

Computational Simulation of Gene Regulatory Networks Implementing an

Extendable Synchronous Single-Input Delay Flip-Flop and State Machine

Imad Hoteit

A Thesis

In the Department

of

Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements

For the Degree of Master of Science (Electrical and Computer

Engineering) at

Concordia University

Montreal, Quebec, Canada

September 2011

© Imad Hoteit, 2011

CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Imad Hoteit

Entitled:

and submitted in partial fulfilment of the requirements for the degree of

Masters of Applied Science

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair
Dr. L. Lopes

______________________________________ Examiner
Dr. S. Gleason

______________________________________ Examiner
Dr. P. Grogono

______________________________________ Supervisor
Dr. N. Kharma

Approved by __
Chair of Department or Graduate Program Director

Dr. Robin A. L. Drew, Dean
Faculty of Engineering and Computer Science

Date __

Computational Simulation of Gene Regulatory Networks Implementing an

Extendable Synchronous Single-Input Delay Flip-Flop and State Machine.

iii

ABSTRACT

Computational Simulation of a Gene Regulatory Network Implementing

an Extendable Synchronous Single-Input Delay Flip-Flop

Imad Hoteit

We present a detailed and extendable design of the first

synchronous single-input delay flip-flop implemented as a gene

regulatory network in Escherichia coli (E. coli). The device, which we

call the BioD, has one data input (trans-acting RNA), one clock input

(far-red light) and an output that reports the state of the device using

green fluorescent protein (GFP). The proposed design builds on

Gardner’s toggle switch, to provide a more sophisticated device that

can be synchronized with other devices within or without the same

cell, and which requires only one data input. We provide a

mathematical model of the system and simulation results. The results

show that the device behaves in line with desired functionality.

Further, we discuss the constraints of the design, which pertain to

ranges of parameter values. The BioD is extended via the addition of

an update function and input and output interfaces. The result is the

BioFSM, which constitutes a synchronous and modular finite state

machine, which uses an update function to change its state, stored in

the BioD. The BioFSM uses its input and output interfaces for inter-

iv

cellular communications. This opens the door to the design of a

circular cellular automata (the BioCell), which is envisioned as a

number of communicating E. coli colonies, each made of clones of one

BioFSM.

v

ACKNOWLEDGEMENTS

I would like to start by acknowledging my parents Hassan and Chadia

to whom this work is first and foremost dedicated. They have

redefined the meaning of patience and endurance for me. They were

there every step of the way, helping me, encouraging me, pushing me

to achieve what they said was “the least of my capabilities”. Thank you

for loving me the way you do and for your endless pride, even when it

was undeserved. Huge thanks to my sisters Ola and Rasha who cared

for me and comforted me in times of hardship and distress. Thank you

for your endless understanding, I love you.

To Michelle: My home away from home. For so many years,

you’ve been the rock that I stood upon, the only one I relied on, my

real guide and confidant, my best friend, my sister, my teacher. I

thank you more than I can say.

To Dr. Ahmad: I have never needed help and not found myself

better off for talking to you. Your objectivity and poised nature, your

ambition and strive, and the example you so well present with this life

so well lived have been something to behold from the day that I met

you. Since then you’ve become much more than I could ever bear to

lose. Thank you for all your guidance and opinions without which this

vi

thesis would have greatly suffered.

To Jalal, Ashraf and Makram: You’ve sheltered me. Each in his

own way. Took care of me when I was lost. Accepted my many flaws

lightly. You are the best definition of a friend I could come up with,

ever. I’ve learned much from you. Much more than you are aware. I

rely on you, and I love you for it. Thank you.

To Ben: You are more than a friend to me. Though I didn’t notice

it at first, you became a mentor to me very quickly when we met. I

find in you a better version of myself and I love you for it. Your

support for this thesis was never direct, but ever-present. I am better

for knowing you. A bright guiding light you are. Mein älterer Bruder.

To Ramzi: You are the younger brother I never knew I had. You

are such a wonderful person that I relied on you and on your help

much more than I should sometimes. Thank you cousin for being in

my life. For all you’ve done for me, I say I love and thank you from all

my heart; and for all that I see you capable of accomplishing, I say

you truly have a wonderful life ahead of you that I can’t wait to share

in.

To Jad, Anthony and Nadim: Throughout this thesis, you’ve bore

the brunt of my busy schedule, and yet remained great friends. I

always could count on your support and I hope the next journey will

make me a much better friend.

vii

To Hassan: Well my friend, the day has come. Since our teenage

years we’ve shared our lives. Now I am married and you have a son.

All that was missing was a thesis… Thank you for your constant

guidance and support over the years. I love you and miss you.

To Mo, Ale and Mosha: my labmates and friends. We’ve shared

much together. Thank you for your support, the unending cosmic

conversations, and the opinions you’ve provided over the years. You

are all amazing people and I am better for knowing you.

I would also like to thank Dr. Eusebius Doedel for the invaluable

help understanding non-linear systems and the manner in which to

analyse them. Many thanks go to Dr. Luc Varin. You have been my

main source of biological knowledge. This thesis rests upon the

knowledge I acquired from you in and outside the classroom.

I would also like to thank my committee, Dr. Scott Gleason and

Dr. Peter Grogono for their insightful comments and corrections.

To my wonderful partner, whom I JUST married, Nathalie: If

acknowledging you are the love of my life and my light in the dark is

generally seen as enough, it isn’t the case here. You helped me write

this thesis. From the introduction, to the literature review, to an

endless number of images and more, you’ve been the endless support

I never deserved. I tried to finish before you came in my life, but my

life took a better turn only after meeting you. It’s as if this thesis was

viii

waiting for you to be finalized. But that is not all. You’ve sacrificed so

much for me, some many hours, so many opportunities, so much

energy. I have put so much weight on you and I promise you that it

ends now. I love you and I promise you the life of a queen. “You to me

are everything, the sweetest song that I could sing…”, and you are my

true rock, my goal, my confidant, my love and my soul. I finished

because of you and because I love you.

Last but not least, to my supervisor, Dr. Nawwaf Kharma. Words

cannot express how much I owe you. More than anyone, I owe you the

rest of my life since I would have thrown it away without your help,

and your love. You’ve been a true friend but also a father figure, and I

can only explain the patience you’ve shown me over the years with

this. You are a wonderful WONDERFUL human being, and I am lucky to

have been your student. I am sorry for the stress I caused and I thank

you from the bottom of my heart.

ix

Table of Contents

TABLE OF CONTENTS... IX

LIST OF FIGURES ... XII

LIST OF TABLES .. XIV

CHAPTER 1. INTRODUCTION .. 1

1.1 CELL AND GENOME .. 1

1.2 GENOME AND REGULATION .. 3

1.2.1 Operon Structure .. 5

1.2.2 Types of Regulation ... 5

1.2.3 Transcriptional Regulation .. 6

1.3 NEED FOR SIMULATION ... 12

1.4 HILL EQUATION ... 13

1.5 LAW OF MASS ACTION.. 21

1.6 MICHAELIS-MENTEN KINETICS .. 22

CHAPTER 2. LITERATURE REVIEW ...24

2.1 COMPUTING MACHINES ... 25

2.2 SIMULATION AND MODELLING ... 27

2.3 SWITCH AND OSCILLATOR DESIGNS .. 27

2.3.1 DNA Level Using Flipase Protein 28

2.3.2 Transcription Level .. 28

x

2.3.3 Post-Transcription Level ... 31

2.3.4 Protein Level .. 32

2.4 MAKING THE CASE .. 32

CHAPTER 3. NETWORK DESIGN AND MODELLING35

3.1 BIOD ... 35

3.1.1 INPUT Genes .. 38

3.1.2 STATE Genes .. 40

3.1.3 SELECTION Genes ... 40

3.2 BIOFSM ... 51

3.3 SIMULATION METHODOLOGY ... 56

3.3.1 Language ... 56

3.3.2 Inputs and Outputs ... 56

3.3.3 Tools ... 57

3.3.4 Stochastic run .. 57

3.3.5 Parameters .. 58

CHAPTER 4. SIMULATION RESULTS AND DISCUSSION59

4.1 BIOD ... 59

4.1.1 Model Constraints.. 64

4.1.2 Clock Input (CLK) .. 67

4.1.3 Data Input (D) .. 70

4.1.4 Bi-stability ... 71

xi

4.1.5 Dissociation Constants ... 74

4.2 BIOFSM ... 76

4.3 EXTENSION: BIOCELL .. 80

CHAPTER 5. CONCLUSION ...86

REFERENCES ...90

APPENDIX ...97

xii

List of Figures

Figure 1-1. Operon structure. Operator sites can be located before,

inside or after the promoter. More than one operator site can be

occupied simultaneously. ... 5

Figure 1-2. Simple negative regulation. .. 7

Figure 1-3. Negative inducible regulation. 8

Figure 1-4. Negative Repressible regulation. 9

Figure 1-5. Simple positive regulation. ... 10

Figure 1-6. Positive inducible regulation. 11

Figure 1-7. Positive repressible regulation. 12

Figure 1-8. Unregulated operon. ... 14

Figure 1-9. Negative regulation. .. 15

Figure 1-10. Effect of the dissociation constant 17

Figure 1-11. Effect of the Hill coefficient 18

Figure 1-12. Dual repression. ... 19

Figure 1-13. Activation and repression. .. 20

Figure 1-14. Michaelis-Menten Kinetics .. 23

Figure 2-1. Gene expression in a eukaryote cell. 25

Figure 2-2. Toggle switch design. .. 29

Figure 3-1. The Logical Block Diagram for BioD. 36

xiii

Figure 3-2. The gene regulatory network of the BioD. 37

Figure 3-3. A logical circuit representation of the BioD. 38

Figure 3-4. The Logical Block Diagram for BioFSM. 51

Figure 3-5. UF/II and OI implementing F=A+BC. 53

Figure 4-1. Stochastic simulation of BioD. 60

Figure 4-2. Effect of Dissociation constant on input response time. .. 65

Figure 4-3. Constraints and failures. .. 69

Figure 4-4. Bi-stable region relative to CLK pulse width. 72

Figure 4-5. Stochastic simulation of all 8 possible inputs to function

ࡲ ൌ ࡭ ൅ 77(or Rule 248 (Wolfram, 2002)) ࡯࡮

Figure 4-6. Stochastic simulation of all 8 possible inputs to function

ࡲ ൌ ࡯࡮࡭ ൅ ࡮࡭ ൅ 78(or Rule 30 (Wolfram, 2002)) ࡯࡭

Figure 4-7. The Logical Block Diagram for BioCell. 81

Figure 4-8. Ring topology CA run of two rules with changing initial

conditions. ... 83

xiv

List of Tables

Table 2-1. Summary of Properties of Different Proposed Switching and

Oscillating Circuits .. 33

Table 3-1. State Transition Table .. 42

Table 3-2. Nominal Values of the Parameters of Transcription and

Translation Equations .. 50

Table 3-3. CPU time (performance) needed to simulate one hour of

biological time. ... 58

List of Acronyms

GRN: Gene Regulatory Network

FR: Far-Red

RNA: RiboNucleic Acid

DNA: DeoxyriboNucleic Acid

RNAP: RNA Polymerase

1

CHAPTER 1.

INTRODUCTION

Known as the “building blocks of life”, the cells of an organism are

identical in the genetic information they hold but can be quite different

in their shape and in the functionality they provide. They are in fact

the smallest unit of life, and can either separately be an independent

organism or, they can be a small part of an intricate whole composed

of different types of cells which is called a multi-cellular organism.

1.1 Cell and Genome

Cells are the structural and functional units of all living organisms.

Each cell can take in nutrients, convert these nutrients into energy,

carry out specialized functions, and reproduce as necessary.

Furthermore, each cell stores its own set of instructions for carrying

2

out each of these activities.

There are two general categories of cells: prokaryotes and

eukaryotes. Bacteria are the best known and most studied form of

prokaryotic organisms. Prokaryotes are unicellular organisms and are

distinguished from eukaryotes on the basis of nuclear organization,

specifically their lack of a nuclear membrane. Prokaryotes also lack

any of the intracellular organelles and structures that are characteristic

of eukaryotic cells.

Eukaryotes include fungi, animals, and plants as well as some

unicellular organisms. Eukaryotic cells contain a nucleus, a membrane-

delineated compartment that houses the eukaryotic cell’s DNA1.

Eukaryotic organisms also have other specialized structures, called

organelles, which are small structures within cells that perform

dedicated functions. For a descriptive listing of eukaryotic organelles,

the reader is referred to (Mullock and Luzio, 2005).

It is worth noting that eukaryotes use the same genetic code

and metabolic processes as prokaryotes. Whether they come from the

same organism or belong to different ones, of similar type or

unrelated, prokaryotes or eukaryotes, all cells hold within them the

genome of the organism. The genome2 guides and drives the

behaviour and functionality of the cell. It is the entire set of hereditary

1 A nucleic acid that carries the genetic information in the cell and is capable of self-replication and

synthesis of RNA. The abbreviation stands for deoxyribonucleic acid.
2 The full complement of genetic material within an organism.

3

instructions for building, running, and maintaining an organism, and

passing life on to the next generation.

The information in the genome is organized in logical sub-units.

In a few words, the genome is divided into chromosomes,

chromosomes contain genes, and genes are made of DNA. A

chromosome is made of DNA and protein. It is a package containing

some of an organism's genes. Chromosomes help a cell to keep a large

amount of genetic information neat, organized, and compact as well as

guide the separation and flow of genetic material during cell division

(Hartwell et al., 2010). Genes are found on chromosomes and are

made of DNA. Different genes determine the different characteristics,

or traits, of an organism. One gene might determine the colour of a

bird's feathers, while another gene would determine the shape of its

beak. Most genes however, code for much more specialized

functionality; a protein to catalyze a reaction, the production of a

required substance or even a protein needed for the regulation of

another protein. Regulatory proteins are discussed in more detail a

couple of sections ahead.

1.2 Genome and Regulation

A gene regulatory network or GRN is a set of genes which interact with

each other and with other substances in the cell, thereby governing

4

the rates at which genes in the network are transcribed into mRNAs

or/and the rate at which mRNAs is translated into proteins.

The genome of a cell (or its DNA) holds most of the information

needed for a cell to function. That genetic material contains blocks of

information called genes which encode specific proteins that determine

function and behaviour. They do so by producing specific proteins and

by releasing them in the cellular cytoplasm. Found on the DNA, a gene

needs to be transcribed into an mRNA strand and, before it can be

translated into a protein. Each mRNA has, in addition to the open

reading frame or ORF (the region encoding the amino acid sequence

making up the protein), a region called Ribosome Binding Site (RBS)

to which the Ribosome binds before starting the process of translation

of the ORF into the corresponding protein.

Gene regulation adds levels of control to this process. The DNA

strands are not always transcribed without regulation (i.e.

constitutively) but are almost always controlled by other molecules

such as activators and repressors. These work by binding to specific

sequences on the DNA called operators, and hence affecting the

process of transcription of the mRNA; other molecules bind to specific

DNA RNA Protein
Transcribe Translate

Gene Expression

5

sites on the mRNA and hence influence the process of translation

1.2.1 Operon Structure

A typical operon has three distinct parts or regions. The promoter

region is recognized by RNA Polymerase (RNAP), thus allowing the

initiation of transcription. The operator region serves as a stage for

repression or activation of transcription. The structural genes region

contains the genes that are co-regulated by the same promoter.

Figure 1-1. Operon structure. Operator sites can be located before, inside or after

the promoter. More than one operator site can be occupied simultaneously.

The expression of the genes of the operon is regulated by the

repressors and activators acting at and around the promoter region.

The following section describes the four types of regulation

encountered.

1.2.2 Types of Regulation

There are many levels of regulation of gene expression. We highlight

four main categories:

Transcriptional regulation is the change in gene expression levels

by altering transcription rates i.e. controlling the production of mRNA

OPERATOR
Site

OPERATOR
Site

GENE nGENE 1 • • • PROMOTER

OPERATOR
Site

6

mainly using transcription factors (explained below).

Post-transcriptional regulation is the control of gene expression

at the RNA level, therefore between the transcription and the

translation of the gene. The main tool in this category is RNA

interference (RNAi).

Translational regulation refers to the control of the levels of

protein synthesized from its mRNA. The corresponding mechanisms

are primarily targeted on the control of ribosome recruitment on the

initiation codon, but can also involve modulation of the elongation or

termination of protein synthesis. In most cases, translational

regulation involves specific RNA secondary structures on the mRNA.

Post-translational regulation refers to the control of the levels of

active protein. There are several forms. It is performed either by

means of reversible events (Post-translational modifications, such as

Phosphorylation or sequestration) or by means of irreversible events

(proteolysis).

1.2.3 Transcriptional Regulation

Since the overwhelming type of regulation used in this thesis is

transcriptional, that regulation is discussed in more detail, and we

classify it as follows. Transcriptional regulation of genes and operons is

categorized into four different modes: negative inducible, negative

repressible, positive inducible and positive repressible.

7

Negative Regulation

Negative regulation occurs in operons whose operator sites bind a

repressor protein. A repressor protein typically denies RNAP from

binding and initiating transcription of the genes on the operon.

Figure 1-2. Simple negative regulation.

No transcription occurs in the presence of the repressor.

a. Negative Inducible Operons

In these operons, the repressor protein is normally bound to the

operator site and prevents transcription. However, if an inducer

molecule is introduced, it binds to the repressor protein. This binding

changes the latter’s configuration, so it can no longer bind to the

operator, thus inducing transcription.

Transcription

Repressor

Promoter Operator Structural genes

RNA

Polym‐

erase

8

Figure 1-3. Negative inducible regulation.

Transcription is OFF in the presence of the repressor. The inducer causes a

conformational change in the repressor protein, preventing repression, thus inducing

transcription.

b. Negative Repressible Operons

In these operons, transcription normally takes place. The repressor

protein cannot bind to the operator site in its normal configuration.

However, with the introduction of a certain molecule called a co-

repressor, which binds to the repressor protein, the configuration can

be changed such that it can bind to the operator site and repress

transcription.

Promoter

Operator Structural genes

RNA

Polym‐

erase

Repressor

Inducer

Transcription

9

Figure 1-4. Negative Repressible regulation.

Transcription is ON in the presence of the repressor. The introduction of another

repressor, which binds to the first and causes a conformational change, allows for

repression to occur and transcription is stopped.

Positive Regulation

Positive regulation occurs in operons whose DNA binds an activator

protein3. Activator proteins either induce or stimulate transcription. An

operon that binds an activator protein can vastly increase production

(more than a thousand fold).

3 Activator proteins usually bind at a site other than the operator. For simplicity however, the figures in

Table 1 do not display that difference.

Promoter Operator

RNA

Polym‐

erase
Repressor

Transcription
Structural genes

10

Figure 1-5. Simple positive regulation.

Transcription is significantly boosted in the presence of the activator.

a. Positive Inducible Operons

In these operons, the activator protein cannot bind to the DNA in its

normal configuration. However, with the introduction of an inducer

molecule, which binds to the activator protein, the configuration can

be changed such that it can bind to the operator site and activates or

stimulates transcription.

Little or No Transcription

Operator Structural genes

RNA

Polym‐

erase

Promoter Activator

Transcription

11

Figure 1-6. Positive inducible regulation.

Transcription is OFF in the presence of the activator. The introduction of the inducer,

which causes a conformational change in the activator, allows for activation to occur

and transcription is induced.

b. Positive Repressible Operons

In these operons, the activator protein is normally bound to the

operator site. However, if a co-repressor molecule is introduced, it

binds to the activator protein. This binding changes the latter’s

configuration, so it can no longer bind to the DNA, thus stopping

transcription.

Operator Structural genes

RNA

Polym‐

erase

Little or No Transcription

Promoter

Transcription

12

Figure 1-7. Positive repressible regulation.

Transcription is ON in the presence of the activator. The repressor causes a

conformational change in the activator protein, preventing binding, thus repressing

transcription.

1.3 Need for Simulation

When designing new systems, or deciding which route to take in a

project, even when testing for failure points, simulation of any kind

has always been a desirable tool to making sure we build what we

intended to build. There are various reasons for this not the least of

which are cost effectiveness, speed, and the inability to test in real

time.

Simulation is also an appropriate proof of concept. An “analytic”

model is appropriate when mathematics can be used to find the exact

(deterministic) or probable (stochastic) values of the measures of

Promoter

Little or No Transcription

Structural genes Operator

Transcription
RNA

Polym‐

erase

Activator

13

performance.

In the case of GRNs, many simulation methods exist that are

deterministic or stochastic, discrete or continuous, static or dynamic,

and qualitative or quantitative.

The following section discusses the simulations methods we

applied in the thesis. We used ordinary differential equations (ODEs) to

generate two types of simulations that were deterministic and

stochastic, while being discrete dynamic and quantitative.

1.4 Hill Equation

Please note that from this moment on, the promoter is taken to mean

both the promoter and operator regions of an operon. The reason is

because the operator sites can be found either before the promoter

site, or after it (or much after it) and sometimes in it (between the -10

and -35 sites). Thus both sites are in effect the same region and we

understand that any “regulated” promoter has to have the required

operator sites for said regulation.

The most direct way of modelling the changes in concentrations

of substances in a network is using the Hill equation. Consider the case

in Figure 1-8 of an unregulated (or constitutively expressed) gene.

14

Figure 1-8. Unregulated operon.

DNA strand that notably contains a promoter and the coding sequence of a protein,

thus forming a constitutively expressed gene.

The promoter region of this gene is not sensitive to any stimulus,

negative or positive, and is therefore continually working. RNAP

attaches itself unobstructed to its binding sites in the promoter and

proceeds to transcribe this gene. This is followed by another RNAP

molecule and so on and so forth, only limited by (i) the strength of the

promoter and by (ii) the availability of building blocks.

The strength of a promoter is defined as the strength of the

binding that occurs with the RNAP. The stronger the binding, the more

likely it is to occur, and the less likely it is to dissociate once occurred.

Each promoter (Q) has a specific strength which we model as the

transcription rate ߩொ. Thus a constitutively expressed gene X is

transcribed according to

 ݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

(1.1)

where [mX] is the concentration of the mRNA transcripts of gene X.

Since mRNA transcripts have a limited half life, their total

15

concentration is better approximated in equation (1.2) where a

degradation term is added that is proportional to the concentration of

existing transcripts.

 ݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

െ ߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

(1.2)

This equation is read as: the change in the concentration gene X

mRNA transcripts per unit of time is equal to the transcription rate of

the promoter Q, minus the degradation rate of the existing transcripts.

The most common regulation comes in the form of a repressor

which inhibits transcription by binding to its operator site and prevents

RNAP from binding to the promoter and begin transcription (see Figure

 1-9).

Figure 1-9. Negative regulation.

The repressor R binds to its operator site and prevents RNAP from binding to the

promoter, effectively inhibiting transcription.

The transcription rate ߩொ is now influenced by [R], the

16

concentration of the repressor R in the system. This dynamic is

modelled as follows

݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

· ൮
1

1 ൅ ൬
ሾܴሿ
ோܭ

൰
௡ೃ

൲

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
inhibition from R

െ ߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

(1.3)

where ܭோ and ݊ோ are the dissociation constant of R and the Hill

cooperativity coefficient of R respectively.

The dissociation constant generally termed ܭௗ, measures the

strength of the binding of the repressor to the operator. This is

described in further detail in section 4.1.5 below, and its effect on the

shape of the curve is displayed in Figure 1-10.

