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Abstract 

Optimal Design of Magnetorheological Dampers Constrained in a Specific 

Volume Using Response Surface Method 

Armin Hadadian 

 

In recent years, semi-active magnetorheological (MR) and electrorheological (ER) fluid 

technology based devices and systems have been developed and successfully utilized in 

many applications as valves, shock absorbers, dampers and clutch/brake systems. These 

promising devices have the adaptivity of the fully active systems to accommodate 

varying external excitations while maintaining the reliability and fail-safe features of the 

passive systems. Compared with ER based devices or systems, MR based devices have 

recently received special attention due to their high performance with minimal power 

requirements. Moreover MR fluids have significantly higher yield strength and are less 

sensitive to contaminants and temperature compared with the ER fluids. 

The geometric optimal design of MR valves/dampers is an important issue to improve the 

damper performance, such as damping force, valve ratio and inductive time constant. 

Considering this, the primary purpose of this study is to establish a general design 

optimization methodology to optimally design single–coil annular MR valves constrained 

in a specific volume in MR damper. To accomplish this, first the damping force of MR 

damper has been modeled using Bingham plastic model. The magnetic circuit of MR 
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damper has been analyzed using finite element method in ANSYS environment to obtain 

magnetic field intensity which can be subsequently used to obtain the yield stress of the 

MR fluid in the active volume where the magnetic flux crosses. Then the developed finite 

element model of the MR valve is effectively used to construct an approximate response 

function relating the magnetic field intensity to the identified design parameters in the 

selected design space using response surface method and design of experiment 

methodology.   

Using the derived approximate relation for the magnetic field intensity in the MR damper 

model, the design optimization problem has been formulated using gradient based 

nonlinear mathematical programming technique based on the Sequential Quadratic 

Programming (SQP) technique and also stochastic optimization technique based on the 

Genetic Algorithm (GA) to find optimal geometrical parameters of the MR valve in order 

to maximize the damping performance under given constrained volume. 

Finally a PID controller has been designed to evaluate the close-loop performance of the 

optimally designed MR damper in a quarter-car suspension model.  
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Chapter 1 Introduction 

1.1. Motivation and Objectives 

Vehicle suspension is normally used to attenuate unwanted vibration due to various road 

conditions. A successful and effective suppression of the vibration is necessary for 

improvement of vehicle components’ life, and the ride comfort, as well as steering 

stability.  

One of the recent and promising technologies in design of vehicle dampers is 

implementing Magnetorological (MR) fluids. These smart fluids have the capability to 

continuously and rapidly change their rheological behavior (viscosity) under applied 

magnetic field. Due to this unique characteristics, MR based dampers can provide 

variable damping force semi-actively by varying the applied magnetic field (varying 

current) and thus have the capability to control vibration in a wide range of road 

conditions. Reports about commercial use of semi-active MR dampers have been 

increased in recent years. This is mainly due to the fact that semi-active MR dampers 

have demonstrated the fail-safe feature and reliability of conventional passive dampers 

and the adaptivity of fully active dampers while demanding minimal power requirements. 

Compared with their Electrorheological (ER) counterparts, MR dampers can generate 

higher damping force and they are less sensitive to external contaminants and 
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temperature. Also compared with other conventional semi-active dampers, MR dampers 

have less moving parts, thus they are subjected to less wear. 

Most of the previous works on MR dampers have mainly focused on the quasi-static     

[1, 2] and dynamic modeling [3-6] of the MR dampers or development of control 

strategies based on various MR damper models [7-14]. However, few works have been 

done on optimal design of MR dampers to improve their performance [15-20]. 

Considering today’s competitive markets, it is very important to establish a general 

design methodology to optimally design the geometry of the MR damper to further 

improve their damping performance while not increasing the cost. Considering this, the 

main objective of this research study is to establish a general and efficient design 

optimization methodology to improve the damping performance of MR dampers.  

1.2. Overview and Literature Survey (State of the Art) 

Various suspension methods have been developed and applied to the vibration control of 

vehicles. Basically, based on the amount of required external power for the system, 

vehicle suspension systems may be classified into three categories namely passive, 

active, and semi-active [17]. 

The passive suspension system, which usually includes fixed springs and shock 

absorbers, provides design simplicity, but performance limitations are inevitable in the 

relatively high frequency range. Since in the passive system the values of stiffness and 

damping are tuned for a specific design condition, thus a passive system cannot provide 

optimal vibration isolation for various road conditions.  
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In order to overcome these limitations, active suspension systems have been employed 

[17]. With an additional active force introduced as a part of the suspension unit, the 

system then can be actively controlled using appropriate control algorithms to attenuate 

external disturbances. Generally, an active suspension system provides high 

controllability in a wide frequency range, but on the other hand, it requires high power 

sources, complicated components such as sensors, servo valves, and a sophisticated 

control algorithm [17, 21]. 

The semi-active (also known as adaptive–passive) suspension system addresses these 

drawbacks by effectively integrating a tuning control scheme with tunable passive 

devices. In this suspension configuration, active force generators are replaced by 

modulated variable damping and stiffness compartments. Therefore, semi-active 

suspension can be utilized to generate desirable performance without requiring large 

power sources and expensive hardware [17]. The main feature of semi-active suspension 

systems is their ability to vary damping for a wide range of input motion. Comparing 

with typical passive suspension systems, semi-active shock absorbers provide softer 

damping when needed, and harder damping in demanded situations. Thus, faster 

operational speeds over similar terrain and better vibration isolation for sensitive 

payloads are the main benefits of this technology for ground vehicles [22].  

Over the past decade, the usage of Magnetorheological (MR) and Electrorheological (ER) 

fluids in smart damping devices has been received much consideration because they 

allow controllable performance with no moving parts. In fact, they are controllable fluids 

that respond to an exposed magnetic or electric field with an impressive change in their 

rheological behavior. MR and ER fluids are similar in that they develop a controllable 
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yield stress in the existence of magnetic and electric fields, respectively. While MR fluids 

are actuated by applying a magnetic field perpendicular to the fluid flow direction, ER 

fluids are actuated by guiding an electric field perpendicular to the fluid flow direction 

[19]. ER and MR fluids have been successfully employed in controllable valves, clutches, 

brakes, suspensions, and engine mounts [1]. However, It has been proved that MR valves 

have comparable or superior range of operating conditions and less power requirements 

compared with the ER valves which makes MR technology more attractive for volume-

constrained conditions [19].  

In MR fluids, rheological properties can be rapidly (in an order of milliseconds) changed 

by applying a magnetic field to the fluid domain [10, 15, 23]. In the absence of the 

applied field, the fluid exhibits a Newtonian-like behavior, however when it is subjected 

to the magnetic field, the induced dipoles create a chain-like structure which restrict the 

flow of the fluid, thus increases the apparent viscosity of the fluid [15].  

The important distinctive of MR fluids is their ability to reversibly change from free 

flowing, linear viscous liquids to semi-solids behavior with a controllable yield strength 

in milliseconds when exposed to magnetic field. This feature develops a very large 

change in the resisting force of dampers in which MR fluid is manipulated [24]. The 

process is fully variable and reversible.  

Among other applications of MR fluid, MR dampers have been considered significantly 

in applications where rapid response time is critical [25]. Because of mechanical 

simplicity, high dynamic range, low power requirements, large force capacity and 

robustness, MR based dampers have been used in many industrial applications specially 

in vehicle dynamic suspension systems [8, 10, 17, 18, 21, 26], vibration reduction of 
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home appliance [12] as well as civil infrastructure damping systems against severe 

earthquake and wind loading [24]. Generally outstanding features like the fast response 

and the contactless nature of controlling system make MR fluid technology attractive for 

various control devices [27]. 

Gordaninejad and Kelso [22] also proposed MR fluid based dampers to enhance the 

cross-country mobility of combat vehicles, such as high mobility multi-purpose wheeled 

vehicles.  

Essentially, to model MR valves and dampers, there are two approaches namely quasi-

static modeling and dynamic modeling. Although the quasi-static models can describe the 

behavior of MR dampers rationally well, they are not sufficient to model the nonlinear 

force–velocity behavior of the MR damper especially in high frequency excitations [6, 

16, 24]. Some dynamic models considering the hysteresis behavior of MR damper have 

been proposed to overcome this drawback [3-6]. However, these dynamic models are 

experiment based models where experimental results of a real damper are used to derive 

parameters.  

While great amount of works have been dedicated to the modeling of MR based devices 

mainly based on the Bingham model of MR fluid [16-20, 24, 27-29], a few research has 

been reported in the literature using the nonlinear Bingham or Herschel–Bulkley model 

based on quasi-static modeling [2, 30]. 

In one of the most fundamental works in this field, Wereley and Pang [1], derived 

equations to explain the rheological behaviors of ER and MR dampers by means of non-

dimensional groups. In their solutions, they assumed quasi-steady models and idealized 

Bingham plastic shear flow mechanism. 
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In a steady fully developed flow, ER and MR fluids almost behave like idealized 

Bingham plastic shear flows [1] and as a result the modeling and design of MR dampers 

has been conducted at early stages of design based on this assumptions [15, 17-20]. Thus, 

in practice, MR valves and dampers are designed using quasi static Bingham plastic 

model. Then, the dynamic models are developed by experimental results of the 

manufactured MR valve and damper.  

Many research works have addressed control strategies for semi-active vehicle 

suspension systems featured by MR dampers. Turnip et al. [13] studied controlled MR 

dampers by skyhook control and proposed a sensitivity control and compared the 

response of the active system featured by these controllers with the same passive system. 

Their results show the great improvement in handling performance of vehicle. 

Nonetheless, for modeling MR damper they used a fitted polynomial on the experimental 

results. Although this approach of modeling can explain the hysteresis behavior of the 

damper reasonably well but the result is only valid for a specific damper and cannot be 

used in design.  

Georgiou et al. [31] performed a study with  emphasizing on finding of an optimum 

values of suspension damping and stiffness parameters to optimize ride comfort, 

suspension travel and road holding by introducing a multi objective function.  

Tusset et al. [32] utilized linear feedback and fuzzy logic damper controllers for the semi-

active control of the quarter-car suspension and proved the effectiveness of this method. 

The control problem is formulated and determined by assuming linear feedback damping 

force controller for a nonlinear suspension system. Frequency shaped LQ control [33], 

Proportional–integral–derivative(PID), fuzzy logic, and hybrid controllers [34] , neuro- 
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fuzzy control [35], adaptive fuzzy sliding mode control [7] and adaptive fuzzy-neural 

network control [9] have also been applied for semi-active vibration control of the car 

suspension systems.  

Wang et al. [14] implemented H-infinity method to control vehicle active suspension 

with MR damper. After deriving mathematical equations to model a car-quarter featured 

by a nonlinear MR damper, they implemented a linear piecewise function to linearize the 

MR damper Model.  

Dong et al. [36] studied and compared five semi-active control algorithms including 

skyhook control, the hybrid control, the LQG, the sliding mode control and the fuzzy 

logic control. They used quarter car model with a MR damper which was modeled by a 

polynomial formulated through the experimental data. They demonstrated that the 

performances of the resulting controlled system are highly dependent on the employed 

control algorithm. But each of controllers performs noticeably better than the passive 

system. According to their results, the sliding mode control algorithm is found to be the 

most appropriate for use with MR dampers in the vibration control of MR suspension 

system. In reality assuming linear control systems can cause some errors in industrial 

applications. Thus to study the control of the system, nonlinear methods or non-model 

based methods should be used. Thus PID controller which is easy to design and have 

acceptable precision has been employed [37].  

As mentioned before, there have been a large number of research works presented on 

modeling and design of MR valves and dampers [15-19, 38]. In design problems, due to 

the complexity of the magnetic field problem in the MR valve, finite element method 

(FEM) is usually employed to model and design of MR valves and dampers [15-20, 39, 
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40]. Optimal design of MR dampers has been recently received a special attention to 

improve their performances. Although there are a large number of presented research 

articles on modeling of MR fluid dampers using quasi-static and dynamic models and 

developing appropriate control strategies for them, there are few studies which mainly 

focus on the design optimization of MR valves to improve the damping performance of 

the MR dampers. It is worth noting that as the main operating part of a MR damper is 

MR valve, the optimization of the MR damper is basically conducted through the 

optimization of the MR valve. 

The major damping performances of a MR damper are damping force, valve ratio, 

dynamic range and inductive time constant of the MR valve. The valve ratio is the ratio 

of the viscous pressure drop to the field-dependent pressure drop of the MR valve. Also 

dynamic range is defined as the ratio of the peak force with a maximum current input to 

the minimum force with zero current input. So in practice, valve ratio and dynamic range 

convey the same concept and so optimal design of one of them will lead to the optimal 

design of the other one.  

Optimization of MR valves which are constrained in a specific cylindrical volume 

defined by its radius and height is typically conducted to optimize the mentioned 

damping performances.  

The optimization problem typically identifies the geometric dimensions of the damper 

that minimize an objective function. The objective function can be damping force and 

dynamic range [17], damping coefficient [19], a multi objective function of damping 

force, dynamic range and the inductive time constant of the shock absorber [18], valve 
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ratio [15, 16], control energy, time response and pressure drop [20] or power 

consumption [40].  

In all the above mentioned references [15-20, 40], the damping force and dynamic range 

are derived based on quasi static Bingham plastic model of MR fluid. The finite element 

solution of the magnetic circuit is typically used to determine the objective functions for 

the optimization problems and then optimization procedure is conducted by a golden-

section algorithm and a local quadratic fitting technique which is constructed in ANSYS 

parametric design language (APDL) [15-20, 40]. 

Rosenfield and Wereley [19], presented some design guidelines for volume-constrained 

MR valves with assumption of constant magnetic flux density throughout the magnetic 

circuit. Additionally, they compared the performance of volume-constrained MR valves 

against similarly constrained ER valves. Their results show that optimized MR valve 

provides a greater range of controllable damping than a geometrically similar ER valve. 

Their studies established that, MR valves have comparable or superior range of operating 

conditions, power requirements, and response characteristics comparing to the ER valve 

which makes MR technology more attractive for volume-constrained conditions.  

In the most of above mentioned work, the magnetic circuit in the MR valves has been 

solved by finite element method using ANSYS. Also golden-section algorithm and a 

local quadratic fitting technique constructed in parametric design language of ANSYS 

have been typically utilized for optimization. 

Based on the proposed methodology in Ref. [19], Nguyen et al. [16] presented an 

analytical methodology for the optimal design of a MR valve constrained in a specific 

volume to maximize the damping force of a MR damper. They analyzed magnetic circuit 
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using the magnetic Kirchoff’s law and for that purpose they assumed that the magnetic 

field intensity along the effective length of each link of the magnetic circuit is constant. 

Utilizing finite element method to analyze the magnetic circuit is mainly due to the 

variation of the magnetic field along every links. Nevertheless their results proved to be  

more optimal than the results presented in Ref. [15] which uses only ANSYS software to 

solve both the FEM and optimization problems.  This is mainly due to the fact that the 

proposed analytical method in Ref. [16] provides smoother objective function compared 

with noisy objective function formulated by finite element method. Therefore, employing 

the same linear optimization methods led to better answers.  

As mentioned before, most of the previous studies mainly rely on first order optimization 

procedure in ANSYS. Due to the inherent nonlinearity and complexity of the problem, 

the first-order optimization may not generate a reliable optimal design or may easily trap 

in a local optimum. To the best of our knowledge, no work has been done on the formal 

design optimization of MR dampers and related design sensitivity analysis. Moreover 

closed loop performance evaluation of the optimal designed valve for vehicle suspension 

application is also extremely rare.  

1.3. MR Valves Configurations 

According to the fluid flow modes, all devices that use MR fluids can be classified as 

having either  (a) a valve mode (flow mode); (b) a direct shear mode (clutch mode); (c) a 

squeeze film compression mode; or (d) a combination of these modes [41]. The 

schematic of the operational modes are shown in Figure ‎1-1 . 
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Figure  1-1: MRF operational modes [30] 

Valve mode as an operational mode is employed in servo valves, dampers, shock 

absorbers and actuators [41]. In this mode the magnetic field is perpendicular to the flow 

of the MR Fluid while the two plates which are electrodes of the magnetic circuit are 

stationary plates. Since, the size of the gap is significantly smaller than the radius of the 

valve, the fluid flow is typically modeled by the parallel plate assumption [1]. The 

developed pressure drop in this mode (for example in a damper) is the summation of the 

viscous (pure rheological) component due to MR fluid viscosity and the yield stress 

dependant component due to yield stress of the MR fluid. More details will be discussed 

in next chapter. 
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Shear mode is typically used in clutches, brakes, chuckling and locking tools [30]. In this 

mode the electrode plates have relative motion and the magnetic field is perpendicular to 

the flow of the MR Fluid. In this operational mode, the total force has also two parts 

namely viscous and yield stress dependant component.  

The third operational mode is called squeeze mode which is less well studied than the 

other modes. Since, it offers the possibility of very large forces; it is used for small 

amplitude vibration and impact dampers [30, 41].  

As mentioned before, the magnetic field lines are typically perpendicular to the fluid flow 

direction in all modes. The areas where MR fluid is exposed to magnetic flux lines are 

referred to as “activation regions”.  

