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Abstract. This paper presents a study of instructors‟ and students‟ perceptions of the knowledge to 

be learned about limits of functions in a college level Calculus course, taught in a North American 

college institution. I modeled these perceptions using a theoretical framework which combines 

elements of the Anthropological Theory of the Didactic, developed in mathematics education, with 

a framework for the study of institutions developed in political science. While a model of the 

instructors‟ perceptions could be formulated mostly in mathematical terms, a model of the 

students‟ perceptions included an eclectic mixture of mathematical, social, cognitive and didactic 

norms. I describe the models and illustrate them with examples from the empirical data on which 

they have been built. 
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1. Introduction  

This paper presents partial results of a larger research project aimed at investigating the influence 

of institutional practices – in the form of definitions, properties, examples and exercises appearing 

in textbooks and examinations – on students‟ perceptions of the knowledge to be learned about 

limits of functions in a large, multi-section Calculus course in a North American college 

institution. In such courses, a common final examination carries substantial weight in students‟ 

assessment. This paper focuses on the influence of the final examination, in abstraction from the 

teacher‟s practices in the classroom.  

At college level, topics related to limits are not necessarily associated with the limit concept 

or its definition. On the one hand, links among intuitive ideas, the formal definition, and 

techniques are often hidden in college level Calculus textbooks (Lithner 2004; Raman 2004). The 

ε-δ definition is presented in a different section than that where intuitive ideas about limits are 
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discussed, and that in which the algebraic calculations for finding limits are presented. Algebraic 

techniques for finding limits are presented in self-contained sections. On the other hand, the 

teaching of the formal definition and its uses is dissociated from the teaching of “finding” limits. 

In a discussion of the restrictions imposed by an atomized curriculum on the teacher‟s practice,  

Barbé, Bosch, Espinoza and Gascón (2005) have shown that (a) the mathematical organization of 

the teaching of the limit definition consists only of a theoretical block (a corresponding practical 

block consisting of tasks and techniques is missing); and (b) the mathematical organization of the 

teaching of the algebra of limits consists only of a practical block – tasks and techniques – and a 

corresponding theoretical block is missing. These authors have investigated the restrictions 

imposed by the knowledge to be taught, as defined in curricular documents, on the knowledge 

actually taught in the classroom. At college level, the components textbook – curriculum – exams 

can be taken as a reflection of what students are studying and what educational institutions are 

expecting students to learn. In my research, I have analyzed tasks proposed in final examinations 

together with the types of solutions that students were expected to present. Based on this analysis, 

I have built models of students‟ and instructors‟ perceptions of the knowledge to be learned, 

searching for the differences between these models and the influence that routine tasks and the 

absence of theoretical discourses may have on students‟ perceptions.  

The teaching and learning of limits has been studied from many different theoretical points of 

view, e.g., concept image and concept definition (Tall and Vinner 1981), APOS Theory (Cottril, 

Dubinsky, Nichols, Schwingendorf, Thomas and Vidakovic 1996), the Anthropological Theory of 

the Didactic (Barbé et al. 2005). Most recently, Kidron (2008) discussed the complementary roles 

of three different frameworks in studying the teaching and learning of limits: procept theory, 

instrumentation theory and the model of abstraction-in-context. In my research, I have taken an 

institutional practices perspective (Artigue, Batanero and Kent 2007), close to that of Barbé et 

al.‟s (2005) study. In Barbé et al.‟s paper, however, the institutional status of the studied social 

practices was not questioned; no distinctions were made among the different mechanisms that 

regulate institutional practices. In my research, such distinctions became important, and I had to 

adjust my theoretical framework accordingly. I have thus used a combination of the 

Anthropological Theory of the Didactic (Chevallard 1999, 2002) with a framework for 

institutional analysis developed in political sciences (“Institutional Analysis and Development” or 

IAD framework; Ostrom 2005), already proposed in Sierpinska, Bobos and Knipping (2008). The 
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IAD framework describes what counts as an institution and identifies its main components and 

mechanisms of functioning.  

This paper is structured as follows. The next section briefly describes the studied educational 

institution. Section 3 focuses on the theoretical framework. Sections 4, 5 and 6 give an account of 

research results related to instructor‟s and students‟ models of knowledge to be learned about 

limits of functions. Each section contains research methodology information pertinent for the 

discussed results. The final section 7 discusses the notion of knowledge to be learned, in the light 

of the anthropological and institutional perspectives and the results of the research. 

 

2. A brief description of the studied educational institution 

In the educational system studied in this research, “college” refers to an educational institution 

situated between high school and university. The high school curriculum in mathematics does not 

include Calculus. A first one-variable Calculus course is taught only at the college level, in 

academically oriented (as opposed to vocational oriented) programs leading to studying health 

sciences, engineering, mathematics, computer science, etc., at the university level. The majority of 

students enrolled in these courses are 17-18 years-old. The course is usually a multi-section 

course, with the number of sections in large urban colleges often exceeding 15. 

In the studied college, at the time of the research, there were nineteen sections of the first 

Calculus course, taught by 14 different instructors, with 25-35 students enrolled in each section. 

The course in the college was run collectively by committees of instructors responsible for 

selecting an official textbook to be used in all sections, preparing the common “course outline”, 

and writing the common final examination. All instructors teaching the course in a given semester 

would be automatically members of the ad-hoc “Final Examination Committee” for that semester. 

