

A Virtualized Infrastructure for IVR Applications as

Services

Christian Azar

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montréal, Québec, Canada

November 2011

© Christian Azar, 2011

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Christian Azar

Entitled: “A Virtualized Infrastructure for IVR Applications as Services”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. R. Raut

 __ Examiner, External

 Dr. J. Rilling, CSE To the Program

 __ Examiner

 Dr. F. Khendek

 __ Supervisor

 Dr. R. Glitho

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ___________________________________

 Dr. Robin A. L. Drew

 Dean, Faculty of Engineering and

 Computer Science

iii

ABSTRACT

A Virtualized Infrastructure for IVR Applications as Services

Christian Azar

Interactive Voice Response (IVR) applications are ubiquitous nowadays. Automated

attendant, bank teller and automated surveys are a few of many applications requiring

IVR capabilities. Cloud computing is a paradigm gaining a lot of momentum. It has three

major service models: Infrastructure as a service – IaaS, Platform as a service – PaaS, and

Software as a Service – SaaS. It offers also several inherent benefits such as scalability,

resource efficiency and easy introduction of new functionality. However, very few, if

any, IVR applications are offered today in cloud-based settings despite of all its potential

benefits.

This thesis deals with IaaS. Accordingly, we propose a novel architecture for a

virtualized IVR infrastructure that relies on RESTFul Web services. The architecture

proposes IVR substrates that are virtualized, composed, and assembled on the fly to build

IVR applications. As a proof of concept, we have implemented an IaaS prototype on

which performance measurements have been done to evaluate our architecture concept.

In addition, a simple proof of concept PaaS consisting of a graphical user interface (GUI)

has been built to enable the development and management of simple IVR services in the

SaaS layer.

iv

Acknowledgments

This thesis is a part of research work done in the Telecommunication Service

Engineering (TSE) research lab. It is a great pleasure to express my sincere gratitude to

all the persons who helped me throughout my thesis.

First and foremost, I owe my deepest gratitude to my supervisor Dr. Roch Glitho for all

his support, assistance and guidance. This work would not have been possible without his

encouragement, advices and countless drafts reviewed. It was a great pleasure working

and learning from him during both research and thesis writing periods.

I’m grateful to Dr. Khendek, Dr. Raut, and Dr. Rilling for serving as members of my

thesis committee and for their valuable comments and feedbacks on my thesis.

I also offer my gratitude to Dr. Fatna Belqasmi and Dr. Nadjia Kara for their

collaborations, supports, and ideas throughout my research work. It is been a real

pleasure working with you.

I am thankful for my colleagues at the TSE lab and all my friends in Canada for all their

helps and suggestions. I have been fortunate to work with you.

Furthermore, I would like to acknowledge Concordia University and Dr. Roch Glitho for

their financial support during my research study at Concordia.

Finally, the most special thanks go to my dearest family and my beloved girlfriend for

their love and faith in me.

Thank you. This work is truly also yours!

v

Table of Contents

List of Figures ... viii

List of Tables ... x

List of Acronyms and Abbreviations ... xi

1 Introduction .. 1

1.1 Research Domain ... 1

1.2 Motivation and Problem Statement ... 3

1.3 Thesis Contributions .. 4

1.4 Thesis Organization ... 5

2 Background Information... 7

2.1 Interactive Voice Response ... 7

 2.1.1 Definition ... 8

 2.1.2 Features .. 8

 2.1.3 Benefits... 10

 2.1.4 Applications ... 10

 2.1.5 Related challenges .. 12

2.2 Cloud Computing .. 13

 2.2.1 Overview ... 14

 2.2.2 Cloud Computing Architecture ... 14

 2.2.3 Characteristics ... 20

2.3 Virtualizations ... 21

 2.3.1 Overview .. 21

 2.3.2 Virtual Machine Manager .. 22

 2.3.3 Benefits... 23

2.4 RESTful Web services... 24

 2.4.1 Overview .. 24

 2.4.2 REST methods.. 25

 2.4.3 Web Application Description Language (WADL) 26

2.5 Chapter summary ... 28

vi

3 Requirements and State of the art Evaluation .. 30

3.1 Requirements: Virtualized Infrastructure for IVR Applications as Services 31

 3.1.1 General Requirements .. 31

 3.1.2 Virtualized IaaS requirements .. 32

3.2 State of the Art: Virtualized Infrastructure for IVR Application as Services 34

 3.2.1 Related Work.. 34

 3.2.2 Evaluation summary ... 39

3.3 Chapter summary ... 41

4 Proposed Architecture ... 42

4.1 General Overview .. 43

4.2 Business model .. 44

4.3 Architecture ... 47

 4.3.1 Overview .. 48

 4.3.2 Entities .. 48

 4.3.3 Planes functionality .. 49

 4.3.4 Interfaces .. 50

 4.3.5 Operational Procedures .. 51

4.4 Chapter summary ... 55

5 Validation: Prototype and Evaluation ... 57

5.1 Overall Software architecture .. 58

 5.1.1 Software description ... 58

 5.1.2 Software Operational Procedures ... 63

5.2 Prototype Design and Implementation .. 67

 5.2.1 General assumptions .. 68

 5.2.2 Prototype architecture .. 68

 5.2.3 Environmental settings ... 69

 5.2.4 Software Tools ... 70

 5.2.5 Simple experimentation.. 77

5.3 Preliminary Validation and Performance Evaluation .. 79

 5.3.1 Testing Scenario ... 79

 5.3.2 Measurements setup and analysis .. 85

5.4 Chapter summary ... 89

vii

6 Conclusion and Future Work ... 90

6.1 Summary of the Contributions .. 90

6.2 Future Work ... 92

Bibliography .. 94

viii

List of Figures

Figure 2.1: Bank IVR Flow Chart... 11

Figure 2.2: Application Server and Media Server interaction .. 13

Figure 2.3: Cloud Computing Architecture .. 15

Figure 2.4: Cloud Business model .. 17

Figure 2.5: Difference between environments .. 23

Figure 2.6: REST Web services design structure ... 25

Figure 2.7: WADL file sample ... 28

Figure 3.1: Design of a Videoconference as a Service ... 35

Figure 3.2: Cloud Conference Room .. 36

Figure 3.3: Software Structure .. 37

Figure 4.1: Different services share the same substrates .. 43

Figure 4.2: Proposed business model.. 45

Figure 4.3: Business model Sequence diagram .. 47

Figure 4.4: Overall architecture .. 48

Figure 4.5: Substrate publication and discover ... 52

Figure 4.6: Service activation ... 53

Figure 4.7: Service Execution ... 54

Figure 5.1: Overall Software architecture ... 58

Figure 5.2: Creation phase .. 63

Figure 5.3: Activation phase ... 65

Figure 5.4: Execution phase .. 66

Figure 5.5: Execution call flow ... 67

Figure 5.6: General Prototype architecture ... 69

Figure 5.7: DSM state machine .. 71

Figure 5.8: DSM example ... 72

Figure 5.9: SEMS configuration ... 72

Figure 5.10: DSM configuration ... 74

Figure 5.11: XEN architecture .. 75

Figure 5.12: Announcement player WADL file ... 78

ix

Figure 5.13: Automated Attendant Flow chart ... 79

Figure 5.14: Platform Provider GUI ... 80

Figure 5.15: Platform Provider Connect ... 81

Figure 5.16: Platform provider Discover .. 82

Figure 5.17: Platform provider Compose ... 82

Figure 5.18: Platform provider Create .. 83

Figure 5.19: Platform Provider Activate ... 84

Figure 5.20: Platform Provider Publish .. 84

Figure 5.21: Platform Provider Re-discover ... 85

x

List of Tables

Table 3.1: Derived Requirements ... 33

Table 5.1: Xen Server general properties ... 76

Table 5.2: Composition plane performance measurements .. 87

Table 5.3: Execution plane performance measurements .. 88

xi

List of Acronyms and Abbreviations

API Application Programming Interface

AS Application Server

CPU Central Processing Unit

DSM Donkey State Machine

GUI Graphical User Interface

HTTP Hyper Text Transport Protocol

IaaS Infrastructure as a Service

InfP Infrastructure Provider

IP Internet Protocol

ISS IVR Service Substrate

IVR Interactive Voice Response

JSON JavaScript Object Notation

MS Media Server

MSCML Media Server Control Markup Language

OS Operating System

PaaS Platform as a Service

PP Platform Provider

REST Representational State Transfer

RTP Real Real-time Transport Protocol

RTT Round Trip Time

SaaS Software as a Service

xii

SEMS SIP Express Media Server

ServP Service Provider

SII Substrate IVR Instance

SIP Session Initiation Protocol

TTS Text To Speech

URI Uniform Resource Identifier

VMM Virtual Machine Monitor

VoIP Voice over IP

VXML Voice Extensible Markup Language

WADL Web Application Description Language

WLAN Wireless Local Area Network

XML Extensible Markup Language

1

Chapter 1

Introduction

This chapter provides a brief overview of the key concepts and ideas of this thesis. It

discusses the motivation and identifies the problems that this research project addresses.

Then, it lists the contributions and concludes by summarizing the thesis outline.

1.1 Research Domain

Interactive Voice Response (IVR) is a telephony technology that enables interactions

with automated information systems. Its applications are numerous. One example is

automated attendants, which replace live receptionists by transferring callers to the

appropriate extensions they dial. Another example is automated meter readers that

provide fully automated dialogs, which enable utilities customers to remotely enter their

2

meter readings. There are several other examples including automated surveys, bank

tellers and clinical trials.

Cloud computing is a promising paradigm with many inherent advantages, such as the

easy introduction of new applications, resource efficiency, and scalability. There is not

yet a standard technical definition for cloud computing. However, a consensus is

emerging around the most critical facets it encompasses: Infrastructure as a Service

(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [1].

Service providers use platforms offered as PaaS by platform providers to develop and

manage applications on the fly. These applications are provisioned to end-users (or other

applications) as SaaS on a pay-per-use basis. PaaS add one or more levels of abstraction

to the infrastructures offered as IaaS by infrastructure providers. It provides environments

that ease development and management of applications at the SaaS layer. Infrastructures

are the actual dynamic pool of virtualized resources used to deploy the applications and

run the operating systems.

Virtualization is the basis of cloud computing [2]. A virtualized infrastructure enables the

co-existence of entities in general on the same substrates using software called hypervisor

or virtual machine monitor (VMM) [3]. These entities may be operating systems co-

existing on the same hardware, applications co-existing on the same operating system, or

even full-blown networks co-existing on the same routers. The key characteristic of

virtualization is the efficiency provided by maximizing the utilization of the underlying

computing resources at the infrastructure layer of the cloud computing paradigm.

3

1.2 Motivation and Problem Statement

IVR has become an interesting technology in telecommunication applications.

Nowadays, many industries rely on IVR applications and profit from its capabilities. In

the meanwhile, cloud computing is a fast moving paradigm with a lot of inherent

benefits. The motivation of this thesis is to exploit the benefit of cloud computing in

developing and managing IVR applications in the cloud. This will provide a novel value

added services for IVR service providers such as quick, easy, low-cost and on the fly

development of applications at the SaaS layer. In addition, it will enable infrastructure

providers at the IaaS layer to dynamically provision IVR substrates offered by different

substrate providers. Furthermore, the virtualized infrastructure will give infrastructure

providers the ability to instantiate on-demand these substrates and run them

simultaneously on a single hardware which will improve the sharing of computing

resources.

Several applications are offered today in cloud settings (e.g. enterprise databases, IT help

desks). However, these offerings very rarely include IVR applications, despite all the

obvious potential benefits, especially efficiency and scalability. One of the reasons is that

there may be some lack of knowledge about the design of IaaS for IVR applications.

For example, an announcement player offered as a substrate could be virtualized and

shared between different IVR applications such as automated survey, bank teller, and

several other applications. It could also be dynamically allocated to these applications for

scalability purposes. To the best of our knowledge, there is no full-fledged cloud

environment that enables the development, management and offering of the full range of

4

IVR applications. Therefore, the problem that this thesis will address is how to ease the

development and management of IVR applications in cloud with a focus on IaaS.