17

Figure 1-10. Effect of the dissociation constant

on the speed of the inhibition.

The Hill cooperativity coefficient here reflects the manner

(positive, negative or non-cooperative) in which the repressor is

binding to the operator site on the DNA strand. In biochemistry,

complex molecules and multimers often are assembled using their

binding sites one block at a time. That assembly, or distributed

process of binding can be enhanced or inhibited after the first (or

later) binding(s). This is known as cooperative binding and the Hill

coefficient provides a way to quantify that effect. When the binding is

18

enhanced and we have a positively cooperative reaction, ݊ௗ ൐ 1; when

the binding is inhibited and we have a negatively cooperative reaction,

݊ௗ ൏ 1; when the binding is unaffected and we have a non-cooperative

reaction, ݊ௗ ൌ 1. Its effect on the sigmoid is illustrated in Figure 1-11.

Figure 1-11. Effect of the Hill coefficient

on the slope of the sigmoidal curve created by the Hill equation.

Biological systems are inherently imprecise, and gene regulation

is no different. Indeed, for realistic simulations, the designs must

incorporate the notion of leakage in the equation. That is, when a

19

repressor R is present in a high enough concentration to completely

inhibit the transcription of gene X, that transcription is almost never

shutdown completely. Rather it is brought down to a very low but still

present basal level due to the leakage of the repression. We modify

equation (1.3) to incorporate a leakage term as follows

݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

·

ۉ

ۈ
ۈ
ۇ

ܽ ൅ ሺ1 െ ܽሻᇣᇧᇧᇤᇧᇧᇥ
leakage

· ൮
1

1 ൅ ൬
ሾܴሿ
ோܭ

൰
௡ೃ

൲

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
inhibition from R ی

ۋ
ۋ
ۊ

െ ߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

 (1.4)

where 0 ൑ ܽ ൑ 1 represents the leakage percentage, typically (but not

necessarily) 1%.

It is possible to have more than one repressor regulate the same

gene. The promoter region can be designed to have more than one

operator binding sites for different repressors. Figure 1-12 displays the

common case of dual repression. Two different repressors R1 and R2,

bind to their respective operator sites in promoter Q and inhibit

transcription of gene X.

Figure 1-12. Dual repression.

20

The above configuration yields the strongest transcription in the

absence of R1 and R2 and the strongest repression in their dual

presence. The presence of just one of the repressors yields a weaker

repression. This dynamic is modelled as follows

݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

·

ۉ

ۈ
ۈ
ۇ

ܽ ൅ ሺ1 െ ܽሻᇣᇧᇧᇤᇧᇧᇥ
leakage

· ൮
1

1 ൅ ൬
ሾܴ1ሿ
ோଵܭ

൰
௡ೃభ

൲

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
inhibition from R1

· ൮
1

1 ൅ ൬
ሾܴ2ሿ
ோଶܭ

൰
௡ೃమ

൲

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
inhibition from R2 ی

ۋ
ۋ
ۊ

െ

߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

 (1.5)

The last case we will see used in this thesis is the activation and

repression by two different substances of the same transcription

process.

Figure 1-13. Activation and repression.

The activation term in the equation below is the inverse form of

the Hill equation. At low concentrations of the activator A, the

transcription is reduced to basal level, while an increase in the

concentration of A increases the transcription rate.

21

݀ሾ݉ܺሿ

ݐ݀
ൌ ொดߩ

max.
transcription

·

ۉ

ۈ
ۈ
ۇ

ܽ ൅ ሺ1 െ ܽሻᇣᇧᇧᇤᇧᇧᇥ
leakage

· ൮
1

1 ൅ ൬
ሾܴሿ
ோܭ

൰
௡ೃ

൲

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
inhibition from R

· ൮
൬

ሾܣሿ
஺ܭ

൰
௡ಲ

1 ൅ ൬
ሾܣሿ
஺ܭ

൰
௡ಲ

൲

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
activation from A ی

ۋ
ۋ
ۊ

െ

߱௠௑ሾ݉ܺሿᇣᇧᇧᇤᇧᇧᇥ
degradation

 (1.6)

1.5 Law of Mass Action

The law of mass action is a mathematical model that explains and

predicts behaviours of solutions in dynamic equilibrium. It can be

described with two aspects: 1) the equilibrium aspect, concerning the

composition of a reaction mixture at equilibrium and 2) the kinetic

aspect concerning the rate equations for elementary reactions.

The law states that the rate of an elementary reaction is

proportional to the product of the concentrations of the participating

molecules.

Receptor ൅ Ligand

௄ೀಿ
ሱۛሮ

௄ೀಷಷ
ርۛ ሲۛ Receptor  Ligand (1.7)

Equilibrium is reached when the rate at which new

ligandreceptor complexes are formed equals the rate at which the

ligandreceptor complexes dissociate. At equilibrium:

22

 ሾLigandሿ. ሾReceptorሿ. ைேܭ ൌ ሾLigand  Receptorሿ. ைிிܭ (1.8)

That derivation is used to generate equation (3.15) below.

1.6 Michaelis-Menten Kinetics

Enzymes are molecules that act as catalysts to a reaction. Enzymatic

reactions abound in a cell and are very different from the transcript

generating process described above; hence the equation follows a

different mathematical model.

An enzyme E helps turn a substrate S into a product P but is not

consumed by the process. Rather, the enzyme binds (in a reversible

process) to the substrate forming a complex ES which in turn is

converted into a product P and the enzyme.

ܧ ൅ ܵ

௞೑
ሱۛ ሮۛ

௞ೝ
ርۛ ሲۛܵܧ

௞೎ೌ೟
ሱۛሮ ܧ ൅ ܲ (1.9)

where ݇௙, ݇௥ and ݇௖௔௧ denote the forward, reverse and catalysed

reaction rate constants respectively.

23

Figure 1-14. Michaelis-Menten Kinetics4

Saturation curve for an enzyme (substrate concentration vs reaction rate).

The reaction rate is given with respect to the concentration ߥ଴ of

a substrate ܵ. The formula is given by

଴ߥ ൌ mܸaxሾܵሿ

ெܭ ൅ ሾܵሿ
 (1.10)

where mܸax is the maximum rate achieved by the system, i.e. during

saturated substrate concentrations. ܭெ is the Michaelis constant, and is

defined as the substrate concentration at which the reaction rate is

half of mܸax.

4 Image taken from Wikipedia: “http://en.wikipedia.org/wiki/Enzyme_kinetics”

24

CHAPTER 2.

LITERATURE REVIEW

Most of the complex processes that take place in a cell are governed

by gene expression, which is regulated at several levels along the

pathway leading from DNA to protein. Gene expression may be

regulated during transcription and post-transcriptionally, including

during protein translation and via post-translational modification of

proteins. Notably, much of the control of gene expression is done

either by regulatory proteins or by RNAs, which are themselves the

products of genes. Hence, the interactions between DNA, RNAs,

proteins, and other molecules, form natural gene regulatory networks

(or GRNs) of varied complexity.

While studying these networks and their components provides

invaluable information, it is essential to: (a) thoroughly investigate

these components in different environments, while performing

different functions, and (b) integrate this knowledge to build new

synthetic gene regulatory networks and other devices. The discipline of

Synthetic Biology aims at systematically designing, building, combining

and testing new biological functions and systems that do not occur in

nature. Indeed, individual parts such as promoters and protein coding

25

sequences can be assembled into GRNs that perform desired

functionalities, such as computing machines.

Figure 2-1. Gene expression in a eukaryote cell.5

The various steps in the gene expression can all be regulated. Inducers, repressors,

activators, RNA interference and various other substances can be used to either

inhibit or enhance this path.

2.1 Computing machines

The synthesis of computing machines via the manipulation of DNA

within or without living organisms, started in 1994 when Adleman

5 Image taken from the genetics website of Professor Robert S. Winning at Eastern Michigan University:

“http://www.emunix.emich.edu/~rwinning/genetics/eureg.htm”

26

executed an experimental procedure that used DNA, in vitro, to solve

an instance of the directed Hamiltonian path problem (Adleman,

1994). In contrast, in vivo cell-based or cellular computing started in

1998 with the modification of the genome of the prokaryote E. coli, to

realize 1- and 2-input combinatorial Boolean logic gates (e.g. NOT,

AND and IMPLIES) (Knight, Jr. and Sussman, 1998; Weiss et al.,

1998); a similar feat was achieved with eukaryotic cells by Kramer et

al. (Kramer et al., 2004). Along another dimension, time-dependant or

sequential Boolean logic devices have also been implemented in living

cells, starting with a hysteretic 2-input toggle switch by Gardner et al.

(Gardner et al., 2000), a synthetic oscillator by Elowitz and Leibler

(Elowitz and Leibler, 2000), and followed by Becskei et al.’s (Becskei

et al., 2001) yeast-based memory device using positive feedback.

In one decade this field has grown to generate many elementary

devices (Drubin et al., 2007; Boyle and Silver, 2009; Tigges et al.,

2009; Haynes and Silver, 2009), including band-pass filters (Basu et

al., 2005) and counters (Friedland et al., 2009). More complicated

devices such as engineered multi-cellular pulse and pattern generators

(Basu et al., 2004; Basu et al., 2005), single cell biosensors (Levskaya

et al., 2005; Tecon et al., 2006), tumour-targeting bacteria (Anderson

et al., 2006), and cell-based computers (Cox et al., 2007; Balagadde

et al., 2008) have also been synthesized or proposed.

27

2.2 Simulation and Modelling

In parallel to advances in GRN design, mathematical modelling and

simulation tools have been developed to help make approximate

predictions of the behaviour of GRNs before significant resources are

allotted to their synthesis. These include, but are not limited to,

deterministic (Hindmarsh et al., 2005) and stochastic simulation

algorithms (Gillespie, 1977), metabolic control analysis (MCA) (Olivier

et al., 2005), structural analysis (Olivier et al., 2005) and flux-balance

analysis (FBA) (Orth et al., 2010). Deterministic simulation models

include differential equations, Boolean networks, logical networks and

rule-based formalisms (de Jong, 2002). Stochastic models include

Bayesian networks and master equations (de Jong, 2002). MCA

quantifies how variables, such as fluxes and species concentrations,

depend on network parameters. Structural analysis is mostly used for

genome-scale models to determine reduced stoichiometric matrices.

FBA is used for optimizing the growth rate of a modelled organism,

while falling within the constraints of its internal metabolites.

2.3 Switch and Oscillator Designs

In the particular case of switching devices, there has been a fair

number of switches built or theorized, which involve (a) DNA

28

modification (e.g. using invertases), (b) regulation of the process of

transcription, (c) post-transcriptional regulation (involving various RNA

molecules), as well as (d) post-translational regulation (by changing

the state of expressed proteins).

2.3.1 DNA Level Using Flipase Protein

The first example of the use of invertases is Ham et al. (Ham et al.,

2006), which places the promoter of a gene between two specific

elements targeted by the FimE flipase. The flipase inverts the inversion

region between these two elements (including them). This completely

disables transcription from that promoter, rendering the associated

gene silent. This is a unidirectional operation and it does not require

qualification by a clock. In 2008, Ham et al. (Ham et al., 2008)

expanded their initial concept by using both the hin and fimE

inversion mechanisms. This allowed them to use the relative positions

of the elements marking the inversion regions to propose three- and

five-state machines, which rely completely on the two flipases to

change state. It is worth noting that this method of defining state is

heritable as changes to the DNA are permanent and hence, inherited

by the offspring.

2.3.2 Transcription Level

The most prominent example of a toggle switch that is transcriptionally

29

controlled is that of Gardner et al. (Gardner et al., 2000). However,

this toggle switch requires two inputs and operates asynchronously (is

not controlled by a clock input).

Figure 2-2. Toggle switch design.6

Repressor 1 inhibits transcription from Promoter 1 and is induced by Inducer 1.

Repressor 2 inhibits transcription from Promoter 2 and is induced by Inducer 2.

Elowitz and Leibler (Elowitz and Leibler, 2000) synthesized a

three gene oscillator (plus an additional gene for reporting), dubbed

repressilator. The product of each of the three genes represses the

next gene in a loop, with the last gene repressing the first one. The

repressilator is not a bi-stable switch but rather a self-maintaining

oscillator that proceeds from one state to the next, autonomously and

without the need for any clock input. Becskei et al. (Becskei et al.,

2001) presented a bi-stable positive feedback loop expressed in yeast

in which a tetracycline-dependent activator turns on its own

expression. They discussed how positive auto-regulation in GRNs can

6 Figure taken from (Gardner et al., 2000)

30

turn an analogue input such as the concentration of a signalling

molecule into a stepped (or digital) response with multiple steady

states, allowing the pathway to be used as a memory element.

Kobayashi et al. (Kobayashi et al., 2004) utilized slightly modified

versions of Gardner’s toggle switch as memory modules of larger

networks that sensed specific events (e.g. DNA damage) and

generated particular responses (e.g. biofilm formation). In this case,

the toggle switch is, by default, in one specific state, which flips in

response to the sensed event. It does not have two inputs, but it does

not have two stable states either. And, as is the case with Gardner’s

switch, it operates asynchronously. Stricker et al. (Stricker et al.,

2008) synthesized a two gene oscillating network, where one gene is

responsible for the activation of both genes, and the other gene is

responsible for repressing both genes. This network improves on the

repressilator in terms of speed, durability of the oscillation and the

ability to externally tune its oscillations. Nevertheless, this network is

not a switch that can be used as a memory module, such as Gardner’s

toggle. Lou et al. (Lou et al., 2010) propose a single-input toggle

switch, made of a Gardner-like two-gene memory module and a

single-gene NOR gate module. The memory module is, by default, in a

particular stable state. Upon the introduction of a UV input, several

proteins degrade, which causes the memory module, with help from

31

the NOR module to switch to a new state and maintain it. This is, in

fact, a single-input switch, but it lacks a clock input.

2.3.3 Post-Transcription Level

One very significant work of RNA-based switching behavior is that of

Bayer and Smolke (Bayer and Smolke, 2005). They present devices

that are regulated post-transcriptionally using RNA riboswitches. A

riboswitch is an RNA molecule containing two domains: (i) a ligand-

binding aptamer domain and (ii) an antisense regulator domain. The

latter is used to block the ribosome binding site (RBS) and prevent

translation, while the former binds a ligand that triggers a

conformational change in the riboswitch, resulting in either the

covering or uncovering of the anti-sense regulator domain.

Riboswitches have the advantage that they can be designed and/or

evolved to respond to many ligands including proteins and RNA

molecules. Riboswitches have been synthesized to respond to one or

more inputs (ligands). Although current riboswitches change state uni-

directionally, it is possible to imagine riboswitches that respond to

inducible small protein ligands. So far, riboswitches act

asynchronously. Another type of oscillations was demonstrated by

Swinburne et al. (Swinburne et al., 2008) who proposed a self-

repressed device containing an intron. An intron is any nucleotide

sequence within a gene that is removed post-transcriptionally by RNA

32

splicing to generate the final mature RNA product of a gene. The

device demonstrated pulses of expression in mammalian cells. The

frequency of the pulses was dependent on intron length.

2.3.4 Protein Level

Finally, a good example of how switches can be regulated at the

protein level is the work of Dueber et al. (Dueber et al., 2003), which

modified the natural N-WASP allosteric switch to synthesize 1- and 2-

input synthetic protein switches. In the 2-input switch, the hybrid

protein was engineered to have two A-terminal auto-inhibitory

domains that correspond to the output domain and a C-terminal

domain on the protein. The way in which the protein responded to the

two input ligands (PDZ and Cdc42) relied on the relative positioning of

the four domains. They used this to synthesize various switches,

whose state (active or not) depended on combinatorial functions of the

two inputs. All of their devices are asynchronous and unidirectional.

2.4 Making the Case

Despite the many works on genetic switches (also called flip-flops), all

published synthesized and proposed designs work asynchronously,

usually utilizing more than one external logical input. Lack of

synchronization-ability entails that the operation of a flip-flop cannot

33

be synchronized with the operation of other parts of a larger system,

using a single global clock. Also, a true delay flip-flop has but one

logical input. Though the use of a single input complicates design, it

does simplify use and allow for easier expansion of function.

Table 2-1. Summary of Properties of Different Proposed Switching and

Oscillating Circuits

N
am

es

Y
ea

r

2-
W

ay

Sw
it

ch
in

g
1-

Lo
gi

ca
l

In
pu

t
B

i-
st

ab
ili

ty
Sy

nc
hr

on
ou

s
R

ea
liz

ed

Gardner et al. 2000   
Elowitz et al. 2000  
Becskei et al. 2001  
Dueber et al. 2003  
Kobayashi et al. 2004   
Bayer and Smolke 2005  
Ham et al. 2006   
Swinburne et al. 2008  
Stricker et al. 2008  
Lou et al. 2010    
Hoteit et al. 2011    

Table 2-1 lists a selection of proposed switches and highlights their

publication year and five of their properties:

– 2-way Switching: The circuit can switch more than once, from state

A to B or from state B to A.

– 1-Logical Input: Switching occurs using the same single input from

34

state A to B or from state B to A.

– Bi-stability: The switch is stable in state A, or in state B, before or

after switching.

– Synchronous: The switch works on a clock.

– Realized: The design was realized in a lab, in vitro or in vivo.

We call the proposed GRN embodying a synchronous single-input

delay flip-flop the BioD. It is, in summary, a novel GRN that changes

states in response to a single logical input, and only on the rising edge

of a clock signal. Its specification and detailed design, modelling and

simulation results follow.

35

CHAPTER 3.

NETWORK DESIGN AND MODELLING

In abstract terms, the BioD is a gene regulatory network acting as a

delay flip-flop. By delay flip-flop, we mean a logical device that has an

input (D), a clock (CLK), and an output (Q) equal to its state (S); see

the logical block diagram in Figure 3-1 (Q is the second output and is

equal to the logical complement of Q). The state of the delay switch is

held constant unless and until its input differs from its state, on the

rising edge of the clock. In that case, the next state of the delay

switch will copy the value of the input (i.e., Q = D). Hence, a cell that

acts as a delay switch is effectively a 1-bit memory device, controlled

by an input and a clock. The BioD also exhibits its state by expressing

(or not) a fluorescent protein. This was the specification of the BioD;

following is its internal design.

3.1 BioD

The BioD has two (logical and control) inputs: trans-activating RNA or

taRNA as input D, and the presence or absence of far-red (FR) light as

the clock (CLK). It has two complementary outputs (Q and Q) defining

the state of the flip-flop: the ON state is indicated by the presence, in

36

high concentrations, of green fluorescent protein (GFP), while the OFF

state is indicated by its absence. As with its electronic equivalent, the

BioD’s output follows the input on the rising edge of the clock. As

shown in Figure 3-2, the gene regulatory network implementing the

BioD is comprised of three major parts: the INPUT genes, SELECTION

genes and STATE genes.

Figure 3-1. The Logical Block Diagram for BioD.

Please note that the design involves several operons that include

more than one protein coding sequence. To simplify our language

without loss of accuracy, we refer to both genes and operons as genes

(there are seven of them, numbered 1 to 7). Kindly note that we use

italicized courier new for gene names (e.g. TetR) and courier new for

proteins (e.g. TetR) as well as protein complexes. We also use

italicized courier new for RNAs other than transcripts (e.g. taR12),

while distinguishing transcripts by attaching an “m” prefix to their

names (e.g. mTetR).

37

Figure 3-2. The gene regulatory network of the BioD.

The real genes selected to realize this network are just one possible implementation of the logical device (see Figure 3-3).

The network consists of three segments. The STATE genes reflect the state of the network. The SELECTION genes

determine the next state of the network by regulating the STATE genes, but only when the clock has just turned ON. The

external logical input to the whole network goes through the INPUT genes, which in turn affect the SELECTION genes.

38

Figure 3-3. A logical circuit representation of the BioD.

Logically, this circuit behaves like the GRN of Figure 3-2. It is not an exact

representation, but it is useful in following the steps the BioD network takes when

changing state. The gene numbers in Figure 3-2 match gate numbers here. A low

CLK signal disables SELECTION gates 4 and 5, and sends a high signal (identity for

NAND gates) to the STATE gates 6 and 7, maintaining their state. Since the outputs

of INPUT gates 1 and 2 are complements, when the CLK signal is turned ON, only

one of gates 4 and 5 becomes active and thus (i) affects one of the STATE gates (6

or 7) and (ii) disables its enabling INPUT gate (1 or 2). The INPUT gates are re-

enabled after the CLK goes low, leaving them free to respond to new input values (at

D).

3.1.1 INPUT Genes

The INPUT genes convey to the SELECTION genes whether an input

signal is present or not. They do so by tipping the dynamic balance

between the two mutually-repressed genes, 4 and 5; this process is

detailed in section 3 below.

In order to sense input D, gene 1 is designed to be self-

repressed, and this self-repression can only be lifted through the

39

introduction of input D. To achieve this, a form of ribo-regulation is

used called cis. This cis-regulation or in our case, cis-repression

prevents the translation of the transcript of gene 1, as part of the

transcript bends over to hybridize with the ribosome binding site

(RBS), effectively locking it. The key comes in the form of trans-

activating RNA (taRNA), which hybridizes with a particular location on

the transcript in a manner that frees the RBS site from its cis-

repression. This allows the ribosome to bind at the RBS and start the

process of translation (Isaacs et al., 2004). The taRNA chosen for

input D is taR12 which is specifically designed to unlock the cis-

repression of (the transcript of) gene 1, called crR12.

When input D is present, the transcript of gene 1 gets translated

into the cI repressor (originally, from the λ phage). cI in turn

represses gene 2. In the absence of input D, however, the cis-

repressed transcript of gene 1 does not get translated into the

corresponding repressor protein. This leads to the lifting of repression

of gene 2, and hence the expression of its own repressor protein, cII

(originally, from the P22 phage).

In summary, the presence of input D results in the production of

the cI protein, while its absence leads to the production of the cII

protein.

40

3.1.2 STATE Genes

The STATE genes have an analogous configuration to that of Gardner’s

toggle. They consist of two co-repressed genes, and as such define the

state of the BioD device. The products of genes 7 and 6 represent

complementary outputs Q and Q, respectively. The presence of a

green fluorescent protein (GFP) signals the presence of logical output

Q, while its absence signals the presence of its logical complement Q.

The co-repressed nature of the toggle switch means that when either

gene is active, the toggle enters into a stable steady state. In the

context of the BioD, only the SELECTION genes can perturb the

stability of the SELECTION genes.

Two important points need to be made here. First, the

SELECTION genes can affect the STATE genes, independently of the

current state of the BioD. Second, genes 4 and 5 are mutually

exclusive, which renders it impossible for the SELECTION genes to set

the state of the STATE genes to both ON and OFF, simultaneously.

Which of the two genes (4 or 5) is activated depends on the state of

the INPUT genes at the time the CLK signal is turned ON.

3.1.3 SELECTION Genes

The SELECTION genes are always OFF until turned ON by FR light (the

CLK input). In the absence of FR light, genes 4 and 5 are always

41

repressed by the phosphorylated version of OmpR, i.e. OmpRP. Gene 3 is

constitutively expressed and produces OmpR. OmpR is phosphorylated in

the presence of the EnvZ enzyme. EnvZ is connected to Cph1, which in

the presence of FR light, induces a conformational change in EnvZ

preventing the phosphorylation of OmpR. The genes that produce EnvZ

and Cph1 (and others needed for the light response system) are not

shown in Figure 3-2. See reference (Levskaya et al., 2005) for a fully

detailed explanation.

