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Abstract

Regime Switching in Commodity Prices

Hany Fahmy, Ph.D.

Concordia University, 2011

During the 1970’s, the increase in the price of oil and many other commodities
dominated macroeconomic discussions. In the late 1980’s and early 1990’s, commodity
prices generally declined and not much attention was given to the topic. Currently,
the surge in the price of oil and many other commodities, both in nominal and real
terms, drew back attention to the issue.

This thesis follows the empirical approach in modelling nonlinear behavior of com-
modity prices. The approach was motivated by the observation that commodity prices
tend to move together in groups in response to a common macroeconomic variable
or group of variables. The thesis attempts to explain this phenomenon by, first,
classifying commodity prices according to their recorded border prices (an issue that
has been ignored in previous studies), and then by trying to find the best transition
(threshold) variable that can explain this common dynamic in each group.

The observed nonlinearity in commodity prices is modelled using the smooth tran-
sition regression (STR) model with external threshold variables. The use of external
threshold variables, in addition to the commonly used autoregressive lags of the de-
pendent variable, is a theme that distinguishes this thesis from the majority of the

studies in the regime switching literature. The STR model, which technically models

il



regime switching in the conditional mean equation of the data generating process, is
extended to model regime switching in the conditional variance. Both models (the
STR in mean and the STR in variance) were fitted to the Grilli & Yang’s (1988)
commodity price index and to the individual price series forming the index.

Two external transition variables were found successful in capturing the regime
switching dynamics of the commodity price index: inflation rate and the price of oil.
Using both transition variables in the STR in mean and the STR in variance models,
both models displayed the same dynamics in the limiting processes of the commodity
price index. This result suggests that both models can be seen as substitutes when
modelling nonlinearity in the commodity price index. As for the two transition vari-
ables, inflation was capable of capturing the early dynamics (between 1900 and 1950)
of the commodity index whereas oil price captured the late ones (between 1980 and
2007). This result motivates the use of external threshold variables in regime switch-
ing models in general and, in particular, the use of inflation and oil price in the STR
model when applied to an index of commodity prices.

More insight about the co-movement of commodity prices is gained by studying
the individual price processes forming the index. However, it is worth noting that
there is no single variable that is capable of explaining the behavior of all commodity
prices. The way each price series is recorded and the history of the commodity’s

major exporter and importer is crucial in styding and modelling its dynamics.
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Chapter 1

Introduction

During the 1970’s, the increase in the price of oil and many other commodities,
such as sugar, cotton, gold and silver, dominated macroeconomic discussions. In the
late 1980’s and early 1990’s, commodity prices generally declined and, as stated by
Frankel (2006), ‘the topic fell out of favor’. Currently, the surge in the price of oil and
many other commodities, both in nominal and real terms, drew back the attention
to the issue.

Studying the dynamic behavior of commodity prices over time and whether or
not they are driven by common transition variable(s) are the main objectives of this
research. To this end, technical issues are considered in detail. In particular, the
research answers questions like: How are the dynamics of commodity prices to be
modelled? Is (are) there common driving variable(s) responsible for such changing

dynamics? And if these variables exist, what is the economic rationale behind choos-



ing them? Why is treating an index of commodity prices different than treating
individual commodities? And why is a border price classification crucial to identify
the potential driving variables for individual commodities?

The dynamic behavior of commodity prices is characterized by a number of stylized
facts including skewness, kurtosis, high asymmetric volatility, lack of trend, and high
degree of autocorrelation. For instance, the prices of agricultural crops, such as wheat,
rice, cotton, or maize, can be described, as stated by Deaton and Laroque (1996), as
‘doldrums’ pattern interrupted by upward (not downward) spikes. Prices of metals
traded on exchanges, on the other hand, resemble those of financial assets, where
volatility clusters (periods of high volatility and low volatility alternate) is a common
feature.

The issue of commodity price formation has been studied extensively in the liter-
ature. Early theoretical models originate from Gustafson’s (1958) work on the theory
of competitive storage and the work of Muth (1961), who introduced the rational
expectations assumption in a model of commodity price formation. Both contribu-
tions formed the basic model of commodity price formation. The competitive storage
theory postulates that speculative arbitrage is what generates the observed serial de-
pendence in commodity prices. The idea here is that a risk neutral speculator will
carryover the commodity if its future expected price just covers the cost of inventory
carryover. This implies that inventory holding will generate the observed high au-

tocorrelations in commodity prices. Extensions (in different directions) to this basic



model can be seen from further notable contributions. Samuelson (1971) showed that
the solution of the competitive storage problem (in a dynamic-programming frame-
work) is a nonlinear first-order Markov price process. Danthine (1977) analyzed a
model of commodity markets and showed, among other things, that the martingale
property of price changes does not follow from the behavior of economic agents in effi-
cient markets. More recently, focusing on inventory speculation, Williams and Wright
(1991) introduced an excellent treatment of the theory of competitive speculation in
stocks, where inventory speculation was the key feature of fluctuations in commodity
prices. Building on these notable contributions, Deaton and Laroque (1992), in an
attempt to confront the theory with evidence, applied a rational expectations compet-
itive storage model to study the actual behavior of thirteen commodities. Under the
assumption of independently and identically distributed (i.i.d.) harvest shocks, their
model explained most of the above-mentioned stylized facts of commodity prices, but
failed to capture the nonlinearity observed in the dynamics of theses price processes.

The previously mentioned attempts, elegant as they were, did not succeed in
capturing entirely the dynamic behavior of commodity prices. The general conclusion
is that commodity prices are nonlinear and this nonlinearity is attributed to the
speculative behavior of agents for holding stocks or to unobserved demand and supply
shocks.

This thesis follows a different approach in modelling the dynamics of commodity

prices. The approach is empirical in nature and is motivated by the fact that com-



modity prices tend to move together in groups that can be classified according to the
recorded border price of the commodity under consideration.

Border prices, also referred to as International Commercial Terms (Incoterms),
are the terms of selling that define the obligations of the trading parties engaged in
trading contracts. The agreed border price determines the risks and costs incurred
by the exporter and the importer of a specific commodity. Among all border prices,
two are used the most: Free on board (FOB) prices and cost insurance and freight
(CIF) prices. A trading contract effected on a FOB basis implies that the exporter
(shipper) bears all the risks and costs of transporting the cargo from the point of
origin (e.g., the exporter’s factory) to the port of export in the country of origin (exit
point of the exporting country). The importer (consignee) bears all the risks and
costs of the cargo from that point up to delivery to final destination. FOB price,
thus, does not include freight, insurance, and other transportation costs needed to
transfer the commodity from one country to another. A CIF price, on the other hand,
is a FOB price plus insurance cost plus ocean freight cost; i.e., under a CIF contract,
the exporter, in addition to the insurance, bears all risks and costs of transporting the
cargo from the point of origin to the port of discharge (entry point of the importing
country). Therefore, for simplicity, FOB prices are referred to as export prices at the
exit point of a country and CIF prices are referred to as import prices at the entry

point of a country.

!The Incoterms are published by the International Chamber of Commerce.



The issue of co-movements of commodity prices refers to the tendency of some
commodities to move together in response to a common macroeconomic variable. This
research seeks to explain this fact by, first, classifying various commodities according
to their border price (an issue that has been ignored in previous studies), and then
by attempting to find the best common macroeconomic variable that is responsible
for this co-movement. Figure 1.1 illustrates this idea. The commodity price index
used in this research is the Grilli and Yang (1988) commodity price index, which is a
composite index of 24 commodity prices. The individual price processes are classified
into different groups based on the recorded border price. The time series in each
group may be thought of as remaining in a given regime until pushed to a new regime
by a shock, a series of shocks, or by a common driving (transition) variable. One can
interpret such dynamics as switching behavior between multiple equilibria. Finding
those common driving variables and modelling this switching behavior are the main
objectives of this research.

The data set published by Grilli and Yang (1988), which is used in this research,
was originally developed and used by the authors to study the long-run behavior of
the net barter terms of trade series or, in other words, to test the Prebisch (1950) and
Singer (1950) hypothesis (PS hypothesis) of a secular decline in the price of primary
commodities relative to the price of manufactures. To this end, the authors developed

a commodity price index that consists of 24 primary commodity prices and known

as the Grilli and Yang Commodity Price Index (GYCPI). The authors deflated the
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Figure 1.1: Border price classification of some individual commodities in the Grilli & Yang

(1988) data set.



GYCPI by an index of manufactured goods’ unit values (MUV)? and fitted a log-linear
time trend model to the ratio GYCPI/MUYV as well as to the individual commodities
forming the index. They found a significant downward trend in the net barter terms
of trade; that is, the estimated coefficient obtained from regressing the logarithm of
the ratio GYCPI/MUYV (denoted y; in the text) on a linear time trend has a negative
sign. Applying this trend stationary (T'S) model to y;, Grilli and Yang found support
for the PS hypothesis.

The PS hypothesis has been re-assessed by a number of authors using the data set
published by Grilli and Yang. Generally the literature attempted to model the price
of primary commodities relative to manufactures using econometric univariate and
bivariate time series models that may or may not allow for structural breaks. The
findings varied from one study to another to the extent that a clear cut conclusion
could not be reached. In what follows, we present a brief literature review on those
attempts.

As mentioned above, Grilli and Yang (1988) applied a T'S model to their data set
and found support to the PS hypothesis. The authors also found that there is no
evidence of structural breaks. Cuddington and Urzua (1989) pointed out that the
residuals of the TS model might possibly be nonstationary, which, in turn, renders
the OLS estimate of the trend coefficient to be unreliable. Therefore, the authors

assumed that the Grilli and Yang series had a unit root and could not reject the unit

2The MUYV is a trade-weighted index of the five major developed countries’ (France, Germany,
Japan, United Kingdom, and United States) exports of manufactured commodities to developing
countries.



root hypothesis (nonstationarity) in the price series using the Dickey-Fuller (1979)
test. Based on this nonstationarity assumption, they fitted a difference stationary
(DS) model to y;, where they regressed the first difference of y; on a constant, a
dummy to account for a structural shift in 1921, and a MA(3) error process. Apart
from the one-time drop in the price series after 1920, the PS hypothesis of a secular
decline in the price of primary commodities was not supported by their results.

Von Hagen (1989) found that the logarithm of the GYCPI and the MUV index
are cointegrated and that the expected long-run net barter terms of trade series, v, is
stationary. Hence, the PS hypothesis was not supported. Powell (1991) also assumed
that the data generating process (DGP) is nonstationarity and fitted the same DS
model yet with more than one structural break: in 1921, 1937, and 1975. Powell’s
findings did not support the PS hypothesis.

Helg (1991) tested the series y,; for stationarity and rejected the nonstationarity
hypothesis using the Dickey - Fuller (1979) test. The author also applied Schmidt
and Phillips’ (1989) test and rejected the unit root hypothesis in y;. The result was
in favour of a trend stationary model with a negative trend coefficient for most of the
century (1900 - 1988) and a major structural break at the end of the World War One.
Helg’s results supported the PS hypothesis.

Ardeni and Wright (1992) pointed out that the T'S or DS models, resulting from
the Box and Jenkins’ (1976) identification framework, require making a preliminary

hypothesis regarding the stationarity of the data generating process. To avoid this



complication, the authors followed a structural time series approach that does not rest
on any prior stationarity assumption (see Harvey (1989, pp. 31-51)). By examining
the behavior of y; over the period from 1900 to 1988, their findings were consistent
with Grilli and Yang’s (1988) in supporting the PS hypothesis. The authors also
reported that the inclusion of a dummy variable to account for the 1921 break claimed
by Cuddington and Urzua (1989) had no effect on the results. They concluded that
even if the break really occurred in 1921, 1y, would still have a negative trend but less
steep.

Bleaney and Greenaway (1993) extended the Grilli and Yang data series to 1991.
The authors fitted an autoregressive model with a time trend to ¥, and rejected the
PS hypothesis in favor of a one-off drop in 1980.

Newbold and Vougas (1996) found that the starting point of the econometric
analysis is crucial in testing the PS hypothesis; that is, whether the DGP is TS or
DS. The authors’ results were ambiguous in this matter. In particular, they found
that there is strong evidence of the PS hypothesis when the relative price series is T'S,
but when the series is DS, the PS hypothesis was rejected. The authors also found
that allowing for the possibility of structural break in the series does not help in
assessing whether the time series is TS or DS. Trivedi (1995) also concluded that the
empirical results of whether the relative price process is TS or DS are not clear-cut.

Lutz (1999) gave an excellent summary of the previously mentioned attempts. He

also extended the Grilli and Yang data set to cover the period 1900 to 1995. Lutz



argued that the reason behind the various findings is the choice of the econometric
model. Grilli and Yang (1988), Helg (1991), Ardeni and Wright (1992), and Bleaney
and Greenaway (1993) fitted a TS model; Cuddington and Urzua (1989) and Newbold
and Vougas (1996) fitted both TS and DS models; Von Hagen (1989) and Powell
(1991) used the bivariate approach and tested the hypothesis that the price series
are cointegrated. Lutz combined the TS, DS, and the cointegration relation into an
encompassing first-order distributed lag model with its error-correction equivalent.
Using the Johansen procedure, Lutz supported the PS hypothesis contrary to the
findings of other authors who employed the bivariate framework (e.g., Von Hagen
(1989) and Powell (1991)).

Persson and Terasvirta (2003) assumed, as a starting point to the analysis, that
the series y; are stationary. Using the extended series of Lutz (1999), the authors,
unlike all the previous studies, considered the hypothesis that the series might be
nonlinear. In particular, they tested the linearity hypothesis in y; against a parametric
nonlinear model (the smooth transition autoregressive model) and could not reject the
nonlinearity in the price series given the stationarity assumption. If the price series is
nonlinear and stationary, the resulting mean reversion behavior will contradict the PS
hypothesis. Therefore, the authors reached the same conclusion as of Newbold and
Vougas (1996) that the findings vary according to the starting point of the analysis.

In this thesis, we follow the same path as of Persson and Terasvirta (2003) that the

Grilli and Yang commodity price index as well as the individual price processes form-

10



ing the index are nonlinear. We test the nonlinearity hypothesis and we model the
dynamics of the price processes using regime switching (threshold) models. Threshold
models are best suited here because, unlike other models (Markov switching models
for instance), they assume that the DGP under consideration is driven by an observed
transition process. This is consistent with our approach of using common predeter-
mined observed transition variables that are capable of explaining the dynamics of
commodity prices. In particular, we employ the smooth transition regression (STR)
model pioneered by Granger & Teriisvirta (1993) and Terdsvirta (1994). STR models
have been used extensively in the regime switching literature. Most of the studies
(see, for instance, Terésvirta & Anderson (1992), Granger & Teriisvirta (1993), Lutke-
pohl, Terésvirta, & Wolters (1999)) have been focusing on modelling nonlinearities
in aggregate macroeconomic time series such as GDP, money demand functions, and
industrial production. Recently, Sarantis (2001) used these models to explain the
cyclical behavior in stock markets. In addition to their popularity, STR models pos-
sess some appealing features. They are based on a three-stage modelling procedure
starting from a specification stage, estimation, and finally an evaluation stage. Also,
as opposed to other regime switching models (e.g. pure threshold models and Markov
switching models), STR models have the flexibility of describing processes that can
move from one regime to the other such that the transition is smooth.

Another issue concerning nonlinearity is whether it enters the conditional mean

or the conditional variance of the commodity price time series under consideration.
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Beck (2001), for instance, using a variation of Engle’s (1982) Autoregressive Condi-
tional Heteroskedasticity (ARCH) model found nonlinearity in storable and not in
non-storable commodity prices. In this thesis, the STR model, which is technically a
nonlinear model in the conditional mean, is extended to model nonlinearity in con-
ditional variance. Hence, STR in variance models are also considered.®> One central
theme, however, that distinguishes this study from most of other studies in the regime
switching literature is its attempt to look for potential transition variables that can
explain the detected nonlinearity (whether in mean or in variance) in commodity
prices. The study shows that, in addition to the customarily used transition vari-
ables (lags of the dependent variable), external variables like oil price and inflation
are capable of capturing the dynamics of commodity prices and can act as driving
factors to price processes. The economic rationale behind selecting those potential
transition variables lies in their connection with commodity prices. An attempt to
establish such a link is also pursued in this study.

When modelling the behavior of commodity prices empirically, either using non-
linear models or any other models, the statistical and econometric techniques are
directly applied to the time series under consideration. Two significant particulars
are, consequently, overlooked in this context. First, the treatment of an index of
commodity prices is different than the treatment of individual time series. Mod-

elling individual price series requires a deeper look into the commodity’s history, its

3This, however, does not rule out the possibility of modelling nonlinearity using ARCH models.
Actually, some of the individual commodities in the data set used in this thesis were best modeled
using ARCH or variations of ARCH models. This point is discussed in detail in Chapter 3.
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main characteristics, its major exporters and importers, and its main shipping routes.
Sometimes the commodity’s history can explain some of the high swings perceived
in the price process. Valuable information regarding major trading routes and sales
terms (usually inferred from the data sources) of a commodity can assist in identify-
ing the potential transition variable responsible for driving the commodity price time
series from one regime to the other. For instance, if the recorded commodity price is a
cost and freight price, oil price is expected to be the potential variable responsible for
the transition of the commodity price time series from one regime to the other. This
can be justified through the oil price-commodity price connection. The idea here is
that fuel surcharge constitutes a significant portion of ocean freight, which, in turn,
is included in the recorded cost and freight price. Therefore, the changing dynamic of
the oil price causes the recorded border price to move from one regime to the other.
It turned out that oil price is, indeed, the common transition variable for all cost and
freight commodities in the Grilli and Yang’s (1988) data set used.

The second overlooked issue in modelling the behavior of commodity prices is
understanding the way the commodity is traded. Commodities can be classified
according to the type of trading into two groups: (1) imported or exported goods,
where actual delivery of the merchandise is mandatory, and (2) commodities traded
in exchange,® where physical delivery is not a must; the trading is usually done

over the counter for profit sake and the recorded prices are settlement prices. The

4This type of commodities includes metals, mainly, and some grains and agricultural items.

13



price behavior of the later group resembles that of the financial assets, which can be
captured by Engle’s (1982) ARCH model. In this research the threshold technology
is incorporated into Engle’s ARCH model and applied to this group of commodities.
Hence, smooth threshold ARCH (ST-ARCH) models are entertained for this type
of commodities. The value added of the ST-ARCH models can be seen from their
ability to capture the asymmetric responses of the time series to previous positive and
negative shocks; a feature that is commonly observed in commodity prices processes.

The plan of the thesis is as follows. Chapter 2 introduces the smooth transition
regression model, which is technically a regime switching in conditional mean, and
applies it to the Grilli and Yang’s (1988) commodity price index using inflation and
oil price as predetermined transition variables. The chapter discusses the economic
rationale behind selecting inflation and oil price as transition candidates in explain-
ing the nonlinearities in commodity prices through exploring two connections: the
commodity price-consumer price connection and the commodity price-oil price con-
nection. The feedback from consumer price to commodity price is also discussed
from a regime switching perspective. The smooth transition model is then applied to
model the nonlinearities in the 24 individual commodity price processes forming the
Grilli and Yang’s (1988) commodity price index. To determine the adequate exter-
nal transition variable that is capable of explaining the dynamics of individual price
processes, the 24 time series are classified into different groups based on the recorded

border price. Nonlinearity is then tested and modeled within each group. Chapter 3
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applies the same smooth transition regression model discussed in Chapter 2 to the
conditional variance of the Grilli and Yang commodity price index using inflation and
oil price as potential transition variables. The STR in variance model is then applied
to the individual processes forming the commodity price index. Following the border
price rationale discussed in Chapter 2, the nonlinearities in the conditional variance
of the individual processes in each group were characterized and analyzed. Finally,

Chapter 4 concludes.
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Chapter 2

Regime Switching in Mean

The primary version of the switching regression model was due to Quandt (1958),
who used maximum likelihood in estimating one switching point in a two regime
regression system. Bacon & Watts (1971) considered two different distinct linear
regression lines and developed a smooth transition technique from one linear regime
to the other. Beach (1977) considered incorporating structural change in a regression
model where the change occurs gradually over a known transition period. Recent
accounts include Granger & Teréisvirta (1993), Terdisvirta (1994, 1998), Franses &
Van Dijk (2000), and Terdsvirta (2004). Terdisvirta (1994) combined the threshold
autoregressive models and the exponential autoregressive models in a single family
of models called the smooth transition regression (STR) models. The STR model,
described briefly by Terésvirta (2004) and fully by Terédsvirta (1994), is a nonlinear

regression model that describes the changing dynamics of an autoregressive model
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from one regime to another such that the transition is smooth. The model can be
considered as a generalization of the model devised by Bacon & Watts (1971). The
model also nests the linear model as a special case.

In this thesis, we will focus on the smooth transition regression model, pioneered
by Granger & Terésvirta (1993), as the regime switching framework that will be
used to explain the behavior of commodity prices. Before introducing the model, we
will start by introducing a general threshold specification. Consider the following r

regimes autoregressive regression model of order p.

Y = (05(1) + Z@lyti) GH(si W) + ..+ <¢6 + Z@ytz’) G"(s; ) +a, (2.1)
i=1 i-1

with

j=1

where G7(s;; ¥) is a state of nature (or regime) j indicator function, for j = 1,...r, s
is a vector of switching variables, ¥ is a vector of parameters, and a; ~ i.i.d.(0, 0?).

Threshold models, STR models, and Markov switching models can all be expressed
from (2.1) with the exception that s; is not observed in case of Markov switching
models. Hence, the definition of the transition function, G(-), will differ from one
model to the other, and, actually, it is what distinguishes these models from one

another.
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2.1 The Pure Threshold Model

In the pure threshold model, the transition function G(-) is a discrete function
that takes the values {0, 1}. Consider the simple case where we assume two regimes,

i.e., r = 2. Then, equation (2.1) can be written as
P p
Y = <¢5 + Zo;}yti) GY(s; 0) + <¢§ + qu?yti) G (s, W) + ay, (2.2)
i=1 i=1
where

G'()+G () =1,

and

1 if St € Al(\lf),
Gl(St; \Ij) =

0 otherwise,

where A;(V) is a set that defines regime 1.

When the transition variable is one of the autoregressive lags of the dependent
variable, the pure threshold model is referred to as the threshold autoregressive (TAR)
model. The TAR model of Tong (1978) is a case in point. A TAR model can also be
expressed from our general specification in (2.1). A simple two-regime TAR(p) model

with s; = 1,1 so that the delay is 1, and the threshold is c is expressed as

p
g + Z¢f}yt—i +a ity <c
e — i1 (2.3)
o5 + Z¢z2yt—i + ay if y,1 >,

=1

where a; ~ i.i.d.(0,0%). More thorough treatment of threshold models can be found

in Priestly (1988) and Tong (1983, 1990).
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2.2 Markov Switching Models

Tong (1983) discussed the idea of using probability switching in nonlinear time
series models. Hamilton (1989) proposed a regime switching model in which the
unobserved state of nature s; follows a two-state Markov chain. A time series y;
following a simple two-state Markov switching autoregressive model of order p can be

expressed as

p p
Y = (a(l) + Z@%—i) S¢ + (ag + Zafyt_i> (1 — s¢) + ay, (2.4)
i=1 i=1

where the transition variable s; assumes values in {0,1} and is a first order Markov

chain with transition probabilities given by the transition probability matrix P as

P Poo 1 — poo |
I —pn P11

where 0 < p;; < 1 is the probability of being in regime 1 conditional on being in this
regime in the previous period, i.e., p11 = (s; = 1]s,-1 = 1), and 0 < pgg < 1 is the
probability of being in regime 2 given we were already in this regime in the previous
period, i.e., poo = (s; = 0|s;—1 = 0). The process a; is a sequence of i.i.d. random
variables.

The Markov switching model uses a hidden Markov chain that governs the transi-
tion from one regime to another. This idea of unobserved states of nature makes the

estimation of Markov switching models harder than other nonlinear model. Hamilton

(1990) used an expectation-maximization algorithm to estimate a Markov switching
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model. Other researchers used the Markov chain Monte Carlo method to estimate a

general Markov switching autoregressive model; see, for instance, McCulloh and Tsay

(1994).

2.3 Smooth Transition Regression Models

In the pure threshold model in (2.2), the transition function G(-) was a discrete
function taking the values {0,1}. In order to introduce smoothness in the transition
between regimes, the STR model assumes that the transition function is continuous,
ie., G(-) €0,1].

The standard STR model of order p is expressed as follows:
Y = (G + P1ye—1 + ... + ¢pyt7p) + {60+ 01yr—1 + ... + 0,y }G(51; V) + &4,
or in a more compact notation
Yy = D' 2+ 0 2G5, ¢) + &4, (2.5)

where v, is a scalar, z; = (1,941, ...,yt_p)/ = (1, 2;), D' = (¢y, by, e Op) = (gbo,i)'), 0 =
(00,01, ...,0,) = (05,0"), and &, ~ i.i.d.(0,2). G(s;; ¥) is the transition function. It
is a bounded function of the continuous transition variable s, and it is continuous
everywhere in the parameter space for any value of s;. In practice, the transition
variable s; is an element of the autoregressive lags of the dependent variable, i.e.,

St = Yi_q O 8¢ = Ay;_gq, where d > 0 is the delay parameter. In this thesis we allow
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the transition variable s; to be either an element of the autoregressive lags of y; or
an external variable that is capable of describing the behavior of ;. The selection of
the transition variable, and hence the model type, is performed in the first stage of
the modelling process; the specification stage (more of that later). The definition of
G(s; 0) is the one governing the empirical applicability of (2.5). Some definitions
have been suggested in the literature; see, for instance, Granger and Terésvirta (1993,

Ch. 7). In this thesis, G(-) is a logistic function defined in general as

X -1
G(s4;7,¢) = (1 + exp{—'yil;ll(st — cl)}) : v >0, (2.6)

where v is the slope of the function, and ¢ = (ci,...,c;) is a vector of location
parameters, such that ¢; < ... < ¢,. Given such a definition, the STR model defined
in (2.5) is then referred to as the logistic smooth transition regression (LSTR) model.

The transition function in (2.6) is a monotonically increasing function of s;. The
restriction v > 0 is an identifying restriction. The choice of k is not only crucial in
determining the behavior of the logistic transition function, but also has a significant
implication in interpreting the time series under consideration. Two common choices
for k are used in the literature; £ = 1 and k = 2. In the LSTR model with &£ = 1
(LSTR(1)), the parameters ® + OG(s¢;7,¢) in equation (2.5) change monotonically
as a function of s; from ® to ® + ©. Given such a feature, the LSTR(1) is capable of
characterizing asymmetric time series behavior, i.e., processes whose dynamic prop-
erties are different in an expansionary regime from what they are in a recessionary

regime, and the transition between the two regimes is smooth. The logistic function
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in the LSTR(1) model takes the form

G(si;v,0) = (L+exp{—(s; —0)})™", >0, (2.7)

Note that when s; — —oo, G(-) = 0; this defines the recessionary regime. On
the other hand, when s, — 400, G(-) = 1 and the time series is said to be in an
expansionary regime. The LSTR(1) function in (2.7) is plotted in Figure 2.1, where
the threshold ¢ = 0.5 and the slope v = {2,1000} for the solid and the dashed lines

respectively.