Specifically IaaS will be composed of a set of IVR substrates supplied by different

substrate providers.

1.3 Thesis Contributions

Cloud IVR applications are still an open research topic. However, this thesis constitutes a

new contribution in this research domain. Hence, the aim of this thesis is to propose a

novel architecture that relies on RESTFul Web services for a virtualized IVR

infrastructure as a first step towards the deployment of full-fledged IVR applications in

cloud-based settings.

The main contributions of this thesis are:

 Requirements for a virtualized infrastructure that ease the development and

management of IVR applications as services, which describe our major

challenges.

 Review of the most relevant state of the art in our research area with an evaluation

summary comparing to our derived requirements.

 A business model which introduces the IVR substrate provider at the

infrastructure layer as a new role in the cloud business model.

5

 A proposed architecture for a virtualized infrastructure for IVR applications as

services that focuses on IaaS, relies on the proposed business model, and satisfies

all our derived requirements.

 An overall designed software architecture based on the proposed architecture that

describes all the entities, planes functionality, interfaces, and operational

procedures.

 A proof of concept that demonstrates the architecture’s potential and includes a

subset of the software architecture along with a simple PaaS graphical user

interface.

 Preliminary performance measurements of the implemented prototype along with

the results evaluation.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 presents the basic concepts and definitions related to IVR, Cloud Computing,

Virtualizations and RESTFul Web services that will illustrate the basic ideas relevant to

this thesis.

6

Chapter 3 presents the derived requirements for having a virtualized infrastructure for

IVR applications. Also, in this chapter we review the most relevant state of the art in our

research area and evaluate them with respect to the derived requirements.

Chapter 4 introduces the proposed architecture for a virtualized IVR infrastructure along

with the business model, the architectural components and all the interfaces.

Chapter 5 is devoted to the software architecture and the design and implementation of

our prototype as a proof of concept where an automated attendant scenario is developed

using the platform provider GUI. Also, this chapter includes the preliminary

performance measurements.

Chapter 6 concludes the thesis by summarizing briefly the overall contributions, and

suggests some future work issues.

It is preferable to go through these chapters in sequence. A list of acronyms and

abbreviations used in this thesis is provided on page xi.

7

Chapter 2

Background on IVR, Cloud

Computing, Virtualization,

and RESTFul Web services

This chapter presents the essential background information on three main subjects

covered in this thesis proposition: Interactive Voice Response (IVR), Cloud Computing,

and Virtualization. It also gives a brief overview about RESTFul Web services as it is a

key technology of our proposed architecture.

2.1 Interactive Voice Response

This section starts by a brief definition of IVR. It states its well-known characteristics and

discusses their benefits. It also shows some of the applications that rely on IVR

8

capabilities and concludes by presenting some related IVR challenges. However,

although there is no refereed journal papers that fully address IVR benefits, capabilities

and applications, this section refers to few papers that partially handle specific function in

IVR. In addition it refers to the broadly known information of IVR in the telephony

technologies, which will provide readers the required information through the thesis.

2.1.1 Definition

Interactive Voice Response (or simply IVR) is a telephony technology that interacts with

end users through a configurable voice system. It is used to automate a wide range of

services and data requests [29]. It also offers several functionalities and has various

applications. It can be used in telephone counseling, message recording, balance inquiries

and other business areas [30]. On the other hand, the caller communicates with IVR using

a telephony interface (e.g. cell phone, soft phone) to hear instructions of IVR and the

phone keypad or voice commands [29] to respond to the IVR system.

2.1.2 Features

IVR features vary between one IVR systems to another. Usually, most of the IVR

systems are designed with specific capabilities and cannot be reusable [30]. However, at

a minimum, IVR system may offer the ability to play or record prompts, detect a key,

collect an extension, and transfer a call. In other words, an IVR application could be a

composition of these features depending on the requirements of each service provider.

9

IVR may also provide the ability to integrate some other advanced features such as:

 Database Interaction

IVR systems may require database interactivity to write or retrieve information

to/from a database to process the request of customers [29].

 Voice Recognition

Provide the ability to translate callers' voice command such as words [29] and

numbers into responses understandable and recognized by the IVR system instead

using the telephone keypad.

 Voice to Email

This feature takes a voice message from the caller and sends it to a preconfigured

email address [29].

 Voice Messaging

This capability gives the ability to caller to leave, retrieve and manage a

preconfigured voicemails system.

 Text to Speech (TTS)

TTS engine provide the ability to build the voice files of IVR [31] by simply

typing the message in a text field area. It permits for fast changes to a script with a

high quality sounding voice. Also, it eliminates the need to record prompts in IVR

system.

10

2.1.3 Benefits

The benefits of IVR applications are endless. By installing an IVR system, not only

clients will profit from this service, but also the service providers such as banks,

hospitals, and universities. With an IVR system, companies can reduce costs without the

need of human agents. Also, they can improve customer’s quality of service by providing

a self-service [29] to customers 24 hours a day, 7 days a week.

IVR reduce caller wait times, since an IVR can never be busy, which give it the ability to

server multiple users at the same time. In addition, IVR system can interact with multiple

databases in the same time and using the Text to Speech engine callers can get

information such as account balances, shipping details, and other information without any

pre-recording messages [29, 30].

Furthermore, using the voice recognition module, callers can spell names, make

reservation, and order products which makes customer interaction with the system quick,

and convenient [29]. Finally, via the voice to email features, users will have the ability to

access their voicemail from any internet machine which offer subscribers mobility and

flexibility.

2.1.4 Applications

IVR applications are numerous and ubiquitous nowadays. Banks and credit card

companies use IVR systems so that their customers can receive account information

easily without having to speak directly to a live agent. Figure 2.1 shows a sample flow

chart of a simple bank IVR.

11

Start

please enter your 16 digits account

number followed by you pin.

Press 1 for credit card balance, 2 for

bill payment or 3 for live agent

Yes

choice

If 1? If 3?

Get credit card balance

using TTS engine

Yes

Talk with live agent using call

transfer capability

Yes

No

If 2?

Get bill payment using TTS

engine

Yes

No No

No

Figure 2.1: Bank IVR Flow Chart

In this IVR application, the installed system asks the caller to enter the 16 digits account

numbers, followed by the pin. Afterwards, the system consult the database to check if the

account number correspond to the pin entered, if yes, it ask the customer to press 1 for

credit card balance, 2 for bill payment or 3 for a live agent, and if no, the system replay

the same prompt. Then, according to customer’s choice, the system either read the

balance or the payment amount from the database using the TTS module or route the call

to a live agent using the call transfer feature. Therefore, this IVR application integrates

play prompt, detect a key, text to speech, call transfer and database interaction features to

deliver to customers this composed IVR service.

Automated survey also makes use of IVR systems. It is used to gather data, where the

system make an outgoing call, then a recorded messages ask questions and requests some

12

answers, like "yes," or "no" using the speech recognition module or via the phone's

keypad by pressing 1 for yes, and 2 for no [29]. Moreover, call center [31, 29] make use

of IVR system for call routing and call forwarding. Also, IVR is used for selective

information lookup such as bus schedules, movie schedules and many more. Calling card

is another app, requiring the use of IVR features. Therefore, it is noticeable that IVR

applications are not restricted for special uses, but on the contrary, they are everywhere

and for everyone.

2.1.5 Related challenges

IVR applications require some level of media processing. End terminals may execute

media processing. However, centralized media processing server will offer more

efficiency and more benefits such as scalability and redundancy. Media Server (MS)

entity provides media processing for end users by mixing stream, converting media of

one encoding to another, playing prompts, collecting digits, and so on.

Although the RTP [36] streaming flows directly from MS to the end user, the signaling

flow such as SIP [37] does not, and an Application Server (AS) will act as a middle entity

to isolate one from the other from the signaling point of view.

An AS is an entity container for handling and executing services in network. AS control

MS using a control protocol (MSCML [38], VXML [39]) embedded in the body of the

signaling request. For example, the AS may request the MS to play a specific file to an

end user, where the name of the file is embedded in the body of the request. Here is a

figure that illustrate the idea.

13

Furthermore, an IVR platform is required which is the hardware of the servers, operating

systems and software on which IVR systems run. Also, in reality, a telephony

infrastructure also is included which covers the telephone lines and the call switching

equipment to process calls. Moreover, Database servers may exist on which the required

customer information can be found. Figure 2.2 shows the interaction between the

application server and the media server along with the media and the signaling flow

between them.

MSAS

(SIP,H.323) / (MSCML,VXML)

IP network

Signaling

(SIP,H.323)

Media

(RTP/RTCP)

Request

Response

Figure 2.2: Application Server and Media Server interaction

2.2 Cloud Computing

This section pays attention to the Cloud Computing paradigm. First of all, we present an

overview of the Cloud Computing concept. Then, we present the architecture of cloud

14

computing, in which we discuss the service models, the business model, and the types of

Cloud. Lastly, we present the characteristics of this paradigm.

2.2.1 Overview

Cloud computing is a newly emerging paradigm that host and provide services over the

internet with many inherent benefits [2]. However, so far Cloud does not have a coherent

and agreed definition [1]. In other words, there is not yet a standard technical definition

for cloud computing. Nevertheless, a consensus is emerging around the most critical

facets it encompasses: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),

and Software as a Service (SaaS) [1].

In addition, nobody denies that Clouds are a large interconnected pool of virtualized

resources that are sharable and accessible over a network, usually the Internet [1, 16].

These resources could be data, services, development platform, and/or hardware [1].

With Cloud Computing, resources are provided on demand dynamically, and on a pay per

use basis [24, 25]. These resources are placed in the cloud for many reasons such as

scalability, efficiency and costs [19, 1].

2.2.2 Cloud Computing Architecture

This section describes the service models of Cloud Computing paradigm, IaaS, PaaS, and

SaaS. It explains the business model of this paradigm, and concludes by listing the

different types of the existing clouds.

15

2.2.2.1 Service models

The architecture of a Cloud Computing paradigm can be divided into 3 layers: the

infrastructure layer - IaaS, the platform layer - PaaS, and the software layer - SaaS.

However, IaaS is composed of the actual computing hardware (resources) and the

infrastructure, PaaS of the platforms, and SaaS of the applications as illustrated in Figure

2.3.

Figure 2.3: Cloud Computing Architecture

 Infrastructure as a Service

The Infrastructure as a Service (IaaS) layer consists of two sub-layers: the

hardware layer and the infrastructure layer.

16

- Hardware layer

The responsibilities of this layer covers the managing of all the hardware

resources of the cloud such as CPU, memory, and including all the

physical servers and the network equipments such as routers, switches.

The hardware layer is implemented in data centers in which thousands of

servers are interconnected together with switches, routers or other fabrics

[2].

- Infrastructure layer

This layer is responsible for creating a pool of storage and virtualized

computing instances by partitioning the hardware resources using one of

the various virtualization technologies such as Xen [20] and VMware [21].

Besides, it is responsible for the dynamic resource allocation which is

made through virtualization technologies [1, 2].

 Platform as a Service

PaaS is the middle layer in the cloud paradigm. It enables developers to build

application on the fly. It is composed of operating systems and application

frameworks [2]. The purpose of the platform layer is to provide services for

developers [1]. it add some additional level of abstraction to the virtualized

resources offered by the infrastructure provider instead of supplying a virtualized

infrastructure [1, 2].

17

 Software as a Service

The SaaS is the top layer in the paradigm. It consists of the actual cloud

applications and provides them to the end users [1] through standardized

interfaces [2]. Based on the underlying resources, Cloud applications could

provide many features comparing to the traditional applications such as scaling,

availability, and cost [2].

2.2.2.2 Business model

Cloud computing rely on a service-driven business model. Specifically, physical

hardware and platform are offered as services on-demand to consumers. Besides, each

layer of Cloud computing architecture could provide a service to the layer above [2] as

shown in Figure 2.4.