The course outline would be quite detailed, so that, in a given week, all sections would often be 

studying the same mathematical topic and working on the same homework assignments. Students 

from different sections usually study together, compare notes, and prepare for the final exam 

together, thus forming a “community of study”, which has some control over what is going on in 

the individual sections. Students may, for example, inform their section instructor that another 

instructor is more (or less) advanced in the syllabus, or doing less (more) difficult problems.  
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3. Theoretical framework   

From an epistemological point of view, according to the theory of didactic transposition 

(Chevallard 1985), any didactic phenomenon involves the production, teaching, learning and 

practice of some mathematical activities. The form of these activities depends on the process of 

didactic transposition, this is, the changes that a body of knowledge has to go through to become 

knowledge that can be taught and learned at school. Considering Chevallard‟s original distinctions 

and subsequent refinements (e.g. Barbé et al. 2005, and Bosch, Chevallard and Gascón 2005), we 

can analyze school mathematics into several kinds of knowledge:  

• scholarly knowledge, understood as knowledge produced by professional mathematicians; 

• knowledge to be taught, described in curricular documents;  

• knowledge actually taught which can be gleaned from the teachers‟ classroom discourse 

and the tasks he or she prepares for the students; 

• knowledge to be learned, which can be a subset of the knowledge to be taught or of the 

knowledge actually taught and whose minimal core can be deduced from the assessment 

instruments; 

• and knowledge actually learned which can be accessed somewhat from students‟ 

responses to tasks, clinical interviews, observations of students‟ behavior in the ordinary 

classroom or in specially designed problem solving situations.    

This framework, called the Anthropological Theory of the Didactic (ATD; Chevallard 1999, 

2002) provides an epistemological model to describe mathematical knowledge as one human 

activity among others, as it is practiced in various institutions (research mathematics; applied 

mathematics; engineering; school mathematics at different educational levels; mathematics teacher 

training institutes, etc.). The model proposed by the ATD states that any mathematical knowledge 

can be described in terms of a mathematical organization, or a praxeological organization of 

mathematical nature also called “mathematical praxeology”. Mathematical praxeology is a special 

case of praxeology of any activity, which is defined as a system made of four main components:  

• a collection T of types of tasks which define (more or less directly) the nature and goals 

of the activity;  

• a corresponding collection τ of techniques available to accomplish each type of tasks;  

• a technology θ that justifies these techniques; and 

• a theory Θ that justifies the technology.   
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The term “technology” is understood as the logos or the discourse about the techniques, 

which allows the practitioners to think of, about, and out the techniques. A technology can be a 

framework of concepts, procedures and rules for applying them. The theory Θ provides a coherent 

system in which concepts are defined and rules and procedures are justified. The subsystem [T, τ] 

corresponds to the know-how, and is called the practical block of the praxeology, while the 

theoretical block [θ, Θ] describes, explains and justifies the practical block. It is the theoretical 

block that makes it possible to preserve the activity as a practice and communicate it to others, so 

that they, too, can participate in it. This suggests that there is a didactic intention in any cultural 

practice (if there are no means to teach and therefore perpetuate an activity, it cannot become part 

of a practice), whence the word “didactic” in the name of the theory.  

From the perspective of the ATD, the primary object of research in mathematics education is 

institutionalized mathematical activity (Bosch et al. 2005). This implies the need to clearly define 

the institutions taken into account in studying a didactic phenomenon. For example, Barbé et al. 

(2005), in studying the teaching of limits of functions in Spanish secondary schools, consider the 

following institutions: mathematical community, educational system, and classroom. To this list, 

in their exposition of the ATD perspective, Bosch et al. (2005) add “community of study”, whose 

status as an institution is perhaps less obvious. Yet, my own research made me realize how very 

real this institution can be (see Section 2).  

In ATD, the term “institution” is treated as a “primitive term” and it is not defined 

(Chevallard 1992, p. 144-145). This may not be a problem in research where the institutional 

status of the studied social practices is not questioned. This is not necessarily the case in my 

research. I have, therefore, found it useful to combine ATD with elements of the framework 

Institutional Analysis and Development (IAD; Ostrom 2005), as has already been done in the 

study of students‟ frustration in prerequisite mathematics courses (Sierpinska et al. 2008). From 

the perspective of this framework, an institution is an organization of repetitive interactions 

between individuals whose aim is to achieve certain outcomes (an IAD term) or fulfill certain tasks 

(an ATD term). The organization defines who are the participants, what positions they can occupy 

relative to the tasks and outcomes, and what rules, norms and strategies (IAD terms) or techniques 

(ATD term) will regulate and make possible the accomplishment of the tasks. These means of 

regulation require a specific set of discourses. The discourses can be analyzed into “technologies” 

and “theories” as in ATD. Rules are explicit, established by a recognized (legal) authority, and 
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contain sanctions against those who break them. Mathematical theorems can be interpreted as 

„rules‟ in this sense. Techniques to find limits follow such mathematical rules; for example, the 

rule “the limit of the product of a function tending to zero by a bounded function is zero” is a basis 

for certain techniques to find limits. Breaking a mathematical rule leads to contradictions, incorrect 

results, which are the above mentioned “sanctions” in this case. Norms, on the other hand, carry no 

formal sanctions. Norms function more like precepts for prudent or moral behavior; they are part 

of the generally accepted moral fabric of a community, based on habit and custom. Norms do not 

have to be precise or even explicit, like rules. Newcomers into a practice get to know there is a 

norm, when they inadvertently transgress it and experienced practitioners tell them that “that‟s not 

how we normally do things here”. As will be discussed later, the final examination institution that 

I have studied has not – not even once in the last six years – included a problem of finding a limit 

involving radicals for which the rationalization technique would not apply. Thus, the sentence “to 

find the limit of a function involving radicals, start by multiplying and dividing by the conjugate” 

represents an implicitly accepted norm in this institution. Norms regulate even the mathematical 

activity of research mathematicians: for example, there exist unwritten norms regulating the 

amount of detail that a published proof must have or the style in which it should be written. The 

third regulatory mechanism in institutions is based on strategies. This term refers to plans of action 

adopted by participants in an institution for accomplishing a task or achieving a goal. For example, 

assessment “en masse” of students through a common final examination was the accepted 

evaluation strategy adopted in the studied college institution. Strategies in mathematical activity 

include all kinds of heuristics, such as, “study a particular case”, or “build a model of the 

situation”. Rules, norms and strategies are closely intertwined in the functioning of all institutions. 