4 -3 -2 -1 0 1 2 3 4

0

Figure 2.1: The smooth transition logistic function of order 1 with a moderate slope v = 2
(the solid line) and with an extremely larger slope v = 1000 (the dashed line). The threshold

value ¢ = 0.5.

In the LSTR model with £ = 2 (LSTR(2)), the parameters ®+OG(s; 7, ¢) change
symmetrically around the midpoint ¢ = %, where the logistic function attains its
minimum value. The LSTR(2) model is a three-regime switching regression model in

which the dynamics of the two outer regimes, associated with large and small values
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of s, are the same while the behavior in the transition period (middle regime) is

different. The second-order logistic function in the LSTR(2) model takes the form

G(si;7,¢) = (1 4+ exp{—7(st — c1)(s¢ — 02)})71 , v >0, ¢ < e, (2.8)

where v > 0 and ¢; < ¢y are identifying restrictions as mentioned before. Notice that,
unlike the first-order logistic function, the second-order function is not zero at the

minimum; it has a value

1

Gmin = T =
1 + exp{—~¢}

where ¢ = c¢jc; — 2. The behavior displayed by the second-order logistic function
depends on the value taken by the transition variable s;. When the transition variable
takes the value of any of the thresholds, i.e., s, = ¢; or s, = ¢a, G(s4;7,¢1,02) = %
This characterizes the middle regime. On the other hand, the two outer regimes are
achieved when s; — oo and G = 1. The LSTR(2) function in (2.8) is plotted
in Figure 2.2, where ¢; = —1,¢0 = 2 and v = {1,1000} for the solid and dashed
lines respectively. Observe how the functions change symmetrically around ¢ = 1/2
(the midpoint). When ~ = 0, the transition function G(s;;7,c1,¢2) = 1/2, and the
STR model in (2.5) nests the linear model. When 7 — oo in the LSTR(1) model, the
result approaches the pure threshold model in (2.3) (see the dashed line in Figure 2.1);
when v — oo in the LSTR(2) model, the result is a pure threshold model with three
regimes such that the two outer regimes are similar while the ground regime (middle

regime) is different and the transition between regimes is swift (see the dashed line

in Figure 2.2).
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4 (t)s

Figure 2.2: The smooth transition logistic function of order 2 with a moderate slope v = 1
(the solid line) and with an extremely larger slope v = 1000 (the dashed line). The threshold

values are ¢y = —1 and ¢y = 2.

I shall follow the modelling framework proposed by Granger and Teréisvirta (1993),
Terésvirta (1994), and Eitrheim & Teréisvirta (1996), which consists of three stages.
The first stage is the specification stage, in which the delay parameter of the nonlinear
model is determined by suggesting and testing a linear model against the STR model.
If the null hypothesis of linearity is rejected, a short sequence of F-tests is conducted
to decide the type of the nonlinear model (LSTR(1) or LSTR(2)). The specified
model is estimated in the second stage and the evaluation of the estimated model is
performed in the third stage. Nonlinearity testing, estimation, and evaluation of the

LSTR model are briefly discussed in the following subsections.
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2.3.1 Testing for nonlinearity

The specification stage of the LSTR model involves two phases. First a linear
model forming the starting point of the analysis is specified and subjected to linearity
tests. Then, the type of the STR model (LSTR(1) or LSTR(2)) is selected.

To begin, a linear autoregressive (AR) model is specified. To this end, ¥, is
regressed on Y1, Yi—2, ..., Y1—p, and a constant. A common technique to determine
the lag length of the autoregression, p, is to use an order selection criterion like
the Akaike information criterion (AIC) (Akaike, 1974) or the Bayesian information
criterion (BIC) (Schwarz, 1978). Since the BIC might lead to too parsimonious a
model in the sense that the residuals of the preliminary model might not be free
from autocorrelation, the researcher can, as a start, fit a linear model using the lag
order from the BIC and then test for residual autocorrelation. If it is still present,
the researcher can increase the number of lags till the residuals are free from serial
correlation. An alternative strategy, which will be used in this study, is to follow the
convention in the literature and use the value of p that minimizes the AIC directly.

The linear AR model then takes the following form

Yo = Qo+ G1Yi1 + oo+ By + ay, a; ~ i.1.d.(0,02), (2.9)

and the LSTR model takes the form

Ye = Qo+ Or1Ye 1+ o+ Oy p + {00+ 01y 1 + o+ Oy yG (8157, ¢) + &, (2.10)

where G(-), as mentioned before, is a logistic transition function with the transition
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variable s; and &; ~ 4.i.N.(0,0%). Before accepting the AR model in (2.9) as the
starting point of the LSTR analysis, diagnostic tests should be applied to the model
to ensure its adequacy as a starting model. In particular, the Ljung-Box (1978) test
of no serial correlation of order ¢ = 1 up to ¢ = 8 in the residuals (Q(¢)) and Engle’s
(1982) Lagrange multiplier test of no autoregressive conditional heteroscedasticity of
order v = 1 up to v = 4 in the residuals (LM ARCH(v)) are considered.! Once the
model is proven to be adequate, we move to the second phase in the specification
stage, which is testing for nonlinearity.

The problem with nonlinearity testing is that the nonlinear STR model considered
is only identified under the alternative hypothesis. Consider the STR model in (2.5)
with W = {~, ¢}. Imposing the restriction that © = 0 (see page 20) reduces (2.5) into
a linear model but V¥ is not identifiable under this null-hypothesis. An alternative
way is to set 7 = 0, which also renders the model linear but, again, this leaves {O, ¢}
unidentifiable. Luukkonen et al. (1988), based on a paper by Davies (1977), suggested
a solution to this problem. Their solution, which was adopted by Terésvirta (1994),
was simply to replace the transition function (2.6) in (2.5) by a Taylor approximation
about the null hypothesis v = 0. In particular they assumed a first order logistic
function, i.e., £ = 1 in (2.6), and performed a third order Taylor approximation

about the null hypothesis v = 0. Let G(s;,7,c¢) be the first order logistic function

!Testing the presence of ARCH up to order v = 4 is adequate here since we have annual data.
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given as
G(s¢,7,¢) = [(1 +exp{—(s; —c)}) " — 1/2] v >0,

where the 1/2 was subtracted to facilitate the Taylor approximation. The third order

Taylor approximation about - is

9G() PG(), PG, A
T(st,7,¢) = G(+)|y=0 + a—7|v:07 + 92 |v:0§ + 8—73,|v:0§, (2.11)

where, at v = 0, the first and third terms of the right hand side of equation (2.11)

are zeros and will drop. The second and fourth terms are

oG () 1
—87 |7:0 = Z(St - C) (2’12)
and
*rcr), 1 3
e ly=0 = —g(St —c)”. (2.13)

Now consider the STR model in (2.5) and replace the transition function G(-) by its

Taylor approximation in (2.11) with (2.12) and (2.13). This yields

! 1 ! 1 I
ye = O 2z + 17@ 2(s —¢) — 4—873@ 2 (st — ¢)® + &4, (2.14)

Using 2, = (1,%,),® = (¢, ®'), and ©" = (#y, ©"), equation (2.14) can be expressed
as

yr = 0o + 5,1% + 7'('/12758,5 + W;Etsf + 7'[';)2158? + €, (2.15)

where

1 1
do = Py — 1’7690 + @73036’0,
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and e = &, + R(7, ¢, s¢)00 with R(7, ¢, s;) = 175 — 75758 + 157°¢sf — 7575 ¢2sy is the
remainder.? Because each 7, j = 1,2, 3, is of the form 7, where 77; # 0 is a function
of (:), the null hypothesis of linearity is then Hy;, : m; = m9 = w3 = 0. Also note that
because €; = ¢; under the null hypothesis, the asymptotic theory is not affected if
an LM test is used. Following Luukkonen et al. (1988) and Teréisvirta (1994), a
convenient procedure for computing the LM statistic by OLS is to estimate (2.15)
under the null hypothesis and compute the sum of squares of the residuals (SSRy),

then estimate (2.15) under the alternative hypothesis and compute SSR;. The LM

T(SSRy—SSR1)

ST, , where T' is the sample size. The test

statistic is computed as LM =
statistic has an asymptotic y>-distribution with 3p degrees of freedom when the null
hypothesis is valid. However, the F-statistic is recommended because the y?-statistic
can be size-distorted in small and even moderate samples. In this thesis, we shall

use the F-distribution with 3p and T"— 4p — 1 when the null hypothesis Hyy, is valid.

The test is repeated for each transition candidate in the transition set. If the null

2Here we assume that s; is an external variable, i.e., not an element in z. If s; is an element in
zt, then the auxiliary regression in (2.15) will be

’ ’ ’ 2 ’ 3
Ye = 012t + T 2S¢ + TozeSy + T2 Sy + €t
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hypothesis of linearity, Hyr, using the F-test (F}) is rejected for at least one of the
models, the model against which the rejection, measured in the p-value, is strongest
is chosen to be the STR model to be estimated.

Another purpose of conducting the linearity test is to use the test results for model
selection. If linearity is rejected and a transition variable is selected, the next step
is to choose a model type, i.e., to choose between LSTR(1) or LSTR(2) models.?
The choice between the two models can be based, again, on the auxiliary regression
(2.15). Tertisvirta (1994) showed that when ¢ = 0 then 73 = 0 when the model is
an LSTR(1), where as m; = m3 = 0 when the model is an LSTR(2). The following

F-tests sequence was then suggested based on the auxiliary regression in (2.15):

1. Test the null hypothesis: Hoy : w3 = 0 with an ordinary F-test (F}y). A rejection

of Hyy can be interpreted as a rejection of the LSTR(2).

2. Test the null hypothesis that 7o = 0 given that 73 = 0, Hoz : mo = 0|mg = 0,
using another F-test (F3). Failure to reject Hys indicates that the model is an
LSTR(1). The idea here is that the s? terms of a third order Taylor series
approximation to a logistic function of order one are zeros when ¢ = 6y = 0
(see equation (2.15)). In the LSTR(2), however, these terms will not be zeros.

Rejection of Hyz, on the other hand, is not very informative.

3. The last F-test (F3) in the sequence is to test the null hypothesis that 7, = 0

3The exponential smooth transition regression model (ESTR) was not considered in this thesis
because the case where the two threshold values are equal, i.e., c; = co, was not encountered when
modelling nonlinearity in both the commodity price index and the individual price processes.
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given that my = m3 = 0 as, Hpy : m; = 0|me = m3 = 0. Rejecting Hyy after
accepting Hos supports the choice of the LSTR(1) model. Accepting Ho, after

rejecting Hys points to the LSTR(2) model.

After carrying out the three F-tests and noting which hypotheses are rejected,
if the test Hys yields the strongest rejection measured in the p-value, choose the

LSTR(2) model; otherwise select the LSTR(1) model.*

2.3.2 Estimation and Evaluation

After specifying the type of the STR model and determining the transition vari-
able, the next step is to estimate the model. Consider the STR specification in (2.5),
where ¢, is 7.i.d. (0,0?) with a density p(e;). The log-likelihood function at time ¢ can

be expressed as
1(®,0,0,7) =In (p(yt (@ +0'G(x; \If))zt)> . (2.16)

Assuming normality of the error term, i.e., if &; is ~ N (0,0?), then

L33y
g) = e 2\a/ | 2.17
and the time t log-likelihood function is
1 1 1{y, — (' + O'G(2; ¥)) 2}
lt(cb,@,a,qf):—§1n(27r)—§1n(02)—§{yt (@ + . CARD)E) ST
o

4For more details concerning the decision rule for choosing between LSTR(1) and LSTR(2) mod-
els, see Terdisvirta (1994).
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with U = {v,¢}. Maximum likelihood estimators of the parameters ®, 0,0, and ¥
can be obtained by maximizing the log-likelihood function. However the estimation
might be difficult due to the existence of flat segments or numerous local maxima
in the surface of the log-likelihood function. Estimation is, therefore, carried out
conditional on the ¥ parameters. The conditional log-likelihood® is maximized using
the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Starting-values
for v and ¢ needed for the algorithm are obtained by constructing a three dimensional
grid. The model parameters are estimated conditionally on v and ¢, and the sum of
squared residuals is computed. The procedure is repeated for N combinations of
these parameters. The parameter values that minimize the sum of square residuals
is selected.

To facilitate the construction of an effective grid, I follow Terésvirta’s (1998) sug-
gestion of standardizing the exponent of the transition function G(s;; v, ¢) by dividing
it by the k" power of the sample standard deviation of the transition variable o*.
This is done mainly to render the parameter v scale-free. The transition function for

an LSTR(1), with k£ = 1, then becomes
G(si;7,0) = (L+exp{—(si —c)/o}) ", >0, (2.19)
and that for an LSTR(2), with & = 2, becomes

G(s;7,¢) = (1 + exp{—7(s; — 1) (s — 02)/0§})_1 , v>0, 1 <co. (2.20)

®Conditions for obtaining a consisent and asymptotically normal estimates can be found in
Wooldridge (1994) and Mira and Escribano (2000).
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The last stage in the modelling procedure is the diagnostic stage where the ade-
quacy of the fitted model is considered. The misspecification tests for the STR models
that have been considered in Eitrheim & Terisvirta (1996) and Teréisvirta (1988) will
be considered in this thesis. Eitrheim & Teriisvirta (1996) have suggested three tests:
A Lagrange multiplier test of no error autocorrelation (LM ayro), an LM-type test
of no remaining nonlinearity (NRNL) in the fitted STR model, and LM-type test
of parameter constancy (PC'), where the null hypothesis of parameter constancy is
tested against the alternative that allows smooth continuous change in the parameters

of the STR model. The following is a brief discussion on these tests.

Test of No Error Autocorrelation

This test, LM ayrog), 6 can be viewed as a special case of a general LM test that
was first suggested by Godfrey (1988). Terésvirta (1998) applied this test to the STR
model. Briefly, the test consists of regressing the residuals of the STR model on the
lagged residuals up to order g and the partial derivatives of the log-likelihood function
with respect to the parameters of the model evaluated at the maximizing value. The
test has an approximate F-distribution with ¢ and T'—n — ¢ degrees of freedom under
the null-hypothesis of no error autocorrelation. 7" is the number of observations and
n is model parameters. The test statistic is F' = %, where SSRy is the

sum of squared residuals of the STR model and SSR; is the sum of squared residuals

6The usual Ljung and Box (1978) test of no serial correlation is inapplicable here because the
asymptotic distribution of the test statistic is unknown when the residuals from the STR model are
used (Eitrheim & Terésvirta , 1996).
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of the auxiliary regression discussed above. For more details on the derivation and

the asymptotic distribution of the test statistic, see Eitrheim & Tertisvirta (1996).

Test of No Remaining nonlinearity (NRNL)

A natural question to ask after fitting a STR model is whether the model ade-
quately captures the nonlinearity originally found in the data. To this end, consider

the following additive STR model
Yo =@z + @/ZtG<71’ c1, S1) + ¢IZtF(’727 Co, S1) + &,

where &; ~ i.i.d.N(0,0?) and F(7,,cs, o) is a second transition function, and test
whether v, = 0. In practice, so; € S (the set of potential transition variables) and the
test can be applied to each transition variable in the set. However, in this research,
I will only carry on the NRN L test against the transition variable selected in the
specification stage. The null hypothesis of no additive nonlinearity can be defined
as 7, = 0. Since the model is only identified under the alternative hypothesis and
following Eitrheim & Terésvirta’s (1996) suggestion, the added transition function F’
is approximated by a third-order Taylor expansion about the null hypothesis v, =
0. The approximation, after reparameterization and rearranging terms, yields the

following auxiliary regression
’ / > I~ 2 "~ 3 *
Yy = T2t + C) ztG(’yl, C1, Slt) + T Z4Sor + M2 Sy + TaZi Sy, + €y

where ef = &; + Ry3(7y, Ca, 52¢)10 2 With Ry(7y, ¢2, 53¢) is the remainder from the poly-

nomial approximation. The hypothesis of no additional nonlinear structure becomes
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Hyy, : mp = my = w3 = 0 and the associated F-distribution is given in the same way
as of the test on linearity in the specification stage. For more details, see Eitrheim &

Terisvirta (1996).

Test of Parameter Constancy (PC)

Nonlinear STR models are estimated under the assumption of constant parame-
ters. Testing the null hypothesis of parameter constancy against the alternative that
allows smooth continuous change in parameters is, therefore, a relevant test. A brief
description of the test follows.”

Consider the nonlinear STR model with changing parameters over time as
Y = (1) 2+ O(t) 2G(v, ¢, s¢) + e, g ~i.0.d.N(0,0%),

where

@(t) =0 -+ )\1H1(’}/¢, C¢, t*)

and

@(t) == @ + )\gHQ(’yg, Cyp, t*),

where t* = t/T. The functions H(v,,cs,t*) and Ha(vy, cg,t*) are logistic functions
with s; = t*. Thus, ®(¢) and O(t) are time varying parameter vectors whose values
vary smoothly from ® to A\; H; and from © to Ay Hs respectively and the null hypothe-
sis of parameter constancy is v, = 7, = 0. The derivation of the F-statistics, denoted

PC(k), of the test depends on the order of the polynomial in the exponent k of the

"See Terisvirta (2004, pp 232) for details.
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logistic functions Hi(7,,cg,t*) and Ha(vy,cp,t*). Assuming v, = v, and following
Eitrheim & Terésvirta (1996),° three alternative transition functions are considered
as follows
3 -1 1
H(y,e,t) = (1 + exp{—vg(t* - Ck:)}) -5 1>0

where the 1/2 was subtracted to facilitate the Taylor approximation. The statistic
PC(1), with & = 1, tests parameter constancy against a smooth monotonic change;
PC(2), with k = 2, tests the null hypothesis of parameter constancy against non-
monotonic but symmetrical change about ¢ = ¢; and finally PC(3), with k& = 3, tests
parameter constancy against non-monotonic as well as non-symmetrical parameter

change. All three alternatives are considered in this thesis.

2.4 The Threshold Variable in the STR Model

The selection of the transition variable s; in the STR models is crucial as it ex-
plains the dynamics of the dependent variable 1;, which is the ultimate goal of fitting
such a model. The majority of the researchers in the regime switching literature start
their analysis by suspecting a nonlinear pattern in the DGP and conduct a sequence
of linearity tests (as mentioned in Section 2.3.1) to confirm it. Once nonlinearity is
proven to be present, they are faced with the decision of which transition variable

they should employ. Most of the studies employ a lag order autoregressive compo-

8 According to the authors, the restriction Y4 = Vo does not affect the asymptotic null distribution
of the test statistics.
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nent of the dependent variable as the transition variable. This is probably because
it is difficult to find external transition variables that can explain the dynamics of
the DGP, especially when the economic theory does not say much about the relation
between the dependent variable under consideration and the potential transition can-
didates. In this thesis, in addition to the autoregressive lags of the dependent variable,
other potential transition candidates that can explain the detected nonlinearities in
commodity prices are considered.

Since commodity markets respond to business cycle fluctuations, it was natural
to consider, among the external transition candidates, business cycle variables. In
particular, current and one period lag unemployment, money supply measures (M1
and M2), current and one period lag interest rates (1, 5, and 10 years U.S. treasury
bills), and oil price were considered. Linearity was not rejected for all variables except
for oil price and the U.S. inflation rates and, therefore, both variables were selected
as the potential transition candidates. The rationale behind using inflation rates and
oil price lies in their connection with commodity prices. This connection is briefly

discussed in the following two sections.

2.5 Commodity Price-Consumer Price Connection

The commodity price-consumer price connection rests on a number of linkages.
The most important one describes commodity prices as assets whose prices react

quickly to unanticipated shocks. For instance, a surge in aggregate demand in re-
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sponse to a change in money supply causes commodity prices to initially overshoot
their long run equilibrium while final goods prices only respond with a lag (Blomberg
and Haris, 1995). This overshooting hypothesis has been used by many authors (see
Frankel (1986), Boughton and Branson (1991), and Fuhrer and Moore (1992)) to ex-
plain the commodity price-consumer price connection. Blomberg and Haris (1995)
gave another reason linking commodity prices and broad inflation. The authors argue
that an increase in commodity prices should be eventually passed through to final
goods prices because commodities are an important input into production. A third
reason, still according to the authors, stems from the first two: commodity prices are
seen by investors as a useful inflation hedge because of their quick response to general
inflation pressures.

The previous linkages can only explain one way causality from commodity prices to
consumer prices. However, a feedback relation also exists. In a recent paper, Kyrtsou
and Labys (2006), using monthly U.S. data, found evidence of nonlinear bidirectional
(feedback) Granger causality between the growth rate (logarithmic differences) of the
consumer price index and the commodity price index. The authors modelled this
bidirectional relation by constructing a noisy chaotic multivariate model based on
the Mackey-Glass (1977) nonlinear time delay differential equation.” The authors
argue that the advantage of the Mackey-Glass model over simple VAR alternatives

is its ability to filter more difficult dependent dynamics (cause and feedback) in a

9Mackey-Glass equation was originally developed by the authors to model physiological control
systems. The equation was very successful in modelling feedback systems.
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time series. We make use of this bidirectional Granger causality to justify the use
of inflation rate as a potential transition variable that is capable of explaining the
dynamics of commodity prices. We also attempt to verify the feedback effect, yet
from a regime switching point of view; that is, we attempt to use the growth rate
of commodity prices as the transition variable in modelling the dynamics of inflation

rate using the smooth transition regression model.

2.6 Commodity Price-0il Price Connection

The connection between the price of a commodity and the oil price rests on the
term of selling (Incoterm) used in the contract effected between the buyer and the
seller of the commodity.!® As mentioned before (see Chapter 1, page 4), the frequently
used terms of selling are FOB prices and CIF prices. Border prices (FOB and CIF)
are different from market prices in the sense that the former do not reflect market
distortions in the latter. That’s why all the international organizations (e.g., the
World Bank, the IMF, the OECD) use border prices in their databases and in the
construction of their indexes of commodity prices.

In addition to the insurance cost, the CIF price of a commodity includes the
transportation cost (ocean freight). A significant portion of the latter is due to the

bunker fuel cost. Therefore, one would expect oil prices to play a significant role in

10See Appendix A for a brief discussion on the characteristics of the shipping industry and the
sales terms used in effecting trading contracts.
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explaining the behavior of commodity prices recorded on a CIF basis. This connection
is overlooked when modelling the behavior of commodity prices empirically. The
statistical and econometric techniques are usually applied directly to the data set

under consideration without proper investigation of the sources of the time series.

2.7 The Data

The commodity price index studied in this thesis is an index of 24 primary com-
modity prices developed by Enzo Grilli and Maw Cheng Yang (1988) and known as the
Grilli and Yang Commodity Price Index (GYCPI). Aiming, among other things, at
analyzing the long-run movement in the net barter terms of trade series, the authors
deflated the GYCPI by an index of manufactured goods’ unit values (MUV) between
1900 and 1986. The MUYV is a trade-weighted index of the five major developed
countries’ (France, Germany, Japan, United Kingdom, and United States) exports of
manufactured commodities to developing countries. The ratio GYCPI/MUYV, or the
real GYCPI, measures the purchasing power of the primary commodities in terms of
traded manufactures.

In this thesis, we use the extended version of the Grilli and Yang series from 1900
to 2007, developed and provided by Pfaffenzeller, Newbold, and Rayner (2007).!!
We follow the convention in the literature and use the logarithm of the real index

GYCPI

defined as y; = log (M—UV) .- A plot of y, is shown in Figure 2.3. The first potential

1T am indebted to Stephan Pfaffenzeller for supplying the recent update from 2003 to 2007.
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Figure 2.3: The logarithm of the real GYCPI between 1900 and 2007.

transition candidate is inflation rate defined as the first difference of the logarithm of
the U.S. consumer price index for all urban consumers (CPI;), II; = Alog(CPI;).
The second transition candidate is the logarithm of real crude oil price defined as
R, = log (%) , - The stationarity of y; is confirmed at the 5% level of significance
by the ADF, PP, and KPSS tests (see Table 2.1).

A plot of y; against our two transition candidates between 1900 and 2007 is shown
in Figure 2.4. By looking closely at the figure, one can immediately observe the
distinction between the behavior of inflation rate and oil price in three periods: (1)

In the early period, between 1900 and 1950, the fluctuations in the inflation rate are

higher in magnitude compared to those in oil prices; (2) in the mid period, 1950
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Time Series ADF(p) | PP KPSS,
y=log (), [ —3.99(1) | =3.75 ] 0.13
I, = Alog(CPL) | —5.65(1) | —5.25 | 0.07
R, = log (YLpicey | —3.11(0) | —3.15 | 0.14
gt=A1og(Gggf13t —7.76(1) | —8.14 | 0.04

Table 2.1: ADF, PP, and KPSS are respectively the augmented Dickey-Fuller, the Phillips-
Perron, and the Kwiatowski, Phillips, Schmidt and Shin tests with a trend. P is the number
of lags of the ADF test. The 5 percent critical values are -3.45 for ADF and PP and 0.146

for KPSS.

to 1970, there is not much to tell as both variables look steady with very small
fluctuations; (3) in the late period, 1970 to 2007, however, the oil price time series
exhibits higher swings, especially around the two well known oil shock periods (1974
and 1984), as compared to the inflation rate, which seems to have stabilized after
the second oil shock of 1984. This simple analysis suggests a reverse pattern between
both variables. That is, if a connection between the Grilli and Yang commodity
price index and both variables is established, one, by using the inflation rate alone
as the transition variable, will adequately capture the early period fluctuations in
commodity prices, while, using oil price, late period variations will be well modelled.
In the following subsections, Terésvirta’s (1994) three stages modelling procedure for
the LSTR models will be applied to the Grilli and Yang commodity price index using

inflation and oil price as transition variables respectively.
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Figure 2.4: The logarithm of real GYCPI, y; = log(%)t, U.S. inflation rate, II; =
Alog(CPI), and the logarithm of real U.S. crude oil price, R; = log(%)t, between

1900 and 2007.
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2.8 Regime Switching in the Commodity Price In-

dex

In this section the nonlinearity in the Grilli and Yang commodity price index is
modelled using a smooth transition regression model with inflation and oil price as
potential transition variables. Following the nonlinearity modelling framework pro-

posed by Granger and Terisvirta (1993) and Terésvirta (1994), we start by specifying

GYCPI
MUV

a linear AR model by regressing y, = log ( ) . on a constant and p lags, where p
is the value that minimizes the AIC directly. Both AIC and BIC were minimized at

a value of p = 1. The estimated AR(1) model and the preliminary misspecification

tests results are reported as follows.

gy = —0.001+ 0.92% , +ay, (2.21)
(0.90) (0.000)
Q(1) = 0.91(0.34),  Q(8) =4.80(0.78),
LMagonay = 013(0.72),  LMagona = 1.47(0.83),

JB = 4.56(0.10), K;=—025 K,=3.5,

where the figures in parentheses beneath the estimated parameters and next to the
test statistics are p-values. Judging by the Ljung-Box (1978) statistics Q(q), the
null hypothesis of no serial correlation of order ¢ = 1 up to ¢ = 8 in the residuals
series was not rejected at the 5% level of significance. Also, applying Engle’s (1982)

Lagrange multiplier test of no autoregressive conditional heteroscedasticity of order v
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(LM agrcH(v)), the null-hypotheses of no ARCH(1) up to ARCH(4)'? were not rejected
at the 5% level of significance. Finally, the null-hypothesis of normality of errors was
not rejected at the 5% level of significance as seen from the p-value of the JB test
statistic. The skewness (K3) and kurtosis (/) results are also reported in (2.21).
Notice that the constant drift coefficient is insignificant; other than that, the model
3

passes all preliminary diagnostic tests and can act as a good start for our analysis.!