Among these, valve mode is the most widely utilized operational mode. In fact, MR 

valve is a fixed-size orifice valve with the ability of exposing magnetic field using an 

electromagnet. As the MR fluid passes through the orifice (duct), magnetic field is 

imposed on the MR fluid and as a result the rheological property of MR fluid in this 

region is changed. Without the external magnetic field, the MR fluid behaves like 

Newtonian fluid while the magnetic field causes a change in the viscosity of fluid in the 

orifice volume. As a result, the damping characteristic of MR damper is a function of the 

applied electrical current. This allows controlling the MR damper in real time. 

As the magnetic field’s strength increases, the resistance to fluid flow at the activation 

regions increases until the saturation current has been reached. Further increase in the 

electric current beyond the saturation current does not change the magnetic field intensity 

and hence the MR damper force for a given velocity. 
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Several configurations of MR valves have been proposed by many researchers such as 

single coil annular duct, two-coil annular duct and annular-radial duct [15]. However, 

among different configuration of MR valves, the single-coil annular MR valve structure, 

shown in Figure ‎1-2 (a), is typically adopted in many engineering applications such as 

MR relief valve, and specially in MR dampers [15, 20]. The MR fluid flow is shown with 

green line in this figure. The magnetic field developed in the gap area is also shown in 

detailed view in Figure ‎1-2 (b). 

 
(a)                                                (b) 

Figure ‎1-2: (a) Single-coil MR valve and fluid flow and (b) Magnetic field directions in 

the valve gap [27] 

In this work, the design and optimization is basically conducted for this kind of valve.  

The schematic view of MR damper with embedded single-coil MR valve is shown in 

Figure  1-3.   
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Figure ‎1-3: Schematic configuration of a single-coil MR valve and damper. (a) Single 

coil MR damper [18], (b) Single coil MR valve [15]  

As shown in Figure ‎1-3, the MR valve structure includes the outer and inner pistons 

which divide the MR damper into upper and lower champers. Both champers are fully 

filled with MR fluids. As the inner piston moves, the MR fluid flows from one champers 

to the other one through the orifice of the valve. Significant geometrical parameters of the 

MR valve are the valve height L, the valve radius R, the coil width w, the valve housing 

thickness dh, the valve orifice gap d and the pole length t, which are presented in     

Figure  1-3 (b). 
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1.4. Thesis Organization 

The present thesis contains six chapters. In the first chapter, an introduction describing 

the general objectives, a literature survey, and general information about MR valves are 

presented. 

The second chapter is devoted to mathematical modeling of MR valve and damper where 

the MR damper has been formulated and important operational parameters are explained.  

In the third chapter, the magnetic field problem in MR valve is defined and solved by 

Finite Element Method (FEM) in ANSYS. Then Response Surface Methodology (RSM) 

is briefly explained. RSM is then combined with design of experiments to derive 

analytical functions of magnetic field intensity and magnetic flux density.  

Chapter four is dedicated to optimization procedure. First a brief introduction of 

employed optimization methods in this study is presented. Then different constrained 

optimization problems of MR valve is defined and solved by both SQP and GA 

approaches. A sensitivity analysis has also been conducted for a selected optimal design. 

In chapter five, performance of a sample optimal design configuration obtained in 

Chapter 4 is studied as a case study. For this purpose a PID controller is designed and 

displacement and velocity response of the optimal shock absorbers are plotted and 

analyzed. 

Finally, chapter six will present a summary of significant conclusions of current research. 

Some recommendations have also been suggested to extend the research work in this area 

in future. 
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Chapter 2 Mathematical Modeling of MR Dampers 

2.1. Introduction 

Having a good knowledge of functional requirements, design parameters and design 

objectives are prerequisite of any successful design of a mechanical system. Saturation 

phenomenon in the magnetic circuit and yield stress of the MR fluid, limit the 

performance of the MR valve [29]. In the first part of this chapter a brief review on 

characteristics of MR fluid is presented. The mathematical models, governing equations 

and the performance indexes that can be considered in optimal design of MR dampers are 

then presented and discussed.  

2.2. MR fluid characteristics 

Discovery of MR fluids and developing the idea of using them in controllable devices can 

be credited to Jacob Rabinow at the US National Bureau of Standards in the late 1940s 

[24, 41]. 

These fluids are suspensions of micron-sized (5μm), magnetizable particles in an 

appropriate carrier liquid which in the absence of an applied magnetic field, exhibit 

Newtonian-like behavior. In the presence of the field, the induced dipoles force particles 

aligned with the external field that causes particles forming chain-like structures which 

restrict the flow of the fluid as schematically shown in Figure 2.1. This will cause a 
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sudden and significant change in the rheological behavior of MR fluid which is mainly 

manifested as a increase  in the dynamic yield stress or the apparent viscosity of the fluid 

[15, 40].  This capability of MR fluids to develop a controllable yield stress which is 

drastically related to the applied magnetic field provides a unique feature to interface 

mechanical systems with electrical devices in order to control vibration.  The change in 

the yield stress due to the applied magnetic field is very fast and typically is in the order 

of milliseconds. It should be noted that compared with their Electro-rheological fluid 

counterparts, MR fluids can exhibit an order of magnitude higher yield stress (ranging 

between 50-100 KPa)  and a wider operational temperature range (typically between -40 

o
C to 150 

o
C). Moreover MR fluids are much less sensitive to external contaminants.  

 

Figure ‎2-1: Schematic of “MR”-effect  

The behavior of controllable fluids under applied magnetic field is mainly modeled by 

quasi-static Bingham plastic model. This model which is shown by straight red lines in  

Figure ‎2-2 is mathematically described as [15, 23]                           ( )y yH      

                                                                                                                    (2.1) 

                                                                                                                                     (2.2) 

where τ is the fluid stress, τy is the field dependent yield stress, H represents the magnetic 

field intensity,    is the fluid shear strain rate, and η is the plastic viscosity which is the 

same as the viscosity of the fluid in the absence of the magnetic field. It is noted that the 

Eq. (2.1) describes the behavior of MR fluid under the presence of magnetic field while 

armin
Cross-Out

armin
Pencil
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Eq. (2.2) governs the viscoelastic behavior of the material in which G represents the 

complex shear modulus [23].  

 

Figure ‎2-2: Simple models of MR fluids 

As shown in Figure ‎2-2 and also realized from Eq. (2.1) the dynamic yield strength of the 

MR fluid has strong dependency to the applied magnetic field (stronger magnetic field 

results in higher value of yield stress), however the viscosity of the fluid does not change 

according to Bingham plastic model. The variation of viscosity of MR fluid in post-yield 

has been described by Herschel-Bulkley model [4, 30]. This model is depicted in  

Figure ‎2-2 by green curves. In this model the shear stress in MR fluid is expressed by 

[23, 42, 43]  
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                                       (2.3) 

                                                  

in which k and n are regarded as consistency index and power-low index, respectively. 

The post yield region can be described either as shear thickening (n<1) or shear thinning 

(n>1) shown in Figure ‎2-2. It can be realized that the Bingham model is a linear form 

(when n=1) of Herschel-Bulkley model [2]. Although Herschel-Bulkley results in more 

accurate model of rheological behavior when adequate experimental data are available, 

due to simplicity of Bingham plasticity model, it is most often used for design of MR 

dampers [4].  

2.3. Mathematical Modeling of MR valves 

In this section, the quasi-static model of MR valves is presented. The equations are 

derived based on the assumption that the MR fluid exhibits Bingham plastic behavior and 

the flow is fully developed in the ducts  [15, 23]. The effects of geometry of MR valve on 

the damper performance, controllable force, and dynamic range are also discussed. 

Schematic representation of single-coil valve with annular duct is again shown in Figure 

‎2-3 for the sake of clarity.  
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Figure ‎2-3: Schematic configuration of a single-coil MR valve and damper. (a) Single 

coil MR damper [18], (b) single coil MR valve [15]  

When the coil is electrified, a magnetic circuit appears as shown in the figure. At the two 

end flanges, flux lines are perpendicular to the flow direction which causes a field-

dependent resistance on the flow. The pressure drop developed in such kind of MR valve 

is given by [15, 16, 20] 

3

1

6
2 y

L t
P P P Q c

d R d
 





                                          (2.4) 

According to Eq. (2.4), the pressure drop can be divided into a filed independent viscous 

component     and an applied filed dependent induced yield stress component      . In 

the above equation, Q is volumetric rate of flow, η is the viscosity with no applied 

magnetic field and τ is the yield stress developed as result of applied filed. L, d and w are 
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also length, fluid gap and the pole length of the MR valve, respectively as shown in 

Figure  2-3. R1 is the average radius of the annular duct given by R1 = R−dh−0.5d. 

The parameter c is a coefficient which depends on the flow velocity profile, and it has a 

value varying from 2.07 to 3.07. The coefficient c can be approximately estimated as 

follows [16, 17] 

2

1

12
2.07

12 0.8 y

Q
c

Q R d



  
 


                                                                                             (2.5) 

As it can be realized, the second term in Eq. (2.4) can be continuously controlled by the 

intensity of the magnetic field through the MR valve ducts. This is the dominant term of 

the damping force, which is expected to have a significant influence on MR damper 

design [17]. 

The developed yield stress τy in the MR fluid due to the applied magnetic field has been 

typically characterized for different MR fluids. In this research study, the commercial 

MR fluid (MRF132-LD) from Lord Corporation [30] has been used.  

The experimentally generated yield stress (τy) in this kind of MR fluid as a function of the 

applied magnetic field intensity (HMR) is analytically expressed as [17, 18]:  

2 3

0 1 2 3y MR MR MRC C H C H C H                                                                                           (2.6) 

in which  the unit of the yield stress is kPa, and the unit of magnetic field intensity is     

kAm
−1

. The coefficients C0, C1,C2, and C3 are respectively identified as 0.3, 0.42, −0.001 

16, and 1.0513 × 10
−6

 [17, 18]. It should be noted that the least square curve fitting 

method has been employed on experimental data to obtain the approximate polynomial 

function. The variation of yield stress versus the magnetic field intensity according to   

Eq. (2.6) is also plotted in Figure ‎2-4.   
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Figure ‎2-4: Yield stress of the MR fluid as a function of magnetic field intensity 

It is noted that in order to calculate the pressure drop of the MR valves, first its magnetic 

circuit should be analyzed to calculate the magnetic field intensity in the activation 

region. Then, from the magnetic circuit solution, the yield stress of MR fluid in the active 

volume (the volume of the MR fluid where the magnetic flux crosses) can be determined 

by Eq. (2.6) , and consequently the pressure drop can be obtained using Eq. (2.4). 

2.4. Performance Indexes  

In this section, operational and performance functions of MR damper/valve which can be 

considered as objective functions in optimization problem are systematically introduced 

and formulated.  
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2.4.1. Damping Force 

The pressure drop and damping force of MR dampers are the most important operating 

parameters. Generally in design optimization of MR valve one of the main objectives is 

to identify the optimal geometry of valve in order to maximize the damping force.  

The damping force of a MR damper is governed by the damper’s geometry, input 

electrical current to the electromagnet, the characteristics of MR fluids and the motion of 

the damper. By assuming a quasi-static behavior of the shock absorber and neglecting the 

frictional force, the damping force of the MR damper can be obtained as  

2 1( )d p p sF P A P A A      (2.7) 

Where Ap and As are, respectively, piston and piston shaft effective cross sectional areas. 

P1 and P2 are the pressure in the upper and lower chamber of MR damper, respectively. 

The pressure in the gas chamber, Pa is approximated equal to the pressure in the lower 

chamber,P2. Thus, we may write 

1

2

a

a

P P P

P P

 


                         (2.8)

in which the ΔP is the pressure drop of the MR fluid flows through passing the orifice 

gap of the valve. The pressure drop ΔP can be calculated by Eq. (2.4). The pressure in the 

gas chamber can be obtained by [18]: 

0
0

0

a

s p

V
P P

V A x


 

  
  

                         (2.9) 

in which P0 and V0 are the initial pressure and volume of the gas chamber, respectively. 

The parameter γ represents the coefficient of thermal expansion which varies between 1.4 

and 1.7. Now considering Eqs. (2.7) and (2.8), the damping force can be described as:   
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( )d a s p sF P A P A A    (2.10) 

Now by substituting Eq. (2.4) in Eq. (2.10) and considering that and ( )p s pQ A A x 

separating the viscous and filed dependent parts, one may write 

                                                   (2.11) 

where 
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  (2.12) 

and  

 
2   

    MR p s y

ct
F A A

d
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(2.13)

 

The first term in Eq. (2.11) represents the elastic force due to the gas compliance; the 

second term is the damping force due to MR fluid viscosity and the third term represents 

the force due to the yield stress of the MR fluid [18]. As it can be realized, the yield 

dependant term in Eq. (2.13) can be easily controlled by the applied magnetic field and as 

mentioned before, it is expected to have a large effect on the damping force [17].  

2.4.2. Dynamic Range 

The dynamic range of the damper is defined as the ratio of the peak force under 

maximum applied current to that under zero current input. Thus, the equation of dynamic 

range can be described as [17]: 

    
           

       
                                                                         (2.14) 

Since the force term due to gas chamber (Pa As) is a constant term in both of numerator 

and denominator of Eq. (2.14), so it can be eliminated in optimization procedure and as a 

result, it has not been considered in Eq. (2.14).  
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It should be noted that the dynamic range is an important parameter in evaluating the 

overall performance of the MR damper. To provide a wide control range of the MR 

damper, a large value of the dynamic range is desired [17]. 

2.4.3. Valve Ratio 

The valve ratio is defined as the ratio of the viscous pressure drop to the field-dependent 

pressure drop of the MR valve. This ratio has significant effect on the characteristics of 

the MR valve. In design of MR valve, it is desirable to have a small valve ratio as it 

indicates that the regulated pressure of the valve changes slightly with that of the fluid 

flow rate. For a single-coil annular MR valve and considering Eq. (2.4), the valve ratio is 

derived as [15]  

2

1

3

y

P LQ

P d R ct








 


 


   

(2.15) 

As it can be realized, by minimizing the valve ratio, the field-dependent pressure drop of 

MR valve improves significantly [15]. It is clear that valve ratio and dynamic range 

convey the same feature, and as a result only one of them is considered in optimization 

problem. 

2.4.4. Damping Coefficient  

An equivalent viscous damping coefficient can be defined as [44]: 

2

W

 X
eqC

 
                                                                                                                 (2.16) 

where Ceq is the equivalent damping coefficient, W is the work done by the damper 

during one cycle, X represents the amplitude of displacement, and ω is the frequency in 
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radians per second. The equivalent damping coefficient is utilized in calculation of the 

energy dissipation by using MR damper in the system. 

The same theory used for deriving Eq. (2.16); which is based on the energy dissipation of 

the system in one cycle, is employed to derive the equation of equivalent damping 

coefficient of the MR damper. The yield stress of the MR fluid modeled by Bingham 

plastic model described as Eq. (2.1) allows to define the non-dimensional Bingham 

number, Bi, introduced as [1]: 

0

y
Bi

v
µ

d


   (2.17) 

where  

0

p
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d

A
v v

A


  

(2.18) 

Here Ap is the area of the piston face (i.e., π R
2
), Ad is the cross-sectional area of the fluid 

annulus, v0 is the mean fluid velocity though the fluid annulus, and vp is the velocity of 

the piston. Ap and Ad are typically found once when the geometries of the valve are 

defined. 

The Bingham number in Eq. (2.17) is used to determine non-dimensional plug thickness. 

The non-dimensional plug thickness expresses the ratio of the gap width in which the MR 

fluid behaves as a solid due to MR effect. Wereley and Pang [1] showed that the non-

dimensional plug thickness,  , is solved by the following cubic equation:  

31 3 6
( ) 1 0 0 1

2 2

p

d

A

A Bi
         (2.19) 
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To derive the equivalent viscous damping coefficient of the MR valve, the duct in the 

valve; which the MR fluid passes, is divided to three regions as shown in Figure  2-5. 

These regions are active volume at either end of the valve described as regions 1 and 3, 

respectively, and the central passive volume identified as region 2 in Figure  2-5. 

 

Figure  2-5: Active and passive volume regions in MR valve [19]  

The length of region 1 and 3 are each half the active length LA and the length of the 

passive region is assumed to be LP. With assuming to have constant annular cross section, 

the volumetric flow rate through these defined regions can be calculated as [19]: 
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In all above equations ΔP is the pressure drop along the length of each volume. It is noted 

that Ad is for the approximation of the rectangular duct. Continuity dictates the same 

volume flux trough all the defined volumes. Thus, 

1 2 3 p pQ Q Q A v     (2.23) 
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By substituting Eq. (2.23) into Eqs. (2.20)-(2.22), one may calculate the pressure drops in 

the volumes as:  

1 2
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The total pressure drop for the valve is the summation of the individual pressure drops. 

Also the damping force over the piston area is equal to the total pressure drop. Thus 
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                           (2.27) 

Considering that the damping force is the multiplication of equivalent damping 

coefficient with the velocity of the piston as F=Ceqvp , equivalent damping coefficient of 

an active MR damper can be derived as [19]:  
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In Eq. (2.28), the term 
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beside the brackets is the damping C for off-mode 

configuration. Dividing Eq. (2.28), by this term one may write 
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Rosenfield and Wereley [19], introduced the damping coefficient (Ceq /C) as objective 

function. The damping coefficient is defined as equivalent damping of an active mode 

MR valve compared to off-mode of MR damper (zero current).   

