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Abstract

In this paper, we consider a generalized kernel smoothing estimator of the regres-
sion function with non-negative support, using gamma probability densities as kernels,
which are nonnegative and have naturally varying shapes. It is based on a generaliza-
tion of Hille’s lemma and a perturbation idea that allows us to deal with the problem at
the boundary. Its uniform consistency and asymptotic normality are obtained at inte-
rior and boundary points, under a stationary ergodic process assumption, without using
traditional mixing conditions. The asymptotic mean squared error of the estimator is
derived and the optimal value of smoothing parameter is also discussed. Graphical
illustrations of the proposed estimator are provided for simulated as well as for real
data. A simulation study is also carried out to compare our method with the competing
local linear method.

Key words and phrases: ergodic processes; Hille’s lemma; gamma density; martingale
difference; mixing; normality; prediction; regression function.
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1 Introduction

Various nonparametric estimators of regression function m have been proposed in the lit-
erature for linear and non-linear processes (see e.g. Laïb[23] and Tran[29] and references
therein). Note, however, that when the support of the regression is restricted to a subset
of the whole real line, most of these methods may not provide admissible values of the
regression or its functionals at the boundaries. Even though, the usual kernel method may
be used to estimate m for the restricted support of regression, the boundary bias (see Sil-
verman [28]) inherent in the kernel estimator of the density gets imbedded in the regression
estimator also (see Gasser and Müller [15] and Müller[24]). It can perform very well for
densities that are not far from Gaussian in shape (see, e.g., Wand, Marron and Ruppert[31]),
but it may not be able to consistently estimate discontinuity at the boundary, for example
in the case of regressions on [0,∞) with m(0) > 0.

For identically and independently distributed (iid) observations, several methods have
been developed in the past to cope with the boundary error. See for instance Zhang et
al.[34], the reflection method of Hall and Wehrly[20] and, in fixed-design regression set-
ting, the generalized jackknifing technique of Rice[25] [see also Härdle [21], pages 130-
132].
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In addition, there are a number of approaches to density estimation f exclusively for
non-negative data, for instance, the transformation method (e.g., Wand, Marron and Ruppert[31]);
the Bagai and Prakasa Rao[2] method which, unfortunately, uses only the first r order-
statistics to estimate f(x) if x lies between the r-th and (r + 1)-st order-statistics; the
Chaubey and Sen [4] method based on Hille’s smoothing lemma; the Gamma-kernel esti-
mator of Chen [6] and the inverse-Gaussian kernel estimator of Scaillet[26]; the Chaubey
et al.[5] method based on a generalization of Hille’s smoothing lemma, coupled with a
perturbation idea to take care of the boundary bias.

Note also that most of the above papers deal with density or regression estimators in the
setting of independent random variables. However, a great deal of data in econometrics,
engineering and natural sciences, among other areas, occur in the form of time series in
which observations are highly dependent. Also, there may be a high mass at zero, such as
in the case of income data of a country with high unemployment or financial transaction
data for frequently traded stocks.

In this paper we adapt the method proposed in Chaubey et al.[5] for density estimation
for non-negative data. We further assume that the data are sampled from a stationary,
ergodic process to incorporate the dependence structure in the data. This avoids the widely
used strong mixing condition and its variants as a dependence measure, that is is generally
not easy to calculate as it involves a complicated manipulation of taking the supremum over
two sigma algebras. Moreover, the mixing properties (strong or not strong) of a number of
well known processes (e.g. AR(1) and GARCH(1, 1)) are not fully known.

Additionally, many well-known processes are not strong mixing. Chernick [7] and
Andrews[1] have given examples in which the first order linear autoregressive process
with discrete valued random innovation is not strong mixing. In particular, if (εi)i∈Z is
a sequence of independent Bernoulli random variables with parameter q, then the process
Xi = ρXi−1 + εi, where ρ ∈ (0, 1/2], is not strong mixing for all n (see Andrews [1]). In
the same spirit, Guégan and Ladoucette [16] show that some long memory processes with
Gaussian innovation are ergodic without being strong mixing. Another example is given in
Bosq ([3], pp. 57-58), where the chaotic process of type Xi = T (Xi−1), with T being a
measurable real function, is shown to be ergodic but not strongly mixing.

In Section 2, we first derive a raw estimator mn(x) without perturbation. It is then
shown that this estimator can be inconsistent at x = 0 except in special cases. Following
the idea in Chaubey et al.[5], we therefore consider the perturbed version m̃n(x). It appears
that perturbation is a very useful new idea to deal with boundary bias in the case of nonneg-
ative data, which also avoids the complication of some of the rigorous boundary correction
methods mentioned above.

Section 3 is devoted to the study of asymptotic properties of the proposed estimator. We
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establish the uniform almost sure convergence of the estimator m̃n when the observations
are assumed to be stationary and ergodic, so that the results hold for both mixing and
non mixing processes. However, the asymptotic normality is established under a weaker
dependence condition. In comparison to strong mixing this dependence condition appears
sufficiently mild. Also, in this section the asymptotic mean squared error is derived and the
optimal choice of smoothing parameter is discussed.

Section 4 deals with the generalization of our results to higher dimensional case. In
Section 5, we present some graphical illustrations of the proposed estimator on simulated
as well as on real data, the latter pertaining to hardwood sapling height-growth in a boreal
forest. A simulation study is also carried out to compare our estimator to the local linear es-
timator that demonstrates that our estimator is a good competitor to the local linear method.
The proofs are deferred to the Appendix. In this context, the martingale techniques play a
vital role that allow us to obtain optimal results as in the iid case.

2 A smooth estimator of the regression function

Let Zi = (Xi, Yi)i∈N∗ be a R+ × R+-valued strictly stationary ergodic process defined
on a probability space (Ω,A,P). Let f be the common density function of the sample
X1, . . . , Xn, which is assumed to be bounded and continuous on [0,∞). Let φ be a Borel
function of R+ into R such that E(|φ(Y1)|) < ∞. For x ∈ R+, let m(x) := E(φ(Y1)|X1 =
x) be the conditional mean function of φ(Y1) given X1 = x, which is assumed to be
bounded.

The problem of interest is to construct a smooth estimator of the regression function
m. This estimator is based on the following generalization of the Hille’s lemma (see Feller
(1965), Eq. (5.1), p.227).

Lemma 2.1 [Feller (1965), Lemma 1, §VII.1)] Let h be any bounded and continuous func-
tion and Qx,vn , n = 1, 2, . . ., be a family of density functions with mean µn(x) and variance
σ2

vn
(x). Then if µn(x) → x and σvn(x) → 0 we have

∫ ∞

−∞
h(t)Qx,vn(t)dt → h(x) as n →∞. (2.1)

The convergence is uniform in every subinterval in which σvn(x) → 0 and h is uniformly
continuous.
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Taking now in (2.1), h(t) = m(t)f(t), observe that the left hand side of (2.1) can be
written as Ef (φ(Y1)Qx,vn(X1)) , where the expectation is taken with respect to f .

This motivates the introduction of the following smooth generalized kernel type esti-
mator

mn(x) =

∑n
i=1 φ(Yi)Qx,vn(Xi)∑n

i=1 Qx,vn(Xi)
:=

hn(x)

fn(x)
, x ≥ 0, (2.2)

when the denominator is not 0; here hn(x) and fn(x) denote the estimators of h(x) and
f(x), respectively and vn (0 < vn < 1) is the bandwidth parameter sequence satisfying
vn → 0 and nvn → ∞ as n → ∞. The function Qx,vn may be generated by considering a
density function qvn(x) on [0,∞) with mean 1 and variance v2

n, giving Qx,vn(t) = 1
x
qvn( t

x
)

(x 6= 0). This makes Qx,vn a density function with mean x and variance (xvn)2. Note that
the usual kernel estimator is a special case of the representation given by (2.2), by taking
Qx,vn(t) = 1

vn
K ((t− x)/vn), where K is a density function with mean zero and variance

1, in which case the density Qx,vn(t) has mean x and variance v2
n that is appropriate for the

case where the support is the whole real line.

The above estimator, however, may not be defined at x = 0, except in cases where
mn(0) = limx→0+ mn(x) exists. To see this, suppose, for instance qvn is a Gamma (αn =
1
v2

n
, βn = 1

α
) density function given by

qvn(t) =
1

βαn
n Γ(αn)

tαn−1e−t/βn , t > 0.

Then Qx,vn(t) is a Gamma (αn = 1
v2

n
, βn,x := βx = v2

nx) density function on [0,∞)
given by

Qx,vn(t) =
1

βαn
x Γ(αn)

tαn−1 e−αnt/x, x > 0, (2.3)

which has mean x and variance (xvn)2 → 0 as n →∞.

The limit mn(0) of the gamma kernel estimator (2.2) may now be computed as follows,

mn(0) = lim
x→0+

∑n
i=1 φ(Y[i])X

αn−1
(i) e−αnX(i)/x

∑n
i=1 Xαn−1

(i) e−αnX(i)/x

= lim
x→0+

∑n
i=1 φ(Y[i])X

αn−1
(i) e−αn[X(i)−X(1)]/x

∑n
i=1 Xαn−1

(i) e−αn[X(i)−X(1)]/x

= lim
x→0+

φ(Y[1])X
αn−1
(1) +

∑n
i=2 φ(Y[i])X

αn−1
(i) e−αn[X(i)−X(1)]/x

Xαn−1
(1) +

∑n
i=2 Xαn−1

(i) e−αn[X(i)−X(1)]/x

= φ(Y[1]),
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where X(i) stands for the order statistic of Xi and Y[i] the corresponding concommitant,
i.e., Y[i] = Yj if X(i) = Xj . In this case mn(0) may not consistently estimate m(0) as
demonstrated below in the following example.