The phosphorylation of OmpR is dominant in the absence of FR

light and negligible in its presence. Therefore, the FR light signal

causes a drop in OmpRP levels and a corresponding rise in OmpR levels.

This drop results in partial lifting of the repression of both genes 4 and

5, as their promoter ompf, is both repressed by OmpRP and activated by

OmpR. Both the functionality of ompf and the complementary levels of

OmpR and OmpRP result in a system that is quick to start or stop

transcription of both genes 4 and 5.

The SELECTION genes also respond to and affect the INPUT

genes. As previously stated, the BioD is an edge-triggered device, i.e.

it responds to the input when the CLK signal turns ON, but not when

the CLK signal is ON. If the CLK signal is ON and either gene 4 (or 5) is

ON, then gene 4 (or 5) would be repressing the genes that could

potentially repress it. Namely, gene 4 would repress genes 2 and 5,

42

and gene 5 would repress genes 1 and 4. As a result, any change due

to input D, when the CLK signal is already ON, does not propagate to

the SELECTION genes. For a toggle (ON) input signal to affect the

current state of the SELECTION genes, the CLK signal must first turn

OFF for a period then ON again.

Table 3-1. State Transition Table
“X” is don’t care. “=” is no change.

S1 S2 S4 S5 S6 S7 S1 S2 S4 S5 S6 S7

X

X

CURRENT STATE

X

X

X

X

X

X

X X X X

X X X X

X X X X

X X X X

0 0 0 X

1 0 0 X

0 0 0 X

1

0

0

0

1

0

1

0

1

1

1

X

X

X

0

1

0

1

0

X

NEXT STATE

0 1 0 0 = =

DCLK

1 0 0 X

=

0 1 0 1 1 0

1 0 0 0 =

1

= = = = = =

1 0 1 0 0

=1 0 0 0 =

=

0 1 0 0 = =

= = = = =

Given that the dynamics of such a gene network are non-trivial,

we provide a summary of its operation using a state transition table

(Table 3-1) plus a single fully detailed scenario, tracing through one

typical sequence of transitions. The scenario is that of a change of

state, from OFF to ON, in response to a turned ON input (D), whose

43

level must stabilize, prior to the introduction of the CLK signal (FR

light).

When the state of the BioD is OFF, gene 6 is ON, expressing two

products. Since one of them (TetR) is repressing gene 7, gene 7 is

considered OFF. In the absence of FR light, the constitutively

expressed (and subsequently phosphorylated) repressor (OmpRP)

blocks any production from the SELECTION genes (4 and 5). Hence,

the status quo of the STATE genes is maintained. Lastly, gene 1 is ON,

induced by input (D), while gene 2 is OFF, repressed by the product of

gene 1, cI. After clocking, the concentration of OmpRP (which was

repressing genes 4 and 5) starts falling. The only other repressor of

gene 4 (i.e. cII from gene 2) is already OFF. So gene 4 can start

producing, and as such, it starts repressing gene 5, which is still

repressed by cI from gene 1. At this point in time, gene 1 is ON, gene

2 is OFF, gene 4 is ON, gene 5 is OFF, while gene 6 is still ON and

gene 7 is still OFF. Turning our attention to gene 4, note that one of

the repressors it produces is identical to the one generated by gene 7,

namely LacI. Its production starts switching off gene 6, resulting in a

gradual increase in the expression of gene 7. Once gene 7 is fully

expressed, its product (LacI) represses gene 6, ensuring the

continuation of gene 7’s new ON state. Hence, we have achieved a

change of network state (indicated by GFP) from OFF to ON (following

44

the value of the input (D)).

As long as the CLK signal is ON, the new state will be

maintained. If a significant change in the input level occurs while the

clock is ON, the repressions of genes 2 and 5 would not disappear,

since gene 4 is ON and produces cI. Indeed, as long as gene 4 is ON,

it has the ability to keep itself from being repressed by other genes,

that is, by repressing them. It is only when the CLK signal is removed

and both genes 4 and 5 are OFF that the system is again free to

respond to input (D), upon the re-introduction of the CLK signal.

Model

The gene regulatory network of Figure 3-2 is simulated

deterministically and stochastically, following a mathematical model.

The model is shown below as (a) a system of ordinary differential

equations (ODEs) modelling the production of mRNA transcripts, and

(b) a system of ODEs modelling the translation of the transcripts into

their respective proteins.

The same system of ODEs constitutes the basis of the stochastic

simulation used to generate the data for Figure 4-1, Figure 4-5 and

Figure 4-6. We used the tau-leaping algorithm (Cao et al., 2007),

which achieves fast and accurate simulation by taking large time steps

that leap over individual reactions. We chose to show the results of the

stochastic simulation because they are similar to, but are more

45

realistic than the deterministic ones.

We define the following terms and chemical species: ݉ݎܿܫܥ is the

cis-repressed mRNA transcript of gene 1; ݉ܺ is the mRNA transcript

for the protein ܺ; ீ݀݋ݎ݌௘௡௘௑ is the amount of transcripts produced by

gene ܺ at any given time; ߩ௑ is the maximum transcription rate of the

promoter of gene ܺ; while ߱௑, ݊௑, ܭ௑ and ሾܺሿ are, respectively, the

degradation constant, the Hill cooperativity coefficient, the dissociation

constant and the concentration of substance ܺ.

Transcription ODEs

 ݀ሾ݉ݎܿܫܥሿ
ݐ݀

ൌ ௘௡௘ଵீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ݎܿܫܥሿ (3.1)

 ݀ሾ݉ܫܥሿ
ݐ݀

ൌ ௘௡௘ସீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫܥሿ (3.2)

 ݀ሾ݉ܫܫܥሿ
ݐ݀

ൌ ௘௡௘ଶீ݀݋ݎ݌ ൅ ௘௡௘ହீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫܫܥሿ (3.3)

 ݀ሾܱܴ݉݉݌ሿ
ݐ݀

ൌ ௘௡௘ଷீ݀݋ݎ݌ െ ߱௠ோே஺. ሾܱܴ݉݉݌ሿ (3.4)

 ݀ሾ݉4݈ܽܩሿ
ݐ݀

ൌ ௘௡௘ହீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉4݈ܽܩሿ (3.5)

46

 ݀ሾܴ݉ܶ݁ݐሿ
ݐ݀

ൌ ௘௡௘ହீ݀݋ݎ݌ ൅ ௘௡௘଺ீ݀݋ݎ݌ െ ߱௠ோே஺. ሾܴ݉ܶ݁ݐሿ (3.6)

 ݀ሾ݉ܫܿܽܮሿ
ݐ݀

ൌ ௘௡௘ସீ݀݋ݎ݌ ൅ ௘௡௘଻ீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫܿܽܮሿ (3.7)

where gene 1 is repressed by Gal4,

௘௡௘ଵீ݀݋ݎ݌ ൌ
ଵߩ

1 ൅ ൬
ሾ4݈ܽܩሿ
௔௟ସீܭ

൰
௡ಸೌ೗ర (3.8)

gene 2 is repressed by cI,

௘௡௘ଶீ݀݋ݎ݌ ൌ
ଶߩ

1 ൅ ൬
ሾܫܥሿ
஼ூܭ

൰
௡಴಺ (3.9)

gene 3 is constitutively expressed,

௘௡௘ଷீ݀݋ݎ݌ ൌ ଷ (3.10)ߩ

gene 4 is repressed by both cII and OmpRP, while being activated by

OmpR,

௘௡௘ସீ݀݋ݎ݌ ൌ

ସߩ

1 ൅ ൬
ሾܫܫܥሿ
஼ூூܭ

൰
௡಴಺಺

כ
1

1 ൅ ൬
ሾܱܴ݉ܲ݌ሿ
ை௠௣ோ௉ܭ

൰
௡ೀ೘೛ೃು

כ

൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

1 ൅ ൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

 (3.11)

47

gene 5 is repressed by both cI and OmpRP, while being activated by

OmpR,

௘௡௘ହீ݀݋ݎ݌ ൌ

ହߩ

1 ൅ ൬
ሾܫܥሿ
஼ூܭ

൰
௡಴಺

כ
1

1 ൅ ൬
ሾܱܴ݉ܲ݌ሿ
ை௠௣ோ௉ܭ

൰
௡ೀ೘೛ೃು

כ

൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

1 ൅ ൬
ሾܱܴ݉݌ሿ
ை௠௣ோܭ

൰
௡ೀ೘೛ೃ

 (3.12)

gene 6 is repressed by LacI,

௘௡௘଺ீ݀݋ݎ݌ ൌ
଺ߩ

1 ൅ ൬
ሾܫܿܽܮሿ
௅௔௖ூܭ

൰
௡ಽೌ೎಺ (3.13)

and gene 7 is repressed by TetR,

௘௡௘଻ீ݀݋ݎ݌ ൌ
଻ߩ

1 ൅ ൬
ሾܴܶ݁ݐሿ
௘௧ோ்ܭ

൰
௡೅೐೟ೃ (3.14)

Translation ODEs

 ݀ሾܫܥሿ
ݐ݀

ൌ .஼ூߛ .௧௔ோଵଶܭ ሾ12ܴܽݐሿ. ሾ݉ݎܿܫܥሿ ൅ .஼ூߛ ሾ݉ܫܥሿ െ ߱஼ூ. ሾܫܥሿ (3.15)

 ݀ሾܫܫܥሿ
ݐ݀

ൌ .஼ூூߛ ሾ݉ܫܫܥሿ െ ߱஼ூூ. ሾܫܫܥሿ (3.16)

48

The ሺ1 െ ሻ term inserted in the Michaelis-Menten expressions ofܮ

equations (3.17) and (3.18) enables phosphorylation in the absence of

FR light, i.e. when L = 0.

 ݀ሾܱܴ݉݌ሿ
ݐ݀

ൌ .ை௠௣ோߛ ሾܱܴ݉݉݌ሿ െ
.௣௛௢௦ݒ ሺ1 െ .ሻܮ ሾܱܴ݉݌ሿ

݇௣௛௢௦ ൅ ሾܱܴ݉݌ሿ
൅

.ௗ௘௉௛௢௦ݒ ሾܱܴ݉ܲ݌ሿ െ ߱ை௠௣ோ. ሾܱܴ݉݌ሿ
 (3.17)

 ݀ሾܱܴ݉ܲ݌ሿ

ݐ݀
ൌ

.௣௛௢௦ݒ ሺ1 െ .ሻܮ ሾܱܴ݉݌ሿ

݇௣௛௢௦ ൅ ሾܱܴ݉݌ሿ
െ

.ௗ௘௉௛௢௦ݒ ሾܱܴ݉ܲ݌ሿ െ ߱ை௠௣ோ௉. ሾܱܴ݉ܲ݌ሿ
 (3.18)

 ݀ሾ4݈ܽܩሿ
ݐ݀

ൌ .௔௟ସீߛ ሾ݉4݈ܽܩሿ െ ߱ீ௔௟ସ. ሾ4݈ܽܩሿ (3.19)

 ݀ሾܴܶ݁ݐሿ
ݐ݀

ൌ .௘௧ோ்ߛ ሾܴ݉ܶ݁ݐሿ െ ்߱௘௧ோ. ሾܴܶ݁ݐሿ (3.20)

 ݀ሾܫܿܽܮሿ
ݐ݀

ൌ .௅௔௖ூߛ ሾ݉ܫܿܽܮሿ െ ߱௅௔௖ூ. ሾܫܿܽܮሿ (3.21)

Parameters values are as shown in Table 3-2. Please refer to the

Discussion section for a discussion of the dissociation constants. The

degradation rates of various molecules are not known, so we use the

rates arising from dilution by cell-growth. Somewhat elevated rates

are used for ߱஼ூ and ்߱௘௧ோ in order to avoid lingering production of cI,

and TetR, when the state is not favourable. That is feasible because

49

protein degradation rates can be artificially increased by adding to the

protein coding sequence an SsrA tag, making the modified protein a

target of various proteases in the cell (Elowitz and Leibler, 2000).

50

Table 3-2. Nominal Values of the Parameters of Transcription
and Translation Equations

Parameter Description Value Reference

GENERAL PARAMETERS
 ଵ max. transcription rate of promoter of gene 1 0.680 [nM/s] Estimateߩ

 ଶ max. transcription rate of promoter of gene 2 0.595 nM/s] Estimateߩ

 ଷߩ
max. transcription rate of constitutive
promoter of gene 3

0.085 [nM/s] Estimate

 ସ max. transcription rate of promoter of gene 4 0.255 [nM/s] Estimateߩ

 ହ max. transcription rate of promoter of gene 5 0.255 [nM/s] Estimateߩ

 ଺ max. transcription rate of promoter of gene 6 0.765 [nM/s] Estimateߩ

 ଻,଼,ଽ,ଵ଴ߩ
max. transcription rate of promoters of genes
7, 8, 9 and 10

0.850 [nM/s] Estimate

γX Translation rate of gene X (any gene) 0.1 Estimate

υphos Rate of OmpR phosphorylation 20.0 Estimate

υdePhos Rate of OmpRP de-phosphorylation 0.01 Estimate

kphos Kinetic phosphorylation constant 1.0 Estimate

DEGRADATION CONSTANTS

ωLacI degradation of LacI 2.31e-3 [1/s] Estimate

ωTetR degradation of TetR 2.3e-2 [1/s] (Baumeister et al.,
1991)

ωCI degradation of cI 7e-4 [1/s] (Reinitz and Vaisnys,
1990)

ωCII degradation of cII 6.9e-3 [1/s] (Vohradsky, 2001)

ωOmpR degradation of OmpR 0.13e-2 [1/s] (Zhu et al., 2000)

ωGal4 degradation of Gal4 2.88e-2 [1/s] Estimate

ωLexA degradation of LexA 0.0115
[1/min]

(Camas et al., 2006)
(half-life of ~60mins)

ωLuxR·AHL degradation of LuxR·AHL 1e-3 [1/s] (Goryachev et al.,
2006)

ωRhlR·AHL degradation of RhlR·AHL 1e-3 [1/s] Estimate

ωGFP degradation of GFP 0.012 [1/min] (de Jong et al., 2010)

ωtaR12 degradation of taR12 1.96e-3 [1/s] (Friedland et al., 2009)

ωmRNA degradation of an mRNA transcript 2.88e-3 [1/s] (Alon, 2006)

DISSOCIATION CONSTANTS

KLacI LacI repressor dissociation constant 10 [nM] (Wang et al., 2005)

KTetR TetR repressor dissociation constant 5.6 [nM] (Stekel and Jenkins,
2008)

KCI cI repressor dissociation constant 8 [nM] (Basu et al., 2005)

KCII cII repressor dissociation constant 50 [nM] Estimate

KOmpR OmpR repressor dissociation constant 151 [nM] (Head et al., 1998)

KOmpRP OmpRP repressor dissociation constant 6 [nM] (Head et al., 1998)

KGal4 Gal4 repressor dissociation constant 24 [nM] (Hong et al., 2008)

KLexA LexA repressor dissociation constant 20 [nM] (Kuhner et al., 2004)

KLuxR·AHL LuxR·AHL affinity 10 [nM] (Basu et al., 2005)

KRhlR·AHL RhlR·AHL affinity 10 [nM] Estimate

KtaR12 taR12 repressor dissociation constant 80 [nM] (Isaacs et al., 2004)

51

HILL COOPERATIVITY

nLacI LacI repressor Hill cooperativity 2 (Basu et al., 2005)

nTetR TetR repressor Hill cooperativity 2 Estimate

nCI cI repressor Hill cooperativity 2 (Basu et al., 2005)

nCII cII repressor Hill cooperativity 2 (Shih and Gussin,
1984)

nOmpR OmpR repressor Hill cooperativity 2 Estimate

nOmpRP OmpRP repressor Hill cooperativity 2 Estimate

nGal4 Gal4 repressor Hill cooperativity 2 Estimate

nLexA LexA repressor Hill cooperativity 2 (Aksenov, 1999)

nLuxR·AHL LuxR·AHL Hill cooperativity 1 (Basu et al., 2005)

nRhlR·AHL RhlR·AHL Hill cooperativity 1 Estimate

ntaR12 taR12 repressor Hill cooperativity 2 Estimate

3.2 BioFSM

From a computational point of view, a logical next step to the BioD is

the design of a GRN embodying a finite state machine, which uses the

BioD as a 1-bit memory module. We call this design a BioFSM, which is

also a stand-alone module that can be modified to carry out different

logical functions and/or to communicate with other modules via inter-

cellular signalling.

Figure 3-4. The Logical Block Diagram for BioFSM.

52

The BioFSM has the following specification, characterized by its

inputs, clock and current state. When the clock is OFF, there is no

change in the state of the device. However, when the clock turns ON,

the next state of the BioFSM is determined by a state update function

(the UF), which is a function of its external inputs and its own current

state.

The design of the BioFSM is shown in Figure 3-4. It consists of 3

modules: (a) a BioD, which holds the state of the BioFSM; (b) the

UpdateFunction/InputInterface (or UF/II) module. The UF determines

the next state of the BioD. The genes implementing the UF/II implicitly

include the input interface, as changing any of the two external inputs

requires a change to the promoter side of the genes (see Figure 3-5b);

(c) the OutputInterface (OI) module, which is used to enable a chosen

acyl-homoserine lactone (AHL) molecule as the output of the BioFSM

(Figure 3-5c); AHLs are a class of small molecules capable of inter-

cellular signalling in E. coli and other bacteria (Fuqua et al., 2001). In

fact, the two external inputs to the BioFSM are also AHLs. The modular

design of the BioFSM allows us to alter its logic/inputs or output only

by changing only its UF/II or OI, respectively.

53

Figure 3-5. UF/II and OI implementing F=A+BC.

a. Logical block diagram for the UpdateFunction/InputInterface (UF/II). Inputs A and

C are AHLs coming from neighbouring BioFSMs. They are the left and right inputs, so

A=AHLL and C=AHLR. Input B is a repressor that reflects the state of the BioFSM and

comes directly from the STATE genes of the embedded BioD. b. The gene regulatory

network for the UF/II, where ܨ ൌ ܣ ൅ The output F is the input D (or taR12) to the .ܥܤ

BioD. c. Logical block diagram for the OutputInterface (OI). AHLC (centre) is the

particular AHL assigned to this BioFSM. It is used to transmit the state of the device

to its neighbours. The presence of LexA reflects the OFF state (i.e. the QQ output) of

the BioD. The OI stops production of the AHL when the BioD is in an OFF state. d.

The gene regulatory network realizing the OI; it is made of one gene.

54

The example shown in Figure 3-5 illustrates a particular UF/II

and OI. The update function is ܣ ൅ Inputs A and C are the two .ܥܤ

originating from external sources, and are both AHLs, while B

represents the state of the BioD, and is a repressor. It is worth noting

here that AHLs can be activators or repressors based on the

positioning of the binding site of the R-protein/AHL complex within the

promoter region of the AHL-regulated gene (Anderson et al., 1999;

Medina et al., 2003). Hence, the logical complements of the external

inputs, ܣ and ܥ, are readily available, while the state B = LacI and its

logical complement ܤ = TetR are made available by the BioD. This

flexibility often allows for the reduction in the number of genes

required for the implementation of the UpdateFunction. As to the

OutputInterface, all possible realizations are driven by the BioD’s LexA

output, but would have different (AHL) products, depending on the

application.

Before providing the model, a word about AHLs and the way

they function. AHLs are capable of inter-cellular signalling partly

because they are small molecules capable of diffusion across

membranes. Even though they are small, they are capable of being

indirectly used as activators or repressors by forming complexes with

larger proteins called R-proteins. The resulting R-protein-AHL complex

can activate or repress production of genes by binding to specific

55

operator sites in the promoter region of those genes. There exists many

different types of AHLs (Fuqua et al., 2001; Shrout and Parsek, 2006;

Steindler and Venturi, 2007) and each AHL has a particular R-protein

that it activates. In the design of the BioFSM, we have two external

AHL input signals and one AHL output signal. Specifically, we use the

RhlI/RhlR and LasI/LasR pairs for input, and the LuxI/LuxR pair for

output.

Model

The model used for the UF/II and the OI simulations for ܨ ൌ ܣ ൅ is ܥܤ

presented below. The production of the R-proteins is not considered

here because they are constitutively produced proteins, generated

without regulation. The protein translation ODEs are not shown

because there is no post transcriptional regulation.

Transcription ODEs

 ݀ሾ12ܴܽݐሿ
ݐ݀

ൌ ௘௡௘଼ீ݀݋ݎ݌ ൅ ௘௡௘ଽீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ12ܴܽݐሿ (3.22)

 ݀ሾ݉ܫݏܽܮሿ
ݐ݀

ൌ ௘௡௘ଵ଴ீ݀݋ݎ݌ െ ߱௠ோே஺. ሾ݉ܫݏܽܮሿ (3.23)

where gene 8 is activated by the LuxR·AHL complex,

56

௘௡௘଼ீ݀݋ݎ݌ ൌ ଼ߩ כ
൬

ሾܴݔݑܮ · ሿܮܪܣ
௅௨௫ோ·஺ு௅ܭ

൰
௡ಽೠೣೃ·ಲಹಽ

1 ൅ ൬
ሾܴݔݑܮ · ሿܮܪܣ

௅௨௫ோ·஺ு௅ܭ
൰

௡ಽೠೣೃ·ಲಹಽ
 (3.24)

gene 9 is repressed by TetR and activated by the RhlR·AHL complex,

௘௡௘ଽீ݀݋ݎ݌ ൌ
ଽߩ

1 ൅ ൬
ሾܴܶ݁ݐሿ
௘௧ோ்ܭ

൰
௡೅೐೟ೃ

כ
൬

ሾܴ݄݈ܴ · ሿܮܪܣ
ோ௛௟ோ·஺ு௅ܭ

൰
௡ೃ೓೗ೃ·ಲಹಽ

1 ൅ ൬
ሾܴ݄݈ܴ · ሿܮܪܣ

ோ௛௟ோ·஺ு௅ܭ
൰

௡ೃ೓೗ೃ·ಲಹಽ
 (3.25)

and gene 10 is repressed by LexA,

௘௡௘ଵ଴ீ݀݋ݎ݌ ൌ
ଵ଴ߩ

1 ൅ ൬
ሾܣݔ݁ܮሿ
௅௘௫஺ܭ

൰
௡ಽ೐ೣಲ (3.26)

3.3 Simulation Methodology

3.3.1 Language

The above systems of ODEs were solved using our own

implementation (written in the C++ programming language) of the

common forth-order Runge-Kutta method (Kaps and Rentrop, 1979).

The source code is available in the appendix.

3.3.2 Inputs and Outputs

As it stands, when simulating the BioD, the D and CLK inputs are

57

manually set to a particular value before the beginning of every new

simulation. When simulating the BioFSM, only the CLK input and the

external AHL inputs are manually assigned.

The output generated by the program is a matrix of tab

delimited values representing the state of every differential equation,

at each step. Every line starts with the time step and is followed by the

values of every ODE in the system at that time step.