Infrastructure Provider (IaaS)

Platform Provider (PaaS)

Service Provider (SaaS)

End User

Figure 2.4: Cloud Business model

18

 Infrastructure as a Service

IaaS provider is responsible for providing on-demand infrastructural resources

such as CPU and memory, usually in terms of VMs to the platform provider [2].

Amazon EC2 [22] and GoGrid [26] are two of the well-known IaaS providers.

 Platform as a Service

PaaS provider is responsible for providing platform layer resources, including

operating system and software development to the service provider [2]. Google

App Engine [23] and Salesforce [28] are two of the well-known Platform

provider that offers APIs to develop and run applications in the cloud.

 Software as a Service

SaaS provider is responsible for providing applications over the Internet to end

users [2]. Examples of SaaS providers include Rackspace [27].

2.2.2.3 Types of Cloud

There are various issues should be taken into account when moving an application into

the cloud such as reliability and security [2]. Consequently, cloud computing can be

classifies as public cloud, private cloud, hybrid cloud [15], and virtual private cloud [2].

Each type has its own characteristics that differentiate it from the other types.

http://force.com/

19

 Public clouds

It is a cloud in which service providers provide their resources to the external

parties [15]. However, this type lacks some control over data, network and

security settings [2].

 Private clouds

In contrast, this type is devoted to use by a single organization [16]. It may be

developed and organized by the organization itself or by external providers. This

type provides performance, reliability and security [2].

 Hybird clouds

A hybrid cloud shares resources between public cloud and private cloud to

address the problem of each approach [15, 2]. In other words, the service

infrastructure of a hybrid cloud runs in private and public cloud simultaneously.

The main benefit of hybrid clouds is that it provides more flexibility than both

public and private clouds [2].

 Virtual Private Cloud

It is another solution to address the limitations provided by both public and a

private cloud. It is actually a platform that runs on top of public clouds. However,

the only difference is that it allows service providers to create their own topology

and security level such as firewall [2].

20

2.2.3 Characteristics

Cloud computing provides many characteristics that differentiate it from traditional

paradigms hosting, which are summarized below [2]:

 Shared resource pooling

The infrastructure provider offers a pool of shared computing resources that can

be dynamically allocated to many resource consumers [2]. This feature provides

an unlimited storage capacity [15] for end user, as well as reduces the costs

associated with the maintenance of hardware and software resources [19, 1]. In

addition, this feature allows providers to get a high level of server consolidation

where resources are maximally utilized and reduce cost such as power

consumption and cooling [2].

 Utility-based pricing

Cloud computing employs a pricing model that lets you pay as you go [15].

Consequently, consumers are charged per-use basis for the rental period of

resources [2].

 Elasticity

Clouds provide on-demand resources. Therefore, Clouds should be elastic in

terms of capacity. In other words, computations that need more resources, simply

request them from the cloud [15].

21

 Dynamic resource provisioning

This feature provides efficiency in resource management [15]. With dynamic

resource provisioning, resources are obtained on-demand and released also on the

fly [2] in which there is no wastage of resources.

 Ubiquitous network access

Clouds resources are accessible through the Internet. Therefore, any device such

as laptop, ipad, and mobile connected to the internet, will be able to access

resources in the clouds [2]. Hence this capability provides mobility and maximum

service utility of the resources which increase performance [2].

2.3 Virtualizations

The role of virtualization in Clouds is a key component [1, 24]. In this section, we first

give a brief overview of the virtualization technology, and then we discuss the role of

Virtual Machine Monitor or Hypervisor in the virtualization environment. Lastly, we

mention the benefits of the virtualization technology.

2.3.1 Overview

Virtualization is the foundation technology of Clouds, as it is the basis for characteristics

such as, dynamic assignment and on-demand sharing of resources [1, 2]. Virtualization

22

provides virtual resources [2] instead of providing the actual ones. In other words,

virtualization enables the partitioning of the resources using virtualization technologies

such as Xen [20] and KVM [30] [2]. These resources could be operating systems

coexisting on the same hardware server, applications coexisting on the same operating

systems, or even networks coexisting on the same routes.

2.3.2 Virtual Machine Manager

In a virtualized environment, a piece of software called Virtual Machine Monitor (VMM)

or Hypervisor is added to the underlying compute resources to provide virtualization

[14]. This layer will improve the sharing and utilizing of the underlying resources in the

virtualized system.

In a virtualized environment, VMM takes complete control of virtualized resources [3].

With virtualization, it is possible to create multiple virtual machines and run them on a

single physical hardware to maximize utilization. Also, it enables the possibility to use

multiple instances of a single application and run them simultaneously on a single

physical server to improve application performance.

Figure 2.5 show the difference between a non-virtualized environments and a virtualized

one. In the first figure a single operating system owns all hardware resources while in the

second we notice that the hypervisor make it possible to run multiple instance of

operating systems the same physical server.

23

Hardware

Operating system

App App App

Hardware

VMM (Hypervisor)

OS1 OS2 OSn

App
App

App
App
App

App
App
App

App

Figure 2.5: Difference between environments

2.3.3 Benefits

Virtualization provides has various benefits. The major reason that consumers would

want to use virtualization technology is that it provides the maximum benefit out of a

server, which will reduce physical infrastructure costs and increase the space utilization

efficiency by the dynamic load balancing process [2]. This will help also in reducing

maintenance cost, power consumption and cooling requirements [2].

Another advantage of virtualization is that it gives consumers the choice to deploy a

variety of operating systems technologies at the same time on a single hardware platform

[14]. Also, it provide more security in isolating the physical server into multiple

independent guest virtual machines as they don’t interfere with each other which

guarantee availability of a computing system even when a guest OS fails [3].

24

2.4 RESTful Web services

RESTFul Web service is a key technology of our architecture. Accordingly, in this

section we first present an overview on RESTFul Web services, and then we discuss the

methods and the Web Application Description Language (WADL).

2.4.1 Overview

RESTful Web services follow the Representational State Transfer (REST) design

paradigm. REST uses the Web’s basic technologies (e.g. HTML, XML, HTTP, and

URIs) as a platform to build and provision distributed services. It is one of the players of

Web 2.0, a concept that promotes interactive information sharing and collaboration over

the Web, as well as Web application consumption by software programs. REST adopts

the client-server architecture. However, it does not restrict client-server communication

to a particular protocol, but more work has been done on using REST with HTTP, as

HTTP is the primary transfer protocol of the Web [17].

RESTful Web services can be described using the Web Application Description

Language (WADL [18]). A WADL file describes the requests that can legitimately be

addressed to a service, including the service’s URI and the data the service expects and

serves [17].

REST supports a wide range of representation formats, including plain text, HTML,

XML and JavaScript Object Notation (JSON). RESTful Web services are perceived to

be simple and easy for clients to use because REST leverages existing well-known Web

standards (e.g. HTTP, XML) and the necessary infrastructure has already become

pervasive.

25

RESTful Web services’ clients (i.e. HTTP clients) are simple and HTTP clients and

servers are available for all major programming languages and operating

system/hardware platforms [17].

2.4.2 REST methods

REST uses the HTTP methods [17]:

 POST to create a new resource on the server, where the server create the URI of

this resource

 PUT to modify a resource on the server

 GET to retrieve a representation of a resource

 DELETE to delete an existing resource

GET DELETEPUTPOST

Resource

URI

Representation1 Representation2 Representation3

Figure 2.6: REST Web services design structure

Figure 2.6 shows the REST web service diagram. Each resources is represented by one or

more representation and identified by a unique URI. REST use HTTP methods GET,

POST, PUT, and DELETE to interact with the service. Client initiaite a request to

26

servers, servers process the request and return appropriate responses. Client may use GET

for discovery and POST for publishing.

2.4.3 Web Application Description Language (WADL)

WADL is an XML-based data format that provides a machine process-able description of

HTTP-based Web applications [18]. These applications are specifically RESTFul web

services.

Applications are described in a machine process-able format using [18]:

 Set of resources provided by the application.

 Relationship between resources that links between them.

 Methods that can be applied to each resource.

 Resource representation formats.

The <application> element is the root of a WADL description and may has <doc>, and

<resources> as child elements. All the WADL elements have

“http://wadl.dev.java.net/2009.02” as XML namespace name [17].

<doc> child elements is used to document the base element. It has xml:lang and title as

attributes. xml:lang defines the language for the title attribute, whereas title describe the

elements being documented [18].

27

<resources> is the container for the all the resources provided by the application. It has a

base attribute which is the base URI for each child resource identifier. It has <resource>

as a child element, which describe the resources provided by the application [18].

<resource> element describes a set of resources where each one is identified by URI.

Each resource may have some optional attributes such as id, path, and type. Also, it may

have some child elements such as <doc>, <param>, and <method> [18].

<method> element describes the input to and output from an HTTP method that may be

applied to a resource. It has a name attribute that specify the HTTP method used such as

GET or PUT. Also it may has zero or more <request> and <response> child elements

[18].

<request> element specifies how to represent the input to be included when executing an

HTTP method to a resource. It has no attributes. However, it may have <doc>,

<representation>, and <param> as an optional child elements [18].

<response> describes the output from executing an HTTP method on a resource. It has

status as an optional attribute, and the same child elements of the <request> element [18].

<representation> decribes a representation of resource’s state. It has id, mediaType,

element, and profile as attributes [18].

<param> describes a parameterized component of a parent element. It has id, name,

style, type, path, fixed, and repeating as attributes [18].

28

Figure 2.7 shows a simple WADL file. A resource identified by a static URI:

http://localhost:8080 /msg. On executing a get method on this URI, the reply will be a

response of type text/plain.

<?xml version="1.0"?>

<application xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd">

 <resources base="http://localhost:8080">

 <resource path="/msg">

 <method name="GET" id="getMessage">

 <response>

 <representation mediaType="text/plain">

 </response>

 </method>

 </resource>

 </resources>

</application>

Figure 2.7: WADL file sample

2.5 Chapter summary

This chapter has presented an introduction for all the concepts and keywords that are

going to pass through this thesis. We first gave an overview about IVR and mentioned its

features, benefits, some of its application and the challenges for developing IVR

application.

Afterwards, we have discussed the cloud computing paradigm, its architecture, business

model and characteristics. Also we have provided an overview of virtualization

technology which is the foundation of cloud computing paradigm and lastly we have

29

presented a brief overview about RESTFul Web service technology. In the next chapter,

we are going to derive the set of requirements on having a virtualized infrastructure for

IVR applications and review the most relevant state of the art.

30

Chapter 3

A Virtualized Infrastructure for

IVR Applications as Services:

Requirements and State of the art

Evaluation

Existing IVR applications such as automated attendant or bank tellers can be offered in

cloud-based settings to provide various benefits. In this thesis, we are looking forward to

provide an IVR application as a service with a virtualized infrastructure. However, in

order to develop this integrated structure, a set of challenges and requirements should be

imposed and taken into account.

Accordingly, this chapter is composed of three sections. We first derive a set of

requirements for providing an IVR application as a service with a virtualized

infrastructure. Afterwards, we discuss some of the most existing related works in our

31

research area and evaluate these related works based on our requirements. Finally, a

summary is presented to reviews the main things mentioned in this chapter.

3.1 Requirements for a Virtualized Infrastructure

for IVR Applications as Services

This section is divided into two set of requirements for having a virtualized infrastructure

for IVR applications as service. We first present the general derived requirements for the

overall system. Then, in the second part, we discuss some specific requirements for

having a virtualized IaaS.

3.1.1 General Requirements

As it was discussed in Chapter 2, Cloud computing is a paradigm with three service

models: SaaS, PaaS, and IaaS. In addition, virtualization is a technology that enables the

coexistence of entities on the same hardware, network or virtual machine and allows

resources to be allocated dynamically on the fly. However, an IVR application offered in

cloud-based settings and with a virtualized infrastructure must meet challenging

requirements.

Therefore, our first requirement in our proposed architecture is that the broker should

enable publication and discovery of IVR substrates and IVR substrate instances. In

32

addition, it should enable each player (e.g. service provider), to discover the other players

(e.g. platform providers).