Let (Xi, Yi), i = 1, ..., n be a sequence of iid random variables with joint density
f(x, y) = e−y for 0 ≤ x ≤ y. Thus f(x) = e−x, f(y|x) = e−(y−x), m(x) =

∫∞
x

yf(y|x)dy =
x + 1 and Gx(y) = P(Y ≤ y|X = x) = 1− e−y+x. Since for all t > 0

P(Y[1] ≤ t) =

∫ ∞

−∞
Gx(t)f(1)(x)I(t ≥ x)dx,

where f(1) stands for the density of X(1) and I(A) denotes the indicator function of the set
A, we have

P
(√

n(Y[1] −m(0)) ≤ t
)

= n

∫ ∞

0

Gx

(
t√
n

+ m(0)

)
(1− F (x))n−1f(x)dx

= n

∫ 1+t/sqrtn

0

(
1− e−1−tn−1/2+x

)
e−(n+1)xdx

→ 1− e−1 as n →∞.

That is, when φ(y) = y, mn(0) does not consistently estimate m(0) = 1. This would be
the case in general, unless the conditional distribution of Y, given X = 0, is degenerate. To
alleviate this situation we consider the following perturbed version of the above regression
estimator,

m̃n(x) := mn(x + εn) =

∑n
=1 φ(Yi)Qx+εn,vn(Xi)∑n

=1 Qx+εn,vn(Xi)
:=

hn(x + εn)

fn(x + εn)
, x ≥ 0, (2.4)

where εn is a positive real number that goes to 0 at an appropriate (sufficiently slow) rate
as n →∞.

In this paper, we focus on the special case where Qx+εn,vn is a gamma density function
with mean x + εn and variance v2

n(x + εn)2. Namely, for x ≥ 0,

Qx+εn,vn(t) =
1

βαn
x+εn

Γ(αn)
tαn−1 e−αnt/(x+εn), (2.5)

where
αn = 1/v2

n, and βx+εn = v2
n(x + εn).

The modified gamma kernel estimator (2.4) is a generalization of the standard ker-
nel estimator by replacing the fixed symmetric kernel with the general gamma kernels
Qx+εn,vn(·), which is nonnegative and naturally asymmetric to cope with discontinuity at
t = 0.
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2.1 Notations and Assumptions

In order to state our results we introduce the following notations. Let Fi be the σ-field gen-
erated by ((X1, Y1), . . . , (Xi, Yi)) and Gi be that generated by ((X1, Y1), . . . , (Xi, Yi), Xi+1).
For i ∈ N, let f(·|Fi−1) be the conditional density of Xi given Fi−1.

Let C0(R) be the space of continuous functions going to zero at infinity and ‖ · ‖ be
the sup norm and set J := [a, b] ⊂ R+ (0 ≤ a < b). From now on, the notation D→,

and P→ stand for the convergence of random variables in distribution and in probability,
respectively. For a random variable ξ, write ξ ∈ Lp (p > 0) if ‖ξ‖p := (E|ξ|p)1/p < ∞ and
define the projection Pk by Pkξ := E(ξ|Fk)− E(ξ|Fk−1), k ∈ N.

Denote by oa.s.(u) a random function l such that l(u)/u converges to zero almost surely
as u → 0. Similarly, define Oa.s.(u) as a random function l such that l(u)/u is almost
surely bounded.

Our results are stated under some assumptions which are gathered here for easy refer-
ence:

(A0) vn → 0, εn → 0 and nvn →∞ as n →∞.

(A1) For all i ∈ N, f ∈ C0(R) and f(·| Fi−1) ∈ C0(R).

(A2) The sequence {n−1
∑n

i=1 fk(x| Fi−1)} converges uniformly and almost surely (a.s.)
to f(x) as n →∞ (k = 1, 2)

(A3) infx∈J |f(x)| > 0.

(A4) The conditional means of the quantities φk(Yi) given Gi−1 (k = 1, 2) exist and only
depends on Xi, i.e., for any i ≥ 1,

(i) E
(
φ(Yi)

∣∣∣ Gi−1

)
= E

(
φ(Yi)

∣∣∣ Xi−1

)
= m(Xi) a.s.

(ii) E
(
φ2(Yi)

∣∣∣ Gi−1

)
= E

(
φ2(Yi)

∣∣∣Xi−1

)
:= W2(Xi) a.s.

(A5) There exists some γ > 0 such that

i) E (|φ(Y1)|γ+1) < ∞ and

ii) E (|φ(Yi)|γ+1|Gi−1) = E (|φ(Yi)|γ+1|Xi) := L(Xi) a.s., where the function L(·)
is continuous uniformly bounded on R+.

(A6) (i) For some δ > 0, E(|φ(Y1)|2+δ) < ∞, and the function
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W 2+δ(x) := E
(
|φ(Y1)|2+δ

∣∣∣X1 = x
)

is differentiable at x ∈ J and bounded in a neighborhood of x.

(ii) The functions m(·) and f(·) have bounded derivatives up to order two.

(A7) The following type of mixing condition holds:

sup
y

∞∑
i=1

‖P1f(y|Fi)‖2 < ∞. (2.6)

2.2 Comments on the assumptions

The conditions stated in the above assumptions are fairly mild. Condition (A0) is about
the constants involved in the estimator (i.e. for the sequence of bandwidth and perturbation
constant. Conditions (A1) and (A2) are justified by the work of Györfi and Lugosi[17]
where the authors have pointed out that the ergodic condition alone is not sufficient to
ensure the L1 consistency of kernel or histogram density estimates. A complementary
assumption is therefore needed like the existence and the absolutely continuity lmost surely
of the conditional density.

Conditions (A3) and (A6) are common in nonparametric regression estimation. Con-
dition (A4) is satisfied, for instance, by letting Yi = Xi+1 with {Xi} being a Markov
process. It is also satisfied when we consider the usual regression model Yi = m(Xi) + εi,
where εi’s are iid, and for any i ≥ 1, εi is independent of Xi, since in this case, Gi is the
sigma field generated by (X1, ε1), . . . , (Xi, εi), Xi, and therefore, E(φ(Yi)|Gi−1) = m(Xi),
E(φ2(Yi)|Gi−1) = W2(Xi) and E (|φ(Yi)|γ+1|Gi−1) = L(Xi) a.s. (A5) is a weaker condi-
tion than those proposed elsewhere in the literature.

The condition (2.6) in (A7) replaces the strong mixing condition and allows us to give
an estimate of the convergence rate of the conditional bias term B̃n defined in (3.3). It
holds for linear as well as many nonlinear processes, such as threshold autoregressive(AR)
models and AR models with conditionally heteroscedastic errors (see, e.g., Wu [32] and Wu
and Shao [33]). To make this statement clearer, take φ(Y ) = Y, Yi = Xi+1 and consider
the following examples :

Example 2.1 Nonlinear models.
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a) Let p ≥ 1 be a fixed integer and suppose that the Xi’s are generated by the nonlinear
AR(p) model

Xi = Rηi
(Xi−1, . . . , Xi−p), i ≥ p, (2.7)

where R is a measurable function, {Xi} is a stationary process and {ηi} is a sequence of
iid random variables. For different forms of R in (2.7) one can obtain threshold autoregres-
sive models TAR (Tong[30]), AR models with conditionally heteroscedastic errors ARCH
(Engle[10]) and exponential autoregressive models EAR (Haggan and Ozaki [18]) among
others. By iterating R in (2.7) one can see that Xi may be written as Xi = F (. . . , ηi−1, ηi)
where F is a measurable function. The process {Xi} is a causal stationary process and
represents a large class of time series models. For p = 1, Xi admits a unique stationary
distribution whenever

E(log Lη) < 0, E(Lα
η ) + E (|x0 −Rη(x0)|α) < ∞, (2.8)

where Lη = supx 6=y
|Rη(x)−Rη(y)|

|x−y| , for some α > 0 and some x0 in R (see, e.g., Diaconis
and Freedman[9]).

Let f(u|Xi) be the conditional density of Xi+1 at u given Xi such that

sup
u∈R

|f(u|X1)| < ∞ and for all (z, z′) ∈ R2, sup
u∈R

|f(u|z)− f(u|z′)| ≤ C|z − z′|β,

where C and β are positives constants. Then we have by the analogous proof as that of
Theorem 3 in Wu [32] that

sup
u∈R

‖P0f(u|Xn)‖2 = O(rn) for some r ∈]0, 1[.

Therefore, the condition (2.6) in (A7) is satisfied.

b) Suppose that Xi’s are generated following an AR(1) model:

Xi = θXi−1 +
√

a0 + a1X2
i−1 ηi (2.9)

where a0 ≥ 0 and 0 ≤ a1 < 1, the sequence {ηi} is iid and for any i ≥ 1, ηi is independent
of Xi−1. Using the statement (2.8), one can see that sufficient conditions for the existence
of stationary distribution of model (2.9) are E (log(|θ|+ |a1η|) < 0 and E(|η|α) < ∞.