3.3.3 Tools

This matrix of values serves as one of two inputs to the plotting

program, Gnuplot (Janert, 2009), which is used for both results

plotting and viewing. The other input is a file that holds the details of

the plot; e.g. plot area, axes, zoom, plot colours and highlighted areas

(given in appendix). We manually included two types of highlighting

regions (a red-hue and diagonal-stripes) in the output generated by

Gnuplot to indicate the time during which the inputs are present. The

program itself always generates the complete list of values for any

given simulation. However, in our Gnuplot generated figures, we

choose to plot only the values of interest.

3.3.4 Stochastic run

The systems of ODEs presented in the previous section are the basis of

the stochastic simulation used to generate Figure 4-1, Figure 4-5 and

58

Figure 4-6. We used the tau-leaping algorithm (Cao et al., 2007),

which achieves fast and accurate stochastic simulation by taking large

time steps that leap over individual reactions. During a leap interval (t,

t + τ) in tau-leaping, each reaction channel operates as a Poisson

process with a constant intensity.

3.3.5 Parameters

The values of τ used in our simulations varied from τ = 5, τ = 10 up to

τ = 20 in an effort to display the most relevant plots. Increasing the

value of τ reduces the resolution of the results but reduces the

computing time of the simulation.

Table 3-3. CPU time (performance) needed to simulate one hour of

biological time.

Simulation
Step

Time
(in seconds)

τ = 5 1.181

τ = 10 0.636

τ = 20 0.273

In the deterministic run, τ also represents the time step. No

noticeable performance change was observed between the

deterministic and stochastic runs of equal time steps.

59

CHAPTER 4.

SIMULATION RESULTS AND DISCUSSION

In the sequel, we present the results of simulating the device using a

system of rate equations. The results confirm our expectation that the

device will toggle when and only when required – though its speed can

still be improved.

4.1 BioD

The core functionality of our BioD device is illustrated in Figure 4-1.

The highlighted areas indicate the presence of an input. The reddish

hue reflects the presence of the clock input (CLK), while the grey

diagonal pattern reflects the presence of the data input (D). The

examples provided have two different data cycles intersecting (or not)

with four different clock cycles. This setting allows us to show that the

device can indeed go from one state to the other in response to

nothing more than the introduction of the inputs it was designed to

respond to. Furthermore, this setting also goes through the various

permutations of the inputs seen in Table 3-1.

60

a.

b.

c.

Figure 4-1. Stochastic simulation of BioD.

The three timing diagrams are displaying different signals of the same run. The highlighted areas indicate the presence of

an input. The red hue indicates the CLK signal (FR light). The grey diagonal pattern indicates the presence of the input D.

a. Normalized GFP expression b. mRNA levels c. Protein levels.

61

Ideally, with four separate CLK inputs, the state of the device

should follow the D input four times. In this case, the state should turn

ON, then OFF, and then OFF again and finally ON. Figure 4-1a displays

those exact state changes in a stochastic run whose initial condition is

an OFF state. The normalized GFP expression output follows the input

only at the rising edge of the clock. However, while the clock is ON or

is OFF, any changes in the input do not propagate to the output.

Figure 4-1b shows the changes in the concentrations of the mRNA

transcripts of the various substances involved. Please note that the

concentration level of mOmpR is not displayed because this transcript is

constitutively expressed. Figure 4-1c shows the changes in the protein

levels; the levels of LexA and GFP were not displayed because they do

not affect the behaviour of the device. Changes in protein

concentrations follow changes in corresponding mRNA concentrations,

except in situations where post-transcriptional regulation is in effect.

In particular, when mCIcr is expressed in the absence of input D, the

level of the cI repressor does not subsequently increase. Because of

this highly correlated relationship between transcript and protein, the

protein levels are not shown for the rest of the examples. Rather, the

GFP figure is used to demonstrate the overall input/output relationship.

The concentration of a molecule is decided, mainly, by its rates

of synthesis and degradation. Some transcripts have multiple stable

62

levels of expression. Since cI, cII, LacI and TetR are not only

produced by the SLECTION genes (but can also be produced by some

of the INPUT or STATE genes) the production of their transcripts is

significantly increased in the presence of the CLK signal. mTetR has

four levels of expression: (i) all the genes that can produce it are OFF,

(ii) gene 6 is ON, (iii) gene 5 is ON, and (iv) genes 5 and 6 are ON.

mLacI has similar multiple levels of expression, using genes 4 and 7.

In the case of mCI, however, since gene 4 can only turn ON when

gene 1 is ON, it only has three levels of expression. The case of mCII

is analogous to that of mCI.

Tracing the various signals in Figure 4-1b shows that, the

simulation starts with three active transcripts, mTetR (the state of the

device is OFF), mCIcr (unrepressed since the CLK and therefore Gal4

are OFF) and mCII (unrepressed since input D is OFF). Following, is a

step-by-step explanation of the changes shown in the timing diagram

(Figure 4-1b).

First, input D is introduced, causing the repression of gene 2 (or

mCII). Since the transcript of gene 1 is translated and gene 2 is OFF,

gene 4 is on a hair-trigger to be turned ON, while gene 5 is doubly

repressed by OmpRP and cI. The CLK signal is introduced, stopping the

phosphorylation of OmpR and activating gene 4. This raises the level of

mCI and mLacI. The latter represses gene 6 and starts turning the

63

state of the device ON. As TetR degrades, GFP levels increase. Then,

the CLK signal is turned OFF followed by input D. These two actions

turn OFF gene 4 and disable gene 1, respectively. With both inputs

OFF, the cI repressor produced by genes 1 and 4 degrades without

replacement, allowing mCII to return to its previous level. mLacI,

which is now produced by gene 7, reaches its unrepressed (ON) state

equilibrium.

The second state change occurs when the CLK signal is turned

ON again. Since mCII is expressed at that time (no input D), gene 5

turns ON, causing the repression of gene 1 (through mGal4), the

repression of gene 7 (through mTetR), and an increase in the level of

mCII (as it is produced by both genes 2 and 5). When the CLK is

removed, gene 5 is turned OFF, but mCII and mTetR remain high,

while mGal4 is repressed. This allows the production of mCIcr to start

again (after Gal4 degrades). Note, however, that mTetR is now

produced by gene 6, and not by gene 5.

The third CLK signal starts now. Gene 5 is again turned ON; the

levels of mCII, mGal4 and mTetR climb; the level of mCIcr drops

(repressed by Gal4). In the middle of the CLK pulse, input D is

introduced. This causes no change in the network. Since input D only

affects gene 1, its effects are muzzled because the clock has already

turned on gene 5 which repressed gene 1. It is only after the clock is

64

turned OFF that the repression of gene 1 is lifted. At this point, even

though the CLK signal is removed, input D is still present, and since

gene 1 is no longer repressed by gene 5 (or Gal4), cI is synthesized,

which proceeds to represses gene 2. The state of the device, however,

does not change since the STATE genes are not directly affected by

the INPUT genes.

The fourth CLK signal turns the state of the device back ON. In

the presence of input D, the CLK turns gene 4 ON causing a similar

sequence of events to the one witnessed following the first CLK signal.

4.1.1 Model Constraints

An important factor in the design of any gene network is the choice of

regulatory sequences, promoters and coding sequences, which make

up the various genes. The specific genes used for the realization of the

BioD are just an example, meaning that other genes can be used to

realize the logical design (shown in Figure 3-3) of the BioD. It must be

noted that any alternate set of genes will very likely have a different

set of model parameters. The variation of these parameters changes

the behaviour of the network, possibly making it faster or slower in

responding to the inputs or in reaching a steady state.

65

a. b.

Figure 4-2. Effect of Dissociation constant on input response time.

The BioD network described above is left unchanged except for one variable, ܭ௅௔௖ூ. Its effect on the input response time is

highlighted for two complementary genes, LacI and TetR. a. Increasing the ܭ௅௔௖ூ value from 0.5nM to 14.0nM increases the time

it takes to start production of the mLacI transcript in response to the proper input sequence. b. As expected, increasing the

 .௅௔௖ூ value has the opposite effect on the production of the mTetR transcriptܭ

66

In more detail, any gene chosen or constructed for the BioD

comes with a set of parameters: the dissociation constant ܭௗ reflects

the affinity of a repressor binding to its operator site; the Hill

coefficient ݊݀ reflects the cooperativity of repression of the constituent

molecules of a multimer; the degradation rate ߱݀ depends on the

chemical and spatial properties of the substance but can be modified

using certain well-studied methods (such as the addition of an SsrA

tag to speed-up degradation).

In a network where two genes repress each other (such as the

two STATE genes), a small increase in the dissociation constant (ܭௗ) of

one of the two repressors, affects the network’s response time to the

input in two separate ways: (i) it significantly reduces the response

time of the target gene, and (ii) it increases the response time of the

gene that produces it. The state genes are used to illustrate this issue.

We chose to record the effect of separately varying ܭ௅௔௖ூ on the

dynamic behavior of mLacI and mTetR. Figure 4-2a illustrates the

effect of changing ܭ௅௔௖ூ from 0.5 nM to 14.0 nM on [mLacI], leading -

or not - to a change of state from OFF to ON. Similarly, Figure 4-2b

illustrates the effect of changing the value of ܭ௅௔௖ூ on [mTetR], leading

to a change of state from ON to OFF.

Generally speaking, the ܭௗ value is not the only parameter

defining a repressor, nor can this value be changed at will, because it

67

is dependent on the chemical and conformational properties of both

the repressor and its corresponding binding site. Therefore, any

change in one gene’s parameters might have effects beyond those

intended. This must always be taken into consideration during design

or optimization of gene regulatory networks.

It is noteworthy that in Figure 4-2a, there is one ܭௗ value where

the expected change of state fails to happen. This occurs because the

CLK signal becomes too short for the state change to occur at this ܭௗ

value. A more detailed discussion of the relationship between ்ܭ௘௧ோ,

 .௅௔௖ூ and the CLK signal is provided in the following section 4.1.4ܭ

4.1.2 Clock Input (CLK)

When the input and output states are at opposite levels, the length of

the CLK signal must be large enough to allow a change of state to

occur. As an example, when input = ON and output = OFF, the CLK

signal has to be sustained for a time greater than the minimum time

needed for the cell concentration of mTetR (or [mTetR]) and for [TetR]

to degrade below [mLacI] and [LacI], respectively. If the CLK signal

is removed too soon, the production of mLacI from the SELECTION

gene 4 is cut too quickly. The output responds to its short presence

and reduces the production of mTetR, seemingly heading towards a

state change. However, when the CLK signal is removed, the mTetR

68

production is simply reasserted, because gene 7 has not yet begun the

production of mLacI, and the state of the device fails to toggle. As

seen in Figure 4-3a, the GFP levels do not rise even though input D

was present at the rising edge of the clock. In point of fact, the CLK

signal enabled the transcription of mLacI from gene 4 (which is not

repressed by TetR). This causes the levels of TetR to fall rapidly.

However, the CLK signal is removed before they could fall low enough

to turn gene 7 ON. Gene 4 is then turned OFF on the CLK, and gene 6

is reasserted. This situation explains the need for the CLK signal to

remain active until the target STATE gene is activated.

69

a. b. c.

Figure 4-3. Constraints and failures.

The graphs show only the GFP and the transcripts of the STATE genes. a. The clock pulse is too short. The state of the BioD

does not have enough time to change b. Input D introduced shortly after the clock turns the state of the output ON. c. A clock

pulse that occurs shortly after the end of the input D, acts as if input D was still ON, resulting in a change of state.

70

4.1.3 Data Input (D)

The data input (D) introduces two more timing constraints. The first

prohibits the introduction of the input too soon after the start of the

CLK signal. While this might seem odd, it is in fact consistent with

network behaviour. Since gene 1 is only repressed by Gal4, it can only

be repressed when the clock is ON. Therefore, when the clock is OFF,

gene 1 is not prevented from continuously transcribing mCIcr. Since

translation on its own is faster than transcription followed by

translation, when input D is introduced, it quickly induces the

translation of mCIcr, now unlocked. During that time, the CLK signal

selects gene 5, but before Gal4 has had a chance to be transcribed

and then translated, the direct translation of the transcript of gene 1

into its corresponding (repressor) protein causes the repression of cII

(by way of genes 2 and 5) and hence, the activation of gene 4. This

ultimately results in an erroneous change of state as illustrated in

Figure 4-3b.

The second timing constraint occurs when input D is turned OFF.

Indeed the level of expression of protein cII does not climb

immediately. Time is needed to allow for the degradation of the cI

protein, the taR12 molecule, and the unlocked mRNA molecule that

are still in the system, in order to stop the production of more cI and

71

allow the production (transcription and translation) of cII. Figure 4-3c

shows the CLK signal being activated too soon after input D is turned

OFF. Since the system has not had enough time to reach equilibrium,

it reacts to the clock as if its input was still ON.

The clock pulses must be sufficiently apart to allow the system to

go to equilibrium (steady state) before the next pulse. Which

SELECTION gene gets enabled depends heavily on that. Essentially,

the input signal must stabilize (as ON or OFF), then the levels of cI

and cII must stabilize as well, allowing the selection of one of the

SELECTION genes, which must occur prior to the start of the clock

pulse.

4.1.4 Bi-stability

A necessary feature of the BioD is its bi-stability. Bi-stability means

that the network is capable of being in any one of two steady states

for as long as the inputs remain unchanged. This is a crucial feature

because we do not want a BioD that is in (say) an ON state to

autonomously switch to the OFF state, without any prompting from its

input. Furthermore, we want these two steady states to be stable.

Dynamically, a stable steady state is a basin of attraction with all

nearby trajectories leading into it. In other words, the effect of small,

non-sustained and/or noisy perturbations in the inputs are absorbed

72

and do not prevent a return to the original stable steady state. This

does not only apply to the STATE genes, but also to the SELECTION

genes (which also form a toggle switch).

Figure 4-4. Bi-stable region relative to CLK pulse width.

Varying the ܭௗ values of the toggle switch genes while keeping all other parameters

constant results in the above functional plot of the BioD. The BioD is said to be bi-

stable (or functional) when it is able to toggle from one state to the other on the

right inputs and is able to hold on to that state indefinitely if unperturbed. The green

zone, which is included in the yellow zone, which itself is included in the red zone all

define the bi-stability regions of the BioD at CLK pulse widths of 25, 34 and 42

minutes, respectively. The black region denotes results of simulations that did not

lead to a bi-stable network.

73

The conditions for toggle switch bi-stability have been discussed

by Gardner et al. [2], asserting that (i) the gene products must have a

cooperative repression of transcription (Hill cooperativity) that is

greater than 1; (ii) the rates of synthesis of the two repressors must

be balanced (approximately equal). According to Gardner et al., these

two conditions decide the size of the bi-stability region; where larger

cooperative repressions and larger synthesis rates result in larger bi-

stability areas. We add to these findings by including the effect of our

CLK signal in relation to the genes used in the network. The results of

our investigation resulted in a delineation of the region of bi-stability

identical in general shape to the one discovered by Gardner et al., but

having different exact boundaries.

In more detail, we varied the two ܭௗ values of the two STATE

genes as well as the length the CLK pulse, while keeping all other

parameter values constant. For every pair of ܭௗ values, we sought a

minimum CLK pulse width that would result in a bi-stable network. In

some cases, we found it, such as the green, yellow and red regions of

Figure 4-4, but in others – the black area – we did not. It is worth

noting that for all of these regions – except the black one – a clock

pulse whose length is equal or greater than the noted values would

ensure a bi-stable behaviour.

As can be seen, a smaller CLK pulse significantly reduces the

74

range of ܭௗ values (and hence potential genes) that can used to

construct a bi-stable BioD. Extending the length of the CLK pulse too

much, however, would not only be highly impractical, but would also

mean that the state change is occurring across multiple reproductive

cycles of an E. coli cell. It is therefore important to balance speed,

practicality and the absolute need for bi-stability.

4.1.5 Dissociation Constants

The dissociation constants, or ܭௗ values, measure the propensity of a

complex molecule to separate (or dissociate) reversibly into its

component molecules. The vast majority of reported values for the

dissociation constants of some well known transcription factors were

unrealistically low. This issue becomes quite apparent when the values

are investigated.

Substitution of various ܭௗ values found in literature (for LacI,

TetR and cI) in equation (4.1) yields concentrations of far less than one

molecule per cell. In other words, ்ܭ௘௧ோ = 179 pM (Weber et al., 2007)

means that seven hundredth (0.07) of a TetR molecule in a cell would

somehow be enough to repress half its operators. Arguing it further,

and rounding the number of TetR molecules up (then multiplying it by

4) and assuming four repressor molecules existed in the cell, the

probability of them colliding with each other to form a tetramer is

75

negligibly small. More to the point, the probability that a single

tetramer in the entire cell would collide with and bind to the operator

site is effectively zero, making these numbers quite problematic.

If the complex molecules in question is made up of one ligand

molecule and one receptor molecule only (as is frequently the case)

then ܭௗ is also defined as the ligand concentration at which half the

receptors are occupied at equilibrium. This allows a meaningful

conversion of ܭௗ from moles-per-liter to molecules-per-cell (ܭௗ now

becomes the number of ligand molecules per cell at which half the

receptors are occupied). This is achieved as follows

ݏ݈݁ݑ݈ܿ݁݋ܯ
݈݈݁ܥ

ൌ ݕݐ݅ݎ݈ܽ݋ܯ כ ஺ܰ כ ௖ܸ௬௧௢ (4.1)

where ௖ܸ௬௧௢ ൌ 6.7 כ 10ିଵ଺ liters is the E.coli cytoplasm volume and is

taken from the CyberCell Database (CCDB) (Sundararaj et al., 2004),

and where ஺ܰ ൌ 6.022 כ 10ଶଷ molିଵ is the Avogadro constant.

The 2009 University of Aberdeen iGEM team illustrates a method

to generate more realistic ܭௗ values estimations. The method uses

known repressor molecule numbers present in the cell at a given state,

to extrapolate the number of repressor molecules needed to halve the

overall production of its target gene (in this case of repressors and

operator sites). In most cases, this number would be a better

76

approximation of the real ܭௗ value.

4.2 BioFSM

As previously described, the BioFSM is built by connecting the BioD to

the UF/II and OI. Of these, the OI is the simplest module. It is in effect

just an inverter that uses Q from the BioD to generate an AHL version

of Q that is meant for inter-cellular signalling.

When LexA is ON (Q is ON) the AHL production is stopped; while

when LexA is OFF (Q is ON) AHL production is resumed. The UF/II is a

variable module whose complexity depends on the desired

functionality of the BioFSM. It can be as simple as the OI inverter or it

can be an elaborate network that handles numerous inputs and

performs complex combinatorial logic.

Figure 4-5 and Figure 4-6 display the stochastic simulations of

all eight possible inputs to two UF/IIs implementing ܨ ൌ ܣ ൅ and ܥܤ

ܨ ൌ ҧܥതܤܣ ൅ ܤҧܣ ൅ respectively. The output F of the UF/II is the input ,ܥҧܣ

D (or taR12) to the BioD. The inputs A, B (or ܤത) and C of the UF/II are

the AHLL, LacI (or TetR), and AHLR, respectively. The core

functionality of our BioFSM hinges on the manipulation of the input to

the BioD incorporated within the BioFSM. We therefore highlight the

proper functionality of the UF/IIs that provide these inputs.

77

Figure 4-5. Stochastic simulation

of all 8 possible inputs to

function ࡲ ൌ ࡭ ൅ or Rule 248) ࡯࡮

(Wolfram, 2002)).

The external inputs A and C are

AHL_left (AHLL) and AHL_right

(AHLR), respectively. Their presence

is highlighted by the grey diagonal

patterns. The internal input B comes

from the BioD. In this case, ܤ was

needed for the implementation of

the UF (see Figure 3-5b), so TetR

was used and its respective mRNA

level is displayed.

78

Figure 4-6. Stochastic simulation

of all 8 possible inputs to function

ࡲ ൌ ഥ࡯ഥ࡮࡭ ൅ ࡮ഥ࡭ ൅ or Rule 30) ࡯ഥ࡭

(Wolfram, 2002)).

The external inputs A, B and C are

defined and highlighted as above.

Note that in the ܥܤܣ ൌ 011, 110 ܽ݊݀ 111

cases, the output ܨ is affected before

the introduction of either AHL. This is

because before the introduction of the

AHLs, all these cases are in effect

ܥܤܣ ൌ 010 and in Rule 30, this input

results in ܨ ൌ 1. This behavior is not

unwanted because the design of the

UF/II is asynchronous. As can be

seen, in the first case, ܨ is doubly

asserted when AHLR is introduced.

While in the other two cases, ܨ is

turned OFF when the AHLs are

present. This flexibility insures that

the BioD always receives the most

updated input from the UF/II,

regardless of the CLK signal.

79

Here, we have one internal and two external inputs. The

highlighted areas indicate the presence of an external input, while

mTetR reflects the internal input B (= Q). The two opposing diagonal

patterns reflect the presence of the left and right inputs A and C.

Eight stochastic simulations are provided, covering every

possible UF/II input permutation (given three inputs, one internal and

two external). These simulations are presented as a table of diagrams,

sorted by input presence, top to bottom, starting with the left column.

We say ܣ ൌ 0 when AHLL is not present, while ܣ ൌ 1 means that AHLL is

present in high quantities. Similarly, the values of ܤ and ܥ denote the

presence and absence of LacI and AHLR respectively. As previously

described in BioD, in our design LacI and TetR are complimentary

signals, which is why we consider ܤ ൌ TetR, and why we used it in the

diagrams below.

The top left diagram displays the UF/II level at input ܥܤܣ ൌ 000

while the bottom right diagram displays that level at input ܥܤܣ ൌ 111.

The top left diagram has no highlighted areas (i.e. no diagonal

patterns) denoting the absence of the external inputs (AHLL and

AHLR). mTetR is present however, meaning ܤ ൌ 1 (or ܤ ൌ 0), denoting

the absence of LacI. Hence, this diagram displays the value of the

UF/II, namely ܨ ൌ ܣ ൅ with zero inputs, which is zero itself. The ,ܥܤ

80

bottom right diagram has two areas of diagonal patterns (overlapping)

denoting the presence of the external inputs. mTetR is absent meaning

ܤ ൌ 0 (or ܤ ൌ 1), denoting the presence of LacI. Hence, this diagram

displays the value of the UF/II, namely ܨ ൌ ܣ ൅ with all inputs ,ܥܤ

present. It is in fact doubly asserted by both ܣ and ܥܤ and results in a

higher production of taR12 (representing ܨ) than the other cases

where is it asserted; at ܥܤܣ ൌ 011, 100, 101, ܽ݊݀ 110. The value of the

input is highlighted in each diagram by three little squares in the

bottom left area.

The UF/II module is designed as a non-synchronous module, but

the BioFSM still functions synchronously using the embedded BioD

clock.

4.3 Extension: BioCell

Using multiple strains of BioFSMs connected in sequence to build

circular cellular automata (CA), or BioCell.

A BioCell is a ring of N colonies of E. coli. Each colony consists of

clones of one of three strains, genetically modified to realize a BioFSM.

The three strains implement the same logical functionality (same BioD

and UF rules) but have different input and output interfaces (for inter-

colony communications). We chose to connect these BioFSMs as a ring

cellular automata, i.e. each BioFSM is connected to its left and right

81

BioFSM neighbours only (see Figure 4-7). In effect, each colony will

implement one type of BioFSM, and will communicate with its

neighbour colonies via AHLs.

