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ABSTRACT

Video Modeling and Noise Reduction in the Wavelet

Domain

Nikhil Gupta, Ph.D.

Concordia University, 2011

Digital video has become vastly popular in the last decade and is fast replacing
its analog counterpart in every walk of life. However, like analog video, digital
video is also plagued with additive noise which degrades its quality and hinders
its processing. Hence, it is imperative that the corrupting noise be removed from
the digital video. Although there are several methods to achieve this, not many
techniques preserve the quality and the detail content of the video while filtering
the noise aggressively.

This thesis concentrates primarily on the problem of additive noise removal
from video sequences in the wavelet domain. A new statistical model for the
subband coefficients of the video sequence is proposed. The spatial as well as the
temporal subband data has been modeled using a prior based on the generalized
Gaussian distribution. Along with modeling the a priori distribution of the spatial
subband coefficients, this model accounts for the motion which occurs between
successive frames.

A novel spatio-temporal filter for video denoising that operates entirely in the
wavelet domain is then proposed. For effective noise reduction, the spatial and the
temporal redundancies that exist in the wavelet domain representation of a video
signal are exploited. The use of discrete cosine transform (DCT) is proposed to
reduce the redundancies in the temporal direction. After the application of the

DCT, the coefficients in the different wavelet domain subbands for the original

il



image sequence are modeled using a prior having a generalized Gaussian distribu-
tion. Based on this prior, filtering of the noisy wavelet coefficients in each subband
is now carried out using a low-complexity wavelet shrinkage method that utilizes
the correlation that exists between subsequent resolution levels.

Based on the proposed model, where the subband coefficients in individual
frames as well as the wavelet coefficient difference occurring between two consec-
utive frames is modeled using the generalized Gaussian distribution, minimum
mean squared error and maximum a posteriori Bayesian processors are proposed
which estimate the noise-free wavelet coefficients in the current frame conditioned
on the noisy coefficients in the current frame and the filtered coefficients in the
past frame.

Based on the proposed statistical model, another novel noise reduction tech-
nique is proposed which exploits the spatial and the temporal redundancies that
persist in the wavelet domain representation of the video sequence sequentially.
The sequentially processed outputs of a Kalman filter and a spatial Bayesian filter
are combined using an adaptive weighted averaging scheme.

The interscale dependencies in the subband representation of each frame are
also modeled using a non-Gaussian bivariate distribution. The parameters for
this bivariate distribution are estimated adaptively using the local correlations
that exist between neighboring coefficients within each subband. Based on this
bivariate distribution a shrinkage function is developed using the maximum a
posteriori rule. To improve the performance of the filter, information from the
adjacent frames is also incorporated in the shrinkage function.

Experimental results for all the presented algorithms show that the proposed
schemes outperform several state-of-the-art spatio-temporal filters in terms of peak

signal to noise ratio as well as visual quality.
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Chapter 1

Introduction

1.1 Introduction and Motivation

There has been a significant increase in the popularity of the digital representation
of image sequences (video) owing to the offered high quality, and the ease of
transmission, processing and archiving. The digital form of video is fast replacing
the analog form in the consumer and commercial markets and is already the
preferred choice for data representation for entertainment as well as medical and
scientific applications.

Digital video can be derived from quantization of the analog video sequence
or can be produced directly from the scene. In either case, there are several
factors which contribute to the degradation of these video sequences. Various

degradations in image sequences can be classified 1] as follows:

e Spatial degradations: These can be due to the lens errors, defocus, non-
zero dimensions of picture elements used in the imaging device, or band-
width limitations in electronics. The effects are usually referred to as blur,

unsharpness, ringing, echo, etc.



e Temporal degradations: These are caused by non-zero exposure time of
the photosensitive material of the imaging device, by long decay times of
light emitting materials, e.g., phosphors in displays and include motion blur

and temporal flickering artifacts.

e Geometrical degradations: These are apparent as the distorted geometry
of the displayed pictures, and are caused due to lens aberrations, deflection

non-linearity in camera and display tubes.

e Point-wise degradations: These modify the grey-level of image sequence
pixels and are referred to as noise, which is often some kind of random
process, e.g., thermal noise, quantum noise etc., depending on the source of

degradation.

In this thesis we focus on point-wise degradations, i.e., we consider noise in image
sequences. Video sequences can be distorted by such noise during acquisition,
recording and/or transmission. While acquiring the digital video from analog
medium, noise can be introduced by the analog medium itself, the transmission
channel, or the digitization process. The film and video-tape material on which
the analog video is recorded is degraded with repeated use over time and results
in the introduction of noise and other artifacts, which, in turn, are reproduced
in the digitized form of the analog video. The process of digitization itself also
introduces artifacts in the form of quantization noise. When the digital video is
produced directly from the scene, noise is introduced due to the limitations of the
imaging sensors. The scene being captured also has an impact on the quantity of
noise introduced into the captured video sequence. For instance, in applications
such as video surveillance, the low lighting conditions and the low contrast in

the captured scene allows for more noise to be introduced. Other fast growing



applications, such as vision-based driver assistance systems, require that the same
low-cost sensor be used to capture the entire gamut of dynamic ranges that are
visible at all times of day. While such video sequences have a low noise content
for ideal capture situations, such as sunny daytime conditions, a large amount of
noise is introduced during dusk and nighttime conditions.

The corrupting noise typically results in degradation of the visual quality of
the images in the sequence and may also mask important image information.
Even if the perceived video at full-speed does not show noise degradation due to
the temporal masking effect of the human visual system, common video analysis
tasks, such as segmentation and tracking, might suffer in the presence of noise. In
applications such as intelligent headlight control, where the detection of headlights
or taillights covering an area less than ten pixels is important, the high noise levels
can easily mask this information, causing the system to generate false positives or
false negatives. Similar problems are encountered in automatic segmentation tasks
in medical applications. Further, owing to its usually random nature, noise tends
to raise the entropy of digital video, and therefore, hinders effective compression.
Thus, it becomes imperative that the level of noise present in digital videos be
reduced prior to any further processing or compression.