Let fη and f ′η be the density function of η1 and its derivative, respectively. It is easily
seen that the conditional density of Xi given Xi−1 = x is f(z|x) = 1√

a0+ax
fη(

z−θx√
a0+ax

).
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Therefore, using Theorem 3 of Wu [32] one can see that the condition (2.6) in (A7) is
satisfied whenever supz∈R[|zf ′η(z) + fη(z)] < ∞ and supz∈R |f(z|x)| < ∞.

Example 2.2 Linear models.

Let Xi =
∑∞

i=0 ajηi−j , where
∑∞

j=0 |aj| < ∞, E(η0) = 0 and E(η2
0) < ∞. The

process Xi includes many useful special cases such that the causal ARMA models. By the
analogous proof as that of Theorem 4 in Wu [32], we can show that the condition (2.6)
holds true whenever

sup
x
|fη(x)| < ∞

and
sup

x
|f ′(x)η| < ∞.

3 Main Results

In order to state our results, we introduce some further notations. For any x ≥ 0, define

hn(x + εn) =
1

n

n∑
i=1

E [φ(Yi)Qx+εn,vn(Xi)| Fi−1] (3.1)

fn(x + εn) =
1

n

n∑
i=1

E [Qx+εn,vn(Xi)| Fi−1] , (3.2)

so that

m̃n(x) := mn(x + εn) =
hn(x + εn)

fn(x + εn)
.

We define also the centralizing conditional parameter

B̃n(x) :=

[
hn(x + εn)− h(x)

]−m(x)
[
fn(x + εn)− f(x)

]

fn(x + εn)
, (3.3)

which can be viewed as the “conditional bias" of m̃n.

3.1 Uniform strong consistency

First we establish uniform strong consistency of the regression estimator m̃n as given in
the following theorem. As can be seen from this theorem, the uniform strong consistency
holds true even for x = 0.
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Theorem 3.1 In addition to conditions (A0)-(A5), assume that there exist sequences of real
numbers Mn →∞ and νn →∞ as n →∞ that satisfy

a−2
n bαn−1

n α7/2
n Mn ν−1

n → 0 as n →∞ (3.4)

and
∑
n≥1

νn exp
(−πλ2a2

nnM−2
n v2

n

)
< ∞, (3.5)

where, λ > 0 and αn is specified in (2.3). Then we have

sup
x∈[a,b]

|m̃n(x)−m(x)| = oa.s.(1) as n →∞.

Remark 3.1 The sequence Mn may be chosen as Mn =
{

n ln n [ln ln n]1+ζ
}1/γ

, where
ζ is a positive constant and γ is as in (A5). The sequence νn is used to obtain the finite
number of subintervals to cover the compact interval J . Condition (3.4) is satisfied if we
choose, for instance, νn =

[
a−2

n bαn−1
n α

7/2
n Mn log n

]
+ 1 (where [t] stands for the integer

part of t) whereas (3.5) holds true by taking λ = λn =
√

Cn Mn

an
√

πnvn
, where C is a large

positive constant.

Remark 3.2 Let {Ui; i ∈ N} be a real-valued strictly stationary Markov process. The-
orem 1 may be used to construct a nonparametric predictor, say ÛN+1, to evaluate the
value of UN+1 given the past U1, . . . , UN . For this purpose let Xi = (U1, . . . , Ui+p−1),
Yi = Ui+p, for i = 1, 2, . . . , n, and define ÛN+1 := m̃n(Xn), where n = N − p + 1 and p
is appropriately chosen.

3.2 Asymptotic normality

The following theorem gives the asymptotic normality of the regression estimator at interior
and boundaries of the support, and gives the form of its asymptotic variance in both cases.

Theorem 3.2 . Assume that conditions (A0)-(A4) and (A6) hold. (i) Let f(x) > 0 at given
x ≥ 0 and let

σ2(x) :=
1

2
√

π

W2(x)−m2(x)

xf(x)
. (3.6)
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Then, we have
√

nvn(m̃n(x)−m(x)− B̃n(x))
D−→ N (

0, σ2(x)
)
.

(ii) Suppose in addition the condition (A7) is satisfied and that

nv5
n → 0 and (nvn)

1
2 εn −→ 0 as n →∞. (3.7)

Then, we have √
nvn(m̃n(x)−m(x))

D→ N (
0, σ2(x)

)
.

(iii) Let x = 0 and suppose moreover that

εnvn → 0, nv5
nεn → 0, nvnε3

n → 0 and nvnεn →∞ as n →∞. (3.8)

Then, √
nvnεn(m̃n(0)−m(0))

D→ N (
0, σ2

0(0)
)
,

where σ2
0(0) = 1

2
√

π
W2(0)−m2(0)

f(0)
whenever f(0) > 0.

Remark 3.3 Some discussion on how the convergence rate obtained in (ii) and (iii) de-
pends on the choice of the bandwidth vn and the sequence εn is in order. Indeed, we have
from (i) that

m̃n(x)−m(x) + B̃n(x) = OP((nvn)−1/2) and (3.9)
m̃n(0)−m(0) + B̃n(0) = OP((εnnvn)−1/2). (3.10)

Using Lemma 6.9 with the choice, εn = O(v2
n), yields

m̃n(x)−m(x) = OP((nvn)−1/2) + OP(v
2
n).

To make the rates of convergence explicit, take, for instance, vn = O
(
n−

s
1+2s

)
where

s is a nonnegative constant. The condition (A0) and the statements (3.7) are then satisfied
provided that s > 1/3, whereas the statements in (3.8) hold true if 1/5 < s < 1. Therefore
the pointwise convergence rates given in (ii) and (iii) are OP(n

− 1+s
2(1+2s) ) and OP(n

− 1−s
2(1+2s) ),

respectively, which fail to be optimal. However, if we choose vn = O
(
( 1

n log n
)1/5

)
, the

optimal bandwidth obtained in Section 3, and εn = O(v2
n), then the conditions of the

statements (3.7) and (3.8) hold true. And the optimal convergence rates given in (ii) and
(iii) are OP

(
n−2/5(log n)1+(3/5)

)
and OP

(
n−1/5(log n)3/10

)
, respectively.
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Remark 3.4 Using Theorem 2, one may define the following asymptotic 100(1 − α)%
confidence band for the function m

m̃n(x)± cα

(
σn(x)

nvn

)1/2

when x > 0

and

m̃n(0)± cα

(
σn(0)

εnnvn

)1/2

when x = 0,

where cα is the upper α/2 quantile of the standard normal distribution, σn(·) and σn(0)
are appropriate estimates of σ(·) and σn(0), respectively.

3.3 Asymptotic mean squares error (AMSE) of the regression estima-
tor m̃n(x)

Here we consider only asymptotic mean squared error (AMSE) of m̃n(x) computed at one
single positive point x. In a future paper we shall consider asymptotic mean integrated
squared error (AMISE) as well as data-driven choice of both the smoothing parameters
(εn, vn) via an empirical, cross-validation function derived from AMISE.

The following proposition gives the MSE of the estimator m̃n(x) in the interior as well
as in the boundary of the interval, which permits to determine the optimal (in the sense of
minimizing MSE of m̃n(x)) rates of convergence of vn → 0, εn → 0 (which is necessary
for m̃n(x) to be a consistent estimator of m(x)) as n →∞.

Proposition 3.1 . In addition to conditions (A1), (A4), (A7), assume that the functions f
and m have bounded derivatives up to order 3. Then we have

MSE(x) ≈ W2(x) + m2(x)

nvnxf(x)
+

m2(x)

f 2(x)

[
εn m′(x) +

1

2
v2

nx2m′′(x)

]2

+
1

f 2(x)

[
εn (m(x)f(x))′ +

1

2
v2

nx
2(m(x)f(x))′′

]2

if x 6= 0

≈ W2(0) + m2(0)

nvnεnf(0)
+

εn

f 2(0)

[
(m(0)f(0))′ + m′(0)m2(0)

]2 if x = 0.(3.11)

Remark 3.5 When x is an interior point, i.e., x > 0, (3.11) shows that the optimal choice
of εn is εn = 0, which gives the optimal choice of vn to be vn = O(n−1/5) and the optimal

13



order of MSE (x) is then the usual O(n−4/5). In fact, the same optimal order is obtained
by setting εn = O(v2

n) in (3.11).

On the other hand when x is a boundary point, i.e., x = 0 or x = O(ε), there is no
optimal choice for vn > 0, while that for εn is εn = O((nvn)−1/3). In this case ε is the
setting εn = O(v2

n) as above leads to vn = O(n−1/7) and MSE (x) = O(n−4/7) which is
suboptimal. Note, however, that we can recover the optimal order of the MSE by setting
vn = O(ε

−1/2
n ). This leads to εn = O(n−2/5), so that the order of MSE is n−4/5, but

vn becomes O(n1/5). Hence, unlike the usual kernel-based methods, there is no universal
optimal choice for the smoothing parameters, in terms of point-wise MSE.

Remark 3.6 As pointed out by Seifert and Gasser [27], the local linear method (Fan and
Gijbles [12]) has a drawback as the variance is unbounded in finite sample, because the
denominator of the local linear regression estimate has positive probability of being zero or
arbitrarily small. Moreover, this method uses only symmetric compact as kernel. Chen[?]
adapted the local linear smoothing method by replacing the classical symmetric kernels
by the Gamma kernel smoother. He demonstrated that the asymmetric gamma kernel can
eliminate the problem of the finite sample variance. Moreover, the local gamma kernel es-
timate may also remove the problem of an increased mean square error near the boundary,
since its support matches that of the curve in the local linear estimator in order to increase
the effective sample size and then to reduce the variance of local polynomial smoothers.
This method has the usual good properties of standard local linear smoothing with a fixed
symmetric kernel and offers some additional extra advantages in aspects of having finite
variance and resistance to sparse design. In our context the numerical study carried out
in Section 5 demonstrates that our estimator is a good competitor to the local linear es-
timator. Theoretical study of the local linear method combining with our estimator is the
subject of future research.