It is no different in mathematical practices, but here the all-encompassing rule is consistently 

decided by means of reasoning; norms of, say, the elegance of a proof, cannot override the flaws in 

its mathematical correctness; a strategy in mathematical activity is only valid if it leads to 

mathematical truth and can be justified by mathematical rules, etc.   

Participants of an institution are assigned – or assign to themselves – to different available 

positions. These positions are associated with different actions (“action situations”, Ostrom 2005, 

p. 33) to be taken to achieve certain goals. An institution is, by definition, an organization of 

repetitive interactions. By observing these repetitive interactions and usual outcomes, participants 

construct “spontaneous models” (ibid.) for acting in the institution. These models – constructed 
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empirically and not always quite consciously by actual participants are not directly accessible to an 

external analyst who can only build theoretical models of the spontaneous models. The theoretical 

models of the functioning of an institution are expected to allow institutional analysts to predict 

interactions and outcomes (ibid.). In my research, I have built theoretical models of instructors‟ 

spontaneous models of the knowledge to be learned and theoretical models of students‟ 

spontaneous models of the knowledge to be learned (about limits of functions). This allowed me to 

see the differences between what instructors and students perceived as knowledge to be learned 

about limits of functions, and the influence that instructors‟ models had over students‟ models. 

The ATD framework does not distinguish between rules and norms. Both these regulatory 

mechanisms are covered under the term “technology”. The normative character of practices in the 

mathematical classroom has been already pointed out (e.g., Balacheff 1999; Chevallard 1999). 

IAD provides a language and a theoretical framework in which this normative character, in 

general, and the normative function of the didactic contract in particular, is highlighted against the 

mechanisms that regulate mathematical activity – rules and strategies. Balacheff (1999), however, 

highlights the often overlooked distinction between the more permanent (“institutionalized”) 

normative mechanism of “classroom custom” and “didactic contract”, which acts locally, in 

relation to a particular classroom activity, more as a temporary didactic strategy than as a stable 

institutional norm.   

From the perspective of the IAD framework, it can be said that the teaching of Calculus in 

colleges is an institution in itself; I call it College-Calculus. Different sub-institutions take part in 

the didactic phenomenon, e.g., the classroom, the curriculum committee, the final examination 

committee, or the community of study. As was pointed out before, my goal is to investigate the 

influence of institutional practices on students‟ perceptions of the knowledge to be learned, in 

abstraction from the personal mediation of a teacher in the classroom. Thus, assuming that a core 

of the knowledge to be learned can be conjectured from final examinations, I focused on analyzing 

this particular action situation of the College-Calculus institution. “There is a common final exam” 

is a rule in the College-Calculus institution which is explicit and, for all intents and purposes, 

interpreted the same way by instructors and students. Not so with the content of the final exam. 

There are some unwritten norms, traditions, because the final exams do not change much over the 

years. Of course, some things change from one exam to the next, like the formulas of the functions 

whose limits are to be calculated. But some things don‟t, like the type of the function. And these 
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“constants” point to the existence of norms. One can glean these norms from empirical data, for 

example, the texts of the past final exams, textbooks, or interviews with students. Analyzing the 

texts of past final exams and textbooks, I have built a theoretical model of instructors‟ spontaneous 

models of the knowledge to be learned – considering instructors as participants of the final 

examination committee (as participants of other sub-institutions, such as the classroom, instructors 

might have different spontaneous models). I formulated this model in terms of praxeologies. Then 

I conducted 28 “task-based interviews” (Goldin 1997) with students, using tasks that were 

designed so as to visually resemble the typical final examination tasks but differed from them on 

the conceptual level. Based on students‟ responses, noticing their expectations about the tasks, I 

have built theoretical models of their spontaneous models of the knowledge to be learned – 

considering students as participants of the community of study (as participants of other sub-

institutions, such as the classroom, students might have different spontaneous models).  

It is the existence of norms that generates the variety of the spontaneous models co-existing 

within an institution. The distinction between rules and norms, afforded by the IAD framework, 

allowed me to explain, in the particular case of the institution I was studying, the difference 

between the instructors‟ praxeologies and the students‟ praxeologies representing the knowledge to 

be learned.   

 

4. Description of mathematical praxeologies related to limits in the College 

Calculus institution 

 
The institution which decides about the contents and competencies to be taught is not to be 

confused with the institution that prepares the final exam, or with the classroom institution. 

Members of the college‟s mathematics department are participants in all these institutions but they 

do not occupy the same positions (Ostrom 2005, p. 18, 40); they abide by different rules in each of 

these institutions. Being a member of the curriculum committee imposes other loyalties relative to 

mathematical knowledge than being a member of the final examination committee or being a 

section instructor who has to cope daily with many students‟ lack of basic mathematical skills and 

who is interested in obtaining a good average grade for his or her students.  

To characterize the mathematical praxeologies of the College-Calculus institution, I have 

used the following reference documents: the official textbook, topics listed in the course outline, 

past final examinations from the last six years, and solutions for these examinations, written by 
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teachers and made available to students. Considering that the only control that the College- 

Calculus institution has over the knowledge to be learned is through the common final exams, I 

characterize institutional tasks related to limits of functions according to the tasks proposed in final 

examinations. The corresponding techniques are described following teachers‟ solutions and the 

techniques presented in the textbooks. The description of the theoretical block [θ, Θ] is based on 

topics listed in the outline, properties and theorems used in textbooks to justify techniques, and 

teachers‟ solutions. 

From an analysis of teachers‟ solutions and examples in the textbook, I concluded that types 

of tasks and techniques belong to the domain of knowledge to be learned, while their respective 

technologies belong to the domain of knowledge to be taught but not of the knowledge to be 

learned. I divided theories into an informal justification, belonging to the knowledge to be taught, 

appearing in the textbook to support the corresponding technology, and a formal mathematical 

justification that belongs to the scholarly knowledge, appearing in a section of the textbook not 

listed in the outline of the course.  