In many video applications the noise can be well approximated by the additive
white Gaussian model [1]|, which we consider in this thesis. Removing noise from
data can be considered as the process of constructing optimal estimates of the
unknown signal or image sequence from the available noisy data. Video sequences
can be considered as spatio-temporal data and in general, their denoising imposes
a compromise between noise reduction and preserving significant visual details.
In order to efficiently denoise such data and also avoid blurring during denoising,

we not only need to make use of the spatial correlation that exists between the



pixels, but also of their temporal correlations or the correlation that exists be-
tween different frames in time. Due to the inherent dynamic nature of the video
sequences, these signals are non-stationary in the temporal direction and trying to
exploit temporal correlation during video noise reduction not only makes the video
denoising different from the still image denoising, but also much more complex.
Furthermore, for the denoising algorithm to have any practical application and
for it to be realizable on embedded platforms for real-time use, its computational
complexity as well as memory requirement has to be kept to a minimum.

In the last two decades, the wavelet transform [2]-[9] has emerged as a powerful
tool that forms a bridge between theory and applications, and provides a suitable
representation for processing data, that has enabled it to emerge as an important
tool in denoising applications. The wavelet representation naturally allows for the
construction of spatially adaptive algorithms that can preserve edges in a signal. It
compresses the essential information in a signal into a few, large coefficients which
represent the signal details at different resolution scales and facilitates the removal
of the corrupting noise. In addition, while viewing images or video sequences, the
human visual system (HVS) also employs multi-resolution decomposition similar

to the wavelet decomposition to process the visual cues.

1.2 Scope of the Thesis

The discussion provided in the previous section serves to establish the fact that
noise corrupts all kinds of videos: natural, scientific or medical. This corrup-
tion of the sequences hinders further processing (such as detection, segmentation,
tracking, etc.) and compression. Thus, focus of this research is to develop new

algorithms for video noise reduction that operate fully in the wavelet domain.



Unlike the common denoising algorithm development paradigm where a differ-
ent framework is defined for each denoising algorithm, this thesis defines a unified
development framework which not only models the subband spatio-temporal in-
formation corresponding to the video coefficients, but which could also be used
for the development of several different noise reduction algorithms. Thus, the aim
is to exploit the spatio-temporal redundancies in the video sequence not in an
ad-hoc manner, but in a structured manner based on a statistical prior for the
spatio-temporal data and develop noise reduction algorithms in the wavelet do-
main based on the single unified modeling framework developed in this research.
Efforts have been made to keep the computational complexity of the denoising
algorithms low so as to make their practical implementation feasible.

Since additive white Gaussian noise is the most common type of noise that cor-
rupts the video sequences and is also studied extensively in literature, we primarily
consider this kind of noise in this thesis.

We try to provide solutions to these problems that yield better results than
the ones already existing in the literature while maintaining low computational
complexity and real-time application. In doing so, we merge theory and practice,

and employ heuristics too.

1.3 Organization of the Thesis

This thesis is organized as follows. In Chapter 2, a critical review of the existing
literature on video noise reduction, both in the time and wavelet domains, has been
provided. First, a detailed survey of the existing techniques for noise reduction is
provided. Following this, the necessary background knowledge on wavelet theory

is also reviewed. Attempt is made to present a concise, yet self-contained review



emphasizing the most relevant aspects for the topic of this thesis. We describe
the benefits of the use of wavelets over the Fourier transform for the purpose of
image denoising and compression. The multi-resolution analysis (MRA) of the
input signal using wavelets is presented. We also describe the fast version of the
discrete wavelet transform that is commonly employed in signal processing, using
both orthogonal and bi-orthogonal wavelet families.

In Chapter 3, a statistical, spatio-temporal model is described for the video
data in the wavelet domain, which allows for the motion to be captured and
modeled using wavelet coefficients. This chapter describes the spatio-temporal
relationship that exists between the wavelet coefficients belonging to the corre-
sponding subbands in consecutive frames. The modeling of this relationship using
a statistical distribution is also discussed. The simulation results of the modeling
are presented and analyzed for their accuracy and efficacy.

Chapter 4 presents a novel spatio-temporal filter for video denoising that op-
erates entirely in the wavelet domain and is based on exploiting the decorrelation
of the spatial redundancies that exist in the wavelet domain representation of a
video signal. We propose the use of discrete cosine transform (DCT) to reduce
the redundancies in the temporal direction. After the application of the DCT,
based on the a priori model discussed in Chapter 3, filtering of the noisy wavelet
coefficients in each subband is described using a low-complexity wavelet shrink-
age method that utilizes the correlation that exists between subsequent resolution
levels. The experimental results validating the performance of the proposed algo-
rithm are also presented.

In Chapter 5, we propose conditional Bayesian operators, which estimate the
noise-free wavelet coefficients in the current frame conditioned on the noisy coef-

ficients in the current frame and the filtered coefficients in the past frame. The



Bayesian operators using the minimum mean squared error (MMSE) criteria as
well as the maximum a posteriori (MAP) criteria are utilized. Both the opera-
tors are adaptive the the spatial detail in the subbands as well as the temporal
redundancies that exist in the wavelet domain. The formulation of the Bayesian
operators is based on the statistical modeling of the wavelet coefficients described
in Chapter 3. Experimental results are presented showing that the proposed
scheme outperforms several state-of-the-art spatio-temporal filters in terms of the
peak signal to noise ratio and the visual quality.