4 Generalization to the p-dimensional case (p > 1)

We briefly discuss a generalization of our result to the case where the independent random
variable is p-dimensional. For p ≥ 1, let Zi = (Xi, Yi)i∈N∗ be a R+p × R+-valued strictly
stationary ergodic sequence, where Xi = (Xi1, . . . , Xip). Let x = (x1, . . . , xp) ∈ R+p and
εn = (ε1n, . . . , εpn) such that for any 1 ≤ i ≤ p, εin → 0 . Then for any t ∈ R+p, the
density function defined in (2.3) takes the forme

14



Qx+εn,v(t) =
1

(
∏d

i=1 βxi+εin
)α (Γ(α))p

(
p∏

i=1

ti

)α−1

exp

(
−α

p∑
i=1

ti
xi + εin

)
,(4.1)

where α := αn = 1/v2, βxi+εin
= v2(xi + εin) and v := vn. Consider the following

estimator for the regression function m

m̃n(x) =

∑n
i=1 φ(Yi)Qx+εn,v(Xi)∑n

i=1 Qx+εn,vn(Xi)
. (4.2)

To state our results for the estimator (4.2), we introduce further notations. Let Fi =
σ(Z1, . . . ,Zi) and Gi = σ(Z1, . . . ,Zi,Xi+1), denote the σ-algebras generated by (Z1, . . . ,Zi)
and (Z1, . . . ,Zi,Xi+1), respectively. For i ∈ N, let fXi

(·|Fi) be the conditional density of
Xi given Fi−1 and f be the unconditional density of Xi. We denote by (A1)-(A6), the same
conditions as (A1)-(A6) given in Section 2.1 where the quantities Fi−1,Gi−1, fXi

(·|Fi) and
f are replaced by Fi,Gi, fXi

(·|Fi) and f , respectively. We denote by B̃n(x) and W2(x) the
functions defined in (A4)-(ii) and (3.3) where x is replaced by the vector x.

Theorem 4.1 In addition to conditions (A1)-(A4) and (A6)(i), suppose that the functions
m and f have bounded partial derivatives up to order p and

vp
n → 0 and nvp

n →∞ as n →∞. (4.3)

Then we have for f(x) > 0 at given x = (x1, . . . , xp) where xj > 0 (j = 1, . . . , p)

i)
√

nvp
n(m̃n(x)−m(x)− B̃n(x))

D→ N (
0, σ2(x)

)

where

σ2(x) :=
1

(2
√

π)
p

W2(x)−m2(x)

(
∏p

i=1 xi)f(x)
.

ii) Suppose in addition that (2.6) holds true and nv5p
n → 0 and (nvp

n)
1
2 εp

n → 0 as n → ∞,
then √

nvp
n(m̃n(x)−m(x))

D→ N (
0, σ2(x)

)
.

iii) If x = 0 and if

εp
nvp

n → 0, nv5p
n εp

n → 0, nvp
nε3p

n → 0, and n(vnεn)p →∞, as n →∞,

then we have
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√
nvp

nε
p
n(m̃n(0)−m(0)))

D→ N (
0, σ2

0(0)
)

where

σ2
0(0) :=

1

(2
√

π)
p

W2(0)−m2(0)

f(0)
,

whenever f(0) > 0.

Remark 4.1 To make explicit the rates of convergence, chosen as in the discussion follow-
ing Theorem 2, vn = O

(
( 1

n log n
)1/(2+3p)

)
and εp

n = O(v2p
n ). Therefore, all conditions in i),

ii) and iii) are satisfied, and the optimal point-wise convergence rates in ii) and iii) are

OP

(
log

p
2(1+p) n

n

) 1+p
2+3p

and OP

(
log

3p
2 n

n

) 1
2+3p

, respectively.

Note that the rates of convergence are obviously affected by the dimension p, and this result
will be practically useful only when p ≤ 3 since for p > 3 the curse of dimensionality will
kick in.

5 Illustrations and simulation

We illustrate our method with a simulated data-set from an autoregressive model as well as
a real data-set on hardwood sapling height-growth. For comparison, we also include in our
plots the local linear estimator (Fan[11], Fan and Gijbels[13]) which is well-known for its
boundary correction and robustness properties.

Recall that the local linear estimator is defined as the solution m̂ for β0 that minimizes
the sum

∑n
i=1 (Yi − β0 − β1(Xi − x))2 Wi(x), where Wi(x) = K

(
Xi−x

w

)
and w = wn is

the bandwidth parameter. The solution of this problem is given by

m̂(x) =
s2(x)t0(x)− s1(x)t1(x)

s2(x)s0(x)− s2
1(x)

,

where sk = n−1
∑n

i=1(Xi − x)kWi(x) and tk = n−1
∑n

i=1 Yi(Xi − x)kWi(x), k = 0, 1, 2.

The smoothing parameters for both the estimators were chosen using the following,
leave-one-out cross-validation (CV) procedure:

arg min n−1

n∑
i=1

(Yi −Mi(Xi))
2
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where Mi stands for either m̃n or m̂, evaluated at Xi but based on the Xi-deleted (‘leave-
one-out’) sample {X1, . . . , Xi−1, Xi, . . . , Xn}, 1 ≤ i ≤ n. The minimization is over (ε, v)
in case of m̃n(x) and over h in case of m̂(x).

Autoregressive data. Here X1, . . . , Xn are generated as:

Xi = 0.5Xi−1 +

(√
0.2 + 0.1X2

i−1

)
εi, X1 Exponential (1),

where εi, 1 ≤ i ≤ n, are i.i.d Weibull (1, 3), i.e., with density g(ε) = 3ε2 exp(−ε3), ε ≥ 0.
We consider two models for Y1, . . . , Yn:
a) Yi = 0.5(6− 4Xi + X2

i )εi;
b) Yi = sin(1/Xi)εi, 1 ≤ i ≤ n.
Here εi, 1 ≤ i ≤ n, are taken to be iid Weibull (1, 2), i.e., with density g(ε) = 2ε exp(−ε2), ε ≥
0. The illustration/comparison is provided in Figure 1 and Figure 2 for Model-a and Model-
b, respectively. The sample-size was chosen to be n = 200. The optimal smoothing param-
eter values are given in the respective captions.

As is clear from the figures, both m̃n and m̂ are close to each other. However, m̃n

appears to be slightly less affected by noisy observations and more adaptive to the shape of
the true regression function.

Hardwood sapling data. We apply our method to data on initial height (X) versus 5-year
height-growth (Y ) of naturally-occurring hardwood saplings in gap areas of the boreal for-
est around Lake Duparquet in north-western Quebec. Both the initial height (as of 1998)
and the height-growth (over 1998–2003) were obtained from multi-temporal LIDAR (LIght
Detection And Ranging) surveys. (Data courtesy: Prof. Benoit St-Onge and Ms. Uday-
alakshmi Vepakomma, University of Quebec at Montreal.) All measurements are in meters,
and the sample consists of n = 94 saplings.

The scatter-plot and the two estimators are presented in Figure 3. The smoothing pa-
rameters were again chosen based on the CV criterion above. The local linear estimator in
this case appears to be smoother and more monotonic than ours.
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Figure 1: Scatterplot and regression estimators for autoregressive data with Y = 0.5(6 −
4X + X2)ε, true regression (—), m̃n with εn = 0, vn = 0.24 (– –), local linear estimator
with wn = 0.35 (- · -)
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Figure 2: scatterplot and regression estimators for autoregressive data with Y =
sin(1/X)ε: true regression (—), m̃n with εn = 0.02, vn = 0.95 (– –), local linear esti-
mator with wn = 0.14 (-·-)
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Figure 3: scatterplot and regression estimators for height-growth data: (a) m̃n with εn =
0, vn = 0.331 (—), local linear estimator with wn = 0.95 (– –).
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Comparison to local linear method: a simulation study

We now present a simulation study to compare our method to the local linear one. The
comparison is done for four choices of distributions of (X, ε), and two different regression
functions m(·) taken from Fan and Gijbels[13]. We use an additive model, Y = m(X) +
ε, and the same smoothing parameter selection method as above. For each sample-size
1000 samples were generated, and the tables below list the average values of the minimum
n−1

∑n
i=1(Yi −Mi(Xi))

2 (see above) for each estimator.

