repressed by Gal4). In the middle of the CLK pulse, input D is 

introduced. This causes no change in the network. Since input D only 

affects gene 1, its effects are muzzled because the clock has already 

turned on gene 5 which repressed gene 1. It is only after the clock is 
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turned OFF that the repression of gene 1 is lifted. At this point, even 

though the CLK signal is removed, input D is still present, and since 

gene 1 is no longer repressed by gene 5 (or Gal4), cI is synthesized, 

which proceeds to represses gene 2. The state of the device, however, 

does not change since the STATE genes are not directly affected by 

the INPUT genes. 

The fourth CLK signal turns the state of the device back ON. In 

the presence of input D, the CLK turns gene 4 ON causing a similar 

sequence of events to the one witnessed following the first CLK signal. 

4.1.1 Model Constraints 

An important factor in the design of any gene network is the choice of 

regulatory sequences, promoters and coding sequences, which make 

up the various genes. The specific genes used for the realization of the 

BioD are just an example, meaning that other genes can be used to 

realize the logical design (shown in Figure  3-3) of the BioD. It must be 

noted that any alternate set of genes will very likely have a different 

set of model parameters. The variation of these parameters changes 

the behaviour of the network, possibly making it faster or slower in 

responding to the inputs or in reaching a steady state. 
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a. b. 

Figure  4-2. Effect of Dissociation constant on input response time. 

The BioD network described above is left unchanged except for one variable, ܭ௅௔௖ூ. Its effect on the input response time is 

highlighted for two complementary genes, LacI and TetR. a. Increasing the ܭ௅௔௖ூ value from 0.5nM to 14.0nM increases the time 

it takes to start production of the mLacI transcript in response to the proper input sequence. b. As expected, increasing the 

 .௅௔௖ூ value has the opposite effect on the production of the mTetR transcriptܭ
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In more detail, any gene chosen or constructed for the BioD 

comes with a set of parameters: the dissociation constant ܭௗ reflects 

the affinity of a repressor binding to its operator site; the Hill 

coefficient ݊݀ reflects the cooperativity of repression of the constituent 

molecules of a multimer; the degradation rate ߱݀ depends on the 

chemical and spatial properties of the substance but can be modified 

using certain well-studied methods (such as the addition of an SsrA 

tag to speed-up degradation). 

In a network where two genes repress each other (such as the 

two STATE genes), a small increase in the dissociation constant (ܭௗ) of 

one of the two repressors, affects the network’s response time to the 

input in two separate ways: (i) it significantly reduces the response 

time of the target gene, and (ii) it increases the response time of the 

gene that produces it. The state genes are used to illustrate this issue.  

We chose to record the effect of separately varying ܭ௅௔௖ூ on the 

dynamic behavior of mLacI and mTetR. Figure  4-2a illustrates the 

effect of changing ܭ௅௔௖ூ from 0.5 nM to 14.0 nM on [mLacI], leading - 

or not - to a change of state from OFF to ON. Similarly, Figure  4-2b 

illustrates the effect of changing the value of ܭ௅௔௖ூ on [mTetR], leading 

to a change of state from ON to OFF.  

Generally speaking, the ܭௗ value is not the only parameter 

defining a repressor, nor can this value be changed at will, because it 
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is dependent on the chemical and conformational properties of both 

the repressor and its corresponding binding site. Therefore, any 

change in one gene’s parameters might have effects beyond those 

intended. This must always be taken into consideration during design 

or optimization of gene regulatory networks. 

It is noteworthy that in Figure  4-2a, there is one ܭௗ value where 

the expected change of state fails to happen. This occurs because the 

CLK signal becomes too short for the state change to occur at this ܭௗ 

value. A more detailed discussion of the relationship between ்ܭ௘௧ோ, 

 .௅௔௖ூ and the CLK signal is provided in the following section  4.1.4ܭ

4.1.2 Clock Input (CLK) 

When the input and output states are at opposite levels, the length of 

the CLK signal must be large enough to allow a change of state to 

occur. As an example, when input = ON and output = OFF, the CLK 

signal has to be sustained for a time greater than the minimum time 

needed for the cell concentration of mTetR (or [mTetR]) and for [TetR] 

to degrade below [mLacI] and [LacI], respectively. If the CLK signal 

is removed too soon, the production of mLacI from the SELECTION 

gene 4 is cut too quickly. The output responds to its short presence 

and reduces the production of mTetR, seemingly heading towards a 

state change. However, when the CLK signal is removed, the mTetR 
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production is simply reasserted, because gene 7 has not yet begun the 

production of mLacI, and the state of the device fails to toggle. As 

seen in Figure  4-3a, the GFP levels do not rise even though input D 

was present at the rising edge of the clock. In point of fact, the CLK 

signal enabled the transcription of mLacI from gene 4 (which is not 

repressed by TetR). This causes the levels of TetR to fall rapidly. 

However, the CLK signal is removed before they could fall low enough 

to turn gene 7 ON. Gene 4 is then turned OFF on the CLK, and gene 6 

is reasserted. This situation explains the need for the CLK signal to 

remain active until the target STATE gene is activated. 
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a. b. c. 

Figure  4-3. Constraints and failures. 

The graphs show only the GFP and the transcripts of the STATE genes. a. The clock pulse is too short. The state of the BioD

does not have enough time to change b. Input D introduced shortly after the clock turns the state of the output ON. c. A clock 

pulse that occurs shortly after the end of the input D, acts as if input D was still ON, resulting in a change of state. 
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4.1.3 Data Input (D) 

The data input (D) introduces two more timing constraints. The first 

prohibits the introduction of the input too soon after the start of the 

CLK signal. While this might seem odd, it is in fact consistent with 

network behaviour. Since gene 1 is only repressed by Gal4, it can only 

be repressed when the clock is ON. Therefore, when the clock is OFF, 

gene 1 is not prevented from continuously transcribing mCIcr. Since 

translation on its own is faster than transcription followed by 

translation, when input D is introduced, it quickly induces the 

translation of mCIcr, now unlocked. During that time, the CLK signal 

selects gene 5, but before Gal4 has had a chance to be transcribed 

and then translated, the direct translation of the transcript of gene 1 

into its corresponding (repressor) protein causes the repression of cII 

(by way of genes 2 and 5) and hence, the activation of gene 4. This 

ultimately results in an erroneous change of state as illustrated in 

Figure  4-3b. 

The second timing constraint occurs when input D is turned OFF. 

Indeed the level of expression of protein cII does not climb 

immediately. Time is needed to allow for the degradation of the cI 

protein, the taR12 molecule, and the unlocked mRNA molecule that 

are still in the system, in order to stop the production of more cI and 
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allow the production (transcription and translation) of cII. Figure  4-3c 

shows the CLK signal being activated too soon after input D is turned 

OFF. Since the system has not had enough time to reach equilibrium, 

it reacts to the clock as if its input was still ON. 

The clock pulses must be sufficiently apart to allow the system to 

go to equilibrium (steady state) before the next pulse. Which 

SELECTION gene gets enabled depends heavily on that. Essentially, 

the input signal must stabilize (as ON or OFF), then the levels of cI 

and cII must stabilize as well, allowing the selection of one of the 

SELECTION genes, which must occur prior to the start of the clock 

pulse. 

4.1.4 Bi-stability 

A necessary feature of the BioD is its bi-stability. Bi-stability means 

that the network is capable of being in any one of two steady states 

for as long as the inputs remain unchanged. This is a crucial feature 

because we do not want a BioD that is in (say) an ON state to 

autonomously switch to the OFF state, without any prompting from its 

input. Furthermore, we want these two steady states to be stable. 

Dynamically, a stable steady state is a basin of attraction with all 

nearby trajectories leading into it. In other words, the effect of small, 

non-sustained and/or noisy perturbations in the inputs are absorbed 
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and do not prevent a return to the original stable steady state. This 

does not only apply to the STATE genes, but also to the SELECTION 

genes (which also form a toggle switch). 

 

Figure  4-4. Bi-stable region relative to CLK pulse width. 

Varying the ܭௗ values of the toggle switch genes while keeping all other parameters 

constant results in the above functional plot of the BioD. The BioD is said to be bi-

stable (or functional) when it is able to toggle from one state to the other on the 

right inputs and is able to hold on to that state indefinitely if unperturbed. The green 

zone, which is included in the yellow zone, which itself is included in the red zone all 

define the bi-stability regions of the BioD at CLK pulse widths of 25, 34 and 42 

minutes, respectively.  The black region denotes results of simulations that did not 

lead to a bi-stable network. 
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The conditions for toggle switch bi-stability have been discussed 

by Gardner et al. [2], asserting that (i) the gene products must have a 

cooperative repression of transcription (Hill cooperativity) that is 

greater than 1; (ii) the rates of synthesis of the two repressors must 

be balanced (approximately equal). According to Gardner et al., these 

two conditions decide the size of the bi-stability region; where larger 

cooperative repressions and larger synthesis rates result in larger bi-

stability areas. We add to these findings by including the effect of our 

CLK signal in relation to the genes used in the network. The results of 

our investigation resulted in a delineation of the region of bi-stability 

identical in general shape to the one discovered by Gardner et al., but 

having different exact boundaries. 

In more detail, we varied the two ܭௗ values of the two STATE 

genes as well as the length the CLK pulse, while keeping all other 

parameter values constant. For every pair of ܭௗ values, we sought a 

minimum CLK pulse width that would result in a bi-stable network. In 

some cases, we found it, such as the green, yellow and red regions of 

Figure  4-4, but in others – the black area – we did not.  It is worth 

noting that for all of these regions – except the black one – a clock 

pulse whose length is equal or greater than the noted values would 

ensure a bi-stable behaviour. 

As can be seen, a smaller CLK pulse significantly reduces the 
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range of ܭௗ values (and hence potential genes) that can used to 

construct a bi-stable BioD. Extending the length of the CLK pulse too 

much, however, would not only be highly impractical, but would also 

mean that the state change is occurring across multiple reproductive 

cycles of an E. coli cell. It is therefore important to balance speed, 

practicality and the absolute need for bi-stability. 

4.1.5 Dissociation Constants 

The dissociation constants, or ܭௗ values, measure the propensity of a 

complex molecule to separate (or dissociate) reversibly into its 

component molecules. The vast majority of reported values for the 

dissociation constants of some well known transcription factors were 

unrealistically low. This issue becomes quite apparent when the values 

are investigated. 

Substitution of various ܭௗ values found in literature (for LacI, 

TetR and cI) in equation ( 4.1) yields concentrations of far less than one 

molecule per cell. In other words, ்ܭ௘௧ோ = 179 pM (Weber et al., 2007) 

means that seven hundredth (0.07) of a TetR molecule in a cell would 

somehow be enough to repress half its operators. Arguing it further, 

and rounding the number of TetR molecules up (then multiplying it by 

4) and assuming four repressor molecules existed in the cell, the 

probability of them colliding with each other to form a tetramer is 
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negligibly small. More to the point, the probability that a single 

tetramer in the entire cell would collide with and bind to the operator 

site is effectively zero, making these numbers quite problematic. 

If the complex molecules in question is made up of one ligand 

molecule and one receptor molecule only (as is frequently the case) 

then ܭௗ is also defined as the ligand concentration at which half the 

receptors are occupied at equilibrium. This allows a meaningful 

conversion of ܭௗ from moles-per-liter to molecules-per-cell (ܭௗ now 

becomes the number of ligand molecules per cell at which half the 

receptors are occupied). This is achieved as follows 

 

ݏ݈݁ݑ݈ܿ݁݋ܯ 
݈݈݁ܥ

ൌ ݕݐ݅ݎ݈ܽ݋ܯ כ ஺ܰ כ ௖ܸ௬௧௢ ( 4.1) 

 

where ௖ܸ௬௧௢ ൌ 6.7 כ 10ିଵ଺ liters is the E.coli cytoplasm volume and is 

taken from the CyberCell Database (CCDB) (Sundararaj et al., 2004), 

and where ஺ܰ ൌ 6.022 כ 10ଶଷ molିଵ is the Avogadro constant.  

The 2009 University of Aberdeen iGEM team illustrates a method 

to generate more realistic ܭௗ values estimations. The method uses 

known repressor molecule numbers present in the cell at a given state, 

to extrapolate the number of repressor molecules needed to halve the 

overall production of its target gene (in this case of repressors and 

operator sites). In most cases, this number would be a better 
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approximation of the real ܭௗ value. 

4.2 BioFSM 

As previously described, the BioFSM is built by connecting the BioD to 

the UF/II and OI. Of these, the OI is the simplest module. It is in effect 

just an inverter that uses Q from the BioD to generate an AHL version 

of Q that is meant for inter-cellular signalling.  

When LexA is ON (Q is ON) the AHL production is stopped; while 

when LexA is OFF (Q is ON) AHL production is resumed. The UF/II is a 

variable module whose complexity depends on the desired 

functionality of the BioFSM. It can be as simple as the OI inverter or it 

can be an elaborate network that handles numerous inputs and 

performs complex combinatorial logic. 