By analyzing the final examinations of the past 6 years (2002-2007), I identified the 

following three mathematical praxeologies. I give an example of task for each of the praxeologies.  

 

Mathematical praxeology 1 (MP1)  

TASK TYPE T1: Evaluate the following limit: 
)(

)(
lim

xQ

xP

cx
.  

Description: c is a fixed constant; P(x) and Q(x) are polynomials such that the factor 

cx  occurs in both P(x) and Q(x). 

TECHNIQUE τ1: Substitute c for x and recognize the indetermination 0/0
1
. Factor P(x) and Q(x) 

and cancel common factors. Substitute c for x. The obtained value is the limit. 

EXAMPLE 1:  

Task: Evaluate the following limit  
56

56
lim

2

3

1 xx

xx

x
. 

                                                           
1
 The first step in 1 appears in the textbooks when strategies of calculating limits are described in 

general. However, this step is omitted in most worked out examples in the textbooks and in 

solutions written by teachers and made available to students. The same is true for Mathematical 

Praxeology MP2. 
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Expected solution: (Substitution of 1 for x in the expression to check whether the 

indetermination 0/0 is the case here is not expected in students‟ written solutions. 

Students are not penalized if there are no traces on paper of this verification).  

 

4

3

4

3

51

511

5

5
lim

)5)(1(

)5)(1(
lim

56

56
lim

2

2

1

2

12

3

1 x

xx

xx

xxx

xx

xx

xxx

 

TECHNOLOGY θ1: If two functions f and g agree in all but one value c then  

)(lim)(lim xgxf
cxcx

. If r(x) is a rational function and c is a real number such that 

r(c) exists, then )()(lim crxr
cx

.   

THEORY Θ1: In the analyzed textbook a graph supports the fact that two functions agreeing in all 

but one point have the same limit behavior (knowledge to be taught). An ε-δ proof is 

presented in an appendix. However this appendix and the ε-δ definition of limits are not 

listed in the course outline (scholarly knowledge). 

 

Mathematical praxeology 2 (MP2) 

TASK TYPE Τ2: Evaluate the following limit:  
)(

)()(
lim

xR

xQxP

cx

.  

Description: P(x), Q(x) and R(x) are polynomials such that 0)()( cQcP  and 

the factor 
2)]([)( xQxP  has degree one in R(x). 

TECHNIQUE τ2: Substitute c in x and recognize the indetermination 0/0.  Multiply and divide by 

the conjugate of )()( cQcP . Factor out 
2)]([)( xQxP  from R(x). Simplify 

and substitute c for x. The obtained value is the limit. 

EXAMPLE 2:  

Task: Evaluate the following limit  
16

2
lim

24 x

x

x
. 

Expected solution: (Substitute 4 for x and recognize the indetermination 0/0; see 

footnote 1.) 

32

1

)24)(44(

1

)2)(4(

1
lim

)2)(4)(4(

4
lim

)2(

)2(

)16(

)2(
lim

16

2
lim

4

42424

xx

xxx

x

x

x

x

x

x

x

x

xxx
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TECHNOLOGY θ2: If two functions f and g agree in all but one value c then  

)(lim)(lim xgxf
cxcx

. If n is a positive integer and c is a real number, then 

nn

cx
cxlim for all c if n is odd and for all non-negative c if n is even.  

THEORY Θ2: In the analyzed textbooks a graph supports the fact that two functions agreeing in 

all but one point have the same limit behavior (knowledge to be taught). ε-δ proofs of 

both statements in θ2 are presented in an appendix that is not listed in the course outline 

(scholarly knowledge). 

 

Mathematical praxeology 3 (MP3) 

TASK TYPE T3: Evaluate the following limit: 
)(

)(
lim

xQ

xP

x
. 

Description: P(x) and Q(x) are polynomials such that m, the degree of P(x), is less or 

equal to n, the degree of Q(x). 

TECHNIQUE  τ3a: Factor 
mx  from P(x) and 

nx  from Q(x), and simplify 
n

m

x

x
 to 

mnx

1
. Use the 

fact that the limit of a constant over a positive power of x, as x → ∞ , is 0.   

τ3b: Divide every term by the highest power of x appearing in the rational expression, 

simplify and use the fact that the limit of a constant over a positive power of x, as x → 

∞ , is 0. 

EXAMPLE 3:  

Task: Evaluate the following limit: 
4

4

26

125
lim

xx

xx

x
. 

Expected solution: 

2

5

2
6

12
5

lim

2
6

12
5

lim
26

125
lim

3

43

3

4

43

4

4

4

x

xx

x
x

xx
x

xx

xx

xxx
    

TECHNOLOGY θ3: If r is a positive rational number and c is any real number, then 

0lim
rx x

c
;  if 

rx is defined for x < 0, then 0lim
rx x

c
.   

THEORY Θ3: An ε-δ proof is presented in an appendix, however, this appendix is not listed in the 

course outline (scholarly knowledge).  
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Instructors‟ spontaneous models of the knowledge to be learned (instructors as participants of 

the final examination committee) are made only of the practical blocks. The occurrence of these 

blocks in final examinations does not obey rules. On the one hand, the institution College-Calculus 

doesn‟t have explicit rules stating that these types of tasks have to appear in final examinations. 

Their occurrence is based on tradition and the shared idea that this is the minimum knowledge that 

students should learn. These types of tasks are usually referred by teachers as “the least common 

denominator of what is taught in our courses”. Thus, the occurrence of these tasks is the result of a 

practice regulated by norms, not by rules. On the other hand, although the committee preparing the 

final exam also prepares a grading scheme, there are no sanctions for not following it to the letter. 

It is only a suggestion and the final decisions about the grades are left to the discretion of the 

instructors. This implies that the institution preparing the final exam considers the techniques as 

norms, not as rules.  