Table 1: Valuesa of minimum n−1
∑n

i=1(Yi − Mi(Xi))
2 for the gamma kernel and local

linear estimators for the model, m(x) = x + 2 exp(−16x2).
Sample Size(n) X ∼ exp(1) X ∼ exp(1) X ∼ Weibull X ∼ Weibull

ε ∼ N (0, 0.72) ε ∼ doubleExp ε ∼ N (0, 0.72) ε ∼ doubleExp

100 0.03584061 0.1958467 0.02308521 0.1190155
0.03913404 0.2006739 0.02178451 0.1110448

200 0.02258581 0.1168053 0.01371159 0.07219315
0.02616064 0.1304714 0.01323952 0.07009928

500 0.01231901 0.05675914 0.007551803 0.03658063
0.01350157 0.05971275 0.00613061 0.03428299

aFirst number in the column is corresponding to the gamma kernel and the second one is
for the local linear method.
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Table 2: Valuesa of minimum n−1
∑n

i=1(Yi − Mi(Xi))
2∗ for the gamma kernel and local

linear estimators for the model, m(x) = sin(2x) + 2 exp(−16x2).
Sample Size(n) X ∼ exp(1) X ∼ exp(1) X ∼ Weibull X ∼ Weibull

ε ∼ N (0, 0.72) ε ∼ doubleExp ε ∼ N (0, 0.72) ε ∼ doubleExp

100 0.01544821 0.19257 0.008892057 0.1377363
0.01415603 0.1838041 0.007312179 0.1037686

200 0.009834903 0.1283950 0.005304467 0.08062876
0.009768867 0.1291265 0.00489389 0.06583907

500 006080469 0.06577962 0.002839715 0.04228712
0.005155077 0.05971275 0.0020642 0.03178110

aFirst number in the column is corresponding to the gamma kernel and the second one is for
the local linear method.

The results show that the two estimators have very similar performances, each being
better than the other in some cases. Our estimator is thus a good competitor to even an
established procedure such as the local linear method.

Acknowledgements: The authors gratefully acknowledge financial support from the Sta-
tistical Laboratory of CRM, Montreal (for N. Laïb’s trip to Montreal) and the NSERC
Discovery grants (Y.Chaubey and A.Sen). The data-set used for illustration in Section 5
was kindly provided by B. St-Onge and U. Vepakomma of the UQAM. The simulation
study in the last section showing comparison with the local linear estimator was carried out
by Baohua He, graduate student at Concordia University. The authors are also grateful to
the two referees and the Associate Editor for constructive comments and suggestions.

6 Appendix: Proofs

The detailed proofs are provided here by means of a series of lemmas and propositions.
However, first we introduce some more notations that will be used in the proofs to follow.
For x ∈ J := [a, b], let x+ = x + εn, an = a + εn and bn = b + εn. We denote by
R+
∗ := R+ − {0}.

Clearly we have form (2.4), (3.1) and (3.3) that
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m̃n(x)−m(x)− B̃n(x) =
1

fn(x+)
[(hn(x+)− hn(x+))

−(m(x) + B̃n(x))(fn(x+)− fn(x+))]. (6.1)

The major thrust of the decomposition (6.1) is due to the fact that both the terms
hn(x+) − hn(x+) and fn(x+) − fn(x+) in the the summands form a martingale differ-
ence. The following result gives the almost sure uniform convergence of the bias term
B̃n(x).

Proposition 6.1 Assume that (A0), (A1), (A2), (A3) and (A4)(i) hold true. Then we have

sup
x∈[a,b]

∣∣∣B̃n(x)
∣∣∣ = oa.s.(1) as n →∞.

Proof of Proposition 6.1. It suffices to show that hn(x+) − h(x) converges uniformly in
x to 0 a.s. and fn(x+) is uniformly bounded over. Making use of (A4)(i) and the law of
iterated conditional expectation we may write

E [φ(Yi)Qx+εn,vn(Xi)|Fi−1] = E (E [φ(Yi)Qx+εn,vn(Xi)|Gi−1] |Fi−1)

= E [Qx+εn,vn(Xi)m(Xi)|Fi−1] .

Thus,

|hn(x+)− h(x)| ≤
∣∣∣∣∣
1

n

n∑
i=1

∫

R+

Qx+εn,vn(t)m(t)f(t|Fi−1)dt− h(x)

∣∣∣∣∣

≤
∥∥∥∥∥

1

n

n∑
i=1

f(·|Fi−1)− f

∥∥∥∥∥
∣∣∣∣
∫

R+

Qx+εn,vn(t)m(t)dt

∣∣∣∣

+

∣∣∣∣
∫

R+

Qx+εn,vn(t)h(t)dt− h(x)

∣∣∣∣ . (6.2)

Using Lemma 2.1 and (A0), the second integral goes to 0 uniformly in x, provided that
h is bounded. The first term is bounded above by

∥∥∥∥∥
1

n

n∑
i=1

f(·|Fi−1)− f

∥∥∥∥∥ sup
x∈R+

|m(x)|,
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that also tends to to 0 a.s. as n →∞ in view of (A2) and the fact that m(·) is bounded. By
the same arguments we can conclude by Lemma 2.1, (A0) and (A2) that fn(x+) converges
uniformly in x to f(x) a.s., which is bounded over J uniformly in x in view of (A3).

The following proposition gives an a.s. asymptotic lower bound for infx∈J |fn(x+)|.

Proposition 6.2 . Assuming (A0), (A2) and (A3) hold true, then we have

(i) sup
x∈J

|fn(x+)− f(x)| = oa.s.(1) as n →∞
(ii) inf

x∈J
|fn(x+)| > 0 a.s. as n →∞.

Proof of Proposition 6.2. To prove (i) above, first note that we have

|fn(x+)− f(x)| ≤ |fn(x+)− fn(x+)|+ |fn(x+)− f(x)|.

Next we argue as in the proof of Proposition 6.1, and observe that the second term in the
right hand side of the above inequality tends to 0 a.s. as n →∞. Additionally, we use the
same arguments as used to prove Proposition 6.3 below, and conclude that the first term
also converges to 0 a.s., uniformly in x, as n →∞.

Finally, we have for any x ∈ J ,

inf
x∈J

|fn(x+)| ≥ inf
x∈J

f(x)− sup
x∈J

|fn(x+)− f(x)|.

And (ii) follows from (i) and condition (A3).

The main task now is to establish the uniform almost sure convergence for hn(x+) −
h(x). Making use of the Stirling’s formula we can easily see that, for any fixed x, the
function t 7→ Qx+εn,vn(t) is bounded above by 1√

2π(x+εn)vn
for every t ≥ 0 whenever

vn → 0. By contrast, the function φ(y) is not necessarily bounded, it can thus be handled

by a suitable truncation. For this purpose, let Mn =
{

n ln n [ln ln n]1+ζ
}1/γ

, where ζ is a
positive constant and γ is as in (A5).

Let us now define the processes

hb
n(x+) :=

1

n

n∑
i=1

φ(Yi)I{|φ(Yi)| ≤ Mn}Qx+εn,vn(Xi) (6.3)
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and

hb
n(x+) :=

1

n

n∑
i=1

E [φ(Yi)I{|φ(Yi)| ≤ Mn}Qx+εn,vn(Xi)|Fi−1] , (6.4)

where I(A) stands for the indicator function of the set A. Then, we have

hn(x+)− hn(x+) = (hn(x+)− hb
n(x+)) + (hb

n(x+)− hb
n(x+))

+(hb
n(x+)− hn(x+)). (6.5)

The asymptotic behavior of the first and the last terms on the right hand side of (6.5) is
given in the following two Lemmas and that for the middle term is given in Proposition 4.

Lemma 6.1 Assuming (A5)(i) holds, then, for each ω outside a null set D, there exists a
positive integer n0(ω) such that

hn(x+) = hb
n(x+) for n ≥ n0(ω) and all x ∈ R+.

Proof of Lemma 6.1. We have

hn(x+)− hb
n(x+) = n−1

n∑
i=1

I(|φ(Yi)| > Mn)φ(Yi)Qx+εn(Xi).

Let p > 1 and q > 1 be real numbers such that p−1 + q−1 = 1, then from stationarity
of the data, Cauchy-Schwarz and Markov inequalities, condition (A5)(i) and the fact that
Qx+εn(·) is bounded, it follows that ∀λ > 0,

P
(|hn(x+)− hb

n(x+)| > λ
) ≤ (P(|φ(Y1)| > Mn))1/p (

E(|φ(Y1)Qx+εn(X1)|b
)1/q

≤ CM−q/a
n E(|φ(Y1)|a) = O(M−γ),

by taking p = (γ +1)/γ and q = γ +1 (γ > 0). Now the use of Borel Contelli Lemma and
the summability of {M−γ

n } imply that for each ω outside of a set D such that P(Dc) = 1,
there exits n0(ω) such that for any n ≥ n0(ω), hn(x+) = hb

n(x+) a.s.

We deal now with the asymptotic behavior of the third term in (6.5).

Lemma 6.2 Assume (A2) and (A5) hold, then we have

sup
x∈R+

|hb
n(x+)− hn(x+)| = Oa.s.

(
M−γ

n

)
as n →∞. (6.6)
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Proof of Lemma 6.2. Observe that

hb
n(x+)− hn(x+) = n−1

n∑
i=1

E [Qx+εn,vn(Xi)φ(Yi)I(|φ(Yi)| > Mn) |Fi−1] . (6.7)

We have by the properties of conditional expectation that

E
[
Qx+εn,vn(Xi)φ(Yi)I(|φ(Yi)| > Mn)

∣∣∣Fi−1

]

= E
[
Qx+εn,vn(Xi)E

(
φ(Yi)I(|φ(Yi)| > Mn)

∣∣∣Gi−1

) ∣∣∣Fi−1

]
. (6.8)

Next, using the Cauchy-Schwarz inequality twice along with Markov inequality, we
obtain

E
(
φ(Yi)I(|φ(Yi)| > Mn)

∣∣∣Gi−1

)

≤
(
E

(
|φ(Yi)|γ+1

∣∣∣Gi−1

)) 1
γ+1

(
P(|φ(Yi)| > Mn)

∣∣∣Gi−1

) γ
γ+1

≤ M−γ
n × E

(
|φ(Yi)|γ+1

∣∣∣Gi−1

)
= M−γ

n L(Xi) a.s.,

in view of condition (A5)(ii). Therefore, using condition (A2) in (6.7, we have

|hb
n(x+)− hn(x+)| ≤ M−γ

n

∫

R+

Qx+εn,vn(t)L(t)

(
n−1

n∑
i=1

f(t|Fi−1)

)
dt

' M−γ
n

∫

R+

Qx+εn,vn(t)L(t)f(t)dt as n →∞
= O(M−γ

n )

uniformly in x by Lemma 2.1 provided that f(x) and L(x) are uniformly continuous and
bounded. This proves Lemma 6.2.

following proposition gives the asymptotic behavior of the middle term on the right side
of (6.5).