Chapter 6 describes the noise reduction in the video sequence via sequen-
tial exploitation of the spatial and the temporal redundancies that persist in the
wavelet domain representation of the video sequence. The sequentially processed
results are combined using an adaptive weighted averaging scheme. The algo-
rithm utilizes the model proposed in Chapter 3 for the spatio-temporal processing
and experimental results evaluating the performance of the algorithm are also
presented.

In Chapter 7, each frame in the video sequence is transformed to the wavelet
domain using the dual-tree complex wavelet transform. The interscale dependen-
cies in subband representation of each frame are modeled using a non-Gaussian
bivariate distribution. The parameters for this bivariate distribution are estimated
adaptively using the local correlations that exist between neighboring coefficients
within each subband. Based on this bivariate distribution, a shrinkage function is
developed using the maximum a posteriori (MAP) rule. To improve the perfor-
mance of the filter, information from the adjacent frames is also incorporated in
the shrinkage function.

In Chapter 8, we conclude this thesis by summarizing the results obtained and

suggesting directions for future research.



1.4 Novelties and Contributions of This Thesis

The main novelties and contributions of this thesis are: (i) a spatio-temporal video
model which allows for a priori modeling of the video coefficients in the wavelet
domain in the spatial as well as temporal orientation and (ii) five new algorithms
for video noise reduction.

For a structured processing of the spatio-temporal information in the video
sequences, a unified video model is proposed in this thesis. This model not only
proposes the use of an a priori distribution for the modeling of the subband coef-
ficients in the wavelet domain representation of each frame in the video sequence,
but also allows for the modeling of the motion in terms of the corresponding
wavelet coefficients in the consecutive subbands [14].

The proposed statistical video model can be used to denoise the videos using
several different formulations. The five new algorithms proposed in this thesis for
video noise reduction [10-16]| are novel in the sense that they utilize the proposed
statistical video model in low complexity frameworks and produce denoising re-
sults which are comparable or better than the current state-of-the-art while still
being applicable for real-time application. The solutions provided exemplify the
use of the video data in a multitude of ways, viz., decorrelating the temporal
information before processing the spatial information, using the spatio-temporal
information in a single Bayesian framework and processing the temporal as well
as spatial information separately followed by adaptive combination of the results.
These algorithms showcase the different ways the proposed model can be used for
denoising video sequences using basic, low-complexity and adaptive techniques

and can be extended to use more complex techniques in the same framework.



Chapter 2

Background and Literature Survey

This chapter first presents a brief overview of wavelets and multi-resolution anal-
ysis. Since the basis of this research is the processing of video sequences in the
wavelet domain, an introduction to the preliminaries of wavelets is essential for
completeness and understanding of this thesis. Followed by this overview, a com-

prehensive literature survey of the video noise reduction techniques is provided.

2.1 Introduction to Wavelets

This section provides a brief introduction to wavelets which can also be found in
many books and papers at many different levels of exposition. Some of the stan-
dard books are [2-7|. Introductory papers include [8, 9, 17|, and more technical

ones are [18 20].



2.1.1 From Fourier Transform to Wavelets

The main idea behind wavelet analysis is to decompose a signal f into a basis of

functions ;:

= Zai¢i~ (2-1)

For an efficient decomposition of the signal f, a suitable family of the functions
1; is required that can represent the given signal using only a few coefficients a;.
These functions, 1;, should match the features of the signal to be decomposed.

Real-world signals usually are limited both in time (or space as in the case
of images) and limited in frequency (band-limited). Time-limited signals can be
represented efficiently using a basis of block functions (Dirac delta functions for
infinitesimal small blocks). But block signals are not limited in frequency. Band-
limited signals can be represented efficiently using a Fourier basis, but sines and
cosines are not limited in time. The Fourier representation reveals the spectral
content of a signal, but makes it impossible to recover the particular moment in
time (or the particular space coordinates in case of images) where a certain change
has occurred. This makes the Fourier representation inadequate when it comes to
analyzing transient signals.

In signal, image and video processing, concentrating on transients (such as
image discontinuities) is a strategy for selecting the most essential information
from often an overwhelming amount of data. In order to facilitate the analysis
of transient signals, i.e., to localize both the frequency and the time information
in a signal, numerous transforms and bases have been proposed (see e.g., [4, 6]).
Among these, in signal processing, the wavelet transform consists of functions
that are both time-limited and band-limited. Wavelets are such functions which

literally mean small waves, and have been termed so due to the requirements
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that they should integrate to zero, waving above and below the axis, and that
they should be localized. In wavelet analysis, the scale can be interpreted as the
inverse of frequency. The wavelet transform acts as a microscope [6| focusing on
smaller time phenomena as the scale decreases. This behavior permits a local
characterization of signals, which the Fourier and the window Fourier transforms

do not.

2.1.2 Why Wavelets?

Two of the main features of wavelets that are important for the applications
that we shall consider are their good decorrelation and sparse representation of
signals. Wavelets not only represent the signals sparsely by concentrating most of
the energy in a few number of coefficients, they also act as edge detectors. They
cluster the coefficients having significant amount of energy near one another. The
locations of these clusters correspond to the locations of the spatial edges in the
signal.

Some of the characteristics of wavelets that make them ideal for signal repre-

sentation are as follows.

e Wavelets are localized in both the space/time and scale/frequency domains.

Hence, they can easily detect local features in a signal.

e Wavelets are based on a multi-resolution analysis. Wavelet decomposition

allows us to analyze a signal at different resolution levels (scales).

o Wavelets are smooth, which can be characterized by their number of van-
ishing moments. A function defined on the interval |a, b] has n vanishing

moments if

b
/ f(z)z'dr =0 (2.2)
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for + =0, 1,..., n — 1. The number of vanishing moments represents how

well smooth signals can be approximated in a wavelet basis.

Furthermore, there exist fast and stable algorithms to calculate the discrete wavelet

transform and its inverse. The computational complexity of this fast algorithm is

O(n).