Figure  4-5 and Figure  4-6 display the stochastic simulations of 

all eight possible inputs to two UF/IIs implementing ܨ ൌ ܣ ൅  and ܥܤ

ܨ ൌ ҧܥതܤܣ ൅ ܤҧܣ ൅  respectively. The output F of the UF/II is the input ,ܥҧܣ

D (or taR12) to the BioD. The inputs A, B (or ܤത) and C of the UF/II are 

the AHLL, LacI (or TetR), and AHLR, respectively. The core 

functionality of our BioFSM hinges on the manipulation of the input to 

the BioD incorporated within the BioFSM. We therefore highlight the 

proper functionality of the UF/IIs that provide these inputs. 
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Figure  4-5. Stochastic simulation 

of all 8 possible inputs to 

function ࡲ ൌ ࡭ ൅  or Rule 248) ࡯࡮

(Wolfram, 2002)). 

The external inputs A and C are 

AHL_left (AHLL) and AHL_right 

(AHLR), respectively. Their presence 

is highlighted by the grey diagonal 

patterns. The internal input B comes 

from the BioD. In this case, ܤ was 

needed for the implementation of 

the UF (see Figure  3-5b), so TetR 

was used and its respective mRNA 

level is displayed. 
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Figure  4-6. Stochastic simulation 

of all 8 possible inputs to function 

ࡲ ൌ ഥ࡯ഥ࡮࡭ ൅ ࡮ഥ࡭ ൅  or Rule 30) ࡯ഥ࡭

(Wolfram, 2002)). 

The external inputs A, B and C are 

defined and highlighted as above. 

Note that in the ܥܤܣ ൌ 011, 110 ܽ݊݀ 111 

cases, the output ܨ is affected before 

the introduction of either AHL. This is 

because before the introduction of the 

AHLs, all these cases are in effect 

ܥܤܣ ൌ 010 and in Rule 30, this input 

results in ܨ ൌ 1. This behavior is not 

unwanted because the design of the 

UF/II is asynchronous. As can be 

seen, in the first case, ܨ is doubly 

asserted when AHLR is introduced. 

While in the other two cases, ܨ is 

turned OFF when the AHLs are 

present. This flexibility insures that 

the BioD always receives the most 

updated input from the UF/II, 

regardless of the CLK signal. 
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Here, we have one internal and two external inputs. The 

highlighted areas indicate the presence of an external input, while 

mTetR reflects the internal input B (= Q). The two opposing diagonal 

patterns reflect the presence of the left and right inputs A and C. 

Eight stochastic simulations are provided, covering every 

possible UF/II input permutation (given three inputs, one internal and 

two external). These simulations are presented as a table of diagrams, 

sorted by input presence, top to bottom, starting with the left column. 

We say ܣ ൌ 0 when AHLL is not present, while ܣ ൌ 1 means that AHLL is 

present in high quantities. Similarly, the values of  ܤ and ܥ denote the 

presence and absence of LacI and AHLR respectively. As previously 

described in BioD, in our design LacI and TetR are complimentary 

signals, which is why we consider ܤ ൌ TetR, and why we used it in the 

diagrams below. 

The top left diagram displays the UF/II level at input ܥܤܣ ൌ 000 

while the bottom right diagram displays that level at input ܥܤܣ ൌ 111. 

The top left diagram has no highlighted areas (i.e. no diagonal 

patterns) denoting the absence of the external inputs (AHLL and 

AHLR). mTetR is present however, meaning ܤ ൌ 1 (or ܤ ൌ 0), denoting 

the absence of LacI. Hence, this diagram displays the value of the 

UF/II, namely ܨ ൌ ܣ ൅  with zero inputs, which is zero itself. The ,ܥܤ
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bottom right diagram has two areas of diagonal patterns (overlapping) 

denoting the presence of the external inputs. mTetR is absent meaning 

ܤ ൌ 0 (or ܤ ൌ 1), denoting the presence of LacI. Hence, this diagram 

displays the value of the UF/II, namely ܨ ൌ ܣ ൅  with all inputs ,ܥܤ

present. It is in fact doubly asserted by both ܣ and ܥܤ and results in a 

higher production of taR12 (representing ܨ) than the other cases 

where is it asserted; at ܥܤܣ ൌ 011, 100, 101, ܽ݊݀ 110. The value of the 

input is highlighted in each diagram by three little squares in the 

bottom left area. 

The UF/II module is designed as a non-synchronous module, but 

the BioFSM still functions synchronously using the embedded BioD 

clock. 

4.3 Extension: BioCell 

Using multiple strains of BioFSMs connected in sequence to build 

circular cellular automata (CA), or BioCell. 

A BioCell is a ring of N colonies of E. coli. Each colony consists of 

clones of one of three strains, genetically modified to realize a BioFSM. 

The three strains implement the same logical functionality (same BioD 

and UF rules) but have different input and output interfaces (for inter-

colony communications). We chose to connect these BioFSMs as a ring 

cellular automata, i.e. each BioFSM is connected to its left and right 
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BioFSM neighbours only (see Figure  4-7). In effect, each colony will 

implement one type of BioFSM, and will communicate with its 

neighbour colonies via AHLs.  

 

 

Figure  4-7. The Logical Block Diagram for BioCell. 

 

Therefore the UF must have three inputs (two from its 

immediate neighbours, and one from itself). Each strain (BioFSM) 

needs to be able to recognize the origin of its inputs (to the UF/II), 

and to broadcast a recognizable output (from its OI). The left-hand 

strain produces AHLL and responds to AHLC and AHLR, while the centre 

strain produces AHLC and responds to AHLL and AHLR, and so on. In 

order to function as expected a colony processes its inputs to decide 
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whether to alter its state, upon the application of a global clock pulse 

(FR light). The decision to change the state is made following the rules 

implemented by the UF. Those rules are the same for all strains, 

though with variations merely reflecting the chemical nature of the 

inputs with which each strain is confronted. A colony exhibits its state 

by expressing (or not) a florescent protein. 

The BioCell will have the following dynamic behaviour, 

determined by its inputs states of its N colonies (collectively making up 

the BioCell’s state). When there is no FR light (i.e. CLK = 0), there is 

no change in the state of the BioCell. In contrast, when the device 

receives a FR light pulse (i.e. CLK = 1) applied to all the colonies 

simultaneously, the next states of the colonies follow the outputs of 

their UF/II (by processing its own and the neighbours’ states). The 

next clock pulse has to wait until the BioCell is back in equilibrium. 

Equilibrium, after an OFF to ON state change, comes after the colonies 

have had a chance to produce enough AHLs and after those AHLs have 

diffused to the neighbours. Equilibrium, after an ON to OFF state 

change, comes after the AHLs produced by the colonies have had a 

chance to degrade. This is critical because the AHLs are the only 

indicator of the neighbours’ states. A clock pulse that comes before 

equilibrium might cause an erroneous change of state of the BioCell. 
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Figure  4-8. Ring topology CA run of two rules with changing initial conditions. 

Rule 248 with two different initial conditions: a. demonstrates signal propagation and b. exhibits counting. Rule 30 is shown 

with three different initial conditions, resulting in: c. chaotic behaviour, d. cyclical behaviour and e. fixed behaviour 
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From a computational point of view, the BioCell device is a 

synchronous ring of cellular automata implemented as a ring of N 

communicating colonies of three new strains of E. coli. Given this 

setup (three binary inputs and one binary output) for every BioFSM in 

the BioCell, there exists 2ଶయ
ൌ 256 possible functions (or rules) that can 

be implemented by the UF. We chose two such rules to implement: (a) 

rule 248, as defined by Wolfram (Wolfram, 2002), allows us to 

demonstrate signal propagation and counting behaviours, depending 

on the initial state of the ring; (b) rule 30, can be used as a pseudo 

random number generator or to exhibit cyclical behaviour, depending 

on the initial state of the ring.  

Some of the power of cellular automata is emphasized when 

rules exhibit different dynamic behaviours, i.e. chaotic, cyclical or 

fixed, by merely varying the initial conditions of the cellular automata. 

The particular UF used when introducing BioFSM above, implements 

rule 248. Figure  4-8 (a, b) displays runs of this rule on a BioCell of 12 

colonies. The change in the initial state results in two different 

behaviours, namely signal propagation in (a) and counting in (b). Rule 

30, whose runs are displayed in Figure  4-8 (c-e), is an interesting rule 

that can result in either chaotic behaviour as in (c), various cyclical 

behaviours such as (d) or simply lead the ring to a fixed state, as in 

(e). 
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This is a device that can be configured to perform many different 

functions using simple or no modifications (via change in initial 

conditions). Many cellular automata are capable of universal 

computation (Wolfram, 2002). 
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CHAPTER 5.   

CONCLUSION 

In this thesis, we present a mathematical model and simulation results 

of a synchronous single-input delay flip-flop, realized as a gene 

regulatory network for implementation in E. coli. The simulation we 

present provides evidence that the device can toggle from the ON 

state to the OFF state and back, according to its intended functionality. 

The inherent symmetry of the design reduces the number of genes 

used, but introduces some complexity, which is palpable when tracing 

the various changes the device goes through when toggling.  

The BioD is effectively a 1-bit memory element that can operate 

synchronously with any number of other elements. As such, it can be 

used to hold the state of a finite state machine, as it does in the 

BioFSM. It could also be used to build a memory bank, an event 

sequence detector/effector, a decision-making system, and numerous 

other memory-requiring devices. The BioFSM is made of three 

modules: the BioD, the Update Function/Input Interface (UF/II) and 

the Output Interface (OI). The modular design of the BioFSM allows us 

to hold the BioD constant while changing the UF/II or/and OI, if and 

when the time-dependant behaviour of the BioFSM, or its input/output 

interfaces require alteration. Then, there is the BioCell, which is made 
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of a number of BioFSM colonies, and is capable of exhibiting a large 

number of computational, communicational and pattern formation 

behaviours depending on the particular UF and/or initial states of its 

constituent BioFSMs. 

Speed is a main area of improvement. Indeed, the slowest 

reactions in a cell are the ones involving regulated transcription and 

translation. The time it takes to execute these operations depends on 

many factors, including various binding affinities, generation and 

degradation rates. For example, the impact of a repressor is delayed 

until a mature protein is formed and manages to interact with its 

corresponding operator site on the DNA. Using post-transcriptional 

regulation like taRNA or RNA interference (RNAi) - where possible - to 

affect regulation in the BioD will make the system significantly faster. 

One possible location for such a change would be where the 

SELECTION genes interact with the STATE genes. Instead of producing 

repressors for genes 6 or 7, the use of RNAi molecules to prevent the 

translation of repressor proteins would make the entire system 

significantly faster. However, since we already make use of taR12 for 

input sensing, we would have to use two more riboregulators that do 

not interfere with taR12 or with each other. 

Another notable property of genetic networks is that the building 

blocks tend to vary significantly from one another, whether they be 
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promoters, operators, or coding sequences – to name a few. That is to 

say, when designing a gene regulatory network, the choice of the 

building blocks is not easily exchangeable. In fact, the literature does 

not provide much in the way of “acceptable ranges” because most 

networks are presented as they are. In the case of dynamic and 

extendable circuits like BioD or BioFSM, that need is reasserted. Gene 

networks constitute highly interconnected graphs such that, for 

example, a repressor contributes to the functioning of the designed 

network by means of its dissociation constant (for a given operator), 

its rates of synthesis, diffusion and degradation, as well as the 

possibility of unintended (and often unexpected) cross-talk with the 

native DNA and constitutively generated molecules. We attempted to 

provide such “ranges” for our design (= constraints), and identified 

failure points and tendencies that help greatly when selecting different 

genes (or parts thereof) to ensure correct performance of the BioD. 

However, we admit that much more work can and should be done in 

that area to provide standardized sets of devices, information sheets 

and design approaches for future gene regulatory networks. 

In fact, there are two main areas that need to be standardised in 

order to design and/or implement and successfully replicate gene 

regulatory networks: (i) standard building blocks and (ii) standard and 

complete parameters (or measurements) relating to the building 
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blocks.  

A successful and growing database of biological parts was 

started in 2003 at MIT is called the “Registry of Standard Biological 

Parts” (Knight et al., 2004). This is a database that grows yearly with 

new simple or complex parts, designed following a standard 

framework. 