 

5. Interviews with students   

To analyze students‟ interpretations of the institutional praxeologies I conducted 28 interviews. 

Subjects were recruited from Calculus II course sections in the winter semester of 2008. All 

subjects had successfully completed a Calculus I course in the previous semester, in the fall of 

2007. Subjects were selected to represent a vast spectrum of the teachers teaching Calculus I in the 

fall of 2007. In that semester there were 19 sections taught by 14 different teachers; the sample of 

interviewed subjects covers at least 12 of these 14 teachers. Table 1 shows the number of 

interviewed students corresponding to each teacher. Five students could not remember the name of 

their Calculus I teacher; those were accounted for in the last column of the table. 

 

Teacher T1 T2 T3 T4 T5 T8 T9 T10 T11 T12 T13 T14 ? 

Number of 

students 

1 1 2 2 4 2 1 1 3 2 2 2 5 

 

Table 1. Number of students per teacher. 

 

The interviews were based on many tasks, including classifying limits, finding limits, and 

graphing functions. In this paper, I will focus only on the task in which students were asked to find 

four limits (see below) that resembled those appearing in final examinations but differed from 

them on the conceptual level. Students were asked to think aloud while working on them. When 

they were finished, I asked them questions about their calculations, failed attempts, answers, etc. It 
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was by analyzing students‟ responses to these particular tasks that I realized that students‟ 

spontaneous models of the knowledge to be learned can be quite different from the mathematical 

praxeologies representing the members‟ of the final examination committee spontaneous models 

of the knowledge to be learned.   

1. 
xx

x

x 21

1
lim

 

        2. 
9

3
lim

22 x

x

x
         

3. 
25

4
lim

2

2

5 x

x

x
   

      4. 
2

94
lim

2

23

1 x

xx

x
  

 

The tasks corresponding to MP1 that we can find in textbooks involve rational expressions 

that are easily factorable using algebraic techniques such as “difference of squares”, “taking 

common factors”, “factoring by grouping”, or simple cases of “undoing the distribution property”. 

Hence, the polynomials in the rational expressions are usually of degree 2 or 3, and, on rare 

occasions, of degree 4. On the other hand, tasks in MP3 always involve polynomials that cannot be 

easily factored, or are not factorable at all. Problems 1, 2 and 4 above, can all be solved by direct 

substitution. Problem 3 cannot be solved algebraically, but by inspection or by making a table of 

values. I chose these four problems for the interview because the rational expressions in problems 

1, 2 and 3 are (in the case of problem 2), or seem to be (in the case of problems 1 and 3), instances 

of rational expressions in type of task T1, and problem 4 belongs neither to MP1 nor to MP3, as 

the involved polynomials are not factorable and the limit is taken at a constant. The idea behind 

this choice was, in the case of problems 1, 2 and 3, to deceive students to engage into the factoring 

techniques typically used in tasks in MP1, and in the case of problem 4, to present students with a 

rational expression that is not factorable to contrast their approach to problem 2. My expectation 

was that in problems 1 and 3 students would get frustrated and show difficulties in providing an 

answer, because of the lack of common factors, while in problem 2, they would be comfortable 

with cancelling the common factors and then using substitution to arrive at a correct answer, 

without noticing that the factoring was not necessary. My expectation for students‟ approach to 

problem 4 was that they would recognize right away that the technique to find the limit is direct 

substitution, because the involved polynomials are not factorable. Although my hypothesis was 

confirmed, the reasons for this behavior were not as purely mathematical as I expected, but were 

generated by a mixture of mathematical, social, cognitive and didactic norms.  

In the following table I show the frequencies of correct and incorrect answers and no answer 

at all.  
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N=28 Correct answer Incorrect answer No answer 

Problem 1 82.1 (23) 10.8 (3) 7.1 (2) 

Problem 2 96.4 (27) 0 (0) 3.6 (1) 

Problem 3 42.9 (12) 14.3 (4) 42.9 (12) 

Problem 4 92.9 (26) 7.1 (2) 0 (0) 

 

Table 2. Frequency of correct, incorrect, and lack of answer in the four problems given to students 

in the interview. 

 

 

Both incorrect answers in problem 4 were due to miscalculations. Prior to any intervention on 

my part, only by observing students‟ notes and listening to students‟ spontaneous talk, I noticed 

that in problems 1 to 3 most students would factor the numerator and the denominator trying to 

find common factors, even in cases where they tried direct substitution first. When cancellation 

was not possible (problems 1 and 3) some students could not produce a final answer (two students 

in problem 1, ten in problem 3). Because students showed a similar behavior when approaching 

problems 1 and 3, I discuss them first. Then I present a discussion for problems 2 and 4.  

Discussion of problem 1: 
xx

x

x 21

1
lim  

Of the 28 interviewed students, twenty factored the numerator and the denominator in problem 1. 

These students can be divided into two groups: those who tried direct substitution first (seven) and 

those who factored first (thirteen). From the spontaneous talk, my first interpretation was that 

students who used direct substitution as a first approach in problem 1 and then proceeded with 

factoring did so because they were not sure about the value of 0 divided by 2. I was thus 

interpreting their behavior as deficiency in their algebraic knowledge. For example, student S1 

said: 

S1: Ok. The first thing I do when I see limits is to put in the number it goes to, to see 

what it gives. So in this case I do zero over two, right? […] Then […] what I would 

do is factor. Now I don‟t remember, if I factor a negative one, can I cross them out? 

[Student S1 took common factor x in the denominator but then got stuck at the fact 

that the other factor in the denominator was x + 1 and not x – 1 as he expected. He 

was then trying to factor out a – 1 so as to have the same factors and cancel them 

out; something that of course cannot be done in this case.] 

 

However, an analysis of students‟ explanations following my intervention showed that what 

was triggering the factoring was a routine sequence of techniques of which, for these students, 

substitution was the first in line. Although S1 said he did substitution “to see what it gives”, he 

disregarded the result and tried to factor. In the next minutes of the interview, there was this 

exchange:   

I: The first thing you did was to put in the one... 
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S1: Yeah. The next step is to factor. 