Proposition 6.3 .

Assuming (A0) holds true and the conditions (3.4) and (3.5) are satisfied, we have

sup
x∈[a,b]

|hb
n(x+)− hb

n(x+)| = oa.s.(1) as n →∞. (6.9)

26



Proof of Proposition 6.3. Divide the interval J = [a, b] into subintervals each of length
δn = (b − a)/νn. Since the set Jn = {x; |x| ≤ |b − a|} is compact, it can be covered by
a finite number of bounded intervals with centers xnj whose sides are of length δn. That is
J =

⋃νn

j=1 Jnj, where

Jnj =
{
x ; |x− xnj| ≤ (b− a)ν−1

n

}
, j = 1, . . . , νn. (6.10)

Let Vn(x+) = hb
n(x+)− hb

n(x+), then we have, for xnj ∈ Jnj , that

sup
x∈J

|Vn(x+)| = max
1≤j≤νn

sup
x∈J∩Jnj

|Vn(x+)|

≤ max
1≤j≤νn

sup
x∈J∩Jnj

|Vn(x+)− Vn(x+
nj)|+ max

1≤j≤νn

|Vn(x+
nj)|

:= T1n + T2n + T3n,

where

T1n = max
1≤j≤νn

sup
x∈Jn∩Jnj

|hb
n(x+)− hb

n(x+
nj)| (6.11)

T2n = max
1≤j≤νn

sup
x∈Jn∩Jnj

|hb
n(x+)− hb

n(x+
nj)| (6.12)

T3n = max
1≤j≤νn

|hb
n(x+

nj)− hb
n(x+

nj)|. (6.13)

The proof is completed from Lemmas 6.3 and 6.4 below which provide an upper bound
of each term in the above inequalities.

Lemma 6.3 Under (A0) we have

(i) T1n = O(ξn),

(ii) T2n = O(ξn)

where

ξn = C1a
−4
n

(
b2
n

an

)αn

α3/2
n Mn ν−1

n .

Proof of Lemma 6.3. We prove only (i), the proof of (ii) is similar. We have

|hb
n(x+)− hb

n(x+
nj)| ≤ 1

n

n∑
i=1

|φ(Yi)|I{|φ(Yi)| ≤ Mn}
∣∣Qx+εn,vn(Xi)−Qxnj+εn,vn(Xi)

∣∣ .
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Observe that

Qx+εn,vn(Xi)−Qxnj+εn,vn(Xi) =
Xαn−1

i

Γ(αn)


e−αnXi/x+

βαn

x+

− e−αnXi/x+
nj

βαn

x+
nj


 , (6.14)

where βα
x+ = (v2

nx
+)α and αn = 1

v2
n
. The term in brackets in (6.14) can be written as

e−αnXi/x+ − e−αnXi/x+
nj

βαn

x+

+

(
βαn

x+
nj

− βαn

x+

)
e−αnXi/x+

nj

βαn

x+ βαn

x+
nj

. (6.15)

Since for c ≥ 0 and for any t, (an ≤ t ≤ bn), the function fc(t) = e−c/t is a Kc

Lipshitz of order one with Kc = c
a2

n
e−c/bn , it follows by taking c = cn = αnXi, that for all

x, xj
n ∈ [a, b],

|e−αnXi/x+ − e−αnXi/x+
nj | ≤ αnXi e−αnXi/bn

a2
n

|x− xnj|. (6.16)

Moreover, making use of the mean value theorem, we can writefor x∗ between x+ and
x+

nj,

|βαn

x+ − βαn

x+
nj

| ≤ αnv
2αn
n |x− xnj|xαn−1

∗

≤ bαn−1
n αnv

2αn
n |x− xnj|. (6.17)

Hence, combining (6.15), (6.16) and (6.17) we have,
∣∣Qx+εn,vn(Xi)−Qxnj+εn,vn(Xi)

∣∣ (6.18)

≤
[
βαn

bn
αnXi

βαn

x+ a2
n

Qb+εn,vn(Xi) +
bn

αn−1 αn v2αn
n

βαn

x+

Qxnj+εn,vn(Xi)

]
|xi − xnj|

≤
[
bnαn

a3
n

XiQb+εn,vn(Xi) +
bn

αn−1 αn v2αn−2
n

an

Qxnj+εn,vn(Xi)

]
|xi − xnj|. (6.19)

Using the Stirling’s formula, we see that for x fixed and τ ≥ 0, the function t 7→ tτQx+εn,vn(t)
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is bounded above by (x+εn)τ−1
√

2πvn
whenever vn → 0. It then follows that

∣∣Qx+εn,vn(Xi)−Qxnj+εn,vn(Xi)
∣∣ ≤ αn√

2π vna2
n

[
bn

an

+ bαn−1
n v2αn−2

n

]
|x− xnj|

≤ 1√
2π v3

n

bn

a3
n

[
1 +

an

b2
n

bαn
n αn

]
|x− xnj|

≤ 1√
2πa2

n

bαn−1
n α7/2

n |x− xnj|. (6.20)

Therefore,

|hb
n(x+)− hb

n(x+
nj)| ≤

(b− a)√
2πa2

n

bαn−1
n α7/2

n ν−1
n Mn = O(ξn)

and hence T1n = O(ξn), which completes the proof of Lemma 6.3.

The following lemma deals with the asymptotic behavior of T3n.

Lemma 6.4 . Suppose that (A0) holds and the condition (3.5) is satisfied. Then we have

T3n = oa.s.(1) as n →∞. (6.21)

Proof of Lemma 6.4. Write

|hb
n(x+

nj)− hb
n(x+

nj)| =
n∑

i=1

Ln,i(x
+
nj),

where
Ln,i(x

+
nj) = n−1{φ(Yi)I{|φ(Yi)| ≤ Mn}Qxnj+εn,vn(Xi).

It is then clear that for xnj ∈ [a, b],

|Ln,i(x
+
nj)| ≤

1√
2πx+

njvn

n−1Mn ≤ 1√
2πanvn

n−1Mn,

whenever vn → 0. Moreover, for any fixed j, 1 ≤ j ≤ νn, Ln,i(x
+
nj) is a bounded triangular

array of martingale differences with respect toFi. Behavior of this sequence may be studied
using the following lemma due to Laïb [22].

Lemma 6.5 Let {(Xi,Si) : i ≥ 1} be a sequence of martingale difference such that |Xi| ≤
B a.s. for 1 ≤ i ≤ n. For all ε > 0, one has

P

{
max
1≤i≤n

∣∣∣
i∑

j=1

Xj

∣∣∣ > ε

}
≤ 2 exp

(
− ε2

2nB2

)
.
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Applying the above lemma we have for any λ > 0

P{T3n ≥ λ} ≤ 2νn exp
(−πλ2annv2

nM−2
n

)
. (6.22)

The result in (6.21) now follows from Borel-Cantelli Lemma and the condition (3.5).

Proof of Theorem 3.1. The proof follows from decomposition (6.1), propositions 6.1 to 6.3
and lemmas 6.1 to 6.4.

Proof of Theorem 3.2.

Part (i). We have from (6.1) that for any x > 0

√
nvn

(
m̃n(x)−m(x)− B̃n(x)

)
=

Rn(x+)

fn(x+)
− An(x+), (6.23)

where

Rn(x+) =
√

nvn

(
(hn(x+)− hn(x+))−m(x)(fn(x+)− fn(x+))

)

and

An(x+) =
√

nvn
B̃n(x)(fn(x+)− fn(x+))

fn(x+)
.

Let

ηni =
(vn

n

)1/2

[(φ(Yi)−m(x))Qx+εn,vn(Xi)] and ξni = ηni − E [ηni|Fi−1] .

Then Rn(x+) =
∑n

i=1 ξni.

We will show that An(x+) = oP(1) and fn(x+)
P−→ f(x) as n → ∞. Therefore, a

central limit theorem for the left hand-side of (6.23) may be obtained if we establish the
asymptotic normality for the quantity Rn(x+). Lemma 6.6 below gives the weak consis-
tency of the estimator fn(x+).

Lemma 6.6 . Assuming that (A0)-(A2) hold true, we have

fn(x+)− f(x) = oP(1) as n →∞.

30



Proof of Lemma 6.6. The result given in the above lemma follows from a direct applications
of Lemma 2.1 in conjunction with Lemma 6.5.

The following Lemma gives the asymptotic behavior of An(x+).

Lemma 6.7 . In addition to conditions (A0)-(A3), assume that f(x) > 0 at a given x ≥ 0.
Then we have

An(x+) = oP(1) as n →∞.