A database that includes the parameters needed for simulation 

of every gene is yet to be realized however. The discrepancies in 

simulation methodologies and in results have become too pronounced 

for meaningful claims on complicated network designs. A standardized 

parameters’ database is required to deal with those discrepancies. 
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Deterministic Run: 

MyDet.cpp 

#include <iostream> 
#include <iomanip> 
#include <fstream> 
#include <stdexcept> 
#include <sstream> 
#include <string> 
#include <cmath> 
#include <ctime> 
#include <cstdlib> 
 
using namespace std; 
 
#define  dim  25 
 
#define  abt  1 /*sampling rate*/ 
 
// number of iterations 
//#define  N  39600  // 11 hours (make arbitrarily high) 
//#define  N  108000 // whatever, just testing 
//#define  N  72000  // whatever, just testing 
//#define  N  20000  // whatever, just testing 
//#define  N  28000  // whatever, just testing 
//#define  N  52000  // whatever, just testing 
#define  N  10000  // whatever, just testing 
//#define  N  7500  // whatever, just testing 
 
#define  MAX_DATE_LEN  12 
 
/*T=N*tau, where T is the real time. This is independent of abt.*/ 
 
 
 /***********************************************************/ 
 /********************** PARAMETERS *************************/ 
 /***********************************************************/ 
 
 
 // as per K_LacI = 10nM 
 double K_taR12     = 80; //* 
 double K_cI      = 8; 
 double K_cII     = 50; 
 double K_ompR     = 151; 
 double K_ompRP     = 6; 
 double K_Gal4     = 24; 
 double K_TetR     = 0.6; 
 double K_LexA     = 20; //* 
// double K_LacI     = 10; 
 double K_LacI     = 14; 
 double K_AHL_LEFT    = 20; //* 
 double K_AHL_RIGHT    = 20; //* 
 
// // as per K_LacI = 1.7uM 
// double K_taR12     = 1.7; //* 
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// double K_cI      = 17; 
// double K_cII     = 17; 
// double K_ompR     = 1.7; //* 
// double K_ompRP     = 1.7; //* 
// double K_Gal4     = 1.7; //* 
// double K_TetR     = 17; 
// double K_LacI     = 1.7; 
 
// // as per K_LacI = 700 Molecules/cell 
// double K_taR12     = 700; //* 
// double K_cI      = 7000; 
// double K_cII     = 7000; 
// double K_ompR     = 700; //* 
// double K_ompRP     = 700; //* 
// double K_Gal4     = 700; //* 
// double K_TetR     = 7000; 
// double K_LacI     = 700; 
 
// // as per K_LacI = 15 Molecules/cell 
// double K_taR12     = 15; //* 
// double K_cI      = 150; 
// double K_cII     = 150; 
// double K_ompR     = 15; //* 
// double K_ompRP     = 15; //* 
// double K_Gal4     = 15; //* 
// double K_TetR     = 150; 
// double K_LacI     = 15; 
 
 double n_taR12     = 2; 
 double n_cI      = 2; 
 double n_cII     = 2; 
 double n_ompR     = 2; 
 double n_ompRP     = 2; 
 double n_Gal4     = 2; 
 double n_TetR     = 3; 
 double n_LexA     = 2; 
 double n_LacI     = 2; 
 double n_AHL_LEFT    = 2; 
 double n_AHL_RIGHT    = 2; 
 
// double d_taR12     = 0.006; //* 
// double d_mRNA     = 0.006; 
// double d_cI      = 0.002888; 
// double d_cII     = 0.002888; //* 
// double d_ompR     = 0.002888; //* 
// double d_ompRP     = 0.002888; //* 
// double d_Gal4     = 0.002888; //* 
// double d_TetR     = 0.002888; 
// double d_LexA     = 0.002888; //* 
// double d_LacI     = 0.002888; 
// double d_GFP     = 0.002888; //* 
 
 double d_taR12     = 0.0026; //* 
 double d_mRNA     = 0.0026; 
// double d_mRNA     = 0.006; 
 double d_cI      = 0.0007*10; 
 double d_cII     = 0.0069; 
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 double d_ompR     = 0.00132; 
 double d_ompRP     = 0.00132; 
 double d_Gal4     = 0.002888; //* 
 double d_TetR     = 0.00231*2; //* 
 double d_LexA     = 0.00231; //* 
 double d_LacI     = 0.00231; 
 double d_GFP     = 0.0002*10; 
 double d_AHL_LEFT    = 0.001; //* 
 double d_AHL_RIGHT    = 0.001; //* 
 double d_AHL_CENTER    = 0.001; //* 
 
 double gp      = 0.1; 
 double a      = 0.00; 
 double T      = 0; 
 double L      = 0; 
 double AHL_LEFT     = 0; 
 double AHL_RIGHT    = 0; 
 
// double V_phos     = 20.0; // Rate of 
OmpR phosphorylation 
// double K_phos     = 5.0; // Kinetic 
constant 
// double V_dephos     = 0.01; // Rate of 
OmpRP dephosphorylation 
// double V_phos     = 0.75; // Rate of 
OmpR phosphorylation 
// double K_phos     = 0.25; // Kinetic 
constant 
// double V_dephos     = 0.001; // Rate of 
OmpRP dephosphorylation 
 double V_phos     = 20.0; // Rate of 
OmpR phosphorylation 
 double K_phos     = 1.0; // Kinetic 
constant 
 double V_dephos     = 0.01; // Rate of 
OmpRP dephosphorylation 
 
 double  K_y[dim]; 
 double  n_y[dim]; 
 double  d_y[dim]; 
 double  cmax[14]; 
 
 
 
 const string path = "T:/workspace/C++/MyDet/"; 
 const string path2 = "C:/Documents and Settings/Administrator/" 
       "Desktop/BioSym/May 
2nd/Paper1/Results/"; 
// const string path = "D:/Imad/workspace/C++/MyDet/"; 
// const string path2 = "D:/Imad/workspace/C++/ResultsDet/"; 
 
 const string gPlot = "gnuplot.exe " + path + "test.gp"; 
// const string gPlot = "gnuplot.exe " + path + "test2.gp -persist"; 
// const string gPlot = "gnuplot.exe " + path + "test3.gp -persist"; 
 
 const char* gnuPlot = gPlot.c_str(); 
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 /***********************************************************/ 
 /*********************** FUNCTIONS *************************/ 
 /***********************************************************/ 
 
 
 void RungeKutta(double y[],double h,double dy[]); 
 double *diff_eq(double y[], double dy[]); 
 
 bool fexists(const char *filename); 
 string getDate(); 
 string nextFileName(); 
 string itime(const double diff); 
 
 
 /***********************************************************/ 
 /********************* PROGRAM START ***********************/ 
 /***********************************************************/ 
 
 
 int main() 
 { 
  time_t start, end; 
  double diff; 
 
  time(&start); 
 
  cout << "Starting Deterministic...\n" << endl; 
 
  double tau = 10; //20; //5; // step used 
  double t = 0; 
  double y[dim], dy[dim]; 
 
 
 
 
  // Initial Conditions 
  // Initializing ODEs 
  for(int i=0; i<dim; ++i) 
  { 
   y[i] = 0.0; 
   dy[i] = 0.0; 
   K_y[i] = 0.0; 
   n_y[i] = 0.0; 
   d_y[i] = 0.0; 
  } 
 
//  y[0]  = 10; 
//  y[1]  = 10; 
//  y[2]  = 10; 
//  y[3]  = 50000; 
//  y[4]  = 50000; 
//  y[5]  = 10; 
//  y[6]  = 50000; 
//  y[7]  = 50000; 
//  y[8]  = 10; 
//  y[9]  = 10; 
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//  y[10] = 10; 
//  y[11] = 50000; 
//  y[12] = 10; 
//  y[13] = 50000; 
//  y[14] = 10; 
//  y[15] = 50000; 
//  y[16] = 50000; 
//  y[17] = 10; 
//  y[18] = 10; 
//  y[19] = 10; 
//  y[20] = 10; 
//  y[21] = 10; 
//  y[22] = 10; 
 
  // start with ON state (BioD) 
  y[0]  = 0;  // 04 
  y[1]  = 325; // 06 
  y[2]  = 0;  // 06 
  y[3]  = 325; // 06 
  y[4]  = 33;  // 06 
  y[5]  = 0.01; // 06 
  y[6]  = 0.01; // 06 
  y[7]  = 0;  // 06 
  y[8]  = 326; // 06 
  y[9]  = 326; // 06 
  y[10] = 0;  // 04 
  y[11] = 4750; // 06 
  y[12] = 2105; // 06 
  y[13] = 322; // 06 
  y[14] = 0.4; // 06 
  y[15] = 0.05; // 06 
  y[16] = 0.007; // 06 
  y[17] = 14150; // 06 
  y[18] = 16350; // 06 
  y[19] = 0;  // 06 
  y[20] = 0.01; // 06 
  y[21] = 0.01; // 06 
  y[22] = 0;  // 06 
  y[23] = 0;  // 06 
  y[24] = 0;  // 06 
 
  // start with ON state (BioFSM) 
//  y[0]  = 0;  // 04 
//  y[1]  = 262; // 06 
//  y[2]  = 0;  // 06 
//  y[3]  = 229; // 06 
//  y[4]  = 33;  // 06 
//  y[5]  = 0.001; // 06 
//  y[6]  = 0.001; // 06 
//  y[7]  = 0;  // 06 
//  y[8]  = 327; // 06 
//  y[9]  = 327; // 06 
//  y[10] = 0;  // 04 
//  y[11] = 3317; // 06 
//  y[12] = 712; // 06 
//  y[13] = 1764; // 06 
//  y[14] = 0.03; // 06 
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//  y[15] = 0.03; // 06 
//  y[16] = 0.006; // 06 
//  y[17] = 14151; // 06 
//  y[18] = 16345; // 06 
//  y[19] = 0;  // 06 
//  y[20] = 0;  // 06 
//  y[21] = 327; // 06 
//  y[22] = 0;  // 06 
//  y[23] = 0;  // 06 
//  y[24] = 32663; // 06 
 
  // start with OFF state (BioD) 
  y[0]  = 0;  // 04 
  y[1]  = 260; // 06 
  y[2]  = 0;  // 06 
  y[3]  = 230; // 06 
  y[4]  = 33;  // 06 
  y[5]  = 0.001; // 06 
  y[6]  = 295; // 06 
  y[7]  = 295; // 06 
  y[8]  = 0;  // 06 
  y[9]  = 0;  // 06 
  y[10] = 0;  // 04 
  y[11] = 3320; // 06 
  y[12] = 715; // 06 
  y[13] = 1750; // 06 
  y[14] = 0.04; // 06 
  y[15] = 6370; // 06 
  y[16] = 12750; // 06 
  y[17] = 0;  // 06 
  y[18] = 0;  // 06 
  y[19] = 0;  // 06 
  y[20] = 0;  // 06 
  y[21] = 0;  // 06 
  y[22] = 0;  // 06 
  y[23] = 0;  // 06 
  y[24] = 0;  // 06 
 
  // start with OFF state (BioFSM) 
//  y[0]  = 0;  // 04 
//  y[1]  = 262; // 06 
//  y[2]  = 0;  // 06 
//  y[3]  = 229; // 06 
//  y[4]  = 33;  // 06 
//  y[5]  = 0.001; // 06 
//  y[6]  = 294; // 06 
//  y[7]  = 294; // 06 
//  y[8]  = 0;  // 06 
//  y[9]  = 0;  // 06 
//  y[10] = 0;  // 04 
//  y[11] = 3316; // 06 
//  y[12] = 712; // 06 
//  y[13] = 1764; // 06 
//  y[14] = 0.04; // 06 
//  y[15] = 6369; // 06 
//  y[16] = 12737; // 06 
//  y[17] = 0;  // 06 
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//  y[18] = 0;  // 06 
//  y[19] = 0;  // 06 
//  y[20] = 0;  // 06 
//  y[21] = 0;  // 06 
//  y[22] = 0;  // 06 
//  y[23] = 0;  // 06 
//  y[24] = 0.08; // 06 
 
  K_y[0]  = K_taR12; 
  K_y[10] = K_cI; 
  K_y[11] = K_cII; 
  K_y[12] = K_ompR; 
  K_y[13] = K_ompRP; 
  K_y[14] = K_Gal4; 
  K_y[15] = K_TetR; 
  K_y[16] = K_LexA; 
  K_y[17] = K_LacI; 
  K_y[22] = K_AHL_LEFT; 
  K_y[23] = K_AHL_RIGHT; 
 
  n_y[0]  = n_taR12; 
  n_y[10] = n_cI; 
  n_y[11] = n_cII; 
  n_y[12] = n_ompR; 
  n_y[13] = n_ompRP; 
  n_y[14] = n_Gal4; 
  n_y[15] = n_TetR; 
  n_y[16] = n_LexA; 
  n_y[17] = n_LacI; 
  n_y[22] = n_AHL_LEFT; 
  n_y[23] = n_AHL_RIGHT; 
 
  d_y[0]  = d_taR12; 
  d_y[1]  = d_mRNA; 
  d_y[2]  = d_mRNA; 
  d_y[3]  = d_mRNA; 
  d_y[4]  = d_mRNA; 
  d_y[5]  = d_mRNA; 
  d_y[6]  = d_mRNA; 
  d_y[7]  = d_mRNA; 
  d_y[8]  = d_mRNA; 
  d_y[9]  = d_mRNA; 
  d_y[10] = d_cI; 
  d_y[11] = d_cII; 
  d_y[12] = d_ompR; 
  d_y[13] = d_ompRP; 
  d_y[14] = d_Gal4; 
  d_y[15] = d_TetR; 
  d_y[16] = d_LexA; 
  d_y[17] = d_LacI; 
  d_y[18] = d_GFP; 
  d_y[19] = d_mRNA; 
  d_y[20] = d_mRNA; 
  d_y[21] = d_mRNA; 
  d_y[22] = d_AHL_LEFT; 
  d_y[23] = d_AHL_RIGHT; 
  d_y[24] = d_AHL_CENTER; 
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//  // nM/min 
//  cmax[0] = 1.67e+1; 
//  cmax[1] = 1.67e+2; 
//  cmax[2] = 1.67e+2; 
//  cmax[3] = 0.25e-0; 
//  cmax[4] = 1.67e+2; 
//  cmax[5] = 1.67e+2; 
//  cmax[6] = 1.67e+2; 
//  cmax[7] = 1.67e+2; 
 