The next step is testing for nonlinearity.

2.8.1 Switching Variable: Inflation

The set of the predetermined potential transition variables, €);, in this case consists
of the autoregressive variable 3;_; and its first difference, Ay; 1, and the current and
the one period lag inflation (II; and II;_; respectively) as the potential transition
candidates, i.e., = {y;_1, Ayi_1, 1, II;_1}. The previously mentioned sequence of
nonlinearity tests (see Section 2.3.1) was executed for each of the potential transition
variables in €); and the results are reported in Table 2.2. At a first glance, the
current inflation rate, II;, tagged with the symbol **, seems to be the variable with
the strongest test rejection (the smallest p-value; see the second column of Table 2.2)

and, therefore, it should be selected as the appropriate transition variable for the STR

12Testing the presence of ARCH up to order v = 4 is adequate here since we have annual data.

13When this preliminary analysis was applied to the 24 commodities forming the Grilli and Yang
index, the estimated residuals of the fitted AR models of some price processes exhibited ARCH
pattern. These linear models, therefore, could not act as adequate starting points for an LSTR
setting; different models (such as ARCH or smooth threshold ARCH models) were, consequently,
entertained for such group of commodities. Estimation and misspecification tests results of these
models are discussed in detail in Chapter 3.

44



Sy Fr, Fy E; Fy Suggested Model
Y1 731 x 1071 [ 450 x 107! | 6.48 x 107! | 4.74 x 107! | Linear
Ay, 1 1239%x1071 | 829 x 1071 | 6.45 x 1072 | 3.40 x 107* | Linear
I 1.06 x 107* | 2.08 x 1072 | 3.02 x 107* | 1.57 x 107! | LSTR2
Y, | 508x107%|6.17x 107! | 856 x 107! | 1.53 x 10~* | LSTR1

Table 2.2: P-values of the linearity F-tests sequence applied to the logarithm of the real

GYCPI when inflation is the transition variable.

model. The associated model is clearly the LSTR(2) model as the p-value of the Fj
test is less than the p-value of the F5 and F). However, using s; = II;, and proceeding
to the estimation stage, the diagnostics of the estimated LSTR(2) model showed,
besides some residuals autocorrelations of order 2 and 3, severe parameter change,
i.e., the parameter constancy hypothesis was rejected, which is a clear indicator of
misspecification. This is, most probably, due to the possible endogenity resulting from
the correlation between the period ¢ commodity price index and the period ¢ consumer
price index, which might renders the estimates unreliable. Therefore, a better choice
is to use the one period lag inflation instead of current inflation as transition variable.
Actually, applying our testing procedure confirms that; the second best transition
candidate is the one period lag inflation II,_;, tagged with the symbol * in Table 2.2,
and the suggested model is the LSTR(1). The p-values of the F-tests for linearity and
model selection sequence previously described are reported in the same table. Based

on the previous analysis, the adequate nonlinear LSTR(1) model is then

Y = Gg + d1yi—1 + {00 + 0191} (1 + exp{—y(IL;-1 — 0)} ' + &, (2.22)
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Estimation of the LSTR(1) model in (2.22) is performed using conditional max-
imum likelihood method, where the log-likelihood function in (2.18) is maximized
using the iterative BFGS algorithm. Starting-values for v and ¢ needed for the algo-
rithm were ¥ = 0.5 and ¢ = 0.01.

To render the parameter v scale-free, the exponent of the transition function was
divided by the sample standard deviation of the transition variable (the one period

lag inflation), oy, as

1

G(St;vac) = 14+ exp{—’}/(St - C)/UH}’

v > 0. (2.23)

The best fitted LSTR(1) model that we managed to obtain after dropping the in-
significant drift parameter in the nonlinear part of y;, and the results of Eitrheim
& Tersisvirta (1996) and Teréisvirta’s (1988) misspecification tests are reported as

follows.

e = 0.009-+0.98y, 1 — {044y, 1 }(1+exp(—

13 (TI,_;— 0.07)/0.046)) ' +5,, (2.24
(0.01)  (0.04) 1278< =1 )/ )T e, (2.24)

(1273) (0.003)
R =088, &5=0046, & =0.10,

LMARCH(l): 0.26, LMARCH(4): ()‘877

LM aproqy = 029,  LMayrow= 040,  LMayrow=082,  NRNL=0.21,
PC(1) = 0.19, PC(2)=043, PC(3)=0.15, JB = 0.001,
Ky = —05,  K4=4.13, RMSE,, .. =0235  RMSEg=0.063,
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Figure 2.5: Graphical presentation of the constructed grid for the LSTR1 model with one

period lag inflation rate as transition variable.

where o7 is the sample standard deviation of the transition variable s, = II,_; and &
is the residual standard deviation. The figures in parentheses beneath the parameter
values are standard deviations. LM pro() is the p-value for the v" order autocor-
relation. LM rcm(q) is the p-value of the ¢" order ARCH. PC1,PC2, and PC3
are p-values for parameter constancy tests against monotonic change, non-monotonic
symmetrical change, and non-monotonic and non-symmetrical change respectively.
NRNL is the p-value for the no remaining nonlinearity test. JB is the p-value of
the Jarque-Bera test of normality. K3 is skewness and K, is kurtosis. The original
and fitted series of y; are plotted in Figure 2.6. The root mean square errors (RMSE)

of the last seven yearly one-step-ahead forecasts (from year 2001 to 2007) for the
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linear and the STR model are 0.235 and 0.063 respectively.'* The RMSE of the STR
model is lower than the RMSE of the linear autoregressive model, indicating that the
forecasting performance of the STR model is superior to that of the linear model.
Perhaps the most noticeable detail of (2.24) is the large standard deviation of the
estimated slope of the logistic function, ¥ = 213. It is common, for LSTR models, that
the estimated standard deviation of v tends to be large for large values of . This is
not crucial, however, as it will not affect either the shape of the logistic function G(-)
or the other estimates of the model. Terdsvirta (1994) gave an example of this exact
case and provided a discussion on the estimation issues of v. The message delivered by
this enormous slope of the transition function is that y; will be moving sharply from
one regime to the other. This is not surprising since we are modelling the dynamic
behavior of a commodity price index, which is flexible by nature. This type of behavior
can be observed from the transition function G(II;_4,, ¢) plotted in Figure 2.7. One
might argue that there is no value added from fitting the smooth transition regression
model and that the dynamic behavior of y; might be adequately captured by the pure
threshold model. We verified this argument by fitting a threshold autoregressive
model (TAR) to the Grilli and Yang commodity price index using inflation as the
switching variable. It turned out, as we shall see in the following subsection, that
the commodity price index under the fitted TAR model exhibited the same dynamic

behavior as the one obtained from the LSTR model in (2.24). This confirms the ability

4The forecasts were made without re-estimating the models during the prediction period (from
2001 to 2007).
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of the STR-type models to encompass pure threshold behavior when the slope of the
transition function is large enough to produce abrupt transitions between regimes.
Other than the large slope of the transition function, the estimated coefficients are
all significant and the model passes the misspecifications tests mentioned before. One
exception is the rejection of the null-hypothesis of normality of errors at the 5% level
of significance as seen from the p-value of the J B test statistic. But, this is due to the
existence of outliers in the time series. A quick look at the standardized residuals time
series plotted in Figure 2.8, one can notice the very large outliers in 1921 and 1937
where the absolute value of the standardized residuals is greater than three. These
outliers are corresponding to the post WWI and the post great depression periods
respectively. This is consistent with the findings of Cuddington and Urzua (1989) and
Powell (1991) who both fitted a DS model to y; accounting for structural breaks in
1921 and 1937 respectively. Also, judging by the negative skewness, K3 = —0.5, the
distribution of the standardized residuals is skewed to the right, which means that

negative outliers are more likely than positive outliers as seen from the figure.
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Plot of Time Series 1902-2007.0, T=106
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Figure 2.6: Original and fitted values of the real GYCPI between 1900 and 2007 with the

one period lag inflation rate as transition variable
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Figure 2.7: Transition function G(II;_1,7, ¢) as a function of observations. Each dot corre-

sponds to one observation. The transition variable is the one period lag inflation.
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Plot of Time Series 1902-2007.0, T=106
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Figure 2.8: Standardized residuals of the fitted LSTR1 model between 1900 and 2007 with

one period lag inflation rate as transition variable.

Dynamic Analysis

As mentioned in Section 2.3, the LSTR(1) model suggests two regimes; the upper
regime, associated with G(-) = 1 and the lower regime, associated with G(-) = 0.
The parameter ¢ in (2.22) can be interpreted as the threshold or the border between
the two regimes, in the sense that the logistic function changes monotonically from
0 to 1 as s; = II;_; increases. The parameter v, the slope of the logistic transition
function, determines the smoothness of the change in the value of the logistic function
and, hence, the smoothness of the transition from one regime to the other. Table 2.3
summarizes the dynamics of the two regimes suggested by the LSTR(1) model with
the one period lag inflation as the transition variable. The threshold value ¢ = 0.07
indicates that if the one period lag inflation rate increases beyond 7%, the logarithm

of the real Grilli and Yang commodity price index will move to the upper stationary
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regime with unconditional mean of 0.02 and unconditional variance of 0.014. On the
other hand, if there is a slow down in economic activities so that inflation decreases
below the 7% threshold, the real commodity index will switch to the lower regime
with 0.5 unconditional mean and a larger unconditional variance equals to 0.25. The
higher variance of the lower regime (17 times larger as compared to the upper regime)
indicates that the logarithm of the real commodity price index likes to wander in the
recessionary regimes but always revert back to the mean because the time series
is stationary. This dynamic behavior can be detected by examining the transition
function and the behavior of the transition variable above and below the estimated
threshold value, i.e., when s; = II;,_; = 7%, as shown in Figure 2.9. The behavior of
the transition function captures the dynamics of the transition variable II; ; during
the periods posts the WWI and WWIL. It also exhibits the high swings in inflation
during the two well known oil shocks in 1974 and 1984. No fluctuations are present
during the great depression of the 1930’s, however. This implies that the inflation
rate is capable of capturing the fluctuations in commodity prices mainly during the
early period (between 1900 and 1950); observe that the Grilli and Yang commodity
price index, starting from the early fifties till 2007, is following one contractionary
regime (with the exception of the two oil shocks). Therefore, inflation by itself fails
to account for the observed late period fluctuations in the Grilli and Yang commodity
price index when nonlinearity is modelled in the conditional mean. A simulation of

both regimes is plotted in Figure 2.10.
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sg=11;_1 Upper regime: G(-) =1 | Lower regime: G(-) =0
Threshold: ¢ | 0.07 0.07

Model Y= 0.009 + 0.54y, ,+2; | o= 0.009 + 0.98y, ,+2;
Behavior of y; | Stationary AR(1) Near Random Walk
Mean E(y,) =0.02 E(y,) = 0.45

Variance var(y,) = 0.014 var(y,) = 0.25

Table 2.3: The upper and lower regimes of the LSTR(1) model of the real GYCPI with

inflation as the transition variable.
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Figure 2.9: A plot of the transition variable II;_; and the transition function G¢(Il;_1;~,¢)

between 1900 and 2007.
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Figure 2.10: Simulation of the upper and lower regimes of the real GYCPI with one period

lag inflation rate as transition variable.
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2.8.2 TAR Model with Inflation as Switching Variable

Consider the following two-regime TAR(1) model with the one period lag inflation

as the threshold variable, that is s; = II;_1, and the threshold is ¢ as

Go+ Sy +ap  if I <e,
Y = (2.25)

O5 + PTYe-1 + if Il; 1 > ¢,
where a; ~ i.1.d.(0,0?). To capture nonlinearities, the TAR model allows the para-
meters (gb(l), b1, gbg, $?) to change from one regime to the other according to the value

of the threshold variable.'®

The TAR model was suggested by Tong (1978) and applied by Tong and Lim
(1980) on real data. Tsay (1989) proposed a four-step model-building procedure for
TAR models in the same spirit as the one proposed by Terasvirta (1994) for modeling
STR models. Although Tsay’s approach is simple and does not require intensive
computations, it involves some human decision when selecting the threshold value.
Later, Hansen (1997) introduced a test for threshold nonlinearity and a procedure
for estimating TAR models. The appealing feature of Hansen’s approach is that
the threshold value can be estimated with the other parameters of the model and,

therefore, no subjective decision has to be made regarding the value of the threshold

parameter. We shall introduce both approaches in the following subsections.

5Note that if the threshold variable in one of the autoregressive lags of the dependent variable,
the TAR model is referred to as self-exciting TAR or SETAR model.
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Tsay’s Approach

The first step in Tsay’s approach, which involves specifying a linear AR(p) model
for y; using any information criterion, is the standard preliminary step in any nonlin-
ear model-building framework. Following our previous analysis, the lag length of the
logarithm of the real Grilli and Yang commodity price index was minimized at p = 1
as in (2.21).

The second step is testing for threshold nonlinearity. Tsay (1989) proposed a
nonlinearity test that is based on the standardized predictive residuals and the idea
of arranged autoregression that was first introduced by Ertel and Fowlkes (1976).
The null hypothesis is that the time series y; is linear; the alternative is that it
follows a two-regime TAR(1) model. The problem, as usual, is that the threshold ¢
is only identified under the alternative. To overcome this problem, Tsay suggested
to arrange the equations in (2.25) for t = max(p) + 1,...,n, where n is the number
of observations, according to the threshold variable I, ;. If there are, say, k < n
values in II; ; that are smaller than the threshold ¢, then the first k£ equations in
the arranged model will correspond to regime one and the following n — k equations
will correspond to the second regime. Next, estimate the arranged autoregressions
using recursive least squares and compute the standardized predictive residuals, é;. If
the predictive residuals are white noise and orthogonal to the regressors, nonlinearity

will be rejected. Therefore, Tsay suggested to run an auxiliary regression where the
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predictive residuals are regressed on the model’s regressors as

€y = Wy + wWilYs_1 + errory,

then nonlinearity can be detected using a conventional F-test.

The F-statistic obtained from applying Tsay’s threshold nonlinearity test to the
Grilli and Yang commodity price index using the one period lag inflation as threshold
variable is 5.51 and the p-value is 0.005. Therefore, the null hypothesis of no threshold
nonlinearity is rejected at the 5% level of significance.

Once nonlinearity is detected in the time series, the next step in Tsay’s approach is
to locate the threshold value using scatter plot of the standardized recursive residuals
versus the ordered threshold variable II; ;. This can be detected from Figure 2.11.
The plot exhibits a structural break occurring somewhere between II;_; = 0.03 and
IT,_; = 0.07, which is consistent with the estimated threshold value of 0.07 obtained
from the LSTR(1) model with inflation as transition variable. Although we can
observe the structural break, it is hard to confirm its exact value and a human decision
has to be made. To avoid such subjective selection, we apply Hansen’s (1997) test

for threshold-type nonlinearity in the following subsection.
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Figure 2.11: Scatter plot of the standardized recursive residuals (y-axis) versus the threshold

variable, IT;_1, (x-axis).

Hansen’s Approach

Consider again the two-regime TAR(1) model in (2.25). If the threshold c is
known, then the model parameters (qﬁé, (bi, ¢(2J, ¢%, 0?) can be estimated by least squares.
Under the assumption that the error terms in (2.25) are normally distributed, we can
test the null-hypothesis that the model is a one regime TAR(1) model against the

alternative that it is a two-regime TAR(1) model using a likelihood ratio test as

. SSRR - SSRUN o n*&% - OA'?]N(C)
&?]N(C) 62UN(C)

F(o) , (2.26)

where SSRp is the sum of squares residuals of the restricted model (one-regime

TAR(1)), SSRyn is the sum of squares residuals of the unrestricted model (two-
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regimes TAR(1)) given the threshold ¢, 6% and 67, (c) are the estimated residual
variances of the one-regime TAR(1) and the two-regimes TAR(1) models respectively,
and n* is the effective sample size after adjusting for the starting values and the lag
length of the transition variable. Since the threshold ¢ is unknown, Hansen (1997)
suggests to compute the supremum likelihood ratio by searching over all the possible

values of the threshold variable (the one period lag inflation in our case) as
Fyup = sup(c). (2.27)

Since the threshold value ¢ is not identified under the alternative hypothesis, the
asymptotic distribution of Fy,, in (2.27) will differ from the chi-square distribution
of the F-statistic in (2.26). Hansen (1996) showed that the distribution of Fy,, is
non-standard and can be asymptotically approximated by a bootstrap procedure.
Using 1000 bootstrap replications, the LR statistic of Hansen’s threshold nonlinearity
test applied to the Grilli and Yang commodity price index using the one period lag
inflation as threshold variable is 9.47 achieved at a threshold value ¢ = 0.03(3%). The
bootstrap p-value is 0.004. Therefore, at the 5% significance level, we reject the null
hypothesis of linearity. A plot of the F' statistics against the threshold variable, 1T, 1,
is found in Figure 2.12.

The estimation results from fitting the two-regime TAR model in (2.25) to y, with
IT;_; as threshold variable are reported as

0.001 + 0.59y; 1 + a¢ if 1,1 > 3%; a1 = 0.04,

Y = (2.28)
0.004 +0.98y,_y +a;  ifIl,_y <3%: 65 =0.05,
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Figure 2.12: Plot of Hansen’s (1996) F-statistics against the threshold variable II;_;.

where 61 and 65 are the standard errors of residuals from regime 1 and 2 respectively.
The fitted values of y; from the two-regime TAR(1) model exhibit the exact same
behavior of the fitted values from the LSTR(1) model obtained in the previous section;
that is, the upper regime behaves in a near random walk fashion with an autoregressive
coefficient of 0.98, while the lower regime is stationary. The only difference, however,
is the estimated threshold value. The threshold value ¢ = 3% obtained from Hansen’s
TAR test can be seen as the lower bound of Tsay’s suggested range (see the scatter plot
in Figure 2.11), while the threshold value ¢ = 7% obtained from the fitted LSTR(1)
model in equation (2.24) is its upper bound. This result confirms the ability of STR

models to capture the TAR models’ abrupt switching transition between regimes.
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Figure 2.13: U.S. inflation rate between 1900 and 2007.

2.8.3 Feedback: From Commodity Price to Inflation

We have just seen how the growth rate of the CPI (inflation) was capable of mod-
elling the early nonlinear dynamics in the logarithm of real Grilli and Yang commodity
price index. In this section, we explore the feedback scenario. The question addressed
here is: What happens when inflation is the dependent variable and the growth rate

of the real Grilli and Yang commodity price index, denoted as g, = A log (Gggf L ) 18

the transition variable? To answer this question, we apply the previously mentioned
three-step modelling procedure to the U.S. inflation rate (dependent variable). Let
the dependent variable be the inflation rate defined as II; = Alog(C'PI;). The AIC

was minimized at a lag length p = 5, however, when fitting the preliminary AR(5)
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Sy Fr Fy F; F Suggested Model
II, ; | 827 x 1071 | 840 x 1071 | 7.73 x 107! | 3.64 x 107! | Linear
I, 5 | 8.07x 1072 | 3.07 x 1072 | 2.50 x 107! | 2.43 x 107! | LSTR1
gr 4 1322x1072]202x 107" [ 248 x 107! | 2.14 x 1072 | LSTR1
Gi—o | 4.32x 1071 | 758 x 107! [ 3.39 x 107! | 2.02 x 107! | Linear

Table 2.4: P-values of the linearity F-tests sequence applied to the logarithm of the real

CPI when the growth rate of the GYCPI is the transition variable.

model, the last three lags were insignificant and, therefore, were dropped. The fitted
linear AR(2) model acting as the starting point for the LSTR analysis is given as
6

follows.!

I, =0.014 + 0.77 I,y —

2.29
(0.001) ( )

(0.000) (g.b%g)ﬂt_Q + .

Next, we test for nonlinearity. Following the AR(2) model in (2.29), the set
of predetermined transition variables, ¥;, consists of the two autoregressive lags of
the dependent variable and the first and second lag of the growth rate of the real
Grilli and Yang commodity price index (g;_1 and ¢, o respectively); that is, 3, =
{1,119, gi—1, gi—2}.'7 The nonlinearity test in Section 2.3 was executed for each
variable in ;. The p-values of the F-tests for linearity and model selection are
reported in Table 2.4. The one period lag growth rate of the real Grilli and Yang

commodity price index, ¢;_;, tagged with the symbol *, was the variable with the

strongest test rejection (the smallest p-value); see the second column of Table 2.4.

Q1) = 0.08(0.77); Q(8) = 6.41(0.60); LM apcuy = 1.29(0.26); LM apcra) = 3.60(0.46),
where the figures in parentheses beneath the estimated parameters and next to the test statis-
tics are p-values and all the test statistics are defined as before. All the coefficients are significant
at the 5% level and the model passes all preliminary diagnostic tests.

1"The period ¢ growth rate of the real Grilli and Yang commodity price index, g;, was not employed
here to avoid any endogenity that might result from the correlation with the dependent variable.
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Figure 2.14: Graphical presentation of the constructed grid for the LSTR1 model with

inflation as the dependent variable. The transition variable is the one period lag growth

rate of the real GYCPI.

Therefore it was selected as the appropriate transition variable for the LSTR model
The associated model is the LSTR(1) model, which can be expressed as
Ht = ¢0 + ¢1Ht—1 + ¢2Ht_2 + {80 + QIHt—l + 92Ht_2}(1 + eXp{—’y(gt_l — C)})_l + &t

(2.30)

The starting values of v and ¢ necessary for estimating (2.30) were ¥ = 8.1 and ¢ =

—0.16. The best fitted LSTR(1) model that we managed to obtain after dropping the
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insignificant parameters in the linear and nonlinear parts of y; and the misspecification

tests results are reported as follows.

T, = —0.01 + 08110,y +{0.03 — 03711, 5 }(1 +exp(—10.6(g,1 +0.14)/0.13)) "+
¢= ROy T S QR ~ 32 U el 0laa + 0585/013)) T 45,

R°=048, 5,=013, &=0.03,
AUTO(1) =057,  AUTO(8) =0.08, LM anoum=0.50, LM spcp = 0.55,
PC(1) =026, PC(2)=034, PC(3) =055,
NRNL =009, JB=0000, Ks=-17, K;=13.18, (2.31)

where 0, is the sample standard deviation of the transition variable s, = ¢,_1, 0 is
the residual standard deviation and the figures in parentheses beneath the parameter
values are standard deviations of the estimates and the figures after the test statistics
are p-values. Observe the moderate slope of the estimated logistic function, 7 = 10.6.
Hence, smooth transition matters in this case. This is due to the nature of the
dependent variable (inflation rate) and its tendency to move smoothly from one regime
to the other driven by the high fluctuations in the growth rate of the real Grilli & Yang
commodity price index (transition variable). This smooth transition can be noticed
from the plot of the transition function in Figure 2.15. The estimated coefficients
are all significant and the model passes the misspecifications tests mentioned above
except for the null-hypothesis of normality of errors, which was rejected at the 5%
level of significance as seen from the p-value of the JB test statistic. Again, this

rejection of the normality assumption is due to the presence of outliers corresponding
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Figure 2.15: Transition function G(s¢,7,c) as a function of observations. Each dot corre-

sponds to one observation. The transition variable s; is the one period lag of the real growth

rate of the GYCPI.

to the post WWI as seen from the plot of the standardized residuals in Figure 2.16

The original and fitted values of y; are plotted in Figure 2.17.
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Plot of Time Series 1903-2007.0, T=105
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Figure 2.16: Standardized residuals of the fitted LSTR1 model with inflation as the depen-
dent variable between 1900 and 2007. The transition variable is the one period lag growth

rate of the real GYCPI.
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Figure 2.17: Original and fitted values of inflation rate between 1900 and 2007.
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Dynamic Analysis

Table 2.5 summarizes the dynamics of the two regimes suggested by the LSTR(1)
model with the one period lag growth rate of the real Grilli and Yang commodity price
index as transition variable. The inflation rate follows a stationary autoregressive
regime when the growth rate of the real Grilli and Yang commodity index moves
above and below the threshold value ¢ = —14%. In a recessionary regime, i.e., if the
growth rate of the real Grilli and Yang commodity price index is below —14%, inflation
rate will follow a stationary AR(1) process with an unconditional mean of —0.05 and
variance of 0.003. Inflation does not, however, stay too long in the lower regime; the
root of the lower regime has a period of 10 months (0.81 year) (see the third column
of Table 2.5). It tends to move back to the upper regime, where it stays much longer
(7.5 years), when the growth rate of the price index moves above the threshold value
of —14%. In this expansionary regime, the inflation rate follows a stationary AR(2)
process characterized by a complex pair of roots with a modulus of 0.61 and a period
of 7.5 years. This implies that most of the time the inflation rate is following the
stationary AR(2) regime; it moves to the lower regime but quickly returns to the
upper regime. This dynamics can be traced from the plotted transition function in
Figure 2.18. The above analysis confirms the feedback effect from commodity prices
to inflation rate from a regime switching point of view. Next, we examine the second
potential transition candidate in our nonlinearity analysis of commodity prices: The

logarithm of real crude oil price.
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Figure 2.18: A plot of the transition variable g;—1 and the transition function G(g;—1;7,¢)

between 1900 and 2007.
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St= G4 Upper regime: G(+) =1 Lower regime: G(-) =0
Threshold: ¢ | —0.14 —0.14

Model IT,= 0.02 + 0.8111;,_1—0.37II;_o+¢&; | II;= —0.01 + 0.8111;,_;+&,
Roots 0.41 +0.45¢ 0.81

Modulus 0.61

Period 7.5 0.81

Behavior of I1; | Stationary AR(2) Stationary AR(1)

Mean E(II;) = 0.04 E(1I;) = —0.05

Variance var(Il;) = 0.004 var(Il;) = 0.003

Table 2.5: The upper and lower regimes of the LSTR(1) model of U.S. inflation rate with

the one period lag growth rate of the real GYCPI as the transition variable.
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Figure 2.19: Simulation of the upper and lower regimes of the inflation rate with the one

period lag growth rate of real GYCPI as transition variable.
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Sy Fr, Fy E; Fy Suggested Model
Y1 731 x 1071 [ 450 x 107! | 6.48 x 107! | 4.74 x 107! | Linear
Ay, 1 1239%x1071 | 829 x 1071 | 6.45 x 1072 | 3.40 x 107* | Linear
R, 1.12x 1071 [ 6.18 x 1072 | 5.00 x 107! | 1.90 x 107! | Linear
1 4.66x1071 | 1.27x 1072 | 829 x 1072 | 4.98 x 1073 | LSTR1

Table 2.6: P-values of the linearity F-tests sequence applied to the logarithm of the real

GYCPI when the logarithm of real oil is the transition variable.