2.1.3 Wayvelets and Multi-resolution Analysis

Multi-resolution analysis forms the basis for the development of discrete wavelets

and hence, it is introduced first in this section.

2.1.3.1 Multi-Resolution Analysis

Consider the vector space L? of the square integrable functions in R:
“+oo
L? = {f : fA(x)dr < oo} . (2.3)
In a multi-resolution analysis, L? is decomposed in nested subspaces V;
L.CVaacVayacVocVic V... (2.4)

such that

L= V;={0} and U= _V; =12

j=—00 j=—00
2. For any f € L? and any j € Z, f(z) € V; if and only if f(2z) € V,;_;
3. For any f € L? and any k € Z, f(x) € V if and only if f(z — k) € V}

If a function ¢(x) € Vi, along with the set of its integer translates {¢p(z — &)}, .,

forms a basis for the space Vj, it is called a scaling function or father function.
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For the other subspaces V; (with j # 0) we define:

bin(T) = 280(2x — k). (2.5)

2.1.3.2 Wavelet Functions

The nested nature of the subspaces allows the decomposition of V;,; in terms of

V; and W;, the orthogonal component of V; in Vj:

W, LV (2.7)

The direct sum of the subspaces W; is equal to L*:

+oo +oo
U vi=@ w, =1 (2.8)

j=—o00 j=—o00

Thus, Vj is a “coarse-resolution” representation of V;, while W; carries the “high-
resolution” difference between V; and V4.

If any function ¢ (x) € W, obeys the translation property (Property 3, Section
2.1.3.1) and along with its integer translates, {¢(z —k)},.,, forms a basis for
the space W), it is called a wawvelet function or mother function. For the other

subspaces W; (with j # 0) we define:

bin(z) = 280 (2x — k). (2.9)
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2.1.3.3 The Fast Wavelet Transform (FWT)

Because V and W, are both subspaces of Vi, we can express ¢(z) and ¢ (z) in

terms of the basis functions of V;:
dlx) =2 hpd(2r — k), (2.10)
k

P(x) =2 gep(2n — k). (2.11)

Due to multi-resolution analysis, these relations are valid between V;;4, V; and
W; for any arbitrary j as well. In the above relations, h; and g are the low-pass
and high-pass filter coefficients, respectively, that define the scaling function ¢(x)
and the wavelet function ¥ (x).

We can also express a function f(z) that is written in terms of the basis

functions of Vj,; in terms of the basis functions of V; and W;:
f(z) = Z Ajr1,k®@j1,5(2),
k

= f(x) = Z Ajagji(x) + Z%’,l%,z(ﬂﬁ)- (2.12)

The transform coefficients, \;; and ~;;, are defined bhy:

Aji = \@Z hi—21Njy1.k; (2.13)
!

Vil = \/§Z Gk—2Nj+1,ks (2.14)
k

This operation has a complexity O(n) and is used to compute the discrete
version of the wavelet transform (DWT) and hence, is known as the Fust Wavelet

Transform (FWT). It is also known as the filter bank algorithm (Figure 2.1). The

14



e T

Decomposition Reconstruction

Figure 2.1: The filter bank algorithm for orthogonal wavelets: filtering and down-
sampling of the signal [ yields the low-pass signal LP and the high-pass signal
HP. Signal S is reconstructed by up-sampling and filtering with the corresponding
filters.

inverse wavelet transform can be obtained in a similar way.

2.1.3.4 Orthogonal Wavelets

If the ¢;; and v; are orthonormal, i.e.,:

Vi LW, (2.15)
(Pj1 Pjur) = O, (2.16)
(ja, V) = 0j—jO1v, (2.17)

then we can calculate the coefficients of the decomposition in (2.13) by taking the

inner product of the function with scaling and wavelet functions:

Ajp = ([, d0) (2.18)

Yia = (fr¥5) - (2.19)
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Figure 2.2: Orthogonal scaling and wavelet functions. (a) Daubechies scaling func-
tion with 4 vanishing moments, (b) Daubechies wavelet function with 4 vanish-
ing moments, (¢) Scaling function for the least asymmetric compactly supported
wavelet, Symmlet, with 8 vanishing moments (Symmlet-8), and (d) Symmlet-8
wavelet function.

Examples of orthogonal wavelets are the family of orthogonal wavelets con-
structed by Daubechies [3|. The scaling function and the wavelet function for the
member with 2 vanishing moments (also known as “D4” because the correspond-
ing wavelet filter has 4 taps or filter coefficients) are shown in Figures 2.2(a) and
(b), respectively. The Symmlet-8 is the least asymmetric compactly supported
wavelet with 8 supporting moments and the corresponding scaling function and

wavelet function are shown in Figures 2.2 (¢) and (d), respectively.

16



2.1.3.5 Bi-orthogonal Wavelets

To obtain some special properties otherwise not available with the orthogonal-
ity conditions, such as linear phase and symmetry, we use the bi-orthogonality

conditions in which we have two multi-resolution analyses, a primal and a dual:
e Primal: V;, W, éjk, ;.
e Dual : ‘7}, ﬁ/}, ng;k, @ij

The bi-orthogonality conditions imply:

—~

Vi LW, (2.20)

Vi LW, (2.21)

<<gj,z; ¢j,z'> = 01-r, (2.22)
<1Zj,la ¢j’,l’> = 0j—j01-v- (2.23)

The coefficients of the decomposition in the bi-orthogonal wavelet basis are
obtained by taking the inner product of the function with the dual scaling and

wavelet functions:

Aji = <f, 5j,z>, (2.24)
e = (£, 050) (2.25)

We can still use the filter bank algorithm if we use the dual filter pair (h, §) (re-
lated to the dual multi-resolution analysis) for the decomposition and the primal
filter pair (h, g) (related to the primal multi-resolution analysis) for the recon-

struction. Such a filter bank algorithm is depicted in Figure 2.3.
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Decomposition Reconstruction

Figure 2.3: The filter bank algorithm for bi-orthogonal wavelets: filtering and
down-sampling of the signal [ yields the low-pass signal LLP and the high-pass
signal HP. Signal S is reconstructed by up-sampling and filtering with the corre-
sponding filters.