//  // uM/min 
//  cmax[0] = 1.67e-2; 
//  cmax[1] = 1.67e-1; 
//  cmax[2] = 1.67e-1; 
//  cmax[3] = 0.25e-3; 
//  cmax[4] = 1.67e-1; 
//  cmax[5] = 1.67e-1; 
//  cmax[6] = 1.67e-1; 
//  cmax[7] = 1.67e-1; 
 
  // nM/s 
  // average is 3.06 uM/h 
//  cmax[0]  = 0.425e-1; 
//  cmax[3]  = 0.125e-2; 
  cmax[0]  = 0.1 * 0.85e-0; 
  cmax[1]  = 0.8 * 0.85e-0; 
  cmax[2]  = 0.7 * 0.85e-0; 
  cmax[3]  = 0.1 * 0.85e-0; 
  cmax[4]  = 0.3 * 0.85e-0; 
  cmax[5]  = 0.3 * 0.85e-0; 
  cmax[6]  = 0.9 * 0.85e-0; 
  cmax[7]  = 1.0 * 0.85e-0; 
  cmax[8]  = 1.0 * 0.85e-0; 
  cmax[9]  = 1.0 * 0.85e-0; 
  cmax[10] = 1.0 * 0.85e-0; 
  cmax[11] = 1.0 * 0.85e-0; 
  cmax[12] = 1.0 * 0.85e-0; 
  cmax[13] = 1.0 * 0.85e-0; 
 
  // Set up file 
 
  remove((path + "deterministic.dat").c_str()); 
//  remove("T:/workspace/C++/MyDet/deterministic2.dat"); 
//  remove("T:/workspace/C++/MyDet/deterministic3.dat"); 
 
  ofstream outF1((path + "deterministic.dat").c_str()); 
//  ofstream 
outF2("T:/workspace/C++/MyDet/deterministic2.dat"); 
//  ofstream 
outF3("T:/workspace/C++/MyDet/deterministic3.dat"); 
 
  outF1 << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" << 
     "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t" 
<< 
     "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" << 
     "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" << 
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     "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n"; 
//  outF1 << 
"t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t" << 
//     
"mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" << 
//     
"LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n"; 
//  outF2 << "mCIcr\tmCI\tmCII\tCI\tCII\n"; 
//  outF3 << "mOmpR\tOmpR\tOmpRP\n"; 
 
  string filename = nextFileName(); 
 
  ofstream outF(filename.c_str()); 
 
  outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" << 
    "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t" << 
    "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" << 
    "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" << 
    "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n"; 
//  outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t" 
<< 
//   
 "mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" << 
//   
 "LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n"; 
 
 
  //Define Input 
 
  while (t < N) 
  { 
   t += tau; 
 
   //INPUT SIGNALS 
 
   // taRNA input (taR12) 
//   T = ((t<500) || ((t>10000)&&(t<25000)) || (t>35000)) 
? 0 : 1; 
//   T = ((t<10000) || (t>15000)) ? 0 : 1; 
//   T = (t<10000) ? 0 : 1; // 01 N=39600 
//   T = (t<2500) ? 0 : 1; // 02 N=10000 
//   T = ((t<9000) || ((t>36000)&&(t<72000)) || 
//    (t>99000)) ? 0 : 1; // 03 N=108000 
//   T = ((t<36000) || (t>63000)) ? 0 : 1; // 04 
N=72000 
//   T = ((t<13000) || (t>17000)) ? 0 : 1; // 05 
N=20000 
//   T = ((t<2500) || 
//    ((t>7000)&&(t<16500)) || 
//    (t>23000)) ? 0 : 1; // 06&07 N=28000 
//   T = ((t<2500) || (t>7000)) ? 0 : 1; // 06&07 N=28000 
//   T = ((t<2500) || 
//    ((t>10000)&&(t<31000)) || 
//    (t>42000)) ? 0 : 1; // 08 N=52000 
   T = ((t<1500) || (t>6500)) ? 0 : 1; // 09 N=10000 
 LAST ONE! 
//   T = ((t<10000) || ((t>15000)&&(t<22000))) ? 0 : 1; 
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//   T = (t<2000) ? 0 : 1; 
//   T = 0; 
 
   // Red light 
//   L = ((t<4000) || ((t>7000)&&(t<13000)) || 
//    ((t>18000)&&(t<22000)) || 
//    ((t>28000)&&(t<32000))) ? 0 : 1; 
//   L = ((t<10000) || (t>20000)) ? 0 : 1; 
//   L = ((t<5000) || ((t>15000)&&(t<25000)) || 
//    (t>35000)) ? 0 : 1; // 01 N=39600 
//   L = ((t<1750) || (t>9000)) ? 0 : 1;  // 02 N=10000 
//   L = ((t<18000) || 
//    ((t>27000)&&(t<45000)) || 
//    ((t>54000)&&(t<63000)) || 
//    ((t>81000)&&(t<90000)) || 
//    (t>104000)) ? 0 : 1; // 03 N=108000 
//   L = ((t<9000) || ((t>18000)&&(t<27000)) || 
//    ((t>45000)&&(t<54000)) || 
//    (t>67000)) ? 0 : 1; // 04 N=72000 
//   L = ((t<4000) || ((t>10000)&&(t<13100)) || 
//    (t>17100)) ? 0 : 1; // 05 N=20000 
//   L = ((t<4000) || 
//    ((t>5500)&&(t<10000)) || 
//    ((t>13000)&&(t<15000)) || 
//    ((t>18000)&&(t<22000)) || 
//    (t>24000)) ? 0 : 1; // 06 N=28000 
//   L = ((t<4000) || (t>10000)) ? 0 : 1; // 06 
N=28000 
//   L = ((t<4000) || 
//    ((t>5500)&&(t<10000)) || 
//    ((t>11000)&&(t<15000)) || 
//    ((t>18000)&&(t<22000)) || 
//    (t>24000)) ? 0 : 1; // 07 N=28000 
//   L = ((t<4000) || 
//    ((t>6500)&&(t<18000)) || 
//    ((t>23000)&&(t<28000)) || 
//    ((t>34000)&&(t<40000)) || 
//    (t>44000)) ? 0 : 1; // 08 N=52000 
   L = ((t<2500) || (t>5500)) ? 0 : 1; // 09 N=10000 
//   L = ((t<2500) || (t>7000)) ? 0 : 1; // 09 N=15000 
//   L = 0; 
 
//   T=0;L=0; 
 
   // AHL_LEFT 
//   AHL_LEFT =  ((t<2400) || 
//      ((t>9900)&&(t<30900)) || 
//      (t>41900)) ? 0 : 1; 
   AHL_LEFT =  ((t<2500) || (t>5000)) ? 0 : 1; 
   AHL_LEFT = 0; 
 
   // AHL_RIGHT 
//   AHL_RIGHT = ((t<2400) || 
//      ((t>9900)&&(t<30900)) || 
//      (t>41900)) ? 0 : 1; 
   AHL_RIGHT = ((t<2500) || (t>5000)) ? 0 : 1; 
//   AHL_RIGHT = 0; 
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   // Print Output 
 
   outF << t    <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2] 
<<"\t"<< 
     y[3] <<"\t"<<y[4] <<"\t"<<y[5] 
<<"\t"<<y[6] <<"\t"<< 
     y[7] <<"\t"<<y[8] <<"\t"<<y[9] 
<<"\t"<<y[10]<<"\t"<< 
    
 y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<< 
    
 y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<< 
    
 y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n"; 
     y[23]<<"\t"<<y[24]<<"\n"; 
 
   outF1 << t    <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2] 
<<"\t"<< 
      y[3] <<"\t"<<y[4] <<"\t"<<y[5] 
<<"\t"<<y[6] <<"\t"<< 
      y[7] <<"\t"<<y[8] <<"\t"<<y[9] 
<<"\t"<<y[10]<<"\t"<< 
      
y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<< 
      
y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<< 
      
y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n"; 
      y[23]<<"\t"<<y[24]<<"\n"; 
//   outF2 << t    <<"\t"<<y[1] <<"\t"<<y[2] <<"\t"<<y[3] 
<<"\t"<< 
//      y[10]<<"\t"<<y[11]<<"\n"; 
//   outF3 << t    <<"\t"<<y[4] 
<<"\t"<<y[12]<<"\t"<<y[13]<<"\n"; 
 
 
   // Integrating 
 
   RungeKutta(y,tau,dy); 
 
  } 
 
  outF.close(); 
 
  outF1.close(); 
//  outF2.close(); 
//  outF3.close(); 
 
  cout << "Done!\n" << endl; 
 
  time (&end); 
  diff = difftime(end, start); 
 
  cout << "Time Elapsed: " << itime(diff) << endl << endl; 
 
  char ans; 
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  cout << "Plot Graph(s)? (Yes/No)" << endl; 
  cin >> ans; 
 
  if (ans!='y' && ans!='Y') 
  { 
   cout << endl << "End!" << endl; 
   return 0; 
  } 
 
  cout << "Plotting...\n" << endl; 
 
//  remove("test.gp"); 
// 
//  ofstream plotFile("T:/workspace/C++/MyDet/test.gp"); 
// 
//  plotFile  << "set terminal wxt 0" << endl 
//     << "load 
'T:/workspace/C++/MyDet/deterministic.plt'" << endl 
//     << "print \"Done!\\n\\n\"" << endl 
//     << "print \"Plotting the second 
plot...!\\n\\n\"" << endl 
//     << "set terminal wxt 1" << endl 
//     << "load 
'T:/workspace/C++/MyDet/deterministic_.plt'" << endl 
//     << "print \"Done!\\n\\n\"" << endl 
//     << "print \"Press Enter To Terminate 
Program...!\\n\"" << endl 
//     << "pause -1" << endl; 
 
 
  try 
  { 
   // gnuPlot is "gnuplot.exe test.gp" 
   system(gnuPlot); 
  } 
  catch (invalid_argument& e) 
  { 
   cerr << "ERROR: " << e.what(); 
  } 
  catch (...) 
  { 
   cerr << "Something Happened..!" << endl; 
  } 
 
  cout << endl << "End!" << endl; 
 
  return 0; 
 } 
 
 
 /***********************************************************/ 
 /*********************** FUNCTIONS *************************/ 
 /***********************************************************/ 
 
 
 void RungeKutta(double y[],double h,double dy[]) 
 { 
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  double k1[dim],k2[dim],k3[dim],k4[dim]; 
  double y1[dim],y2[dim],y3[dim]; 
  double *p_dy; 
 
  p_dy=diff_eq(y,dy); 
  for(int i=0; i<dim; ++i) 
  { 
   k1[i]=*(p_dy+i)*h; 
   y1[i]=y[i]+0.5*k1[i]; 
  } 
 
  p_dy=diff_eq(y1,dy); 
  for(int i=0; i<dim; ++i) 
  { 
   k2[i]=*(p_dy+i)*h; 
   y2[i]=y[i]+0.5*k2[i]; 
  } 
 
  p_dy=diff_eq(y2,dy); 
  for(int i=0; i<dim; ++i) 
  { 
   k3[i]=*(p_dy+i)*h; 
   y3[i]=y[i]+k3[i]; 
  } 
 
  p_dy=diff_eq(y3,dy); 
  for(int i=0; i<dim; ++i) 
  { 
   k4[i]=*(p_dy+i)*h; 
  } 
 
  for(int i=0; i<dim; ++i) 
   y[i]=y[i]+(k1[i]+2.*k2[i]+2.*k3[i]+k4[i])/6.; 
 
 } 
 
 
 double *diff_eq(double y[], double dy[]) 
 { 
 
 
 /***********************************************************/ 
  /******************** MRNA EQUATIONS 
***********************/ 
 
 /***********************************************************/ 
 
  // d[taR12]/dt 
  dy[0] = cmax[0]*T - d_y[0]*y[0]; 
//  dy[0] = cmax[8]*(a+(1-a)*(pow((y[22]/K_y[22]),n_y[22]) / 
//         
 (1+pow((y[22]/K_y[22]),n_y[22])))) + 
//    cmax[9]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))) 
//       
 *(pow((y[23]/K_y[23]),n_y[23]) / 
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//         
 (1+pow((y[23]/K_y[23]),n_y[23])))) - 
//    d_y[0]*y[0]; 
//  dy[0] = cmax[8]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17]))) 
//       
 *(1/(1+pow((y[23]/K_y[23]),n_y[23]))) 
//       
 *(pow((y[22]/K_y[22]),n_y[22]) / 
//         
 (1+pow((y[22]/K_y[22]),n_y[22])))) + 
//    cmax[9]*(a+(1-
a)*(1/(1+pow((y[22]/K_y[22]),n_y[22]))) 
//       
 *(pow((y[23]/K_y[23]),n_y[23]) / 
//         
 (1+pow((y[23]/K_y[23]),n_y[23])))) + 
//    cmax[13]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))) 
//         
*(1/(1+pow((y[22]/K_y[22]),n_y[22])))) - 
//    d_y[0]*y[0]; 
 