2.8.4 Switching Variable: Oil Price

We have seen, in Section 2.8.1, how inflation captured the early fluctuations ob-
served in the Grilli and Yang commodity price index. In this section, the analy-
sis is repeated using the logarithm of real crude oil as the predetermined transi-
tion variable.'® The set of predetermined transition variables in this case is =; =
{yi—1, Ayi_1, Ry, Ry—1}, where R, = log (%) .- The nonlinearity tests sequence in
Section 2.3.1 was executed for each variable in =;. The p-values of the F-tests for
linearity and model selection are reported in Table 2.6. The best transition candidate

in =, tagged with the symbol * in Table 2.6, is the one period lag of the logarithm of

real oil price, R;_ 1, and the suggested model is the LSTR(1) expressed as

Y = do + dryi—1 + {00 + 01y} (1 + exp{—y(Ri-1 — o)} ' + &4 (2.32)

The initial values for v and ¢ are that are necessary for the estimation of (2.32)

are ¥ = 8.13 and ¢ = —3.1. The fitted LSTR(1) model and the misspecification tests

18For consistency purpose, experimenting with the growth rate of real crude oil was also performed
here. The estimated model, however, showed siginificant remaining nonlinearity. The logarithm of
real crude oil was, therefore, used instead.
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results are reported as follows.

ye = 0.009 + 0.98 —10.10 4+ 0.40 — 7.3 (R 3.1)/0.38)) " 473
(0.01) +(004)yt ' {(004 +(014)yt 1H(1 + exp( (5.23)< t 1+(0_06))/ ) +E,

R =088, G,=038, &=0.10,
LM avromy= 012, LM aprog=0.71, LM spopmay= 091, LMagoug = 0.78,
PC(1)=0.13, PC(2) =032, PC(3)=0.51, NRNL=0.15JB=0.26,
Ky=—029, K,=3.5, RMSEpy =0.235, RMSEsrp = 0.076, (2.33)

where oy is the sample standard deviation of the transition variable s; = R;_1, 7 is
the residual standard deviation and the figures in parentheses beneath the parameter
values are standard deviations of the estimates. All the coefficients are significant and
the model passes all the misspecifications tests at the 5% level of significance as seen
from the p-values of the misspecifications tests. The superiority of the forecasting
performance of the STR model over that of the linear AR model is confirmed from
the lower RMSE of the STR over the in-sample forecasting period from 2001 to 2007.
The standardized residuals time series is plotted in Figure 2.21. The original and
fitted series, and the transition function G(R;_1;7,c) are plotted in Figures 2.22 and

2.23 respectively.
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Figure 2.20: Graphical presentation of the constructed grid for the LSTR1 model with the

one period lag logarithm of real crude oil as transition variable.
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Figure 2.21: Standardized residuals of the fitted LSTR1 model between 1900 and 2007 with

the one period lag logarithm of real crude oil as transition variable.
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Figure 2.22: Original and fitted values of the logarithm of real GYCPI between 1900 and

2007 with the one period lag logarithm of real crude oil as transition variable.
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Figure 2.23: Transition function G(s¢,7,c) as a function of observations. Each dot corre-

sponds to one observation. The transition variable s; is the one period lag logarithm of real

crude oil.
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Behavior of y;
Mean

Variance

Stationary AR(1)
E(y,) = —0.2
var(y,) = 0.015

si= R4 Upper regime: G(-) =1 Lower regime: G(+) =0
Threshold: ¢ | —3.1 —-3.1
Model = —0.09 + 0.58y,_,+&; | y:= 0.009 + 0.98y,_,+¢;

Near Random Walk
E(y,) =045
var(y,) = 0.25

Table 2.7: The upper and lower regimes of the LSTR(1) model of the real GYCPI with the

one period lag real U.S. crude oil price as the transition variable.

Dynamic Analysis

Table 2.7 summarizes the dynamics of the two regimes suggested by the LSTR(1)
model with oil price as the transition variable. The estimated threshold ¢ = —3.1
means that if the one period lag logarithm of real oil price is higher than —3.1, or, in
other words, if the proportion of the one period lag oil price out of the CPI exceeds
5%, 'Y the real commodity index will be moving to the upper stationary regime with
unconditional mean of —0.2 and unconditional variance of 0.015. On the other hand,
if the proportion of oil price out of the CPI is less than 5%, the real commodity index
will follow a near random walk behavior with 0.45 unconditional mean and a larger
unconditional variance equals to 0.25. The higher variance of the lower regime (17
times larger as compared to the upper regime) indicates that the logarithm of the
real commodity price index likes to wander in the recessionary regimes but always
revert back to the mean because the time series is stationary (see Figure 2.24). This

is exactly the same behavior that y; has exhibited when the one period lag inflation

WTf 5, = Ry_y = log(QiLpriceioi)y — 31, then 2LErices _ =31 — ( 05,

CPIt71 CPIt—l
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was used as a transition variable (see Table 2.3, page 52). This result motivates the
use of external transition variables in regime switching models and confirms the claim
that both variables (oil and inflation) are capable of explaining the nonlinearity in the
Grilli and Yang commodity price index. Inflation captured the early fluctuations in
the Grilli and Yang index, but failed to capture the late ones; oil price, on the other
hand, captured the late dynamics, but failed to capture the early ones. Therefore,
both variables can be seen as complements in explaining the dynamic behavior of
the Grilli and Yang commodity price index. This complementarity between oil and
inflation can be seen from their transition functions in Figure 2.26.

The reason behind having more than one transition candidate is the composition of
the commodity price index. Six commodity prices out of the 24 commodities forming
the index are recorded on a CIF basis and, therefore, oil price represents an excellent
transition candidate for modelling their dynamics. The dynamics of the remaining
prices (FOB, settlement, and auction prices) can be captured by macroeconomic
news variable(s) (e.g., inflation). Perhaps a better way to understand the behavior
of commodity prices is to classify them into groups based on their recorded border
price and attempt to find a common transition variable that can model nonlinearity

in each group. This is the subject matter of the following section.
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Figure 2.24: A plot of the transition variable R;_; and the transition function G(R—1;7, ¢)

between 1900 and 2007.

76



0.2
0.1 4

-0.0 k A
0.1 V

0.2

0.3 A
0.4 -

0.5 A

0.6 — — L e L e e A e e e B LA A B s
25 50 75 100 125 150 175 200 225 250
Simulation of the upper regime: A stationary AR(1).

0.75
0.50 -

0.25

S o
= WM W

0.75 +

-1.00 —— e e

25 50 75 100 125 150 175 200 225 250
Simulation of the lower regime: A near random walk.
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77



0.8

0.6 -
02 NJ\\/W A (W
V Ve ~

02
04

0.6 e
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
(a) Log(GYCPI/MUV)

B I H

0.00 Tt 7 7T 7t T 7T T T
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
(b) Transition function: The one period lag inflation is the transition variable

0.00 — —_t— —t A~ A
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

(c) Transition function: The one period lag logarithm of real oil price is the transition variable

T

Figure 2.26: Panel (b) and (c) show the first order logisitic transition function with the
one period lag inflation rate and the one period lag logarithm of real oil price as transition

variables respectively.
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2.9 Regime Switching in Individual Commodities

We have just seen how the price of oil and the inflation rate were capable of
modelling the nonlinearities in the Grilli & Yang commodity price index. The question
now is which transition variable should we employ when modelling nonlinearities in
indiwidual commodities? To answer this question, we need to classify the individual
commodity prices into groups according to their border prices and then device a

strategy to model nonlinearity in each group.

2.9.1 Border Price Classification

The rationale behind the border price classification of commodity prices rests
on how commodity prices are recorded and it can provide an insight regarding the
selection of the transition variable that is capable of modelling their dynamics. For
the traded commodities, the standard practice followed by the major institutions
when recording data on commodity prices is to select the largest trading route of a
commodity and detect whether the trade volume is controlled by a major exporting or
importing country. If this route is dominated by a major exporter, the export price at
the exit point of the exporting country (FOB price) will be recorded; if the route, on
the other hand, is dominated by a major importer of the commodity, the import price
at the entry point of the importing country (cost and freight or CIF price) will then
be recorded. Of course there are some exceptions, but this is usually the standard

practice. For the other commodities that are traded on exchanges (metals and grains
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mostly), where physical delivery of the commodity is not a must, settlement prices,
option prices, or auction prices are used.

Classifying commodities according to their border prices can guide us in determin-
ing the potential transition variables that are capable of explaining the dynamics of
commodity prices. Commodities that are recorded on a FOB basis suggest that the
transition variable is one of the macroeconomic news variables, inflation for instance,
in the exporting country. Notice here that the price of oil can not be considered among
the potential transition candidates in this group of commodities. The reason is that
FOB prices do not include the ocean freight which is driven by the price of oil. On
the other hand, commodities recorded on a cost and freight or CIF basis suggest that
the price of oil and the macroeconomic news variables in the importing country are
potential transition candidates for nonlinearity analysis. The reason behind choosing
oil price for this CIF group of commodities is that a significant portion of it is due to
freight cost (shipping cost), which, in turn, is driven by the price of crude oil. There-
fore, a reasonable hypothesis here is that ocean freight and, hence, oil price plays a
significant role in modelling the dynamics of those commodities falling in this group.
This commodity price-oil price connection is demonstrated by means of a simple il-
lustrative example in the following subsection. But, before exploring this connection,
let us apply this border price classification to the data set under consideration.

A quick look at the original Grilli and Yang (1988) data sources and their updates,

given in detail in Pfaffenzeller, Newbold, and Rayner (2007), one can notice that some
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commodity prices are free on board prices and cost and freight prices, while others,
mostly metals traded over the counter in London Metal Exchange (LME), are settle-
ment prices. In particular, six commodities are traded on a cost and freight basis;
these are bananas, palm oil, coffee, timber, cotton, and tobacco; seven commodities
are traded on a free on board basis; these are wheat, jute, rice, hides, maize, sugar,
and beef; five settlement prices for copper, zinc, lead, tin, and aluminum; two spot
prices for rubber and wool; one wholesale price for lamb; one auction price for tea;
and one option price for cocoa. Finally the silver price time series is Hary & Harmer,
New York, price. A brief description of the 24 commodities forming the Grilli and
Yang data set is found in Appendix B. Information on major producer(s) of each
commodity as well as the main trading routes are briefly stated to justify the border
price classification and to highlight the fact that revising this information is of greater
importance in selecting potential transition candidates for nonlinearity analysis. Ta-
ble 2.8 summarizes each commodity’s trading route, its top exporter and importer,
the recorded border price, and the threshold variable entailed by the border price
classification. Now we have a criterion to select the suitable transition variable(s)
for each price process. The next step is to apply the previous three-step modelling

procedure to test for and model nonlinearities in individual commodities.
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Series Origin Destination Price Top Exporter | Top Importer | S¢

Bananas NAft Gulf ports | CIF India / Brazil | USA 3 IT,(UsA)

Palm oil Malaysia Netherlands | CIF Malaysia Netherlands1 Tt 1I +(Malaysia;Netherland)
Timber NAf UK CIF NA NA r; I, (usa)

Coffee Averagef New York CIF? Brazil US/Germany | T, II +(Germany;USA)
Cotton Memphis Europe CIF USA China Tt II +(USA; Europe)

Lamb New Zealand London Wholesale New Zealand | UK Tt II ((New Zealand)
Tobacco NA USA CIF Brazil/USA Russia/USA Tt II +(USA)

Wheat Canada NA FOB US/Canada China/Japan Ht(Canada)

Jute Bangladesh NA FOB India Various Ht(Indla)

Rice Bangkok NA FOB Thailand Philippines Ht(Thaﬂand)

Hides USA NA FOB II;(usa)

Maize Gulf Port NA FOB USA Japan II;(usa)

Sugar Caribbean Ports | Various FOB Brazil Russia Ht(US A)

Beef Argentina NA FOB Australia USA Ht(Argentina,USA)

Copper London Metal Exchange Settlement Macroeconomic news variable
Zinc London Metal Exchange Settlement Macroeconomic news variable
Lead London Metal Exchange Settlement Macroeconomic news variable
Tin London Metal Exchange Settlement Macroeconomic news variable
Aluminum | London Metal Exchange Settlement Macroeconomic news variable
Cocoa London and US Exchange Option Price Macroeconomic news variable
Rubber Rubber Traders Association Spot Price Macroeconomic news variable
Tea NA Auction Macroeconomic news variable
Wool Australia Exchange Spot quote Macroeconomic news variable
Silver Handy & Harry

S, is the transition variable suggested by the border price classification.

t

1 The price is arithmetic average of El Salvador, Guatemala, and Mexico.

tNot Available. T'¢ is the growth rate of real oil; Ht (ZL’) is the inflation in country Z.

1thhcrlands is the top importer in Europe; China and India are the World’s top importers.

2The price here is an average Hamburg and New York Ex-dock price.

Table 2.8: Trading route, border price, top importer and exporter, and the suggested

transition variable for each individual commodity in the Grilli and Yang data set.
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2.9.2 An Illustrative Example

There is no doubt that transportation cost is the most significant factor affecting
the flow of trade from one nation to another. Analyzing the domestic transport
industry is a separate topic by itself and is beyond the scope of this analysis. Exporters
of commodities care only about the trucking cost (inland transport) of transporting
their commodities from one point to another. The rates for inland transportation
of 20-feet and 40-feet containers are pretty much standardized and do not fluctuate
much over time. Airfreight and ocean freight rates, however, are highly volatile. This
high volatility is mainly due to the fluctuations in oil price, which is considered one of
the significant determinants of ocean freight rates. The connection between oil prices
and commodity prices is established through this fluctuation in oil prices.

This subsection is devoted to illustrate the commodity price-oil price connection
by means of a simple example. The purpose is to estimate, within a factor of ten,
the relation between the oil price and the price of any commodity recorded on a CIF
basis. Although the data on the shipping industry exists, it is not freely available
and, therefore, we are not looking for accuracy, but rather for illustration.

Commodities are shipped either in tankers or in dry bulk carriers. In addition to
the cost of the vessel itself (capital cost or return on investment), a significant part
of the CIF price reflects the cost of bunker fuel. This later relation is what we are
trying to estimate in this sub-section. Consider one of the CIF commodities in the

Grilli & Yang (1988) data set, price of bananas say. The recorded price is CIF Gulf

83



ports (central and south America) from the primary commodity data base. Since
the port of origin was not mentioned in the commodity description, we will consider
a frequent port of origin for banana shipments going to central and south America;
Rio de Janeiro (Brazil) say. The relation that we are trying to estimate here is how
much the bunker fuel cost (oil cost) represents out of the CIF price of bananas? We

proceed by dividing the problem into three sub-problems as follows.

How many tons of fuel a medium-sized ship can burn during a round trip

from Rio de Janeiro to Gulf ports?

To answer this question, we need to find the distance between the port of origin
and the port of discharge, the speed of the vessel, and the duration of the trip. The
distance between Rio de Janeiro and the Gulf ports is around 5097 nautical miles.
It takes around 16 days to travel this distance with a medium-sized vessel cruising

20 We were not sure about the nominal

at an actual cruising speed, V', of 14 knots.
maximum cruising speed, Vi, for a medium-sized vessel, but it is definitely between
15 and 18 knots. So, we will choose the geometric mean of 16 knots. A medium-
sized vessel burns around 40 tons of bunker fuel, Fy, per day for the main engines at

nominal speed (Ronen, 1982). It is well known in ship engineering that the bunker

fuel consumption of the main engines of a motor ship, F', is directly related to the

20 Source: www.searates.com
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third power of the speed (Manning, 1956); that is

V\? 14 knots\*
F=|—) Fn=—— 40 ¢t ~ 27 tons.
(VN> '\ (16 k:nots) x 40 tons 7 tons

Therefore, the actual fuel consumption of a medium size vessel carrying bananas from
Rio de Janeiro to Gulf ports is around 27 tons a day. It takes around 16 days (one
way) to travel this distance, then the total fuel consumption of a round trip (two

)21 is

legs

16 days " 27 tons
1 leg 1 day

Total Fuel consumption = 2 legs X ~ 864 tons.

The average oil price per barrel over the last three years ranges from a minimum of
$90 per barrel to a maximum of $170 per barrel. We will take the geometric mean
which is $125 per barrel approximately. Now, let’s convert that into cubic meters

(cbm) as

42 gallons " 0.004 cbm
1 barrel 1 gallon

1 barrel = 1 barrel x =0.17 cbm.

The cost of one cbm (1 ton) of bunker fuel is about

—barrel 125
Fuel Cost per cbm (two legs) = 1 cbm x %17 v 5 ~ $750.
1 cbm 1 barrel

Therefore, the total bunker fuel cost of a round (two legs) trip is about

$750 " 864 tons
ton 2 legs

Total Fuel Cost (two legs) = 2 legs % = $648, 000.

2In the returning trip, the vessel is usually empty yet the fuel cost is the same. Therefore, the
carriers consider the two-leg bunker cost in their ocean freight calculations.
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Capacity: How many 40 feet containers a medium-size vessel can hold?

What is the fuel cost per container? And per one cbm of cargo?

Now, let’s try to estimate the cost per container. I will consider a standard 40 feet
refrigerated container (also called "refer"). The internal dimensions of a standard 40
feet container are 12.022 m of length, 2.352 m of width, and 2.395 m of height.??
Therefore,

(12.022 x 2.352 x 2.395) cbm
1 x 40'container

1 x 40’ container = 1 x 40’ container X ~ 67 cbm.

Only 65% to 70% of the container’s space is filled with actual cargo; the rest is devoted
to crating, boxes, and other packaging materials. This leaves us with an actual 45
cbm of cargo in a 40 feet container.

The capacity of our medium-sized vessel ranges from a minimum of 350 twenty
foot equivalent unit (TEU) to a maximum of 400 TEU. We will take the geometric
mean which is about 370 TEU. Dividing this number by 2 yields around 185 container
(40 feet each), which can fit around 8300 cbm of cargo

45 cbm

. x 185 container = 8300 cbm.
1 x 40'container

Therefore, the bunker fuel cost per cbm, F,,, is

Total Fuel Cost $648, 000

Foom = =
b Total cbms 8300 cbm

~ $80 per cbm.

To account for the frequent fluctuations in the oil price, all the shipping lines adjusts

the ocean freight per cbm by adding a fuel surcharge fee (also known as the Bunker

22Source: www.geocities.com.
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Adjustment Factor (BAF)). For a 40 feet container, the BAF is about $680, or $15
per one cbm of actual cargo. Thus, the total cost of fuel (including BAF) for one

cbm of cargo is around $95.

Oil price - commodity price

Now, let’s check the CIF price of one cbm of bananas shipped from Rio de Janeiro
to Gulf ports. From the primary commodity price data base, over the last three years,
the CIF price ranged from $650 to $800 per metric ton. Taking the geometric mean,
we can estimate $720 per metric ton. Recall that this price includes the insurance
cost, customs clearance at the port of origin and port of discharge, handling, other
fixed surcharges, and, of course, the cost of the vessel itself (capital cost). The cost
of insurance and the other charges ranges from a maximum of 40% of the price and a
minium of 30%. We will take the geometric mean which is 35%. Then, the stripped
price of bananas is around $470 ($720 x 0.65). This implies that the bunker fuel cost
represents roughly around 20% (ﬁ% ~ 0.20) of the stripped CIF price of bananas.
This is indeed a significant proportion. The previous analysis was performed for all
nonlinear CIF commodities in the Grilli and Yang (1988) data set and the results are
recorded in Table 2.9. The only exception was the tobacco price series as the data on

the origin country was not available. The analysis reveals that the fuel cost represents

roughly 20% of the price of commodities recorded on a CIF basis.
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Commodity Bananas Palm oil | Timber | Coffee | Cotton

Origin Brazil Malaysia Malaysia | N/At Memphis, USA
Port of loading Rio de Janeiro | Kelang Kelang Memphis
Destination US Netherlands | UK uUs/ Northern Europe
Port of discharge Gulf Ports Rotterdam | London NYC Liverpool, UK
Distance (nautical miles) | 5097 8083 7930 2845 5144

Time (days) 16 24 23.5 8.5 15.3

Fuel cost/cbm $95 $250 $130 $65 $90

Price/cbm $470 $890 $546 $650 $660

% of fuel out of the price | 20% 28% 24% 10% 14%

TThe port of origin was not mentioned explicitly. The price is arithmetic average of shipments
from El Salvador, Guatemala, and Mexico. All calculations are done based on the
arithmetic means of the available data.

Table 2.9: The percentage of fuel out of the CIF price for all CIF commodities in the Grilli

and Yang (1988) data set.

2.9.3 Specification Stage

The first step in our modelling framework is the specification stage. Let P, be

P;
MUV

commodity i** price and let y;, = log ( ) . be the logarithm of the real price series
i. A linear AR(p) model, where p is the value that minimizes the AIC, is selected
for each commodity as the starting point of the analysis. The preliminary AR model
is estimated for each commodity price series and the relevant diagnostic tests are
applied to each model’s residuals to ensure its adequacy as a starting model for the
nonlinearity analysis. The value of the lag order of the AIC and the p-values of
the diagnostic tests are reported in Table 2.10. Judging by the Ljung-Box (1978)

statistics, Q(¢), the null hypothesis of no serial correlation of order ¢ = 1 up to

g = 8 in the residuals series for all the 24 commodities is not rejected at the 5%
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level of significance. The null hypotheses of no ARCH (v), v =1, ..., 4, were also not
rejected at the 5% level of significance for the majority of the 24 commodities; notable
exceptions are cotton, wool, silver, tea, and aluminum. Finally, the null-hypothesis
of normality of errors was rejected at the 5% level of significance for the majority
of commodities as seen from the p-value of the Jarque and Bera (1980), JB, test
statistic. This rejection is due to the presence of outliers in the time series.

From the reported results in Table 2.10, we can observe that 8 commodity prices
exhibit ARCH pattern in their residuals. In particular, these are tobacco, silver,
jute, lead, cotton, wool, aluminum, and tea. This is not surprising as the majority
of these prices are settlement or auction prices of commodities traded in exchanges
and, therefore, tend to exhibit volatility clusters; a common feature of stock and
option prices. Therefore, ARCH or smooth transition ARCH (ST-ARCH) models are
suitable models for this type of commodities. We shall classify those 8 commodities
into Group A, where ARCH and ST-ARCH models are entertained. It is worth
mentioning that commodities in this group are all storable commodities. This is
consistent with Muth’s (1961) hypothesis and with the results obtained by Beck
(2001), who applied a variation of (G)ARCH techniques to commodity prices and
found an ARCH process in storable but not in non-storable commodity data. Since
ARCH models entail regime switching in variance, we shall discuss the modelling and
estimation of this group of commodities in the following chapter. We now consider the

rest of the price processes and proceed to the second step in our modelling framework,
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which is nonlinearity testing.

2.9.4 Testing for Nonlinearity

The advantage of the previously mentioned border price classification is to provide
guidance on the potential transition variables for each price process. The transition
set for the remaining 16 commodities, A;, consists of the autoregressive lags of the
dependent variable, the current and one period lag inflation rates, II; and I1;_; respec-
tively, the current and one period lag logarithm of real oil, R; and R;_; respectively,
and their first difference; that is, r, = AR; = Alog (%) . and r,_;. The models
with the growth rate of real oil price (r; and r,_1) as transition variables outperformed
those with R; and R;_; and, therefore, the later ones were dropped from the analysis.

The transition set is then

A ={v—1, Y2y ooy Y, U, T g, 1y, 71 (2.34)

Applying the nonlinearity tests sequence discussed in Chapter 2, Section 2.3.1, to
each transition candidate in A;, linearity was not rejected for 8 commodities as seen
from Table 2.11. In particular, linearity was not rejected for beef, cocoa, lamb, wheat,
tin, copper, zinc, and rubber. Therefore, these commodities that passed linenarity
tests were classified into Group B, where linear AR models are entertained. No further
nonlinearity analysis was performed for this group.

For completeness sake, for each individual commodity, the nonlinearity tests se-

quence was executed for each transition variable in (2.34). The results are reported
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Residuals Analysis (AR Model)

Py AIC(p) | JB Ky K, Q) Q@) ARCH(1) ARCH(4) |
Tobacco p=>5 10.01 | 0.42 3.84 0.90 | 0.84 | 0.29 10.04
Silver p=3 10.000 | 0.66 4.50 0.94 | 0.82 | 6.2 x 107° | 10.003
Jute p=3 0.13 —0.07 3.71 0.75 | 0.70 | 0.59 70.03
Lead p=1 10.01 | 0.24 4.05 0.27 | 0.79 | 0.08 70.01
Cotton p=4 0.84 —0.14 2.84 0.87 | 0.89 | 10.002 10.04
Wool p=95 0.42 0.22 3.23 092 |0.99 | 10.04 0.32
Aluminum | p=3 | 10.000 | 0.62  6.11 0.98 | 0.91 | +0.02 +0.02
Tea p=3 10.008 | 0.16 4.16 0.93 | 0.56 | 16.4 x 107* | 10.02
Wheat p=9 10.003 | 0.42 410 0.99 |0.99 | 0.83 0.89
Lamb p=23 10.000 | 0.21 4.89 0.69 | 0.96 | 0.37 0.87
Coffee p=1 10.02 | 0.51 3.55 0.52 | 0.80 | 0.33 0.78
Copper p=3 0.62 0.19 3.06 0.77 | 0.68 | 0.58 0.14
Cocoa p=3 10.004 | 0.65 3.59 092 |0.99 |0.93 0.05
Timber p=1 0.50 0.10 3.31 0.60 | 0.29 | 0.39 0.11
Tin p=3 10.01 | =0.33 3.95 0.86 | 0.97 | 0.87 0.52
Zinc p=2 10.000 | 1.64 10.2 099 | 0.96 | 0.63 0.98
Maize p=295 10.000 | —=0.38 4.70 0.75 | 0.95 | 0.32 0.56
Beef p=1 10.000 | 0.57 5.77 0.80 | 0.72 | 0.71 0.78
Rice p=>5 10.01 | =0.07 4.18 0.84 | 0.86 | 0.41 0.39
Bananas p=3 0.08 —0.36 3.52 0.95 | 0.97 | 0.76 0.21
Palm oil p=3 10.000 | —0.54 4.25 0.99 | 0.63 | 0.12 0.44
Rubber p=1 $0.000 | 0.75 5.28 0.39 | 047 | 0.63 0.10
Hides p=3 0.20 —-0.33 3.30 0.76 | 0.64 | 0.35 0.66
Sugar p=3 10.000 | 0.67 5.35 0.93 | 0.30 | 0.45 0.89
TThc null-hypothesis is rejected at the 5% level of significance.

Table 2.10: The lag order of the AIC and the p-values of the diagnostic tests of the linear

AR model’s residuals applied to the 24 commodities in the Grilli and Yang (1988) data set.
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in Table 2.11. However, they should be interpreted with caution. For instance, in
the case of zinc, the transition variable that showed the highest rejection of linearity
tests was the current growth of real oil, g;, and the associated suggested model was
the LSTR1. But, the growth rate of oil is not applicable in such a case since the bor-
der price is a settlement price; exchange rate or a stock index are suggested instead.
However, due to data limitation, they were not employed. Even when we fitted the
LSTR1 model with oil price as the transition variable, the estimated parameters and
the threshold variable were insignificant.

The only exception in the linear group (Group B) is the case of rubber; the one
period lag inflation rate, which is a potential transition candidate according to the
border price classification, showed the highest rejection of linearity tests and the
associated model is the LSTR1. But, when I estimated the model, the estimated
coefficients were insignificant and the estimated value of the threshold variable was
not lying within the transition variable’s data range. Inflation was, therefore, dropped
from the transition set and the model was classified as a linear autoregressive model.