Proof of Lemma 6.7. Arguing as in the proof of Proposition 6.3 below, letting m(x) = 0
and φ(Yi) ≡ 1, we get for any x > 0, under condition (A2), the following central limit
theorem for the density estimator,

√
nvn(fn(x+)− fn(x+)

D→ N
(

0,
f(x)

2
√

πx

)
.

Thus, fn(x+) − fn(x+) = OP(1/
√

nvn) and Lemma 6.6 yields An(x+) = OP(1)|B̃n(x)|
as n →∞. The result then follows from Proposition 6.1.

Proposition 6.4 Assuming conditions (A0), (A2) and (A6)(i) hold true, we have for a given
x ≥ 0 that

Rn(x+)
D−→ N (

0, τ 2(x)
)
, (6.24)

where

τ 2(x) =
f(x)

2
√

πx
(W2(x)−m2(x)).

Proof of Proposition 6.4. Observe that for any fixed x, the summands in Rn(x+) form a
triangular array stationary martingale differences with respect the sigma field Fi−1, we can
then apply a CLT for discrete-time arrays of real-valued martingales, as given for instance
in [Hall and Heyde[19], page 23], to prove the asymptotic normality of Rn(x+). This will
be done, if we check the following two conditions:

a)
∑n

i=1 E [ξ2
ni|Fi−1]

P−→ τ 2(x) (limiting variance)
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b) nE
[
ξ2
niI[|ξni|>ε]

]
= o(1) holds true for any ε > 0 (Lindeberg condition).

Checking of the condition a). Observe that
∣∣∣∣∣

n∑
i=1

E
[
η2

ni|Fi−1

]−
n∑

i=1

E
[
ξ2
ni|Fi−1

]
∣∣∣∣∣ ≤

n∑
i=1

(E [ηni|Fi−1])
2 .

Using Cauchy-Schwarz inequality we may write

|E [ηni|Fi−1] |2 ≤ vn

n

(∫ ∞

0

(m(t)−m(x))2Qx+εn,vn(t)dt

)

×
(∫ ∞

0

f 2(t|Fi−1)Qx+εn,vn(t)dt.

)

Moreover, conditions (A1) and (A2) lead to

n∑
i=1

(E [ηni|Fi−1])
2 ≤ vn

∫ ∞

0

(m(t)−m(x))2Qx+εn,vn(t)dt

×
∫ ∞

0

(
n−1

n∑
i=1

f 2(t|Fi−1

)
Qx+εn,vn(t)dt

→ 0 as n →∞.

This is because, by Lemma 2.1 the first integral goes to 0 and the second one converges
almost surely to f 2(x), which is bounded, in view of condition (A2) together with Lemma
2.1. Condition a) follows then , if we prove

n∑
i=1

E
[
η2

ni|Fi−1

] P−→ τ 2(x). (6.25)

We have

n∑
i=1

E
[
η2

ni|Fi−1

]
=

vn

n

n∑
i=1

E
[
W2(Xi)Q

2
x+εn,vn

(Xi)|Fi−1

]

−vn

n

n∑
i=1

E
[
m(x)(2m(Xi)−m(x))Q2

x+εn,vn
(Xi)|Fi−1

]

= J1n(x) + J2n(x). (6.26)
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The quantity J1n(x) can be be split as follows

J1n(x) = vn

∫

R+∗
W2(t)Q

2
x+εn,vn

(t)

[
1

n

n∑
i=1

f(t|Fi−1)− f(t)

]
dt

+vn

∫

R+∗
W2(t)Q

2
x+εn,vn

(t)f(t)dt. (6.27)

By (A2), the term in brackets in (6.27) goes to 0 a.s. uniformly in t. Moreover,

vn

∫
R+∗

W2(t)Q
2
x+εn,vn

(t)dt is bounded above by

vn sup
t

Qx+εn,vn(t)

∫

R+∗
W2(t)Qx+εn,vn(t)dt ≈ 1√

2πx
W2(x)

since by Lemma 2.1
∫
R∗+

W2(t)Qx+εn,vn(t)dt → W2(x) as n → ∞. This implies that the
first member in J1n(x) goes to 0 a.s. as n → 0. The second member in (6.27) can be split
as

vn

∫

R∗+
(W2(t)f(t)−W2(x)f(x)Q2

x+εn,vn
(t)dt + vn

∫

R∗+
W2(x)f(x)Q2

x+εn,vn
(t)dt. (6.28)

To analyze the first term we prove the following lemma that can be easily established
using Stirling’s approximation.

Lemma 6.8 We have for any p ≥ 0 and m ≥ 1

∫ ∞

0

tpQm
x+εn,vn

(t)dt =
( 1

v2
n(x+ε8n)

)m/v2
n

(
m

v2
n(x+εn)

)((m/v2
n)+p+1−m)

.
Γ(m/v2

n + p + 1−m)

Γm(1/v2
n)

≈ 1√
m(2π)m−1

1

vm−1
n (x + εn)m−p−1

1√
1− v2

n(m−p−1
m

)
, as (vn, εn) → (0, 0). (6.29)

Use of a Taylor expansion of order one for the function t 7→ (W2f) and formula (6.29)
one can show that the first member in (6.28) tends to 0 as n → ∞. Therefore, as εn → 0,
we have

J1n(x) ≈ f(x)W2(x)

2
√

π x
a.s. as n →∞. (6.30)
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We now need to study the asymptotic behavior of the second member J2n(x). Observe
that

J2n(x) = −vn

∫

R+∗
(2m(t)−m(x))

(
n−1

n∑
i=1

f(t|Fi−1)− f(t)

)
dt

− vnm(x)

∫

R+∗
(m(t)−m(x)) Q2

x+εn,vn
(t)f(t)dt

− vnm(x)

∫

R+∗
(m(t)f(x)−m(x)f(x)) Q2

x+εn,vn
(t)f(t)dt

− vnm(x)2f(x)

∫

R+∗
Q2

x+εn,vn
(t)dt. (6.31)

Using the same argument as above we can easily see that J2n(x) is a.s. asymptotically
equivalent, as εn → 0, to −f(x)m2(x)

2
√

π x
. That is

J2n(x) ≈ −f(x)m2(x)

2
√

π x
a.s. n →∞. (6.32)

Then (6.25) follows from (6.30) and (6.32).

The Lindeberg condition results from Corollary 9.5.2 in Chow and Teicher[8] which
implies that nE[ξ2

niI(|ξni| > ε)] ≤ 4nE[η2
niI(|ηni| > ε/2)].

To check the above condition, let p > 1 and q > 1 be real numbers such that p−1+q−1 =
1. Making use of Hölder and Markov inequalities one can write for all ε > 0

E[η2
niI(|ηni| > ε/2)] ≤ E|ηni|2p

(ε/2)2p/q
.

Taking 2p = 2 + δ and conditioning by X1, we get by condition (A6)(i) that

4nE[η2
niI(|ηni| > ε/2)] = O(1) n−δv(2+δ)/2

n E
[
|(φ(Yi)−m(x))Qx+εn,vn|2+δ

]

= O(1) n−δ/2v(2+δ)/2
n

[
E (φ(Y1)E (Qx+εn,vn(X1) |X1))

2+δ + E(m(x)Qx+εn,vn)2+δ
]

= O(1) n−
δ
2 v

2+δ
2

n

[∫

R∗+
W 2+δ(t)Q

2+δ
x+εn,vn

(t)f(t)dt + m2+δ(x)

∫

R∗+
Q2+δ

x+εn,vn
(t)f(t)dt

]
. (6.33)

The first term in square brackets in (6.33) can be written U1n + U2n where

U1n = O(1) n−
δ
2 v

2+δ
2

n

∫

R∗+
W 2+δ(x)f(x)Q2+δ

x+εn,vn
(t)dt. (6.34)
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and

U2n = O(1) n−
δ
2 v

2+δ
2

n

[∫

R∗+

(
W 2+δ(t)f(t)−W 2+δ(x)f(x)

)
Q2+δ

x+εn,vn
(t)dt

]
(6.35)

Thus using the approximation formula given in (6.29), U1n becomes

O(1)n−δ/2v(2+δ)/2
n

[∫

R∗+
W 2+δ(x)f(x)Q2+δ

x+εn,vn
(t)

]
= O(1)(nvn)−δ/2, (6.36)

that converges to 0 as n → ∞, since then nvn → ∞. Also, by continuity of the function
t → W 2+δ(t)f(t) one can see that U2n converges to 0 as n →∞. This implies that the first
term of (6.33) converges to 0 as n → ∞. Similarly, one can show that the second term in
(6.33) is asymptotically negligible. This completes part (i) of the proof of Theorem 3.1.

Proof of Part (ii). To prove (ii) we need an estimate of the rate of convergence in probability
of the bias term. This is the subject of the following Lemma.

Lemma 6.9 Suppose that (A0), (A1), (A2), (A4)(i) and (A6)(ii) hold and the condition (2.6)
is satisfied. Then we have

|B̃n(x)| = OP
(
max

(
max(v2

n, εn

)
, n−1)

)
= OP

(
max(v2

n, εn)
)
. (6.37)

Proof of Lemma 6.9. It suffices to give an estimate of the convergence rate of the quantity
hn(x+)− h(x) appears in (3.3). To this end write

hn(x+)− h(x) =
(
hn(x+)− E(hn(x+))

)
+

(
E(hn(x+))− h(x)

)
. (6.38)

Making use of (A4)(i) one may write

hn(x+)− E(hn(x+)) =
1

n

∫

R+

m(t)Qx+εn(t)

[
n∑

i=1

f(t | Fi−1)− nf(t)

]
dt

=
1

n

∫

R+

m(t)Qx+εn, vn(t)Hn(t)dt, (6.39)

where Hn(t) :=
∑n

i=1 f(t |Fi−1) − nf(t). Here we quote a result from Wu [32] that is
useful in the analysis of the difference in (6.39).