 

Thus, it seems that students were doing substitution not to find the limit, or to characterize an 

indetermination, but because that‟s “what you do first”. They were not paying attention to the 

outcome of the substitution. Rather, they were engaging in a kind of normal behavior developed 

for the context of finding limits of rational functions: to find the limit of a rational function, some 

algebraic technique has to be applied (see discussion of problem 4). For example, realizing that 

there are no common factors in the expression in problem 1, student S2 tried another algebraic 

approach:  

S2: What I think might work is if I separate them into two different parts. If I have x 

over x squared plus x minus one over x squared plus x. Which follows the rules of 

how you are allowed to solve for limits. Now I can easily put in the x values, so one 

over two minus one over two, so in this case the limit does equal to zero.  

I: Ok, and why do you think you have to go through this step? 

S2: Well, I guess I could just put in the one here [in the initial expression], but I am 

used to have something divided by zero. 

 

The last sentence of S2 makes explicit his expectations about the types of tasks he can be 

given in the context of limits of rational functions. Such expectations could also be found in other 

students‟ talk.  

When questioned, many students realized that the algebraic approach was not necessary; they 

explained their behavior as the result of following perceived norms. For example, student S18 

explains her behavior (she says factorable to mean that there are common factors in the numerator 

and denominator):  

S18: Basically I look at a problem and the first thing I see... and I always assume it 

is factorable, I mean, they never gave me a problem that wasn‟t factorable, so I 

wouldn‟t even ask whether it‟s factorable. I‟d say, ok, where can I factor it. And I‟d 

say ok let‟s look at the different categories. If I see a trinomial or a difference of 

squares and the method to factor them, and so long and so forth, but if it wasn‟t 

factorable... I never came across a problem that wasn‟t factorable. 

I: And do you remember ever coming across something like this [problem 1]? 

S18: Yes, it is one of the tricky ones. You have to think of a special... I don‟t know, 

I am not saying this would work, but you can multiply by negative one to inverse the 

signs of your equation and then you‟d be able to simplify and it would work out. 

 

Even in the interview, which is an event outside of the institution, student S18 thinks she will 

not be given a problem that isn‟t “factorable”; for her, problem 1 is a problem to be solved by 

factoring; it‟s just that she doesn‟t know how to factor it: a tricky limit. 

Student S3 seemed to hold the same assumptions as S18; he factored because he thought it 

was a zero over zero type of problem:  

I: But why did you factor here? 

S3: Because I try the zero over zero thing not realizing... 

I: When did you realize the denominator was not zero? 
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S3: I was substituting one on the bottom. 

I: Did you do the substitution here or here [the initial form or the factored form]? 

S3: No, here [the factored form]. 

 

Student S17 made a strong assertion to defend his factoring approach. When asked, “Was it 

necessary to factor?”, he said:  

S17: Was it necessary? No. But I was taught, if you can factor, factor. 

 

In the same vein, student S15 answered this question by saying:  

S15: Oh, no, no, I do that in every problem: I see if something would cancel. Even if 

nothing cancels I do it anyway, in case I miss something.  

Discussion of problem 3: 
25

4
lim

2

2

5 x

x

x

 

Students displayed a very similar behavior in their approaches to problem 3. Of the 28 interviewed 

students, sixteen factored before trying direct substitution, seven factored after trying direct 

substitution. Their reasons for factoring were very similar to those expressed for problem 1: either 

their strategy is always to factor first or they expected the problem to be an indetermination of the 

type zero over zero. Again, their explanations refer to norms. For example, student S7 factored the 

numerator and the denominator right away, and when asked why, she said: 

S7: Well... I don‟t know... for me... because in most of the exercises that we were 

given, every time that you‟d replace it‟d give you zero over zero, so it‟s kind of a 

reflex. 

 

Student S11 was frustrated by the fact that factoring wouldn‟t lead to simplification, but he 

was convinced that there was something to be done: 

S11: If I open them, there‟s is nothing I can cancel... there must be something else. I 

cannot bring them up either, then I can‟t divide. I cannot pull any xs out. I‟ll open 

them [he means to factor] and I see after, maybe, but I don‟t think here anything will 

work.  

 

The interview with student S7 also showed that she believed that some algebraic technique 

should be applied; factoring is the only technique she thinks she remembers. 

I: What happens with that one? [She wrote that the limit equals 21/0.] Did you try 

anything in your mind?  

S7: No, nothing works out.  

I: Why do you say that nothing works out?  

S7: Ok, well. Because if I put it in I get nothing, well I get twenty one over zero. 

Then […] if I factor it out it doesn‟t give me anything different, like you can‟t cross 

anything out. But then… I am trying to remember, back to Cal I, all the different 

steps you could do. […] There was always first you try to factor and cross out 

anything that you can. Then… 
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Discussion of problem 2: 
9

3
lim

22 x

x

x

 

In problem 2, seventeen students were able to produce a correct answer by doing substitution after 

factoring and cancelling out common terms. Student S6 gave an insight into the state of his mind, 

which suggests a psychological explanation why students were factoring and cancelling common 

terms before checking if this was necessary to find the limit: 

S6: [S6 tried substitution first in every problem except problem 2.] I think because I 

saw the top factors out... I think every time I see x square minus nine I get mentally 

excited and I want to factor out and cancel. And I knew I would be able to cancel so 

I was confident. 

Discussion of problem 4: 
2

94
lim

2

23

1 x

xx

x

 

With respect to problem 4, two students “believed” the question was to find the limit as x→∞, 

while three tried long division or factoring. Twenty students solved problem 4 right away by direct 

substitution. Students who substituted right away observed that the problem was “too easy”, but 

eight of these students did not do direct substitution in problem 2.  I surmise that these eight 

students identified problem 2 as belonging to type of tasks T1, but they could immediately see that 

problem 4 did not belong to T1. The two students who “believed” that x→∞, considered problem 4 

as an instance of type of tasks T3. The three students who tried some algebraic technique to 

simplify the expression, focused on the fact that x→1 and classified problem 4 as belonging to T1 

and then tried techniques characteristic of 0/0 indeterminations. This suggest that students‟ 

attention is often focused on the algebraic form of the function, or at least, not on the limit 

expression as a whole.    