  // d[mCIcr]/dt 
  dy[1] = cmax[1]*(a+(1-
a)*(1/(1+pow((y[14]/K_y[14]),n_y[14])))) - 
    d_y[1]*y[1]; 
 
  // d[mCI]/dt 
  dy[2] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
       
 *(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
       
 *(pow((y[12]/K_y[12]),n_y[12]) / 
         
 (1+pow((y[12]/K_y[12]),n_y[12])))) - 
    d_y[2]*y[2]; 
 
  // d[mCII]/dt 
  dy[3] = cmax[2]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))) + 
    cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
       
 *(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
       
 *(pow((y[12]/K_y[12]),n_y[12]) / 
         
 (1+pow((y[12]/K_y[12]),n_y[12])))) - 
    d_y[3]*y[3]; 
 
  // d[mOmpR]/dt 
  dy[4] = cmax[3] - d_y[4]*y[4]; 
 
  // d[mGal4]/dt 
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  dy[5] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
       
 *(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
       
 *(pow((y[12]/K_y[12]),n_y[12]) / 
         
 (1+pow((y[12]/K_y[12]),n_y[12])))) - 
    d_y[5]*y[5]; 
 
  // d[mTetR]/dt 
  dy[6] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
       
 *(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
       
 *(pow((y[12]/K_y[12]),n_y[12]) / 
         
 (1+pow((y[12]/K_y[12]),n_y[12])))) + 
    cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17])))) - 
    d_y[6]*y[6]; 
 
  // d[mLexA]/dt 
  dy[7] = cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17])))) - 
    d_y[7]*y[7]; 
 
  // d[mLacI]/dt 
  dy[8] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
       
 *(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
       
 *(pow((y[12]/K_y[12]),n_y[12]) / 
         
 (1+pow((y[12]/K_y[12]),n_y[12])))) + 
    cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))) - 
    d_y[8]*y[8]; 
 
  // d[mGFP]/dt 
  dy[9] = cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))) - 
    d_y[9]*y[9]; 
 
  // d[mCI_4]/dt 
//  dy[19] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
//         
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//         
*(pow((y[12]/K_y[12]),n_y[12]) / 
//           
(1+pow((y[12]/K_y[12]),n_y[12])))) - 
//     d_y[1]*y[19]; 
  // d[mAHL_LEFT]/dt 
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  dy[19] = cmax[11]*AHL_LEFT - d_y[19]*y[19]; 
 
  // d[mCII_5]/dt 
//  dy[20] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
//         
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//         
*(pow((y[12]/K_y[12]),n_y[12]) / 
//           
(1+pow((y[12]/K_y[12]),n_y[12])))) - 
//     d_y[2]*y[20]; 
  // d[mAHL_RIGHT]/dt 
  dy[20] = cmax[12]*AHL_RIGHT - d_y[20]*y[20]; 
 
  // d[mTetR_5]/dt 
//  dy[21] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
//         
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//         
*(pow((y[12]/K_y[12]),n_y[12]) / 
//           
(1+pow((y[12]/K_y[12]),n_y[12])))) - 
//     d_y[6]*y[21]; 
  // d[mAHL_CENTER]/dt 
  dy[21] = cmax[10]*(a+(1-
a)*(1/(1+pow((y[16]/K_y[16]),n_y[16])))) - 
    d_y[21]*y[21]; 
 
  // d[mLacI_4]/dt 
//  dy[22] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
//         
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//         
*(pow((y[12]/K_y[12]),n_y[12]) / 
//           
(1+pow((y[12]/K_y[12]),n_y[12])))) - 
//     d_y[8]*y[22]; 
 
 
 
 /***********************************************************/ 
  /****************** PROTEIN EQUATIONS 
**********************/ 
 
 /***********************************************************/ 
 
//  // d[CI]/dt 
//  dy[10] = gp*y[1]*(a+(1-a)*(pow((y[0]/K_y[0]),n_y[0]) / 
//           
(1+pow((y[0]/K_y[0]),n_y[0])))) + 
//     gp*y[2] - 
//     d_y[10]*y[10]; 
 
  // d[CI]/dt 
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  dy[10] = gp*y[1]*(a+(1-a)*y[0]*0.04) + 
     gp*y[2] - 
     d_y[10]*y[10]; 
 
  // d[CII]/dt 
  dy[11] = gp*y[3] - d_y[11]*y[11]; 
 
  // d[OmpR]/dt 
  dy[12] = gp*y[4] + V_dephos * y[13] - 
     (V_phos*(1-L)*y[12])/(K_phos + y[12]) - 
     d_y[12]*y[12]; 
 
  // d[OmpRP]/dt 
  dy[13] = (V_phos*(1-L)*y[12])/(K_phos + y[12]) - 
     V_dephos * y[13] - 
     d_y[13]*y[13]; 
 
  // d[Gal4]/dt 
  dy[14] = gp*y[5] - d_y[14]*y[14]; 
 
  // d[TetR]/dt 
  dy[15] = gp*y[6] - d_y[15]*y[15]; 
 
  // d[LexA]/dt 
  dy[16] = gp*y[7] - d_y[16]*y[16]; 
 
  // d[LacI]/dt 
  dy[17] = gp*y[8] - d_y[17]*y[17]; 
 
  // d[GFP]/dt 
  dy[18] = gp*y[9] - d_y[18]*y[18]; 
 
  // d[AHL_LEFT]/dt 
  dy[22] = gp*y[19] - d_y[22]*y[22]; 
 
  // d[AHL_RIGHT]/dt 
  dy[23] = gp*y[20] - d_y[23]*y[23]; 
 
  // d[AHL_CENTER]/dt 
  dy[24] = gp*y[21] - d_y[24]*y[24]; 
 
 
  return dy; 
 } 
 
 bool fexists(const char *filename) 
 { 
   ifstream ifile(filename); 
   return ifile; 
 } 
 
 string getDate() 
 { 
    time_t now; 
    char theDate[MAX_DATE_LEN]; 
 
    theDate[0] = '\0'; 
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    now = time(0); 
 
    if (now != -1) 
    { 
//    strftime(theDate, MAX_DATE_LEN, 
//      "%Y%h%d_%Hh%Mm%Ss", localtime(&now)); 
    strftime(theDate, MAX_DATE_LEN, "%Y%m%d", 
localtime(&now)); 
    } 
 
    return string(theDate); 
 } 
 
 string nextFileName() 
 { 
  int count=0; 
  stringstream ss; 
  string date = getDate(); 
 
  do 
  { 
   count++; 
   ss.str(""); 
 
   ss  << path2 
    << date 
    << "_DET_" 
    << setw(3) << setfill('0') << count 
    << ".xls"; 
  } 
  while (fexists(ss.str().c_str())); 
 
  return ss.str(); 
 } 
 
 string itime(const double diff) 
 { 
  stringstream ss; 
 
  int hrs = int (diff/3600); 
  int mins = int ((diff - hrs*3600)/60); 
  int secs = int ((diff - hrs*3600 - mins*60)); 
 
  ss  << setw(2) << setfill('0') 
   << hrs << ":" 
   << setw(2) << setfill('0') 
   << mins << ":" 
   << setw(2) << setfill('0') 
   << secs; 
 
  return ss.str(); 
 } 
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GnuPlot File: 

deterministc.plt 

#!/gnuplot 
# 
#     
#     G N U P L O T 
#     Version 4.2 patchlevel 5  
#     last modified Mar 2009 
#     System: MS-Windows 32 bit  
#     
#     Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009 
#     Thomas Williams, Colin Kelley and many others 
#     
#     Type `help` to access the on-line reference manual. 
#     The gnuplot FAQ is available from http://www.gnuplot.info/faq/ 
#     
#     Send bug reports and suggestions to 
<http://sourceforge.net/projects/gnuplot> 
#     
# set terminal windows color noenhanced 
# set output 
reset 
GNUTERM = "win" 
 
set xlabel "Time (hours)" 
set ylabel "Protein Levels (uM)" 
 
set lmargin at screen 0.055 
 
set yrange [-2:18] 
 
set ytics 4 
set xtics 4 
 
set object 1 rectangle from 4000/3600.0, graph 0 to 8500/3600.0, graph 
1 fc lt 1 fs transparent solid 0.25 noborder 
set object 2 rectangle from 18000/3600.0, graph 0 to 23000/3600.0, 
graph 1 fc lt 1 fs transparent solid 0.25 noborder 
set object 3 rectangle from 28000/3600.0, graph 0 to 34000/3600.0, 
graph 1 fc lt 1 fs transparent solid 0.25 noborder 
set object 4 rectangle from 40000/3600.0, graph 0 to 44000/3600.0, 
graph 1 fc lt 1 fs transparent solid 0.25 noborder 
 
set object 5 rectangle from 2500/3600.0, graph 0 to 10000/3600.0, graph 
1 fc lt -1 fs transparent pattern 7 noborder 
set object 6 rectangle from 31000/3600.0, graph 0 to 42000/3600.0, 
graph 1 fc lt -1 fs transparent pattern 7 noborder 
 
plot " deterministic.dat" using ($1/3600.0):($12/1000.0) t "CI" w l lc 
rgb "#008000" lw 2, "deterministic.dat" u ($1/3600.0):($13/1000.0) t 
"CII" w l lt 1 lw 2, " deterministic.dat" u ($1/3600.0):($14/1000.0) t 
"OmpR" w l lc rgb "#008080" lw 2, " deterministic.dat" u 
($1/3600.0):($15/1000.0) t "OmpRP" w l lc rgb "#FF8000" lw 2, " 
deterministic.dat" using ($1/3600.0):($16/1000.0) t "Gal4" w l lc rgb 
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"#808000" lw 2, " deterministic.dat" using ($1/3600.0):($17/1000.0) t 
"TetR" w l lt 4 lw 2.5, " deterministic.dat" using 
($1/3600.0):($19/1000.0) t "LacI" w l lt -1 lw 2.5 
 
#    EOF 
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Stochastic Run: 

MySto.cpp 

#include <iostream> 
#include <iomanip> 
#include <fstream> 
#include <stdexcept> 
#include <sstream> 
#include <string> 
#include <cmath> 
#include <ctime> 
#include <cstdlib> 
 
using namespace std; 
 
#define  dim  25 
 
#define  abt  1 /*sampling rate*/ 
 
// number of iterations 
//#define  N  39600  // 11 hours (make arbitrarily high) 
//#define  N  108000 // whatever, just testing 
//#define  N  72000  // whatever, just testing 
//#define  N  20000  // whatever, just testing 
//#define  N  28000  // whatever, just testing 
//#define  N  52000  // whatever, just testing 
//#define  N  10000  // whatever, just testing 
#define  N  7500  // whatever, just testing 
 
#define  MAX_DATE_LEN  12 
 
/*T=N*tau, where T is the real time. This is independent of abt.*/ 
 
 
 /***********************************************************/ 
 /********************** PARAMETERS *************************/ 
 /***********************************************************/ 
 
 
 // as per K_LacI = 10nM 
 double K_taR12     = 80; //* 
 double K_cI      = 8; 
 double K_cII     = 50; 
 double K_ompR     = 151; 
 double K_ompRP     = 6; 
 double K_Gal4     = 24; 
 double K_TetR     = 0.6; 
 double K_LexA     = 20; //* 
 double K_LacI     = 10; 
 double K_AHL_LEFT    = 20; //* 
 double K_AHL_RIGHT    = 20; //* 
 
// // as per K_LacI = 1.7uM 
// double K_taR12     = 1.7; //* 
// double K_cI      = 17; 
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// double K_cII     = 17; 
// double K_ompR     = 1.7; //* 
// double K_ompRP     = 1.7; //* 
// double K_Gal4     = 1.7; //* 
// double K_TetR     = 17; 
// double K_LacI     = 1.7; 
 
// // as per K_LacI = 700 Molecules/cell 
// double K_taR12     = 700; //* 
// double K_cI      = 7000; 
// double K_cII     = 7000; 
// double K_ompR     = 700; //* 
// double K_ompRP     = 700; //* 
// double K_Gal4     = 700; //* 
// double K_TetR     = 7000; 
// double K_LacI     = 700; 
 