The third group in our classification is Group C, where the threshold variable is
one of the autoregressive lags of the dependent variable. Three commodities fit into
this group: Maize, rice, and sugar. All three prices were recorded on a FOB basis
and therefore, oil did not play a role in this analysis. The transition variables that
showed the highest rejection of linearity tests were the second order autoregressive

lag for maize, the fifth order for rice, and the first order for sugar. The estimation
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and evaluation results of this group are reported in the following subsection.

The last group in our classification is Group D, where the threshold variable is
an external variable. This group consists of 5 commodities: four are recorded on a
CIF basis (bananas, palm oil, timber, and coffee) and one on a FOB basis (hides).
Following the border price rationale of the previous section, one expects that all
CIF commodities to be driven by oil price. Actually, our results confirm that; the
transition variables that showed the highest rejection of linearity tests were oil price
for all CIF commodities and inflation for hides (see Table 2.11). The estimation
and misspecification tests results of this group of commodities are discussed in the

following subsection.
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P; AIC(p)

Border Price

The Transition Variable and the Suggested Model

Yi—j; JED 11, 1L Tt Tt 1
Group B: Linear AR Models:
Beef p=1 FOB & CIF | Linear Linear Linear Linear Linear
Cocoa p = Option price | Linear Linear Linear Linear Linear
Lamb p=2>5 CIF Linear Linear Linear Linear Linear
Wheat p=9 FOB Linear Linear Linear Linear Linear
Tin p= Settlement Linear Linear Linear Linear Linear
Copper | p= Settlement Linear Linear Linear Linear Linear
Zinc p= Settlement Linear Linear Linear LSTR1! | Linear
Rubber | p=1 Spot price Linear LSTR2 | LSTR1* | Linear Linear
Group C: STR Models where the threshold variable is one of the autoregressive lags of y;
Maize p=2> FOB Yr—2; LSTR2* | LSTR1 | Linear NA NA
Rice p=2>5 FOB Yi—5; LSTR2* | LSTR2 | Linear NA NA
Sugar p=3 FOB yi—1; LSTR1* | LSTR1 | LSTR2 NA NA
Group D: STR Models where the threshold variable is an external variable
Hides p = FOB Linear LSTR2* | LSTR1** | LSTR1' | Linear!
Bananas | p = CIF Linear Linear Linear Linear LSTR1*
Palm oil | p =3 CIF y:—3; LSTR2 | LSTR1 | Linear LSTR2* | LSTR1
Timber | p = CIF Linear LSTR1* | Linear LSTR1** | Linear
Coffee p=1 CIF Linear LSTR2* | Linear Linear LSTR2*

NA=Not Applicable.

Tt and T¢_qare current and one period lag of growth rate in real oil prices respectively.

Ht and Htflare current and one period lag inflation respectively.

iTransition variable exhibits the highest rejection of linearity tests, but the coefficients of the fitted model were insignificant.

TAlthough this variable showed, statistically speaking, the highest rejection of linearity tests, it is not applicable in this case.

**Both models were close; but the one tagged with two stars outperforms the one star model.

Table 2.11: Testing for non-linearity in individual commodities.
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2.9.5 Estimation and Evaluation

Group C: STR models where the threshold variable is one of the autore-

gressive lags of the dependent variable

The third group in our classification is Group C, where the transition variable
is an autoregressive lag of the dependent variable and the corresponding nonlinear
model is the STR model. This group consists of three commodities: Maize, rice,
and sugar. All three prices were recorded on a FOB basis. Nonlinearity tests were
executed for each transition candidate in the transition set A; (see equation (2.34))
and the results were reported in Table 2.11. The transition variables that showed the
highest rejection of linearity tests were the second order autoregressive lag for the
maize price, the fifth order for the rice price, and the first order for the sugar price
time series. Estimation and misspecification results are reported in Table 2.12.

All estimated coefficients are significant at the 5% percent level of significance and
the three models pass all misspecifications tests. At the 5% level of significance, the
residuals from the estimated LSTR models exhibit no serial correlation up to order
g = 8. The null hypothesis of no ARC'H(v) up to order v = 4 was also not rejected
at the 5% level of significance. The hypothesis of no remaining nonlinearity was
tested against the alternative of additive nonlinearity in the autoregressive transition
variable and, based on the p-value of the NRN L test results, we can conclude that,
at the 5% level of significance, the nonlinearity has been adequately captured by the

STR models. The null hypothesis of parameter constancy was not rejected for all
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three commodities, at the 5% level of significance, once tested against the alternative
hypothesis of monotonic change, PC(1), non-monotonic symmetrical change, PC(2),
and nonmonotonic and nonsymmetrical change, PC(3). The reported p-values confirm
the adequacy of the fitted LSTR models. The null-hypothesis of normality of errors
was rejected at the 5% level of significance as seen from the p-value of the JB test
statistic. This is due to the presence of outliers in the times series. The transition
from one regime to the other was smooth in case of rice and sugar as opposed to
maize (see Figures 2.28, 2.29, and 2.27 respectively). This is due to the relatively
higher value of v (the slope of the transition function) in the case of maize as opposed
to rice and sugar (see Table 2.12). The nonlinearity was captured by the LSTR(1)
model in the case of sugar and by the LSTR(2) model in the case of maize and rice.
In the later case, the transition function is the second-order logistic function and it

is expressed as

G(s7,¢) = (1 + exp{—(s; — c1) (s — 02)/0'2})_1 , v>0, ¢ <cy  (2.35)

where v > 0 and ¢; < ¢y are identifying restrictions as mentioned before. The function

2

achieves its minimum value G, = (1 + exp{—~¢}/0?)!, where ¢ = c¢;c3 — &* and

C =

c= %, when the transition variable s; is equal to ¢. To facilitate the interpretation

of the regimes, we can apply the following reparameterization of the logistic function
in (2.35). Let

G() = Gmin + é() X (1 - Gmin)a (236)
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where
~ G() - CTYmin
G()=——"—F7— 2.37
Substituting (2.36) in the STR model expressed in (2.5) and reparameterizing the
model yields

=Nz + F,zté(st; v, ¢) + &, (2.38)

where A = & + OG i, and I' = (1 — Giin)O. The logistic function in (2.35) displays
three regimes depending on the value taken by the transition variable: a ground
(middle) regime and two outer regimes. The middle regime is realized when ¢; <
sy < co. When the transition variable takes the value of any of the thresholds, i.e.,
S¢ = ¢1 or ¢, G(-) = 1/2. When the transition variable takes a weighted average
of both threshold values; that is, s, = ¢ = 212, then G(*) = G and G(-) = 0
in (2.37). The STR model in (2.38) is then reduced to the following autoregressive
model

ye=Nz+e. (2.39)

The outer regimes are associated with s; — 400, which, in turn, implies that G(-) = 1
in (2.35) and G(-) = 1 in (2.37). Therefore, from (2.38), the behavior of 7 in the

outer regimes can be described as
ye= (A +T)z + e (2.40)

The transition functions for maize, rice, and sugar are plotted in Figures 2.27, 2.28,

and 2.29 respectively.
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Group C: STR models with autoregressive lags as threshold variablest
Yt= G0t P1Yt—1+GoYt—2+P3Yt—3+Palt—atOsYt—s
+(0o + 0191 + O2yi—2 + O3yi—3 + Oayi—a + O5y1—5)G (7, 1, ¢93 8;) + €,
where G(+) = (1 4 exp{—7(s; — ¢1)}/os) " or G(-) = (1 + exp{—7(s; — c1)(s: — ¢2)} /o)

Commodity Price Maize ‘ Rice ‘ Sugar
AIC(p) p=>9 p=2> p=3
Transition Variable; Model Y¢—2; LSTR(2) Yt—5; LSTR(2) Yi—1; LSTR(1)
% 0.46 é b
= 1. 1.
1 1= 0 (0.([))95) (0.93
o} —0.27 —0.29 —0.40
(0.13) (0.09) (0.13)
=0 =0 0.26
Ex é5 o3 0.26
Py P4=0 $4=0
0.20 0.35
95 (0.09) (0.09)
0o —0.46 —0.24 0.94
(0.18) (0.09) (0.46)
01 0.99 0,=20 —1.08
(0.10) (0.41)
02 92: 0 02: O 92: O
03 0.16 03: 0 03: 0
(0.02)
04 —0.07 —0.5
(0.01) (0.15)
95 95: 0 95: O
¥ 77.22 2.42 2.47
(56.64) (1.15) (2.22)
C1 0.98 —0.62 0.81
(0.02) (0.17) (0.42)
Cao 0.77 0.73
(0.02) (0.05)
0. 0.44 0.45 0.52

LM suroq); LM ayros)

2.84(0.10); 1.77(0.10)

1.22(0.27);1.11(0.36)

0.11(0.74); 1.51(0.16)

LM srcu); LM ppch

0.01(0.92); 2.03(0.73)

0.30(0.58); 4.21(0.38)

0.01(0.93); 2.24(0.69)

NRNL 0.27 0.97 0.53
PC(1); PC(2); PC(3) | 0.37;0.12;0.05 0.38;0.41;0.48 0.12;0.31;0.63
JB: K4 K, 30.3(0.00);0.67;5.3 | 13.8(0.001); —0.25;4.7 | 35.1(0.000); 0.8; 5.2

TFiguros in parentheses beneath the parameters are standard deviations & those after the test statistics are p-values.

10'5 is the sample standard deviation of the transition variable S¢= Yi—j for j = 1, 2, ey D

Table 2.12: Estimation and evaluation of Group C: STR models with autoregressive thresh-

old variables.
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Figure 2.27: Transition function in the LSTR(2) model fitted to the logarithm of real maize
price as a function of observations. Each dot corresponds to one observation. The transition

variable s; is the second autoregressive lag y;_o.
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Figure 2.28: Transition function in the LSTR(2) model fitted to the logarithm of real rice
price as a function of observations. Each dot corresponds to one observation. The transition

variable s; is the fifth autoregressive lag ;5.
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Figure 2.29: Transition function in the LSTR(1) model fitted to the logarithm of real sugar
price as a function of observations. Each dot corresponds to one observation. The transition

variable s; is the first autoregressive lag y;_1.

Characteristic roots in each regime for Group Cf
Commodity and Model | Regime Root(s) Modulus | Period
Maize: LSTR(2) Lower (Mid) 0.31 £0.72¢ 0.79 5.4
Upper (Outer) | 1.01 1.01
0.39 £0.61¢ 0.73 6.2
Rice: LSTR(2) Lower (Mid) 0.47£0.73¢ 0.87 6.3
1.06 1.06
Upper (Outer) | 0.70 £ 0.61¢ 0.93 8.8
0.68 0.68
Sugar: LSTR(1) Lower 0.06 £ 0.53¢ 0.53 4.3
0.91 0.91
Upper —0.244+0.742 | 0.78 3.3
TMost prominent roots are only reported.

Table 2.13: The most prominent roots of the characteristic polynomials in the regimes of
the estimated LSTR models for the logarithm of the real commodity prices in Group C,

1900-2007.
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Dynamic Analysis

Following previous studies (see, for instance, Terdsvirta & Anderson (1992) and
Skalin & Teréisvirta (1999)), the dynamic behavior of LSTR models can be explained
from the analysis of the characteristic roots of each regime. The roots in each regime

are computed in Table 2.13.

Maize Consider the logarithm of real maize price time series. The most prominent
pair of complex roots in the ground (mid) regime has a modulus of 0.79 and a period
of 5.4 years, see Table 2.13, so that the process is locally stationary in the ground
regime. The outer regimes (expansionary or contractionary) are, on the other hand,
characterized by a real root with a modulus of 1.01, which is approximately located
on the unit circle. This random walk behavior in the outer regimes indicates that
the logarithm of the real maize time series moves from an outer regime (upper or
lower) to another, passing through the middle (ground) regime, swiftly. This quick
transition between regimes is confirmed from the high value of the slope of the tran-
sition function, v = 77.22, as reported in Table 2.12. The model is similar to the
TAR model with three regimes such that the outer ones display similar pattern. The
most striking feature of the model is the asymmetry of regimes, which is a common
feature of commodity prices. The dynamics of the model can be traced from the plot-
ted transition function, G(y;_2;7, ¢1, ¢2) in Figure 2.30 or its dot plot presentation in

Figure 2.27.
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Figure 2.30: Transition function of the LSTR2 model fitted to the logarithm of real maize

price time series between 1900 and 2007.

Rice Although the logarithm of the real rice price process is described by the same
model of that of the real maize price (LSTR(2) model), the former displays an opposite
dynamic. The most prominent root in the ground (mid) regime of the real rice price
time series is a real root with a modulus of 1.06. This implies a random walk behavior
in the ground regime. The outer regimes however are stationary regimes with a
prominent pair of complex roots having a modulus of 0.93 and a period of 8.8 years.
The transition function is plotted in Figure 2.31. This behavior implies that the price
process is stationary in any expansionary or contractionary regime, yet it can wander
randomly in the middle regime. The transition between the regimes is smooth as
observed from the moderate value of the slope of the transition function, v = 2.42,
as reported in Table 2.12. This smooth transition can also be viewed from the dot

plot of the transition function in Figure 2.28.
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Figure 2.31: Transition function of the LSTR2 model fitted to the logarithm of real rice

price time series between 1900 and 2007.

Sugar The best fitted model to the logarithm of real sugar price is still an LSTR
model, yet it only displays two stationary regimes (LSTR(1)). The lower regime is
dominated by a real root of modulus 0.91; the upper regime is dominated by a pair
of complex roots with a modulus of 0.78 and a short period of 3.3 years. The value
added of the smooth transition can be viewed from the moderate value of the slope
of the transition function, v = 2.47, as reported in Table 2.12. The dot plot and
the plot of the transition function, in Figures 2.29 and 2.32 respectively, also confirm

that.
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Figure 2.32: Transition function of the LSTR1 model fitted to the logarithm of real sugar

price time series between 1900 and 2007.

Group D: STR models where the threshold variable is an external variable

The last and the most important group in our classification is Group D, where the
transition variables are external variables that are capable of explaining the dynamics
of the price processes. The importance of this group is twofold: First, it highlights
the role of the border price classification in selecting a common transition variable for
different commodity prices. The group consists of five commodities: Hides, bananas,
palm oil, timber, and coffee. All time series were recorded on a CIF basis except
hides, which was recorded on a FOB basis. The transition variables that showed the
highest rejections of linearity tests were oil price for all CIF commodities and inflation

for the FOB price time series (hides). This is consistent with our claim that oil prices
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play a major role in the behavior of the commodities recorded on a CIF basis. This
also confirms the connection between commodity prices, oil, and consumer prices that
was discussed before (see page 36-38). Second, the classification of the commodities
in Group D motivates the use of external transition variables in the STR models.
The estimation and misspecification tests results for all the five price processes
in Group D are reported in Table 2.14. All estimated coefficients are significant at
the 5% percent level of significance and the models pass all misspecifications tests.
The transition from one regime to the other was smooth in case of banana and coffee.
This is confirmed from the moderate slope of the transition functions in both cases
(see Table 2.14). Dot plots of the transition functions in this group of commodities

are shown in the following figures.
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Group D: STR models with external threshold variables

Y= Go+O1Yi-1+t0oYs—2+05y—3+(00 + 01911 + Oay—o + O3y1-3)G (7, ¢p, a3 8) + €, 1
—1 —

where G(-) = (1 + exp{—7(s; — c1)}/os) or G(-) = (1 + exp{—7(s; — c1)(s8¢ — 2)}/0?) .

Commodity Price ‘ Hides ‘ Bananas ‘ Palm oil ‘ Timber ‘ Coffee
AIC(p) p=3 p=3 p=3 p=1 p=1
Transition; Model Htfl; LSTR(l) gt—1; LSTR(l) gi; LSTR(2) gi; LSTR(I) gi—1: LSTR(Q)
(0.06) (0.06)
o} 0.65 0.96 0.77 0.93 0.83
(0.08) (0.09) (0.05) (0.03) (0.05)
(0.13)
0.25 0.28 =0
93 (0.08) (0.09) @3
0o —0.20 0.08 0.08 0.22 —0.42
(0.09) (0.03) (0.04) (0.06) (0.19)
91 91: O 91: O 061 91: O 91: 0
(0.13)
02 92: O 92: O —118
(0.22)
03 03=0 3= 0 0.91
(0.18)
ol 30.6 9.8 14.7 251 0.5
(132) (18.43) (21.48) (1420) (0.55)
c1 0.10 0.14 —0.64 —0.37 —0.71
(0.01) (0.06) (0.20) (0.32) (0.23)
Co 0.07 0.56
(0.01) (0.23)
osT 0.05 0.20 0.20 0.20 0.20
LM auroq) 0.72(0.40) 0.74(0.39) 0.39(0.24) INA 0.77(0.38)
LM auros) 0.74(0.65) 1.03(0.42) 0.79(0.62) INA 0.54(0.82)
LM apcH) 0.24(0.62) 0.006(0.94) 0.16(0.69) 0.20(0.65) 2.42(0.12)
LM aApcra) 3.69(0.45) 2.34(0.67) 0.94(0.92) 6.52(0.16) 4.18(0.38)
NRNL 0.31 0.25 0.20 INA 0.32
PC(1) 1.12(0.34) 3.1(0.05) 1.64(0.69) INA 0.15(0.93)
PC(2) 1.48(0.19) 1.76(0.11) 1.46(0.17) INA 0.68(0.67)
PC(3) 1.21(0.30) 1.31(0.24) 1.36(0.24) INA 0.57(0.82)
JB 3.74(0.15) 2.1(0.36) 1.51(0.36) 1.98(0.37) 9.94(0.007)
SK;EK —0.23; 3.8 —0.23; 3.5 —0.22; 3.4 | 0.22; 3.51 0.62; 3.9

Figures in parentheses beneath the parameter values are standard deviations and those after the test statistics are P-values.

iMatrix inversion problem. T O s is the sample standard deviation of the transition variable Sy= Yy for ] = 1, 27 oy P

Table 2.14: Estimation and evaluation of Group D: STR models with external threshold

variables.
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Figure 2.33: Transition function in the LSTR1 model fitted to the logarithm of real hides

as a function of observations. Each dot corresponds to one observation. The transition

variable s; is inflation.
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Figure 2.34: Transition function in the LSTR1 model fitted to the logarithm of real bananas
as a function of observations. Each dot corresponds to one observation. The transition

variable s; is the growth rate of real oil price.
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Figure 2.35: Transition function in the LSTR2 model fitted to the logarithm of real palm
as a function of observations. Each dot corresponds to one observation. The transition

variable s; is the growth rate of real oil price.
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Figure 2.36: Transition function in the LSTR1 model fitted to the logarithm of real timber
as a function of observations. Each dot corresponds to one observation. The transition

variable s; is the growth rate of real oil price.
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Figure 2.37: Transition function in the LSTR2 model fitted to the logarithm of real coffee
as a function of observations. Each dot corresponds to one observation. The transition

variable s; is the growth rate of real oil price.

Characteristic roots in each regime for Group Df
Commodity and Model | Regime Root(s) Modulus | Period
Hides: LSTR(1) Lower 0.94 0.94
Upper 0.94 0.94
Banana: LSTR(1) Lower 0.95 0.95
Upper 0.95 0.95
Palm oil: LSTR(2) Lower (Mid) 0.15+0.91z | 0.92 4.5
1.07 1.07
Upper (Outer) | 0.77 0.77
Timber: LSTR(1) Lower 0.93 0.93
Upper 0.93 0.93
Coffee: LSTR(2) Lower (Mid) 0.83 0.83
Upper (outer) | 0.83 0.83
TMost prominent roots are only reported.

Table 2.15: The most prominent roots of the characteristic polynomials in the regimes of
the estimated LSTR models for the logarithm of the real commodity prices in Group D,

1900-2007.
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Figure 2.38: Transition function of the LSTR1 model fitted to the logarithm of real hides

price time series between 1900 and 2007.

Dynamic Analysis

Hides, Banana, Timber, and Coffee The logarithm of the real price of hides,
banana, and timber time series are all characterized by stationary real roots in both
upper and lower regimes of the fitted LSTR(1) model, see Table 2.15. The logarithm
of the real coffe price process is also locally stationary in the ground regime as well
as the outer regimes of the fitted LSTR(2) model. The transition from the lower to
the upper regime is smooth in the case of banana. The smooth transition can also
be observed in the case of coffee, where the time series moves from an outer regime
to another, passing through the ground regime, smoothly as seen from the transition

functions in Figures 2.38, 2.39, 2.40, and 2.41 respectively.
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Figure 2.39: Transition function of the LSTR1 model fitted to the logarithm of real banana

price time series between 1900 and 2007.
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Figure 2.40: Transition function of the LSTR1 model fitted to the logarithm of real timber

price time series between 1900 and 2007.
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Figure 2.41: Transition function of the LSTR2 model fitted to the logarithm of real coffee

price time series between 1900 and 2007.

Palm Oil The logarithm of real palm oil price time series was the only exception in
this group. The ground regime is characterized by a real root of 1.07, see Table 2.15,
so that the process is behaving in a random walk fashion in the middle regime. The
outer regimes (expansionary or contractionary) are, on the other hand, stationary
with a prominent real root of 0.77. The near random walk behavior in the middle
regime indicates that the passage of the time series process from an outer regime to
the other is random; it could stay in the same original regime or swiftly switch to the
other outer regime. It could even stay in the ground regime for a while before shifting
to another outer regime; see the 1960’s period of the plotted transition function in

Figure 2.42.
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Figure 2.42: Transition function of the LSTR2 model fitted to the logarithm of real palm

oil price time series between 1900 and 2007.

2.10 Concluding Remarks

In addition to the autoregressive lags of the dependent variable that are commonly
used by the majority of the studies in the smooth transition literature, this study
attempts to use external economic variables as potential transition variables that are
capable of explaining the nonlinearities in the Grilli and Yang commodity price index.
Two particular transition variables were proven successful: Inflation and the price of
oil. More specifically, in case of inflation, the one period lag inflation, II;_;, was the
variable with the strongest test rejection among all potential transition candidates
and the associated model was the LSTR(1) model. The fitted model passed all
misspecification tests and showed how changes in consumer prices (inflation) can
explain the dynamics of the logarithm of the real Grilli and Yang commodity price

index. The feedback from commodity prices to consumer prices was also demonstrated
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when inflation was modelled as dependent variable and the growth rate of the real
commodity price index was the transition variable. Hence, the bidirectional relation
between consumer prices and commodity prices. In case of oil, the one period lag
of the logarithm of real oil price, R;_;, was the second successful transition variable
that was capable of capturing the nonlinearity in the Grilli and Yang commodity
price index. Both variables (inflation and oil) can be seen as complements in the
sense that inflation was capable of capturing the early fluctuations in the index while
oil price captured the late ones. This result motivates the use of external variables as
predetermined transition variables in the smooth transition regression model.
Modelling the dynamic behavior of individual commodity prices processes was
slightly different than the index itself. Some price processes were best suited by ARCH
or ST-ARCH models (Group A). The dynamics of these processes are described in the
following chapter. Some price series fitted our nonlinear regime switching framework
(Group C and D); and others were even linear (Group B). The rationale behind such
different modelling rests on the recorded border price of the time series under consid-
eration. FOB and CIF price processes were best modelled by the smooth transition
regression model with oil price as transition variable in case of CIF prices. Settle-
ment and auction prices were best fitted by ARCH or ST-ARCH models. This result
provides further insight into the observed co-movement in commodity prices (see Fig-
ure 1.1, page 6) and attempts to explain it through the investigation of the recorded

border price of the time series. The analysis also points out to the significance of

114



examining the characteristics of individual price processes prior to fitting the suitable

model that is capable of describing their dynamics.
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Chapter 3

Regime Switching in Variance

3.1 Introduction

In this chapter, we extend the regime switching framework discussed in Chapter
2 to model the regime switching in the conditional variance of commodity prices.
The idea of changing dynamics in the conditional variance equation of a time series
emerged in the early financial literature on pricing assets and modelling their returns.
A variety of econometric models of changing conditional variance have been suggested
in the literature. The first influential attempt was due to Engle (1982), who suggested
the Autoregressive Conditional Heteroskedasticity (ARCH) model, in which the con-
ditional variance of a time series is allowed to change over time as a function of past

eIrors.

116



Let

ye = Q'w, + &, (3.1)

where vy, is a scalar, w, = (1,91, ...,yt_p)/,CD/ = (¢g, @1, -, #,), and
ft = O.tZta Zt ~ Zld(O, 1) (32)
The conditional variance equation takes the following general form

O—t2 - 02(&%717 €t72? ceey 0_?_1, 0-?_2, ceey :Et, b), (3.3)

where x; is a vector of predetermined variables and b is a vector of parameters. From

(3.3), an ARCH(p) model can be expressed as

p
o7 =w+ Y i, (3.4)
=1

where w and all the a’s are nonnegative. Engle’s model was generally extended by
Bollerslev’s (1986) generalized ARCH (GARCH) model, which added a more flexible
lag structure to the conditional variance equation by expressing o as a linear function
of its past values as well as the past squared innovations. A GARCH(p, q) model is

expressed as
P q
Ut2 =w + Zaif?ﬁi -+ Zﬁjal%*j’ (35)
i=1 j=1

p q

where w is positive, the a’s and 3’s are nonnegative, and ) a; + > 3; < 1. GARCH
i=1 j=1

models captured a common feature of asset returns; volatility clusters (periods of high

volatility and low volatility alternate). Although ARCH and GARCH specifications

have proven successful in modelling many phenomena (see, for instance, Engle (1982),
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Bollerslev (1986), Weiss (1984), and Milhoj (1987)), they have many limitations as
first noted by Nelson (1991). One important limitation of GARCH models is that the
current volatility is only a function of the magnitude (not the sign) of past innovations.
Therefore, GARCH models fail to capture the asymmetric response of the conditional
variance to positive versus negative news, which is another common feature of stock
returns known as the leverage effect (see Black (1976), Christie (1982), and Schwert
(1990)). To account for this asymmetry in the conditional variance, many alternative
specifications to (3.4) have been suggested in the literature. Nelson (1991) proposed

the specification
q 0o
Ino? =w+ Zﬁj Ino} ; + Zakg(Zt_k), (3.6)
Jj=1 k=1
with

9(Zek) = 02k + (1 Ze-k| — E|Zi1]).

Here the logarithm of the conditional variance is expressed as a linear function of a
constant, its past values, and some function of the lagged Z,’s. The selected function
9(Zy) = 02+ ~(|Z:| — E|Z:]), which is a function of both the size and the magnitude
of Z,, gives rise to different slopes depending on the value of Z;; the slope of g(Z;) is
0 + ~ over the range 0 < Z; < oo and 6 — « over the range —oo < Z; < 0. Therefore,
g(Z;) allows o? to change asymmetrically to positive and negative shocks.
This idea of changing slopes generated a number of threshold ARCH and GARCH
specifications. Zakoian (1994), for instance, proposed a threshold GARCH (T-GARCH(p, q))

model where the conditional standard deviation is driven by linear combinations of
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its past values and the sign of past innovations as

q P
oi=w ) Biog+ ) (af€l —aign), (3.7)

j=1 i=1
where & = max(¢,,0) and £, = min(¢,,0) are the positive and negative parts of

&, respectively. If the distribution of Z; is symmetric, the effect of a shock &, ;. for
k < p, on the present volatility is proportional to (a; — «; ). Consider, for instance,
the case where p = 1 and a; > i . Then negative news have high impact on volatility
compared to positive news. A similar threshold model but in the conditional vari-
ance (instead of the standard deviation) was proposed by Glosten, Jagannathan, and
Runkle (1993), where the conditional variance is written as a linear function of the

squared positive and negative parts of the noise as

q p
7=1 =1

where S; =11if §, < 0 and S; = 0 otherwise.