The responses of student S12 provided a deep insight into her (and possibly also other 

students‟) thinking about limit problems. When given problem 4, she said: 

S12: […] Isn‟t this one [the limit] just infinity too? I don‟t really remember if we are 

allowed, when you can like… let‟s say you divide [the numerator and the 

denominator] by x cube… Can I do it, even if I have just one x cube? Or is the rule 

like… because if I do it then I‟ll get one over zero which is infinity… Oh, it’s one, 

right? [referring to the “1” in “ 1x ”.] […] Then it‟s just fourteen over three. 

I: Why did you think it was infinity? 

[...] 

S12: Well it‟s just because it‟s like you can‟t factor this. Can you? No, I don‟t think 

you can. So the only thing they could ask us is divide by x. 

 

Her explanation was key in my understanding of what students believe to be the knowledge to 

be learned, and thus in the construction of a theoretical model of students‟ spontaneous models of 

the knowledge to be learned. I present this model in the section below. 
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6. A model of students’ spontaneous models of the knowledge to be learned 

Student 12 classified limits of rational functions into two types: those where the polynomials are 

“factorable” and those where they are not. More generally, we could say that students distinguish 

two types of limits. I describe them below: 

Type 1.  When x tends to a constant, expressions are normally indeterminations of the type zero 

over zero, and they involve binomials or trinomials. The polynomials in these expressions can be 

easily factored by the standard algebraic techniques that students had learned in high school: 

difference of squares, “undoing” the distribution property, factoring by grouping. Limits involving 

expressions that contain polynomials in the “high school factoring categories” cannot be found 

only by direct substitution, something else must be done.  

Type 2.  If a rational expression involves polynomials that are not binomials or trinomials easily 

recognized as belonging to one of the “high school factoring categories” it must be a limit at 

infinity, or a limit that can be found by substituting a constant for x.  

These types are based on norms that are not purely mathematical but a mixture of 

mathematical, cognitive, social and didactic norms. For example in Type 1, the sentence “When x 

tends to a constant, expressions are normally indeterminations of the type zero over zero, and they 

involve binomials or trinomials” describes a social norm, or, using Voigt‟s term, a socio-

mathematical norm, since it refers to a social convention regarding the mathematical objects that 

will be dealt with in the tasks given to students (Voigt 1995). Implied in students‟ idea of types of 

tasks is the norm, “If the polynomial can be easily factored, then factor it”. This norm is cognitive 

in the sense that, upon recognizing such a polynomial, the student feels internally compelled to 

factor it. One of the students was saying that he gets “mentally excited” when he sees something 

like x
2
 – 9 and he simply must factor it. It is also a didactic norm, however, because, in the routine 

tasks given to students, factorization of such polynomials is usually a useful strategy: there is a 

didactic intention in it, and the student is decoding it correctly by factoring the polynomial. It is a 

social norm, as well, because it can only function as a norm by being repetitively effective in 

similar social situations. Thus, the notion that these polynomials can be easily factored and the 

standard techniques typically used for this factoring (difference of squares, “undoing” the 

distribution property, factoring by grouping) are an entanglement of social, didactic and cognitive 

norms.  
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Students appear to classify limits of rational expressions into different types of tasks 

according to their algebraic appearance, instead of using some Calculus criteria such as types of 

indeterminations, type of technique to be applied, convergence or divergence, etc. The technique 

to be used to accomplish a task is chosen based on the algebraic form of the expression. In 

problem 4, students applied direct substitution without hesitation; they took it for granted that the 

denominator was not zero because it did not look like the trinomials or binomials they were used 

to be given. Many of these same students did not check that the expression in problem 2 was not 

an indetermination; they thought it was because those polynomials do fall into the “high school 

factoring categories”.  

The technology, i.e. the discourse supporting the technique, seems to be that of norm: “we do 

this because that‟s what we usually do under the circumstances”. This is an extrapolation of what 

the students actually said in the interviews:  

S2: … I am used to having something divided by zero. 

S18: ... they never gave me a problem that wasn‟t factorable. 

S7: Most exercises that we were given... it‟d give you zero over zero. 

S12: I don‟t think [you can factor this]. So the only thing they could ask us is to 

divide by x. 

 

I surmise that, in students‟ praxeology, the role of a theory justifying this technology is 

played by the students‟ trust in the authority of the teachers, the textbooks, the solutions to past 

examinations. At the college level, students position themselves as subjects of a school institution 

who have to abide by its rules and norms (Sierpinska et al. 2008). It is the school institution, 

embodied in persons in the position of power over the knowledge to be taught and learned and in 

the official documents and texts, not the students, who is responsible for the validity of this 

knowledge. Theory in the mathematical sense is not under the students‟ jurisdiction or 

responsibility (Chevallard 1985, p. 75).  