The second requirement we have in mind is that the platform provider on the top of the

infrastructure layer should be able to add some level of abstractions such as GUIs and

APIs to the substrates available in the infrastructure layer. Consequently, the service

provider in the SaaS layer should be able to compose the substrates available in the

infrastructure into powerful IVR applications, using appropriate platforms. The service

provider should also be able to manage the applications using the same platforms.

Let us suppose we have different IVR applications in different domains and composed by

different service provider. The last requirement is that the applications should be able to

share the same instances of substrates available in the infrastructure layer. Conversely, an

IVR application should also be able to use many instances of a same substrate, for

scalability.

3.1.2 Virtualized IaaS requirements

In addition to the general requirements mentioned in the first part, there are some other

specific requirements related to the virtualized IaaS layer.

First of all, with Cloud infrastructure, it should be possible to instantiate the composed

applications and its related substrate. However, the virtual substrates available in IaaS

could belong to the IaaS provider or third parties. This will enable the availability of a

wide range of virtual substrates.

33

As the next requirement, Infrastructure providers should offer the virtual substrates as

they are offered by substrates provider. Also it should be possible to offer the composed

services to end users or other applications.

Furthermore, with virtual infrastructure, the execution of composed virtual substrates

should be coordinated by the infrastructure provider and be transparent to the third parties

which would offer the substrates and are part of the composed service.

General

requirements

1. Ability to publish and discover substrates and

substrate instances

2. Platform provider should add some level of

abstractions to the substrates available in the

infrastructure

3. Service provider in the SaaS layer should be able to

compose the substrates

4. Different IVR applications in different domains should

be able to share the same substrates

5. IVR application should also be able to use many

instances of a same substrate

Virtualized

IaaS

requirements

1. Applications and substrates instantiation

2. Offering of substrate and newly composed

applications

3. Transparent execution to third parties

Table 3.1: Derived Requirements

Table 3.1 summarizes our general requirements as well as the IaaS specific requirements

discussed above.

34

3.2 Related Work and Evaluation on the Virtualized

Infrastructure for IVR Application as Services

Several commercial hosted IVRs such as call centres allow users to remotely access IVR

applications as services. However, to the best of our knowledge these applications do not

rely on virtualized infrastructures. Embryonic architectures have been proposed that

could offer a few applications, which may include selected IVR features, as services in

clouds. One example is conferencing that can include announcement player and digit

collector.

In this section we introduce some related works in our research interest, a virtualized

infrastructure for IVR applications as services. Afterwards, we evaluate these related

works based on our requirements.

3.2.1 Related Work

In this subsection, we organize the related works into two approaches: the cloud overall

approaches and IaaS approaches. The cloud overall approach includes the general

existence works related to our research interest while the infrastructure (IaaS) approaches

includes some specific IaaS related works that focuses more on the infrastructure

architecture.

35

3.2.1.1 Cloud overall approaches

P. Rodriguez et al. [6] propose a video conferencing application as SaaS, along with the

required supporting virtualized infrastructure. The goal is to ease the integration of video

conferencing with other applications such as facebook or igoogle. Therefore, according to

authors, users will be able to collaborate among themselves easily with audio, video,

share application, IM, etc. The proposal has some requirements, the main ones are: at

first, the management of users is the responsibility of the third parties ‘applications and

the second one is that the proposal should focus on conferences room only. The following

figure will illustrates the idea of the proposal.

Services

Rooms

user

user

user

RESTful API

Figure 3.1: Design of a Videoconference as a Service

Figure 3.1 models the architecture of a videoconference room provider where it shows

three resources, services, rooms, and users. The services are the third party’s applications

that want to use the rooms to give access to users in order to communicate in each of

these rooms, Facebook as an example. Rooms are the main resources and the virtual

36

instances where the users will collaborate among themselves with video and audio. Users

represent the third parties’ users who will communicate with others in each room. Also

REST web services API are used to GET, POST, PUT and DELETE resources between

the third parties application and the infrastructure layer.

However, the infrastructure described above is limited to one virtual full-blown video

conferencing server. The key drawback of the proposal is that it follows a very coarse-

grained approach. It does not provide an infrastructure with substrates that can be

published, discovered and dynamically shared as we envision in the architecture proposed

in this thesis. Furthermore it doesn’t offer service providers the ability to compose a

service. Finally, it does not include any IVR feature. It focuses only on the

videoconference room application.

The architecture defined in [7] is another example that also discusses audio/video

conferencing as SaaS. It was mentioned in [7]: “In our viewpoint, multimedia

conferencing can be also seen as a service called conference service. It is surely a

software application, which follows the concept of SaaS. In this way, we would not

worry about the size of conference, since the cloud's wonderful characteristics makes this

problem easy to resolve.”

Conference Room

Cloud

Conferencing

Figure 3.2: Cloud Conference Room

37

Accordingly, they propose the viability of cloud conferencing, and design a practical

framework. The centralized conferencing room shown in Figure 3.2 adopts a tightly

coupled structure, so when the number of participant increases, the conference room

enlarges its size by get resource from resource pool in cloud. When participants leave, the

resource would be returned to the pool.

Figure 3.3: Software Structure

Figure 3.3 shows the software architecture of the proposal. In this architecture, the

infrastructure virtualizes the server, storage, and the network.

However, this proposal also shares the drawbacks of the previous proposal in terms of the

infrastructure. In addition, no fine-grain substrate is proposed and the entire conferencing

server is virtualized. In other words, substrate providers don’t exist in the architecture,

and service providers are not able to develop their own applications.

38

3.2.1.2 IaaS approaches

Substrates have been proposed for virtualized infrastructures that support applications

with no bearing on IVR. Another related work is the infrastructure proposed for presence

service in [8]. “Presence service is used for the discovery, the retrieval of, and the

subscription to changes in end-users’ context information (e.g. on-line/off-line status,

willingness to communicate, locations).” That proposed architecture is composed of three

layers (a virtual presence service layer, a presence service virtualization layer, and a

presence substrate layer) and two planes (presence service and virtualization control and

management). It also includes a business model. However, the work is still at a

preliminary stage and thus far only one substrate has been identified for the application.

In addition, publication, discovery and composition have therefore not yet been

addressed. Accordingly, this architecture doesn’t support the composition and the

instantiation of new service.

Furthermore, several virtualized infrastructures have been proposed for Future Internet

[9, 10, 11]. These rely on virtualized nodes and links as substrates. However, they focus

on the core infrastructure of the Internet and do not address issues related to the

virtualization of the edge infrastructure of the Internet, where applications such as those

of IVR reside. Also, these references don’t support applications composition and

instantiation.

For example, in [11] authors discuss the network virtualization for future internet

architecture where new component are added to enable the coexistence of multiple

networking approach. In this article, they are evaluating the influence of virtualization on

39

the underlying network infrastructure in which it will allows the deployment of various

new architectures and protocols over this shared physical infrastructure.

Besides, a few architectures do deal with some of the issues related to application

development by composition in a cloud environment. However, none of them addresses

the specific case of IVR applications. Reference [12] provides an example. It targets

applications at large and proposes a virtualized mash up container. Application

substrates, called service components in the proposal, are described using existing

technologies such as REST, JSON, and RSSFeed. A service proxy maps these

descriptions into the internal description technology supported by the container.

Unfortunately, little detail is provided on this internal format. Furthermore, the specific

publication and discovery mechanisms are not discussed. Also the instantiation of the

composed service is not supported in the mentioned reference.

In [13] they provide another example. It proposes a virtualized infrastructure where

music content providers federate with value-added service providers (e.g. security, audit)

to build virtual music stores on the fly. Several registries (e.g. client, capability registry)

are mentioned in the paper. However, no detailed information is provided about how the

content of these registries is described, published and discovered.

3.2.2 Evaluation summary

After presenting the most relevant related works in our research domain, we can observe

that none of them fully satisfy our requirements.

40

Reference [6] does not provide an infrastructure with substrates that can be published,

discovered and dynamically shared. Furthermore it does not include any IVR feature. It

focuses only on the videoconference room application.

Reference [7] shares the drawbacks of the previous proposal in terms of the

infrastructure. In addition, no fine-grain substrate is proposed and the entire conferencing

server is virtualized.

Reference [8] focuses on the presence service. Also, publication, discovery and

composition have therefore not yet been addressed.

References [9, 10, 11] rely on virtualized nodes and links as substrates. However, they

focus on the core infrastructure of the Internet and do not address issues related to the

virtualization of the edge infrastructure of the Internet, where applications such as those

of IVR reside. Also, these references don’t support applications composition and

instantiation.

References [12, 13] deal with the composition process. However, it does not include IVR

features and no detailed information is provided about how the content of these registries

is described, published and discovered. Besides, it doesn’t support the instantiation of the

composed service.

41

Finally, we can conclude that there is no full-fledged cloud environment that enables the

development, management and offering of the full range of IVR applications.

3.3 Chapter summary

In this chapter, we have first derived a set of requirements consists of a set of general

requirements on which we built our architecture and some other virtualized IaaS

requirements in which we mentioned some of the expectations we are looking for in this

architecture. Also, in the second section we have presented some of the relevant works in

having a virtualized infrastructure for IVR applications as services, and then evaluated

these related works based on our requirements. In the next chapter, we will present our

proposed architecture based on the requirements presented in this chapter.

42

Chapter 4

Proposed Architecture1

In the previous chapter, we have derived the appropriate requirements for having a

virtualized infrastructure for IVR applications as services. Accordingly, the purpose of

this chapter is to propose a suitable architecture based on these derived requirements.

This chapter is organized into three sections. It starts with a general overview of the

proposal. Then, in the second section, it presents the proposed business model. Lastly, it

introduces the proposed architecture along with its entities, planes functionality,

interfaces, and operational procedures.

1
 This chapter is an extended version of the paper F. Belqasmi, C. Azar, M. Soualhia, N. Kara, and R.Glitho,

“A Virtualized Infrastructure for IVR Applications as Services”, accepted for presentation at the ITU
Kaleidoscope conference, Cape Town, December 2011.

43

4.1 General Overview

In this thesis, we propose a novel architecture for a virtualized IVR infrastructure as a

first step towards the development and management of full-fledged IVR application in

cloud settings.

Figure 4.1: Different services share the same substrates

 Figure 4.1 depicts our vision.

 The bottom layer shows a simplified IVR IaaS layer with the following

virtualized IVR substrates: announcement player, voice recorder, key detector,

extension detector, and call transfer.

 At the top layer, we have a simplified SaaS layer with applications such as

automated attendant, automated meter reader, automated survey, and IVR banking

that share the IVR substrates available in the infrastructure layer.

44

 The middle layer is the platform layer. PaaS adds some level of abstractions to the

substrates available in the virtualized infrastructure using graphical user interfaces

(GUIs) and application programming interfaces (APIs) that may ease the

development and management of the applications in the top layer.

Consequently, different applications in the SaaS layer will be able to share the same

substrates and also will be able to use several instances of the same substrates in the IaaS

layer to develop applications.

For example, an IVR banking service can be developed by composing the announcement

player, key detector, extension detector and call transfer. In addition, an automated

survey service can be developed by composing the announcement player and the key

detector while an automated attendant service can be developed by composing the

announcement player, voice recorder, extension detector and call transfer.

Accordingly, the three developed services will be able to share the announcement player

substrate. IVR banking and automated attendant will be able to share the extension

detector and call transfer substrates. Finally the IVR banking and automated survey will

be able to share the key detector substrate. Also, the three services are able to use several

instances of the same substrates.

4.2 Business model

According to the requirements derived in the previous chapter, we propose a business

model that will symbolizes our viewpoint. The business model is composed of an IVR

45

substrates provider, an IVR infrastructure provider, an IVR platform provider, an IVR

service provider, a Broker, and a Connectivity provider. Figure 4.2 shows the proposed

business model.

IVR service

provider

IVR platform

provider

Connectivity provider

IVR substrates

provider
IVR Infrastructure

provider

Broker

Figure 4.2: Proposed business model

 IVR Substrates provider

IVR substrates providers are responsible for offering their IVR substrates such as

announcement player and voice recorder to IVR infrastructure provider. However,

a given IVR substrate provider may interact with several IVR infrastructure

providers and offer them the same IVR substrates, since these substrates are

sharable.