Figure 4-7. The Logical Block Diagram for BioCell.

Therefore the UF must have three inputs (two from its

immediate neighbours, and one from itself). Each strain (BioFSM)

needs to be able to recognize the origin of its inputs (to the UF/II),

and to broadcast a recognizable output (from its OI). The left-hand

strain produces AHLL and responds to AHLC and AHLR, while the centre

strain produces AHLC and responds to AHLL and AHLR, and so on. In

order to function as expected a colony processes its inputs to decide

82

whether to alter its state, upon the application of a global clock pulse

(FR light). The decision to change the state is made following the rules

implemented by the UF. Those rules are the same for all strains,

though with variations merely reflecting the chemical nature of the

inputs with which each strain is confronted. A colony exhibits its state

by expressing (or not) a florescent protein.

The BioCell will have the following dynamic behaviour,

determined by its inputs states of its N colonies (collectively making up

the BioCell’s state). When there is no FR light (i.e. CLK = 0), there is

no change in the state of the BioCell. In contrast, when the device

receives a FR light pulse (i.e. CLK = 1) applied to all the colonies

simultaneously, the next states of the colonies follow the outputs of

their UF/II (by processing its own and the neighbours’ states). The

next clock pulse has to wait until the BioCell is back in equilibrium.

Equilibrium, after an OFF to ON state change, comes after the colonies

have had a chance to produce enough AHLs and after those AHLs have

diffused to the neighbours. Equilibrium, after an ON to OFF state

change, comes after the AHLs produced by the colonies have had a

chance to degrade. This is critical because the AHLs are the only

indicator of the neighbours’ states. A clock pulse that comes before

equilibrium might cause an erroneous change of state of the BioCell.

83

Figure 4-8. Ring topology CA run of two rules with changing initial conditions.

Rule 248 with two different initial conditions: a. demonstrates signal propagation and b. exhibits counting. Rule 30 is shown

with three different initial conditions, resulting in: c. chaotic behaviour, d. cyclical behaviour and e. fixed behaviour

84

From a computational point of view, the BioCell device is a

synchronous ring of cellular automata implemented as a ring of N

communicating colonies of three new strains of E. coli. Given this

setup (three binary inputs and one binary output) for every BioFSM in

the BioCell, there exists 2ଶయ
ൌ 256 possible functions (or rules) that can

be implemented by the UF. We chose two such rules to implement: (a)

rule 248, as defined by Wolfram (Wolfram, 2002), allows us to

demonstrate signal propagation and counting behaviours, depending

on the initial state of the ring; (b) rule 30, can be used as a pseudo

random number generator or to exhibit cyclical behaviour, depending

on the initial state of the ring.

Some of the power of cellular automata is emphasized when

rules exhibit different dynamic behaviours, i.e. chaotic, cyclical or

fixed, by merely varying the initial conditions of the cellular automata.

The particular UF used when introducing BioFSM above, implements

rule 248. Figure 4-8 (a, b) displays runs of this rule on a BioCell of 12

colonies. The change in the initial state results in two different

behaviours, namely signal propagation in (a) and counting in (b). Rule

30, whose runs are displayed in Figure 4-8 (c-e), is an interesting rule

that can result in either chaotic behaviour as in (c), various cyclical

behaviours such as (d) or simply lead the ring to a fixed state, as in

(e).

85

This is a device that can be configured to perform many different

functions using simple or no modifications (via change in initial

conditions). Many cellular automata are capable of universal

computation (Wolfram, 2002).

86

CHAPTER 5.

CONCLUSION

In this thesis, we present a mathematical model and simulation results

of a synchronous single-input delay flip-flop, realized as a gene

regulatory network for implementation in E. coli. The simulation we

present provides evidence that the device can toggle from the ON

state to the OFF state and back, according to its intended functionality.

The inherent symmetry of the design reduces the number of genes

used, but introduces some complexity, which is palpable when tracing

the various changes the device goes through when toggling.

The BioD is effectively a 1-bit memory element that can operate

synchronously with any number of other elements. As such, it can be

used to hold the state of a finite state machine, as it does in the

BioFSM. It could also be used to build a memory bank, an event

sequence detector/effector, a decision-making system, and numerous

other memory-requiring devices. The BioFSM is made of three

modules: the BioD, the Update Function/Input Interface (UF/II) and

the Output Interface (OI). The modular design of the BioFSM allows us

to hold the BioD constant while changing the UF/II or/and OI, if and

when the time-dependant behaviour of the BioFSM, or its input/output

interfaces require alteration. Then, there is the BioCell, which is made

87

of a number of BioFSM colonies, and is capable of exhibiting a large

number of computational, communicational and pattern formation

behaviours depending on the particular UF and/or initial states of its

constituent BioFSMs.

Speed is a main area of improvement. Indeed, the slowest

reactions in a cell are the ones involving regulated transcription and

translation. The time it takes to execute these operations depends on

many factors, including various binding affinities, generation and

degradation rates. For example, the impact of a repressor is delayed

until a mature protein is formed and manages to interact with its

corresponding operator site on the DNA. Using post-transcriptional

regulation like taRNA or RNA interference (RNAi) - where possible - to

affect regulation in the BioD will make the system significantly faster.

One possible location for such a change would be where the

SELECTION genes interact with the STATE genes. Instead of producing

repressors for genes 6 or 7, the use of RNAi molecules to prevent the

translation of repressor proteins would make the entire system

significantly faster. However, since we already make use of taR12 for

input sensing, we would have to use two more riboregulators that do

not interfere with taR12 or with each other.

Another notable property of genetic networks is that the building

blocks tend to vary significantly from one another, whether they be

88

promoters, operators, or coding sequences – to name a few. That is to

say, when designing a gene regulatory network, the choice of the

building blocks is not easily exchangeable. In fact, the literature does

not provide much in the way of “acceptable ranges” because most

networks are presented as they are. In the case of dynamic and

extendable circuits like BioD or BioFSM, that need is reasserted. Gene

networks constitute highly interconnected graphs such that, for

example, a repressor contributes to the functioning of the designed

network by means of its dissociation constant (for a given operator),

its rates of synthesis, diffusion and degradation, as well as the

possibility of unintended (and often unexpected) cross-talk with the

native DNA and constitutively generated molecules. We attempted to

provide such “ranges” for our design (= constraints), and identified

failure points and tendencies that help greatly when selecting different

genes (or parts thereof) to ensure correct performance of the BioD.

However, we admit that much more work can and should be done in

that area to provide standardized sets of devices, information sheets

and design approaches for future gene regulatory networks.

In fact, there are two main areas that need to be standardised in

order to design and/or implement and successfully replicate gene

regulatory networks: (i) standard building blocks and (ii) standard and

complete parameters (or measurements) relating to the building

89

blocks.

A successful and growing database of biological parts was

started in 2003 at MIT is called the “Registry of Standard Biological

Parts” (Knight et al., 2004). This is a database that grows yearly with

new simple or complex parts, designed following a standard

framework.

A database that includes the parameters needed for simulation

of every gene is yet to be realized however. The discrepancies in

simulation methodologies and in results have become too pronounced

for meaningful claims on complicated network designs. A standardized

parameters’ database is required to deal with those discrepancies.

90

References

Ordered by: Author/Date

Adleman,L.M. (1994). Molecular computation of solutions to
combinatorial problems. Science 266, 1021-1024.

Aksenov,S.V. (1999). Induction of the SOS Response in Ultraviolet-
Irradiated Escherichia coli Analyzed by Dynamics of LexA, RecA and
SulA Proteins. Journal of Biological Physics 25, 263-277.

Alon,U. (2006). An Introduction to Systems Biology Design Principles
of Biological Circuits. (London: Chapman & Hall/CRC/Taylor & Francis).

Anderson,J.C., Clarke,E.J., Arkin,A.P., and Voigt,C.A. (2006).
Environmentally controlled invasion of cancer cells by engineered
bacteria. J. Mol. Biol. 355, 619-627.

Anderson,R.M., Zimprich,C.A., and Rust,L. (1999). A second operator
is involved in Pseudomonas aeruginosa elastase (lasB) activation. J.
Bacteriol. 181, 6264-6270.

Balagadde,F.K., Song,H., Ozaki,J., Collins,C.H., Barnet,M., Arnold,F.H.,
Quake,S.R., and You,L. (2008). A synthetic Escherichia coli predator-
prey ecosystem. Mol. Syst. Biol. 4, 187.

Basu,S., Gerchman,Y., Collins,C.H., Arnold,F.H., and Weiss,R. (2005).
A synthetic multicellular system for programmed pattern formation.
Nature 434, 1130-1134.

Basu,S., Mehreja,R., Thiberge,S., Chen,M.T., and Weiss,R. (2004).
Spatiotemporal control of gene expression with pulse-generating
networks. Proc. Natl. Acad. Sci. U. S. A 101, 6355-6360.

91

Baumeister,R., Flache,P., Melefors,O., von,G.A., and Hillen,W. (1991).
Lack of a 5' non-coding region in Tn1721 encoded tetR mRNA is
associated with a low efficiency of translation and a short half-life in
Escherichia coli. Nucleic Acids Res. 19, 4595-4600.

Bayer,T.S. and Smolke,C.D. (2005). Programmable ligand-controlled
riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337-
343.

Becskei,A., Seraphin,B., and Serrano,L. (2001). Positive feedback in
eukaryotic gene networks: cell differentiation by graded to binary
response conversion. EMBO J. 20, 2528-2535.

Boyle,P.M. and Silver,P.A. (2009). Harnessing nature's toolbox:
regulatory elements for synthetic biology. J. R. Soc. Interface 6 Suppl
4, S535-S546.

Camas,F.M., Blazquez,J., and Poyatos,J.F. (2006). Autogenous and
nonautogenous control of response in a genetic network. Proc. Natl.
Acad. Sci. U. S. A 103, 12718-12723.

Cao,Y., Gillespie,D.T., and Petzold,L.R. (2007). Adaptive explicit-
implicit tau-leaping method with automatic tau selection. J. Chem.
Phys. 126, 224101.

Cox,R.S.I., Surette,M.G., and Elowitz,M.B. (2007). Programming gene
expression with combinatorial promoters. Mol. Syst. Biol. 3, 145.

de Jong,H. (2002). Modeling and simulation of genetic regulatory
systems: a literature review. J. Comput. Biol. 9, 67-103.

de Jong,H., Ranquet,C., Ropers,D., Pinel,C., and Geiselmann,J.
(2010). Experimental and computational validation of models of
fluorescent and luminescent reporter genes in bacteria. BMC. Syst.
Biol. 4, 55.

Drubin,D.A., Way,J.C., and Silver,P.A. (2007). Designing biological
systems. Genes Dev. 21, 242-254.

92

Dueber,J.E., Yeh,B.J., Chak,K., and Lim,W.A. (2003). Reprogramming
control of an allosteric signaling switch through modular
recombination. Science 301, 1904-1908.

Elowitz,M.B. and Leibler,S. (2000). A synthetic oscillatory network of
transcriptional regulators. Nature 403, 335-338.

Friedland,A.E., Lu,T.K., Wang,X., Shi,D., Church,G., and Collins,J.J.
(2009). Synthetic gene networks that count. Science 324, 1199-1202.

Fuqua,C., Parsek,M.R., and Greenberg,E.P. (2001). Regulation of gene
expression by cell-to-cell communication: acyl-homoserine lactone
quorum sensing. Annu. Rev. Genet. 35, 439-468.

Gardner,T.S., Cantor,C.R., and Collins,J.J. (2000). Construction of a
genetic toggle switch in Escherichia coli. Nature 403, 339-342.

Gillespie,D.T. (1977). Exact stochastic simulation of coupled chemical
reactions. The Journal of Physical Chemistry 81, 2340-2361.

Goryachev,A.B., Toh,D.J., and Lee,T. (2006). Systems analysis of a
quorum sensing network: design constraints imposed by the functional
requirements, network topology and kinetic constants. Biosystems 83,
178-187.

Ham,T.S., Lee,S.K., Keasling,J.D., and Arkin,A.P. (2006). A tightly
regulated inducible expression system utilizing the fim inversion
recombination switch. Biotechnol. Bioeng. 94, 1-4.

Ham,T.S., Lee,S.K., Keasling,J.D., and Arkin,A.P. (2008). Design and
construction of a double inversion recombination switch for heritable
sequential genetic memory. PLoS. One. 3, e2815.

Hartwell,L., Hood,L., Goldberg,M., Reynolds,A., and Silver,L. (2010).
Genetics: From Genes to Genomes. McGraw-Hill Higher Education).

Haynes,K.A. and Silver,P.A. (2009). Eukaryotic systems broaden the

93

scope of synthetic biology. J. Cell Biol. 187, 589-596.

Head,C.G., Tardy,A., and Kenney,L.J. (1998). Relative binding
affinities of OmpR and OmpR-phosphate at the ompF and ompC
regulatory sites. J. Mol. Biol. 281, 857-870.

Hindmarsh,A.C., Brown,P.N., Grant,K.E., Lee,S.L., Serban,R.,
Shumaker,D.E., and Woodward,C.S. (2005). SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM Trans. Math.
Softw 31, 363-396.

Hong,M., Fitzgerald,M.X., Harper,S., Luo,C., Speicher,D.W., and
Marmorstein,R. (2008). Structural basis for dimerization in DNA
recognition by Gal4. Structure. 16, 1019-1026.

Isaacs,F.J., Dwyer,D.J., Ding,C., Pervouchine,D.D., Cantor,C.R., and
Collins,J.J. (2004). Engineered riboregulators enable post-
transcriptional control of gene expression. Nat. Biotechnol. 22, 841-
847.

Janert,P.K. (2009). Gnuplot in Action. Manning Publications).

Kaps,P. and Rentrop,P. (1979). Generalized Runge-Kutta methods of
order four with stepsize control for stiff ordinary differential equations.
Numerische Mathematik 33, 55-68.

Knight, T., Endy, D., and Voight, C. The BioBricks Foundation. 2004.

Ref Type: Online Source

Knight, T. F., Jr. and Sussman, G. J. Cellular gate technology. UMC98:
First International Conference On Unconventional Models Of
Computation. [1], 257-272. 1-1-1998.

Ref Type: Conference Proceeding

Kobayashi,H., Kaern,M., Araki,M., Chung,K., Gardner,T.S.,

94

Cantor,C.R., and Collins,J.J. (2004). Programmable cells: interfacing
natural and engineered gene networks. Proc. Natl. Acad. Sci. U. S. A
101, 8414-8419.

Kramer,B.P., Fischer,C., and Fussenegger,M. (2004). BioLogic gates
enable logical transcription control in mammalian cells. Biotechnol.
Bioeng. 87, 478-484.

Kuhner,F., Costa,L.T., Bisch,P.M., Thalhammer,S., Heckl,W.M., and
Gaub,H.E. (2004). LexA-DNA bond strength by single molecule force
spectroscopy. Biophys. J. 87, 2683-2690.

Levskaya,A., Chevalier,A.A., Tabor,J.J., Simpson,Z.B., Lavery,L.A.,
Levy,M., Davidson,E.A., Scouras,A., Ellington,A.D., Marcotte,E.M., and
Voigt,C.A. (2005). Synthetic biology: engineering Escherichia coli to
see light. Nature 438, 441-442.

Lou,C., Liu,X., Ni,M., Huang,Y., Huang,Q., Huang,L., Jiang,L., Lu,D.,
Wang,M., Liu,C., Chen,D., Chen,C., Chen,X., Yang,L., Ma,H., Chen,J.,
and Ouyang,Q. (2010). Synthesizing a novel genetic sequential logic
circuit: a push-on push-off switch. Mol. Syst. Biol. 6, 350.

Medina,G., Juarez,K., Valderrama,B., and Soberon-Chavez,G. (2003).
Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation
of the rhlAB promoter. J. Bacteriol. 185, 5976-5983.

Mullock,B.M. and Luzio,J.P. (2005). Theory of Organelle Biogenesis:
AHistorical Perspective. Springer US), pp. 1-18.

Olivier,B.G., Rohwer,J.M., and Hofmeyr,J.H. (2005). Modelling cellular
systems with PySCeS. Bioinformatics 21, 560-561.

Orth,J.D., Thiele,I., and Palsson,B.O. (2010). What is flux balance
analysis? Nat. Biotechnol. 28, 245-248.

Reinitz,J. and Vaisnys,J.R. (1990). Theoretical and experimental
analysis of the phage lambda genetic switch implies missing levels of
co-operativity. J. Theor. Biol. 145, 295-318.

95

Shih,M.C. and Gussin,G.N. (1984). Kinetic analysis of mutations
affecting the cII activation site at the PRE promoter of bacteriophage
lambda. Proc. Natl. Acad. Sci. U. S. A 81, 6432-6436.

Shrout,J.D. and Parsek,M.R. (2006). Quorum Sensing: Coordinating
Group Behavior Through Intercellular Signals. In Molecular Paradigms
of Infectious Disease, C.A.Nickerson and M.J.Schurr, eds. Springer
US), pp. 404-437.

Steindler,L. and Venturi,V. (2007). Detection of quorum-sensing N-
acyl homoserine lactone signal molecules by bacterial biosensors.
FEMS Microbiol. Lett. 266, 1-9.

Stekel,D.J. and Jenkins,D.J. (2008). Strong negative self regulation of
prokaryotic transcription factors increases the intrinsic noise of protein
expression. BMC. Syst. Biol. 2, 6.

Stricker,J., Cookson,S., Bennett,M.R., Mather,W.H., Tsimring,L.S., and
Hasty,J. (2008). A fast, robust and tunable synthetic gene oscillator.
Nature 456, 516-519.

Sundararaj,S., Guo,A., Habibi-Nazhad,B., Rouani,M., Stothard,P.,
Ellison,M., and Wishart,D.S. (2004). The CyberCell Database (CCDB):
a comprehensive, self-updating, relational database to coordinate and
facilitate in silico modeling of Escherichia coli. Nucleic Acids Res. 32,
D293-D295.

Swinburne,I.A., Miguez,D.G., Landgraf,D., and Silver,P.A. (2008).
Intron length increases oscillatory periods of gene expression in animal
cells. Genes Dev. 22, 2342-2346.

Tecon,R., Wells,M., and van der Meer,J.R. (2006). A new green
fluorescent protein-based bacterial biosensor for analysing
phenanthrene fluxes. Environ. Microbiol. 8, 697-708.

Tigges,M., Marquez-Lago,T.T., Stelling,J., and Fussenegger,M. (2009).
A tunable synthetic mammalian oscillator. Nature 457, 309-312.

96

Vohradsky,J. (2001). Neural model of the genetic network. J. Biol.
Chem. 276, 36168-36173.

Wang,Y.M., Tegenfeldt,J.O., Reisner,W., Riehn,R., Guan,X.J., Guo,L.,
Golding,I., Cox,E.C., Sturm,J., and Austin,R.H. (2005). Single-
molecule studies of repressor-DNA interactions show long-range
interactions. Proc. Natl. Acad. Sci. U. S. A 102, 9796-9801.

Weber,W., Stelling,J., Rimann,M., Keller,B., Daoud-El,B.M.,
Weber,C.C., Aubel,D., and Fussenegger,M. (2007). A synthetic time-
delay circuit in mammalian cells and mice. Proc. Natl. Acad. Sci. U. S.
A 104, 2643-2648.

Weiss, R., Homsy, G., and Nagpal, R. Programming biological cells.
Eighth International Conference on Architectural Support for
Programming Languages and Operating Systems. Wild and Crazy
Ideas Session [8]. 1998.

Ref Type: Conference Proceeding

Wolfram,S. (2002). A New Kind Of Science.

Zhu,Y., Qin,L., Yoshida,T., and Inouye,M. (2000). Phosphatase activity
of histidine kinase EnvZ without kinase catalytic domain. Proc. Natl.
Acad. Sci. U. S. A 97, 7808-7813.