2.4.5. Inductive Time Constant of the Valves 

For real-time control applications, fast time response of the system is desired. Therefore, 

in MR valve design, the inductive time constant of the valve is an important factor to 

implement MR damper in practical application. The inductive time constant of the valves, 

can be stated as 

in

w

L
T

R


  

(2.29) 

where  Lin is the inductance of the valve coil given by c
in

N
L

I


 and Rw is the resistance 

of the coil wire which can be described as [16] : 

w w w c

w

r
R L r N d

A
                                                                                                   (2.30) 

in which Lw  is the length of the coil wire and I is the electric current applied to the valve, 

Aw is the cross sectional area of the coil wire, Ac is the cross sectional area of the coil; and  

Nc = Ac/Aw is the number of coil turns [20]. r also represents the resistivity of the coil 

wire which is equal to 0.01726×10
-6

 Ωm for copper wire. The term            
 

 
  

is the average diameter of the coil and represents the magnetic flux of the valve coil and 

is given by 

1
2

MR
R B    (2.31) 

where 1 2h
dR R d    and  
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in which BMR (s) is the magnetic flux density of MR fluid along the pole length at active 

area in each nodal point. In current work, we rewrite and simplify the equation of 

inductive time constant of the MR valve which has been derived as follows 
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It should be noted the magnetic flux density is not constant along the pole length. Thus in 

order to calculate the time constant the average magnetic flux density (B) passing across 

the MR ducts is used as given in Eq. (2.32) in which the flux density is integrated along 

the defined path and then dividing by the path length. 

Higher pressure drop and the smaller time constant require the higher applied current to 

the coil. However, the maximum electrical current is limited by the coil wire to resist the 

current. In case that the required pressure drop and time constant cannot be satisfied, it is 

necessary to increase the constrained volume of the valve. Koo et al. [25] provided a 

comprehensive review on the response time of magnetorheological (MR) dampers. They 

evaluated various electrical currents, piston velocities and system compliance and time 

response of driving electronics and their effect on the response time of MR dampers.  
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Chapter 3 Finite Element and Response Surface Modeling 

3.1. Introduction 

As discussed in chapter 2, in order to evaluate the MR damping force, valve ratio and 

inductive time constant of the MR valve, it is necessary to calculate magnetic field 

intensity across the duct as developed yield stress directly depends on the applied 

magnetic filed in the activation region. Due to the geometrical complexity of the valve, it 

is very difficult to analyze the magnetic circuit in the MR valve analytically [17, 18, 20]. 

Thus in general numerical technique mainly based on the finite element method is 

employed.  Here we have developed a parametric design language (APDL) code to 

parametrically construct the finite element model of the MR valve in the ANSYS 

environment.  

Design of experiments (DOE) techniques [45] are utilized to build up design variables 

sets which are the geometrical input data of ANSYS file. After finding the output results 

(average field intensity and average flux density) for each set of design variables, 

response surface method (RSM) is used to fit polynomial functions to the output results. 

The derived RSM functions will be tested to evaluate their accuracy to effectively predict 

the magnetic field intensity and magnetic flux density in the entire design space. These 
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analytical functions are subsequently used to calculate the resultant yield stress from the 

available fitted polynomial yield stress–flux density curve of the MR fluid.  

3.2. Magnetic Field Analysis  

To analyze the magnetic circuits the Kirchoff’s law can be employed as follows: 

k k cH l N I                                                                                                                (3.1) 

where Hk is the magnetic field intensity in the k
th

 link of the circuit and lk is the overall 

effective length of that link. Nc is the number of turns of the valve coil and I is the applied 

current in the coil wire. The magnetic flux conservation rule of the circuit can be sated as  

k kB A    (3.2) 

where   is the magnetic flux of the circuit, and Ak and Bk are the cross-sectional area and 

magnetic flux density of the k
th 

link, respectively. At low magnetic field, the magnetic 

flux density, Bk , increases in proportion to the magnetic filed intensity Hk as follows:  

k k kB H  0   
(3.3) 

where μ0 is the magnetic permeability of free space (μ0 = 4π 10
−7

 T m A
−1

) and μk is the 

relative permeability of the k
th

 link material. As the magnetic field increases, its 

capability to polarize the magnetic material reduces and the material becomes nearly 

magnetically saturated. Basically, a nonlinear B–H curve is used to express the magnetic 

property of a material. 

As mentioned in the introduction, since the magnetic circuit of the valve is too 

complicated to be analyzed analytically, an approximate analytical based solution of the 

magnetic circuit may be used in general [17, 20]. Using the Kirchoff’s law, magnetic flux 

conservation rule of the magnetic circuit, and assuming that the magnetic field intensity 
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along the effective length of each link of the magnetic circuit is constant, the relation 

between filed intensity in the MR fluid, HMR  , and the applied current I can be 

approximated as [16, 18] : 

2

c
MR

N I
H

d
                                                                                                                                (3.4) 

In which Nc, d and I represent the number of coil turns, the gap size of the valve and 

electrical current to the coil of the valve, respectively. So it can be concluded that the 

relationship between I and HMR is linear.  

However, due to many simplified assumptions these approximate solutions may not 

render accurate distribution of magnetic filed in the activation region. Considering this, in 

order to find the accurate distribution of the magnetic field intensity across the active 

length which the MR fluid is exposed to magnetic field, the finite element method (FEM) 

has been recently employed [15, 17, 18, 39].   

3.3. Finite Element Analysis  

In the current study, commercial FEM software ANSYS is used to analyze the magnetic 

circuit problem in the MR valve. Because the geometry of MR valve structure is 

axisymmetric, to reduce the computational cost a 2-D axisymmetric model is used to 

develop the finite element modeling of the valve for the purpose of electromagnetic 

analysis. The magnetic flux density (B) and magnetic field intensity (H) in the MR fluid 

under applied current of 1 Amp are determined in a few geometrical dimensions well-

chosen by DOE. 

A log file in the ANSYS has been developed in which the design variables (DVs) such as 

the coil width (w), the pole length (t), the MR orifice gap (d), and the housing thickness 
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(dh) are coded as parametric variables. These design variables are clearly shown in  

Figure ‎1-3, in chapter 1. As the geometric dimensions of the valve structure are varied 

during the optimization process, the meshing size has been specified by number of 

elements per line rather than by element size. Figure ‎3-1 shows a schematic of a 2-D 

axisymmetric MR damper piston and its components.  

 

Figure ‎3-1: 2-D Axisymmetric MR damper valve 

3.3.1. Approach and Assumptions 

In modeling of an electromagnetic problem in ANSYS environment, static (DC) current 

is applied as a current density shown by J which is given by the number of turns (Nc), the 

current (I), and the coil area (A) as [46] : 
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cN I
J

A
   (3.5) 

From the Kirchoff’s law as presented in Eq. (3.1), it can be concluded that the 

relationship between electrical current and magnetic field intensity of MR fluid in the 

valve is linear. Therefore, without losing any generality, the FEM problem is solved for   

I =1 Amp. 

In the modeling, it is assumed that the flux leakage out of the perimeter of the inner and 

outer piston, shown in Figure ‎3-1, is small enough to be negligible. This assumption is 

applicable when flux is contained in an iron circuit [39, 46]. The assumption of no 

leakage at the perimeter of the model means that the flux will be acting parallel to this 

surface and it is imposed by the "flux parallel" boundary condition placed around the 

model.  

The magnetic field intensities are calculated in nodal points for the inner piston, MR fluid 

and the outer piston, by means of Maxwell stress tensor and a virtual work calculation 

[39]. 

As mentioned before, since in this study, during the optimization process the geometry of 

the problem may be changed, the mesh size is specified by the number of elements per 

line rather than by element size. The number of element on the lines across the MR fluid 

orifice is specified as a parameter called the basic meshing number. The number of 

elements of other lines in the model is selected as a product of the basic meshing number 

and an appropriate scalar. 

As it is well known, using fine meshes results in more accurate result. However, a small 

meshing size increases computational cost. Here, we have conducted several simulations 
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with different mesh size in order to find optimum mesh size which generates accurate 

results efficiently. It has been found that the basic meshing number 10 is accurately 

sufficient to ensure the convergence of the finite element solution. This basic meshing 

size is also reported in some previous works [17, 18, 20].  Thus, the basic meshing 

number of 10 is used in this study. Figure ‎3-2 shows the finite element model of the MR 

valve. 

 

Figure ‎3-2: Finite element model of the Single-coil MR valve 

3.3.2. Element description 

For solving coupled problems of 2-D magnetic, thermal, electrical, piezoelectric, and 

structural both PLANE 53 and PLANE 13 can be utilized as candidate elements. To keep 

the model size small, the lower-order element PLANE 13 is usually used [15]. Here, the   

4-node quadrilateral element PLANE 13 as shown in Figure  3-3 is used for the finite 

file:///C:/Users/armin/ans_elem/Hlp_E_PLANE13.html
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element model. It is noted that this element has nonlinear magnetic capability for 

modeling B-H curves.  

 

Figure ‎3-3: Geometry of element PLANE 13 [46] 

3.3.3. Input Data 

In electromagnetic problems, defining the system of unit is very important. Since the 

metric unit is used, the software assigns the value of μ0=4     -7
 H/m as the magnetic 

permeability of free space. For the elements representing the MR fluid and also the steel 

used for housing, B-H curves shown in Figure  3-4 are assigned. These properties are 

taken from other published works [15, 16]. 

file:///C:/Users/armin/ans_elem/Hlp_E_PLANE13.html
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Figure ‎3-4: Magnetic properties of silicon steel and MR fluid. (a) B–H curve of silicon 

steel, (b) B–H curve of MR fluid [15, 16] 

According to Figure  3-4, the equivalent relative permeability of the material can be 

estimated to be μ = 1600 and the magnetic saturation is Bs = 1.5 T for the silicon steel; 

and the equivalent permeability and magnetic saturation of MR fluid can be estimated to 

be μmr = 4.5 and Bs,mr = 1.7 T, respectively [15, 16]. It should be mentioned that relative 

permeability can be calculated by the slope of the straight lines in the B-H graphs and 

Eq.(3.3).  

Magnetic properties of the valve components used in the FEM analysis and optimization 

are provided in Table  3-1. The base viscosity of the MR fluid, flow rate of the MR valves 
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and  piston velocity are assumed to be η = 0.092 Pa.s ,Q = 3 ×10
−4

 m
3
 s

−1
 and vp = 0.4 m 

s
−1

, respectively [15]. 

Table ‎3-1: Magnetic Properties of the valve components 

Valve Components Material Relative Permeability Saturation Flux 

Valve Core Silicon Steel 2000 1.5 T 

Valve Housing Silicon Steel 1600 1.5T 

Coil Copper 1 - 

MR fluid MRF 132-DG B-H curve (Figure  3-4) 1.7 T 

According to Figure ‎3-4, at a specific electrical current value the valve performance 

reaches saturation due to the magnetic saturation of the valve components especially in 

MR fluid region. In addition, the power consumption is almost linearly increased with the 

applied current. Therefore, it is really important to be aware of the maximum of the 

applied current in the optimal design of the MR valve for its effective application (high 

performance and low power consumption), and also to avoid magnetic saturation of MR 

fluid.  

3.3.4. Output data 

The primary output of the written code in ANSYS is magnitude of magnetic field 

intensity H which is the vector magnitude of H, defined by 

2 2

x yH H H 
  

(3.6) 

where Hx and Hy are magnetic field intensity components along the x and y axes. The 

same as for magnetic field intensity, the vector magnitude of magnetic flux density, B, is 

defined as  
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2 2

x yB B B                                                                                                                  (3.7) 

where Bx and By are magnetic flux density components along the x and y axes [46]. The 

magnetic flux density has been evaluated for the initial design of (t=15 mm, w=8 mm, 

dh=5 mm, d=1 mm) at applied current 1 Amp. Figure  3-5 shows a 3-D view of vector 

magnitude of magnetic flux in the valve. The 2-D presentation of the magnetic flux 

density and magnetic flux lines are respectively shown in Figure  3-6 and Figure  3-7.  

 

Figure ‎3-5: Magnetic flux density with 3-D view in the valve 
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Figure ‎3-6: Finite element solution of magnetic flux density in the valve magnetic circuit 

at initial design variables 

 

 

Figure ‎3-7: Magnetic flux lines in the MR valve 
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The variation magnitude of magnetic flux density vector along the effective length (line 

AB in Figure ‎3-7) is demonstrated in Figure ‎3-8. 

 

Figure ‎3-8: Magnetic flux density B along line AB at initial design variable 

As it can be seen from Figure ‎3-8, the maximum magnetic flux density in the MR fluid 

along the orifice of the valve is about 1.32 T. This flux density is less than 1.7 T, which is 

the saturation flux density of MR fluid. It can also be realized from the Figure ‎3-8 that B 

and H are not constant along the pole length. Therefore, for the purpose of design 

optimization, the average values across the MR valve ducts have been used. To achieve 

this, a path is defined along the MR active volume where the magnetic flux crosses. Then 

the averages are determined by integrating the magnetic field intensity along the defined 

path and then dividing it by the path length. Thus, the magnetic flux density and magnetic 

field intensity are calculated as follows [17, 18] : 
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 
0
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B s ds
B

t



                                                                                                         (3.8) 

 
0

 
t

mr

mr

H s ds
H

t



                                                                                                        (3.9) 

where Bmr(s) and Hmr(s) are the magnetic flux density and magnetic field intensity at each 

nodal points located on the defined path. The yield stress of the MR fluid caused by the 

magnetic circuit is then calculated from the polynomial curve of the yield stress, given by 

Eq. (2.6). As discussed in chapter 2, once the yield stress of the MR fluid in the duct is 

obtained, the magnetic field dependent damping force and valve ratio can be calculated 

by using Eqs. (2.13) and (2.15) in Chapter 2, respectively.  

3.4. Response Surface Method (RSM) 

In this section, response surface methodology (RSM) is introduced. The optimal sets of 

design variables are designed by “Design of Experiments” techniques. Then, finite 

element analysis will be conducted on these sets of design variables. RSM is basically 

employed to map analytical functions to the finite element based values of magnetic flux 

density and magnetic field intensity corresponding to design variable sets. The accuracy 

of the assigned functions will then be evaluated.   

The objective here is mainly to find approximate response functions which can accurately 

model the magnetic flux density and magnetic field intensity across the entire design 

region. This will allow doing optimization outside the ANSYS environment by 

combining the developed response functions with high-fidelity optimization algorithms. 

It was mentioned that in most of the previous works, the design optimization of MR valve 

or dampers has been directly conducted in ANSYS environment. This is not only 
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computationally expensive as each optimization run may call the analysis of the model 

several times, but also may render an inaccurate optimum solution due to low order 

optimization method implemented in ANSYS. On the other hand, since output responses 

generated by finite element method are typically noisy, direct using of a higher order 

gradient based optimization algorithm on the finite element results is not possible as the 

gradient may not be obtainable. In addition, numerical calculation of the gradients may 

also spurious due to the noisy nature of the responses.  Moreover, in case of non-gradient 

based algorithms such as genetic algorithms, a higher number of iteration is required to 

obtain the results which makes the procedure highly computationally expensive. As a 

result, here an alternative method is used which is based on approximation techniques 

[47].  For this purpose meta-models are used to develop the approximate function of the 

actual model. Meta models are constructed from sample data of an experiments or 

computer simulation like FEM. Therefore, a more practical approach is to perform FEM 

at a few well-selected points in the design domain and fit an analytical function to the 

results by the use of RSM. The RSM based responses are smooth and thus they can be 

effectively used in any gradient based or non gradient based optimization algorithms 

[45]. 

3.4.1. RSM Model Building 

Response surface method (RSM) is a methodology to quantify the relationships between 

one or more measured or calculated responses and predictors (here design variables). 

They are typically used with the design of experiments where a set of design variables are 

established to minimize the error of the approximation. RSM is employed to generate the 

best fitted polynomial function to model of phenomenon under investigation over the 
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entire design region based on the defined set of design variables. A detail review of RSM 

is presented in Ref. [48]. 

Regression analysis is usually used in RSM to formulate a polynomial function. The 

approximated RSM based response can be written as  

ŷ X    (3.10) 

where X is the design matrix with size p×q , in which p is the number of experiments and 

q is the number of unknown model coefficients β. The exact output response (in our case 

the direct results of FEM) can be written as 

1 2
ˆ( , ,...., )py y x x x     (3.11) 

in which x1, x2, …, xp are the design variables and ɛ is the error between the accurate 

response y and its approximation ŷ . The approximate function ŷ  should be defined in a 

way that minimizes the error ɛ for all points in the design space. The types of regression 

model between the approximated function and design variables are generally in form of 

polynomial functions as follows: 

2

0

0 0

N N N

i i ij i j ii i

i i j i

y x x x x   
  

                                                                  (3.12) 

The model includes an intercept, linear terms, quadratic interaction terms, and squared 

terms from left to right. Higher order terms would be also considered, as necessary. The 

model parameters can be determined most effectively if proper experimental design is 

utilized to collect the data. The main objective of regression methods is to find the best 

unbiased estimator of coefficients β which minimize the error ɛ. To achieve this, a 

function L, which is the summation of error squared, is typically defined as:  
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2

1

L ( ) ( )
n

T T

i

i

y X y X    


       (3.13) 

To minimize L, we can differentiate L with respect to β and equate it to zero to find β as:  

 
1

T TX X X y


   (3.14) 

It should be noted that in the derivation of the above equation, it is assumed that X
T
X is 

nonsingular. 