 IVR Infrastructure provider

IVR infrastructure provider is responsible for providing IVR substrates as a

service to the platform provider. However, a given IVR infrastructure provider

may also interact with several IVR substrate providers.

46

 IVR Platform provider

IVR platform provider adds some levels of abstractions to IVR substrates

available in the infrastructures to facilitate IVR application development and

management by IVR service providers. Also, IVR platform is provided as a

service, for one or several IVR service provider.

 IVR Service provider

IVR service provider develops and manages these applications using the IVR

platform offered by IVR platform providers. It also offers IVR applications as

SaaS, accessible by end-users and other applications.

 Broker

The broker acts as a substrates storage repository. It enables the platform,

infrastructure, and substrate providers to publish and discover substrates.

 Connectivity provider

Connectivity provider enables connectivity between the different actors in the

proposed business model.

According to this business model, different service providers may use the Platform

provider’s GUI to develop services such as automated attendant and IVR banking by

composing the substrates provided by IVR infrastructure provider to the IVR platform

provider.

47

IVR Service

Provider

IVR Infrastructure

Provider
Broker

IVR Platform

Provider

IVR Substrates

Provider
IVR Substrates

Provider
IVR Substrates

Provider

Get Substrates

substrates

Publish Shubstrates

Figure 4.3: Business model Sequence diagram

Figure 4.3 illustrates the business model sequence diagram, where it shows how different

IVR substrates providers publish their IVR substrates first such as announcement player,

voice recorder, key detector, extension detector, and call transfer.

When an IVR service provider wants to develop an IVR service such as automated

attendant or IVR banking, it sends a discovery request to the IVR platform provider to get

all the available IVR substrates. When The IVR platform provider receives the request, it

forwards it to the IVR infrastructure provider that sends it to the broker to get all the

substrates. Lastly, the IVR infrastructure provider gets the substrates from the broker and

sends them to the IVR platform provider which displays them in the appropriate GUI to

the service provider to compose its own IVR service.

4.3 Architecture

In this section, we will first present our proposed architecture and then in the following

subsection we are going to describe the entities, the interfaces, the planes functionalities,

and the operational procedures.

48

4.3.1 Overview

The proposed architecture comprises two layers, three planes architecture and a

repository. The first layer contains the functional entities that realize the infrastructure

provider role. The second layer is comprised of entities that realize the IVR substrate

provider role. The interactions between the two layers are organized via three planes:

service, management and composition. The repository realizes the role of the broker.

Figure 4.4 shows the proposed architecture.

Virtual IVR Engine

IVR substrate
repository

Substrate IVR Engine

Service

I/F

Management

I/F

Publication &

Discovery
I/F

Virtual

Service
engine

Substrate

Service
engine

Virtual

Management
engine

Substrate

Management
engine

Virtual

Composition
engine

Substrate

Composition
engine

Publication &

Discovery
I/F

Composition

plane

Management

plane
Service

plane

Infrastructure layer

Substrate layer

Figure 4.4: Overall architecture

4.3.2 Entities

In our architecture we have two key entities. The key functional entity of the

infrastructure layer is the virtual IVR engine. Besides, the key entity of the substrate layer

is the substrate IVR engine.

49

 Virtual IVR Engine

The virtual IVR engine coordinates the activities of the virtual service engine, the

virtual management engine and the virtual composition engine. The virtual IVR

engine interacts with several substrate IVR engines--or more precisely, it interacts

with the engines of all the substrates that make up a given composed service.

 Substrate IVR Engine

The substrate IVR engine coordinates the activities of the substrate service

engine, the substrate management engine, and the substrate composition engine.

4.3.3 Planes functionality

Three planes exist in our overall architecture: composition plane, management plane, and

service plane.

 Composition plane

The composition plane creates composed virtual IVR service by composing

different Substrate IVR Instances (SIIs) from the same or different IVR Service

Substrate (ISS) providers. Besides, it manages the execution of composed virtual

IVR services. It also interacts with the repository and enables the publication and

discovery of the substrates and substrate instances that are used in composition.

 Management plane

The management plane handles the actual control and management of substrate

resources. It enables the instantiation of IVR applications and related substrates,

50

and their configuration. For example, it creates and manages ISIs, reserves and

manages resources. It also enables fault monitoring, performance monitoring, and

the accounting for charging purposes.

 Service plane

The service plan handles the IVR service provisioning tasks. It is responsible for

the execution of the IVR services. These services could be composed of one or

more IVR substrate. In addition, the IVR substrates could be provided by one or

more substrate provider. However, the main functionality handled in the service

plane is mediation.

4.3.4 Interfaces

Three types of interfaces exist in our architecture: service I/F, management I/F, and

publication & discovery I/F.

 Service I/F

The virtual service engine and the substrate service engine communicate via the

interface supported by the substrate service engine. This is motivated by the fact

that existing potential IVR substrates come with a plurality of interfaces (e.g.

VoiceXML, Session Inition Protocol-SIP, Media Server Control Markup

Language-MSCML). They communicate with the virtual service engine via

mediators that are incorporated in the virtual service engine. However, for each

I/F type, a new plugging can be added or implemented by the ISS client.

51

 Management I/F

A key requirement for the management interface is to accommodate a plurality of

resource description mechanisms (e.g. XML, plain text). Another requirement is

that the interface should be supported by commonly used virtualization servers

such as XEN to ease the creation of instances. These requirements have led to our

selection of RESTful Web services as the natural choice. Therefore, REST-based

I/F are used at both layers, the virtualization and the substrate layer.

 Publication & Discovery I/F

We have also decided to use RESTful Web services for the publication/discovery

interfaces to minimize the number of interfaces in our proposed architecture. The

fact that RESTful services support a wide range of resource description

mechanisms is also an advantage when it comes to publication and discovery.

4.3.5 Operational Procedures

Our design covers application creation (including the pre-required publication and

discovery of substrates), management and execution. However, the management phase is

also restricted to activation and the creation for composition.

4.3.5.1 Creation

In the creation phase, the substrate composition engine of each substrate provider

publishes its substrate to the repository using a PUT request, with the WADL [18]

description of the substrate as argument. Next, the virtual composition engine of the

52

infrastructure provider sends a GET request to get the list of available substrates with

their descriptions.

Figure 4.5 describes the flow for application creation, where four substrate providers use

the PUT request to publish their substrates such as announcement player and voice

recorder into the broker. Then, the infrastructure provider uses the GET request to

discover all the stored substrates by different substrates provider.

SubP1 SubP2 SubP3 Broker InfP

PUT (Substrate1)

PUT (Substrate2)

PUT (Substrate3)

GET

Substrate1: SubP1

Substrate2: SubP2

Substrate3: SubP3

Substrate4: SubP4

SubP4

PUT (Substrate4)

Figure 4.5: Substrate publication and discover

It should be noted that the GET request could have been sent anytime during the process

to get the list of substrates available at that point in time. The list is then made available

to the platform engine that adds a level of abstraction to the substrates by making them

visible through a GUI. For example, the first service provider uses the GUI to develop an

automated attendant by composing the substrates, while the second one develops an

automated survey by the same process.

53

4.3.5.2 Activation

In the activation phase, the infrastructure provider’s virtual composition engine uses the

description file of the composed service (created in the previous step) and creates a

different instance of the virtual management engine to communicate with each of the

substrates involved in the composition process. Then, it instructs these instances to create

a substrate IVR instance (SII) at each substrate.

The instantiation is done by sending a POST request to the appropriate substrate, along

with the description file of the service instance to create and the identifier of the IVR

service provider. When a substrate management engine receives an instantiation request,

it verifies resource availability and then creates a new SII and allocates the necessary

resources. Figure 4.6 describes the flow for application activation.

SubP1 SubP4
Virtual IVR

engine
Virtual composition

engine
Virtual management

engine

InfP

Activate(Service)

<<create>>

CreateInstance
POST(Substrate1 description)

SII-ID
SII-ID

CreateInstance
POST(Substrate4 description)

SII-ID
SII-ID

(SubP1, Sub1 desc, SP ID)

(SubP4, Sub4 desc, SP ID)

Figure 4.6: Service activation

Finally, the created virtual IVR is published, so it can be used by other end users or

service developers.

54

4.3.5.3 Execution

In the execution phase, the virtual IVR engine of the infrastructure provider receives an

IVR request from a service provider. It gets the service description from the virtual

composition engine (including the SIIs to use). Then it creates a virtual service engine

instances to communicate with each of the substrates, and instructs the different instances

to execute the appropriate sub-requests, following the request plan.

A request plan is a set of sub-requests and their execution sequence, along with the

relevant substrates/SIIs that are required to answer an IVR request. The request plan is

created by the virtual composition engine during the service creation phase.

When a substrate service engine receives a service execution request from the virtual

service engine, it forwards the request to the appropriate SII, which then executes the

request and replies back to the address provided in the request. Figure 4.7 describes the

flow for application execution.

SubP1
Virtual IVR

engine
Virtual composition

engine
Virtual service

engine

InfP

Client ServP1

Service request

IVR request

getServiceDescription

Descripton,

request plan

Execute
Execute

Substrate execution

Substrate played

(substrate1, Subp1, SII-ID, client address)
(SII-ID)

Figure 4.7: Service Execution

55

In this figure, the client call is transferred to the first substrate to be executed. When

virtual IVR engine receive an IVR request, it first asks the virtual composition engine for

the SII(s) and the request plan. Then the virtual IVR engine instructs the different

instances to execute related sub-requests following the request plan. In the substrate

service engine, the request is forwarded to the appropriate IVR instance using the SII-ID.

At the end, the service instance executes the request to the appropriate client

The following chapter will add more information, where all the entities in our software

architecture are presented and described.

4.4 Chapter summary

In this chapter, we first proposed our business model and then based on it we have

presented our overall proposed architecture. As it was seen, the main functional entities

of the architecture are the virtual IVR engine and the substrate IVR engine. In addition,

our architecture is composed of three planes: service plane, management plane, and

composition plane. However, these entities, planes and all the components are

interconnected using three types of interfaces: service I/F, management I/F, and

publication & discovery I/F. Lastly we have demonstrated the operational procedures of

the architecture using three phases: creation, activation, and execution.

The refined architecture satisfies all the requirements derived in the previous chapter.

First of all, using the publication & discovery I/F, the broker will enable the discovery

and publication of substrates and substrate instances. In addition, the composition engine,

allows service provider to compose their own applications. Also, using the management

engine, different applications will be able to use the same substrate to develop IVR

56

applications with the instantiation process of the IVR substrate available in the

infrastructure layer. Besides, the platform provider will be able to add some level of

abstractions to the substrates offered by the infrastructure provider. Lastly, the execution

of a certain service will be transparent to third parties where the infrastructure provider

will maintain the execution process.

In the next chapter, we will present the overall software architecture and then we will

discuss the implemented IaaS prototype and the performance measurements that have

been done to evaluate our architecture concept. Also, a simple proof of concept PaaS

consisting of a GUI has been built to enable the development and management of simple

IVR services in the SaaS layer.

57

Chapter 5

Validation: Prototype and

Evaluation2

In the previous chapter we have proposed architecture for having a virtualized

infrastructure for IVR applications as services. Consequently, in this chapter we focus on

designing the software architecture and on validating the proposed architecture through

an implemented prototype.

In the first section we present the overall software architecture. In the second, we

describe the prototype that we have implemented as a proof of concept. Lastly, in order to

validate our architecture, a scenario is presented and some performance measurements

are collected and analyzed.

2
 This chapter is an extended version of the paper F. Belqasmi, C. Azar, M. Soualhia, N. Kara, and R.Glitho,

“A Virtualized Infrastructure for IVR Applications as Services” accepted for presentation at the ITU
Kaleidoscope conference, Cape Town, December 2011.

58

5.1 Overall Software architecture

In this section, we first describe our overall software architecture and then we describe

the operational procedures of this architecture.