 

7. Discussion 

Instructors‟ spontaneous models of the knowledge to be learned could be described using criteria 

characteristic of college level Calculus. In the interviews, however, students revealed that their 

spontaneous models of the institutional praxeologies are not built using Calculus criteria. Their 

approaches to finding limits of rational expressions show that their models are grounded in their 

previously acquired knowledge, especially knowledge corresponding to high school algebra, and 

in a type of strategic knowledge associated with succeeding on the final examination. The 
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institutional practices that make the tasks T1, T2, T3 and the corresponding techniques routine, are 

such that they have conditioned students to expect only these tasks. This does not mean that 

students are doomed to fail when dealing with non-routine problems (see Table 2). Nevertheless, 

while dealing with the proposed problems, students have shown that their thinking is not 

mathematical thinking. Students justify their choice of a technique to tackle a problem by stating 

their beliefs and convictions that the technique indeed applies (their expectations about the tasks 

that the institution asks them to do). These beliefs and convictions are themselves based on 

communicated elements of tradition (explicitly communicated in the solutions written by teachers 

and made available to the students). Furthermore, students‟ use of techniques is an algorithmic 

use; it is based on a recall of a set of “instructions” or “steps” given by the textbook or the 

instructor. The absence of a theoretical block in instructors‟ expectations of student‟s solutions to 

final examinations may result in these steps forming an arbitrary list. A simple consequence of 

this arbitrariness is that students have difficulties in remembering the order. Thus, for example, 

they hesitate if they should do direct substitution first or factoring first.  

The “normative” character of instructors‟ models of the knowledge to be learned emphasizes 

learning on the plane of tradition rather than on the scientific, mathematical plane. It is as if the 

implicit institutional discourse was, “this technique is used to solve this problem because this is 

how things are usually done here” instead of, for example, “this technique is used to solve this 

problem because it is one of the (many) mathematical strategies to find the answer and because of 

this or that mathematical feature of this problem, it is an efficient strategy, better than...”. This may 

have the effect that students end up learning how to behave normally rather than how to behave 

mathematically. 

The four tasks presented to the students in the interview belong to what can be identified as 

the knowledge to be taught: these are topics covered by the textbook in sections listed in the 

outline of the course. Tasks of these types, however, did not appear in the final examinations of the 

last 6 years. The first three problems presented to the students in the interview do not look like the 

ones in the textbook but resemble the routine tasks in the sense that the polynomials involved can 

be easily factored; students approached these problems by way of algebraic techniques. It is 

problem 4 that they easily recognized as a non-routine but still familiar task; this task does 

resemble the ones that, occasionally, they had to deal with in the textbook (and probably in the 

classroom). For a mathematician or for a Calculus teacher at the college level, problems 1, 2 and 4 
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are all of the same type. But the interviews revealed that students would rather treat problems 1, 2 

and 3 as belonging to the same type, while problem 4 would be in a separate category. The reasons 

for these models are based on norms; norms built on routine tasks. Of course, these routine tasks 

might be chosen so as not to trick the students into using algebraic techniques when they are not 

needed. The analysis of the interviews shows, however, that they have a negative impact on 

students‟ generalizations: where a mathematician sees a limit that can be found by direct 

substitution (e.g. task 2), students see a limit that has to be found by an algebraic technique. In the 

routine problems presented in textbooks and final examinations, these students have identified 

patterns on which they have built their spontaneous models for practices related to limits of 

functions. These patterns, however, are not mathematical. Yet students‟ models are valid or, 

perhaps, more accurately, viable. They are viable because the College-Calculus institution to 

which they belong does not propose enough tasks that would challenge them. Furthermore, 

students‟ models are emphasized and validated by the tasks proposed by the institution. They are 

rooted in the void left by the absence of a theoretical component in the knowledge to be learned as 

defined by some sub-institutions of the College-Calculus institution. Participants of these 

institutions fill this void with cognitive, didactic and social norms. 

The different notions of knowledge described in the process of didactic transposition 

highlight “the institutional relativity of knowledge and situates didactic problems at an institutional 

level, beyond individual characteristics of the institutions‟ subjects” (Bosch et al. 2005). In the 

present work, I have tried to highlight the possible relativity of these notions when considered 

from an anthropological point of view. From a strictly epistemological perspective, notions such as 

knowledge to be taught or knowledge to be learned might be quite well-defined objects. From the 

anthropological point of view, however, its unity breaks down into distinct praxeologies, different 

for students and for teachers; they become relative to the institution that is describing them. Even 

this relativity is not subtle enough, however. The distinction between practices regulated by rules, 

and practices regulated by norms, afforded by the IAD framework, emphasizes the normative 

character of the theoretical blocks in students‟ praxeologies and highlights the different nature of 

these norms. The integrated perspective ATD/IAD allows me to zoom into the mechanisms that 

link and regulate the different parts of a (mathematical) praxeology, relative to the models of 

knowledge developed by participants in different positions with respect to the institution. I believe 

that all mathematical activity is regulated not only by rules and strategies but also by norms. The 
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results presented here, however, show that the norms that regulate students‟ theoretical blocks 

interfere with their ability to think in mathematical terms. In this paper, I have tackled the question 

of the mechanisms that regulate students‟ practices as participants of the community of study. 

Research grounded in the ATD/IAD framework may help answer related questions such as what 

are the mechanisms that regulate students‟ and instructors‟ practices as participants of the different 

institutions that take part in didactic phenomena. Furthermore, assuming that norms pervade all 

human practices, from the combined ATD/IAD perspective, we may be able to investigate, how a 

College-Calculus institution can develop norms of appropriate behavior relative to limit tasks 

without losing the mathematical character of this behaviour, as has unfortunately been happening 

within the studied institution. The question is, where is the threshold past which institutional 

norms start diverting students and instructors from behaving mathematically. 

To achieve these goals, it may be, however, necessary to refine the framework, especially as 

far as the concept of norm is concerned. This research has suggested that there are several kinds of 

norms at play in the way instructors and students view knowledge to be taught and learned. I have 

tried to capture differences between them using terms such as “mathematical”, “social”, “didactic”, 

and “cognitive”. These terms, however, did not refer to distinct kinds of norms, but only to the 

kinds of actions that they seemed to constrain, and each norm appeared to constrain several kinds 

of actions. If we want to classify norms relative to their effect on the quality of students‟ 

mathematical thinking, then there is more theoretical work to be done. There is also more 

empirical work to be done, since, obviously, this research was based on a single institution of 

College-Calculus teaching, and a small number of students. It would be interesting to conduct this 

type of studies in other College-Calculus institutions and compare the results.   
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