Model types 

There are different types of regression models used to build a RSM response. For a model 

with four design variables (x1, x2, x3, x4); which will be used later in Sections ‎3.4.4. and 

‎3.4.6. , linear, quadratic or cubic models can be used as follows: 

(1) A linear model with interaction that includes constants, linear, and interaction terms 

in the following form 

0 1 1 2 2 3 3 4 4 12 1 2 13 1 2

14 1 4 23 2 3 24 2 4 34 3 4

ŷ a a x a x a x a x a x x a x x

a x x a x x a x x a x x

      

   
 (3.15) 

(2) A quadratic model with constant, linear, interactions and squared terms as follows 

0 1 1 2 2 3 3 4 4 12 1 2 13 1 2 14 1 4

2 2 2 2

23 2 3 24 2 4 34 3 4 1 1 2 2 3 3 4 4

ŷ a a x a x a x a x a x x a x x a x x

a x x a x x a x x a x a x a x a x

       

      
 (3.16) 

(3) A cubic form includes constant, linear, interactions, squared and cubic terms as 

follows 



47 

 

0 1 1 2 2 3 3 4 4 12 1 2 13 1 2 14 1 4

2 2 2 2

23 2 3 24 2 4 34 3 4 1 1 2 2 3 3 4 4

123 1 2 3 134 1 3 4 234 2 3 4

2 2 2 2

12 1 2 13 1 3 14 1 4 21 2 1

2 2 2 2

21 2 1 31 3 1 41 4 1 32 3

ŷ a a x a x a x a x a x x a x x a x x

a x x a x x a x x b x b x b x b x

a x x x a x x x a x x x

b x x b x x b x x b x x

b x x b x x b x x b x

       

      

  

   

    2

2 2 2 2

34 3 4 41 4 1 42 4 2 43 4 3

2 2 3 3 3 3

23 2 3 24 2 4 1 1 2 2 3 3 4 4

x

b x x b x x b x x b x x

b x x b x x c x c x c x c x

   

     

 (3.17)  

The model selection is the process that the designer tries to find the best polynomial that 

can approximate the true response. The knowledge about the type and level of interaction 

between variables will facilitate the formulation of the approximate model. So usually, 

different approximate polynomial functions are developed and evaluated based on their 

ability to estimate the results. Based on that, the model with highest accuracy is then 

chosen.  

As it can be realized, meta-models (including the RSM) model the response based on the 

data which is sampled over the entire design space. For this purpose, the multi-

dimensional design region is discretized to selected points. These points represent a 

combination of design variables with different levels which here we call them design sets. 

To minimize the number of required design sets (the selected points), Design of 

Experiments (DOE) is utilized.  

3.4.2. Design of Experiments (DOE) 

DOE is typically carried out to find the best location of points in the design space which 

experiments shall be conducted. In fact, the objective of DOE is to find a desirable 

location in the design space where the response is stable in a specified range of the 

factors. DOE refers to a collection of statistical techniques to select values for design 
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variables to obtain the more accurate response with using minimum number of 

experiments. 

Proper choice of experimental design facilitates the fitting and analyzing response 

surfaces greatly. Some of the features of desirable designs are [45] : 

 To provide a reasonable distribution of data point in design space 

 To allow higher order designs 

 To provide accurate estimations of the model coefficients 

 To avoid a large number of runs  

 To provide the investigation of  model adequacy including the lack of fit 

These features are conflicting and a kind of trade off must be done in design of 

experiments.  

DOE has two main categories classified as classical DOE and computer based DOE. The 

first category deals with physical experiments which typically includes some stochastic 

noise component while the latter is computer simulation based in which repeated 

experiments with identical inputs result in the identical output [49]. 

Classical DOE includes methods such as full or fractional factorial designs, Box-Behnken 

designs, Central composite, randomize block design and Plackett-Burman design [50]. 

For the second category of DOE which is our concern here, different algorithms has been 

introduced and utilized in commercial software of DOE namely as “Point Exchange” , 

“Coordinate Exchange”, “A-optimal”, “D-optimal”, “IV-optimal” design. Among these 

algorithms the last three techniques are frequently used and shown to provide the most 

accurate estimates of the model coefficients [50].  
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The A-optimal algorithm is used to minimize the average prediction variance around the 

model. This design minimizes the trace of the (X
T
X)

-1
 matrix. This leads to minimization 

of the average prediction variance of the polynomial model [50].  

The D-optimal criteria selects design points in a way that minimizes the variance 

associated with the estimates of the specified model coefficients. A D-optimal design 

minimizes the determinant of the (X
T
X)

-1
 matrix. In other words, it maximizes the 

determinant of D=|X
T
X|, where X is the design matrix of model terms evaluated at 

specific treatments in the design space [50].  

The IV- optimal design selects design points to minimize the average prediction variance 

over the range of the design space [51]. An appropriate objective function for this 

purpose is presented as follows [49] : 

 
21 ˆmin ( ) ( ) ( )

x X

E Y x Y x d x






 
     (3.18) 

where ( )

x X

d x



   is a normalizing function and min


defines that the experimental 

design ω ; which is the set of specified values of design variables x ϵ X; is obtained by 

minimizing the integral over the design domain. E represents expectation that is an 

average over the statistical distribution of the error ɛ, and the weighting of different 

regions of the response is done through differential dμ(x). Typically Gaussian distribution 

is selected as weighting function in which the weight reduces exponentially as the design 

variables moved away from a specific location in design space. In the simplest case that 

weighting function is unity, dμ(x)=d(x) which indicates the same weight over the entire 

design space [49]. IV-optimal designs are best used with RSM [52-54] in which the goal 

mk:@MSITStore:C:/Program%20Files%20(x86)/Stat-Ease/DX8Trial/Dx8Helpfile.chm::/12-AdvancedTopics/A-optimal_Algorithm_(Advanced).htm
mk:@MSITStore:C:/Program%20Files%20(x86)/Stat-Ease/DX8Trial/Dx8Helpfile.chm::/12-AdvancedTopics/D-optimal_Algorithm_(Advanced).htm
mk:@MSITStore:C:/Program%20Files%20(x86)/Stat-Ease/DX8Trial/Dx8Helpfile.chm::/12-AdvancedTopics/IV-optimal_Algorithm_(Advanced).htm
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is to model the true response surface with an appropriate function accurately. It should be 

noted that IV-optimal is known as I-optimal as well.  

While D-optimal designs minimize the variance of coefficient estimates, IV-optimal 

design minimize the average prediction variance across the design space. As a result,   

IV-optimal designs are more effective for prediction [53, 54]. Detail explanations of 

variable selection algorithms and model building by use of these optimal models are 

presented by Adams [51, 55]. In this work, According to the survey which has been 

presented briefly, IV- optimal design is employed.  

3.4.3. Implementation of RSM to Model Magnetic Responses in MR valve   

In this study, as mentioned before, the design variable of MR valve are selected to be t, 

w, dh and d as shown in Figure ‎1-3. The lower and upper bonds on these design variables 

are as follows:  

8.5     20 

5     15 

3     8 

0.8     1.2 

mm t mm

mm w mm

mm dh mm

mm d mm

 

 

 

 

                                                                                              (3.19)   

It should be noted that in all previous works [15-18, 20], the gap distance d has not been 

considered as a design variable while in the present work it is treated as a design variable. 

It will be discussed later that cubic model estimates the results better and thus this model 

is used to approximate the magnetic field intensity and magnetic flux density in 

optimization process. As it can be realized from Eq.(3.17), a cubic model has 36 

coefficient terms which requires the same number of design point to map a function to 

results. Table  3-2 and Table  3-3 show the design of experiments and FEM results at each 

run for quadratic and cubic models, respectively. As mentioned before, IV-optimal design 

mk:@MSITStore:C:/Program%20Files%20(x86)/Stat-Ease/DX8Trial/Dx8Helpfile.chm::/12-AdvancedTopics/IV-optimal_Algorithm_(Advanced).htm
mk:@MSITStore:C:/Program%20Files%20(x86)/Stat-Ease/DX8Trial/Dx8Helpfile.chm::/12-AdvancedTopics/IV-optimal_Algorithm_(Advanced).htm
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method has been employed to estimate the sets of design variables. These set points are 

generated by trial version of Design-Expert 
©

 commercial software. The finite element 

code which is built in ANSYS parametric design language (APDL) is run once for each 

set of design variables. After finding the value of magnetic flux density and magnetic 

field intensity for each set of design points, the analytical functions associated to the 

magnetic results are derived by RSM approach. 

Table ‎3-2: Design of Experiments for Quadratic RSM 

t w dh d B (T) H (kA/m) 

16.84 15 3 1.1 1.7 327.288 

8.5 5.5 3 1.08 1.7 309.226 

13.04 10.35 8 0.96 1.7 446.704 

13.1 10.25 5.05 1.2 1.7 373.779 

8.5 5.5 6.5 0.8 1.7 436.593 

8.5 15 6.7 1.1 1.7 569.277 

8.5 5 8 1.2 1.615656 285.942 

20 5 8 0.8 0.66864 118.328 

16.95 15 6.65 0.8 1.7 335.891 

20 10.35 4.95 0.96 1.065573 188.545 

8.5 13 3 0.8 1.7 823.063 

16.59 5.5 3 0.8 1.032459 182.734 

20 5 3 1.2 0.423869 74.989 

15.92 5 6.22 1.05 0.946384 167.467 

20 15 8 1.2 0.794079 140.484 
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Table ‎3-3 : Design of Experiments for Cubic RSM 

t (mm) w (mm) dh (mm) d (mm) B(T) H (kA/m) 

20 5 4.2 0.8 0.6 108.073 

14.08 9.74 5.59 1.01 1.7 377.603 

10.96 5 7.35 1.01 1.562991 276.629 

13.27 5 6.35 0.87 1.438612 254.623 

8.5 15 8 1.2 1.7 409.145 

8.5 14.85 3 0.91 1.7 799.628 

20 9.3 4.08 1.2 0.803483 142.149 

19.6 6 5.85 1.07 0.659976 116.771 

11.38 9.5 7.03 1.2 1.7 409.775 

8.5 14.5 6.73 0.8 1.7 749.535 

20 15 3.67 1.09 1.192041 210.901 

20 15 7.88 0.8 1.0719 189.688 

20 12.35 5.23 0.89 1.278796 226.285 

8.5 5 6.98 1.17 1.642137 290.634 

15.8 12 3.03 1.08 1.864868 329.989 

9.31 5.95 8 0.8 1.7 448.577 

8.5 10.1 7.68 0.98 1.7 623.355 

17.53 8.45 6.9 0.8 1.568252 277.551 

8.5 7.85 3 1.2 1.7 400.892 

20 14.6 3 0.8 1.412086 249.894 

17.36 14.05 6.75 1.19 1.496207 264.727 

19.89 11 8 1.07 1.048701 185.546 

15.29 6.1 8 1.09 1.208991 213.936 

17.41 7 3 0.89 1.091523 193.165 

11.38 10.55 3.6 0.8 1.7 575.423 

8.5 12.7 4.8 1.13 1.7 651.259 

20 5 8 0.87 0.62552 110.69 

8.5 5 3 0.8 1.7 354.875 

10.74 5.5 3.5 1.04 1.5588 275.884 

15.63 5.65 4.5 1.2 0.952149 168.475 

11.38 15 3.25 1.2 1.7 524.093 

16.05 15 4.5 0.85 1.7 420.392 

14.25 12.85 8 0.87 1.7 435.982 

20 5 3 1.2 0.423869 74.989 

11.55 15 6.72 1.03 1.7 461.615 

8.5 7.35 4.84 0.88 1.7 514.323 
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3.4.4. The Response Surface Function (RSM) for Magnetic Field Intensity in the MR 

Valve 

The function of magnetic field intensity (H) is required in optimization process to 

calculate the objective function. Therefore, developing a smooth analytical function of H 

in terms of design variables is desirable. Considering the design points presented in Table 

 3-2 and fitting the quadratic RSM model on these points, one may derive the following 

quadratic equation for magnetic field Intensity in the MR valve:  

2

2 2 2

1026.58308 51.32332 153.91542 34.83763

1414.78545 2.25740 0.91123 43.71887

2.95229 22.37401 10.68398 0.23797

3.08801 3.50658 354.34617
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 (3.20) 

Considering Table  3-3 and fitting the cubic RSM model on these points, the following 

cubic function can be derived:  

2 2 2 2
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 (3.21) 

Figure  3-9 and Figure  3-10, show the cubic mapped surfaces to H response. Since there 

are four variables it is impossible to show the variation of H versus all the design 

variables simultaneously. So in each figure, two of factors are kept fixed and the 

responses are drawn versus the other two factors. 
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Figure ‎3-9: Surface of cubic model of Hmr for d=1 mm and dh=7 mm 

 

Figure ‎3-10: Surface of cubic model of Hmr for w=10 mm and dh=8 mm 
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In design response method, sometimes the contour of the response is shown to explain 

the nature of the response. An example of this kind of contours is shown in Figure  3-11.   

 
Figure ‎3-11: Contour of cubic Hmr for dh=5.5mm and d=1mm 

Since Hmr is the most dominant and important state variable that is utilized in other 

calculations, it is necessary to investigate the accuracy of the developed approximate 

function. It is noted that Hmr and Bmr are directly related and thus, the accuracy of one 

function is inferred from the accuracy of the other one.  

3.4.5. Model Accuracy Checking 

It is always necessary to examine the accuracy of developed model to ensure that it 

provides an adequate approximation of true response. One of the typically used quantity 

to check the ability of model to identify the variation within the output response is the 

coefficient of multiple determination R
2
 [45] . It is defined as:  



56 

 

2 1
SSE

R
SST

                                                                                                                 (3.22) 
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in which    is the real output response, here calculated by FEM,     is the approximate 

response determined by RSM,    is the average of real response, and n is the number of 

design points to generate the model. R
2
 values vary between 0 and 1, where values close 

to 1 mean that the approximate model has high ability to explain the response in the 

design space.  

Also in statistic the mean absolute error (MAE) is a used quantity to measure the 

accuracy of the predicted results to true ones are. MAE is defined as follow:   
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                                                                                                   (3.25) 

To check the accuracy of the developed models, R
2
 and MAE has been calculated for both 

quadratic and cubic models and the results are summarized in Table  3-4.  

Table  3-4: Accuracy of RSM models 

RSM Model R
2
 MAE 

Quadratic 0.9325 2.2% 

Cubic 0.9955 1.4% 
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As it can be realized, the introduced RSM cubic function of H defined by Eq. (3.21) can 

describe the response very well as R
2
 value is very close to 1. In addition, the calculated 

MAE is 1.4% which proves the ability of the developed model to estimate the true 

response across the entire design space.  

To show the results graphically, the variation of the magnetic field intensity versus the 

coil width is shown in Figure ‎3-12. For this purpose the other design values are assumed 

to be constant. 

 

Figure ‎3-12: Variation of magnetic field intensity versus coil width (w) for t=15 mm, 

dh=5 mm and d=1 mm 

As Figure  3-12 shows, developed cubic function by RSM is able to model true response 

obtained from FEM precisely all over the design variable range. On the other hand, 

although the derived quadratic function by RSM can model the response (especially in 

the middle range of the design variable) properly, it is not as precise as the cubic 
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function. As a result, the cubic function has been selected to model the magnetic flux 

density and magnetic field intensity in the present work. 

3.4.6. The Response Surface Function of Magnetic Flux Density in the MR valve 

The magnetic flux density (B) in the MR fluid across the ducts is an important constrain 

in the optimization problem. In order to avoid saturation of MR fluid design, the designed 

geometrical dimensions of the valve and applied electric current should be in proper 

range. Therefore, having the value of magnetic flux density in terms of geometric 

parameters is highly desired to consider it as a constrain function.  It is worth to point out 

that the B and H are related as stated with B-H curve of the MR fluid. Since the 

relationship between them is not a linear function, the same procedure has been 

performed to find the response function for B. Using the selected set of design variables 

presented in Table  3-2 and fitting the quadratic model of RSM, the following quadratic 

function can be derived for magnetic flux density in the valve:  

2 2

2 2

1.02710 0.15727 0.11020 0.31972

1.22028 6.71014 3 4.10390 3

0.10492 3.92556 3 3.66430 3
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2.35249 3 0.71551
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 (3.26) 

Considering Table ‎3-3 and fitting the cubic RSM model on these points, the following 

cubic functions can be derived for magnetic flux density of MR fluid in the valve:   
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 (3.27) 

Figure  3-13 shows the variation of response function of B with respect to selected design 

variables. Since there are four design variables, it is impossible to show the variation of B 

versus all the design variables in one plot simultaneously. So in the figure two of factors 

are kept fixed and the responses are drawn versus the other two factors. 