5.1.1 Software description

The overall software architecture is depicted in Figure 5.1. It consists of the infrastructure

layer, the substrate IVR layer, and the IVR substrate repository.

Figure 5.1: Overall Software architecture

59

5.1.1.1 Infrastructure Layer

The infrastructure layer also known as the virtualization layer is consists of the virtual

IVR engine and the three engines discussed in the previous chapter: the virtual

composition engine, the virtual management engine, and the virtual service engine.

 The virtual IVR engine handles requests and process responses from/to the

platform layer. It includes two entities: the management request handler and the

service request handler. The management request handler realizes the

management interface provided to the cloud platform provider, whereas the

service request handler realizes the execution interface provided to the cloud

platform provider.

 The virtual composition engine includes four functional entities: the service

creation coordinator, the service activation coordinator, the service execution

coordinator and the discovery & publication engine. The service creation

coordinator is responsible for managing and coordinating the composition of a

new IVR service. The service activation coordinator is responsible for managing

and coordinating the instantiation of new SIIs of the composed service. The

service execution coordinator responsible for managing and coordinating the

execution of a given request. Finally, the discovery & publication engine is used

to publish the virtual IVR services and to discover the available substrates from

the repository.

60

 The virtual management engine includes two entities: the management

coordinator and the virtualization client. The management coordinator translates

the requests received from the service activation coordinator into requests that the

virtualization client should then send to the target substrate. The virtualization

client allows the communication with a substrate at the creation and activation.

 The virtual service engine includes two entities: the mediation coordinator, and

the ISS client. The mediation coordinator translates the request received from the

service execution coordinator into requests the ISS client should send to the target

substrate. The ISS client allows the communication with a substrate at execution.

Since many substrate instances can be composed to provide a given virtual IVR

service and these substrate may be provided by different substrate providers,

therefore a mediation proxy is used to manage the execution of the execution of

these substrates.

5.1.1.2 Substrate IVR Layer

The substrate IVR layer consists of the substrate IVR engine and also the three engines:

the substrate composition engine, the substrate management engine, and the substrate

service engine.

 The substrate IVR engine includes message dispatcher and the two entities: the

management request handler and the service request handler. The message

dispatcher dispatches the received management messages such as release/update

61

an IVR instance to the appropriate IVR instance manager, whereas it forwarded

the service plane messages to the target IVR service instance based on the

instance ID. The management request handler provides a management interface

for virtual IVR provisioning which implement also the management interface at

the substrate level. Besides, the service request handler implements the service

execution interface at the substrate level.

 The substrate management engine consists of IVR instance manager and IVR

resource manager. The IVR instance manager is responsible for creating

instances. Each instance is managed by a separate IVR instance manager. The

relationships between service instances and their managers are saved when the

service instances are created. Also, the created instance is only used by the

provider for which it was created. The IVR resource manager controls the access

to the IVR substrate resources. For example, it maintains and monitors the current

state of the resources, it allocates the necessary resources for new instances, and it

informs the appropriate IVR instance manager about the resources usage status or

about a hardware problem that may affects an instance managed by an IVR

instance manager.

 The substrate composition engine includes a publication engine and a composition

manager. The publication engine is responsible for publishing the IVR substrates

at each substrate provider. Also, it handles the publication of the created instances

by the IVR instance manager at the activation phase. The composition manager

62

allows creating a new IVR service component from existing IVR service

components at each substrate provider and is a part of the IVR service instance.

 The substrate service engine includes an instance coordinator and an IVR

component. Together with the composition manager form an IVR service

instance. The IVR service component represents the substrate part of the IVR that

includes a set of services such as announcement player and voice recorder. This

component will handle the requests coming through the service interface from

different users who are using the new IVR. The Instance coordinator allows

identifying which service component to look for when the IVR service instance

receives the execution requests coming through the service interface and when the

composition manager sends a request to create a new IVR service component.

Each instance is used by one and only one infrastructure provider and the

instances are separate and independent.

5.1.1.3 IVR substrate repository

The IVR substrate repository also known as broker includes a publication manager, and a

discovery manager.

 The discovery engine handles the discovery requests. It used to retrieve the IVR

substrate instances saved in the Database (DB).

 The publication engine handles the publication requests. It used to store

substrates, substrate instances, or even a composed IVR service along with it is

63

description file, name, and uniform resource identifier (URI). In addition, the

published service descriptions are stored in a local database.

5.1.2 Software Operational Procedures

The three operational phases discussed in the previous chapter, are explained more in this

subsection in terms of the entities constituting the software architecture. Again, the

software architecture offers service provider the ability to first create, activate, and

execute an IVR service.

5.1.2.1 Creation

This phase is executed at the IVR Infrastructure layer. It may be handled via a graphical

user interface offered by the platform providers. However, when the management request

handler gets a creation request, it forwards it to the service creation coordinator in the

virtual composition engine.

Figure 5.2: Creation phase

64

The service creation coordinator will use the discovery engine to get all the available

substrates from the IVR substrate repository and sends them to the platform provider

through the management request handler. In addition, when service providers compose a

service, the service creation coordinator will take the inputs from the platform provider

GUI for the service composition, create the description file for the composed service

along with the request plan and store them in the local database. These files include the

list and coordinates of the chosen IVR service substrates and the execution plan of the

composed service.

5.1.2.2 Activation

At the infrastructure layer, when the management request handler gets an activation

request, it forwards it to the service activation coordinator. In this phase, the service

activation coordinator is responsible for managing and coordinating the instantiation of

new SIIs. Therefore, it gets the description file from the local DB, and it creates a

different instance of the IVR management engine to communicate with each of the IVR

service substrates. Then, it instructs the instances to create a SII at each IVR service

substrate.

At the IVR substrate layer, when the management request handler gets an instantiation

request, it forwards it to the dispatcher. The dispatcher will spawn a new IVR instance

manager that will create it and the relationships between service instances and their

managers are saved using the publication engine. Lastly, the IVR instance manager

forwards the request to the IVR resource manager which will check if there are enough

65

resources available. If yes, it will create a new IVR service instance and allocates the

necessary resources.

Figure 5.3: Activation phase

5.1.2.3 Execution

At the infrastructure layer, when the service request handler gets an IVR request which is

for execution for example play announcement and collect digit. It asks the service

execution coordinator, which is responsible for execution, for the IVR substrates that

provide the virtual SIIs. Accordingly, the service execution coordinator brings the

information which was stored in the DB when the virtual IVR was created. This includes

66

the coordinates of the substrate, the type of the substrate, the instance ID, the substrate

provider ID, the client address. Besides, it also asks for the request plan which is the set

of sub-request and their execution sequence, along with the relevant ISSs/SIIs that are

required to answer a client request (also was stored in the DB when the virtual IVR was

created). Afterwards, the service request handler will create different service engine

instance for each different substrate and then instructs the different instances to execute

related sub-requests following the request plan. The mediation proxy will receive the

request and forward it to the mediation proxy which will record the request’s client

address and the substrate provider ID and respond with its own address.

Figure 5.4: Execution phase

At the substrate IVR layer, the service request handler gets the request. It uses the IVR

message dispatcher to forward the request to the appropriate IVR service instance using

67

the instance ID. Finally, the service instance executes the requested replies back to the

mediation proxy that forwards the response to the appropriate client.

Figure 5.5: Execution call flow

Figure 5.5 shows the execution call flow diagram where two substrate providers are

invoked in the execution of the substrate composing the IVR service requested by the

client. Since the execution is fully transparent to third parties, we can observe that the

execution of the announcement and the record substrates are managed by the

infrastructure layer and specifically by the mediation proxy.

5.2 Prototype Design and Implementation

As a proof of concept, we have implemented a prototype that includes an end-to-end

service plane and a sub-set of the composition plane. We start off this section with the

68

assumptions and feature of our prototype, followed by the prototype architecture, the

software tools that we have used for implementation and a simple scenario.

5.2.1 General assumptions

In the implemented prototype, we assume that the broker is composed of the five

substrates announcement player, voice recorder, key detector, extension detector and call

transfer. In addition, we assume that the substrates are supplied by one substrate provider.

We further assume that we have one infrastructure provider (InfP), one platform provider

(PP), two service providers (ServP1, ServP2) and one end-user with a subscription to one

of the two service providers.

The substrates are described using WADL as implied by our choice of RESTful Web

services as technology, and also with Donkey State Machine (DSM) [4]. The DSM

description represents the substrate behaviour as a state machine and is included under

the <doc> element of the WADL description. The use of DSM is motivated by the fact

that it is used by the SIP Express Media Server (SEMS) [5] used in our prototyping

environment, and because it makes the substrates’ composition easier. DSM enables a

textual description of applications (substrates in our case) that can be directly executed by

interpreters hosted by the SEMS.

5.2.2 Prototype architecture

The general architecture of the implemented prototype is given in the figure 5.6. First of

all, the service provider using the PP GUI will discover all the available IVR substrates

using the GET method of the RESTFul Web services. The service provider will compose

69

its own IVR service and using the PUT method the service will be published. Here we

have assumed that the service is activated and all the resources are reserved before it is

published. After that, the SerP will be able to provide the service to the clients and other

applications. The second figure shows the execution phase of the prototype. The

composed service is accessed via SIP.

Figure 5.6: General Prototype architecture

5.2.3 Environmental settings

In order to test our implemented prototype, 5 nodes (4 laptops and 1 virtual machine) are

used. All the laptops are equipped by 802.11 (WLAN) adaptive cards. Laptops are Intel

core i7, all with 8 GB RAM whereas the virtual machine is running on the Xen server and

managed by Xencenter with 4 GB of RAM. Also the laptops run windows 7 OS whereas

the virtual machine runs Linux Ubuntu OS.

70

5.2.4 Software Tools

Several tools were used for the implementation of our prototype. In this subsection, we

divide the tools into five categories: IVR substrates, virtualization, interfaces, repository

and lastly some additional software used for execution and creation.

5.2.4.1 IVR Substrates

The IVR substrates are implemented using DSM [4] module and deployed on SEMS [5].

This sub-section gives a brief overview about the Sip Express Media Server (SEMS), its

Donkey State Machine (DSM) module and its configuration steps.

5.2.4.1.1 SEMS overview

SEMS is a free, open source, and scalable media server for SIP based VoIP services [5].

It is responsible for media processing for applications requiring IVR functions. The core

of SEMS is implemented to support the basic call and audio processing. However,

various types of plug-ins may extend the system. For example, the application plug-ins is

responsible for implementing new services’ logic whereas audio plug-ins allows the

addition of new codecs and file formats to the system [5].

SEMS is shipped with several applications such as conferencing and voicemail

applications. However, developers can extend it by creating their own plug-ins using

SEMS framework API in C++, python, or the DSM [5].

In the prototype DSM was chosen to extend SEMS and develop our substrates. Donkey

State Machine is a scripting service development platform that makes it simple and rapid

to implement powerful services. DSM enables a textual description of applications

71

(substrates in our case) that can be directly executed by the DSM module as application

in SEMS [4].

With DSM, the service logic is defined as a state machine. It consists of a states and

transitions between the states as illustrated in Figure 5.7. The first state is the initial state

with which the execution of the DSM logic will start. The transitions have a set of

conditions. For example, when an event occurs, the transitions are checked in order. If all

the conditions match, the transition is made. Transitions can have a set of actions also,

which are executed when the transition is made. In addition, each state may have a set of

actions that are executed on entering the state, and on leaving the state [4].

Figure 5.7: DSM state machine

Some of the DSM core conditions are test(#key==prefix*), keyPress(nb), invite, and

sessionStart. Also, some of the core actions are playFile(), recordFile(), set, append, and

stop. However, these conditions and actions could be extended by few additional DSM

modules which provide more actions and conditions such as mod_mysql,

72

mod_conference, and mod_dllg. These modules, in addition to the core conditions and

actions, give developers the flexibility to build more advanced services.

Figure 5.8 shows a simple DSM example. In this example, there are two states: BEGIN

and END. At first the state BEGIN will play a file, and then when the caller press 1, an

event is fired, the transition is made, and the action is executed which is Stop.