Examples of bi-orthogonal wavelets are the family of bi-orthogonal wavelets
constructed by Cohen, Daubechies and Feauveau (CDF) [21]. The primal and
dual scaling and wavelet functions for the bi-orthogonal 1-3 member of the CDF

family is illustrated in the Figure 2.4.

2.1.4 Higher Dimensions and Translation Invariance

The above wavelets were defined on a one-dimensional domain. To create wavelets
for higher dimensional domains, we can perform the one-dimensional wavelet
transform independently for each dimension in any order.

In the two-dimensional case we can get the square variant of the decompo-
sition (see Figure 2.5) and the basis functions are the tensor products of the

one-dimensional basis functions. After one transform step we have:

(2.26)

The filter bank algorithm for the two-dimensional wavelet transform for one
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Figure 2.4: Scaling and wavelet functions for the Bi-orthogonal 1-3 case. (a) Dual
scaling function, (b) Dual wavelet function, (c¢) Scaling function, and (d) Wavelet
function.

Figure 2.5: The two-dimensional wavelet transform (square variant) with two
successive levels of decomposition.
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Figure 2.6: The filter bank algorithm for a two-dimensional orthogonal wavelet
transform of the two-dimensional signal I (e.g., image).

decomposition level is shown in Figure 2.6. The image is decomposed into four
subbands, namely LL, HL, LH and HH, where LL represents the approrimation
subband containing the low-pass equivalent of the image, HL represents the detail
subband containing the horizontal edge information in the image, LH represents
detail subband containing the vertical edge information in the image, and HH
represents the detail subband containing the diagonal edge information in the
image. At each subsequent level of decomposition, the approximation subband is
further decomposed into four more subbands.

The sub-sampling of the signal in the filter bank causes the wavelet transform
to vary with translations. Only if delay or advance is a multiple of 2", n being the
number of transform levels, will the wavelet transform be a delayed or advanced
version of the original transformed signal. In two dimensions, this condition needs
to be true in both the vertical and horizontal directions.

The wavelet transform can be converted into an invariant transform by remov-

ing the sub-sampling step from the decomposition filter bank. This is called the
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redundant wavelet transform or stationary, or non-decimated wavelet transform
[22]. At each resolution step the filters have to be up-sampled to keep a consis-
tent multi-resolution analysis. Also, the computational complexity is increased to
O(pn), with p < log(n) the number of transform levels. For the inverse transform,
a mean value of appropriate transform coefficients has to be calculated due to the

redundancy in the forward transform.

2.2 Literature Survey

In this section, a critical review of the existing literature pertaining to video noise
reduction is provided. Compared to the extensive body of literature that exists
for still image denoising, the work on noise reduction in video has been very
limited. This can be attributed to a lack of good statistical models for video
sequences and the immense computational power that is required to exploit the
temporal correlation in videos. However, with digital videos gaining popularity
and computational resources becoming cheaper, filtering of videos is fast becoming
an important research area.

Image sequence data can be considered as spatio-temporal data. In order to
efficiently denoise such data and also avoid blurring during denoising, we not only
need to make use of the spatial correlation that exists between the pixels, but
also of their temporal correlations, or the correlation that exists between different
frames in time. Due to the inherent dynamic nature of the image sequences, these
signals are non-uniform in the temporal direction and trying to exploit temporal
correlation during video noise reduction not only makes the video denoising dif-
ferent from the image denoising, but also much more complex. Since temporal

correlation is highest in the direction of the motion, most schemes in the litera-
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ture employ either implicit or explicit motion estimation to effectively exploit the
temporal correlation for noise reduction.

Based on the amount of motion utilized for the reduction of noise present in the
video sequences, the existing filtering techniques can be divided into the following

three classes:

e Filters using no motion information.

These filters employ no motion information and process the spatio-temporal
video data as a set of three dimensionally arranged data to be filtered. In
the class of such filters that use no motion information, 3D extensions of
2D non-linear filters, now employing a spatio-temporal support, have been
proposed by Zlokolica et al. |23, 24]. The a—trimmed mean (ATM) filter
[23] and the K - nearest neighbors (KNN) filter [24] are both based on
order statistics of the pixels in the spatio-temporal window and in order
to estimate the noise-free value of any pixel, they rely on the averaging of
several neighboring pixels. In the case where motion is present in the video
sequence, such filters cause severe blurring of edges and lead to insufficient

filtering of noise.

e Motion detected filters.

In order to appropriately exploit the temporal correlation, most schemes in
literature employ some form or the other of motion detection or estimation
for noise reduction. The motion detected filters implicitly or explicitly detect
motion in the video sequence. Such filters are designed based on a non-
uniform model of the video sequence in the temporal direction and the use
of the temporal data while filtering is dependent upon the extent of motion

incurred in the sequence.
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An example of the motion-detection-based approach is the filter proposed
by Martinez and Lim [25], which uses a cascade of five 1D finite impulse re-
sponse (FIR) linear minimum mean square error (LMMSE) estimators along
five pre-hypothized directions of motion. Such a scheme works well when
the actual motion is along one of the predetermined directions, but leads
to blurring in the presence of real motion which is usually more arbitrary.
The directional filtering approach has been extended by Cocchia et al. in
|26] by generalizing the 2D rational FIR filter proposed by Ramponi [27] to
the 3D spatio-temporal region. The rational FIR filters have been applied
along four spatial directions and nine temporal directions in conjunction
with a movement detector to avoid “image flow” during fast motion. The
spatial filtering in a spatio-temporal support has been further generalized by
Jostschulte and Amer in 28] by detecting corners as well as edges (leading
to eight spatial direction masks) and using an FIR filter to reduce noise in
the spatial image region. The temporal filtering in [28] has been achieved
by using a subband based scheme. The high pass channel employs a time
recursive filter with frame delay, while the low pass channel employs a me-
dian based deinterlacing scheme that performs optimal filtering for different

image content.