 

Figure ‎3-13 : Surface of cubic model of Bmr for dh=5.5 mm and d=0.8 mm 
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As it can be seen in the figure, magnetic flux density has a high level of nonlinearity. The 

contours of constant magnetic flux density are also demonstrated in the base plane. As it 

can be realized, it is possible to have the same value for B in different MR valves while 

their geometrical dimensions are different. Moreover, the surface shows that the 

maximum value of B in valves is limited by the magnetic saturation of the employed MR 

fluid.  

3.5. Conclusion   

In this chapter a robust tool was introduced to make continuous analytical functions out 

of the finite element results. This chapter is a great step in optimal design of MR damper. 

It was discussed that all the previous published works which took the advantages of FEM 

to analysis the magnetic circuit of the MR valve, performed the optimization procedure in 

ANSYS environment. However, employing first order optimization methods in ANSYS 

optimization toolbox is not reliable enough to solve an optimization problem which has 

high order of nonlinearity in both of objective and constrained functions. Moreover, 

performing optimization process in ANSYS environment is computationally expensive 

and takes long time as at each optimization run the analysis of finite element model is 

recalled several times. 

So as a practical approach, the finite element analysis has been performed at a few well-

selected points using DOE techniques over the entire design space. Then, by taking 

advantages of RSM technique, continuous analytical function were built based on 

discrete results of ANSYS at the selected points. The developed functions are able to 

model the output result of FEM across the design space effectively. These functions are 
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polynomials in terms of design variables. Having these mapped polynomial functions will 

facilitate the use of more advanced optimization methods.  
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Chapter 4 Optimization 

4.1. Introduction 

Performance functions of MR dampers which can be considered in optimal design of MR 

valves were introduced in Chapter 2. In vehicle suspension design, the suspension travel 

and the ride comfort are the two conflicting performance indices that should be 

considered in optimal design of MR dampers procedure. A high damping force is 

required to reduce the suspension travel. On the other hand, to improve the ride comfort, 

a low damping force is expected. Thus, a large dynamic range is required. Moreover, 

improving the controllability of the suspension system needs fast time response of the 

MR valve [18]. In evaluating the overall performance of MR dampers, the controllable 

force and dynamic range are the two most important parameters [24]. Considering the 

equation of the force due to the yield stress of the MR fluid which has been described by 

Eq. (2.13), it is realized that the controllable force range is inversely related to the gap 

size d. To maximize the efficiency of the MR damper, the controllable force should be as 

large as possible which demands a small gap size. 

According to Eqs. (2.12) and (2.13), the viscous force increases faster than the 

controllable force with decreasing of the valve orifice gap size. Both the controllable 
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force and viscous force decrease as the gap size increases. In addition yield strength, τy , 

is also influenced by the gap size.  

Also as discussed in Chapter 2, the valve ratio is inversely proportional to the square of 

the gap size, d
2
.Thus, a small change of d can cause a large change of the valve ratio, 

especially at small values of d. It is noted that the lower value of the valve ratio, the better 

performance of the valve is. Therefore, there is a tradeoff between the pressure drop and 

the valve ratio. 

Moreover, to decrease the response time, MR valve should be far from its saturation 

phase in the operational range of the valve which demands a design with a wide 

controllable region for the MR valve.  But this is in contrary to having a higher damping 

force. In addition, a lower time constant needs higher resistance which leads to higher 

power consumption and lower useful power ratio. Thus to obtain any practical optimal 

design of MR valves, a multi-objective function shall be considered that includes all the 

performance functions of the MR damper. Considering the above mentioned 

requirements, the following multi-objective function has been proposed [17, 18],  

, ,MR r d r

F d T

MR d r

F T
OBJ

F T


  


                                                                                     (4.1) 

where, FMR, λd and T are the MR damping force, dynamic range, and inductive time 

constant of the damper, respectively. FMR,r, λd,r, and Tr are the reference damping force, 

dynamic range, and inductive time constant of the damper, respectively. 

It should be noted that, the reference damping force, dynamic range, and inductive time 

constant of the damper are obtained from the solution of the MR damper at initial values 
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of design parameters, in which the magnetic flux density throughout the magnetic circuit 

of the damper does not exceed the saturation magnetic flux density of the MR fluid. 

 αF , αd, and αT  respectively represent the weighting factors for the damping force, the 

dynamic range, and the inductive time constant (αF +αd +αT = 1). The values of these 

weighting factors are chosen according to desired application. For instance, for 

suspension systems designed for uneven or unpaved road, a large damping force is 

required. Thus, large values of αF and αT are chosen. On the other hand, in design of 

suspension systems for flat roads, a large value of αd is selected as it provides better ride 

comfort. 

4.2. Numerical Methods for Constrained Optimum Design 

One may write the mathematical model of the optimization problem in this work as

( ) 0,

( )

( ) 0,

i

n i

C x i

Min f x subjected to

x R C x i I

 

  

          (4.2)

where the objective function f(x) and the constraint functions Ci(x) are all smooth and 

real-valued functions on a subset of Rn, and ε and I  represent finite index sets of equality 

and inequality constraints, respectively. 

For solving the optimization problem in form of Eq. (4.2), different algorithms have been 

proposed in which the most practical ones are [56]  

 quadratic programming 

 penalty and augmented Lagrangian methods 

 sequential quadratic programming (SQP) 

 interior-point methods for nonlinear programming 
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One of the most effective and popular methods for nonlinear constrained optimization 

problems is sequential quadratic programming (SQP) approach [56]. SQP generates steps 

by determining quadratic subproblems. This approach can be applied either in line search 

or trust-region frameworks, and is appropriate for both small and large problems. In 

contrast to linear constrained Lagrangian methods which are effective when the 

constraints are linear, SQP methods are effective and strong when there are significant 

nonlinearities in the constraints of problems. In SQP method the optimization problem 

defined by Eq. (4.2) is modeled by a quadratic programming subproblem at each iteration 

and the search direction is defined to be the solution of this subproblem. 

Here, SQP method has been employed as gradient-based optimization algorithm. The 

method has been implemented through optimization toolbox of MATLAB
® 

software. 

4.3. Genetic Algorithms for Optimum Design  

Genetic algorithms (GA) are stochastic search optimization methods that the decisions 

made are based on random number generation in most computational steps of the 

algorithms. The algorithms use only the function values in the search process to make 

progress toward an optimum solution without considering how the functions are 

evaluated.  

The strong aspect of GA is that continuity or differentiability of the problem functions is 

neither required nor used in calculations. Thus, the algorithms are very general which can 

be employed to solve all kinds of problems (discrete, continuous, and nondifferentiable). 

Since genetic algorithms do not use the gradients of cost or constraint functions, the 
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methods are easy to apply and program. However they have two main drawbacks listed 

as follow [57]: 

1-Even for reasonable size problems, they require a large amount of calculation.  

2-There is no absolute guarantee that the obtained optimal answer is a global optimum. 

The basic idea of GA is to start with a set of randomly generated designs in design space. 

By using the cost function for unconstrained problems or the penalty function for 

constrained problems, a fitness value is also assigned to each design. From the current set 

of designs, more fit members of the set are randomly selected as subset. Random 

processes are used to generate new designs using the selected subset of designs while 

keeping the size of sets fixed. The successive sets of designs have a higher probability of 

having better fitness values because more fit members of the set are employed to create 

new design set. This process is continued until a stopping criterion is satisfied [57]. Here, 

some important terminologies associated with the algorithm are briefly explained: 

1-Population:  Population is the set of design points at the current iteration. It stands for a 

group of designs as potential solution points. The number of designs in a population 

shown with Np is also called the population size. 

2-Generation: A generation is an iteration of the genetic algorithm which is performed to 

make progress toward an optimum solution. A generation has a population of size Np 

which is referred to the number of randomly selected design points over a defined design 

range.  
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3-Chromosome: Chromosome represents a design point. Thus a chromosome is a design 

of the system; whether feasible or infeasible, which contains values for all the design 

variables of the system. 

4-Gene: This term defines a scalar component of the design vector; i.e., it is the value of 

a particular design variable. 

5- Fitness Function: The fitness function is used to represent the relative importance of a 

design. A higher fitness value means a better design. Although several methods have 

been used to define the fitness function, one may define it by using the cost function 

value as follows: 

max(1 )i iF f f     (4.3) 

where fi is the penalty function value for a constrained problems (cost function) for the ith 

design, fmax represents the largest recorded cost (penalty) function value, and ε is a small 

value (here 10
-6

) to prevent numerical difficulties when Fi becomes 0 [57].  

The basic idea of a GA is to generate a new set of designs (population) from the current 

set in a way that the average fitness of the population is improved. The process is 

continued until meeting a stopping criterion or when the number of iterations exceeds a 

specified limit. 

4.4. Optimal Design of MR Valves 

The optimal solution for single-coil type of MR valves is accomplished in this section. 

The valve is constrained in a cylinder of radius R = 30 mm and height L = 50 mm and the 

bounds of design variables are assigned to be:  
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  (4.4) 

Since a small change in the valve gap size d would change the performance of the valve, 

a fixed gap size has been considered in previous works [15-18, 20] to simplify the 

optimization problem based on first order method. In the current study, the valve gap 

distance is treated as a design variable in all the optimization problems.  

By applying RSM on FEM based results, the analytical functions (3.21) and (3.27) have 

been derived for H and B, respectively.  Since H and B are determined by analytical 

functions in term of design variables, the objective and constrained functions are 

available in the design domain defined by Eq. (4.4). This means that it is not necessary to 

calculate field intensity and flux density by running FEM at each design point and they 

can be estimated directly by substituting design variables in their corresponding 

analytical functions. In current work, constrain function of the optimization problem is 

the magnetic flux density B in MR fluid which has to be less than 1.7 T to avoid magnetic 

saturation. 

Although the wire diameter can be treated as a design variable but since the coil wire 

diameter effect is just imposed as current density in the FE modeling, and current density 

is defined by the applied current over the overall area of the coil, so changing the wire 

diameter does not change the result practically. Nonetheless, Nguyen et al. [20] proved 

that optimal solution does not depend on the wire diameter and it is not necessary to 

consider the wire diameter as a design variable in optimal design of the MR valve. 
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Considering this, here the coil wires is not taken as design variables and it is sized at    

24-gauge (diameter = 0.5106 mm) and the maximum allowable current of the wire is 

considered to be 3 A. The coil wire is made of copper whose relative permeability is 

assumed to be equal to that of free space, μc = 1.  It is noteworthy that the piston-shaft 

area is kept unchanged (As = πRs
2
, Rs= 10 mm) during the optimization process. In 

volume constrained optimization problem the radius of piston area is equal to valve 

radius R which is set as R=30 mm. 

In this section the optimal design of MR valve to optimize damping force, valve ratio and 

inductive time constant are presented respectively. Since, the mathematical formulation 

and thus the corresponding optimization of valve ratio and dynamic range are the same, 

only the first one is studied in present study.  

As discussed earlier in this chapter, in order to develop a comprehensive optimization of 

MR valve for vehicle suspension application, it is necessary to consider conflicting 

design objectives. Ride comfort and suspension travel are two most important conflicting 

performance indexes. A high damping force is required to reduce the suspension travel. 

To improve ride comfort a small valve ratio is desired because it results in low viscous 

damping.  On the other hand, for improving controllability of the suspension system a 

fast time response is desired. Thus a multi- objective function must be formulated that 

considers all the three mentioned performance criteria. Considering this, a multi-objective 

functions which includes all concerned performance indexes may be established as 

follows: 

,MR r
F d T

MR r r

F T
OBJ

F T


  


                              (4.5)  
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The difference between this objective function with the one proposed in [18] which has 

been presented by Eq. (4.1), is that here the valve ratio is taken as objective function 

instead of dynamic range d. It has been discussed in introduction part of this chapter that 

the values of weighting factors αF , αd and αT are selected in optimization problem based 

on related application.  

In this section, the optimal geometric dimensions of the MR damper to minimize the 

above mentioned multi-objective function with different weighting factors are obtained 

by both SQP and GA approaches. Six optimization design cases are investigated. First, 

the optimization design of MR valve considering damping force, valve ratio and 

inductive time constant are studied individually in each separate case. Then, the optimal 

design MR valves considering the multi- objective function defined in Eq. (4.5) are 

presented. Thus, the following optimal design case studies are accomplished: 

Case 1: The objective of the optimization is to maximize the MR damping force   

Case 2: The objective is to minimize the valve ratio of the MR valve  

Case 3: The objective is to minimize the inductive time constant is solved  

Case 4: The objective is to optimize the MR valve for suspension systems especially 

designed for uneven roads.  

Case5: The objective function is to simultaneously optimize the damping force, valve 

ratio and inductive time constant.  

Case 6: The objective is to optimize the MR valve in order to improve ride comfort.   
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4.4.1. Case 1  

The mathematical presentation of the problem is as follow 

,
1.7

MR r

MR

F
Minimize Subjected to B T

F
     (4.6) 

Lower and upper bonds on the design variables are defined in Eq. (4.4). The problem is 

solved with both SQP and GA. For the SQP approach, initial points must be given to 

optimization procedure. Since the optimal solution of the problem is depended on the 

location of chosen initial points, thus, in order to avoid trapping in local optima and as a 

result losing the potential global solution, 500 random initial points are generated and 

optimization is done for all these initial values and the best result is chosen as global 

solution. More discussion on the number of random points is given in following sections. 

In addition, the optimization problem is solved by GA to validate the solution. The GA 

solution is performed in MATLAB
®

 Software. For choosing the proper number of 

population for GA to initiate the solving procedure, some numerical experiments have 

been done. According to our experiments, choosing 2000 and 5000 number of 

populations gives the same results. It is noted that raising the number of population 

increases the computation time drastically, but since the GA is a non-mathematical 

methods so in the developed program for GA, the population is taken as 5000 to enhance 

the probability of approaching to the global optimum results. It is noted that, the numbers 

of initial random points of SQP approach and initial population of GA are kept fixed in 

all optimization cases and the discussion regarding their values will be presented in 

Section 4.4.4 in detail. Moreover, the tolerances for both of feasibility with respect to 

nonlinear constrained and cumulative change in fitness function values are set to 1e-8. 

The results of both methods for Case 1 optimization are presented in Table  4-1. 
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Table ‎4-1: Optimal design of MR valve to maximize damping force 

Design parameters (mm) Damping force, valve ratio and inductive time 

Reference 

(mm) 

Optimal(SQP) 

(mm) 

Optimal (GA) 

(mm) 
Reference Optimal(SQP) Optimal (GA) 

t=15 t=20 t=20 FMR=821.78  N FMR=1392.34N FMR=1044.61 N 

w=8 w=13.1719 w=14.3763 λ=0.0329  N/N λ=0.0399  N/N λ=0.0255   N/N 

dh=5 dh=6.3563 dh=4.7023 T=59.13       ms T=81.39      ms T=71.67     ms 

d=1 d=0.8 d=1 OBJ=1.0000 OBJ=0.5902 OBJ= 0.7867 

As it can be realized, although the results of GA is close to those of SQP, but the latter 

approach provides better results. To explain this, it is noted again that GA is a stochastic 

search optimization method which does not guarantee that the obtained result is a global 

solution; however, the results of GA are close to the global optimum point. While, SQP is 

a mathematical gradient based method and with 500 number of random initial points 

spread through the entire design space the true global solution has been caught. To 

validate this, the optimal geometrical dimensions found by GA were given to SQP 

program as an initial point. It is found that the SQP approaches to the same optimal 

results found before.  

The optimal design of present work is also compared with similar study which has been 

done on the same class of MR damper which has L=50mm and R=30mm. Nguyen et al. 

[16] studied the optimization of MR damper to maximize the yield stress pressure drop of 

the MR damper. It is well known that the pressure drop of the MR damper is related to 

the MR damper force as [16]:  

 MR p s yF A A P                                                                                                                  (4.7) 

in which pressure drop due to the yield stress of MR damper is  
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The above values in the obtained optimal design are c=2.2498, t=20 mm, d=0.8 mm and               

τy=49.27 kPa which gives the pressure drop of ΔPy=55.43 bar. This value shows 48.60% 

increase in yield stress pressure drop compared with ΔPy =37.30 bar reported by Nguyen 

et al. [16]. Even the optimal design found by GA provides c=2.1815, t=20 mm, d=1 mm 

and τy=47.66 kPa. Which yield ΔP=41.58 bar. This value is also about 11.47% larger 

than the one reported in Ref. [16]. 

4.4.2. Case 2 

The mathematical presentation of the optimization problem for this case can be stated as:  

1.7
r

Minimize Subjected to B T



   (4.9) 

Again side constrains are those stated in Eq. (4.4). Here, also the optimization procedure 

has been conducted using both SQP and GA methods with the same considerations of 

optimal design Case 1. The result of the both optimization methods are presented in 

Table  4-2.  

Table  4-2: Optimal design of MR valve to minimize valve ratio 

Design parameters (mm) Damping force, valve ratio and inductive time 

Reference 

(mm) 

Optimal(SQP) 

(mm) 

Optimal (GA) 

(mm) 
Reference Optimal(SQP) Optimal (GA) 

t=15 t=20 t=20 F MR=821.78  N FMR=850.43  N FMR=850.43  N 

w=8 w=15 w=15 λ=0.0329   N/N λ=0.0171   N/N λ=0.0171   N/N 

dh=5 dh=3 dh=3 T=59.13       ms T=70.01       ms T=70.01       ms 

d=1 d=1.2 d=1.2 OBJ=1.0000 OBJ=0.5190 OBJ=0.5190 

As it can be realized in this special case, both SQP and GA methods give exactly the 

same optimal results. The geometric optimal design of MR damper constrained in     
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H=50 mm and R=30 mm is also obtained by Nguyen et al. [15] to minimize valve ratio. 