The common characteristic shared by the previous threshold models is, as stated
by Gonzélez-Rivera (1998), the existence of only two regimes: low volatility regime
which is triggered by positive shocks and high volatility regime which is triggered by
negative shocks. So, they are pure threshold models where the threshold is known
and is equal to zero. Another common feature, still according to Gonzélez-Rivera
(1998), is that all these models are customary applied to stock returns. In her paper,
she accounts for intermediate regimes or states (in addition to the two volatility

regimes) by introducing a smooth-transition specification to the conditional variance
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equation. She also applies the model to exchange-rate data. Smooth transition models
in conditional variance can be found in the work of Gonzdlez-Rivera (1998), Lee and
Degennaro (2000), Hagerud (1996), Lundbergh and Terasvirta (1998), Anderson et
al. (1999), Lubrano (2001), and Lanne and Saikkonen (2005) among others. Those
models share the common characteristic that they all allow for intermediate states
or regimes in the conditional variance equation. They, however, differ in defining
the smooth transition function that describes the transition between the regimes. A

smooth transition GARCH(p, d, q) is defined as

P p q
0} =w+ Z@lif?—i + (Z@mf?—i) F(si—1,¢,7) + Zﬁjag—ja (3.9)
i=1 i=1 j=1

where F(s;_1,¢,7) is the smooth transition function, s, ; is the smooth transition
variable, c is the threshold parameter, and v is the smoothness parameter. A popular
choice of the smooth transition function that is employed by the advocates of the

smooth transition GARCH models is the logistic function expressed in general as

F(si_1,¢,7) = [1 +exp{—7y(s;-1 — )} ' — %, v > 0. (3.10)

Gonzélez-Rivera (1998) set s, 1 = &,_4, d < p, ¢ = 0, and entered the smooth

parameter v with a positive sign in (3.10). In particular, she specified

-1 1

Fléun) = [1+ewbe ] -5 >0 (311)

Observe that when &, _;, — —o0, FI(§,_4,7v) = 1/2 and when &, ;, — 400, F(§,_4,7) =

—1/2. Therefore, the transition function is a bounded function between —1/2 and 1/2.
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Note also that the «y;’s in (3.9) have to be nonnegative but the ay;’s can be positive
or negative that is because the sufficient conditions' to ensure that the conditional
variance in (3.9) is strictly positive are: w > 0, aq; > 0, a; > 3|a|, for i =1, ..., p,
and 3; > 0, for j = 1,...,q. Since her objective was to make the effect of bad news
(negative ¢, ,) larger on conditional variance o than positive news (positive &, )
and she already set a positive 7 in (3.11), the ay;’s should have the same sign as
and, therefore, were also assumed positive.

Hagerud (1996) set s, 1 = &,_;, and ¢ = 0 in (3.10). He suggested two specifica-

tions: the logistic specification

Fléom) = [ +ep{6 3" —5 >0 (312

and the exponential specification

F(&_i,7) =1—exp{—&_}, v>0. (3.13)

If the logistic specification in (3.12) is used, the dynamics of the conditional variance
will change according to the sign of the news. If, on the other hand, the symmetric
exponential specification in (3.13) is used, the conditional variance will change accord-
ing to the magnitude of the innovations. To introduce the possibility of asymmetry
in the conditional variance to positive versus negative news, Lubrano (2001) used a

threshold parameter ¢ in (3.13) as

F(&i7) =1 —exp{—(&_; — )*}, v >0.
!See Milhoj (1985) and Tjostheim (1986).

121



Lee and Degennaro (2000), Lundbergh and Terasvirta (1998), Anderson et al.
(1999), Lubrano (2001), and Lanne and Saikkonen (2005) also used the logistic spec-
ifications to model the conditional variance.

In this chapter, we follow a somewhat similar approach in modeling the regime
switching in variance. we use the smooth transition logistic function in modelling the
dynamics of the regimes but we do not restrict the transition variable to be one of the
lagged innovations or squared innovations as in the previously mentioned studies; we
also consider the possibility that the transition variable could be an external variable
such as inflation and oil price. Unlike most of the studies on the regime switching
on conditional variance where the models are empirically applied to stock returns
data, this thesis applies the smooth transition regression models to commodity data.
In particular, the regime switching in variance model is applied to the Grilli & Yang
commodity price index and to the individual commodities forming the index. Another
distinction between this thesis and previous work is that, in addition to the first order
logistic function that is widely used, it also considers the second order logistic function
when modelling the regime switching in the conditional variance of the price processes
under consideration. The second order logistic function allows for three regimes; a
mid regime and two outer regimes that can characterize the variance equation.

The plan of this chapter is as follows. Section 3.2 introduces the smooth transition
regression in variance model and applies it to the logarithm of the real Grilli & Yang

commodity price index with inflation and oil price as potential external transition
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variables. Section 3.3 applies the model to the individual commodities forming the

index and Section 3.4 concludes.

3.2 Regime Switching in the Commodity Price In-

dex

When Engle’s (1982) LM test of no ARCH was applied to the error terms of the
autoregressive specification of the commodity price index in the preliminary stage of
modelling nonlinearity in mean (see Chapter 2, page 43), the null hypothesis of no
ARCH was accepted at the 5% level of significance. This implies that including past
innovations or past square innovations in the conditional variance equation of the
commodity index is not required. Therefore, to model nonlinearity in the conditional
variance, we suggest a simple smooth threshold model where the conditional variance
takes different values in different regimes following the behavior of a transition variable
around a threshold value such that the transition between the regimes is smooth. The
model captures the asymmetric response of the conditional variance of the commodity
price index to changes in the external transition variables. Following the rationale
discussed in chapter 2, inflation rate and oil price are the external potential transition
variables that will be used in our nonlinearity analysis. The model is introduced in
the following section and then applied to the Grilli & Yang commodity index using

inflation and oil price as potential external transition candidates.

123



3.2.1 The Smooth Transition Regression in Variance Model

Let

Y =®w, + &, (3.14)

where y; is a scalar, wy = (1,41, ... Ye—p) s ® = (¢g, by, ..., ¢,), and let & = Z/hy,

Zy ~i.i.d.(0,1). Define the conditional variance equation as
he = a1 F (557, ¢) + ao(l — F(se37,¢)), (3.15)

where «a; and «s are parameters and F'(s;;7,c) is a first order logistic transition

function.? A first order logistic transition function is defined as

F(sy;7,¢) = [1 +exp{—v(s; — )], v >0, (3.16)

where c is a threshold parameter, v is the smoothness parameter and v > 0 is an
identifying restriction. s; is the transition variable; it could be one of the past innova-
tions &, ;, or the squared innovations £7 ;, or even an external variable. Serving our
purpose of modelling the nonlinearities in commodity prices and following the frame-
work of Chapter 2, we use the inflation rate and the oil price as the potential external
transition candidates that are capable of explaining the dynamics of the commodity
price index.? The first order logistic function F'(s;;7, ¢) defined in (3.16) is a bounded
function between zero and one, 0 < F(s;;7,c) < 1. The value of the smoothness para-

meter v is the one that governs the definition of F'(s;;~, ¢). For large values of ~; that

2Experimenting with the second order logisitic function did not yield satisfactory results. The
fitted models failed to pass the misspecification tests and the estimated parameters were insignificant.

3We have also tried to use the past innovations and the past squared innovations as potential
transition variables, but the models did not converge.
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is, when 7 — +o00 and the transition variable is above the threshold value, i.e., s; > ¢,
then F'(s;;7y,c) =1 and the conditional variance in (3.15) is h; = ay; this defines the
upper regime. If the transition variable is below the threshold value, i.e., s; < c,
and v is still large, then F'(s;;v,¢) = 0 and h; = aw; this defines the lower regime.
Also note that when v = 0 (its minimum value), F(s;;7,c) = 3 and the conditional
variance h; = %(041 + ay). So, in general, v takes any value between 0 and +oo, and
F(s4;7, ¢) takes any value between 0 and 1. This implies that the smooth transition
regression (STR) in variance model allows for time-varying shifts in the parameters of
the conditional variance equation. The model also allows for asymmetric response of
the conditional variance equation to positive versus negative news. The news in this
context represent the change in the behavior of the transition variable. Suppose, for
instance, that y; is a commodity price index and the external transition variable in
(3.16) is the one period lag inflation rate (s; = II;_;). In case of a negative news, i.e.,
in case that s; > ¢, the transition function approaches 1 and the conditional variance
h; = a1, whereas in case of a positive news, h; = ay. The two parameters as and oy
in equation (3.15) change monotonically as a function of s; from ay to oy and allows
for asymmetric effect of external news on the conditional variance of the commodity
price index. To ensure the non-negativity of the conditional variance equation, we
impose the restrictions that a; > 0 and ay > 0.

Following the nonlinearity analysis framework developed in Chapter 2, we start

by testing the null hypothesis that the conditional variance of the commodity price

125



index is linear against the alternative that it follows the STR model defined in (3.15).
An LM test for nonlinearity is introduced and applied to the commodity index in the
following subsection. The estimation and misspecification tests results from fitting

the STR in variance model are reported and analyzed in the subsequent sections.

3.2.2 Testing for Nonlinearity

In this subsection we derive an LM test for the nonlinearity in the conditional
variance equation. We follow the same procedure of Granger and Terisvirta (1993).
We test the null hypothesis Hy : v = 0 against the alternative H; : 7 > 0. The problem
with testing for nonlinearity in variance is similar to the one encountered when testing
for nonlinearity in mean (see Chapter 2, page 26); that is, the STR in variance model
is only identified under the alternative hypothesis because the nuisance parameters
¢ and «y are only identified under the alternative. To solve this problem, we follow
Luukkonen et al. (1988) who, based on a paper by Davies (1977), suggested to replace
the transition function in (3.16) by a Taylor approximation about the null hypothesis

v =0.

F(si;7,0) = [(1+exp{—y(s; —)}) " = 1/2], (3.17)

where the 1/2 was subtracted to facilitate the Taylor approximation. The third order
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Taylor approximation about - is

OF (-
To1,7:€) = F(hma + 2o +

PRO), P PF(), 7
02 |V:0§ o3 |7:0§7

(3.18)

where, at v = 0, the first and third terms of the right hand side of equation (3.18)

are zeros and will drop. The second and fourth terms are

oF(), 1
5, h=o=gls—¢) (3.19)
and
PF() 1 ;
g5 =0 = —glse =) (3.20)

The test procedure can be summarized in the following steps. First, apply OLS
. 2
to (3.14) and obtain the residuals £, and the squared residuals &,. Next, since the
2
conditional variance h; is not observed, we use the squared residuals &, as a proxy for

h: in (3.15) as

~2

& = a1F(sy;v,¢) + as(1 — F(sy;,¢))
or simply

& = g + 0F (557, 0), (3.21)

where 0 = (o — an). Replace F'(s¢;7,¢) in (3.21) by its third order Taylor approxi-

mation expressed in (3.18) and run the following auxiliary regression

A2

&, = ag + 0T3(84;7,¢) + €. (3.22)
After reparameterization and collection of terms, equation (3.22) can be expressed as

A2
§ = Yo+ Y18+ %S? + wssztg + €&, (3.23)
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where

1 1
Yo =g — 1705 + =7,

48
1 1
Py = 175 - E73C25;
I
= —~°cd
and
I
= ——~°).
¢3 48’7

Because each ¢, j = 1,2, 3, is of the form 7{&]-, where {bj # 0 is a function of §, the null
hypothesis of linearity is then Hyy, : 1, = ¥4 = 105 = 0. To compute the LM statistic,
estimate (3.23) under the null hypothesis using OLS and compute the sum of squares
of the residuals (SSRy). Repeat the same procedure under the alternative hypothesis

and compute SSR;. The LM statistic is computed as LM = —T(Ssgg;fsm)

, where T is
the number of observations. The test statistic has an asymptotic y2-distribution with
3 degrees of freedom when the null hypothesis is valid. The LM can be approximated
by an F-distribution with 3 and T — 4 degrees of freedom when the null hypothesis
Hyz, is valid.

The STR in variance model is estimated using maximum likelihood method. The

log-likelihood function at time ¢ can be expressed as
(P, a1, a9,7,¢) = —=1In(hy) — ===, (3.24)

Maximum likelihood estimators of the parameters ®, oy, as, 7y, and ¢ can be obtained

by maximizing the log-likelihood function in the same way as in Chapter 2. Also,

128



following the economic rationale of Chapter 2, we use the one period lag inflation,
I, 1 = Alog(CPI;_1), and the one period lag of the logarithm of real oil price,
R, 1 = log (M) . 1» as our transition candidates. The model is applied and

CPI

estimated in each case in the following subsections.

3.2.3 Switching Variable: Inflation

Consider the specification in (3.14), (3.15), and (3.16), with y; = log (G]\Z—g‘f[)t
and s, = I, ; = Alog(CPI;_1). Applying the nonlinearity test discussed in the
previous subsection, the computed SSRy = 0.06849 and the SSR; = 0.061224. The
computed F-statistics equals 4.11 whereas, at the 5% level of significance with 3
and 104 degrees of freedom, the tabulated F' = 2.70. Therefore, we reject the null
hypothesis that the conditional variance equation is linear against the alternative of

an STR in variance model with lag inflation as transition variable. The estimated

model and the misspecification tests results are reported as follows.

yr = 0.001 + 0.97y,_1 + &,
0.01)  (0.03)

h; = 0.02 F; + 0.006 (1 — F,), 3.25
" 000 ! (3><10_4)( 2 (3.25)

-1
Ft(Ht—l,% C) = (1 + eXp(—(18926)(Ht_1 — 0.03 ))/0047)) 5

(6x10—4

Q(1)=0.18,  Q(8) =055 Ky=-04, K;=3.9,  JB=0.06
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where o= 0.047 is the standard deviation of the transition variable. The figures in
parentheses beneath the model’s parameters are standard deviations. Q(q) are the p-
values of Ljung-Box (1978) test of no serial correlation of order ¢ in the standardized
residuals &,/v/hy. JB is the p-value of the Jarque-Bera test of normality of &,/v/h;
and K3 and K, are skewness and kurtosis respectively. All model parameters are
significant as seen from the standard deviations reported. The estimated slope of the
transition function is large, ¥ = 82 indicating that the conditional variance moves
swiftly from one regime to another. This can be viewed from the transition function
plotted in Figure 3.2. The estimated threshold parameter of the STR in variance
model (¢ = 3%) takes the same value as the estimated threshold parameter from the
TAR(1) model (see equation (2.28) page 59). However, it is lower than the value of
the estimated threshold parameter in the STR in mean model (7%) (see equation
(2.24), page 47). Both the transition variable and the transition functions of the
STR in mean model and the STR in variance model are plotted in Figure 3.1. The
two estimated threshold parameters from both models are also shown in Panel (a) in

Figure 3.1.
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Figure 3.2: The transition function F'(s;,7,c) as a function of observations. FEach dot

corresponds to an observation. The transition variable s; is the one period lag inflation.

Dynamic Analysis

Suppose that we are in the expansionary regime such that the one period lag
inflation was higher than the threshold value, that is, II,_; > 3%. The transition
function Fy(II; 1,7, c) tends to 1 and the conditional variance of the error term h; =
0.02, which is approximately three times its value in the lower regime (h; = 0.006),
where the one period lag inflation falls below 3% and the transition function tends
to zero. This result implies that the conditional variance equation of the commodity
index is larger in case of negative news (when inflation is above its threshold value) as
opposed to positive news or, in other words, high inflation rates have stronger impact
on the conditional variance of the commodity price index as opposed to low rates.

A closer look at the transition function, F(-) in Figure 3.2, Panel (b), one can

observe roughly the same dynamics observed in the transition function, G(-), of the
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regime switching in mean model of Chapter 2 (Panel (c) in the same figure). Observe
how both transition functions display the same dynamics during the periods 1918 till
1921, during the 1940s and early 1950s, and during the two oil shocks in 1974 and
pre 1984. Also in the late period, both functions exhibit one lower regime. We can
conclude that inflation as a transition variable in both models (the STR in mean and
the STR in variance) failed to capture the late dynamics in the commodity price index
time series. This is, perhaps, because of the intervention of the U.S. central bank to
keep its main monetary policy target (inflation) at its target level. Observe, in Figure
3.1 (panel (a)), the steady inflation rate fluctuating in a small band around 3%. This,
in turn, justifies the low regimes observed in the mean and variance equations of the
commodity index.

The previous result also implies that the two models can be seen as substitutes
when modelling nonlinearity in the commodity price index using inflation as threshold
variable. Although the transition functions of both models displayed similar dynam-
ics in the limiting regimes, it should be noted that the two models (the STR in
mean and the STR in variance) explain the behavior of commodity prices from two
different angles: in the regime switching in variance model, the transition function,
F(+), is modelling switching regimes in the conditional variance equation while the
mean equation is unchanged, whereas, in the regime switching in mean model, the
transition function, G(-), is modelling switching regimes in mean leaving the variance

equation unchanged. Therefore, the former explains how the variance of the Grilli &
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sy= 11,4 STR in mean model STR in variance model
Threshold value 0.07 0.03

Upper Regime:

Model ye=0.009 + 0.54y, 42, | y=0.001 + 0.97y, ,+¢,
Error variance 0?=0.01 h,= 0.02

Behavior of y; Stationary AR(1) Near Random Walk
Lower Regime:

Model yy= 0.009 + 0.98y, ,+&; | y:= 0.001 4+ O.97yt_1+gt
Error Variance o?=0.01 h;= 0.006

Behavior of y; Near Random Walk Near Random Walk

Table 3.1: Comparison between the STR in mean and the STR in variance model with one

period lag inflation rate as the transition variable.

Yang commodity price index responds to fluctuations in lag inflation rate around a
threshold, while the later explains how the index itself does so. Table 3.1 summarizes

the results obtained from fitting both models.
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3.2.4 Switching Variable: Oil

In this subsection, we re-estimate the STR in variance model using the one pe-
riod lag logarithm of real oil price as the transition variable; that is, s, = R, =
log (%) .- The estimated model and the misspecification tests results are re-

ported as follows.

yi = 0.005 + 0.95y, 1 +&,,

(0.01)  (0.03)

h; = 0.03F, + 0.008(1 — F 3.26
ET oo + (0.01) ( ok ( )

~1
Fi(Ri ) = (1 Fexp(— 17 (R + (§b17>>/0'38>) |

— 17
(23.8)
Q1) =0.27, Q(8) = 0.35, K3= —0.3, K4= 3.9, JB=0.05,
where 6= 0.38 is the standard deviation of the transition variable. The figures in
parentheses beneath the model’s parameters are standard deviations. The moderate
slope of the transition function 4 = 17 suggests a smooth transition between the
regimes. The transition function is plotted in Figure 3.3.

In case of a negative news (upper regime), i.e., when the oil price is above its
threshold value, the transition function F(R;_1;7,c¢) tends to 1 and the conditional
variance of the error term h; = 0.03, which is approximately the same result that
was obtained in the STR in variance model with inflation as transition variable (see
Table 3.1). On the other hand, in case of a positive news (lower regime), the oil
price is below its threshold value and the conditional variance h; = 0.008, which is,

again, approximately equal to the same value obtained from the STR in variance
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Figure 3.3: The transition function F'(s¢,7,c) as a function of observations. Each dot
corresponds to one observation. The transition variable s; is the one period lag logarithm

of real oil price.

model with inflation as transition variable. This result implies that the price of oil
as a transition variable in both the STR in mean and the STR in variance models
failed to capture the early dynamics in the commodity price index. Figure 3.4, Panel
(b) shows the transition function in the STR in variance model with oil as transition
variable. Observe how the function captures only the late dynamics after the 1974
oil shock. This same conclusion was reached when the price of oil was used in the
STR in mean model (see Figure 3.4, Panel (c)). Table 3.2 summarizes the results
obtained from fitting both models with s; = R;_;. These results also imply that the
two models can be seen as substitutes when modelling nonlinearity in the commodity
price index using the oil price as threshold variable.

To sum up, we can conclude that both models (the STR in mean and the STR in
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variance) can be seen as substitutes when modelling nonlinearity in the Grilli & Yang
commodity price index in the sense that both the mean and variance equations display
the same dynamics. On the other hand, the transition variables (the inflation rate and
the price of oil) can be seen as complements in characterizing this nonlinear dynamics
in the sense that inflation is capable of capturing the early dynamics whereas the price
oil can capture the late ones. The reason we don’t have only one common variable
that can explain the behavior of the Grilli & Yang commodity price index is that the
index itself consists of 24 individual price series each of which was recorded based on
a different border price (FOB, CIF, settlement, and auction price). Further insight
can be gained by classifying the 24 individual price series into groups according to
their border prices and then modelling nonlinearity in each group using a common

transition variable. This is the subject matter of the following section.
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Figure 3.4: A plot of the transition variable R;—1 (panel (a)), the transition function from
the STR in variance model (panel (b)), and the transition function from the STR in mean

model (panel (c)).
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FError Variance
Behavior of 1
Lower Regime

Model
Error Variance
Behavior of y;

o?=0.01
Stationary AR(1)

yy= 0.009 + 0.98y, ,+¢;
o2=0.01
Near Random Walk

$;= Ry STR in mean model STR in variance model
Threshold —3.1 —3.1

Upper Regime

Model yi= —0.09 + 0.58y, _,+2, | yi=0.005 + 0.95y, ,+¢,

h,= 0.03
Near Random Walk

yi= 0.005 + 0.95y, ,+¢,
h,= 0.008
Near Random Walk

Table 3.2: Comparison between the STR in mean and the STR in variance model with the

one period lag logarithm of real oil price as the transition variable.
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3.3 Regime Switching in Individual Commodities

As mentioned in Chapter 2, Section 2.3, page 20, the first stage in modelling non-
linearity using regime switching models is the specification stage, in which a linear
autoregressive model is selected as the starting point of the nonlinearity analysis. If
the linear model is adequate, i.e., if it passes all preliminary diagnostic tests, the
analysis is then taken to the next step, where nonlinearity is tested. On the other
hand, if the preliminary linear model fails the misspecification tests, the model is no
longer adequate for nonlinearity analysis and the researcher should look for a differ-
ent model. Out of the 24 individual commodities forming the Grilli & Yang index,
8 commodities displayed ARCH patterns in the residuals of their fitted linear pre-
liminary autoregressive models and, accordingly, those preliminary linear AR models
were not suitable starting models for nonlinearity analysis. Those processes were
classified in Group A, where ARCH or smooth transition ARCH (ST-ARCH) models
are entertained. The value added of ST-ARCH models is their ability to capture
the time varying volatility of a time series and its asymmetric responses to previous
positive or negative shocks. Analyzing the dynamics of this group of commodities
involves modelling the conditional variance of the time series processes and, there-
fore, is best suited in this chapter. The characteristics of the ST-ARCH model and
the estimation and misspecification tests results of fitting this model to the individ-
ual commodities forming Group A are presented and discussed in Subsection 3.3.2.

Some other processes did not pass our nonlinearity tests and were classified in Group
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B (see Table 2.11, page 94). Consequently, they were dropped from the analysis.
The remaining processes were classified into two groups: Group C and Group D. In
the former group, all commodities were recorded on a FOB basis and the threshold
variable was one of the autoregressive lags of the dependent variable. In the later
group (Group D), all commodities were recorded on a CIF basis and oil was the
threshold variable that was capable of explaining their dynamics. In what follows
we will model the nonlinearities in the conditional variances of the commodity price
processes in those two groups. We will test for nonlinearity first and once proven to
be present, we will fit the STR in variance and perform diagnostic tests and analyze

the dynamics of the limiting processes.

3.3.1 Smooth Transition Regression in Variance Model

In this subsection, we will apply the smooth transition regression model to the
conditional variance of the individual commodities times series in Group C' and Group
D. We will start first by testing the null hypothesis of linearity in the conditional
variance against the alternative of STR in variance model. The test procedure was
developed in Section 3.2.2, page 126. Another purpose of conducting the linearity test
is to use the test results in model selection. We will use Terisvirta’s (1994) selection
criteria discussed in Chapter 2, page 29, to select the type of the model; that is, to
choose between LSTR(1) or LSTR(2) models. Once the model type is selected, the

next step is to estimate the model, apply diagnostic tests, and analyze the dynamics
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of the results.

Group C: FOB Group

Group C consists of three commodity prices: rice, maize and sugar. In the case of
rice, the null hypothesis of linearity in conditional variance was not rejected against
the alternative of STR in variance with oil and with inflation as external transition
variables. No further nonlinearity analysis was performed for the rice price time
series. In case of maize and sugar, the null hypothesis of linearity was not rejected
when the alternative hypothesis was the STR in variance model with oil as threshold
variable. This is consistent with our border price rationale that oil plays no role in
explaining the dynamics of commodity prices recorded on FOB basis. When the same
nonlinearity test was applied to both commodity series with inflation as threshold
variable, the null hypothesis of linearity was rejected and the selected nonlinear model
was the LSTR(1) for both series. However, the estimated STR in variance model
resulted in a poor fit for both series as the estimated parameters were insignificant
and the log likelihood function did not converge. We could not also fit an ARCH
or threshold ARCH model to those price processes as there were no ARCH pattern
in there error terms; the null hypothesis of no ARCH up to order 4 could not be
rejected for both time series (see Table 2.10, page 90). Therefore, the nonlinearity in
this group of commodities is only captured in the mean and not in the conditional

variance equation.
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Group D: CIF Group

Group D consists of four commodity prices: banana, palm oil, timber, and coffee.
The first step in our nonlinearity analysis is to test for nonlinearity. The LM test
for nonlinearity discussed in Section 3.2.2, page 126, was applied to each of the four
commodities in this group. The null hypothesis of linearity in conditional variance
was tested against the alternative hypothesis of smooth transition regression model
with external threshold variable. The set of potential transition variables included
the current and the one period lag inflation rate, the current and the one period lag
logarithm of real oil price, the current and the one period lag growth rate of real
oil price. The best transition variable that was capable of modeling the nonlinearity
in the conditional variance of all individual price processes in this group was the
one period lag growth rate of real oil price defined as r;_; = Alog (%) .- In
particular, in case of banana, coffee, and timber price processes, the null hypothesis
of linearity in conditional variance was not rejected when inflation was the transition
variable. The null hypothesis was rejected, however, when the test was repeated with
the growth rate of real oil price as transition variable. As for the palm oil price
process, the null hypothesis of linearity in conditional variance was rejected with
both inflation and oil, but oil yielded the highest rejection. These results confirm our
suggestion that commodity prices recorded on CIF basis are to a great extent driven

by the price of oil.

Following the model selection criteria discussed in Chapter 2, page 26, the previ-
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ous linearity test was used in model selection, i.e., in choosing between LSTR(1) or
LSTR(2) models. The best model that fitted the four price processes in this group
was the LSTR(2) model. In what follows, we introduce the LSTR(2) in variance
model and discuss its characteristics. The estimation results are then reported and
analyzed.