Zlokolica et al. have suggested a multiple class averaging (MCA) filter [29],
where the pixels in the spatio-temporal support have been distributed into
multiple classes and a weighted filter, dependent upon the class, prevalent
motion and detail, has been used for averaging. Turney et al. |30| have
modeled the image sequence as a temporal auto-regressive (AR) process and
have suggested a low complexity, time recursive Kalman filter. Although this

scheme, as all motion-detected schemes, provides good estimates in case of
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stationary image sequences having low motion content, it either suspends

temporal filtering or leads to blurring in the presence of motion.

Motion compensated filters.

The blurring evident in the outputs generated by the filters that use no
motion or only use motion detection can be minimized by estimating the
motion and employing motion adaptive filtering. These kind of filters rely
on explicit motion estimation and they remove the temporal non-uniformity
of the image sequence using motion compensation. These filters are then
designed for the uniform spatio-temporal data of the motion compensated

image sequence .

In case of reliable motion estimates, simple temporal averaging [31] could
also be used. However, motion vectors, more often than not, are not perfect.
Thus, instead of simple averaging, Sezan et al. used an LMMSE filter in the
temporal direction [32]. They have employed five pixels for the temporal
window and this leads to large computational and memory requirements as
the algorithm computes two motion vectors (forward and backward) for each

pixel in addition to storing the two past and two future frames.

The computational and memory requirements are generally reduced by lim-
iting the temporal support and employing a motion-compensated spatio-
temporal neighborhood. The compensation of motion removes or reduces
any non-stationarity that originally existed in the temporal direction. Fur-
thermore, there exists a trade-off between the extent of the spatio-temporal
support and the benefit gained in terms of noise reduction as having a big-
ger spatio-temporal neighborhood might, in turn, lead to blurring of the

data at the center of the support window, which is being currently filtered.
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Kokaram et. al. [33] used a 3D Wiener filter on the motion-compensated
and overlapped spatio-temporal support. Overlapping the blocks prevents
the block artifacts across block edges. Samy [34]| adapted the 3D Wiener
filter to estimate the mean and variance locally over the spatio-temporal
neighborhood. However, the filter in [34]| does not account for the presence
of outliers in the neighborhood. This approach was improved upon by Ozkan
et al. in [35], where the LMMSE filter switches between the temporal and
spatio-temporal neighborhood depending upon the uniformity of the pix-
els in the neighborhood. This idea was further generalized in the adapted
weighted averaging (AWA) filter [35] by choosing the most uniform subset
from the spatio-temporal neighborhood. Pixel difference has been used as
the criteria for uniformity and the pixels included in the subset are weighted
according to their difference from the center pixel in the averaging scheme.
The AWA filter is particularly suited for low SNRs and abruptly changing
scene content. Motion estimation in [35] used Fogel’s optical flow algorithm

|36] and the hierarchical block matching algorithm proposed in [37].

Reduced-order, time recursive, Kalman filtering has been used in [38] to re-
duce the number of frames to be stored. The spatio-temporal neighborhood
is considered as the state and the Kalman filter is applied along the motion
trajectory. Although such a scheme is able to utilize the spatial as well as
temporal correlation, the computational burden is still high. Dugad and
Ahuja [39] have further reduced the computational burden by carrying out
the spatial and temporal filtering sequentially. They have used an optimal
Wiener filter for spatial filtering and a Kalman filter for temporal filtering
(Joint Kalman Wiener (JKW) filter), and have reported good results for

videos having varying amount of motion content.
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All the motion-compensated noise reduction algorithms discussed above em-
ploy motion estimation as an integral part. This makes the performance of
the motion-compensated filters dependent upon the algorithm used for mo-
tion estimation. This not only makes such algorithms computationally ex-
pensive, but also memory intensive. There is a need to store the two motion
vectors for each past and future frame considered in the processing, along
with the storage required for the frames themselves. Generally block motion
estimation algorithms are used for motion-compensated video denoising as
they provide a good compromise between accuracy and complexity. Vari-
ous schemes for motion estimation and also for more efficient and effective
search patterns for block matching algorithms have been presented in liter-

ature [36, 37, 40 44].

Along with the extent to which the different video noise reduction approaches
utilize motion, they can also be categorized based on the domain they operate in.
Almost all of the approaches discussed above process the video sequence in the
original spatio-temporal domain. However, wavelets have emerged as a powerful
multi-resolution tool for signal analysis in the last decade. In the case of still
image denoising, wavelet thresholding has emerged as a preferred tool and been
shown to outperform other means of denoising [45-51|. Their utility as a tool for
video noise reduction has also been explored in recent years.

There are two broad approaches to exploit the wavelet representation for the
spatio-temporal filtering of the noisy video data. Firstly, the coefficients of the
3-D wavelet representation of a noisy video could be thresholded to yield the noise-
free estimates of the original video sequence [53 55]. There is no need for explicit
motion detection, estimation or compensation in this approach. However, its main

drawbacks are the large memory requirements which is constrained by the length
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of the wavelet filter coefficients [56|, the very large computational complexity
necessary to process the 3-D block of data together and the long latency between
the output of the two successive blocks of processed frames, making the filtering
process discontinuous in time.