// // as per K_LacI = 15 Molecules/cell 
// double K_taR12     = 15; //* 
// double K_cI      = 150; 
// double K_cII     = 150; 
// double K_ompR     = 15; //* 
// double K_ompRP     = 15; //* 
// double K_Gal4     = 15; //* 
// double K_TetR     = 150; 
// double K_LacI     = 15; 
 
 double n_taR12     = 2; 
 double n_cI      = 2; 
 double n_cII     = 2; 
 double n_ompR     = 2; 
 double n_ompRP     = 2; 
 double n_Gal4     = 2; 
 double n_TetR     = 3; 
 double n_LexA     = 2; 
 double n_LacI     = 2; 
 double n_AHL_LEFT    = 2; 
 double n_AHL_RIGHT    = 2; 
 
// double d_taR12     = 0.006; //* 
// double d_mRNA     = 0.006; 
// double d_cI      = 0.002888; 
// double d_cII     = 0.002888; //* 
// double d_ompR     = 0.002888; //* 
// double d_ompRP     = 0.002888; //* 
// double d_Gal4     = 0.002888; //* 
// double d_TetR     = 0.002888; 
// double d_LexA     = 0.002888; //* 
// double d_LacI     = 0.002888; 
// double d_GFP     = 0.002888; //* 
 
 double d_taR12     = 0.0026; //* 
 double d_mRNA     = 0.0026; 
// double d_mRNA     = 0.006; 
 double d_cI      = 0.0007*10; 
 double d_cII     = 0.0069; 
 double d_ompR     = 0.00132; 
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 double d_ompRP     = 0.00132; 
 double d_Gal4     = 0.002888; //* 
 double d_TetR     = 0.00231*2; //* 
 double d_LexA     = 0.00231; //* 
 double d_LacI     = 0.00231; 
 double d_GFP     = 0.0002*10; 
 double d_AHL_LEFT    = 0.001; //* 
 double d_AHL_RIGHT    = 0.001; //* 
 double d_AHL_CENTER    = 0.001; //* 
 
 double gp      = 0.1; 
 double a      = 0.00; 
 double T      = 0; 
 double L      = 0; 
 double AHL_LEFT     = 0; 
 double AHL_RIGHT    = 0; 
 
// double V_phos     = 20.0; // Rate of 
OmpR phosphorylation 
// double K_phos     = 5.0; // Kinetic 
constant 
// double V_dephos     = 0.01; // Rate of 
OmpRP dephosphorylation 
// double V_phos     = 0.75; // Rate of 
OmpR phosphorylation 
// double K_phos     = 0.25; // Kinetic 
constant 
// double V_dephos     = 0.001; // Rate of 
OmpRP dephosphorylation 
 double V_phos     = 20.0; // Rate of 
OmpR phosphorylation 
 double K_phos     = 1.0; // Kinetic 
constant 
 double V_dephos     = 0.01; // Rate of 
OmpRP dephosphorylation 
 
 double  K_y[dim]; 
 double  n_y[dim]; 
 double  d_y[dim]; 
 double  cmax[14]; 
 
 
 
 const string path = "T:/workspace/C++/MySto/"; 
 const string path2 = "C:/Documents and Settings/Administrator/" 
       "Desktop/BioSym/May 
2nd/Paper1/Results/"; 
// const string path = "D:/Imad/workspace/C++/MySto/"; 
// const string path2 = "D:/Imad/workspace/C++/ResultsSto/"; 
 
 const string gPlot = "gnuplot.exe " + path + "test.gp"; 
// const string gPlot = "gnuplot.exe " + path + "test2.gp -persist"; 
// const string gPlot = "gnuplot.exe " + path + "test3.gp -persist"; 
 
 const char* gnuPlot = gPlot.c_str(); 
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 /***********************************************************/ 
 /*********************** FUNCTIONS *************************/ 
 /***********************************************************/ 
 
 
 const int PoissonRandomNumber(const double lambda); 
 
 bool fexists(const char *filename); 
 string getDate(); 
 string nextFileName(); 
 string itime(const double diff); 
 
 
 /***********************************************************/ 
 /********************* PROGRAM START ***********************/ 
 /***********************************************************/ 
 
 
 int main() 
 { 
  time_t start, end; 
  double diff; 
 
  time(&start); 
 
  cout << "Starting Stochastic...\n" << endl; 
 
  srand( (unsigned int)time(NULL) );  //initialize random 
generator 
 
  double tau = 10; //20; //5; // step used 
  double t = 0; 
  double lambda; 
  double y[dim],dy[dim]; 
  double d1,d2,d3,d4; 
 
  remove((path + "stochastic.dat").c_str()); 
 
  ofstream outFS((path + "stochastic.dat").c_str()); 
  outFS << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" << 
     "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t" 
<< 
     "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" << 
     "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" << 
     "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n"; 
//  outFS << 
"t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t" << 
//     
"mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" << 
//     
"LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n"; 
 
 
  string filename = nextFileName(); 
  ofstream outF(filename.c_str()); 
 
  outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" << 
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    "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t" << 
    "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" << 
    "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" << 
    "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n"; 
//  outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t" 
<< 
//   
 "mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" << 
//   
 "LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n"; 
 
 
  // Initial Conditions 
  // Initializing ODEs 
  for(int i=0; i<dim; ++i) 
  { 
   y[i] = 0.0; 
   dy[i] = 0.0; 
   K_y[i] = 0.0; 
   n_y[i] = 0.0; 
   d_y[i] = 0.0; 
  } 
 
//  y[0]  = 10; 
//  y[1]  = 10; 
//  y[2]  = 10; 
//  y[3]  = 50000; 
//  y[4]  = 50000; 
//  y[5]  = 10; 
//  y[6]  = 50000; 
//  y[7]  = 50000; 
//  y[8]  = 10; 
//  y[9]  = 10; 
//  y[10] = 10; 
//  y[11] = 50000; 
//  y[12] = 10; 
//  y[13] = 50000; 
//  y[14] = 10; 
//  y[15] = 50000; 
//  y[16] = 50000; 
//  y[17] = 10; 
//  y[18] = 10; 
//  y[19] = 10; 
//  y[20] = 10; 
//  y[21] = 10; 
//  y[22] = 10; 
 
  // start with ON state (BioD) 
//  y[0]  = 0;  // 04 
//  y[1]  = 325; // 06 
//  y[2]  = 0;  // 06 
//  y[3]  = 325; // 06 
//  y[4]  = 33;  // 06 
//  y[5]  = 0.01; // 06 
//  y[6]  = 0.01; // 06 
//  y[7]  = 0;  // 06 
//  y[8]  = 326; // 06 
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//  y[9]  = 326; // 06 
//  y[10] = 0;  // 04 
//  y[11] = 4750; // 06 
//  y[12] = 2105; // 06 
//  y[13] = 322; // 06 
//  y[14] = 0.4; // 06 
//  y[15] = 0.05; // 06 
//  y[16] = 0.007; // 06 
//  y[17] = 14150; // 06 
//  y[18] = 16350; // 06 
//  y[19] = 0;  // 06 
//  y[20] = 0.01; // 06 
//  y[21] = 0.01; // 06 
//  y[22] = 0;  // 06 
//  y[23] = 0;  // 06 
//  y[24] = 0;  // 06 
 
  // start with ON state (BioFSM) 
  y[0]  = 0;  // 04 
  y[1]  = 262; // 06 
  y[2]  = 0;  // 06 
  y[3]  = 229; // 06 
  y[4]  = 33;  // 06 
  y[5]  = 0.001; // 06 
  y[6]  = 0.001; // 06 
  y[7]  = 0;  // 06 
  y[8]  = 327; // 06 
  y[9]  = 327; // 06 
  y[10] = 0;  // 04 
  y[11] = 3317; // 06 
  y[12] = 712; // 06 
  y[13] = 1764; // 06 
  y[14] = 0.03; // 06 
  y[15] = 0.03; // 06 
  y[16] = 0.006; // 06 
  y[17] = 14151; // 06 
  y[18] = 16345; // 06 
  y[19] = 0;  // 06 
  y[20] = 0;  // 06 
  y[21] = 327; // 06 
  y[22] = 0;  // 06 
  y[23] = 0;  // 06 
  y[24] = 32663; // 06 
 
  // start with OFF state (BioD) 
//  y[0]  = 0;  // 04 
//  y[1]  = 260; // 06 
//  y[2]  = 0;  // 06 
//  y[3]  = 230; // 06 
//  y[4]  = 33;  // 06 
//  y[5]  = 0.001; // 06 
//  y[6]  = 295; // 06 
//  y[7]  = 295; // 06 
//  y[8]  = 0;  // 06 
//  y[9]  = 0;  // 06 
//  y[10] = 0;  // 04 
//  y[11] = 3320; // 06 
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//  y[12] = 715; // 06 
//  y[13] = 1750; // 06 
//  y[14] = 0.04; // 06 
//  y[15] = 6370; // 06 
//  y[16] = 12750; // 06 
//  y[17] = 0;  // 06 
//  y[18] = 0;  // 06 
//  y[19] = 0;  // 06 
//  y[20] = 0;  // 06 
//  y[21] = 0;  // 06 
//  y[22] = 0;  // 06 
//  y[23] = 0;  // 06 
//  y[24] = 0;  // 06 
 
  // start with OFF state (BioFSM) 
//  y[0]  = 0;  // 04 
//  y[1]  = 262; // 06 
//  y[2]  = 0;  // 06 
//  y[3]  = 229; // 06 
//  y[4]  = 33;  // 06 
//  y[5]  = 0.001; // 06 
//  y[6]  = 294; // 06 
//  y[7]  = 294; // 06 
//  y[8]  = 0;  // 06 
//  y[9]  = 0;  // 06 
//  y[10] = 0;  // 04 
//  y[11] = 3316; // 06 
//  y[12] = 712; // 06 
//  y[13] = 1764; // 06 
//  y[14] = 0.04; // 06 
//  y[15] = 6369; // 06 
//  y[16] = 12737; // 06 
//  y[17] = 0;  // 06 
//  y[18] = 0;  // 06 
//  y[19] = 0;  // 06 
//  y[20] = 0;  // 06 
//  y[21] = 0;  // 06 
//  y[22] = 0;  // 06 
//  y[23] = 0;  // 06 
//  y[24] = 0.08; // 06 
 
  K_y[0]  = K_taR12; 
  K_y[10] = K_cI; 
  K_y[11] = K_cII; 
  K_y[12] = K_ompR; 
  K_y[13] = K_ompRP; 
  K_y[14] = K_Gal4; 
  K_y[15] = K_TetR; 
  K_y[16] = K_LexA; 
  K_y[17] = K_LacI; 
  K_y[22] = K_AHL_LEFT; 
  K_y[23] = K_AHL_RIGHT; 
 
  n_y[0]  = n_taR12; 
  n_y[10] = n_cI; 
  n_y[11] = n_cII; 
  n_y[12] = n_ompR; 
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  n_y[13] = n_ompRP; 
  n_y[14] = n_Gal4; 
  n_y[15] = n_TetR; 
  n_y[16] = n_LexA; 
  n_y[17] = n_LacI; 
  n_y[22] = n_AHL_LEFT; 
  n_y[23] = n_AHL_RIGHT; 
 
  d_y[0]  = d_taR12; 
  d_y[1]  = d_mRNA; 
  d_y[2]  = d_mRNA; 
  d_y[3]  = d_mRNA; 
  d_y[4]  = d_mRNA; 
  d_y[5]  = d_mRNA; 
  d_y[6]  = d_mRNA; 
  d_y[7]  = d_mRNA; 
  d_y[8]  = d_mRNA; 
  d_y[9]  = d_mRNA; 
  d_y[10] = d_cI; 
  d_y[11] = d_cII; 
  d_y[12] = d_ompR; 
  d_y[13] = d_ompRP; 
  d_y[14] = d_Gal4; 
  d_y[15] = d_TetR; 
  d_y[16] = d_LexA; 
  d_y[17] = d_LacI; 
  d_y[18] = d_GFP; 
  d_y[19] = d_mRNA; 
  d_y[20] = d_mRNA; 
  d_y[21] = d_mRNA; 
  d_y[22] = d_AHL_LEFT; 
  d_y[23] = d_AHL_RIGHT; 
  d_y[24] = d_AHL_CENTER; 
 
//  // nM/min 
//  cmax[0] = 1.67e+1; 
//  cmax[1] = 1.67e+2; 
//  cmax[2] = 1.67e+2; 
//  cmax[3] = 0.25e-0; 
//  cmax[4] = 1.67e+2; 
//  cmax[5] = 1.67e+2; 
//  cmax[6] = 1.67e+2; 
//  cmax[7] = 1.67e+2; 
 
//  // uM/min 
//  cmax[0] = 1.67e-2; 
//  cmax[1] = 1.67e-1; 
//  cmax[2] = 1.67e-1; 
//  cmax[3] = 0.25e-3; 
//  cmax[4] = 1.67e-1; 
//  cmax[5] = 1.67e-1; 
//  cmax[6] = 1.67e-1; 
//  cmax[7] = 1.67e-1; 
 
//  // nM/s 
//  // average is 3.06 uM/h 
////  cmax[0] = 0.425e-1; 
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//  cmax[0] = 0.85e-1; 
//  cmax[1] = 0.85e-0; 
//  cmax[2] = 0.85e-0; 
////  cmax[3] = 0.125e-2; 
//  cmax[3] = 0.85e-1; 
//  cmax[4] = 0.85e-1; 
//  cmax[5] = 0.85e-1; 
//  cmax[6] = 0.85e-0; 
//  cmax[7] = 0.85e-0; 
 