The comparison of the results is provided in Table  4-3.  

Table  4-3: Optimization results for Case 2  

Optimal results of present work Optimal results reported in Ref. [15] 

t=20 t=17.23 

w=15 W=1.78 

dh=3 dh=7.43 

d=1.2 d=1 

λ=0.0171  N/N λ=0.033  N/N 

As Table  4-3 shows, the valve ratio based on our optimal design is 48% lower than the 

reported in Ref. [15]. 

The reason of such a difference may be attributed to the employment of different 

optimization approach. In Ref. [15],  the optimization procedure is constructed by using 

golden section algorithms and local quadratic fitting techniques which are first order 

methods.  Also in the optimization problem definition, for the w, the range of 5-15 mm 

has been considered while the reported optimal value for w in Ref. [15] is 1.78 mm which 

is out of the range. 

4.4.3. Case 3 

The mathematical presentation for this case is 

1.7
r

T
Minimize Subjected to B T

T
   (4.10) 

where the same side constraints as Eq. (4.4) have been considered. Again, the 

optimization procedure is accomplished by both SQP and GA methods and results are 

provided in Table  4-4.  
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Table  4-4: Optimal Design of MR valve to Minimize Inductive Time Constant 

Design parameters (mm) Damping force, valve ratio and inductive time 

Reference 

(mm) 

Optimal(SQP) 

(mm) 

Optimal (GA) 

(mm) 
Reference Optimal(SQP) Optimal (GA) 

t=15 t=20 t=20 F MR=821.78  N FMR=438.21  N FMR=569.29 N 

w=8 w=6.0417 w=5.8951 λ=0.0329   N/N λ=0.0331   N/N λ=0.0438  N/N 

dh=5 dh=3 dh=3 T=59.13       ms T=17.61       ms T=18.77     ms 

d=1 d=1.1189 d=1 OBJ=1.0000 OBJ=0.2592 OBJ= 0.3174 

As the Table  4-4 shows, there is minor difference between the optimal results of SQP and 

GA. As it was mentioned, although the GA can find the optimal solution close to the 

global optimum solution, but SQP method that utilizes 500 randomly initial points is 

most probably able to capture the true global optimal solution. This is due to proper 

numbers of initial points which are spread over the design domain. It is noted that the 

SQP approach guarantees to find global optima when the selected initial point is located 

in neighborhood of the global optima. 

The only reported research on optimization of inductive time constant in this class of MR 

valve (which has L=50 mm and R=30 mm) is presented in Ref. [20] which reports 

inductive time constant of  40 ms at optimal configuration. This value is about 53% 

higher than T≈18 ms obtained in this study. 

4.4.4. Case 4 

The optimization of MR valve utilized in suspension systems which are especially 

designed for uneven roads is performed in this case. Thus a multi objective function is in 

the form of Eq. (4.5) with weighting factors of  αF = 0.5; αd = 0.2; αT = 0.3 as suggested 

by Ref. [17]. Again similar constrain function (B≤ 1.7) and design variable domain of 

previous cases have been considered. 
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As mentioned before, in SQP method the initial point may have a significant influence on 

the final answer of optimal variables. Figure  4-1 shows the trend of objective function in 

SQP approach starting with different initial points for this case of optimization.  

 
Figure  4-1: Iteration history for objective function in Case 4 

As the figure shows, the optimal values are completely depend on the initial values.  Thus 

selecting the initial vales which are in the vicinity of a locally optimal point prevents 

reaching the global optimal solution. To overcome this problem, a MATLAB
®
 program 

has been developed to generate random points across the whole specified design space 

presented in Eq. (4.4). Then the optimization problem is solved for each generated initial 

points. Finally, the optimal objective functions obtained from each initial point are 

compared and minimum values with corresponding geometrics values are selected. 

Increasing the number of random points will increase the chance to catch the global 

optimal solution. It has been found that increasing the number of random points after 



77 

 

some limits does not change the accuracy of the obtained optimal solution. Therefore, the 

number of random points in SQP approach can be analyzed as a parameter. For better 

clarification, the optimal objective functions versus the number of random points are 

given in Table ‎4-5. As it can be realized, 500 initially generated random points provides 

the global optimal solution.  

Table ‎4-5: The effect of the number of random points on the objective function value in 

SQP optimization 

Number of Random points 1 10 100 500 1000 

Objective Function 0.9708 0.8504 0.8258 0.8202 0.8202 

To check the optimization result obtained by SQP approach, a genetic algorithms based 

optimization program is also developed in MATLAB to solve the optimization problem. 

As mentioned before, for the population of GA, same study has been done and found 

that 2000 population is enough to catch a result which is close enough to global optimal 

solution. The results of the numerical experiment on the population size of the GA are 

provided in Table ‎4-6. Since the GA is not a mathematic based solution, to increase the 

probability of finding the global optimal solution 5000 number of population is used.  

Table ‎4-6 : The effect of the population size on the objective function value in GA 

population size 1000 2000 5000 

Objective Function 0.8732 0.8488 0.8488 

It must be noted that the tolerance value of 1e-8 is selected for feasibility with respect to 

nonlinear constrains in the SQP method and cumulative change in the fitness function 

value in the GA method. It is noted that these parameters are assumed in optimization 

procedures of all six cases.  
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The obtained optimal values for Case 4 are presented in Table  4-7.  

   Table ‎4-7: Optimal design of MR valve for Case 4 

Design parameters (mm) Damping force, valve ratio and inductive time 

Reference 

(mm) 

Optimal(SQP) 

(mm) 

Optimal (GA) 

(mm) 
Reference Optimal(SQP) Optimal (GA) 

t=15 t=20 t=20 F MR=821.78  N FMR=1194.69   N FMR=925.12   N 

w=8 w=9.5160 w=11.5843 λ=0.0329   N/N λ=0.0406     N/N λ=0.027     N/N 

dh=5 dh=3 dh=3 T=59.13       ms T=45.10         ms T=47.37       ms 

d=1 d=0.806 d=1 OBJ=1.0000 OBJ=0.8202 OBJ= 0.8488 

The results show that using randomly selected initial points; the SQP approach was able 

to catch the global optimum point while GA terminates prematurely at a point in the 

neighborhood of global optimum solution.  

As it can be realized from Table  4-7, the optimal results obtained by GA and SQP for          

t and dh are exactly the same. Figure  4-2 shows the variation of the objective function 

versus w and d assuming that t and dh are fixed at their optimal values, 20 mm and 3 mm; 

respectively, according to Table  4-7.  
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Figure ‎4-2: Objective function (αF = 0.5; αd = 0.2; αT = 0.3) versus d and w 

It can be easily seen that at w=9.5 mm and d=0.8 mm, the objective function reaches to 

its global minimum value which is 0.8202. This exactly confirms the optimal results 

caught by the SQP approach. At w=11.5843 mm and dh=3 mm, the objective function is 

0.8488 with is the optimal results generated by GA.  

The above observation, confirms that with adequate randomly generated points, SQP is 

capable to accurately capture the global minimum point while GA due to its stochastic 

nature is not really capable of that. In general GA approach terminates prematurely at 

true vicinity of global optimum solution.    



80 

 

4.4.5. Case 5 

The design optimization of MR valve with considering a multi-objective function in the 

form of Eq. (4.9) with equal weighting factors of αF = αd = αT = 1/3 is studied in this case. 

Again similar constrain function (B≤1.7) and side constrains defined in Eq. (4.4) have 

been considered. The objective is to optimize the damping force, valve ratio and 

inductive time constant simultaneously. The optimal results fund by SQP and GA are 

presented in Table  4-8.  

Table ‎4-8: Optimal design Case 5 

Design parameters (mm) Damping force, valve ratio and inductive time 

Reference 

(mm) 

Optimal(SQP) 

(mm) 

Optimal (GA) 

(mm) 
Reference Optimal(SQP) Optimal (GA) 

t=15 t=20 t=20 F MR=821.78  N FMR=742.90  N FMR=742.90  N 

w=8 w=5 w=5 λ=0.0329   N/N λ=0.022    N/N λ=0.022    N/N 

dh=5 dh=6.0908 dh=6.0908 T=59.13       ms T=39.51       ms T=39.51      ms 

d=1 d=1.2 d=1.2 OBJ=1.0000 OBJ=0.8157 OBJ=0.8157 

As it can be realized, both SQP and GA methods give exactly the same optimal results in 

this special case.  

4.4.6. Case 6 

In this case the optimization is conducted in order to design the MR valve to improve ride 

comfort. Thus, a multi-objective function with weighting factor of αF = 0.2; αd = 0.4;    

αT = 0.4 as suggested in Ref. [18] has been utilized. It is again noted that to improve ride 

comfort, the damping force due to MR fluid viscosity should be small. Therefore, a small 

value of valve ratio is desired. It is worth mentioning that the objective function is 

subjected to constrain function (B≤ 1.7) to avoid magnetic saturation along the valve 
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orifice gap. Again, the same side constrains given by Eq. (4.4) is considered. The results 

of optimal solution caught by SQP and GA are presented in Table  4-9. 

Table  4-9: Optimal design of Case 6 

Design parameters (mm) Damping force, valve ratio and inductive time 

Reference 

(mm) 

Optimal(SQP) 

(mm) 

Optimal (GA) 

(mm) 
Reference Optimal(SQP) Optimal (GA) 

t=15 t=20 t=20 F MR=821.78  N FMR=658.58  N FMR=847.87  N 

W=8 W=5 W=10.4522 λ=0.0329   N/N λ=0.0231   N/N λ=0.0295  N/N 

dh=5 dh=5.1759 dh=3 T=59.13       ms T=33.89       ms T=38.80      ms 

d=1 d=1.2 d=1 OBJ=1.0000 OBJ=0.7496 OBJ= 0.8147 

As it is realized, with adequate randomly generated points, SQP is capable to accurately 

capture the global minimum point. Although the results of  GA is close to global optimal 

result found by SQP, the GA approach due to its stochastic nature terminates prematurely 

at true vicinity of the global optimum solution.  

4.5. Sensitivity Analysis 

Sensitivity analysis is conducted on the optimal design to investigate the sensitivity of the 

objective function with respect to perturbation on design variables of optimal solution. 

Sensitivity analysis is important in design to assign appropriate manufacturing tolerances 

for dimensions. Here, in the sensitivity analysis, the optimal design of MR valve for 

unpaved road design objective (Case 4) which has been provided in Table  4-7 is studied.  

Figure  4-3, shows the variation of the objective function versus d in the specified design 

range, while t=20 mm, w=9.51mm and dh=3 mm are kept constant at their optimal 

values.  
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Figure  4-3: Objective function of optimal design Case 4 versus d  

As it can been seen, the objective function takes its minimum values around the lower 

bound of design variable d which is 0.8 mm.  

As mentioned earlier, for manufacturing process it is necessary to provide the allowable 

tolerances of each geoemtric parameter. To this end, the sensitivity analaysis of the 

performance function is done for each design variables. The sensitivity analysis for valve 

orifice gap, i.e. design variable d , has been done and it is shown in Figure ‎4-4.  As it can 

be realized, in the vicinity of  the optimal value (±0.01 mm) the graph almost shows a 

nearly flat region. Thus considering range of ±0.01 mm can be a good manufacturing 

tolerance for design variable d, as the optimal objective function is not really sensitive to 

the variation of d within that range. 
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Figure ‎4-4: Sensitivity analysis of optimal design Case 4 for design variable d  

Similarly the behavior of the objective function of optimal design Case 4 with respect to 

the variation of coil width w in the given design range while the other three parameters 

are kept constant at their optimal values (t=20 mm, d=0.8 mm and dh=3 mm) is shown in 

Figure ‎4-5. 

 
Figure ‎4-5: Objective function of optimal design Case 4 versus w 
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As it can be seen, the objective function takes its minimum value at around w=9.5 mm 

which is the optimum result predicted before by formal optimization procedure 

conducted by SQP and it has a smooth behavior in that vicinity. 

To better visulalize the variation of the objective function with respect to the optimum 

solution for w, Figure  4-6 is redrawn for w varying in the range of 8-10 mm.  

 
Figure  4-6: Sensitivity analysis of optimal design Case 4 for design variable w 

It is clear that the objective function is not sensitive to the variation of w in the range 

between 9.4-9.6 mm. Thus considering tolerance of ±0.1 mm around the optimum value        

w=9.5 mm may be acceptable. 

Similar investigation has also been done for design variables t and dh and the results are 

shown in Figure  4-7 to Figure  4-10.  
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Figure ‎4-7: Objective function of optimal design Case 4 versus t 

From the Figure  4-7, one can easily see that the optimal value for design variable t is     

20 mm confirming the optimization results. Also considering the Figure ‎4-8, one may 

conclude that tolerance of ±0.05 mm may be suitable for t as no drastic change in 

objective function is visible in that neighborhood.  

 
Figure ‎4-8: Sensitivity analysis of optimal design Case 4 for design variable t  
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Figure  4-9 and Figure  4-10 also show the variation of the same objective function with 

respect to design variable dh in its entire range and in the range near its optimum solution, 

respectively while all other design variables are kept constant at their optimal values.  

 
Figure ‎4-9: Objective function of optimal design Case 4 versus t 

 
Figure ‎4-10: Sensitivity analyses of optimal design Case 4 for design variable dh  

Figure  4-9 shows that minimum value for objective function occurs at dh=3 mm. The 

Figure  4-10 reveals that the objective function is very sensitive to variation of dh at its 
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optimal point, Thus the most precise available tolerance should be chosen for design and 

manufacturing with respect to this design variable.  

The discussion regarding the sensitivity and suggested acceptable tolerances are 

summarized in Table  4-10.  

Table ‎4-10: Design Variables Manufacturing Tolrance  

Design Variable Acceptable Tolerance 

d 

w 

t 

dh 

±0.01 mm 

±0. 1 mm 

±0.05 mm 

Extremely sensitive to change 

 

4.6. Conclusion  

In this chapter formal design optimization approaches using both SQP and GA have been 

formulated to minimize the multi-objective function constructed by weighted summation 

of the damping force, valve ratio, and inductive time constant. 

First, MR valve has been optimally designed to maximize damping force, to minimize the 

valve ratio, and to minimize the inductive time constant, individually. Then a multi-

objective function has been established to simultaneously maximize the damping force 

and minimize both the valve ratio and inductive time constant for different weighting 

factors. It has been found that SQP can catch the global optimal solution if it has been 

executed on at least 500 randomly generated initial points. 

One of the most important conclusions made by results is that the parameter t which 

presents the pole length of the MR valve is not an active design variable. It can be 

observed for all optimization cases the value of t is 20 mm which is the upper limit of this 
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design variable. This is completely in agreement with the physical perception of the 

problem. In fact, the magnetic field affects the MR fluid along the length of t. Thus 

increasing the value of t will allow the magnetic field to have more effect on the MR 

fluid. Therefore it is logical that in all of the optimization results, it takes the upper limit 

value.  Also it is worth to point out that in some research works [19], pole length (t) has 

been also addressed as active length which shows the important role of this geometrical 

dimension. 

The results show that the optimal values of the geometric design variables completely 

depend on the defined objective function. Optimal results presented in Table ‎4-7 to Table 

 4-9 reveal this fact that the weighting factors of the multi-objective functions have a great 

effect on the final optimal solution of the optimization problem. So designer should have 

a good knowledge of the vehicle dynamic as well as the road and application of the 

vehicle. Based on this information, proper values of weighting functions can be 

calculated and used in design. 

The results from GA and SQP methods were presented and the values of objective 

functions were mentioned to compare the results of both. Although in some problems the 

results of the two approaches were exactly the same, it was proved that when the number 

of random initial points are sufficient, the SQP gives better results. Optimal results 

obtained by GA are typically in the neighborhood of the true optimal points. 

Finally, the sensitivity analysis of optimal design of MR valve with application for 

uneven road (αF=0.5;αd = 0.2; αT = 0.3) was performed and manufacturing tolerances 

were presented for the design parameters.  
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Chapter 5 Semi-Active Control Performance of the Optimally 

Designed MR Damper  

5.1. Introduction 

Optimal design of the suspension system (optimal selection of the suspension dampers 

and stiffness parameters) of ground vehicles is an important practical and challenging 

problem which deserves special attention [31]. In this chapter semi-active control of 

previously optimally designed MR damper utilized in vehicle suspension system is 

investigated. A simple quarter-car model is considered to model the dynamic behavior of 

vehicle. The equation of motions are derived and then developed in state space model. A 

PID controller is designed for the semi-active suspension system featured by the 

optimally designed MR damper. The effect of the electrical current on the equivalent 

damping coefficient and saturation phenomenon in the MR valve is explored. In this 

chapter, we specifically study the optimally designed MR damper for unpaved road 

(optimal design Case 4) which has been optimized based on the multi-objective function 

with weighting coefficients of (αF = 0.5; αd = 0.2; αT = 0.3). 

In fact, what this chapter aims at is to show the effectiveness of the optimally design 

damper and comparing it with the non-optimal damper. The study is performed by using 
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the MR damper on quarter-car models to verify the efficiency of the modeling and 

optimization method.  