97

Appendix

98

Deterministic Run:

MyDet.cpp

#include <iostream>
#include <iomanip>
#include <fstream>
#include <stdexcept>
#include <sstream>
#include <string>
#include <cmath>
#include <ctime>
#include <cstdlib>

using namespace std;

#define dim 25

#define abt 1 /*sampling rate*/

// number of iterations
//#define N 39600 // 11 hours (make arbitrarily high)
//#define N 108000 // whatever, just testing
//#define N 72000 // whatever, just testing
//#define N 20000 // whatever, just testing
//#define N 28000 // whatever, just testing
//#define N 52000 // whatever, just testing
#define N 10000 // whatever, just testing
//#define N 7500 // whatever, just testing

#define MAX_DATE_LEN 12

/*T=N*tau, where T is the real time. This is independent of abt.*/

 /***/
 /********************** PARAMETERS *************************/
 /***/

 // as per K_LacI = 10nM
 double K_taR12 = 80; //*
 double K_cI = 8;
 double K_cII = 50;
 double K_ompR = 151;
 double K_ompRP = 6;
 double K_Gal4 = 24;
 double K_TetR = 0.6;
 double K_LexA = 20; //*
// double K_LacI = 10;
 double K_LacI = 14;
 double K_AHL_LEFT = 20; //*
 double K_AHL_RIGHT = 20; //*

// // as per K_LacI = 1.7uM
// double K_taR12 = 1.7; //*

99

// double K_cI = 17;
// double K_cII = 17;
// double K_ompR = 1.7; //*
// double K_ompRP = 1.7; //*
// double K_Gal4 = 1.7; //*
// double K_TetR = 17;
// double K_LacI = 1.7;

// // as per K_LacI = 700 Molecules/cell
// double K_taR12 = 700; //*
// double K_cI = 7000;
// double K_cII = 7000;
// double K_ompR = 700; //*
// double K_ompRP = 700; //*
// double K_Gal4 = 700; //*
// double K_TetR = 7000;
// double K_LacI = 700;

// // as per K_LacI = 15 Molecules/cell
// double K_taR12 = 15; //*
// double K_cI = 150;
// double K_cII = 150;
// double K_ompR = 15; //*
// double K_ompRP = 15; //*
// double K_Gal4 = 15; //*
// double K_TetR = 150;
// double K_LacI = 15;

 double n_taR12 = 2;
 double n_cI = 2;
 double n_cII = 2;
 double n_ompR = 2;
 double n_ompRP = 2;
 double n_Gal4 = 2;
 double n_TetR = 3;
 double n_LexA = 2;
 double n_LacI = 2;
 double n_AHL_LEFT = 2;
 double n_AHL_RIGHT = 2;

// double d_taR12 = 0.006; //*
// double d_mRNA = 0.006;
// double d_cI = 0.002888;
// double d_cII = 0.002888; //*
// double d_ompR = 0.002888; //*
// double d_ompRP = 0.002888; //*
// double d_Gal4 = 0.002888; //*
// double d_TetR = 0.002888;
// double d_LexA = 0.002888; //*
// double d_LacI = 0.002888;
// double d_GFP = 0.002888; //*

 double d_taR12 = 0.0026; //*
 double d_mRNA = 0.0026;
// double d_mRNA = 0.006;
 double d_cI = 0.0007*10;
 double d_cII = 0.0069;

100

 double d_ompR = 0.00132;
 double d_ompRP = 0.00132;
 double d_Gal4 = 0.002888; //*
 double d_TetR = 0.00231*2; //*
 double d_LexA = 0.00231; //*
 double d_LacI = 0.00231;
 double d_GFP = 0.0002*10;
 double d_AHL_LEFT = 0.001; //*
 double d_AHL_RIGHT = 0.001; //*
 double d_AHL_CENTER = 0.001; //*

 double gp = 0.1;
 double a = 0.00;
 double T = 0;
 double L = 0;
 double AHL_LEFT = 0;
 double AHL_RIGHT = 0;

// double V_phos = 20.0; // Rate of
OmpR phosphorylation
// double K_phos = 5.0; // Kinetic
constant
// double V_dephos = 0.01; // Rate of
OmpRP dephosphorylation
// double V_phos = 0.75; // Rate of
OmpR phosphorylation
// double K_phos = 0.25; // Kinetic
constant
// double V_dephos = 0.001; // Rate of
OmpRP dephosphorylation
 double V_phos = 20.0; // Rate of
OmpR phosphorylation
 double K_phos = 1.0; // Kinetic
constant
 double V_dephos = 0.01; // Rate of
OmpRP dephosphorylation

 double K_y[dim];
 double n_y[dim];
 double d_y[dim];
 double cmax[14];

 const string path = "T:/workspace/C++/MyDet/";
 const string path2 = "C:/Documents and Settings/Administrator/"
 "Desktop/BioSym/May
2nd/Paper1/Results/";
// const string path = "D:/Imad/workspace/C++/MyDet/";
// const string path2 = "D:/Imad/workspace/C++/ResultsDet/";

 const string gPlot = "gnuplot.exe " + path + "test.gp";
// const string gPlot = "gnuplot.exe " + path + "test2.gp -persist";
// const string gPlot = "gnuplot.exe " + path + "test3.gp -persist";

 const char* gnuPlot = gPlot.c_str();

101

 /***/
 /*********************** FUNCTIONS *************************/
 /***/

 void RungeKutta(double y[],double h,double dy[]);
 double *diff_eq(double y[], double dy[]);

 bool fexists(const char *filename);
 string getDate();
 string nextFileName();
 string itime(const double diff);

 /***/
 /********************* PROGRAM START ***********************/
 /***/

 int main()
 {
 time_t start, end;
 double diff;

 time(&start);

 cout << "Starting Deterministic...\n" << endl;

 double tau = 10; //20; //5; // step used
 double t = 0;
 double y[dim], dy[dim];

 // Initial Conditions
 // Initializing ODEs
 for(int i=0; i<dim; ++i)
 {
 y[i] = 0.0;
 dy[i] = 0.0;
 K_y[i] = 0.0;
 n_y[i] = 0.0;
 d_y[i] = 0.0;
 }

// y[0] = 10;
// y[1] = 10;
// y[2] = 10;
// y[3] = 50000;
// y[4] = 50000;
// y[5] = 10;
// y[6] = 50000;
// y[7] = 50000;
// y[8] = 10;
// y[9] = 10;

102

// y[10] = 10;
// y[11] = 50000;
// y[12] = 10;
// y[13] = 50000;
// y[14] = 10;
// y[15] = 50000;
// y[16] = 50000;
// y[17] = 10;
// y[18] = 10;
// y[19] = 10;
// y[20] = 10;
// y[21] = 10;
// y[22] = 10;

 // start with ON state (BioD)
 y[0] = 0; // 04
 y[1] = 325; // 06
 y[2] = 0; // 06
 y[3] = 325; // 06
 y[4] = 33; // 06
 y[5] = 0.01; // 06
 y[6] = 0.01; // 06
 y[7] = 0; // 06
 y[8] = 326; // 06
 y[9] = 326; // 06
 y[10] = 0; // 04
 y[11] = 4750; // 06
 y[12] = 2105; // 06
 y[13] = 322; // 06
 y[14] = 0.4; // 06
 y[15] = 0.05; // 06
 y[16] = 0.007; // 06
 y[17] = 14150; // 06
 y[18] = 16350; // 06
 y[19] = 0; // 06
 y[20] = 0.01; // 06
 y[21] = 0.01; // 06
 y[22] = 0; // 06
 y[23] = 0; // 06
 y[24] = 0; // 06

 // start with ON state (BioFSM)
// y[0] = 0; // 04
// y[1] = 262; // 06
// y[2] = 0; // 06
// y[3] = 229; // 06
// y[4] = 33; // 06
// y[5] = 0.001; // 06
// y[6] = 0.001; // 06
// y[7] = 0; // 06
// y[8] = 327; // 06
// y[9] = 327; // 06
// y[10] = 0; // 04
// y[11] = 3317; // 06
// y[12] = 712; // 06
// y[13] = 1764; // 06
// y[14] = 0.03; // 06

103

// y[15] = 0.03; // 06
// y[16] = 0.006; // 06
// y[17] = 14151; // 06
// y[18] = 16345; // 06
// y[19] = 0; // 06
// y[20] = 0; // 06
// y[21] = 327; // 06
// y[22] = 0; // 06
// y[23] = 0; // 06
// y[24] = 32663; // 06

 // start with OFF state (BioD)
 y[0] = 0; // 04
 y[1] = 260; // 06
 y[2] = 0; // 06
 y[3] = 230; // 06
 y[4] = 33; // 06
 y[5] = 0.001; // 06
 y[6] = 295; // 06
 y[7] = 295; // 06
 y[8] = 0; // 06
 y[9] = 0; // 06
 y[10] = 0; // 04
 y[11] = 3320; // 06
 y[12] = 715; // 06
 y[13] = 1750; // 06
 y[14] = 0.04; // 06
 y[15] = 6370; // 06
 y[16] = 12750; // 06
 y[17] = 0; // 06
 y[18] = 0; // 06
 y[19] = 0; // 06
 y[20] = 0; // 06
 y[21] = 0; // 06
 y[22] = 0; // 06
 y[23] = 0; // 06
 y[24] = 0; // 06

 // start with OFF state (BioFSM)
// y[0] = 0; // 04
// y[1] = 262; // 06
// y[2] = 0; // 06
// y[3] = 229; // 06
// y[4] = 33; // 06
// y[5] = 0.001; // 06
// y[6] = 294; // 06
// y[7] = 294; // 06
// y[8] = 0; // 06
// y[9] = 0; // 06
// y[10] = 0; // 04
// y[11] = 3316; // 06
// y[12] = 712; // 06
// y[13] = 1764; // 06
// y[14] = 0.04; // 06
// y[15] = 6369; // 06
// y[16] = 12737; // 06
// y[17] = 0; // 06

104

// y[18] = 0; // 06
// y[19] = 0; // 06
// y[20] = 0; // 06
// y[21] = 0; // 06
// y[22] = 0; // 06
// y[23] = 0; // 06
// y[24] = 0.08; // 06

 K_y[0] = K_taR12;
 K_y[10] = K_cI;
 K_y[11] = K_cII;
 K_y[12] = K_ompR;
 K_y[13] = K_ompRP;
 K_y[14] = K_Gal4;
 K_y[15] = K_TetR;
 K_y[16] = K_LexA;
 K_y[17] = K_LacI;
 K_y[22] = K_AHL_LEFT;
 K_y[23] = K_AHL_RIGHT;

 n_y[0] = n_taR12;
 n_y[10] = n_cI;
 n_y[11] = n_cII;
 n_y[12] = n_ompR;
 n_y[13] = n_ompRP;
 n_y[14] = n_Gal4;
 n_y[15] = n_TetR;
 n_y[16] = n_LexA;
 n_y[17] = n_LacI;
 n_y[22] = n_AHL_LEFT;
 n_y[23] = n_AHL_RIGHT;

 d_y[0] = d_taR12;
 d_y[1] = d_mRNA;
 d_y[2] = d_mRNA;
 d_y[3] = d_mRNA;
 d_y[4] = d_mRNA;
 d_y[5] = d_mRNA;
 d_y[6] = d_mRNA;
 d_y[7] = d_mRNA;
 d_y[8] = d_mRNA;
 d_y[9] = d_mRNA;
 d_y[10] = d_cI;
 d_y[11] = d_cII;
 d_y[12] = d_ompR;
 d_y[13] = d_ompRP;
 d_y[14] = d_Gal4;
 d_y[15] = d_TetR;
 d_y[16] = d_LexA;
 d_y[17] = d_LacI;
 d_y[18] = d_GFP;
 d_y[19] = d_mRNA;
 d_y[20] = d_mRNA;
 d_y[21] = d_mRNA;
 d_y[22] = d_AHL_LEFT;
 d_y[23] = d_AHL_RIGHT;
 d_y[24] = d_AHL_CENTER;

105

// // nM/min
// cmax[0] = 1.67e+1;
// cmax[1] = 1.67e+2;
// cmax[2] = 1.67e+2;
// cmax[3] = 0.25e-0;
// cmax[4] = 1.67e+2;
// cmax[5] = 1.67e+2;
// cmax[6] = 1.67e+2;
// cmax[7] = 1.67e+2;

// // uM/min
// cmax[0] = 1.67e-2;
// cmax[1] = 1.67e-1;
// cmax[2] = 1.67e-1;
// cmax[3] = 0.25e-3;
// cmax[4] = 1.67e-1;
// cmax[5] = 1.67e-1;
// cmax[6] = 1.67e-1;
// cmax[7] = 1.67e-1;

 // nM/s
 // average is 3.06 uM/h
// cmax[0] = 0.425e-1;
// cmax[3] = 0.125e-2;
 cmax[0] = 0.1 * 0.85e-0;
 cmax[1] = 0.8 * 0.85e-0;
 cmax[2] = 0.7 * 0.85e-0;
 cmax[3] = 0.1 * 0.85e-0;
 cmax[4] = 0.3 * 0.85e-0;
 cmax[5] = 0.3 * 0.85e-0;
 cmax[6] = 0.9 * 0.85e-0;
 cmax[7] = 1.0 * 0.85e-0;
 cmax[8] = 1.0 * 0.85e-0;
 cmax[9] = 1.0 * 0.85e-0;
 cmax[10] = 1.0 * 0.85e-0;
 cmax[11] = 1.0 * 0.85e-0;
 cmax[12] = 1.0 * 0.85e-0;
 cmax[13] = 1.0 * 0.85e-0;

 // Set up file

 remove((path + "deterministic.dat").c_str());
// remove("T:/workspace/C++/MyDet/deterministic2.dat");
// remove("T:/workspace/C++/MyDet/deterministic3.dat");

 ofstream outF1((path + "deterministic.dat").c_str());
// ofstream
outF2("T:/workspace/C++/MyDet/deterministic2.dat");
// ofstream
outF3("T:/workspace/C++/MyDet/deterministic3.dat");

 outF1 << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" <<
 "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t"
<<
 "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" <<
 "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" <<

106

 "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n";
// outF1 <<
"t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t" <<
//
"mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" <<
//
"LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n";
// outF2 << "mCIcr\tmCI\tmCII\tCI\tCII\n";
// outF3 << "mOmpR\tOmpR\tOmpRP\n";

 string filename = nextFileName();

 ofstream outF(filename.c_str());

 outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" <<
 "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t" <<
 "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" <<
 "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" <<
 "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n";
// outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t"
<<
//
 "mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" <<
//
 "LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n";

 //Define Input

 while (t < N)
 {
 t += tau;

 //INPUT SIGNALS

 // taRNA input (taR12)
// T = ((t<500) || ((t>10000)&&(t<25000)) || (t>35000))
? 0 : 1;
// T = ((t<10000) || (t>15000)) ? 0 : 1;
// T = (t<10000) ? 0 : 1; // 01 N=39600
// T = (t<2500) ? 0 : 1; // 02 N=10000
// T = ((t<9000) || ((t>36000)&&(t<72000)) ||
// (t>99000)) ? 0 : 1; // 03 N=108000
// T = ((t<36000) || (t>63000)) ? 0 : 1; // 04
N=72000
// T = ((t<13000) || (t>17000)) ? 0 : 1; // 05
N=20000
// T = ((t<2500) ||
// ((t>7000)&&(t<16500)) ||
// (t>23000)) ? 0 : 1; // 06&07 N=28000
// T = ((t<2500) || (t>7000)) ? 0 : 1; // 06&07 N=28000
// T = ((t<2500) ||
// ((t>10000)&&(t<31000)) ||
// (t>42000)) ? 0 : 1; // 08 N=52000
 T = ((t<1500) || (t>6500)) ? 0 : 1; // 09 N=10000
 LAST ONE!
// T = ((t<10000) || ((t>15000)&&(t<22000))) ? 0 : 1;

107

// T = (t<2000) ? 0 : 1;
// T = 0;

 // Red light
// L = ((t<4000) || ((t>7000)&&(t<13000)) ||
// ((t>18000)&&(t<22000)) ||
// ((t>28000)&&(t<32000))) ? 0 : 1;
// L = ((t<10000) || (t>20000)) ? 0 : 1;
// L = ((t<5000) || ((t>15000)&&(t<25000)) ||
// (t>35000)) ? 0 : 1; // 01 N=39600
// L = ((t<1750) || (t>9000)) ? 0 : 1; // 02 N=10000
// L = ((t<18000) ||
// ((t>27000)&&(t<45000)) ||
// ((t>54000)&&(t<63000)) ||
// ((t>81000)&&(t<90000)) ||
// (t>104000)) ? 0 : 1; // 03 N=108000
// L = ((t<9000) || ((t>18000)&&(t<27000)) ||
// ((t>45000)&&(t<54000)) ||
// (t>67000)) ? 0 : 1; // 04 N=72000
// L = ((t<4000) || ((t>10000)&&(t<13100)) ||
// (t>17100)) ? 0 : 1; // 05 N=20000
// L = ((t<4000) ||
// ((t>5500)&&(t<10000)) ||
// ((t>13000)&&(t<15000)) ||
// ((t>18000)&&(t<22000)) ||
// (t>24000)) ? 0 : 1; // 06 N=28000
// L = ((t<4000) || (t>10000)) ? 0 : 1; // 06
N=28000
// L = ((t<4000) ||
// ((t>5500)&&(t<10000)) ||
// ((t>11000)&&(t<15000)) ||
// ((t>18000)&&(t<22000)) ||
// (t>24000)) ? 0 : 1; // 07 N=28000
// L = ((t<4000) ||
// ((t>6500)&&(t<18000)) ||
// ((t>23000)&&(t<28000)) ||
// ((t>34000)&&(t<40000)) ||
// (t>44000)) ? 0 : 1; // 08 N=52000
 L = ((t<2500) || (t>5500)) ? 0 : 1; // 09 N=10000
// L = ((t<2500) || (t>7000)) ? 0 : 1; // 09 N=15000
// L = 0;

// T=0;L=0;

 // AHL_LEFT
// AHL_LEFT = ((t<2400) ||
// ((t>9900)&&(t<30900)) ||
// (t>41900)) ? 0 : 1;
 AHL_LEFT = ((t<2500) || (t>5000)) ? 0 : 1;
 AHL_LEFT = 0;

 // AHL_RIGHT
// AHL_RIGHT = ((t<2400) ||
// ((t>9900)&&(t<30900)) ||
// (t>41900)) ? 0 : 1;
 AHL_RIGHT = ((t<2500) || (t>5000)) ? 0 : 1;
// AHL_RIGHT = 0;

108

 // Print Output

 outF << t <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2]
<<"\t"<<
 y[3] <<"\t"<<y[4] <<"\t"<<y[5]
<<"\t"<<y[6] <<"\t"<<
 y[7] <<"\t"<<y[8] <<"\t"<<y[9]
<<"\t"<<y[10]<<"\t"<<

 y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<<

 y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<<

 y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n";
 y[23]<<"\t"<<y[24]<<"\n";

 outF1 << t <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2]
<<"\t"<<
 y[3] <<"\t"<<y[4] <<"\t"<<y[5]
<<"\t"<<y[6] <<"\t"<<
 y[7] <<"\t"<<y[8] <<"\t"<<y[9]
<<"\t"<<y[10]<<"\t"<<

y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<<

y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<<

y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n";
 y[23]<<"\t"<<y[24]<<"\n";
// outF2 << t <<"\t"<<y[1] <<"\t"<<y[2] <<"\t"<<y[3]
<<"\t"<<
// y[10]<<"\t"<<y[11]<<"\n";
// outF3 << t <<"\t"<<y[4]
<<"\t"<<y[12]<<"\t"<<y[13]<<"\n";

 // Integrating

 RungeKutta(y,tau,dy);

 }

 outF.close();

 outF1.close();
// outF2.close();
// outF3.close();

 cout << "Done!\n" << endl;

 time (&end);
 diff = difftime(end, start);

 cout << "Time Elapsed: " << itime(diff) << endl << endl;

 char ans;

109

 cout << "Plot Graph(s)? (Yes/No)" << endl;
 cin >> ans;

 if (ans!='y' && ans!='Y')
 {
 cout << endl << "End!" << endl;
 return 0;
 }

 cout << "Plotting...\n" << endl;

// remove("test.gp");
//
// ofstream plotFile("T:/workspace/C++/MyDet/test.gp");
//
// plotFile << "set terminal wxt 0" << endl
// << "load
'T:/workspace/C++/MyDet/deterministic.plt'" << endl
// << "print \"Done!\\n\\n\"" << endl
// << "print \"Plotting the second
plot...!\\n\\n\"" << endl
// << "set terminal wxt 1" << endl
// << "load
'T:/workspace/C++/MyDet/deterministic_.plt'" << endl
// << "print \"Done!\\n\\n\"" << endl
// << "print \"Press Enter To Terminate
Program...!\\n\"" << endl
// << "pause -1" << endl;

 try
 {
 // gnuPlot is "gnuplot.exe test.gp"
 system(gnuPlot);
 }
 catch (invalid_argument& e)
 {
 cerr << "ERROR: " << e.what();
 }
 catch (...)
 {
 cerr << "Something Happened..!" << endl;
 }

 cout << endl << "End!" << endl;

 return 0;
 }

 /***/
 /*********************** FUNCTIONS *************************/
 /***/

 void RungeKutta(double y[],double h,double dy[])
 {

110

 double k1[dim],k2[dim],k3[dim],k4[dim];
 double y1[dim],y2[dim],y3[dim];
 double *p_dy;

 p_dy=diff_eq(y,dy);
 for(int i=0; i<dim; ++i)
 {
 k1[i]=*(p_dy+i)*h;
 y1[i]=y[i]+0.5*k1[i];
 }

 p_dy=diff_eq(y1,dy);
 for(int i=0; i<dim; ++i)
 {
 k2[i]=*(p_dy+i)*h;
 y2[i]=y[i]+0.5*k2[i];
 }

 p_dy=diff_eq(y2,dy);
 for(int i=0; i<dim; ++i)
 {
 k3[i]=*(p_dy+i)*h;
 y3[i]=y[i]+k3[i];
 }

 p_dy=diff_eq(y3,dy);
 for(int i=0; i<dim; ++i)
 {
 k4[i]=*(p_dy+i)*h;
 }

 for(int i=0; i<dim; ++i)
 y[i]=y[i]+(k1[i]+2.*k2[i]+2.*k3[i]+k4[i])/6.;

 }

 double *diff_eq(double y[], double dy[])
 {

 /***/
 /******************** MRNA EQUATIONS
***********************/

 /***/

 // d[taR12]/dt
 dy[0] = cmax[0]*T - d_y[0]*y[0];
// dy[0] = cmax[8]*(a+(1-a)*(pow((y[22]/K_y[22]),n_y[22]) /
//
 (1+pow((y[22]/K_y[22]),n_y[22])))) +
// cmax[9]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))
//
 *(pow((y[23]/K_y[23]),n_y[23]) /

111

//
 (1+pow((y[23]/K_y[23]),n_y[23])))) -
// d_y[0]*y[0];
// dy[0] = cmax[8]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17])))
//
 *(1/(1+pow((y[23]/K_y[23]),n_y[23])))
//
 *(pow((y[22]/K_y[22]),n_y[22]) /
//
 (1+pow((y[22]/K_y[22]),n_y[22])))) +
// cmax[9]*(a+(1-
a)*(1/(1+pow((y[22]/K_y[22]),n_y[22])))
//
 *(pow((y[23]/K_y[23]),n_y[23]) /
//
 (1+pow((y[23]/K_y[23]),n_y[23])))) +
// cmax[13]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))
//
*(1/(1+pow((y[22]/K_y[22]),n_y[22])))) -
// d_y[0]*y[0];

 // d[mCIcr]/dt
 dy[1] = cmax[1]*(a+(1-
a)*(1/(1+pow((y[14]/K_y[14]),n_y[14])))) -
 d_y[1]*y[1];

 // d[mCI]/dt
 dy[2] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))

 *(1/(1+pow((y[13]/K_y[13]),n_y[13])))

 *(pow((y[12]/K_y[12]),n_y[12]) /

 (1+pow((y[12]/K_y[12]),n_y[12])))) -
 d_y[2]*y[2];

 // d[mCII]/dt
 dy[3] = cmax[2]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))) +
 cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))

 *(1/(1+pow((y[13]/K_y[13]),n_y[13])))

 *(pow((y[12]/K_y[12]),n_y[12]) /

 (1+pow((y[12]/K_y[12]),n_y[12])))) -
 d_y[3]*y[3];

 // d[mOmpR]/dt
 dy[4] = cmax[3] - d_y[4]*y[4];

 // d[mGal4]/dt

112

 dy[5] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))

 *(1/(1+pow((y[13]/K_y[13]),n_y[13])))

 *(pow((y[12]/K_y[12]),n_y[12]) /

 (1+pow((y[12]/K_y[12]),n_y[12])))) -
 d_y[5]*y[5];

 // d[mTetR]/dt
 dy[6] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))

 *(1/(1+pow((y[13]/K_y[13]),n_y[13])))

 *(pow((y[12]/K_y[12]),n_y[12]) /

 (1+pow((y[12]/K_y[12]),n_y[12])))) +
 cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17])))) -
 d_y[6]*y[6];

 // d[mLexA]/dt
 dy[7] = cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17])))) -
 d_y[7]*y[7];

 // d[mLacI]/dt
 dy[8] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))

 *(1/(1+pow((y[13]/K_y[13]),n_y[13])))

 *(pow((y[12]/K_y[12]),n_y[12]) /

 (1+pow((y[12]/K_y[12]),n_y[12])))) +
 cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))) -
 d_y[8]*y[8];

 // d[mGFP]/dt
 dy[9] = cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))) -
 d_y[9]*y[9];

 // d[mCI_4]/dt
// dy[19] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12]) /
//
(1+pow((y[12]/K_y[12]),n_y[12])))) -
// d_y[1]*y[19];
 // d[mAHL_LEFT]/dt

113

 dy[19] = cmax[11]*AHL_LEFT - d_y[19]*y[19];

 // d[mCII_5]/dt
// dy[20] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12]) /
//
(1+pow((y[12]/K_y[12]),n_y[12])))) -
// d_y[2]*y[20];
 // d[mAHL_RIGHT]/dt
 dy[20] = cmax[12]*AHL_RIGHT - d_y[20]*y[20];

 // d[mTetR_5]/dt
// dy[21] = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12]) /
//
(1+pow((y[12]/K_y[12]),n_y[12])))) -
// d_y[6]*y[21];
 // d[mAHL_CENTER]/dt
 dy[21] = cmax[10]*(a+(1-
a)*(1/(1+pow((y[16]/K_y[16]),n_y[16])))) -
 d_y[21]*y[21];