  // nM/s 
  // average is 3.06 uM/h 
//  cmax[0]  = 0.425e-1; 
//  cmax[3]  = 0.125e-2; 
  cmax[0]  = 0.1 * 0.85e-0; 
  cmax[1]  = 0.8 * 0.85e-0; 
  cmax[2]  = 0.7 * 0.85e-0; 
  cmax[3]  = 0.1 * 0.85e-0; 
  cmax[4]  = 0.3 * 0.85e-0; 
  cmax[5]  = 0.3 * 0.85e-0; 
  cmax[6]  = 0.9 * 0.85e-0; 
  cmax[7]  = 1.0 * 0.85e-0; 
  cmax[8]  = 1.0 * 0.85e-0; 
  cmax[9]  = 1.0 * 0.85e-0; 
  cmax[10] = 1.0 * 0.85e-0; 
  cmax[11] = 1.0 * 0.85e-0; 
  cmax[12] = 1.0 * 0.85e-0; 
  cmax[13] = 1.0 * 0.85e-0; 
 
  while (t < N) 
  { 
   t += tau; 
 
   //INPUT SIGNALS 
 
   // taRNA input (taR12) 
//   T = ((t<500) || ((t>10000)&&(t<25000)) || (t>35000)) 
? 0 : 1; 
//   T = ((t<10000) || (t>15000)) ? 0 : 1; 
//   T = (t<10000) ? 0 : 1; // 01 N=39600 
//   T = (t<2500) ? 0 : 1; // 02 N=10000 
//   T = ((t<9000) || ((t>36000)&&(t<72000)) || 
//    (t>99000)) ? 0 : 1; // 03 N=108000 
//   T = ((t<36000) || (t>63000)) ? 0 : 1; // 04 
N=72000 
//   T = ((t<13000) || (t>17000)) ? 0 : 1; // 05 
N=20000 
//   T = ((t<2500) || 
//    ((t>7000)&&(t<16500)) || 
//    (t>23000)) ? 0 : 1; // 06&07 N=28000 
//   T = ((t<2500) || (t>7000)) ? 0 : 1; // 06&07 N=28000 
//   T = ((t<2500) || 
//    ((t>10000)&&(t<31000)) || 
//    (t>42000)) ? 0 : 1; // 08 N=52000 
//   T = ((t<1500) || (t>6500)) ? 0 : 1; // 09 N=12000 
 LAST ONE! 
//   T = ((t<10000) || ((t>15000)&&(t<22000))) ? 0 : 1; 
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//   T = (t<2000) ? 0 : 1; 
//   T = 0; 
 
   // Red light 
//   L = ((t<4000) || ((t>7000)&&(t<13000)) || 
//    ((t>18000)&&(t<22000)) || 
//    ((t>28000)&&(t<32000))) ? 0 : 1; 
//   L = ((t<10000) || (t>20000)) ? 0 : 1; 
//   L = ((t<5000) || ((t>15000)&&(t<25000)) || 
//    (t>35000)) ? 0 : 1; // 01 N=39600 
//   L = ((t<1750) || (t>9000)) ? 0 : 1;  // 02 N=10000 
//   L = ((t<18000) || 
//    ((t>27000)&&(t<45000)) || 
//    ((t>54000)&&(t<63000)) || 
//    ((t>81000)&&(t<90000)) || 
//    (t>104000)) ? 0 : 1; // 03 N=108000 
//   L = ((t<9000) || ((t>18000)&&(t<27000)) || 
//    ((t>45000)&&(t<54000)) || 
//    (t>67000)) ? 0 : 1; // 04 N=72000 
//   L = ((t<4000) || ((t>10000)&&(t<13100)) || 
//    (t>17100)) ? 0 : 1; // 05 N=20000 
//   L = ((t<4000) || 
//    ((t>5500)&&(t<10000)) || 
//    ((t>13000)&&(t<15000)) || 
//    ((t>18000)&&(t<22000)) || 
//    (t>24000)) ? 0 : 1; // 06 N=28000 
//   L = ((t<4000) || (t>10000)) ? 0 : 1; // 06 
N=28000 
//   L = ((t<4000) || 
//    ((t>5500)&&(t<10000)) || 
//    ((t>11000)&&(t<15000)) || 
//    ((t>18000)&&(t<22000)) || 
//    (t>24000)) ? 0 : 1; // 07 N=28000 
//   L = ((t<4000) || 
//    ((t>6500)&&(t<18000)) || 
//    ((t>23000)&&(t<28000)) || 
//    ((t>34000)&&(t<40000)) || 
//    (t>44000)) ? 0 : 1; // 08 N=52000 
   L = ((t<2500) || (t>7000)) ? 0 : 1; // 09 N=15000 
   L = 0; 
 
//   T=0;L=0; 
 
   // AHL_LEFT 
//   AHL_LEFT =  ((t<2400) || 
//      ((t>9900)&&(t<30900)) || 
//      (t>41900)) ? 0 : 1; 
   AHL_LEFT =  ((t<2500) || (t>5000)) ? 0 : 1; 
   AHL_LEFT = 0; 
 
   // AHL_RIGHT 
//   AHL_RIGHT = ((t<2400) || 
//      ((t>9900)&&(t<30900)) || 
//      (t>41900)) ? 0 : 1; 
   AHL_RIGHT = ((t<2500) || (t>5000)) ? 0 : 1; 
   AHL_RIGHT = 0; 
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   // Print Output 
 
   outF << t    <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2] 
<<"\t"<< 
     y[3] <<"\t"<<y[4] <<"\t"<<y[5] 
<<"\t"<<y[6] <<"\t"<< 
     y[7] <<"\t"<<y[8] <<"\t"<<y[9] 
<<"\t"<<y[10]<<"\t"<< 
    
 y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<< 
    
 y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<< 
    
 y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n"; 
     y[23]<<"\t"<<y[24]<<"\n"; 
 
   outFS << t    <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2] 
<<"\t"<< 
      y[3] <<"\t"<<y[4] <<"\t"<<y[5] 
<<"\t"<<y[6] <<"\t"<< 
      y[7] <<"\t"<<y[8] <<"\t"<<y[9] 
<<"\t"<<y[10]<<"\t"<< 
      
y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<< 
      
y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<< 
      
y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n"; 
      y[23]<<"\t"<<y[24]<<"\n"; 
 
 
 /***********************************************************/ 
 /******************** MRNA EQUATIONS ***********************/ 
 /***********************************************************/ 
 
 
//   // d[taR12]/dt - first term of the equation 
//   lambda = cmax[0]*T*tau; 
//   d1=PoissonRandomNumber(lambda); 
// 
//   // d[taR12]/dt - second term of the equation 
//   lambda = d_y[0]*y[0]*tau; 
//   d2=PoissonRandomNumber(lambda); 
// 
//   // d[taR12]/dt - equation 
//   y[0] = y[0] + d1 - d2; 
 
//   // d[taR12]/dt - first term of the equation 
//   lambda = cmax[8]*(a+(1-
a)*(pow((y[22]/K_y[22]),n_y[22]) / 
//            
(1+pow((y[22]/K_y[22]),n_y[22])))) 
//          *tau; 
//   d1=PoissonRandomNumber(lambda); 
// 
//   // d[taR12]/dt - second term of the equation 
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//   lambda = cmax[9]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))) 
//          
*(pow((y[23]/K_y[23]),n_y[23]) / 
//            
(1+pow((y[23]/K_y[23]),n_y[23])))) 
//          *tau; 
//   d2=PoissonRandomNumber(lambda); 
// 
//   // d[taR12]/dt - third term of the equation 
//   lambda = d_y[0]*y[0]*tau; 
//   d3=PoissonRandomNumber(lambda); 
// 
//   // d[taR12]/dt - equation 
//   y[0] = y[0] + d1 + d2 - d3; 
 
   // d[taR12]/dt - first term of the equation 
   lambda = cmax[8]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17]))) 
          
*(1/(1+pow((y[23]/K_y[23]),n_y[23]))) 
          
*(pow((y[22]/K_y[22]),n_y[22]) / 
          
 (1+pow((y[22]/K_y[22]),n_y[22])))) 
          *tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[taR12]/dt - second term of the equation 
   lambda = cmax[9]*(a+(1-
a)*(1/(1+pow((y[22]/K_y[22]),n_y[22]))) 
          
*(pow((y[23]/K_y[23]),n_y[23]) / 
          
 (1+pow((y[23]/K_y[23]),n_y[23])))) 
          *tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[taR12]/dt - third term of the equation 
   lambda = cmax[13]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))) 
           
*(1/(1+pow((y[22]/K_y[22]),n_y[22])))) 
           *tau; 
   d3=PoissonRandomNumber(lambda); 
 
   // d[taR12]/dt - fourth term of the equation 
   lambda = d_y[0]*y[0]*tau; 
   d4=PoissonRandomNumber(lambda); 
 
   // d[taR12]/dt - equation 
   y[0] = y[0] + d1 + d2 + d3 - d4; 
 
   // d[mCIcr]/dt - first term of the equation 
   lambda = cmax[1]*(a+(1-
a)*(1/(1+pow((y[14]/K_y[14]),n_y[14]))))*tau; 
   d1=PoissonRandomNumber(lambda); 
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   // d[mCIcr]/dt - second term of the equation 
   lambda = d_y[1]*y[1]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mCIcr]/dt - equation 
   y[1] = y[1] + d1 - d2; 
 
   // d[mCI]/dt - first term of the equation 
   lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
          
*(pow((y[12]/K_y[12]),n_y[12])/ 
            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
          *tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mCI]/dt - second term of the equation 
   lambda = d_y[2]*y[2]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mCI]/dt - equation 
   y[2] = y[2] + d1 - d2; 
 
   // d[mCII]/dt - first term of the equation 
   lambda = cmax[2]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))))*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mCII]/dt - second term of the equation 
   lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
          
*(pow((y[12]/K_y[12]),n_y[12])/ 
            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
          *tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mCII]/dt - third term of the equation 
   lambda = d_y[3]*y[3]*tau; 
   d3=PoissonRandomNumber(lambda); 
 
   // d[mCII]/dt - equation 
   y[3] = y[3] + d1 + d2 - d3; 
 
   // d[mOmpR]/dt - first term of the equation 
   lambda = cmax[3]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mOmpR]/dt - second term of the equation 
   lambda = d_y[4]*y[4]*tau; 
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   d2=PoissonRandomNumber(lambda); 
 
   // d[mOmpR]/dt - equation 
   y[4] = y[4] + d1 - d2; 
 
   // d[mGal4]/dt - first term of the equation 
   lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
          
*(pow((y[12]/K_y[12]),n_y[12])/ 
            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
          *tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mGal4]/dt - second term of the equation 
   lambda = d_y[5]*y[5]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mGal4]/dt - equation 
   y[5] = y[5] + d1 - d2; 
 
   // d[mTetR]/dt - first term of the equation 
   lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
          
*(pow((y[12]/K_y[12]),n_y[12])/ 
            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
          *tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mTetR]/dt - second term of the equation 
   lambda = cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17]))))*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mTetR]/dt - third term of the equation 
   lambda = d_y[6]*y[6]*tau; 
   d3=PoissonRandomNumber(lambda); 
 
   // d[mTetR]/dt - equation 
   y[6] = y[6] + d1 + d2 - d3; 
 
   // d[mLexA]/dt - first term of the equation 
   lambda = cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17]))))*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mLexA]/dt - second term of the equation 
   lambda = d_y[7]*y[7]*tau; 
   d2=PoissonRandomNumber(lambda); 
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   // d[mLexA]/dt - equation 
   y[7] = y[7] + d1 - d2; 
 
   // d[mLacI]/dt - first term of the equation 
   lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
          
*(pow((y[12]/K_y[12]),n_y[12])/ 
            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
          *tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mLacI]/dt - second term of the equation 
   lambda = cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))))*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mLacI]/dt - third term of the equation 
   lambda = d_y[8]*y[8]*tau; 
   d3=PoissonRandomNumber(lambda); 
 
   // d[mLacI]/dt - equation 
   y[8] = y[8] + d1 + d2 - d3; 
 
   // d[mGFP]/dt - first term of the equation 
   lambda = cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))))*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mGFP]/dt - second term of the equation 
   lambda = d_y[9]*y[9]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mGFP]/dt - equation 
   y[9] = y[9] + d1 - d2; 
 
//   // d[mCI_4]/dt - first term of the equation 
//   lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
//          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//          
*(pow((y[12]/K_y[12]),n_y[12])/ 
//            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
//          *tau; 
//   d1=PoissonRandomNumber(lambda); 
// 
//   // d[mCI_4]/dt - second term of the equation 
//   lambda = d_y[19]*y[19]*tau; 
//   d2=PoissonRandomNumber(lambda); 
// 
//   // d[mCI_4]/dt - equation 
//   y[19] = y[19] + d1 - d2; 
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   // d[mAHL_LEFT]/dt - first term of the equation 
   lambda = cmax[11]*AHL_LEFT*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mAHL_LEFT]/dt - second term of the equation 
   lambda = d_y[19]*y[19]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mAHL_LEFT]/dt - equation 
   y[19] = y[19] + d1 - d2; 
 