Dabov et al. |57| perform the local 3-D transform on a group of blocks found by
using block-matching with respect to the one being currently processed. Following
the 3-D transform, each 3D group in the subband domain is filtered and aggregated
using a weighted average. Since it uses two separate steps involving the intermedi-
ate estimate production using hard thresholding followed by block-matching and
Weiner filtering, this scheme requires a large amount of computational power.
Furthermore, since the block-matching and denoising is performed on temporal
groups of frames, the memory requirements and the latency in this technique are
very high, thus rendering it unsuitable for any real-time applications. Yu et al.
[58] have used the 3D DWT around any given frame by considering a group of
neighboring frames and then first applying the 1D DW'T transform in the temporal
direction, followed by the 2D spatial DWT. The framework used in [58] is similar
to that initially proposed in [10, 14] with one of the differences being that in [58]
the past denoised coefficients are used as the neighbors to the current noisy frame
as compared to the input noisy frame neighbors in |10, 14|. The performance gain
in terms of the denoising improvement in [58] is obtained at the cost of additional
memory access, which in turn has an impact on the real-time implementation of
the technique.

The second approach is to consider the 2-D wavelet representation of each
frame and to process the subsequent series of 2-D wavelet domain frames. Ac-
knowledging the better framework provided by the wavelet domain for denoising

or filtering, |29] has also extended the spatio-temporal filter to the wavelet domain.
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However, this filter uses weighted averaging of neighboring coefficients to reduce
the noise in the wavelet domain and produces blurring of the high frequency infor-
mation and thus, leads to a loss of detail in the denoised image sequence. While
the wavelet domain filter in [29] operates entirely in the wavelet domain, Pizurica
et al. [52] have proposed a noise reduction scheme that utilizes wavelet domain for
spatial filtering but reverts back to the time domain for exploiting the temporal
correlation. However, the computational expense involved with [29, 52| makes
them unsuitable for real- or near real-time implementation.

Balster et al. [59] have used a wavelet-based image denoising technique devel-
oped in [60] for spatial filtering of a noisy frame. Haar wavelet-based thresholding
has been used on the spatially-denoised frames to perform the temporal noise
reduction . In [56], the motion trajectory of the different coefficients has been
estimated and a recursive temporal filtering is performed on the spatially filtered
[61] coefficients along the estimated trajectories. Rahman et al. [62] proposed a
joint probability density function to model the video wavelet coefficients of any
two neighboring frames and then applied this statistical model for denoising. The
joint density function has been used for spatial filtering of the noisy wavelet coef-
ficients by developing a bivariate maximum a posteriori estimator.

As is evident from the above discussion, even though wavelets have been suc-
cessfully employed for noise reduction in video sequences, most of the recent work
has not utilizied the spatio-temporal information to the fullest extent and a wide
variety of ad hoc frameworks have been used for the development of these fil-
ters. The high latency, memory requirements and computational complexity have

hindered the application of most of these techniques in real-time applications.
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2.3 Conclusion

In this chapter, a brief overview of the wavelet transform has been provided as
this forms the basis for the development of the spatio-temporal video modeling as
well as the noise reduction filters in the following chapters. The reasons for the
widespread use of wavelets as a key tool in signal processing have been explored
and the properties of wavelets which make them useful, such as multi-resolution,
orthogonality, linearity and sparsity have also been discussed.

Following the overview of the wavelet transform, a survey of the current noise
reduction techniques that exist in the literature for video sequences has been

provided.
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Chapter 3

Video Modeling

3.1 Introduction

As noted in the previous chapter, wavelets have emerged as a powerful tool for the
processing of images and videos for a variety of applications, such as denoising,
compression, and watermarking. One of the main reasons for this popularity
is the ability to use statistical approaches in the development of wavelet based
techniques via the use of a prior function for the wavelet subband coefficients.
While there has been a lot of work to describe the probability density function
(p.d.f.) of the wavelet coefficients of 2D images, there has been little effort to
develop specific models which capture the inherent nature of video sequences.

In the case of 2D images, the basic idea is to model the DW'T coefficients of
an image with a pre-specified probability density function. This modeling tries to
exploit the nature of the histogram of the wavelet coefficients, which are charac-
terized by a sharp central peak and a heavy tail [63, 64] . Some of the standard
density functions for the 2-D DWTT coefficients of images are the generalized Gaus-

sian (GG) density function [65], the Bessel K-form density function [64], and the
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alpha-stable density function [66]. While a common assumption in the use of any
of these densities is the independent and identically distributed (i.i.d.) nature of
the wavelet coefficients, the wavelet coefficients in different subbands are actually
correlated to one another and this can also be exploited in the a prior: descrip-
tion of the subband coefficients |67, 68|. This inter-scale dependency has been
modeled via the use of spherically invariant bivariate p.d.f. in |67] and modeling
the wavelet coefficients by the hidden Markov tree model [68].

For video processing, usually the same wavelet coefficient priors which were
developed for 2D images are used to represent the sequences of 2D frames [56, 59,
61]. It is obvious that the way in which the statistical information represented by
the subband coefficients is modeled using a priori models plays a significant role
in the performance of the algorithms being developed. Thus, in this chapter we
discuss the modeling of the spatio-temporal subband coefficients to capture the
information inherent in the video sequence. To achieve this, the modeling of the
wavelet coefficients corresponding the video sequence has been considered in two

steps:

1. The modeling of the subband coefficients corresponding to the spatial 2D
video frames. As discussed above, the modeling of the coefficients has an
effect on the overall performance of the algorithm utilizing that p.d.f.. The
more closely the a priori p.d.f. is able to model the sharp central peaks and
heavy tails of the coefficient distribution, the better is the algorithmic per-
formance. While the heavy tailed distributions |62, 64-66] are much better
suited for this modeling as compared to several other commonly used dis-
tributions, such as Gaussian and Laplacian, only incremental improvements
are achieved by using different heavy tailed distributions. Towards this end,

the modeling of the subband coefficients corresponding to the 2D frames is
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presented in this chapter.