Consider the smooth transition regression in variance model specified in equation

(3.14) and (3.15) with the conditional variance equation expressed as
he = a1 F'(s57, €1, 02) + aa(l — F(s57, ¢1, 02)), (3.27)

where «; and ay are parameters and F'(s;;7,c1,¢) is a transition function. An
LSTR(2) model defines F'(s:;7,c1,¢2) as a second order logistic transition function

expressed as

F(siv,cn,02) = (Lrexp{—y(si—e)(se—e2)}) ", 7>0, ca<ea  (3.28)

where v > 0 and ¢; < ¢y are identifying restrictions. Notice that, unlike the first-order

logistic function, the second-order function is not zero at the minimum; it has a value

1

T 1+exp{—e}’ (3:29)

min

where ¢ = cicp — ¢ and ¢ = % The behavior displayed by the second-order
logistic function depends on the value taken by the transition variable s;. When the
transition variable takes the value of any of the thresholds, i.e., s; = ¢; or s; = ¢o,

F(sy7,c01,00) = % This characterizes the middle regime. The two outer regimes are
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achieved when s, — 400 and F'(s;;7,¢1,c2) = 1. Thus, F(ss;7,¢1,¢2) is a bounded
function between F,,;, and 1.
To facilitate the interpretation of the regimes, we can apply the following repara-

meterization to the logistic function in (3.28). Let

F(-) = Fuin + F(-) X (1 = Fan), (3.30)
where
= F() — Foin
F() = 0 Fn (3.31)

Substituting (3.30) in the conditional variance equation in (3.27) and reparameterizing
yields

he = M+ Ao F (5457, ¢1,¢2), (3.32)

where \; = ag+ (1 — ) Fiuim and Ay = (a3 — ) (1 — Fi)- Notice that F(st; 7, €1, Ca)
is bounded between zero and one. In the ground (middle) regime, the transition
variable can take the value of any of the thresholds parameters or a weighted average
of both; that is, s, = ¢ = 932, then F(-) = Fu, and F(-) = 0. The conditional
variance in this case is hy = A;. The outer regimes are associated with s; — o0,
which, in turn, implies that F(-) = 1 and F(-) = 1. The conditional variance in the
outer regimes takes the value h; = A\; + Ay = ay.

The results of applying the LSTR(2) in variance model to the individual commod-

ity prices in this group are discussed and analyzed in the following subsections.
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Banana

Let y; = log (%&'}G)t and the transition variable r;,_; = A log (Oiégjce)t_l . The
estimation and misspecification tests results of the LSTR(2) in variance model are

reported as follows.

g = 0.03 + 0.89y,_1 — 0.12y,_» + 0.12y,_3 + &,
(0.013)  (0.09) (0.14) (0.10)

= 0.03 F'(ry_ . — F(r._ .
ht ((3001%) (rt 1,7, C1, 62) + ?0%)91?(1 (Tt 1,7, C1, C2>>7 (3 33)

1
F(ri_1,7,c1,c2) = (1 + exp{—(?5.8l)(rt,1 + (0.22)(7},1 — 0.48)/0.04}) ,

0.04) (0.03)

Q(1) = 0.57, Q(8) = 0.98, K3= —0.008, Ky=3.21, JB=0.91,
where 62= 0.04 is the sample variance of the transition variable. The figures in paren-
theses beneath the model’s parameters are standard deviations. Q(q) is the p-values
of Ljung-Box (1978) test of no serial correlation of order ¢ in the standardized resid-
uals &,/v/hs. JB is the p-value of the Jarque-Bera test of normality of £,/v/h; and K3
and K, are skewness and kurtosis respectively. All model parameters are significant
as seen from the standard deviations reported. To render the parameter v scale-free,
the exponent of the transition function was divided by the sample variance of the
transition variable 62= 0.04. Following our reparameterization introduced above, the

conditional variance in (3.33) can be expressed as
he = 0.012 4 0.018F (54,7, ¢1, ¢2), (3.34)

where A\; = as + (a1 — ag) Fiuin = 0.012 and Ay = (o — o) (1 — Fiuim) = 0.018. The

estimated two threshold values, ¢; = —0.22 and ¢, = 0.48, define the ground regime;

146



that is when the one period lag growth rate of real oil price is within the range of
-0.22% and 0.48%, the variance of the time series is in the ground regime. Note that
if the one period lag growth rate of oil is equal to the weighted average of the two
thresholds, i.e., r,_; = ¢ = 0.13%, then F(-) = Fu and F(-) = 0, which implies
that h; = Ay = 0.012. The conditional variance will approximately double; that is,
hy = A + A2 = 0.012 + 0.018 = 0.03 in case of severe negative or positive shock
where the one period lag growth rate of oil tends to £0o. This defines the two outer
regimes. The transition between the regimes is governed by the slope of the transition
function v = 9.8, which is a moderate slope in this case. The logarithm of real banana
time series, the transition variable, and the transition function are plotted in Figure
3.5. Observe how the ground regime dominated the period between 1940s and the
early 1980s. The late period witnessed high swings from one outer regime to another
passing swiftly by the ground regime. The switching from one regime to the other is

swift as seen from the dot plot of the transition function in Figure 3.6.
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Figure 3.5: The logarithm of real banana price time series (Panel (a)), the one period lag
growth rate of real oil price as transition variable (Panel (b)), and the transition function

(Panel (c)) between 1900 and 2007.
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Figure 3.6: The transition function F'(s¢,,c1,c2) in case of banana price as a function of
observations. Each dot corresponds to one observation. The transition variable s; is the

one period lag growth rate of real oil price.

Palm oil

In case of palm oil, the transition variable that yielded the highest rejection was
also the one period lag growth rate of real oil price r;_1 = Alog (%) . 1- The

estimation and misspecification tests results are reported as follows

e = 0.003 + 1.03y,_1 — 0.29y,_» + 0.25y;_5 + &,
(0.016) 1 (0.08)

16)  (0.09) (0.12)
he = 0.05 F(r, 001(1 — F(r, '
t (8.0%2) (re 17%01,02)4-(()0-(3(())1)( (re—1,7, €1, ¢2)), (3.35)

-1
F(ri_1,7,c1,¢) = (1 + exp{—(g%(rt_l - ((3..010(7)))(7"75_1 — ((3..010%)/0.04}) ,
Q1) =074, Q) =045  Ks=02,  K,=348, JB=0.12,

and

hy = 0.02 + 0.03F (5437, 1, ¢2). (3.36)
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Figure 3.7: The logarithm of real palm oil time series between 1900 and 2007.

Here the ground regime is defined when the one period lag growth rate of real oil price
takes a value between ¢; = 0.10% and &, = 0.18%. The transition function F(-) attains
its minimum when r,_; = ¢ = 0.14% and the conditional variance h; = A\; = 0.02.
In the two outer regimes, the conditional variance takes the value h; = A\ + Ay =
0.02 + 0.03 = 0.05. The transition between the regimes is swift due to the large
slope of the transition function v = 173; this can be detected from the dot plot of
the transition function in Figure 3.9. Unlike the case of banana price time series, the
palm oil price series switches from one outer regime to another swiftly and never stays
for a long period of time in one regime. This is because the difference between the
estimated two threshold values is negligible (approximately 0.1%). The sharp swings

between regimes can be detected from Figure 3.8.
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Figure 3.8: The transition function F'(ri_1,7,c1,c2) of the LSTR(2) in variance model in

case of palm oil price time series between 1900 and 2007.
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Figure 3.9: The transition function F'(s, 7,1, c2) in case of palm oil price as a function of
observations. Each dot corresponds to one observation. The transition variable s; is the

one period lag growth rate of real oil price.
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Coffee

The estimation and misspecification tests results for the coffee price time series

are reported as follows.

Y =—0.12 + 0.87y, 1 + &,
(0.04) (0.04)

ht = O.Oolg)F(thl,’Y, C1, Cg) + 0.01 (1 — F(T’tfl,”}/, Cy, 02)), (337)

(0. (0.004)
-1
F(Tt_l, v, C1, CQ) = (1 + exp{_(69§18)(rt_1 + (90%%))(7}_1 + (gol(]g))/oo4}> >
Q1) =080, Q(8)=0.77, K;=025  K,=3.1, JB=0.5T,

and

hy = 0.02 + 0.06F (5437, 1, ¢2). (3.38)

The two threshold values in the case of coffee price series are ¢; = —0.02% and
¢y = —0.12% ; they both define the ground regime. The transition function in (3.38)
attains its zero value (minimum value) when the transition variable attains a negative
rate of growth of 0.07%; that is, r,_1 = ¢ = —0.07%, and the conditional variance
hy = A1 = 0.02. In the outer regimes, however, the conditional variance is four times
its value in the ground regime; that is, hy = A\ + Ay = 0.02 + 0.06 = 0.08. Perhaps
the most noticeable detail of (3.37) is the large standard deviation of the estimated
slope of the logistic function, ¥ = 638. It is common, for LSTR models, that the
estimated standard deviation of 7 tends to be large for large values of . This is

not crucial, however, as it will not affect either the shape of the logistic function or

152



Figure 3.10: The transition function F'(s¢,,c1,c2) in case of coffee as a function of obser-
vations. Each dot corresponds to one observation. The transition variable s; is the one

period lag growth rate of real oil price.

the other estimates of the model. Terdsvirta (1994) gave an example of this exact
case and provided a discussion on the estimation issues of 7. The message delivered
by this enormous slope of the transition function is that the conditional variance h;
will be moving sharply from one regime to the other. This can be detected from the

transition function and its dot plot Figure 3.11, panel (c) and Figure 3.10 respectively.
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Figure 3.11: The logarithm of real coffee price time series (Panel (a)), the one period lag
growth rate of real oil price as transition variable (Panel (b)), and the transition function

(Panel (c)) between 1900 and 2007.
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Timber

The estimation and misspecification tests results for the timber price time series

are reported as follows.

g = —0.03 + 0.92y,_; + &,
(0.02) (0.03)

hy = (%).b(())%F('r’t,l,’y, c1,02) + ((3..0(())%)(1 — F(ri1,7,c1,¢2)), (3.39)

—1
_ = — - .02 1 — 0.21)/0.04
Flrsyenea) = (14 ep{- 17001 + 0020001 - 021)/008))

Q(1)=094, Q@) =051, K;=008, K;=3.04,  JB=0.95,

and

hy = 0.011 4 0.008F (5437, c1, ¢2). (3.40)

The conditional variance of the logarithm of real timber price series displayed simi-
lar dynamics to the case of banana and coffee especially in the ground regime that
dominated the period between the 1940s and the early 1970s as seen from Figure
3.12. During this period, the growth rate of real oil price time series was pretty much
stable as it fluctuated between -0.02% and 0.21% (the two threshold values). The late
period witnessed high swings from one outer regime to another passing through the
ground regime. The transition was swift as seen from the dot plot of the transition

function in Figure 3.13.
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Figure 3.12: The logarithm of real timber price time series (Panel (a)), the one period lag
growth rate of real oil price as transittion variable (Panel (b)), and the transition function

(Panel (c)) between 1900 and 2007.
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servations. Each dot corresponds to one observation. The transition variable s; is the one

period lag growth rate of real oil price.

3.3.2 Smooth Transition ARCH Models

In the specification stage of modeling nonlinearity discussed in Chapter 2, page
25, the first step was to specify a linear adequate model forming the starting point of
the analysis. Adequacy here refers to spherical disturbances. Out of the 24 individual
commodity prices, 8 commodities (tobacco, silver, jute, lead, cotton, wool, aluminum,
and tea) displayed ARCH processes in the residuals of their fitted linear preliminary
autoregressive models and, accordingly, those linear autoregressive specifications were
not suitable starting models for nonlinearity analysis. Those processes were classified
in Group A, where ARCH or smooth transition ARCH models are entertained.

Since the null hypothesis of no ARCH up to order p = 4 was not rejected for those

commodities (see Table 2.10, page 90), ARCH, GARCH, or even smooth threshold
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(G)ARCH models are best suited for this group. The idea here is to introduce a
smooth transition regime switching specification in the conditional variance of a time
series admitting an ARCH pattern in its error terms. The value added of using smooth
transition ARCH (ST-ARCH) models is that, in addition to capturing the asymmetric
effects of the innovations, those models allow for intermediate states or regimes in the
conditional variance equation. The smooth transition pattern is introduced through
the use of a logistic transition function. When the smooth parameter (the slope of
the logistic transition function) is large, the transition from one regime to the other is
abrupt and the ST-ARCH model approaches the pure threshold model. An ST-ARCH
model can be defined in general as follows.
Let

ye = 0wy + u, (3.41)

where w; = Z;\/hy, Z; ~ i.i.d.(0,1). Assume that u, is distributed conditionally
normal; that is, |1 ~ N (0, h;), where €;_; is the information set up to time ¢ —1.
A smooth transition threshold ARCH model of order p (ST-ARCH(p)) is expressed

as
p p
ht =w+ ZauU?,i + (Zam?f/?l) F(utfdv C, 7)7 (342)
=1 =1

where F'(u;_q,c¢,7) is a smooth logistic transition function of order 1 or 2 defined as

F(ui—g;7v,¢) = (1 + exp{—y(us_q — c)})f1 , v >0 (3.43)
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or

F(Ut—d;% C1, 62) = (1 + eXP{_V(Ut—d - 61)(Ut—d - 02)})_1 ) 7 >0, ¢ <,

(3.44)
respectively. All the variables are defined as in (3.17) and (3.28); the only difference
is that the transition variable s; = u;_4, where d < p is the delay parameter. The
specification in (3.42) is general in the sense that there are choices that have to be
made based on the data. In particular, choices have to be made regarding the type
of the logistic function used (first or second order logistic function); the maximum
lag length of the ARCH process (p); and the value of the delay parameter (d) that
determines the transition variable.

ST-ARCH specifications can be found, for instance, in the work of Hagerud (1996),
Gonzalez-Rivera (1998), Lee and Degennaro (2000), Lundbergh and Terasvirta (1998),
and Lubrano (2001). The difference between these models lies in the specfication of
the transition function and the choice of the transition variable. Gonzdlez-Rivera
(1998) chose p = 1, d = 1 (hence, s; = u;_1) and the first order logistic function
defined in (3.43) with ¢ = 0. She also restricted the slope parameter of the logistic
function to enter the equation with a positive sign. Hagerud (1996) used the same
specification but without the positive sign of the parameter . He also suggested
the exponential specification with s, = u? ;. The logistic specification captures the
effect of the sign of the news on the conditional variance whereas the exponential

specification captures the effect of the magnitude of the news. Lubrano (2001) sug-
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gested an exponential specification with a threshold parameter. Lee and Degennaro
(2000) suggested a first order logistic function with a transition variable equals to the
weighted average of past innovations. Lundbergh and Terasvirta (1998) suggested a
STAR-STGARCH model that can characterize nonlinear behavior both in the con-
ditional mean and the conditional variance of a time series. They used the first and
second order logistic functions defined in (3.43) and (3.44) respectively in both the
conditional mean and the conditional variance equations.

In this group of commodities, after experimenting with different lag lengths, the
best model that I managed to fit for aluminum and cotton was the ARCH(1) model.
Other ARCH and GARCH specifications did not converge and gave insignificant
estimates. As for the remaining six commodity series (tobacco, wool, silver, tea, lead,
and jute), the best model that I managed to fit among the ARCH, GARCH, and
threshold (G)ARCH models is the smooth transition ARCH model of order p = 1

(ST-ARCH(1)) defined as
he = w + ayu; | + agul  Fus_1,7), (3.45)

with
Fuiy,7) = [L+exp(—yu)] ™, 7> 0. (3.46)
The first order logistic function F(u;—1,7) defined in (3.46) is a bounded function

between zero and one, 0 < F(u;_1,7) < 1. In case of a positive shock, i.e., when

the transition variable u;_; — 400, the transition function takes its extreme value
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F(u¢—1,7) = 1 and the conditional variance in (3.45) becomes
he = w + (o + ag)u? y; (3.47)

this defines the upper regime. In case of a negative shock, u; 1 — —o0, F(u;_1,7) = 0,

and the conditional variance takes the form
hy = w + aqul ; (3.48)

this defines the lower regime. Intermediate values of u;_; give rise to a conditional
variance process that is a mixture of both regimes. To ensure that the conditional
variance h; is nonnegative, we impose the restrictions w > 0, a3 > 0, and (a3 +az) > 0.
Note that as could be positive or negative. A negative a, implies that the effect
of negative news on the conditional variance is larger than the effect of positive
news. If a; = —ay, the upper regime in equation (3.47) will not have a time-varying
conditional variance and, therefore, an off-ARCH effect will be displayed in case
of positive news. The smoothness of the transition from one regime to another is
governed by the value of the parameter v; at low and moderate values of v, the
transition is smooth whereas at high values of 7, the transition is abrupt. Figure 3.14
shows the transition function F'(u;_1,v) with low, moderate, and high values of the

smoothness parameter +.
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Figure 3.14: The smooth transition logistic function F'(vy,u;—1) with a smal slope v = 0.5
(the dotted line), a moderate slope v = 3 (the dashed line), and with an extremely larger

slope v = 1000 (the solid line).

The dynamics of the smooth transition ARCH model is traced through the analysis
of the limiting processes of the model. In the upper regime, F'(u;_1,7) = 1 and the
conditional variance in (3.47) is stationary if a; + ay < 1. In the lower regime,
F(u;—1,7) = 0 and the conditional variance in (3.48) is stationary if oy < 1.

The log-likelihood function at time ¢ can be expressed as

2
1 ug

1
lt(¢,w,a1,a2,’y> = _iln(ht) - 5]’77 (349)
t

where maximum likelihood estimators of the parameters ®,w, oy, ag, and v can be
obtained by maximizing the log-likelihood function in (3.49). The estimation and
evaluation results of fitting the ST-ARCH model to the individual commodities in

Group A are reported in Table 3.3.
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Group A: ARCH and ST-ARCH Models:{

Y = C]?/wt + Uy, Ut = Zt\/h_t, ZtN Zld(o, 1), where
ht: w + Q1U?_1+(Q2U%_1)F(Ut_l, 7)7
with
F(ut_p’}/) - [1 + eXp{_’yut_l}]il
Tobacco Wool Lead Tea Silver Jute Aluminum Cotton
AIC(p) p=>5 p=>5 p=1 p=3 p=3 p=3 p=3 p=4
Model ST-ARCH | ST-ARCH | ST-ARCH | ST-ARCH | ST-ARCH | ST-ARCH | ARCH(1) ARCH(1)
o —0.006 —0.01
(0.01) (0.009)
o} 1.32 0.87 0.94 1.17 1.06 0.76 1.21 1.25
(0.05) (0.06) (0.03) (0.03) (0.003) (0.002) (0.87) (0.10)
0y —0.54 . —0.38 —0.18 —0.18 —0.26 —0.66
(0.03) (0.002) (0.005) (0.004) (0.14) (0.16)
R 0.17 0.12 0.35 0.03 0.41
(0.008) (0.005) (0.07) (0.07) (0.09)
N —0.13
(0.1)
0.15 0.23
& (0.04) (0.08)
7.1 190 332 1201 1213 12
(6.5) (91.8) (178) (214) (658) (0.009)
w 0.006 0.022 0.02 0.01 0.02 0.04 0.009 0.014
(0.001) (0.004) (0.004) (0.002) (0.0003) (0.001) (0.002) (0.003)
o] 0.89 0.46 0.13 0.26 0.19 0.41 0.79 0.35
(0.39) (0.26) (0.12) (0.04) (0.008) (0.002) (0.27) (0.18)
Qg —0.79 —0.01 0.84 0.36 0.34 —0.40
(0.32) (0.36) (0.47) (0.04) (0.02) (0.002)
Q1) 0.09 0.46 0.6 0.40 0.39 0.13 0.57 0.39
Q(8)1 0.13 0.65 0.45 0.71 0.40 0.23 0.84 0.76
Skewness™ 0.27 0.28 0.08 0.23 0.09 0.13 0.5 0.02
Kurtosis* 3.4 3.06 3.52 3.8 3.6 3.3 3.4 2.93
JB** 0.13 0.22 0.52 0.16 0.46 0.71 0.13 0.98

All the estimated parameters are significant at the 5% level of significance.

The figures in parentheses beneath the model’s parameters are standard deviations.

TA missing value in the table means that the corresponding parameter has been set to zero.
ip-values of the Ljung-Box (1978) statistics, Q(q>7 of the standardized residuals ut/\/h_t at the 5% level of significance.
*Skewness and Kurtosis coefficients of the standardized residuals ut/\/h_t
o P-values of the Jarque-Bera test for normality of ut/\/E

Table 3.3: Estimation and evaluation of Group A: ARCH and ST-ARCH models.
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H Lower Regime: F' = 0 | Upper Regime: F' =1

(651 1+
Tobacco 0.89 0.10
Wool 0.46 0.45
Lead 0.13 0.97
Tea 0.26 0.62
Silver 0.19 0.53
Jute 0.41 0.01

Table 3.4: Dynamic analysis of the ST-ARCH(1) model applied to commodity prices in

Group A.

The transition from one regime to another was smooth in the case of tobacco
and jute as seen from the dot plot of their transition functions in Figures 3.15 and
3.16 respectively. As for wool, lead, tea, and silver, the smoothness parameter v was
extremely large (see Table 3.3) which implies abrupt transition between regimes as
seen from the Figures 3.17 to 3.20.

The estimated coefficient ay was negative in the case of tobacco and wool price
series (see Table 3.3). This implies that the effect of negative news on the conditional
variance is larger than positive news. An off-ARCH effect in the upper regime can be
observed in the case of jute price series as a; = —ay and the conditional variance in
the (3.48) is constant; that is, hy = w = 0.04. The dynamics of the limiting processes

are summarized in Table 3.4.
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Figure 3.15: The transition function F(u:—1,7) as a function of observations. Each dot
corresponds to one observation. The function displays the regime switching dynamics in

the conditional variance of the logarithm of real tobacco price series.
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Figure 3.16: The transition function F(u:—1,7) as a function of observations. Each dot
corresponds to one observation. The function displays the regime switching dynamics in

the conditional variance of the logarithm of real jute price series.
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Figure 3.17: The transition function F(u:—1,7) as a function of observations. Each dot
corresponds to one observation. The function displays the regime switching dynamics in

the conditional variance of the logarithm of real wool price series.
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Figure 3.18: The transition function F(u;—1,7) as a function of observations. Each dot
corresponds to one observation. The function displays the regime switching dynamics in

the conditional variance of the logarithm of real lead price series.
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Figure 3.19: The transition function F(u;—1,7) as a function of observations. Each dot
corresponds to one observation. The function displays the regime switching dynamics in

the conditional variance of the logarithm of real tea price series.

1.00

075 -~

050 -

025 -

06 04 02 00 02 04 06
s(t)

Figure 3.20: The transition function F(u;—1,7) as a function of observations. Each dot
corresponds to one observation. The function displays the regime switching dynamics in

the conditional variance of the logarithm of real silver price series.
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The fact that the Grilli & Yang commodity price index is a composite index of 24
commodities with different border prices and the need to follow a standard framework
to model nonlinearities in individual commodity prices processes urge us to propose a
general framework, in the same spirit as the one proposed by Lundbergh & Teriisvirta
(1998), as follows. The first step is the specification step, where a preliminary linear
AR model is specified using an information criterion (AIC say) and diagnostic tests
are performed to the residuals of the fitted model. If the null hypothesis of no ARCH
in the residuals is rejected and an ARCH pattern is detected, then ARCH or smooth
transition ARCH models should be entertained. A preliminary model that passes the
misspefication tests is considered an adequate model that can be used as a starting
model for nonlinearity analysis. The next step is testing for nonlinearity in mean
and/or in variance using potential external transition variables in addition to the
autoregressive lags of the dependent variable. In particular, we suggest to perform
a border price classification to the price processes under consideration in order to
determine which transition variables are potential candidates for nonlinearity tests;
that is, if the recorded border price is a free on board price, then, in addition to the
autoregressive lags, the transition set will consist of macroeconomic news variables
in the country of origin,® whereas if the border price is a cost and freight (or cost,
insurance, and freight) price, the transition set will include autoregressive lags, news

variables in country of destination, and the price of oil. Finally, if the border price

4Note that the use of oil price as transition candidate is inapplicable in such a case.

168



is a settlement or auction price, the set will include the autoregressive lags of the
dependent variable and the exchange rate or other information news in the country
of origin and destination. Once the transition sets are determined, the nonlinearity
tests sequence proposed by Granger and Teréisvirta (1993) and Terésvirta (1994) are
applied to each predetermined transition variable in the transition set in each group.
If linearity is not rejected for all the variables in the set, the model is linear and no
further nonlinearity analysis should be conducted. If linearity is rejected, the transi-
tion variable that yields the strongest rejection should be selected as the transition
variable in the regime switching model. We should try modelling nonlinearity in the
mean and in the variance equations of price process under consideration and perform
diagnostic tests to the results. The model that gives better results should be selected.
It should be noted that some high frequency processes could be best modeled by a
model that can characterize nonlinear behavior in both the conditional mean and the
conditional variance of the time series. The STAR-STGARCH model of Lundbergh

& Terdsvirta (1998) is a case in point.
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Chapter 4

Conclusion

In this thesis we followed the empirical approach in modelling the dynamics of
commodity prices. The approach was motivated by the observation that commod-
ity prices tend to move together in groups in response to a common macroeconomic
variable or group of variables. We attempted to explain this phenomenon by, first,
classifying commodity prices according to their border price (an issue that has been
ignored in previous studies), and then by trying to find the best common macroeco-
nomic variable that can explain this common dynamic in each group.

The rationale behind the border price classification rests on how the border price
can provide an insight regarding the macroeconomic variables that drive the indi-
vidual price series in each group from one regime to the other. Inflation rate and
the autoregressive lags of the dependent variable were the best variables (transition

variables) that were capable of modelling the nonlinearity in the individual price se-
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ries that were recorded on a FOB basis. The price of oil succeeded in modelling the
nonlinearity in the price processes that were recorded on a CIF basis.

The rationale behind using inflation and oil price in modelling the dynamics of
commodity prices is based on two connections: the commodity price-consumer price
connection and the commodity price-oil price connection respectively. The former
rests on the bidirectional causality between consumer prices and commodity prices.
This causality was explored and confirmed from a regime switching perspective. The
later rests on the fact that a significant portion of the ocean freight cost (which is
included in the CIF price of commodities) is due to the bunker fuel cost. Therefore,
a reasonable hypothesis here is that ocean freight, and, hence, oil price plays a sig-
nificant role in modelling the dynamics of those commodity prices recorded on a CIF
basis. This commodity price-oil price connection was demonstrated by means of a
simple illustrative example and the results showed that fuel costs roughly 20% of the
price of commodities recorded on CIF basis.

Based on the previously-mentioned border price classification, inflation rate and
the price of oil were selected as potential transition variables that can explain the
behavior of commodity prices and were employed as external threshold variables in
the STR model. This motivates the use of external threshold variables in regime
switching models in addition to the autoregressive lags of the dependent variable that
are commonly used by the majority of the studies in the regime switching literature.