35



Lemma 6.10 [Wu [32]] For any y ∈ Rd let Hn(y) =
∑n

i=1 f(y|Fi) − nf(y). Then con-
dition (2.6) implies that supy ‖Hn(y)‖2

2 = O(n).

It follows from Cauchy-Schwarz inequality and Lemma (6.10) that

E
[∣∣hn(x+)− E(hn(x+))

∣∣2
]
≤ 1

n2
.
[
E

(
H2

n(t)
)] (∫

R+

m(t)Qx+εn(t)dt

)2

= O(n−1)

(∫

R+

m(t)Qx+εn(t)dt

)2

. (6.40)

In order to deal with the last term in small brackets in (6.40) recall that Qx+εn,vn(t) =
(1/(x + εn)qvn(t/(x + εn)), where qvn(·) is the gamma density function with mean 1 and
variance v2

n. Thus, we have, by the Taylor expansion of m(·)
∫ ∞

0

Qx+εn,vn(t)m(t)dt =

∫ ∞

0

qvn(s)m((x + εn)s)ds

=

∫ ∞

0

qvn(s)[m(x) + (x(s− 1) + sεn))m′(x) +
(x(s− 1) + sεn))2

2
m′′(x)

+o
(
(x(s− 1) + sεn))2)]ds

= O(1) + O(v2
n) + O(εn) + O

(
max(v2

n, εn)
)

= O(1) + O
(
max(v2

n, εn)
)

= O(1). (6.41)

Thus E
[∣∣hn(x+)− E(hn(x+))

∣∣2
]

= O(n−1). By the same argument as above one can

easily see that (E(hn(x+))− h(x)) = O (max(v2
n, εn)). These lead to the desired result.

Proof of Part (iii). The proof is similar to that of part (ii).

Proof of Proposition 3.1.

Write mn(x+) = rn(x+)/fn(x+), x ≥ 0 and note that

mn(x+)−m(x) = (hn(x+)/fn(x+))−m(x)

= (1/fn(x+))(hn(x+)−m(x)f(x))− (m(x)/fn(x+))(fn(x+)− f(x)).

Thus we may approximate

MSE(x) : = E(mn(x+)−m(x))2

≈ 1

(f(x))2
E(hn(x+)−m(x)f(x))2 +

m2(x)

(f(x))2
E(fn(x+)− f(x))2

=
E(A2

n(x))

f 2(x)
+

m2(x)

(f(x))2
E(D2

n(x)). (6.42)

36



Here, the product term−2(m(x)/f 2(x))E[(hn(x+)−m(x)f(x))(fn(x+)−f(x))] has been
ignored because by the Cauchy-Schwarz inequality

|E[(r+
n (x)−m(x)f(x))(fn(x+)− f(x))]|

≤
√
E(hn(x+)−m(x)f(x))2

√
E(fn(x+)− f(x))2

≤ max{E[(hn(x+)−m(x)f(x))]2,E[(fn(x+)− f(x))]2}.
Now write

An(x) = (hn(x+)− hn(x+)) + (hn(x+)− h(x)),

where h(x) = m(x)f(x). We have then approximately (ignoring the product term as above)

E(A2
n(x)) ' E(hn(x+)− hn(x+))2 + E(hn(x+)− h(x))2 = I1n(x) + I2n(x).

Moreover, it follows from (6.38), (6.39), (6.40) and (6.41) that

I2n(x) = O(n−1) + (E[hn(x+)− h(x+)]2) = O(n−1) + (bias(hn(x+))2.

Therefore,
E(A2

n(x)) ' E(hn(x+)− hn(x+))2 + +(bias(hn(x+))2.

Next let W2(t) = E(Y 2
1 |X1 = t) and Zin = YiQx+εn,vn(x) − E [YiQx+εn,vn(x) |Fi−1] ,

then we have E(ZniZnj) = 0 for i 6= j, and

E(hn(x+)− hn(x+))2 ' n−2

n∑
i=1

E(Z2
in)

≈ n−1E(Y 2
1 Q2

x+εn,vn
(X1))

= n−1(x + εn)−2

∫ ∞

0

W2(t)q
2
vn

(t/(x + εn))f(t)dt,

= n−1(x + εn)−1

∫ ∞

0

W2(t(x + εn))f(t(x + εn))q2
vn

(t)dt

(6.43)

To further approximate the integral in the final expression above, we provide a result which
can be easily proved using the Stirling approximation and routine calculations.

Lemma 6.11 The qvn(t) gamma density (with mean 1 and variance v2
n) satisfies

q2
vn

(t) =
(v2

n/2)(2/v2
n)−1Γ((2/v2

n)− 1)

(v2
n)(2/v2

n)Γ2(1/v2
n)

t(2/v2
n)−2 exp(−2t/v2)

(v2
n/2)(2/v2

n)−1Γ((2/v2
n)− 1)

(6.44)

= O(v−1
n )gα,β(t),

(6.45)

where gα,β(t) is a Gamma density with α = (2/v2
n)− 1 and β = v2

n/2.
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Provided W2(·) and f(·) are continuous,
∫∞
0

W2(t(x + εn))f(t(x + εn))gα,β(t) →
W2(x)f(x) as n → ∞, then it follows from Lemma (6.11) that we can write the above
equation as

E(hn(x+)− hn(x+))2 ≈
{

(nvnx)−1W2(x)f(x) if x > 0,
(nvnεn)−1W2(0)f(0) if x = 0,

Further,

bias(h+
n (x)) = E(Y1Qx+εn,vn(X1))−m(x)f(x)

= (x + εn)−1

∫ ∞

0

m(t)qvn(t/(x + εn))f(t)dt−m(x)f(x)

=

∫ ∞

0

[h(t(x + εn))− h(x)]qvn(t)dt, where h(x) = m(x)f(x),

=

∫ ∞

0

[(x(t− 1) + εnt)h
′(x) + (1/2)(x(t− 1) + εnt)2h′′(x)]qvn(t)dt + θn(x),

where θn(x) denotes the 3rd and higher order terms of the Taylor’s expansion used above.
This can be further simplified to yield

bias(h+
n (x)) = xh′(x)

∫ ∞

0

(t− 1)qvn(t)dt + εnh
′(x)

∫ ∞

0

tqvn(t)dt

+(1/2)x2h′′(x)

∫ ∞

0

(t− 1)2qvn(t)dt + xh′′(x)εn

∫ ∞

0

t(t− 1)qvn(t)dt

+(1/2)ε2
nh′′(x)

∫ ∞

0

t2qvn(t)dt + θn(x)

= εnh′(x) + (1/2)v2
nx

2h′′(x) + εnv2
nxh′′(x) + (1/2)ε2

n(1 + v2
n)h′′(x) + θn(x)

≈ εnh′(x) + (1/2)v2
nx

2h′′(x). (6.46)

The final expression is obtained using the facts that
∫ ∞

0

tqvn(t)dt = 1,

∫ ∞

0

(t− 1)2qvn(t)dt = v2
n,

∫ ∞

0

t2qvn(t)dt = v2
n + 1,

and ignoring higher order terms. The expectation E(D2
n(x)) in the right hand side of (6.42)

may be handled similarly by taking Y = 1 and h(x) = f(x). The expression of the MSE
then follows from (6.42), (6.43) and (6.46).

Proof of Theorem 4.1. We only give the proof when p = 2. The proofs of Lemma 6.6 and
Lemma 6.7 remain still intact since Lemma 2.1 also holds on R+p. Let now g be a function
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defined on R+p that possesses continuous bounded partial derivatives of order one at each
point of an open set S ⊂ R+p. Then for each point (s, t), (s, t) 6= (x + ε1n, y + ε2n) :=
(x+, y+), for the line segment L((s, t), (x+, y+)) joining (s, t) and (x+, y+) in S, we have

∫

R+d

g(s, t)Q2
(x+εn1,y+εn2),v(s, t)dsdt = I1n + I2n, (6.47)

where

I1n =

∫

R+p

[g(s, t)− g(x+, y+)]Q2
(x+ε1n,y+ε2n),v(s, t)dsdt

≈
∫

R+p

[
(s− x+)

∂g

∂x+
(x+, y+)− (t− y+)

∂g

∂y+
(x+, y+)

]
Q2

x+ε1n,v(s)Q
2
y+ε2n,v(t)dsdt

converges to 0 as n → ∞, in view of (6.29), whenever the partial derivatives of g are
bounded. Using again (6.29) and the continuity of g, we get

I2n =

∫

R+d

g(x+, y+)Q2
(x+εn1,y+εn2),v(s, t)dsdt ≈ g(x, y)

1

4πv2xy

as (ε1n, ε2n) → (0, 0). To complete the proof, it suffices to replace in the proof of Proposi-
tion 6.4, vn by vp

n and to apply the above result with g(s, t) = W2(s, t)f(s, t) in (6.28) and
g(s, t) = m(s, t)f(s, t) in (6.31) and finally g(s, t) = W2+δ(s, t)f(s, t) in (6.33).
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