Figure 5.8: DSM example

5.2.4.1.2 SEMS Configuration

1. Adapt sems.conf /usr/local/etc/sems/sems.conf:

Figure 5.9: SEMS configuration

73

 sip_ip and media_ip are optional parameters. They inform SEMS about the SIP IP

where its SIP stack is bound to or should be bound to and about the IP address or

interface that SEMS uses to send and receive media. If not set, defaults to first

non-loopback interface.

 sip_port is an optional parameter also. It informs SEMS about the port where its

SIP stack is bound to or should be bound to. The default port is 5060.

 plugin_path sets the path to the plug-ins' binaries

 load_plugins list of modules to load. If it is empty, all modules in plugin_path are

loaded.

 Application controls which application is to be executed if there is no explicit

application requested from the SIP stack

 plugin_config_path in this path configuration files of the applications (e.g.

mydsmapp.conf) is searched

2. Adapt dsm.conf /usr/local/etc/sems/etc/dsm.conf:

74

Figure 5.10: DSM configuration

 diag_path is the path of the DSM descriptions.

 load_diags loads the application (mydsmapp.dsm) in the path specified above

 register_apps register the mydsmapp.dsm diagrams as application in SEMS so

it can be used in application=mydsmapp in sems.conf

 mod_path specify the path for importing the dsm modules for

import(mod_name)

 run_invite_event is set so it can be used for early media

3. Adapt mydsmapp.dsm in /usr/local/lib/sems/dsm/

 Mydsmapp.dsm contains the DSM description of the IVR substrate

services.

4. Run SEMS from the command line like this:

 /usr/local/sbin/sems -f /usr/local/etc/sems/sems.conf -D 3 –E

75

5.2.4.2 Virtualization

For virtualization, XEN [20] was selected. It is open source software for virtualization

technology. XenServer is the cloud-proven virtualization platform that consists of all the

required capacity to create and manage a virtual infrastructure [20]. It is allows multiple

guest operating systems (OSs) to run in virtual containers called domains in a single

machine. It is a widely approved and agreed technology as the fastest and the most secure

virtualization software in the industry [20]. As shown in figure 5.11, the Xen hypervisor

provides a thin software virtualization layer between the guest OS and the underlying

hardware.

Figure 5.11: XEN architecture

Domain 0, it is the privileged domain (Dom0) that has direct access on the hardware and

responsible for managing multiple Domain Guest (Dom U).

76

Table 5.1: Xen Server general properties

The hypervisor contains several modules for managing the resources between the OSs

such as the CPU scheduler that implements various scheduling policies and the memory

management unit [32]. Table 5.1 shows the properties of the XEN server.

5.2.4.3 Interfaces and Repository

The REST interface of the substrate management engine is implemented using Jersey, an

open source reference implementation of JSR 311. The interface module is deployed on

a Glassfish server and it communicates with the SEMS using sockets. The

implementation of the IVR substrate repository is also based on Jersey and deployed on a

Glassfish server.

5.2.4.4 Additional Software tools

We choose Java based development APIs for the implementation of our platform

provider GUI. We use Eclipse IDE for Java and Report Developers version Helios

XenServer version 5.6 Feature Pack 1

Edition Citrix XenServer

CPU 0 – 11 Intel(R) Xeon(R) CPU

Speed: 2532 MHz

Interfaces NIC 0 – 3 Speed 1000 Mbit/s

Server Memory 14326 MB

Local Storage 600 GB

77

Service Release 2. Eclipse offers an integrated development environment (IDE) to build

java applications and provides a ready environment to deploy applications on Glassfish

Server. Glassfish server is used to deploy the web application. It is an open-source, java

enterprise edition compliant application server [34]. Also Jersey APIs (JSR 311) were

used for building RESTful web services [35]. At the service plane, the composed IVR

service is accessed via SIP. Lastly, a free SIP client, X-Lite [33], is used as the IVR

client.

5.2.5 Simple experimentation

As a prototype, we implemented an automated attendant service. The client calls a

company`s generic number, gets an announcement inviting him/her to enter the extension

of the person to reach, the client provides the extension and is then connected to that

person. If that person does not answer, the client can leave a voice message. Accordingly,

this scenario is composed of the following substrates:

 Play announcement

 Voice recorder

 Extension detector

 Call bridge

Also, if the destination number wasn’t available, a “No Answer” condition is added to the

service description and a “Leave a Message” action is executed. Figure 5.12 shows a

simplified WADL description of the Announcement player substrate.

78

<?xml version="1.0"?>

<application xmlns:xsi:shemaLocation="http://wadl.dev.java.net/2009/02">

<doc xml:lang="DSM" title="Play announcement substrate service">

 state Play enter{playFile(/home/user/welcome.wav); };

</doc>

 <resources base="http://substrateProvider1.com/">

 <resource path="playAnouncement">

 <method name="POST" id="instantiate">

 <request>

 <representation mediaType="application/xml" >

 <param name="dsm_description" type="xsd:string" required="true"/>

 <param name= "serviceProvider" type="xsd:string" required="true"/>

 </representation>

 </request>

 <response status="200">

 <representation mediaType="application/xml" >

 <param name= "resourceURI" type="xsd:anyURI" required="true"/>

 </representation>

 </response>

 </method>

 </resource>

 </resources>

</application>

Figure 5.12: Announcement player WADL file

Figure 5.13 illustrate the idea. When IVR receive an incoming call:

 It will play a welcome prompt to the caller.

 It will request the caller to enter the extension number.

 It will capture the DTMF input (extension number) entered by the caller via its

telephone keypad.

 If the extension exist, IVR application contacts the extension requested by the

caller and bridges the caller to the callee

 If the extension is incorrect, IVR application will play a prompt and re-ask for the

extension.

 If the callee doesn’t respond, a no answer condition is fired and the caller will be

able to leave a message then hang up.

79

Incoming Call

Bridge the caller with

the callee

 Contact the provided

extension.

“please enter the

Extension”

Extension

exist

Extension

 doesn’ t exist

Caller leaves a

message and hangup
No answer

Answer

“Your

Extension is

invalid”

IVR play a

"Welcome.wav" to

the Caller.

IVR request the caller to

enter

an extension

“EnterExtesion.wav”.

Figure 5.13: Automated Attendant Flow chart

5.3 Preliminary Validation and Performance

Evaluation

5.3.1 Testing Scenario

As a prototype, we implemented the scenario where the first service provider creates and

provisions an automated attendant service.

Figure 5.14 presents the GUI offered by the platform provider to the service provider.

Service providers will use this GUI to develop and manage IVR applications.

80

First of all, the service provider pushes the “Connect” button in order to establish a

connection with the platform provider.

Figure 5.14: Platform Provider GUI

The service provider won’t be able to build an IVR application unless the Connect button

is pushed first. If an attempt occurred and the Discover button is pressed before the

Connect, a pop-up message will appear asking the service provider to push Connect first.

Figure 5.15 shows that “IVR Scenario Editor – Connected” on the header of the GUI,

which mean that the service provider is now connected to the platform provider and is

able to develop and manage an IVR application using this platform graphical user

interface.

81

Figure 5.15: Platform Provider Connect

Now, using the “Discover” button, the GUI will get all the name, description and URI of

the existing substrate services, which is discovered by interrogating the substrate

repository.

Figure 5.16 shows the discovered substrates in the list. The substrates are developed

using DSM and deployed on SEMS as it was mentioned before. In addition, they are

described using WADL.

 Now, the service provider is able to compose and manage a new service from the

existing substrates. The “Add” button is used to add substrates to the new composed

service. Also, a condition and an action could be added between the substrates in which

when a condition occurs it will fire an action.

82

Figure 5.16: Platform provider discover

The GUI allows the service provider to create its composed service by choosing the

substrates to compose and then ordering them graphically. As a prototype, we

implemented an automated attendant service.

Figure 5.17: Platform provider compose

83

Accordingly, the scenario is composed of the substrates shown in figure 5.17. Also, a

“No Answer” condition is added to the service description in case the destination number

wasn’t available and a “Leave a Message” action is executed.

When the “Compose” button is pushed, the service provider should give a name to the

new composed service. Also, a request is sent to the service creation coordinator in order

to generate the DSM description of the composed service. The service creation

coordinator also generates the execution plan for the composed service and stores the

DSM description and the execution plane in the local database. Figure 5.18 shows the

creation of the automated attendant service.

Figure 5.18: Platform provider create

Figure 5.19 shows that the service is activated by pressing the Activate button. Here, as it

was mentioned before we assumed that the service is activated and all the computing

resources are allocated.

84

Figure 5.19: Platform Provider Activate

Lastly, after the composed service is created, the service provider can publish it to the

substrate repository using the “Publish” button, so that other service providers or clients

can use it.

Figure 5.20: Platform Provider Publish

85

Now, if the second service provider presses the “Discover” button, the Automated

Attendant service will appear between the discovered substrates. Figure 5.21 illustrates

the idea where the list of existing substrate services and the composed service are shown.

Figure 5.21: Platform Provider re-discover

The developed Automated Attendant service was tested where an end user calls the

virtualized IVR, and after entering the designated extension number, the IVR transfer the

call to the dialed extension in which the two end users can talk.

5.3.2 Measurements setup and analysis

This subsection presents the measurements setup of the prototype and analyzes the

collected measurements.

The new

composed
service

List of existing
(substrate)

services

86

5.3.2.1 Measurements setup

For the measurements, we have first measured the time needed to discover all the

substrates available in the broker, publish a new developed service, and again re-discover

all the substrates/service(s) after publishing our new composed service using the platform

provider GUI. We have run the service provider, platform provider, infrastructure

provider and the broker on different laptops in the same network and collected the

measurements. Also, for the execution plane, the automated attendant service has shown

a great efficiency. The measurements done cover the total time needed for the SIP

INVITE message to travel between the two clients through a virtualized IVR and non-

virtualized IVR. However, to eliminate all the delay from the played files by the IVR and

the delay from human being to enter an extension number, we have adapted the IVR

service in which when the IVR receive an INVITE message, it calls directly the

designated client. Furthermore, we ran the two client (xlite v3 and xlite v4) on the same

machine to avoid the time synchronization whereas the IVR (SEMS) on the virtual

machine of the Xen server in the virtualized environment and on a regular laptop in the

non-virtualized environment. Furthermore the two clients and IVR were registered with

the registrar of the SEMS “iptel” registrar.

5.3.2.2 Measurements analysis

Table 5.2 shows the collected measurements of the composition plane. The purpose of

this table is to show the time it take from prototype point of view to execute different

operation. The first column represents the round-trip time (RTT) needed for the service

provider to discover all the available IVR substrate in the broker. The second column

87

represents the RTT needed to publish a service into the repository as it was shown in the

previous subsection. Lastly, the third column represents the RTT needed to discover all

the available services again after publishing the new composed service by a different

service provider.

As we can notice from Table 5.2, the RTT to discover all the IVR substrates is 330.2ms.

The time to publish a new composed service is approximately 446.6ms. Lastly, the time

to discover again all the services including the new created one is 357.8ms which is

slightly affected after publishing the automated attendant services and not observed by

the service providers.

Discover Publish Re-Discover

327 515 343

421 546 419

278 498 315

219 485 356

446 519 384

418 483 421

291 435 331

364 358 394

274 284 268

294 343 347

330.2 ms 446.6 ms 357.8 ms

Table 5.2: Composition plane performance measurements

In addition, Table 5.3 shows the collected measurements of the execution plane of the

composed service. Wireshark [40] tool was used to capture the network traffic and collect

88

the times. The first column represents the time needed for the SIP INVITE message to

travel between the two clients in a non-virtualized environment whereas the second

columns shows the same measurements where IVR run on in a virtualized environment.