In this chapter, first the mechanical models and the corresponding equations of motion 

are derived for both the passive and semi-active suspension models. Industrial PID 

controlling system is utilized to control the vibration of system. For investigation of the 

active control of MR damper, the response of equivalent passive system and semi- active 

system are presented. To study the efficiency of the optimally designed MR damper to 

attenuate the vibration due to ground, its performance is compared with the performance 

of the initial design of MR damper. 

5.2. Active Suspension Modeling 

This section presents the mathematical model of a quarter car vehicle model with the MR 

damper. A typical active system model is first presented in which the MR damper is 

modeled as a force generator. Then, a nonlinear MR damper model is studied and the 

relationship between applied current to the damper and the generated force is described. 

Finally, the dynamic response of the system for equivalent passive system (when 

electrical current is equal to 1 Amp) and that of the semi-active one is studied.  

5.2.1. Mechanical Modeling  

In order to avoid dynamic complexity of the vehicle model, the ride model of the vehicle 

is simulated by a quarter-car model which has two degrees of freedom (DOFs) as shown 

in Figure  5-1.  

Quarter-car model has two DOFs to define the position of the car body and the vibration 

caused by the wheel. Therefore, the effect of the car body orientation is eliminated. As a 
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result, this model may be used to study only the position of the car body and wheel in one 

direction. Quarter-car model is a simplified model commonly employed in many areas of 

the automotive industry research, including the prediction of dynamic response as well as 

the performance of parameter identification, optimization and control studies of ground 

vehicles [13, 14, 31-34, 36]. This model provides helpful information at the preliminary 

stage of design and creates a reliable basis for performing more accurate studies by 

employing more involved mechanical models [31]. The schematic view of the quarter-

vehicle semi-active (AS) and passive suspension (PS) systems are shown in Figure ‎5-1.  

 

Figure  5-1: Diagram of quarter vehicle (a) semi-active suspension system and                

(b) equivalent passive suspension system 

The definition of used parameter in the quarter car dynamic equation and their values are 

given in Table  5-1. 
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Table ‎5-1: Values of the parameters of quarter vehicle model 

Parameters values 

Unsprung mass Mus=50 kg 

Sprung mass Ms=350 kg 

Tire stiffness Kt=160000 N/m 

Car spring stiffness  Ks =16000 N/m 

Equivalent Damping Coefficient of AS Ceq      Ns/m 

Passive Damping Coefficient Cs           Ns/m 

Tire damping Coefficient  Ct=15 Ns/m 

A force generator F represents the MR damper which is regulated by a controller to 

actively improve suspension performance. For a logical comparison with the passive 

system, the equivalent damping coefficient of the MR damper (when the applied current 

is 1 Amp) is used. The equivalent damping coefficient is calculated by means of            

Eq. (2.28) presented in Chapter 2. 

5.2.2. State-Space Model  

Linear differential equations are used to represent linear structural models in time 

domain. In order to describe the dynamic behavior of the system, the equilibrium 

equations could be written either in the form of degrees of freedom or in the form of the 

state-space system. Considering Figure  5-1, one can draw the free-body diagram for each 

sprung and unsprung mass and then derive the governing equation of the motions using 

second law of Newton as: 
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(5.1) 

                                                                                            (5.2) 

where the sgn is the sign function which is defined as  

               

                       

                          

                          
   (5.3) 

In order to study the control and especially the dynamic of the system in the equivalent 

passive models, it is better to describe the dynamic system in the state space. State space 

is employed to reduce the order of differential equations to first order. To transform the 

equations of motion of the quarter car model as defined in Eqs.(5.1) and (5.2) into a state 

space format, the following state variables are introduced:

 

 

      
      
      
      

                                                                                               (5.4)

The state space form of the dynamic system can be written in the system of equations 

described as:  

             
        

                                                                                                      (5.5)   

in which z is utilized to define the disturbance due to the bumpy road and it is defined as 

follows 

   
  
   
                                                                          (5.6)  

The matrix “A” defines the dynamic properties of the system. Matrix “B” represents the 

actuator property which here is due to the MR damper force. The “W” defines the 

imposing of road disturbance on the system. Matrix “C” is the sensor position and 
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properties in the vehicle. Finally, the matrix “D” is used to show the effect of constant 

force into the system which is zero in this study. 

Finally considering Eqs.(5.1)-(5.6), the equations of motion of the quarter car model can 

be written in state space form as: 

    

 
 
 
 
 

    

    
        

  

  

  

   

  

  

  

   

  

   

  

  

  

   

   
 
 
 
 

     

 
 
 
 
 
 

 
  

  

 

   
 
 
 
 

    

 
 
 
 
  

  
   

  

   

  

   
 
 
 
                                              (5.7) 

Since we want to read the displacement and velocity of both masses in the output the 

matrix “C” is defined as  

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

C

 
 
 
 
 
 

                                                                                                                   (5.8) 

These matrices are used to build up a program in MATLAB
®

 to study the equivalent 

passive behavior of the system. Moreover, to employ the control toolbox of MATLAB
®

 

to tune the PID controller based on Ziegler-Nichols rules; it is necessary to define the 

system in the sate-space model. 

The block diagram of the semi-active suspension system based on quarter-car model is 

presented in Figure  5-2, which can be use in MATLAB
® 

control Toolbox for numerical 

solution.  
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Figure ‎5-2: Block diagram of semi-active suspension system 

Input of the system is the road displacement signal which is assumed as a pulse function. 

For monitoring of responses, the displacement and velocity response of unsprung and 

sprung masses are observed as output variables.  

To generate the input force, displacement due to the road profile and its derivative are 

first multiplied by tire stiffness Kt and tire damping rate Ct, respectively, and then added 

together.  

5.3. Active Control of Quarter-car Model by Using PID Controller  

According to Kirchhoff’s law for magnetic circuits as presented by Eq.(3.1), the magnetic 

field intensity is proportional to the applied electrical current I.  Considering this fact, the 

finite element results and consequently the RSM based functions have been determined 

for unit current i.e. I=1 Amp. Therefore, the magnetic field intensity at any current is 

proportional to the result of FEM. In other words, the magnetic field intensity can be 

easily determined by multiplying the value of the electrical current by the results of RSM. 
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Afterward, substituting the optimal values of design variables of Case 4 in Eq. (3.21) and 

then substituting the result in Eq.(2.6), the shear yield stress developed in the optimal MR 

damper can be written as:  

2 30.3 67.09 29.60 4.28I I I                                                                                         (5.9) 

Subsequently, considering Eq. (5.9) into Eq. (2.13) in Chapter 2, the MR damping force 

for the Case 4 optimally designed MR valve is derived as: 

 

3 2

3 2

0.0045
28.4065

0.2096 1.450 3.286 0.01502

4.281 29.603 67.09 0.3

MRF
I I I

I I I

 
  

   

   

          (5.10) 

It can be realized that when the current is zero, H becomes zero and FMR takes its passive 

mode value which is the off state force of MR damper and it is equal to 8.6 N. Since the 

damping force presented by Eq. (5.10) is derived based on the presented geometrical 

dimensions of optimal design Case 4, for every other valve which has different 

dimensions, a similar function should be derived that exclusively expresses the damping 

force of that valve as a function of the applied electrical current. In other words, the 

coefficients of Eq. (5.10) will be changed by changing the dimensions of the valve.  

Eq. (5.10) can be effectively used in the active control system in the present case. 

According to Eq. (5.10), the MR damper force is highly nonlinear function with respect 

to the applied electrical current I. As nonlinear control methods are too complicated, non 

model based approach is employed in present study. This means that the controller is 

designed based on the closed loop feedback of the dynamic system. In the considered 

case studies, the dynamic force is caused by the base excitation from the ground.  
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It is well known that the state space approach is just applicable to solve linear differential 

equations. Since the active system is nonlinear due to nonlinear damping force, the 

Simulink block diagram in MATLAB
®
 software is directly utilized to simulate and solve 

the dynamic problem. The block diagram of semi-active system is shown in Figure  5-3. It 

is worth noting that MATLAB Simulink
®
 solves the nonlinear problem with “Runge 

Kutta” numerical method.  

 

Figure ‎5-3: Block diagram of semi-active system in MATLAB Simulink  

The blue and green blocks define dynamic characteristics of body and wheel respectively.  

The main function of the active system is to efficiently damp the vibrations caused by 

road irregularities. So the closed loop controller applied electrical current to change the 

rate of energy dissipation of the system to make velocity of the car body oscillation 
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toward zero value (set point of controller). The criterion for the closed loop design is to 

make velocity of the sprung mass zero. It is noted that the damping force is imposed to 

the system by FMR as an embedded function in MATLAB Simulink
®
.  

In current study PID control strategy is applied to the active system. Ziegler-Nichols rules 

[58] are experimentally employed to tune and determine the proportional gain Kp, integral 

time Ti ,and derivative time Td of the PID controller. In this method, first the values of 

integral time and derivative are set as Ti=∞ and Td=0, respectively. Then Kp is increased 

from zero to a critical value Kcr where the output first shows sustained oscillations to a 

unit-step input. Thus the critical gain Kcr and corresponding critical period Pcr are found 

experimentally. Ziegler-Nichols recommended Kp=0.6Kcr, Ti=0.5Pcr and Td=0.125 Pcr 

for PID controller [58].  Following the mentioned instructions, the Kcr=0.6 and Pcr=1s 

are found for the optimal active system. Thus Kp , Ti and Td are determined to be 1.5, 0.5 

and 0.125, respectively.  

Response of the passive and semi-active systems due to the step base excitation shown in 

Figure ‎5-4 has been obtained and shown in Figure  5-5 and Figure  5-6. 
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Figure ‎5-4: Step Base Excitation 

Figure  5-5 shows the response of sprung mass of the equivalent passive system (when 

applied current is set to 1 Amp) and semi-active system featured by optimal MR damper.  

 

Figure  5-5: Displacement response of sprung mass for equivalent passive and semi-active 

systems 
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The most important parameters to study are overshoot (D0) and settling time of the 

response. Here, the settling time (ts) of 2% steady state error is taken as criterion. To 

evaluate the performance of the designed controller, the values of both parameters are 

demonstrated on the plot. The overshoot and settling time of the passive and semi-active 

responses are summarized in Table  5-2. 

Table  5-2: Results of dispalcement responses of quarter vehicle model 

Parameters Passive System Semi-Active System Improvement 

Overshoot (m) 0.02741 0.01522 44.47% 

Settling Time (Sec) 4.615 1.799 61.01% 

As the results show, by using a well tuned PID controller with optimally designed MR 

damper, a significant improvement in overshoot and settling time has been achieved. 

Thus, optimally designed MR damper can efficiently suppress the vibration of the sprung 

mass. Figure  5-6 compares the velocity response of semi-active suspension system 

featured by optimal MR damper and the response of the passive system. 
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Figure  5-6: Velocity response of sprung mass for equivalent passive and semi-active 

systems 

The overshoot and settling time of the velocity response for both passive and semi-active 

systems are also compaerd and presented in Table 5-3.   

Table ‎5-3: Results of velocity responses of quarter vehicle model 

Parameters Passive System Semi-Active System Improvement 

Overshoot (m) 0.5084 0.4693 7.69% 

Settling Time (Sec) 4.028 1.682 58.24% 

Results show a good improvement in the settling time of velocity of the sprung mass 

which is an important parameter in ride comfort and controllability. The responses follow 

the same trends as Karnoop [59] presented for the responses of a semi-active suspension 

system. 

It is clearly observed that the displacement and velocity of the sprung mass are 

significantly reduced by employing the PID controller for the MR shock absorber. It is 

Semi-Active Control 
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noteworthy that for the passive system study, the equivalent passive system of the 

optimally designed MR damper has been used when the applied current is equal to          

1 Amp. At this current, the equivalent damping coefficient is equal to 1.8092e4 Ns/m 

which is larger (an order of magnitude) than common damping coefficients. Force and 

corresponding applied electrical current of optimal MR damper subjected to the defined 

step function versus time are plotted in Figure  5-7 and Figure  5-8, respectively. The 

maximum value of force is found to be 730 N which is correlated to the electrical current 

of 0.33 Amp which is well below the saturation current of the valve. 

 

Figure  5-7: Force of optimal MR damper versus time 
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Figure  5-8: Applied electrical current to optimal MR damper versus time 

 

5.4. Equivalent Damping Coefficient Approach  

This approach is a method to compare the performance of systems with different 

damping characteristics. This is well-known that this approach is derived based on equal 

energy dissipation in the system and it is not able to simulate the actual response of the 

systems. The equivalent damping coefficient has been presented by Eq. (2.28) for MR 

dampers. In this section first the effect of the applied electrical current on the equivalent 

damping coefficient MR valves is studied. Then, this approach is used to compare the 

responses of the two types of the optimally designed and initial designed dampers.  
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5.4.1. Effect of the Electrical Current on the Equivalent Damping Coefficient 

The equivalent damping coefficient of optimally designed and initial design MR valve as 

a function of applied current are calculated by Eq. (2.28) and results are plotted in   

Figure  5-9. 

 

Figure  5-9: Equivalent Damping Coefficient versus Electrical Current 

This figure clearly depicts the effect of saturation phenomenon on the performance of the 

MR valve. As it can be seen, further increase of applied electrical current than a specific 

value does not considerably change the equivalent damping coefficient. This is due to the 

magnetic saturation phenomenon in the MR fluid. Thus in design, it is recommended to 

design an MR valve far away from saturation point to have the maximum controllability. 

Figure  5-9 also shows that the saturation of initial MR valve is happened at around 1.05 

Amp while the saturation of optimally designed MR valve is around 1.90 Amp. Thus, the 

optimized geometry of MR valve provides wider range of performance. Moreover, in all 
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range of allowable applied electrical current, the optimally designed MR valve gives 

considerably larger damping coefficients.  

5.4.2. Comparison of Optimal and Non-optimal MR dampers 

As stated before, the PID controller is experimentally designed based on the response of 

the dynamic model where the MR damper force which is formulated by nonlinear        

function Eq. (5.10) has a significant effect on its tuned parameters. In other words, 

comparing the results of two semi-active controllers, one featured by optimal MR damper 

and the other one with initial design, is not a proper evaluation of their performance. As 

each system has different dynamic model and needs different controller to actively 

control it, for a comparative study the effect of the controller must be eliminate. 

To overcome this problem, the equivalent passive systems of the two semi-active systems 

are introduced and compared. In this order, first the equivalent damping coefficients 

given by Eq. (2.28) are calculated for both systems and then the response of two 

equivalent passive systems are plotted and compared. Equivalent passive systems of 

optimally designed and initial design MR damper when they are exposed to current 

excitation 1 Amp are determined and the equivalent damping coefficients are obtained. 

The results are provided in Table  5-4.  

Table  5-4: Shear Stress and Equivalent Damping Coeficients of the MR valves 

Parameters Initial Design Optimal Design 

Magnetic Filed Intensity (kA/m) 284.72 159.75 

Yield Stress Shear (kPa) 50.08 42.07 

Equivalent Damping Coefficient (Ns/m) 1.2005e4 2.0194e4 

The presented results in Table  5-4 show the significant effects of the optimal geometrical 

dimensions of the valve on the equivalent damping coefficient. Although the value of 
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magnetic field intensity and as a result the yield stress of MR fluid is higher in initial 

design MR damper, the equivalent damping coefficient of the optimally designed MR 

damper is 40% more.  

Having the values of equivalent damping coefficients for both systems, we can now find 

their time responses. The result of such analysis will be more unbiased because the 

effects of PID controller on the results have not been imposed to the responses. 

Displacement and velocity responses of sprung mass for equivalent passive systems of 

semi-active systems with current of 1 Amp featured by optimal and non-optimal MR 

dampers are plotted in Figure  5-10 and Figure  5-11, respectively.  

 

Figure  5-10: Displacement response of sprung mass for equivalent passive systems          

(I =1Amp) 
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Figure  5-11: Velocity response of sprung mass for equivalent passive systems (I=1Amp)  

Results for overshoot and settling time of the displacement and velocity responses are 

summarized in Table  5-5.  

Table  5-5: Displacement and velosity responses of equivalent passive systems 

Parameters 
Displacement Response  Velocity Response  

Initial  Optimal  Difference  Initial  Optimal  Difference 

Overshoot(m) 0.0234 0.0170 27.3% 2.286 2.263 1.0% 

Settling Time(Sec) 0.231 0.146 36.8% 0.164 0.290 43.4% 

As results show, the overshoot of optimal design is significantly less than non-optimal 

design while the settling time is less. The results show that the vibration of the sprung 

mass is better suppressed by employing the optimized shock absorber than using the 

initial one. 
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5.5. Conclusion  

In this chapter, a PID controller was designed for the chosen optimal MR damper.  It was 

shown that optimal MR damper controlled by PID controller can reduce the displacement 

overshoot of sprung mass by 44.47%; and the settling time of the system by 61.01% 

comparing to equivalent passive damper. Applied current to MR valve and corresponding 

force were plotted versus time. Maximum value of applied electrical current is 0.33 Amp 

for actively control of optimal MR damper which is far away from the maximum 

allowable electrical current. 