 // d[mLacI_4]/dt
// dy[22] = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12]) /
//
(1+pow((y[12]/K_y[12]),n_y[12])))) -
// d_y[8]*y[22];

 /***/
 /****************** PROTEIN EQUATIONS
**********************/

 /***/

// // d[CI]/dt
// dy[10] = gp*y[1]*(a+(1-a)*(pow((y[0]/K_y[0]),n_y[0]) /
//
(1+pow((y[0]/K_y[0]),n_y[0])))) +
// gp*y[2] -
// d_y[10]*y[10];

 // d[CI]/dt

114

 dy[10] = gp*y[1]*(a+(1-a)*y[0]*0.04) +
 gp*y[2] -
 d_y[10]*y[10];

 // d[CII]/dt
 dy[11] = gp*y[3] - d_y[11]*y[11];

 // d[OmpR]/dt
 dy[12] = gp*y[4] + V_dephos * y[13] -
 (V_phos*(1-L)*y[12])/(K_phos + y[12]) -
 d_y[12]*y[12];

 // d[OmpRP]/dt
 dy[13] = (V_phos*(1-L)*y[12])/(K_phos + y[12]) -
 V_dephos * y[13] -
 d_y[13]*y[13];

 // d[Gal4]/dt
 dy[14] = gp*y[5] - d_y[14]*y[14];

 // d[TetR]/dt
 dy[15] = gp*y[6] - d_y[15]*y[15];

 // d[LexA]/dt
 dy[16] = gp*y[7] - d_y[16]*y[16];

 // d[LacI]/dt
 dy[17] = gp*y[8] - d_y[17]*y[17];

 // d[GFP]/dt
 dy[18] = gp*y[9] - d_y[18]*y[18];

 // d[AHL_LEFT]/dt
 dy[22] = gp*y[19] - d_y[22]*y[22];

 // d[AHL_RIGHT]/dt
 dy[23] = gp*y[20] - d_y[23]*y[23];

 // d[AHL_CENTER]/dt
 dy[24] = gp*y[21] - d_y[24]*y[24];

 return dy;
 }

 bool fexists(const char *filename)
 {
 ifstream ifile(filename);
 return ifile;
 }

 string getDate()
 {
 time_t now;
 char theDate[MAX_DATE_LEN];

 theDate[0] = '\0';

115

 now = time(0);

 if (now != -1)
 {
// strftime(theDate, MAX_DATE_LEN,
// "%Y%h%d_%Hh%Mm%Ss", localtime(&now));
 strftime(theDate, MAX_DATE_LEN, "%Y%m%d",
localtime(&now));
 }

 return string(theDate);
 }

 string nextFileName()
 {
 int count=0;
 stringstream ss;
 string date = getDate();

 do
 {
 count++;
 ss.str("");

 ss << path2
 << date
 << "_DET_"
 << setw(3) << setfill('0') << count
 << ".xls";
 }
 while (fexists(ss.str().c_str()));

 return ss.str();
 }

 string itime(const double diff)
 {
 stringstream ss;

 int hrs = int (diff/3600);
 int mins = int ((diff - hrs*3600)/60);
 int secs = int ((diff - hrs*3600 - mins*60));

 ss << setw(2) << setfill('0')
 << hrs << ":"
 << setw(2) << setfill('0')
 << mins << ":"
 << setw(2) << setfill('0')
 << secs;

 return ss.str();
 }

116

GnuPlot File:

deterministc.plt

#!/gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: MS-Windows 32 bit

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type `help` to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to
<http://sourceforge.net/projects/gnuplot>

set terminal windows color noenhanced
set output
reset
GNUTERM = "win"

set xlabel "Time (hours)"
set ylabel "Protein Levels (uM)"

set lmargin at screen 0.055

set yrange [-2:18]

set ytics 4
set xtics 4

set object 1 rectangle from 4000/3600.0, graph 0 to 8500/3600.0, graph
1 fc lt 1 fs transparent solid 0.25 noborder
set object 2 rectangle from 18000/3600.0, graph 0 to 23000/3600.0,
graph 1 fc lt 1 fs transparent solid 0.25 noborder
set object 3 rectangle from 28000/3600.0, graph 0 to 34000/3600.0,
graph 1 fc lt 1 fs transparent solid 0.25 noborder
set object 4 rectangle from 40000/3600.0, graph 0 to 44000/3600.0,
graph 1 fc lt 1 fs transparent solid 0.25 noborder

set object 5 rectangle from 2500/3600.0, graph 0 to 10000/3600.0, graph
1 fc lt -1 fs transparent pattern 7 noborder
set object 6 rectangle from 31000/3600.0, graph 0 to 42000/3600.0,
graph 1 fc lt -1 fs transparent pattern 7 noborder

plot " deterministic.dat" using ($1/3600.0):($12/1000.0) t "CI" w l lc
rgb "#008000" lw 2, "deterministic.dat" u ($1/3600.0):($13/1000.0) t
"CII" w l lt 1 lw 2, " deterministic.dat" u ($1/3600.0):($14/1000.0) t
"OmpR" w l lc rgb "#008080" lw 2, " deterministic.dat" u
($1/3600.0):($15/1000.0) t "OmpRP" w l lc rgb "#FF8000" lw 2, "
deterministic.dat" using ($1/3600.0):($16/1000.0) t "Gal4" w l lc rgb

117

"#808000" lw 2, " deterministic.dat" using ($1/3600.0):($17/1000.0) t
"TetR" w l lt 4 lw 2.5, " deterministic.dat" using
($1/3600.0):($19/1000.0) t "LacI" w l lt -1 lw 2.5

EOF

118

Stochastic Run:

MySto.cpp

#include <iostream>
#include <iomanip>
#include <fstream>
#include <stdexcept>
#include <sstream>
#include <string>
#include <cmath>
#include <ctime>
#include <cstdlib>

using namespace std;

#define dim 25

#define abt 1 /*sampling rate*/

// number of iterations
//#define N 39600 // 11 hours (make arbitrarily high)
//#define N 108000 // whatever, just testing
//#define N 72000 // whatever, just testing
//#define N 20000 // whatever, just testing
//#define N 28000 // whatever, just testing
//#define N 52000 // whatever, just testing
//#define N 10000 // whatever, just testing
#define N 7500 // whatever, just testing

#define MAX_DATE_LEN 12

/*T=N*tau, where T is the real time. This is independent of abt.*/

 /***/
 /********************** PARAMETERS *************************/
 /***/

 // as per K_LacI = 10nM
 double K_taR12 = 80; //*
 double K_cI = 8;
 double K_cII = 50;
 double K_ompR = 151;
 double K_ompRP = 6;
 double K_Gal4 = 24;
 double K_TetR = 0.6;
 double K_LexA = 20; //*
 double K_LacI = 10;
 double K_AHL_LEFT = 20; //*
 double K_AHL_RIGHT = 20; //*

// // as per K_LacI = 1.7uM
// double K_taR12 = 1.7; //*
// double K_cI = 17;

119

// double K_cII = 17;
// double K_ompR = 1.7; //*
// double K_ompRP = 1.7; //*
// double K_Gal4 = 1.7; //*
// double K_TetR = 17;
// double K_LacI = 1.7;

// // as per K_LacI = 700 Molecules/cell
// double K_taR12 = 700; //*
// double K_cI = 7000;
// double K_cII = 7000;
// double K_ompR = 700; //*
// double K_ompRP = 700; //*
// double K_Gal4 = 700; //*
// double K_TetR = 7000;
// double K_LacI = 700;

// // as per K_LacI = 15 Molecules/cell
// double K_taR12 = 15; //*
// double K_cI = 150;
// double K_cII = 150;
// double K_ompR = 15; //*
// double K_ompRP = 15; //*
// double K_Gal4 = 15; //*
// double K_TetR = 150;
// double K_LacI = 15;

 double n_taR12 = 2;
 double n_cI = 2;
 double n_cII = 2;
 double n_ompR = 2;
 double n_ompRP = 2;
 double n_Gal4 = 2;
 double n_TetR = 3;
 double n_LexA = 2;
 double n_LacI = 2;
 double n_AHL_LEFT = 2;
 double n_AHL_RIGHT = 2;

// double d_taR12 = 0.006; //*
// double d_mRNA = 0.006;
// double d_cI = 0.002888;
// double d_cII = 0.002888; //*
// double d_ompR = 0.002888; //*
// double d_ompRP = 0.002888; //*
// double d_Gal4 = 0.002888; //*
// double d_TetR = 0.002888;
// double d_LexA = 0.002888; //*
// double d_LacI = 0.002888;
// double d_GFP = 0.002888; //*

 double d_taR12 = 0.0026; //*
 double d_mRNA = 0.0026;
// double d_mRNA = 0.006;
 double d_cI = 0.0007*10;
 double d_cII = 0.0069;
 double d_ompR = 0.00132;

120

 double d_ompRP = 0.00132;
 double d_Gal4 = 0.002888; //*
 double d_TetR = 0.00231*2; //*
 double d_LexA = 0.00231; //*
 double d_LacI = 0.00231;
 double d_GFP = 0.0002*10;
 double d_AHL_LEFT = 0.001; //*
 double d_AHL_RIGHT = 0.001; //*
 double d_AHL_CENTER = 0.001; //*

 double gp = 0.1;
 double a = 0.00;
 double T = 0;
 double L = 0;
 double AHL_LEFT = 0;
 double AHL_RIGHT = 0;

// double V_phos = 20.0; // Rate of
OmpR phosphorylation
// double K_phos = 5.0; // Kinetic
constant
// double V_dephos = 0.01; // Rate of
OmpRP dephosphorylation
// double V_phos = 0.75; // Rate of
OmpR phosphorylation
// double K_phos = 0.25; // Kinetic
constant
// double V_dephos = 0.001; // Rate of
OmpRP dephosphorylation
 double V_phos = 20.0; // Rate of
OmpR phosphorylation
 double K_phos = 1.0; // Kinetic
constant
 double V_dephos = 0.01; // Rate of
OmpRP dephosphorylation

 double K_y[dim];
 double n_y[dim];
 double d_y[dim];
 double cmax[14];

 const string path = "T:/workspace/C++/MySto/";
 const string path2 = "C:/Documents and Settings/Administrator/"
 "Desktop/BioSym/May
2nd/Paper1/Results/";
// const string path = "D:/Imad/workspace/C++/MySto/";
// const string path2 = "D:/Imad/workspace/C++/ResultsSto/";

 const string gPlot = "gnuplot.exe " + path + "test.gp";
// const string gPlot = "gnuplot.exe " + path + "test2.gp -persist";
// const string gPlot = "gnuplot.exe " + path + "test3.gp -persist";

 const char* gnuPlot = gPlot.c_str();

121

 /***/
 /*********************** FUNCTIONS *************************/
 /***/

 const int PoissonRandomNumber(const double lambda);

 bool fexists(const char *filename);
 string getDate();
 string nextFileName();
 string itime(const double diff);

 /***/
 /********************* PROGRAM START ***********************/
 /***/

 int main()
 {
 time_t start, end;
 double diff;

 time(&start);

 cout << "Starting Stochastic...\n" << endl;

 srand((unsigned int)time(NULL)); //initialize random
generator

 double tau = 10; //20; //5; // step used
 double t = 0;
 double lambda;
 double y[dim],dy[dim];
 double d1,d2,d3,d4;

 remove((path + "stochastic.dat").c_str());

 ofstream outFS((path + "stochastic.dat").c_str());
 outFS << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" <<
 "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t"
<<
 "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" <<
 "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" <<
 "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n";
// outFS <<
"t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t" <<
//
"mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" <<
//
"LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n";

 string filename = nextFileName();
 ofstream outF(filename.c_str());

 outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\t" <<

122

 "mTetR\tmLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\t" <<
 "OmpRP\tGal4\tTetR\tLexA\tLacI\tGFP\t" <<
 "mAHL_LEFT\tmAHL_RIGHT\tmAHL_CENTER\t" <<
 "AHL_LEFT\tAHL_RIGHT\tAHL_CENTER\n";
// outF << "t\ttaR12\tmCIcr\tmCI\tmCII\tmOmpR\tmGal4\tmTetR\t"
<<
//
 "mLexA\tmLacI\tmGFP\tCI\tCII\tOmpR\tOmpRP\tGal4\tTetR\t" <<
//
 "LexA\tLacI\tGFP\tmCI_4\tmCII_5\tmTetR_5\tmLacI_4\n";

 // Initial Conditions
 // Initializing ODEs
 for(int i=0; i<dim; ++i)
 {
 y[i] = 0.0;
 dy[i] = 0.0;
 K_y[i] = 0.0;
 n_y[i] = 0.0;
 d_y[i] = 0.0;
 }

// y[0] = 10;
// y[1] = 10;
// y[2] = 10;
// y[3] = 50000;
// y[4] = 50000;
// y[5] = 10;
// y[6] = 50000;
// y[7] = 50000;
// y[8] = 10;
// y[9] = 10;
// y[10] = 10;
// y[11] = 50000;
// y[12] = 10;
// y[13] = 50000;
// y[14] = 10;
// y[15] = 50000;
// y[16] = 50000;
// y[17] = 10;
// y[18] = 10;
// y[19] = 10;
// y[20] = 10;
// y[21] = 10;
// y[22] = 10;

 // start with ON state (BioD)
// y[0] = 0; // 04
// y[1] = 325; // 06
// y[2] = 0; // 06
// y[3] = 325; // 06
// y[4] = 33; // 06
// y[5] = 0.01; // 06
// y[6] = 0.01; // 06
// y[7] = 0; // 06
// y[8] = 326; // 06

123

// y[9] = 326; // 06
// y[10] = 0; // 04
// y[11] = 4750; // 06
// y[12] = 2105; // 06
// y[13] = 322; // 06
// y[14] = 0.4; // 06
// y[15] = 0.05; // 06
// y[16] = 0.007; // 06
// y[17] = 14150; // 06
// y[18] = 16350; // 06
// y[19] = 0; // 06
// y[20] = 0.01; // 06
// y[21] = 0.01; // 06
// y[22] = 0; // 06
// y[23] = 0; // 06
// y[24] = 0; // 06

 // start with ON state (BioFSM)
 y[0] = 0; // 04
 y[1] = 262; // 06
 y[2] = 0; // 06
 y[3] = 229; // 06
 y[4] = 33; // 06
 y[5] = 0.001; // 06
 y[6] = 0.001; // 06
 y[7] = 0; // 06
 y[8] = 327; // 06
 y[9] = 327; // 06
 y[10] = 0; // 04
 y[11] = 3317; // 06
 y[12] = 712; // 06
 y[13] = 1764; // 06
 y[14] = 0.03; // 06
 y[15] = 0.03; // 06
 y[16] = 0.006; // 06
 y[17] = 14151; // 06
 y[18] = 16345; // 06
 y[19] = 0; // 06
 y[20] = 0; // 06
 y[21] = 327; // 06
 y[22] = 0; // 06
 y[23] = 0; // 06
 y[24] = 32663; // 06

 // start with OFF state (BioD)
// y[0] = 0; // 04
// y[1] = 260; // 06
// y[2] = 0; // 06
// y[3] = 230; // 06
// y[4] = 33; // 06
// y[5] = 0.001; // 06
// y[6] = 295; // 06
// y[7] = 295; // 06
// y[8] = 0; // 06
// y[9] = 0; // 06
// y[10] = 0; // 04
// y[11] = 3320; // 06

124

// y[12] = 715; // 06
// y[13] = 1750; // 06
// y[14] = 0.04; // 06
// y[15] = 6370; // 06
// y[16] = 12750; // 06
// y[17] = 0; // 06
// y[18] = 0; // 06
// y[19] = 0; // 06
// y[20] = 0; // 06
// y[21] = 0; // 06
// y[22] = 0; // 06
// y[23] = 0; // 06
// y[24] = 0; // 06

 // start with OFF state (BioFSM)
// y[0] = 0; // 04
// y[1] = 262; // 06
// y[2] = 0; // 06
// y[3] = 229; // 06
// y[4] = 33; // 06
// y[5] = 0.001; // 06
// y[6] = 294; // 06
// y[7] = 294; // 06
// y[8] = 0; // 06
// y[9] = 0; // 06
// y[10] = 0; // 04
// y[11] = 3316; // 06
// y[12] = 712; // 06
// y[13] = 1764; // 06
// y[14] = 0.04; // 06
// y[15] = 6369; // 06
// y[16] = 12737; // 06
// y[17] = 0; // 06
// y[18] = 0; // 06
// y[19] = 0; // 06
// y[20] = 0; // 06
// y[21] = 0; // 06
// y[22] = 0; // 06
// y[23] = 0; // 06
// y[24] = 0.08; // 06

 K_y[0] = K_taR12;
 K_y[10] = K_cI;
 K_y[11] = K_cII;
 K_y[12] = K_ompR;
 K_y[13] = K_ompRP;
 K_y[14] = K_Gal4;
 K_y[15] = K_TetR;
 K_y[16] = K_LexA;
 K_y[17] = K_LacI;
 K_y[22] = K_AHL_LEFT;
 K_y[23] = K_AHL_RIGHT;

 n_y[0] = n_taR12;
 n_y[10] = n_cI;
 n_y[11] = n_cII;
 n_y[12] = n_ompR;

125

 n_y[13] = n_ompRP;
 n_y[14] = n_Gal4;
 n_y[15] = n_TetR;
 n_y[16] = n_LexA;
 n_y[17] = n_LacI;
 n_y[22] = n_AHL_LEFT;
 n_y[23] = n_AHL_RIGHT;

 d_y[0] = d_taR12;
 d_y[1] = d_mRNA;
 d_y[2] = d_mRNA;
 d_y[3] = d_mRNA;
 d_y[4] = d_mRNA;
 d_y[5] = d_mRNA;
 d_y[6] = d_mRNA;
 d_y[7] = d_mRNA;
 d_y[8] = d_mRNA;
 d_y[9] = d_mRNA;
 d_y[10] = d_cI;
 d_y[11] = d_cII;
 d_y[12] = d_ompR;
 d_y[13] = d_ompRP;
 d_y[14] = d_Gal4;
 d_y[15] = d_TetR;
 d_y[16] = d_LexA;
 d_y[17] = d_LacI;
 d_y[18] = d_GFP;
 d_y[19] = d_mRNA;
 d_y[20] = d_mRNA;
 d_y[21] = d_mRNA;
 d_y[22] = d_AHL_LEFT;
 d_y[23] = d_AHL_RIGHT;
 d_y[24] = d_AHL_CENTER;

// // nM/min
// cmax[0] = 1.67e+1;
// cmax[1] = 1.67e+2;
// cmax[2] = 1.67e+2;
// cmax[3] = 0.25e-0;
// cmax[4] = 1.67e+2;
// cmax[5] = 1.67e+2;
// cmax[6] = 1.67e+2;
// cmax[7] = 1.67e+2;

// // uM/min
// cmax[0] = 1.67e-2;
// cmax[1] = 1.67e-1;
// cmax[2] = 1.67e-1;
// cmax[3] = 0.25e-3;
// cmax[4] = 1.67e-1;
// cmax[5] = 1.67e-1;
// cmax[6] = 1.67e-1;
// cmax[7] = 1.67e-1;

// // nM/s
// // average is 3.06 uM/h
//// cmax[0] = 0.425e-1;

126

// cmax[0] = 0.85e-1;
// cmax[1] = 0.85e-0;
// cmax[2] = 0.85e-0;
//// cmax[3] = 0.125e-2;
// cmax[3] = 0.85e-1;
// cmax[4] = 0.85e-1;
// cmax[5] = 0.85e-1;
// cmax[6] = 0.85e-0;
// cmax[7] = 0.85e-0;

 // nM/s
 // average is 3.06 uM/h
// cmax[0] = 0.425e-1;
// cmax[3] = 0.125e-2;
 cmax[0] = 0.1 * 0.85e-0;
 cmax[1] = 0.8 * 0.85e-0;
 cmax[2] = 0.7 * 0.85e-0;
 cmax[3] = 0.1 * 0.85e-0;
 cmax[4] = 0.3 * 0.85e-0;
 cmax[5] = 0.3 * 0.85e-0;
 cmax[6] = 0.9 * 0.85e-0;
 cmax[7] = 1.0 * 0.85e-0;
 cmax[8] = 1.0 * 0.85e-0;
 cmax[9] = 1.0 * 0.85e-0;
 cmax[10] = 1.0 * 0.85e-0;
 cmax[11] = 1.0 * 0.85e-0;
 cmax[12] = 1.0 * 0.85e-0;
 cmax[13] = 1.0 * 0.85e-0;

 while (t < N)
 {
 t += tau;

 //INPUT SIGNALS

 // taRNA input (taR12)
// T = ((t<500) || ((t>10000)&&(t<25000)) || (t>35000))
? 0 : 1;
// T = ((t<10000) || (t>15000)) ? 0 : 1;
// T = (t<10000) ? 0 : 1; // 01 N=39600
// T = (t<2500) ? 0 : 1; // 02 N=10000
// T = ((t<9000) || ((t>36000)&&(t<72000)) ||
// (t>99000)) ? 0 : 1; // 03 N=108000
// T = ((t<36000) || (t>63000)) ? 0 : 1; // 04
N=72000
// T = ((t<13000) || (t>17000)) ? 0 : 1; // 05
N=20000
// T = ((t<2500) ||
// ((t>7000)&&(t<16500)) ||
// (t>23000)) ? 0 : 1; // 06&07 N=28000
// T = ((t<2500) || (t>7000)) ? 0 : 1; // 06&07 N=28000
// T = ((t<2500) ||
// ((t>10000)&&(t<31000)) ||
// (t>42000)) ? 0 : 1; // 08 N=52000
// T = ((t<1500) || (t>6500)) ? 0 : 1; // 09 N=12000
 LAST ONE!
// T = ((t<10000) || ((t>15000)&&(t<22000))) ? 0 : 1;

127

// T = (t<2000) ? 0 : 1;
// T = 0;

 // Red light
// L = ((t<4000) || ((t>7000)&&(t<13000)) ||
// ((t>18000)&&(t<22000)) ||
// ((t>28000)&&(t<32000))) ? 0 : 1;
// L = ((t<10000) || (t>20000)) ? 0 : 1;
// L = ((t<5000) || ((t>15000)&&(t<25000)) ||
// (t>35000)) ? 0 : 1; // 01 N=39600
// L = ((t<1750) || (t>9000)) ? 0 : 1; // 02 N=10000
// L = ((t<18000) ||
// ((t>27000)&&(t<45000)) ||
// ((t>54000)&&(t<63000)) ||
// ((t>81000)&&(t<90000)) ||
// (t>104000)) ? 0 : 1; // 03 N=108000
// L = ((t<9000) || ((t>18000)&&(t<27000)) ||
// ((t>45000)&&(t<54000)) ||
// (t>67000)) ? 0 : 1; // 04 N=72000
// L = ((t<4000) || ((t>10000)&&(t<13100)) ||
// (t>17100)) ? 0 : 1; // 05 N=20000
// L = ((t<4000) ||
// ((t>5500)&&(t<10000)) ||
// ((t>13000)&&(t<15000)) ||
// ((t>18000)&&(t<22000)) ||
// (t>24000)) ? 0 : 1; // 06 N=28000
// L = ((t<4000) || (t>10000)) ? 0 : 1; // 06
N=28000
// L = ((t<4000) ||
// ((t>5500)&&(t<10000)) ||
// ((t>11000)&&(t<15000)) ||
// ((t>18000)&&(t<22000)) ||
// (t>24000)) ? 0 : 1; // 07 N=28000
// L = ((t<4000) ||
// ((t>6500)&&(t<18000)) ||
// ((t>23000)&&(t<28000)) ||
// ((t>34000)&&(t<40000)) ||
// (t>44000)) ? 0 : 1; // 08 N=52000
 L = ((t<2500) || (t>7000)) ? 0 : 1; // 09 N=15000
 L = 0;