//   // d[mCII_5]/dt - first term of the equation 
//   lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
//          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//          
*(pow((y[12]/K_y[12]),n_y[12])/ 
//            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
//          *tau; 
//   d1=PoissonRandomNumber(lambda); 
// 
//   // d[mCII_5]/dt - second term of the equation 
//   lambda = d_y[20]*y[20]*tau; 
//   d2=PoissonRandomNumber(lambda); 
// 
//   // d[mCII_5]/dt - equation 
//   y[20] = y[20] + d1 - d2; 
 
   // d[mAHL_RIGHT]/dt - first term of the equation 
   lambda = cmax[12]*AHL_RIGHT*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mAHL_RIGHT]/dt - second term of the equation 
   lambda = d_y[20]*y[20]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mAHL_RIGHT]/dt - equation 
   y[20] = y[20] + d1 - d2; 
 
//   // d[mTetR_5]/dt - first term of the equation 
//   lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))) 
//          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//          
*(pow((y[12]/K_y[12]),n_y[12])/ 
//            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
//          *tau; 
//   d1=PoissonRandomNumber(lambda); 
// 
//   // d[mTetR_5]/dt - second term of the equation 
//   lambda = d_y[21]*y[21]*tau; 
//   d2=PoissonRandomNumber(lambda); 
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// 
//   // d[mTetR_5]/dt - equation 
//   y[21] = y[21] + d1 - d2; 
 
   // d[mAHL_CENTER]/dt - first term of the equation 
   lambda = cmax[10]*(a+(1-
a)*(1/(1+pow((y[16]/K_y[16]),n_y[16]))))*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   // d[mAHL_CENTER]/dt - second term of the equation 
   lambda = d_y[21]*y[21]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   // d[mAHL_CENTER]/dt - equation 
   y[21] = y[21] + d1 - d2; 
 
//   // d[mLacI_4]/dt - first term of the equation 
//   lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11]))) 
//          
*(1/(1+pow((y[13]/K_y[13]),n_y[13]))) 
//          
*(pow((y[12]/K_y[12]),n_y[12])/ 
//            
(1+pow((y[12]/K_y[12]),n_y[12])))) 
//          *tau; 
//   d1=PoissonRandomNumber(lambda); 
// 
//   // d[mLacI_4]/dt - second term of the equation 
//   lambda = d_y[22]*y[22]*tau; 
//   d2=PoissonRandomNumber(lambda); 
// 
//   // d[mLacI_4]/dt - equation 
//   y[22] = y[22] + d1 - d2; 
 
 
 /***********************************************************/ 
 /****************** PROTEIN EQUATIONS **********************/ 
 /***********************************************************/ 
 
 
//   //[CI] - first term of the equation 
//   lambda = gp*y[1]*(a+(1-a)*(pow((y[0]/K_y[0]),n_y[0])/ 
//         
 (1+pow((y[0]/K_y[0]),n_y[0]))))*tau; 
//   d1=PoissonRandomNumber(lambda); 
 
   //[CI] - first term of the equation 
   lambda = gp*y[1]*(a+(1-a)*y[0]*0.04)*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[CI] - second term of the equation 
   lambda = gp*y[2]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[CI] - third term of the equation 
   lambda = d_y[10]*y[10]*tau; 
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   d3=PoissonRandomNumber(lambda); 
 
   //[CI] - equation 
   y[10] = y[10] + d1 + d2 - d3; 
 
   //[CII] - first term of the equation 
   lambda=gp*y[3]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[CII] - second term of the equation 
   lambda = d_y[11]*y[11]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[CII] - equation 
   y[11] = y[11] + d1 - d2; 
 
   //[OmpR] - first term of the equation 
   lambda = gp*y[4]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[OmpR] - second term of the equation 
   lambda = ((V_phos*(1-L)*y[12])/(K_phos + y[12]))*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[OmpR] - third term of the equation 
   lambda = V_dephos*y[13]*tau; 
   d3=PoissonRandomNumber(lambda); 
 
   //[OmpR] - fourth term of the equation 
   lambda = d_y[12]*y[12]*tau; 
   d4=PoissonRandomNumber(lambda); 
 
   //[OmpR] - equation 
   y[12] = y[12] + d1 - d2 + d3 - d4; 
 
   //[OmpRP] - first term of the equation 
   lambda=((V_phos*(1-L)*y[12])/(K_phos + y[12]))*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[OmpRP] - second term of the equation 
   lambda = V_dephos*y[13]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[OmpRP] - third term of the equation 
   lambda = d_y[13]*y[13]*tau; 
   d3=PoissonRandomNumber(lambda); 
 
   //[OmpRP] - equation 
   y[13] = y[13] + d1 - d2 - d3; 
 
   //[Gal4] - first term of the equation 
   lambda=gp*y[5]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[Gal4] - second term of the equation 
   lambda = d_y[14]*y[14]*tau; 
   d2=PoissonRandomNumber(lambda); 
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   //[Gal4] - equation 
   y[14] = y[14] + d1 - d2; 
 
   //[TetR] - first term of the equation 
   lambda=gp*y[6]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[TetR] - second term of the equation 
   lambda = d_y[15]*y[15]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[TetR] - equation 
   y[15] = y[15] + d1 - d2; 
 
   //[LexA] - first term of the equation 
   lambda=gp*y[7]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[LexA] - second term of the equation 
   lambda = d_y[16]*y[16]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[LexA] - equation 
   y[16] = y[16] + d1 - d2; 
 
   //[LacI] - first term of the equation 
   lambda=gp*y[8]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[LacI] - second term of the equation 
   lambda = d_y[17]*y[17]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[LacI] - equation 
   y[17] = y[17] + d1 - d2; 
 
   //[GFP] - first term of the equation 
   lambda=gp*y[9]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[GFP] - second term of the equation 
   lambda = d_y[18]*y[18]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[GFP] - equation 
   y[18] = y[18] + d1 - d2; 
 
   //[AHL_LEFT] - first term of the equation 
   lambda=gp*y[19]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[AHL_LEFT] - second term of the equation 
   lambda = d_y[22]*y[22]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[AHL_LEFT] - equation 
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   y[22] = y[22] + d1 - d2; 
 
   //[AHL_RIGHT] - first term of the equation 
   lambda=gp*y[20]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[AHL_RIGHT] - second term of the equation 
   lambda = d_y[23]*y[23]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[AHL_RIGHT] - equation 
   y[23] = y[23] + d1 - d2; 
 
   //[AHL_CENTER] - first term of the equation 
   lambda=gp*y[21]*tau; 
   d1=PoissonRandomNumber(lambda); 
 
   //[AHL_CENTER] - second term of the equation 
   lambda = d_y[24]*y[24]*tau; 
   d2=PoissonRandomNumber(lambda); 
 
   //[AHL_CENTER] - equation 
   y[24] = y[24] + d1 - d2; 
 
  } 
 
  outF.close(); 
  outFS.close(); 
 
  cout << "Done!\n" << endl; 
 
  time (&end); 
  diff = difftime(end, start); 
 
  cout << "Time Elapsed: " << itime(diff) << endl << endl; 
 
  char ans; 
  cout << "Plot Graph(s)? (Yes/No)" << endl; 
  cin >> ans; 
  if (ans!='y' && ans!='Y') 
  { 
   cout << endl << "End!" << endl; 
   return 0; 
  } 
 
  cout << "Plotting...\n" << endl; 
 
  try 
  { 
   // c is "gnuplot.exe test.gp" 
   system(gnuPlot); 
  } 
  catch (invalid_argument& e) 
  { 
   cerr << "ERROR: " << e.what(); 
  } 
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  cout << endl << "End!" << endl; 
 
  return 0; 
 } 
 
 
 /***********************************************************/ 
 /*********************** FUNCTIONS *************************/ 
 /***********************************************************/ 
 
 
 const int PoissonRandomNumber(const double lambda) 
 { 
  int k=0;       //Counter 
  const int max_k = int (2 * lambda); //k upper limit 
  double p = 1.0*rand()/RAND_MAX;  //uniform random 
number 
  double P = exp(-lambda);   //probability 
  double sum = P;      //cumulant 
 
  if (sum >= p) return 0;    //done allready 
 
  for (k = 1; k < max_k; ++k)   //Loop over all 
k:s 
  { 
   P*=lambda/(double)k;   //Calc next prob 
   sum+=P;      
 //Increase cumulant 
   if (sum>=p) break;    //Leave 
loop 
  } 
 
  return k;       //return 
random number 
 } 
 
 bool fexists(const char *filename) 
 { 
   ifstream ifile(filename); 
   return ifile; 
 } 
 
 string getDate() 
 { 
    time_t now; 
    char theDate[MAX_DATE_LEN]; 
 
    theDate[0] = '\0'; 
 
    now = time(0); 
 
    if (now != -1) 
    { 
//    strftime(theDate, MAX_DATE_LEN, 
//      "%Y%h%d_%Hh%Mm%Ss", localtime(&now)); 
    strftime(theDate, MAX_DATE_LEN, "%Y%m%d", 
localtime(&now)); 
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    } 
 
    return string(theDate); 
 } 
 
 string nextFileName() 
 { 
  int count=0; 
  stringstream ss; 
  string date = getDate(); 
 
  do 
  { 
   count++; 
   ss.str(""); 
 
   ss  << path2 
    << date 
    << "_STO_" 
    << setw(3) << setfill('0') << count 
    << ".xls"; 
  } 
  while (fexists(ss.str().c_str())); 
 
  return ss.str(); 
 } 
 
 string itime(const double diff) 
 { 
  stringstream ss; 
 
  int hrs = int (diff/3600); 
  int mins = int ((diff - hrs*3600)/60); 
  int secs = int ((diff - hrs*3600 - mins*60)); 
 
  ss  << setw(2) << setfill('0') 
   << hrs << ":" 
   << setw(2) << setfill('0') 
   << mins << ":" 
   << setw(2) << setfill('0') 
   << secs; 
 
  return ss.str(); 
 } 
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GnuPlot file: 

stochastic.plt 

#!/gnuplot 
# 
#     
#     G N U P L O T 
#     Version 4.2 patchlevel 5  
#     last modified Mar 2009 
#     System: MS-Windows 32 bit  
#     
#     Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009 
#     Thomas Williams, Colin Kelley and many others 
#     
#     Type `help` to access the on-line reference manual. 
#     The gnuplot FAQ is available from http://www.gnuplot.info/faq/ 
#     
#     Send bug reports and suggestions to 
<http://sourceforge.net/projects/gnuplot> 
#     
# set terminal windows color noenhanced 
# set output 
reset 
GNUTERM = "win" 
 
set xlabel "Time (hours)" 
set ylabel "Protein Levels (uM)" 
 
set lmargin at screen 0.055 
 
set yrange [-2:18] 
 
set ytics 4 
set xtics 4 
 
set object 1 rectangle from 4000/3600.0, graph 0 to 8500/3600.0, graph 
1 fc lt 1 fs transparent solid 0.25 noborder 
set object 2 rectangle from 18000/3600.0, graph 0 to 23000/3600.0, 
graph 1 fc lt 1 fs transparent solid 0.25 noborder 
set object 3 rectangle from 28000/3600.0, graph 0 to 34000/3600.0, 
graph 1 fc lt 1 fs transparent solid 0.25 noborder 
set object 4 rectangle from 40000/3600.0, graph 0 to 44000/3600.0, 
graph 1 fc lt 1 fs transparent solid 0.25 noborder 
 
set object 5 rectangle from 2500/3600.0, graph 0 to 10000/3600.0, graph 
1 fc lt -1 fs transparent pattern 7 noborder 
set object 6 rectangle from 31000/3600.0, graph 0 to 42000/3600.0, 
graph 1 fc lt -1 fs transparent pattern 7 noborder 
 
plot "stochastic.dat" using ($1/3600.0):($12/1000.0) t "CI" w l lc rgb 
"#008000" lw 1.5, "stochastic.dat" u ($1/3600.0):($13/1000.0) t "CII" w 
l lt 1 lw 1.5, "stochastic.dat" u ($1/3600.0):($14/1000.0) t "OmpR" w l 
lc rgb "#008080" lw 1.5, "stochastic.dat" u ($1/3600.0):($15/1000.0) t 
"OmpRP" w l lc rgb "#FF8000" lw 1.5, "stochastic.dat" using 
($1/3600.0):($16/1000.0) t "Gal4" w l lc rgb "#808000" lw 1.5, 
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"stochastic.dat" using ($1/3600.0):($17/1000.0) t "TetR" w l lt 4 lw 
1.5, "stochastic.dat" using ($1/3600.0):($19/1000.0) t "LacI" w l lt -1 
lw 1.5 
 
#    EOF 

 