It was discussed that comparing two MR dampers with PID controllers is not possible 

because the performance of the controllers also affects the results. Therefore, to compare 

the performance of the optimal MR damper with a non-optimal one, equivalent passive 

systems have been developed.  

It was shown that the optimal designed MR valve has higher damping coefficients and 

the saturation of the magnetic flux density is occurred at higher electrical current.  

Finally, it has been investigated that the optimally designed MR damper can suppress the 

vibration of the sprung mass more effectively than the initial designed MR damper.   
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Chapter 6 Conclusion and Future Works  

6.1. Introduction 

In this thesis a comprehensive study of MR valve and dampers has been presented. Sets 

of design variables were selected by I-optimal design of experiments. In each designed 

set the design variables were determined.  

Finite Element Method in commercial software ANSYS has been utilized to solve the 

magnetic field intensity along the valve orifice gap for geometries defined by each set of 

design variables. Since the magnetic field intensity and magnetic flux density are not 

constant along the length of the orifice, the average values have been calculated by 

integration on a line through the path. Then the Analytical functions were mapped to the 

results of FEM analysis using the response surface method. 

The analytical expressions of the magnetic field intensity and magnetic flux density for 

any design option in the defined design space were presented. These analytical equations 

provide a unique tool to define objective functions of performance indexes of MR 

dampers analytically. Thus, SQP and GA optimization methods can be conducted 

effectively to find optimal values of geometric parameters for various objective functions. 

Finally choosing one of the optimal designs, a PID controller has been designed to 

evaluate the performance of the optimally designed MR damper. Displacement and 
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velocity responses of passive system as well as optimal and initial semi-active systems 

were presented. 

6.2. Contributions and Conclusions 

The main important contributions of the current study can be mentioned as 

 Develop a comprehensive finite element model to calculate Magnetic Field Intensity 

and Magnetic Flux Density in MR valves. 

 Design of experiments and finding analytical functions for Magnetic Field Intensity 

and Magnetic Flux Density in MR valves. Thus there is no need to run FEM code for 

large number of points in the defined design space and only by substituting design 

variables in the derived analytical functions; the magnetic parameters can be 

calculated. 

 Conduct more advanced and reliable optimization methods to solve the optimal 

design problem in MR valve. The results of this projects shows that our design is 

more optimal than the optimal designs proposed by other research groups before. 

 Determine the manufacturing tolerances of design parameters based on sensitivity 

analysis of the objective functions.   

 Design PID controller for the proposed optimal design and discuss on the valve 

performance indexes 

6.3. Future Works 

Although optimal design of single coil annular duct MR valve with application as shock 

absorber has been accomplished successfully in this thesis, other important interesting 

subjects for future works are identified as 
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 Optimal design of other kinds of MR valves  

 Analysis of the performance evaluation of the proposed MR damper in a full model 

car with seven degrees of freedom  

 Implementing different controllers and compare their performance 

 Extending the optimization to both material selection and geometry optimization of 

the MR valve.  



112 

 

 References  

1. N.M.Wereley and L.Pang, "Nondimensional analysis of semi-active 

electrorheological and magnetorheological dampers using approximate parallel 

plate models," Smart Materials and Structures, 1998. 7: p. 732–743. 

2. D.Y.Lee and N.M.Wereley, "Quasi-steady Herschel-Bulkley analysis of electro 

and magneto-rheological flow mode dampers," Journal of intelligent material 

systems and structures, 1999. 10(10): p. 761-769. 

3. A.Dominguez, R.Sedaghati, and I.Stiharu, "A new dynamic hysteresis model for 

magnetorheological dampers," Smart Materials and Structures, 2006. 15: p. 

1179–1189. 

4. S.Guo, S.Yang, and C.Pan, "Dynamic modeling of magnetorheological damper 

behaviors,"  Journal of Intelligent Material Systems and Structures, 2006. 17(1): 

p. 3-14. 

5. B.F.Spencer, S.J.Dyke, M.K.Sain, and J.D.Carlson, "Phenomenological model for 

magnetorheological dampers," Journal of engineering mechanics, 1997. 123(3): 

p. 230-238. 



113 

 

6. Q.H.Nguyen and S.B.Choi, "Dynamic modeling of an electrorheological damper 

considering the unsteady behavior of electrorheological fluid flow," Smart 

Materials and Structures, 2009. 18: p. 055016-24. 

7. D.Xiao-min, Y.U.Miao, L.Chang-rong, and C.Wei-min, "Adaptive Fuzzy Sliding 

Mode Control for Magneto-rheological Suspension System Considering 

Nonlinearity and Time Delay," Journal of Vibration and Shock, 2009: p. 1-12. 

8. C.Y.Lai and W.H.Liao, "Vibration control of a suspension system via a 

magnetorheological fluid damper," Journal of Vibration and Control, 2002. 8(4): 

p. 527-547. 

9. Y.Miao, D.Xiao-min, L.Chang-rong, and C.Wei-min, "Adaptive Fuzzy-Neural 

Network Control for Magneto-Rheological Suspension," International Journal of 

Computer Science and Network Security, 2006. 6(10): p. 66-71. 

10. C.Park and D.Jeon, "Semiactive vibration control of a smart seat with an MR 

fluid damper considering its time delay," Journal of Intelligent Material Systems 

and Structures, 2002. 13(7-8): p. 521-524. 

11. M.M.Rashid, N.A.Rahim, M.A.Hussain, F.Mohamed, and M.A.Rahman, 

"Development and Testing of Hybrid Fuzzy Logic Controller for Car Suspension 

System Using Magneto-Rheological Damper". 2008: IEEE. 

12. C.Spelta, F.Previdi, S.M.Savaresi, G.Fraternale, and N.Gaudiano, "Control of 

magnetorheological dampers for vibration reduction in a washing machine," 

Mechatronics, 2009. 19(3): p. 410-421. 



114 

 

13. A.Turnip, K.S.Hong, and S.Park, "Control of a Semi-Active MR-Damper 

Suspension System: A New Polynomial Model, " in Proceedings of the 17th 

World Congress, The International Federation of Automatic Control. 2008: 

Seoul, Korea. p. 4683-4688. 

14. J.Wang, C., Dong, Y.Shen, and J.Wei, "Robust modelling and control of vehicle 

active suspension with MR damper," Vehicle System Dynamics, 2008. 46: p. 509-

520. 

15. Q.H.Nguyen, Y.M.Han, S.B.Choi, and N.M. Wereley, "Geometry optimization of 

MR valves constrained in a specific volume using the finite element method," 

Smart Materials and Structures, 2007. 16: p. 2242–2252. 

16. Q. H.Nguyen, S.B.Choi, Y.S.Lee, and M.S.Han, "An analytical method for 

optimal design of MR valve structures," Smart Materials and Structures, 2009. 

18: p. 095032-44. 

17. Q.H.Nguyen and S.B.Choi, "Optimal design of a vehicle magnetorheological 

damper considering the damping force and dynamic range," Smart Materials and 

Structures, 2009. 18: p. 015013-22. 

18. Q.H.Nguyen and S.B.Choi, "Optimal design of MR shock absorber and 

application to vehicle suspension," Smart Materials and Structures, 2009. 18: p. 

035012-22. 

19. N.C.Rosenfeld and N.M.Wereley, "Volume-constrained optimization of 

magnetorheological and electrorheological valves and dampers," Smart Materials 

and Structures, 2004. 13: p. 1303–1313. 



115 

 

20. Q.H.Nguyen, S.B.Choi, and N.M.Wereley, "Optimal design of 

magnetorheological valves via a finite element method considering control energy 

and a time constant," Smart Materials and Structures, 2008. 17: p. 025024-36. 

21. G.Z.Yao, F.F.Yap, G.Chen, W.H.Li, and S.H.Yeo, "MR damper and its 

application for semi-active control of vehicle suspension system,"  Mechatronics, 

2002. 12(7): p. 963-973. 

22. F.Gordaninejad and S. P.Kelso," Fail-safe magneto-rheological fluid dampers for 

off-highway, high-payload vehicles," Journal of Intelligent Material Systems and 

Structures, 2000. 11(5): p. 395-406. 

23. M.R.Jolly, J.W.Bender, and J.D.Carlson, "Properties and applications of 

commercial magnetorheological fluids," 1998, Thomas Lord Research Center, 

Lord Corporation. p. 262-275. 

24. G.Yang and B.F.Spencer, "Large-scale MR fluid dampers: modeling and dynamic 

performance considerations,"  Engineering structures, 2002. 24(3): p. 309-323. 

25. J.H.Koo, F.D.Goncalves, and M.Ahmadian, "A comprehensive analysis of the 

response time of MR dampers," Smart Materials and Structures, 2006. 15: p. 

351–358. 

26. H.S.Lee and S.B.Choi, "Control and response characteristics of a magneto-

rheological fluid damper for passenger vehicles," Journal of Intelligent Material 

Systems and Structures, 2000. 11(1): p. 80-87  

27. A.Grunwald and A.G.Olabi, "Design of magneto-rheological (MR) valve," 

Sensors and Actuators A: Physical, 2008. 148(1): p. 211-223. 



116 

 

28. J.C.Poynor, Innovative designs for magneto-rheological dampers. 2001, Virginia 

Polytechnic Institute and State University. 

29. J.H.Yoo and N.M.Wereley, "Design of a high-efficiency magnetorheological 

valve," Journal of Intelligent Material Systems and Structures, 2002. 13(10): p. 

679-685. 

30. A.G.Olabi and A.Grunwald, "Design and application of magneto-rheological 

fluid,"  Materials & Design, 2007. 28(10): p. 2658-2664. 

31. G.Georgiou, G.Verros , and S.Natsiavas, "Multi-objective optimization of 

quarter-car models with a passive or semi-active suspension system," Vehicle 

System Dynamics, 2007. 45(1): p. 77-92. 

32. A.M.Tusset, M.Rafikov, and J.M.Balthazar," An Intelligent Controller Design for 

Magnetorheological Damper Based on a Quarter-car Model," Journal of 

Vibration and Control, 2009. 15(12): p. 1-14. 

33. K.Kim and D.Jeon, "Vibration suppression in an MR fluid damper suspension 

system,"  Journal of Intelligent Material Systems and Structures, 1999. 10(10): p. 

779-786  

34. M.M.Rashid, N.A.Rahim, M.A.Hussain, and M.A.Rahman, "Analysis and 

experimental study of magnetorheological-based damper for semiactive 

suspension system using fuzzy hybrids," IEEE Transactions on Industry 

Applications, 2011. 47(2): p. 1051-1059. 



117 

 

35. V. S.Atray and P. N.Roschke, "Neuro Fuzzy Control of Railcar Vibrations Using 

Semiactive Dampers," Computer Aided Civil and Infrastructure Engineering, 

2004. 19(2): p. 81-92. 

36. X.Dong, M.Yu, C.Liao, and W.Chen, "Comparative research on semi-active 

control strategies for magneto-rheological suspension," Nonlinear dynamics, 

2010. 59(3): p. 433-453. 

37. G.U.C.Rahmi, "Active control of seat vibrations of a vehicle model using various 

suspension alternatives,"  Turkish J. Eng. Env. Sci, 2003. 27: p. 361-373. 

38. H.Gavin, J.Hoagg, and M.Dobossy. "Optimal design of MR dampers,"  in Proc. 

U.S.-Japan Workshop on Smart Structures for Improved Seismic Performance in 

Urban Regions. 2001. 

39. N.Q.Guo, H.Du, and W.H.Li, "Finite element analysis and simulation evaluation 

of a magnetorheological valve," The international journal of advanced 

manufacturing technology, 2003. 21(6): p. 438-445. 

40. L.Yang, F.Duan, and A.Eriksson, "Analysis of the optimal design strategy of a 

magnetorheological smart structure," Smart Materials and Structures, 2008. 17: p. 

015047(8pp). 

41. J.D.Carlson and M.R.Jolly, "MR fluid, foam and elastomer devices," 

Mechatronics, 2000. 10(4-5): p. 555-569. 

42. J.D.Carlson, D.M.Catanzarite, and K.A.S.Clair, "Commercial magnetorheological 

fluid devices,"  International Journal of Modern Physics B, 1996. 10(23): p. 

2857-2866. 



118 

 

43. A.Chaudhuri, N.M.Wereley, R.Radhakrishnan, and S.B.Choi, "Rheological 

parameter estimation for a ferrous nanoparticle-based magnetorheological fluid 

using genetic algorithms," Journal of intelligent material systems and structures, 

2006. 17(3): p. 261. 

44. W.Thomson, Theory of vibration with applications. 2004: Taylor & Francis. 

45. D.C.Montgomery, Design and Analysis of Experiments. 5 ed. 2008: John Wiley & 

Sons Inc. 

46. ANSYS Help  

47. K.Ibrahim, Design optimization of vehicle structures for crashworthiness 

improvement, in Mechanical Engineering. PhD Thesis, 2009 , CONCORDIA 

UNIVERSITY. 

48. W.J.Hill and W.G.Hunter, "A review of response surface methodology: a 

literature survey,"  Technometrics, 1966. 8(4): p. 571-590. 

49. Y.B.Gianchandani and S.B.Crary, "Parametric modeling of a microaccelerometer: 

comparing I-and D-optimal design of experiments for finite-element analysis," 

Journal of Microelectromechanical Systems, 1998. 7(2): p. 274-282. 

50. P.Tobias, NIST/SEMATECH e-Handbook of Statistical Methods. 

51. W.Adams, Handbook for Experimenters, Version 7.3, Stat-Ease. Inc., 

Minneapolis, MN, USA, 2006. 

52. W.D.Kappele, "Using I-Optimal Designs for Narrower Confidence Limits," IASI 

conference. 1998: Orlando, FL,USA. 



119 

 

53. P.Sheth, S.Ensari, "Applying Modern Design of Experiments to Mass Transfer 

Characterization in Bioreactors,"  BioProcessing Journal, 2009. 8(3): p. 38-43. 

54. J.P.Sall, C.M.Fladung., "Trees, Neural Nets, PLS, I-Optimal Designs and other 

New JMP
®
 Version 5 Novelties," SUGI27 2002: Orlando, Florida, USA. 

55. K. M.Carley, Response surface methodology. 2004,  DTIC Document. 

56. J.Nocedal, S.J.Wright, Numerical Optimization, Series in Operations Research 

and Financial Engineering, 2006: Springer, New York. 

57. J.S.Arora, Introduction to optimum design. 2004: Academic Press. 

58. K.Ogata, Modern control engineering. 2001: Prentice Hall PTR. 

59. D.Karnopp, "Active damping in road vehicle suspension systems," Vehicle System 

Dynamics, 1983. 12(6): p. 291-311. 

 

 

 

 


	Table of Contents
	List of Figures
	List of Tables
	Nomenclatures
	Chapter 1 Introduction
	1.1.  Motivation and Objectives
	1.2.  Overview and Literature Survey (State of the Art)
	1.3.  MR Valves Configurations
	1.4.  Thesis Organization

	Chapter 2 Mathematical Modeling of MR Dampers
	2.1.  Introduction
	2.2.  MR fluid characteristics
	2.3.  Mathematical Modeling of MR valves
	2.4.  Performance Indexes
	2.4.1.  Damping Force
	2.4.2.  Dynamic Range
	2.4.3.  Valve Ratio
	2.4.4.  Damping Coefficient
	2.4.5.  Inductive Time Constant of the Valves


	Chapter 3 Finite Element and Response Surface Modeling
	3.1.  Introduction
	3.2.  Magnetic Field Analysis
	3.3.  Finite Element Analysis
	3.3.1.  Approach and Assumptions
	3.3.2.  Element description
	3.3.3.  Input Data
	3.3.4.  Output data

	3.4.  Response Surface Method (RSM)
	3.4.1.  RSM Model Building
	3.4.2.  Design of Experiments (DOE)
	3.4.3.  Implementation of RSM to Model Magnetic Responses in MR valve
	3.4.4.  The Response Surface Function (RSM) for Magnetic Field Intensity in the MR Valve
	3.4.5.  Model Accuracy Checking
	3.4.6.  The Response Surface Function of Magnetic Flux Density in the MR valve

	3.5.  Conclusion

	Chapter 4 Optimization
	4.1.  Introduction
	4.2.  Numerical Methods for Constrained Optimum Design
	4.3.  Genetic Algorithms for Optimum Design
	4.4.  Optimal Design of MR Valves
	4.4.1.  Case 1
	4.4.2.  Case 2
	4.4.3.  Case 3
	4.4.4.  Case 4
	4.4.5.  Case 5
	4.4.6.  Case 6

	4.5.  Sensitivity Analysis
	4.6.  Conclusion

	Chapter 5 Semi-Active Control Performance of the Optimally Designed MR Damper
	5.1.  Introduction
	5.2.  Active Suspension Modeling
	5.2.1.  Mechanical Modeling
	5.2.2.  State-Space Model

	5.3.  Active Control of Quarter-car Model by Using PID Controller
	5.4.  Equivalent Damping Coefficient Approach
	5.4.1.  Effect of the Electrical Current on the Equivalent Damping Coefficient
	5.4.2.  Comparison of Optimal and Non-optimal MR dampers

	5.5.  Conclusion

	Chapter 6 Conclusion and Future Works
	6.1.  Introduction
	6.2.  Contributions and Conclusions
	6.3.  Future Works

	References

	Text1: 