// T=0;L=0;

 // AHL_LEFT
// AHL_LEFT = ((t<2400) ||
// ((t>9900)&&(t<30900)) ||
// (t>41900)) ? 0 : 1;
 AHL_LEFT = ((t<2500) || (t>5000)) ? 0 : 1;
 AHL_LEFT = 0;

 // AHL_RIGHT
// AHL_RIGHT = ((t<2400) ||
// ((t>9900)&&(t<30900)) ||
// (t>41900)) ? 0 : 1;
 AHL_RIGHT = ((t<2500) || (t>5000)) ? 0 : 1;
 AHL_RIGHT = 0;

128

 // Print Output

 outF << t <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2]
<<"\t"<<
 y[3] <<"\t"<<y[4] <<"\t"<<y[5]
<<"\t"<<y[6] <<"\t"<<
 y[7] <<"\t"<<y[8] <<"\t"<<y[9]
<<"\t"<<y[10]<<"\t"<<

 y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<<

 y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<<

 y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n";
 y[23]<<"\t"<<y[24]<<"\n";

 outFS << t <<"\t"<<y[0] <<"\t"<<y[1] <<"\t"<<y[2]
<<"\t"<<
 y[3] <<"\t"<<y[4] <<"\t"<<y[5]
<<"\t"<<y[6] <<"\t"<<
 y[7] <<"\t"<<y[8] <<"\t"<<y[9]
<<"\t"<<y[10]<<"\t"<<

y[11]<<"\t"<<y[12]<<"\t"<<y[13]<<"\t"<<y[14]<<"\t"<<

y[15]<<"\t"<<y[16]<<"\t"<<y[17]<<"\t"<<y[18]<<"\t"<<

y[19]<<"\t"<<y[20]<<"\t"<<y[21]<<"\t"<<y[22]<<"\t"<<//"\n";
 y[23]<<"\t"<<y[24]<<"\n";

 /***/
 /******************** MRNA EQUATIONS ***********************/
 /***/

// // d[taR12]/dt - first term of the equation
// lambda = cmax[0]*T*tau;
// d1=PoissonRandomNumber(lambda);
//
// // d[taR12]/dt - second term of the equation
// lambda = d_y[0]*y[0]*tau;
// d2=PoissonRandomNumber(lambda);
//
// // d[taR12]/dt - equation
// y[0] = y[0] + d1 - d2;

// // d[taR12]/dt - first term of the equation
// lambda = cmax[8]*(a+(1-
a)*(pow((y[22]/K_y[22]),n_y[22]) /
//
(1+pow((y[22]/K_y[22]),n_y[22]))))
// *tau;
// d1=PoissonRandomNumber(lambda);
//
// // d[taR12]/dt - second term of the equation

129

// lambda = cmax[9]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))
//
*(pow((y[23]/K_y[23]),n_y[23]) /
//
(1+pow((y[23]/K_y[23]),n_y[23]))))
// *tau;
// d2=PoissonRandomNumber(lambda);
//
// // d[taR12]/dt - third term of the equation
// lambda = d_y[0]*y[0]*tau;
// d3=PoissonRandomNumber(lambda);
//
// // d[taR12]/dt - equation
// y[0] = y[0] + d1 + d2 - d3;

 // d[taR12]/dt - first term of the equation
 lambda = cmax[8]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17])))

*(1/(1+pow((y[23]/K_y[23]),n_y[23])))

*(pow((y[22]/K_y[22]),n_y[22]) /

 (1+pow((y[22]/K_y[22]),n_y[22]))))
 *tau;
 d1=PoissonRandomNumber(lambda);

 // d[taR12]/dt - second term of the equation
 lambda = cmax[9]*(a+(1-
a)*(1/(1+pow((y[22]/K_y[22]),n_y[22])))

*(pow((y[23]/K_y[23]),n_y[23]) /

 (1+pow((y[23]/K_y[23]),n_y[23]))))
 *tau;
 d2=PoissonRandomNumber(lambda);

 // d[taR12]/dt - third term of the equation
 lambda = cmax[13]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15])))

*(1/(1+pow((y[22]/K_y[22]),n_y[22]))))
 *tau;
 d3=PoissonRandomNumber(lambda);

 // d[taR12]/dt - fourth term of the equation
 lambda = d_y[0]*y[0]*tau;
 d4=PoissonRandomNumber(lambda);

 // d[taR12]/dt - equation
 y[0] = y[0] + d1 + d2 + d3 - d4;

 // d[mCIcr]/dt - first term of the equation
 lambda = cmax[1]*(a+(1-
a)*(1/(1+pow((y[14]/K_y[14]),n_y[14]))))*tau;
 d1=PoissonRandomNumber(lambda);

130

 // d[mCIcr]/dt - second term of the equation
 lambda = d_y[1]*y[1]*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mCIcr]/dt - equation
 y[1] = y[1] + d1 - d2;

 // d[mCI]/dt - first term of the equation
 lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))

*(1/(1+pow((y[13]/K_y[13]),n_y[13])))

*(pow((y[12]/K_y[12]),n_y[12])/

(1+pow((y[12]/K_y[12]),n_y[12]))))
 *tau;
 d1=PoissonRandomNumber(lambda);

 // d[mCI]/dt - second term of the equation
 lambda = d_y[2]*y[2]*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mCI]/dt - equation
 y[2] = y[2] + d1 - d2;

 // d[mCII]/dt - first term of the equation
 lambda = cmax[2]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10]))))*tau;
 d1=PoissonRandomNumber(lambda);

 // d[mCII]/dt - second term of the equation
 lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))

*(1/(1+pow((y[13]/K_y[13]),n_y[13])))

*(pow((y[12]/K_y[12]),n_y[12])/

(1+pow((y[12]/K_y[12]),n_y[12]))))
 *tau;
 d2=PoissonRandomNumber(lambda);

 // d[mCII]/dt - third term of the equation
 lambda = d_y[3]*y[3]*tau;
 d3=PoissonRandomNumber(lambda);

 // d[mCII]/dt - equation
 y[3] = y[3] + d1 + d2 - d3;

 // d[mOmpR]/dt - first term of the equation
 lambda = cmax[3]*tau;
 d1=PoissonRandomNumber(lambda);

 // d[mOmpR]/dt - second term of the equation
 lambda = d_y[4]*y[4]*tau;

131

 d2=PoissonRandomNumber(lambda);

 // d[mOmpR]/dt - equation
 y[4] = y[4] + d1 - d2;

 // d[mGal4]/dt - first term of the equation
 lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))

*(1/(1+pow((y[13]/K_y[13]),n_y[13])))

*(pow((y[12]/K_y[12]),n_y[12])/

(1+pow((y[12]/K_y[12]),n_y[12]))))
 *tau;
 d1=PoissonRandomNumber(lambda);

 // d[mGal4]/dt - second term of the equation
 lambda = d_y[5]*y[5]*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mGal4]/dt - equation
 y[5] = y[5] + d1 - d2;

 // d[mTetR]/dt - first term of the equation
 lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))

*(1/(1+pow((y[13]/K_y[13]),n_y[13])))

*(pow((y[12]/K_y[12]),n_y[12])/

(1+pow((y[12]/K_y[12]),n_y[12]))))
 *tau;
 d1=PoissonRandomNumber(lambda);

 // d[mTetR]/dt - second term of the equation
 lambda = cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17]))))*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mTetR]/dt - third term of the equation
 lambda = d_y[6]*y[6]*tau;
 d3=PoissonRandomNumber(lambda);

 // d[mTetR]/dt - equation
 y[6] = y[6] + d1 + d2 - d3;

 // d[mLexA]/dt - first term of the equation
 lambda = cmax[6]*(a+(1-
a)*(1/(1+pow((y[17]/K_y[17]),n_y[17]))))*tau;
 d1=PoissonRandomNumber(lambda);

 // d[mLexA]/dt - second term of the equation
 lambda = d_y[7]*y[7]*tau;
 d2=PoissonRandomNumber(lambda);

132

 // d[mLexA]/dt - equation
 y[7] = y[7] + d1 - d2;

 // d[mLacI]/dt - first term of the equation
 lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))

*(1/(1+pow((y[13]/K_y[13]),n_y[13])))

*(pow((y[12]/K_y[12]),n_y[12])/

(1+pow((y[12]/K_y[12]),n_y[12]))))
 *tau;
 d1=PoissonRandomNumber(lambda);

 // d[mLacI]/dt - second term of the equation
 lambda = cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))))*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mLacI]/dt - third term of the equation
 lambda = d_y[8]*y[8]*tau;
 d3=PoissonRandomNumber(lambda);

 // d[mLacI]/dt - equation
 y[8] = y[8] + d1 + d2 - d3;

 // d[mGFP]/dt - first term of the equation
 lambda = cmax[7]*(a+(1-
a)*(1/(1+pow((y[15]/K_y[15]),n_y[15]))))*tau;
 d1=PoissonRandomNumber(lambda);

 // d[mGFP]/dt - second term of the equation
 lambda = d_y[9]*y[9]*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mGFP]/dt - equation
 y[9] = y[9] + d1 - d2;

// // d[mCI_4]/dt - first term of the equation
// lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12])/
//
(1+pow((y[12]/K_y[12]),n_y[12]))))
// *tau;
// d1=PoissonRandomNumber(lambda);
//
// // d[mCI_4]/dt - second term of the equation
// lambda = d_y[19]*y[19]*tau;
// d2=PoissonRandomNumber(lambda);
//
// // d[mCI_4]/dt - equation
// y[19] = y[19] + d1 - d2;

133

 // d[mAHL_LEFT]/dt - first term of the equation
 lambda = cmax[11]*AHL_LEFT*tau;
 d1=PoissonRandomNumber(lambda);

 // d[mAHL_LEFT]/dt - second term of the equation
 lambda = d_y[19]*y[19]*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mAHL_LEFT]/dt - equation
 y[19] = y[19] + d1 - d2;

// // d[mCII_5]/dt - first term of the equation
// lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12])/
//
(1+pow((y[12]/K_y[12]),n_y[12]))))
// *tau;
// d1=PoissonRandomNumber(lambda);
//
// // d[mCII_5]/dt - second term of the equation
// lambda = d_y[20]*y[20]*tau;
// d2=PoissonRandomNumber(lambda);
//
// // d[mCII_5]/dt - equation
// y[20] = y[20] + d1 - d2;

 // d[mAHL_RIGHT]/dt - first term of the equation
 lambda = cmax[12]*AHL_RIGHT*tau;
 d1=PoissonRandomNumber(lambda);

 // d[mAHL_RIGHT]/dt - second term of the equation
 lambda = d_y[20]*y[20]*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mAHL_RIGHT]/dt - equation
 y[20] = y[20] + d1 - d2;

// // d[mTetR_5]/dt - first term of the equation
// lambda = cmax[5]*(a+(1-
a)*(1/(1+pow((y[10]/K_y[10]),n_y[10])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12])/
//
(1+pow((y[12]/K_y[12]),n_y[12]))))
// *tau;
// d1=PoissonRandomNumber(lambda);
//
// // d[mTetR_5]/dt - second term of the equation
// lambda = d_y[21]*y[21]*tau;
// d2=PoissonRandomNumber(lambda);

134

//
// // d[mTetR_5]/dt - equation
// y[21] = y[21] + d1 - d2;

 // d[mAHL_CENTER]/dt - first term of the equation
 lambda = cmax[10]*(a+(1-
a)*(1/(1+pow((y[16]/K_y[16]),n_y[16]))))*tau;
 d1=PoissonRandomNumber(lambda);

 // d[mAHL_CENTER]/dt - second term of the equation
 lambda = d_y[21]*y[21]*tau;
 d2=PoissonRandomNumber(lambda);

 // d[mAHL_CENTER]/dt - equation
 y[21] = y[21] + d1 - d2;

// // d[mLacI_4]/dt - first term of the equation
// lambda = cmax[4]*(a+(1-
a)*(1/(1+pow((y[11]/K_y[11]),n_y[11])))
//
*(1/(1+pow((y[13]/K_y[13]),n_y[13])))
//
*(pow((y[12]/K_y[12]),n_y[12])/
//
(1+pow((y[12]/K_y[12]),n_y[12]))))
// *tau;
// d1=PoissonRandomNumber(lambda);
//
// // d[mLacI_4]/dt - second term of the equation
// lambda = d_y[22]*y[22]*tau;
// d2=PoissonRandomNumber(lambda);
//
// // d[mLacI_4]/dt - equation
// y[22] = y[22] + d1 - d2;

 /***/
 /****************** PROTEIN EQUATIONS **********************/
 /***/

// //[CI] - first term of the equation
// lambda = gp*y[1]*(a+(1-a)*(pow((y[0]/K_y[0]),n_y[0])/
//
 (1+pow((y[0]/K_y[0]),n_y[0]))))*tau;
// d1=PoissonRandomNumber(lambda);

 //[CI] - first term of the equation
 lambda = gp*y[1]*(a+(1-a)*y[0]*0.04)*tau;
 d1=PoissonRandomNumber(lambda);

 //[CI] - second term of the equation
 lambda = gp*y[2]*tau;
 d2=PoissonRandomNumber(lambda);

 //[CI] - third term of the equation
 lambda = d_y[10]*y[10]*tau;

135

 d3=PoissonRandomNumber(lambda);

 //[CI] - equation
 y[10] = y[10] + d1 + d2 - d3;

 //[CII] - first term of the equation
 lambda=gp*y[3]*tau;
 d1=PoissonRandomNumber(lambda);

 //[CII] - second term of the equation
 lambda = d_y[11]*y[11]*tau;
 d2=PoissonRandomNumber(lambda);

 //[CII] - equation
 y[11] = y[11] + d1 - d2;

 //[OmpR] - first term of the equation
 lambda = gp*y[4]*tau;
 d1=PoissonRandomNumber(lambda);

 //[OmpR] - second term of the equation
 lambda = ((V_phos*(1-L)*y[12])/(K_phos + y[12]))*tau;
 d2=PoissonRandomNumber(lambda);

 //[OmpR] - third term of the equation
 lambda = V_dephos*y[13]*tau;
 d3=PoissonRandomNumber(lambda);

 //[OmpR] - fourth term of the equation
 lambda = d_y[12]*y[12]*tau;
 d4=PoissonRandomNumber(lambda);

 //[OmpR] - equation
 y[12] = y[12] + d1 - d2 + d3 - d4;

 //[OmpRP] - first term of the equation
 lambda=((V_phos*(1-L)*y[12])/(K_phos + y[12]))*tau;
 d1=PoissonRandomNumber(lambda);

 //[OmpRP] - second term of the equation
 lambda = V_dephos*y[13]*tau;
 d2=PoissonRandomNumber(lambda);

 //[OmpRP] - third term of the equation
 lambda = d_y[13]*y[13]*tau;
 d3=PoissonRandomNumber(lambda);

 //[OmpRP] - equation
 y[13] = y[13] + d1 - d2 - d3;

 //[Gal4] - first term of the equation
 lambda=gp*y[5]*tau;
 d1=PoissonRandomNumber(lambda);

 //[Gal4] - second term of the equation
 lambda = d_y[14]*y[14]*tau;
 d2=PoissonRandomNumber(lambda);

136

 //[Gal4] - equation
 y[14] = y[14] + d1 - d2;

 //[TetR] - first term of the equation
 lambda=gp*y[6]*tau;
 d1=PoissonRandomNumber(lambda);

 //[TetR] - second term of the equation
 lambda = d_y[15]*y[15]*tau;
 d2=PoissonRandomNumber(lambda);

 //[TetR] - equation
 y[15] = y[15] + d1 - d2;

 //[LexA] - first term of the equation
 lambda=gp*y[7]*tau;
 d1=PoissonRandomNumber(lambda);

 //[LexA] - second term of the equation
 lambda = d_y[16]*y[16]*tau;
 d2=PoissonRandomNumber(lambda);

 //[LexA] - equation
 y[16] = y[16] + d1 - d2;

 //[LacI] - first term of the equation
 lambda=gp*y[8]*tau;
 d1=PoissonRandomNumber(lambda);

 //[LacI] - second term of the equation
 lambda = d_y[17]*y[17]*tau;
 d2=PoissonRandomNumber(lambda);

 //[LacI] - equation
 y[17] = y[17] + d1 - d2;

 //[GFP] - first term of the equation
 lambda=gp*y[9]*tau;
 d1=PoissonRandomNumber(lambda);

 //[GFP] - second term of the equation
 lambda = d_y[18]*y[18]*tau;
 d2=PoissonRandomNumber(lambda);

 //[GFP] - equation
 y[18] = y[18] + d1 - d2;

 //[AHL_LEFT] - first term of the equation
 lambda=gp*y[19]*tau;
 d1=PoissonRandomNumber(lambda);

 //[AHL_LEFT] - second term of the equation
 lambda = d_y[22]*y[22]*tau;
 d2=PoissonRandomNumber(lambda);

 //[AHL_LEFT] - equation

137

 y[22] = y[22] + d1 - d2;

 //[AHL_RIGHT] - first term of the equation
 lambda=gp*y[20]*tau;
 d1=PoissonRandomNumber(lambda);

 //[AHL_RIGHT] - second term of the equation
 lambda = d_y[23]*y[23]*tau;
 d2=PoissonRandomNumber(lambda);

 //[AHL_RIGHT] - equation
 y[23] = y[23] + d1 - d2;

 //[AHL_CENTER] - first term of the equation
 lambda=gp*y[21]*tau;
 d1=PoissonRandomNumber(lambda);

 //[AHL_CENTER] - second term of the equation
 lambda = d_y[24]*y[24]*tau;
 d2=PoissonRandomNumber(lambda);

 //[AHL_CENTER] - equation
 y[24] = y[24] + d1 - d2;

 }

 outF.close();
 outFS.close();

 cout << "Done!\n" << endl;

 time (&end);
 diff = difftime(end, start);

 cout << "Time Elapsed: " << itime(diff) << endl << endl;

 char ans;
 cout << "Plot Graph(s)? (Yes/No)" << endl;
 cin >> ans;
 if (ans!='y' && ans!='Y')
 {
 cout << endl << "End!" << endl;
 return 0;
 }

 cout << "Plotting...\n" << endl;

 try
 {
 // c is "gnuplot.exe test.gp"
 system(gnuPlot);
 }
 catch (invalid_argument& e)
 {
 cerr << "ERROR: " << e.what();
 }

138

 cout << endl << "End!" << endl;

 return 0;
 }

 /***/
 /*********************** FUNCTIONS *************************/
 /***/

 const int PoissonRandomNumber(const double lambda)
 {
 int k=0; //Counter
 const int max_k = int (2 * lambda); //k upper limit
 double p = 1.0*rand()/RAND_MAX; //uniform random
number
 double P = exp(-lambda); //probability
 double sum = P; //cumulant

 if (sum >= p) return 0; //done allready

 for (k = 1; k < max_k; ++k) //Loop over all
k:s
 {
 P*=lambda/(double)k; //Calc next prob
 sum+=P;
 //Increase cumulant
 if (sum>=p) break; //Leave
loop
 }

 return k; //return
random number
 }

 bool fexists(const char *filename)
 {
 ifstream ifile(filename);
 return ifile;
 }

 string getDate()
 {
 time_t now;
 char theDate[MAX_DATE_LEN];

 theDate[0] = '\0';

 now = time(0);

 if (now != -1)
 {
// strftime(theDate, MAX_DATE_LEN,
// "%Y%h%d_%Hh%Mm%Ss", localtime(&now));
 strftime(theDate, MAX_DATE_LEN, "%Y%m%d",
localtime(&now));

139

 }

 return string(theDate);
 }

 string nextFileName()
 {
 int count=0;
 stringstream ss;
 string date = getDate();

 do
 {
 count++;
 ss.str("");

 ss << path2
 << date
 << "_STO_"
 << setw(3) << setfill('0') << count
 << ".xls";
 }
 while (fexists(ss.str().c_str()));

 return ss.str();
 }

 string itime(const double diff)
 {
 stringstream ss;

 int hrs = int (diff/3600);
 int mins = int ((diff - hrs*3600)/60);
 int secs = int ((diff - hrs*3600 - mins*60));

 ss << setw(2) << setfill('0')
 << hrs << ":"
 << setw(2) << setfill('0')
 << mins << ":"
 << setw(2) << setfill('0')
 << secs;

 return ss.str();
 }

140

GnuPlot file:

stochastic.plt

#!/gnuplot

G N U P L O T
Version 4.2 patchlevel 5
last modified Mar 2009
System: MS-Windows 32 bit

Copyright (C) 1986 - 1993, 1998, 2004, 2007 - 2009
Thomas Williams, Colin Kelley and many others

Type `help` to access the on-line reference manual.
The gnuplot FAQ is available from http://www.gnuplot.info/faq/

Send bug reports and suggestions to
<http://sourceforge.net/projects/gnuplot>

set terminal windows color noenhanced
set output
reset
GNUTERM = "win"

set xlabel "Time (hours)"
set ylabel "Protein Levels (uM)"

set lmargin at screen 0.055

set yrange [-2:18]

set ytics 4
set xtics 4

set object 1 rectangle from 4000/3600.0, graph 0 to 8500/3600.0, graph
1 fc lt 1 fs transparent solid 0.25 noborder
set object 2 rectangle from 18000/3600.0, graph 0 to 23000/3600.0,
graph 1 fc lt 1 fs transparent solid 0.25 noborder
set object 3 rectangle from 28000/3600.0, graph 0 to 34000/3600.0,
graph 1 fc lt 1 fs transparent solid 0.25 noborder
set object 4 rectangle from 40000/3600.0, graph 0 to 44000/3600.0,
graph 1 fc lt 1 fs transparent solid 0.25 noborder

set object 5 rectangle from 2500/3600.0, graph 0 to 10000/3600.0, graph
1 fc lt -1 fs transparent pattern 7 noborder
set object 6 rectangle from 31000/3600.0, graph 0 to 42000/3600.0,
graph 1 fc lt -1 fs transparent pattern 7 noborder

plot "stochastic.dat" using ($1/3600.0):($12/1000.0) t "CI" w l lc rgb
"#008000" lw 1.5, "stochastic.dat" u ($1/3600.0):($13/1000.0) t "CII" w
l lt 1 lw 1.5, "stochastic.dat" u ($1/3600.0):($14/1000.0) t "OmpR" w l
lc rgb "#008080" lw 1.5, "stochastic.dat" u ($1/3600.0):($15/1000.0) t
"OmpRP" w l lc rgb "#FF8000" lw 1.5, "stochastic.dat" using
($1/3600.0):($16/1000.0) t "Gal4" w l lc rgb "#808000" lw 1.5,

141

"stochastic.dat" using ($1/3600.0):($17/1000.0) t "TetR" w l lt 4 lw
1.5, "stochastic.dat" using ($1/3600.0):($19/1000.0) t "LacI" w l lt -1
lw 1.5

EOF