Non-Virtualized

Environment

Virtualized

Environment

498 556

522 626

496 559

509 557

502 549

508 583

622 553

502 547

498 560

523 567

518 ms 566 ms

Table 5.3: Execution plane performance measurements

The purpose of this table is to show that a very low overhead is imposed in the virtualized

environment due to the hardware sharing. This time difference between the two

environments is barely observed by end-users. Therefore, the use of the proposed novel

architecture does not penalize the system’s performance. On the contrary, it enables the

service providers to develop and manage its own IVR services in virtualized

environments full of benefits.

89

5.4 Chapter summary

In this chapter, we have first introduced our overall software architecture and then we

have presented the prototype implemented as a proof of concept. The implemented

prototype is based on RESTFul Web services. The IVR substrates were developed using

DSM and deployed on SEMS. Xen server was used for virtualization. We ran the

prototype in environment consisting of two substrate provider and one service provider

and we conclude that it works properly. To validate our proposed architecture, an

automated attendant scenario was examined and some performance measurements were

collected. Through these experiments, we have learned that our proposed architecture is

a valid and promising approach for having a virtualized infrastructure for IVR

applications as services. In the next chapter, we will summarize the contribution of the

thesis and propose some additional future works.

90

Chapter 6

Conclusion and Future

Work

In this chapter, we will first summarize the contributions of this thesis and then we will

discuss the remaining items which can be considered as the future work.

6.1 Summary of the Contributions

Several commercial hosted IVRs allow users to remotely access IVR applications as

services. However, to the best of our knowledge these applications do not rely on

virtualized infrastructures.

91

As a part of the contributions of this thesis, we have first identified the related

requirements for a virtualized infrastructure for IVR applications as services which

describe our major challenges. These requirements fall into two principal categories. The

first category concerns the general requirement for having a virtualized infrastructure for

IVR applications as services. The second concerns some other specific requirements

related to the virtualized Infrastructure as a Service (IaaS) layer. Also, we have

performed a detailed survey on the existing related works for having a virtualized

infrastructure for IVR applications as services. We have divided these related works into

two approaches: cloud overall approaches and IaaS approaches. Afterwards, we have

related these approaches to our requirements and defined their usage in this thesis and

accordingly, we observed that none of them meets all of our requirements.

As the core contribution of this thesis, we have first proposed a business model which

introduces the IVR substrate provider at the infrastructure layer as a new role in the cloud

business model. This business model is composed of an IVR substrates provider, an IVR

infrastructure provider, an IVR platform provider, an IVR service provider, a Broker, and

a Connectivity provider. Then, based on the business model, we have proposed a novel

architecture for a virtualized IVR infrastructure that fulfils the requirements derived

before. This architecture allows different IVR service providers to share the same IVR

substrates. Also it enables easy development and management of new IVR-based

applications via a simplified platform. The main functional entities of the architecture are

the virtual IVR engine and the substrate IVR engine. It is also composed of three planes:

service plane, management plane, and composition plane. These entities, planes and all

92

the components in the architecture are interconnected using three types of interfaces:

service I/F, management I/F, and publication & discovery I/F. Lastly we have

demonstrated the operational procedures of the architecture using three phases: creation,

activation, and execution. We have also designed the overall software architecture where

all the entities, the planes and operational procedures have been discussed.

As a proof of concept, we have implemented an IaaS prototype and a simple PaaS

graphical user interface that shows how a new service (i.e. automated attendant) can be

created by composing a number of existing simple IVR services provided by the

infrastructure. XEN server [20] was selected for virtualization to ease the creation of IVR

substrate instances whereas RESTFul Web services for publication/discovery interfaces.

IVR substrates are implemented using DSM and deployed on a SEMS server. PaaS

consisting of a graphical user interface (GUI) has been built to enable the development

and management of simple IVR services in the SaaS layer. To test our prototype, we

implemented the scenario where a service provider creates and provisions an automated

attendant service. Lastly, to validate our prototype, a preliminary performance evaluation

of the overall architecture has been taken. Based on these results, we conclude that our

architecture is valid and promising approach for a virtualized infrastructure for IVR

applications as services.

6.2 Future Work

The defined architecture gives a global solution form providing a virtualized

infrastructure for IVR applications in the cloud environment. It concentrates on allowing

93

different IVR service providers to share the same IVR substrates, and enables easy

development and management of new IVR-based applications via a simplified platform.

However, we still need more details about some functional engines and entities in our

proposed architecture such as the substrate composition engine for the appropriate

resource allocation and management. Also the running simulation needs to be extended to

the overall architecture including the activation plane. We need to study the performance

impact of the procedures by having all the three approaches tested to determine the exact

limitations of each. My colleague is currently working on this phase which is the

activation plane which helps improving the resource utility in a virtualized platform for

IVR applications and the next step will be to run the overall software architecture.

Finally, our future works also include further research for applications other than IVR

such as audio presence, video conferencing and IPTV that can be offered in cloud

settings.

94

Bibliography

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A Break in the

Clouds: Towards a Cloud Definition”, ACM SIGCOMM Computer Communication

Review, vol. 39, no. 1, January 2009.

[2] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing: State of the Art and

Research Challenges”, Journal of Internet Services and Applications, Springer, Vol.

1, no. 1, 2010

[3] J.-Y. Hwang, S.-B. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu, S.-Y. Park, and C.-R.

Kim, “Xen on ARM: System Virtualization using Xen Hypervisor for ARM-based

Secure Mobile Phones”, Consumer Communications and Networking conference,

CCNC, 5
th

 IEEE, 2008.

[4] Iptel.org, DSM: State machine notation for VoIP applications, available at:

http://ftp.iptel.org/pub/sems/doc/current/ModuleDoc_dsm.html, Accessed February

20 2011

[5] Iptel.org, SIP Express Media Server (SEMS), available at:

http://www.iptel.org/sems, Accessed February 20 2011.

http://www.iptel.org/sems

95

[6] P. Rodriguez, D. Gallego, J. Cervino, F. Escribano, J. Quemada, and J. Salvachua,

“VaaS: Videoconferencing as a Service”, 5
th

 International Conference on

Collaborative Computing: Networking, Application and Worksharing, 2009.

[7] J. Li, R. Guo and X. Zhang, “Study on Service Oriented Cloud Conferencing”, Third

IEEE International Conference on Computer Science and Information Technology,

2010.

[8] F. Belqasmi, N. Kara, R. Glitho, “A novel virtualized presence service for future

Internet”, Workshop on Future Networks, IEEE International Conference on

Communications, 2011.

[9] T. Aoyama, “Overview of the new generation network R&D”, Japan, 4
th

 CFI, Seoul,

Korea, 2009.

[10] K. Tutshuku, T. Zinner, A. Nakao, and P. Tran-Gia, “Network Virtualization:

Implementation Steps Towards the Future Internet”, Wissenschaftlichen Konferenz

Kommunikation in Verteilten Systemen, 2009.

[11] J. Carapinha, J. Jiménez, “Network virtualization: a view from the bottom”,

Proceedings of the 1st ACM workshop on Virtualized infrastructure systems and

architectures (VISA-09), pp. 73-80, 2009.

96

[12] M. Stecca and M. Maresca, “An Architecture for a Mashup Container in Virtualized

Environment”, IEEE 3
rd

 International Conference on Cloud Computing, 2010.

[13] P. de Leusse, P. Periorellis, P. Watson, and A. Maierhofer “Secure and Rapid

Composition of Infrastructure Services in the Cloud”, Sensor Technologies and

Applications, SENSORCOMM, 2008.

[14] R. Uhlig, G. Neiger, D. Rodgers, and A. L. Santoni, “Intel Virtualization

Technology”, Intel Corp., USA, vol. 38, pp. 48-56, 2005.

[15] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud Computing: An Overview”, CloudCom

Lecture Notes In Computer Science, vol. 5931, pp. 626-631, 2009.

[16] R. L. Grossman, “The Case for Cloud Computing”, IEEE IT Professional Magazine,

vol. 11, pp. 23-27, 2009.

[17] L. Richardson and S. Ruby, “RESTful Web Services”, O’ Reilly & Associates, ISBN

10: 0-596-52926-0, May 2007.

[18] W3C Member Submission, “Web Application Description Language”, 31 August

2009.

97

[19] B. Hayes, “Cloud computing”, Communications of the ACM – Web science, vol. 51,

pp. 9–11, July 2008.

[20] Citrix, Citrix Systems Inc. XenServer, available at:

http://www.citrix.com/English/ps2/products/product.asp?contentID=683148&ntref=

prod_top, Accessed February 30 2011.

[21] VMware ESX Server, available at: http://www.vmware.com/products/esx, Accessed

May 10 2011.

[22] Amazon Elastic Computing Cloud, available at: http://aws.amazon.com/ec2,

Accessed May 10 2011.

[23] Google, Google App Engine, available at: http://code.google.com/appengine,

Accessed May 10 2011.

[24] R. Buyya, C. Shin Yeo, and S. Venugopal, “Market oriented cloud computing:

Vision, hype, and reality for delivering it services as computing utilities”, High

Performance Computing and Communications, 10
th

 IEEE International Conference,

2008.

[25] J. Geelan, “Twenty-one Experts Define Cloud Computing”, Virtualization Electronic

Magazine, August 2008.

http://www.citrix.com/English/ps2/products/product.asp?contentID=683148
http://www.vmware.com/products/esx
http://aws.amazon.com/ec2
http://code.google.com/appengine

98

[26] Cloud Hosting, Cloud Computing and Hybrid Infrastructure from GoGrid, available

at: http://www.gogrid.com, Accessed May 20 2011.

[27] Dedicated Server, Managed Hosting, Web Hosting by Rackspace Hosting, available

at: http://www.rackspace.com, Accessed May 20 2011.

[28] Salesforce CRM, available at: http://www.salesforce.com/platform, Accessed May

20 2011.

[29] M. Soujanya, and S. Kumar, “Personalized IVR system in Contact Center”,

Electronics and Information Engineering (ICEIE), vol. 1, 2010.

[30] S. Xu, W. Gao, Z. Li, S. Zhang, and J. Zhao, “Design of hierarchical and

Configurable IVR System”, Computational Intelligence and Natural Computing

Proceedings (CINC), vol. 2, pp. 205-208, September 2010.

[31] C.-X. Qi, and Q.-D. Du, “A Smart IVR system based on application gateways”,

Hybird Intelligence Systems, vol. 3, pp. 110-115, August 2009.

[32] S. Sukaridhoto, N. Funabiki, T. Nakanishi, and D. Pramadihanto, “A Comparative

Study of Open Source Softwares for Virtualization with Streaming Server

Applications”, IEEE 13
th

International Symposium on Consumer Electronics, pp.

577-581, May 2009.

http://www.gogrid.com/
http://www.rackspace.com/
http://www.salesforce.com/platform

99

[33] X-lite softphone, available at: http://www.counterpath.com/x-lite.html, Accessed

March 9 2011.

[34] Glassfish Community, Glassfish server, available at: http://glassfish.java.net,

Accessed April 25 2011.

[35] JSR 311: JAX-RS: The JavaTM API for RESTFul Web Services, available at:

http://jersey.java.net/, Accessed April 25 2011.

[36] “RTP: A Transport Protocol for Real-Time Applications – IETF RFC1889”. January

1996. Available at: http://www.ietf.org/rfc/rfc1889.txt, Accessed May 15 2011.

[37] “SIP: Session Initiation Protocol – IETF RFC 3261”. June 2002. Available at:

http://www.ietf.org/rfc/rfc3261.txt, Accessed May 15 2011.

[38] “Media Server Control Markup Language (MSCML) and Protocol – IETF RFC

5022”. September 2007. Available at: http://tools.ietf.org/html/rfc5022, Accessed

May 20 2011.

[39] “Sip Interface to VoiceXML Media Services – IETF RFC 5552”. May 2009.

Available at: http://tools.ietf.org/html/rfc552, Accessed May 21 2011.

http://www.counterpath.com/x-lite.html
http://glassfish.java.net/
http://jersey.java.net/
http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc3261.txt
http://tools.ietf.org/html/rfc5022
http://tools.ietf.org/html/rfc552

100

[40] WIRESHARK network protocol analyzer, available at: http://wireshark.org,

Accessed August 10 2011.

http://wireshark.org/