The study attempted to model the nonlinearity in both the conditional mean and
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the conditional variance of the price series. Hence, the STR in mean and the STR in
variance models. Both models were fitted to the Grilli & Yang commodity price index
using the two potential transition candidates (inflation and oil price). The analysis
was also extended to model the nonlinearities in the individual price series forming
the index.

In case of the commodity index, using either inflation rate or oil price as potential
transition candidate, both models (the STR in mean and the STR in variance) dis-
played the same dynamics in the limiting processes of the commodity index. When
nonlinearity was modelled in the conditional mean (STR in mean model), leaving the
conditional variance equation constant, the conditional mean equation of the com-
modity index displayed a stationary AR(1) behavior in the upper regime and a near
random walk with a drift parameter in the lower regime. The behavior did not change
with either inflation or oil price. When nonlinearity was modelled in the conditional
variance equation of the commodity index (STR in variance model), leaving the con-
ditional mean equation unchanged, the conditional variance was approximately three
times higher in the upper regime as opposed to the lower regime. These results sug-
gest that both models can be seen as substitutes when modelling nonlinearity in the
commodity price index using inflation rate or the price of oil as external transition
variables.!

As for the two transition variables, we can notice a pattern of complementarity

ISee Tables 3.1 and 3.2 for more details.
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in their dynamics in the sense that when both variables were employed in the STR
model to characterize the nonlinearity in both the mean and the variance of the
Grilli & Yang commodity price index, inflation was capable of capturing the early
dynamics (between 1900 and 1950) of the index whereas oil price captured the late
ones (between 1980 and 2007). The reason why inflation failed to account for the
observed recent fluctuations in the Grilli & Yang commodity price index is, perhaps,
due to the continuous monitoring of the FED to the U.S. inflation rate as part of its
monetary policy. This result motivates the use of external threshold variables in the
smooth transition regression model in general and, in particular, the use of inflation
and oil price in the smooth transition model when applied to commodity prices. It
should be noted, however, that the use of external threshold variable is advisable
as long as it can be justified, i.e., as long as there exists a relationship between the
threshold variable and the transition variable under consideration.

Since the Grilli & Yang commodity price index consists of 24 primary commodity
prices, more insight can be gained by studying the individual commodities forming
the index. To this ends, we classified the individual price series into four groups
according to the entertained model in each group. The results were as follows:

The first group was Group A, where ARCH or ST-ARCH models were entertained.
This group was comprised of eight price series: tobacco, silver, jute, lead, cotton,
wool, aluminum, and tea. These processes exhibited ARCH pattern in the residuals

of their preliminary AR models. This is not surprising as the majority of these prices
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are settlement or auction prices of commodities traded in exchanges and, therefore,
tend to exhibit volatility clusters (a common feature of stock and option prices).
Therefore, ARCH or ST-ARCH models were suitable for this type of commodities.
The ARCH(1) model was fitted for aluminum and cotton while the ST-ARCH(1)
model was entertained for the rest of the series. The second group in our classification
is Group B, where linear AR models were entertained. This group was comprised of
eight commodity prices: beef, cocoa, lamb, wheat, tin, copper, zinc, and rubber. All
commodities in this group failed the nonlinearity tests and, therefore, were classified as
linear series. The third group was Group C, where STR models with autoregressive
lags of the dependent variable as transition variable were entertained. This group
included three commodity prices recorded on a free on board basis. These were maize,
rice, and sugar. Since the border price does not include the ocean freight cost, the oil
price did not play any role in this analysis. The transition variables that showed the
highest rejection of linearity tests were the second order autoregressive lag for maize,
the fifth order for rice, and the first order for sugar. The last group was Group D,
where STR models with external threshold variables were entertained. This group
comprised of five primary commodities; four were recorded on a cost and freight basis
(bananas, palm oil, timber, and coffee) and one on a free on board basis (hides). The
price of oil was the transition variable that showed the highest rejection of linearity
tests for all cost and freight commodities. This result confirms the commodity price-oil

price connection and the rationale of the border price classification that was suggested
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earlier. The four groups and the associated models are summarized in Table 4.1.

The previous analysis reveals some observations: First, all settlement prices were
best fitted by an ARCH or ST-ARCH model (see Group A in Table 4.1) except for tin,
copper, and zinc. Those three time series in particular failed our nonlinearity tests
and were classified in Group B, where linear autoregressive models are entertained.
Second, excluding the heteroskedastic and the linear time series, i.e., Group A and
B, we can observe that all commodities recorded on a CIF basis were driven by one
common transition variable; the price of oil (see Group D in Table 4.1). Third,
all commodities recorded on a FOB basis were driven by inflation or by one of the
autoregressive lags of the dependent variable (see Group C and D in Table 4.1). The
previous two observations are consistent with the border price rationale discussed
before and can provide an explanation on the observed co-movement of commodity
prices.

The conclusion that we can draw from the previous observations is that the ob-
served co-movement in commodity prices can be explained by carefully analyzing the
way the data are recorded. The idea here is that the standard practice followed by the
major institutions when recording data on commodity prices is to select the largest
trading route of a commodity and detect whether the trade volume is controlled by
a major exporting or importing country. If this route is dominated by a major ex-
porter, the export price at the exit point of the exporting country (FOB price) will

be recorded; if the route, on the other hand, is dominated by a major importer of the
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commodity, the import price at the entry point of the importing country (cost and
freight or CIF price) will then be recorded. Of course there are some exceptions, but
this is usually the standard practice. This way of recording the border prices sug-
gests that the behavior of FOB prices can be best explained by the macroeconomic
news variables (inflation for instance) in the major exporting country; whereas, the
behavior of CIF prices can be best explained by the price of oil or news variables in
the major importing country. This is consistent with our findings in Groups C and
D in Table 4.1.

Finally, it is worth mentioning that there is no single common variable that can
explain the behavior of all commodity prices. Inflation rate and the price of oil
succeeded in capturing the dynamics of the commodity index, but the picture was
more clear when the index was disaggregated into groups of commodities and the
behavior was modelled within each group. In my opinion, the best strategy to model
the dynamics of commodity prices is to consider each commodity case by case and to
study the way the time series is recorded and the history of the major exporting or
importing country of the commodity under consideration. This analysis is significant
in determining the best transition variable that is capable of explaining the behavior
of the price series under consideration. In what follows, we illustrate this last point

by analyzing the case of sugar price time series.?

2For more details regarding the major trading routes and the main importer and exporter of each
of the individual commodities in the Grilli & Yang data set, please revert to Appendix B.
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’ Series

\ Border Price \ The Model \ Transition Variable: s,

Group A: ARCH and ST-ARCH Models

Tobacco CIF ST-ARCH(1)

Cotton CIF ARCH(1)

Jute FOB ST-ARCH(1)

Lead Settlement ST-ARCH(1)

Wool Spot quote ST-ARCH(1)

Aluminum | Settlement ARCH(1)

Tea Auction ST-ARCH(1)

Silver Handy & Harry | ST-ARCH(1)

Group B: Linear Models

Beef FOB Linear

Wheat FOB Linear

Tin Settlement Linear

Copper Settlement Linear

Zinc Settlement Linear

Rubber Spot Price Linear

Lamb Wholesale Linear

Cocoa Option Price Linear

Group C: STR Models with Autoregressive Transition Variables
Maize FOB STR Ys_o OT inflation!

Rice FOB STR y;_5 or inflation’

Sugar FOB STR y;_1 or inflation’
Group D: STR Models with External Transition Variables
Bananas CIF STR Oil Price

Timber CIF STR Oil Price

Palm oil CIF STR Oil Price

Coffee CIF STR Oil Price

Hides FOB STR Inflation

TBoth variables passed the linearity tests but the variables that showed the highest rejection were the AR lags.

Table 4.1: The border price, the model type, and the transition variable for each individual

commodity in the Grilli and Yang data set.
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Case 1 The Case of Sugar

The description of the sugar price time series recorded in the Grilli & Yang data
set is: International Sugar Agreement (ISA) daily price, raw, FOB and stowed at
greater Caribbean ports, from the primary commodity price database. According to
our conclusion, one would expect that inflation or any macroeconomic news in the
exporting country is the potential transition candidate. But, before rushing into this
conclusion, let’s take a deeper look at the source of the recorded data on sugar.

As noted, the source of the sugar data is the International Sugar Agreement.
According to Desmarchelier (1970), the International Sugar Agreement does not at-
tempt to regulate all world production or exports of sugar, rather, it only regulates
that sugar that enters the world ‘free’ market. Not all world traded sugar enter the
world ‘free’ market though; part of the exported sugar takes the form of transfers
between states (domestic trade) and another part is within special pricing and/or
quota arrangements. The residual amount of sugar is sold on the basis of the world
‘free” market price and it is this quantity that the agreement attempts to regulate.
Since the quantity of sugar that enters directly into determining the world price of
sugar is insignificant (less than 10% of the world production), supply conditions will
have small effect on the world price and, in turn, on the recorded sugar price in the

Grilli & Yang data set.
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The above short analysis on the data source gives the researcher an idea on which
variables should be included in the nonlinearity analysis. First, since the effect of sup-
ply conditions on that particular sugar price time series is insignificant, they should
not be considered. Second, macroeconomic news variables acting as potential tran-
sition candidates in the origin or destination countries should be also ruled out as
the United States (largest importer of sugar in the world) is not a member of the In-
ternational Sugar Agreement and it does not buy sugar from the world ‘free’ market
but imports sugar under special quota arrangements at prices well in excess of the
world price (Desmarchelier (1970)). Therefore, U.S. inflation will not play any role
in our nonlinearity analysis; the implications of the International Sugar Agreement
actions are what matter in such case. Finally, the use of oil price as transition variable
should not be considered, since the recorded sugar price is a free on board price. That
being said, if nonlinearity is rejected for sugar, one would exclude the possibility of
an external transition variable and expect an autoregressive lag. Indeed, that was
exactly the case; the nonlinearity analysis revealed that the transition variable that
showed the strongest nonlinearity test rejection was the first autoregressive lag of the
logarithm of real sugar time series, y; 1, and the associated model was the LSTR(1)
model (see Group C in Table 4.1)

The message addressed from this example is that detailed analysis of the com-
modity price series can provide a better understanding of the behavior of the series

and the factor influencing their dynamics. The border price classification and the
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study of the commodity history and the major players (importer or exporter) influ-
encing it serve as guidelines for the researcher to select the best variable or group of
variables that can explain the dynamics of a commodity price series. The challenge
here, in addition to fitting the best econometric model, is to identify those variables
and incorporate them in a model that can mimic the observed behavior of the price

process.
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Chapter 5

Appendices

5.1 Appendix A: Characteristics of the Shipping

Industry

Subject to a contractual agreement, usually a letter of credit, the shipper (owner of
the goods) agrees to export a consignment (a shipment) to the consignee (importer) in
exchange of the agreed selling price paid by the consignee. In addition to identifying
the obligations of each party, the agreement states the type of the cargo shipped, the
transport mode used, the agreed term of selling, and any other details considered by
both parties.

Three transportation modes are used to ship cargo from one point to another:
Inland transport via trucks or rail, air transport via airlines, and sea transport via

shipping lines. The sea freight and the airfreight industries differ from the domestic
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transportation industry in the sense that there are no competing modes in the formers.
Airlines and shipping lines, however, compete in terms of the services they offer.
The international commercial terms (Incoterms for short), published by the Inter-
national Chamber of Commerce, are a series of international sales terms that define
the obligations of both; the shipper and the consignee. There are many sales terms
used in the shipping industry; the most frequently used are ex-works (EXW), free on
board (FOB), cost and freight (CFR), and cost insurance and freight (CIF).
According to the ex-works term of selling, the shipper is obliged to deliver the
goods outside his/her factory and it is the consignee’s responsibility to pick up the
cargo from that place and move it to its final destination. The consignee bears all the
risks and shipping costs from the pick up point up to delivery at the final destination.
Ex-works terms feature many varieties; ex-inventory and ex-dock are examples. Ex-
inventory is an ex-work variant term used when the cargo is picked-up from the
shipper’s inventory, i.e., the inventory area inside the factory. This is usually the case
when the inventory area is large and the cost of handling and moving the cargo inside
the warehouse is significant. Ex-dock is another ex-work variant; the shipper bears
all costs and risks of delivering the cargo ex-dock the port of origin in this case.
Another common term of selling is free on board, in which the shipper is obliged
to load the goods on board the ship nominated by the consignee. This means that
the shipper, in addition to bearing all the risks and costs of transporting the cargo

from the pick up point to the port of origin, has to clear the goods for export and load

194



them on board the nominated ship. The consignee bears all risks and costs starting
from the time the goods are loaded on board the nominated ship up to delivery at
final destination.

Another common term of selling is cost and freight, in which the shipper bears
all risks and costs of transporting the cargo from the point of origin up to the final
port of destination. The consignee bears the cost of the cargo and the transportation
costs up to delivery at the port of destination. Then, it remains the consignee’s
responsibility to clear the cargo from the port of destination (port of discharge) and
transport it to its final destination point. The cost insurance and freight term is a
cost and freight plus insurance. Ensuring the safety of the cargo is the responsibility
of the shipper, however, the insurance premium reflected in the cost insurance and
freight price is paid by the consignee. See Figure 5.1 for illustration.

The handling, packing, inland transport costs, and freight are, of course, reflected
in the Incoterm used (EXW, FOB, CFR or CIF), which is also referred to as ‘the
border price’. The border price is different from the market price in the sense that
the former does not reflect the market distortions of the later. All the international
organizations (e.g., the World Bank, the IMF, the OECD) use the border price in
their databases and in the construction of price indexes. Although border prices
outperform the market distorted prices, yet transportation cost, driven mainly by oil

prices, is a significant factor influencing them; especially cost and freight prices.

195



| Exporting Country | | Importing Country

Shis

Fm;frory
Y
Warchousé __A . Consignee Final
X (Ex-inventory} Destination
X (Ex-Work)
INLAND TRANSPORTATION OCEAN INLAND TRANSPORTATION
——
X o oy SEA FREIGHT i g —
’ ’
T T
Place of Pick cC Port of Port of cC
Up of The Cargo Origin  OQrigin Discharge Destination
X (f.o.h) X (c.i.f}
Where:
X is the place of Pick-up the cargo for the consignee.
Y is the final destination; usually the consignee’s warehouse or factory.
7 is the customs clearance (CC) authority; the place where the cargo is cleared.
,’ is the sea port of origin and destination
— is the inland transportation

Figure 5.1: A typical outbound ocean freight operation.
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5.2 Appendix B: Individual Commodities in the

Grilli and Yang Data Set

In this appendix the descriptions and data sources of the 24 primary commodities
forming the Grilli & Yang data set are exactly reproduced from their original source
(Grilli and Yang, 1988) and their update (Pfaffenzeller, Newbold, and Rayner, 2007).
Information on major producer(s) of each commodity as well as the main trading
routes are briefly stated to justify the border price classification of Chapter 2, Sub-
section 2.9.1. Unless otherwise stated, all information on major producing countries
for each commodity were obtained from the online FAOSTAT database, 2005.> The
24 commodities are grouped for convenience into four categories: Cost and freight
prices, free on board prices, settlement prices, and finally spot and auction prices. A

brief description of each group is introduced below.

5.2.1 Cost and Freight Prices
Banana

The top banana producing nations are India, Brazil, and China; U.S. is the major
importer. The banana prices recorded in the Grilli & Yang data set are U.S. im-

port prices, major brands, free on truck (FOT)? U.S. Gulf ports, from the primary

'The website address is www.fao.org.

2Free on truck is a term of selling that goes one step beyond the cost and freight (CFR) term.
The term indicates that the place of delivery of the goods is free on truck port of discharge. This
means that the shipper bears the responsibility of transporting the cargo from the point of pickup
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commodity price data base. The origins were not mentioned in the data descrip-
tion, but the time series is technically a cost and freight price. This, in turn, implies
that the suggested transition variables are the U.S. macroeconomic news variables
and the oil price since the ocean freight is clearly part of the recorded time series.
After experimenting with various potential macroeconomic variables (including U.S.
inflation rate), the one period lag growth rate of real oil price has proven to be the
best predetermined transition variable capable of capturing the nonlinearity in the

logarithm of real banana price time series.

Palm oil

In 2004, Malaysia was the largest exporter of palm oil in the world followed by
Indonesia in the second place.®* The palm oil recorded price in the Grilli & Yang
data set is 5 percent bulk, Malaysian, CIF Northwest Europe, from the primary
commodity data base. As of 2007, the world’s largest importers of palm oil were China
and India. The Netherlands, located in northwest Europe, is the largest importer of

* The one period lag growth rate of real oil price

palm oil in the European Union.
was the variable with the strongest test rejection among all the potential transition

variables used in the study. A plot of the real palm oil time series and the transition

variable is found in Figure 5.2. Although oil price gave us satisfactory results, there

till the port of discharge, clears the cargo at destination, and places it on truck port of discharge.
It is then the consignee’s respounsibility to deliver the cargo to its final destination (see Figure 5.1).
3Source: www.plantation.simedarby.com.
4Source: www.bioenergywiki.net.
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are other factors playing a major role in the Malaysian palm oil price. In 1988, for
instance, the primary industries Minister Keng Yaik announced the government’s
intention to maintain the international prices for Malaysian palm oil firm for the year
1989; he said: "The currency exchange rate controls imposed by the government have
enabled the commodity to fetch a high price of US$700 per tonne for the current year’s
production of palm 0il".? In that particular year, as seen from Figure 5.2, the oil price
was moving in the opposite direction. In 2004, the two largest oil palm producers in
the world, Malaysia and Indonesia, agreed to cooperate to control palm oil prices in
the international market.® These are examples of the effects of governments policies
on commodity prices, especially when we are dealing with major exporters that can
control their terms of trade as in our case. The message addressed from these examples
is the importance of studying the history and the main characteristics of the individual

commodity price time series under consideration.

®Source: New Straits Times; December, 22, 1998.
6Source: Xinhuanet, Jakarta, December 8, 2004.
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Figure 5.2: The logarithm of real palm oil and the one period lag growth rate of real oil

price series between 1900 to 2007.

Coffee (mild Arabica)

According to the recent statistics, the top exporters of coffee in the world are
Brazil, Vietnam, Indonesia, and Colombia. The top importer was and still is the
United States.” The coffee price used in the Grilli & Yang data set is an indicator
price of mild Arabica coffee from the International Coffee Organization (ICO). It is
an average of New York and Hamburg markets, ex-dock. Nonlinearity tests results
showed that the one period lag growth rate of real oil price was the best transition

variable and the associated model was the LSTR(2).

"Source: World Trade Analyzer data base, 1985-2003, Statistics Canada.
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Timber

In 2001, the world’s top producer of timber was the United States followed by
India in the second place.® The recorded border price in the Grilli & Yang data set
is a UK import unit value (CIF price) of sawn wood (coniferous species) from the
OECD international trade by commodities statistics. The source did not mention the
origin of the traded timber, however, guided by the amount of production, U.S. is
a major player in the international timber market. Consequently, oil price and U.S.
inflation are potential transition candidates in this case. This was confirmed by the
nonlinearity tests results (see Table 2.11); the U.S. inflation rate and the growth rate
of real oil price were the variables that showed the highest test rejection. The model
with real oil price outperformed the one with inflation in explaining the dynamics of

the real timber price.

Cotton

In 2004, the U.S. and China were the top cotton exporter and importer respectively
in the world.” There are many styles for cotton. The cotton in the Grilli & Yang data
set is described as: Outlook A cotton index, which is a composite index based on 15
styles of cotton, cost and freight, traded in Far East, from the primary commodity
price data base. At the 5% significance level, the hypothesis of no ARCH was rejected

in the preliminary analysis for cotton and, therefore, cotton was classified in Group

8Source: www.mapsofworld.com.
9Source: www.internationaltrade.suitel01.com.
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A, where Both ARCH and ST-ARCH models were entertained. The best fitted model

was the ARCH(1) model.

Tobacco

The U.S. is considered the largest importer of unmanufactured tobacco leaves. The
Grilli & Yang tobacco prices recorded are U.S. import unit values, unmanufactured
leaves, from the primary commodity price database of the World Bank’s Development
Prospects Group. The hypothesis of no ARCH was also rejected in the preliminary
analysis for tobacco and the best model that was capable of describing the dynamics

of the time series was the ST-ARCH(1) model.

Lamb

The recorded lamb price time series in the Grilli & Yang data set is: New Zealand,
frozen whole carcasses, wholesale price; London; from the primary commodity price
database. This is not a surprise since New Zealand is considered among the major
exporters of lamb (FAOSTAT, 2004) and the majority of its exports are directed to
the United Kingdom. The trade history between both countries goes back to 1882.1°
Technically the price is a CIF price with some distortions being a wholesale price.
The nonlinearity tests sequence were executed for all potential transition candidates

and were rejected. The commodity price time series was, accordingly, classified in

OFor details, see Clements, R. and Babcock, B.A., (2004), "Country of Origin as a Brand: The
Case of New Zealand Lamb", MATRIC Briefing Paper 04-MBP 9, USDA.

202



Group B, where linear models are entertained.

5.2.2 Free on Board Prices

Wheat

The wheat price recorded in the Grilli & Yang data was described as: No. 1
Canadian western red spring, in store, St. Lawrence, export price, from the pri-
mary commodity price data base. After experimenting with Canadian inflation, U.S.
inflation, and other Canadian macroeconomic transition variables, nonlinearity was

rejected and, therefore, wheat price was classified in the linear group.

Jute

The major producer of Jute is India followed by Bangladesh in the second place.
The recorded jute price time series in the Grilli & Yang data set is FOB Chittagong;
Bangladesh’s main seaport. The autoregressive model acting as the starting model of
the nonlinearity analysis suffered from ARCH in the residuals. The best fitted model
was an ST-ARCH(1) model and the jute price time series was, accordingly, classified

in Group A.

Rice

The Grilli & Yang rice price time series is an indicative price based on weekly

surveys of export transactions, FOB Bangkok (one of the major producer in the
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world), from the primary commodity database. The best model I managed to obtain
is an LSTR(2) model with the fifth order lag autoregressive variable as the threshold

variable.

Hides

The exact data description for hides, as shown in Pfaffenzeller, Newbold, and
Rayner, 2007, is: U.S., Chicago packer’s heavy native steers, over 53 lbs., wholesale
dealer’s price, (formerly over 58 1bs.), FOB shipping point (Wall Street Journal, New
York). Prior to November 1985, U.S. Bureau of Labor Statistics, Washington, D. C.
The predetermined transition variable with the strongest nonlinearity test rejection

was the period ¢ U.S. inflation rate and the associated model was the LSTR(2) model.

Maize

The maize price time series recorded in the Grilli & Yang data set is: U.S. no. 2
yellow, FOB gulf port, from the primary commodity price database. The U.S. is the
top maize exporter and Japan is the top importer. The transition variable with the
strongest nonlinearity test rejection was the second lag order autoregressive variable

and the associated model was the LSTR(2) model.

Sugar

The description of the sugar price time series recorded in the Grilli & Yang data set

is: International Sugar Agreement (ISA) daily price, raw, FOB and stowed at greater
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Caribbean ports, from the primary commodity price database. The nonlinearity
analysis revealed that the transition variable that showed the strongest nonlinearity
test rejection was the first autoregressive lag of the logarithm of real sugar time series

and the associated model was the LSTR(1) model.

Beef

The data on beef prices in the original Grilli and Yang (1988) study were Ar-
gentinean export prices from Argentinean national statistics. Since the Argentinean
data were not accessible, the time series were updated by Pfaffenzeller, Newbold,
and Rayner (2007) from the IMF commodity price tables series PBEEF, which are
Australian and New Zealand U.S. import prices FOB port of entry. This means that
part of the time series is FOB Argentinean prices and the other part is cost and
freight (in U.S. dollars) Australia and New Zealand prices. This mix of border prices
makes the categorization of the commodity into one of the above mentioned groups a
difficult task. However, since most of the data were recorded on FOB basis, I decided
to classify beef price in the free on board group. Nonlinearity tests were rejected
when executed for all potential predetermined transition variables. Therefore, the
beef price time series was classified in Group B, where linear autoregressive models

are entertained.
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5.2.3 Settlement Prices

Aluminum

The world’s top producing countries of aluminum in 2006 were: China, Russia,
U.S., and Canada.!! The recorded price is a settlement price, London Metal Ex-
change, and is obtained from the primary commodity price database. Inflation rates
and oil prices are unlikely to play a role in determining the aluminum price; a metal
index or stock index might be a suitable candidate. The hypothesis of no ARCH was
not rejected in the specification stage and no further nonlinearity analysis was per-
formed. The best model that was capable of describing the dynamics of the aluminum

price time series was the ARCH(1) model.

Zinc, copper and tin

The prices of the three processes (zinc, copper, and tin) are settlement prices
from London Metal Exchange. The behavior of the three series is quite analogous;
see Figure 5.1, where the three time series are plotted in levels. A common metal index
or a stock index would be an ideal transition candidate in our nonlinearity analysis.
However, due to data limitation, the nonlinearity tests sequence was executed for the
available transition candidates (the autoregressive lags of the dependent variable, the
U.S. inflation, and the price of crude oil (though not relevant here)) and the null-

hypothesis of linearity was not rejected for all transition candidates (see Table 2.11).

"Source: Altech Company, www.altech.is.com.
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Figure 5.3: Levels of tin, copper, and zinc time series.

Therefore, the three processes were classified in Group B, where linear autoregressive

models are entertained.

Lead

The top lead producing countries, as of 2008, were Australia, China, USA, Peru,
and Canada.'? The description of lead price time series in the Grilli &Yang data set
was: London Metal Exchange, refined, 99.97 percent purity, settlement price, from
the primary commodity price database. The specification stage revealed the presence
of ARCH process in the residuals of the preliminary fitted AR model. The best
model that was capable of describing the dynamics of the lead price time series was

the ST-ARCH(1) model.

12Source: LDA International; www.ldaint.org.
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5.2.4 Auction, Spot, and Option Prices
Cocoa

The world’s largest cocoa bean producing countries are Cote d’Ivoire, Ghana, and
Indonesia. The cocoa time series is the International Cocoa Organization (ICCO)
daily price for cocoa beans, which is computed as the average of the quotations of the
nearest three active futures trading months on London International Financial Futures
and Options Exchange (LIFFE) and Intercontinental Exchange (ICE) Futures U.S.
at the time of London close. The suggested transition variable here could be a stock
index in London Exchange or U.S. Exchange. However, due to data limitation, the
nonlinearity tests sequence were executed for the autoregressive lags, the current and
one period lag inflation rate, and (though not relevant here) the current and one the
period lag growth rate of real oil price. The nonlinearity was rejected for all potential

transition candidates and, therefore, the time series process was considered linear.

Rubber

The rubber price time series in the Grilli & Yang data set is a spot price from the
primary commodity database. The one period lag inflation rate was the transition
variable with the strongest test rejection and the associated model was the LSTR(1)
model. The fitted model, however, did not yield satisfactory results; the threshold
parameter was insignificant and the dynamics showed one prevailing regime from 1920

till 2007. The time series was classified as a linear series.
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Wool

The recorded wool price data in the Grilli & Yang data set are Australian Wool
Exchange spot quotes. The hypothesis of no ARCH was rejected in the specification
stage and the best model that was capable of describing the dynamics of the time

series was the ST-ARCH(1) model.
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