2. The spatio-temporal modeling of the subband coefficients to account for
the information inherent in the video sequences. Since the modeling of
the subband coefficients corresponding to the 2D frames does not take into
consideration the temporal information evident in the video sequences, this
chapter also discusses a new model which takes into consideration the spatio-

temporal information.

3.2 Modeling of Subband Coefficients

In this section, the modeling of the subband coefficients is discussed in detail.
Consider a video sequence which has been discretized both in the spatial and
temporal coordinates. All the pixels in the n'* frame of such a video sequence,

example of which is shown in the Figure 3.1 (a), can be represented as f":

f* ={fli=1,2,..,Land j=1,2,... K} (3.1)

J

where (i, j) represent the row and column coordinates of the pixel, respectively,
n denotes the frame index, and L and K are the number of rows and columns in
each frame, respectively. The bold-faced notation is used to represent the set of
pixels in the n'" frame.

Note that although 3.1 implies a 3-D sampling or a progressive scanning of the
video sequence, the same model would be valid for an interlaced image sequence
if the even and odd fields are considered as two separate frames in a progressively
scanned image sequence.

Each frame in a video sequence can be processed using the 2D discrete wavelet

transform to yield the corresponding wavelet domain representation of the video
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(a) Original Frames 20 and 21 from Trevor Sequence
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(c) Histogram of the HL; subbands of two consecutive frames of Trevor sequence

Figure 3.1: (a) Two consecutive frames of Trevor video sequence in time domain;
(b) 3-level wavelet decomposition of the two frames in (a); and (c¢) The histogram
of the coefficients corresponding to the HL; subband in the wavelet decomposition
of two consecutive frames which are shown in (b).
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sequence. The corresponding coefficients in the wavelet domain can be obtained

as

X" = DWT(f") (3.2)

where X" is the wavelet domain representation of the input frame n and can be

represented as

X" ={Xp|i=1,2,..,Land j = 1,2,... K} (3.3)

where, similar to the pixel domain representation, (i, j) represent the row and
column coordinates of the wavelet coefficients, respectively, n denotes the trans-
formed frame index, and L and K are the number of rows and columns in each
wavelet domain representation, respectively. The bold-faced notation is used to
represent the set of pixels in the n'" frame.

The wavelet decomposition of two successive frames from the Trevor video
sequence is shown in Figure 3.1 (b). As discussed in Sections 2.1.3 and 2.1.4 and
as is evident from this figure, the 2D wavelet decomposition of the input frame
has a dyadic structure which is suited to multi-resolution analysis. Furthermore,
owing to clustering, the wavelet significant coefficients tend to accumulate around
the edges in the spatial domain. However, even this correlation is extremely short-
lived and generally does not exist beyond the immediate neighbor. Because of this,
the wavelet coefficients of images have been extensively modeled as independent
and identically distributed random variables (e.g., |6, 45, 48, 49, 61, 65, 69-80]).
Thus, in this thesis, the wavelet coefficients of the video sequence frames are
modeled as i.i.d. variables.

Figure 3.1 (c) presents the histograms of the wavelet coefficients belonging to
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the HL; subbands of the decomposition shown in Figure 3.1 (b). The histogram
of the subband coefficients is symmetric, zero-mean, uni-modal, sharply peaked
and heavy tailed in nature [63, 64]. Owing to these properties, the generalized
Gaussian distribution has been used here to model the distribution of the frame
subband coefficients.

The GG distribution prior that can be used to describe the pdf of the sub-
band coefficients, which are treated as zero-mean, i.i.d. random variables, can be
presented as

Vg T
— —|—|" 2 Ve >0 3.4

pa(z) =
where p,(x) is the pdf of the random variable z, I'(a) = [;° 0" " exp(—b)db is
the Gamma function and the shape parameter, and v, and s, are the model

parameters. The variance of a GGD random variable can be defined as

L)
while the kurtosis can be expressed as
LT
Ky = T3 (3.6)

Vg

For each subband, the model parameters v, and s, can be estimated by using
the variance and the kurtosis of the available subband coefficients; the shape
parameter, v, typically lies in the range (0, 2|.

Two of the special cases of the above distribution which have been widely used

in literature are:

e 1, = 1: In this case, the GG distribution reduces to Laplacian distribution

with a zero mean and a variance of 2s2.
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Test Image U, Su
I=1]1=2]1=3]1=1]1=2]1=3
Miss America | 0.6832 | 0.4915 | 0.6073 || 0.9609 | 0.6300 | 4.8961
Hall 0.4379 | 0.6042 | 0.7390 || 0.6118 | 7.2671 | 27.5986
Train 0.4415 | 0.4480 | 0.6372 || 0.6429 | 2.3000 | 14.8839
Patrol Car | 0.3983 | 0.4276 | 0.6365 || 0.1729 | 0.6380 | 13.9702
Salesman 0.6799 | 0.8070 | 1.1213 || 2.3370 | 6.7293 | 15.8566
Trevor 0.7578 | 0.7363 | 0.8354 | 2.5948 | 5.9693 | 21.2024

Table 3.1: Average value of the generalized Gaussian distribution parameters, s,
and v, for the modeling of the DW'T coefficients for some test videos for the LH
subbands

Test Image Vg S

lzl\le\lzB =1 \ [=2 \ [=3

Miss America | 0.3125 | 0.4191 | 0.4699 || 0.0262 | 0.3954 | 2.0637
Hall 0.3895 | 0.5340 | 0.6103 || 0.3295 | 4.2860 | 16.5382
Train 0.6115 | 0.8368 | 0.9206 || 6.1105 | 22.0139 | 51.2772
Patrol Car | 0.7076 | 0.7424 | 0.7986 || 7.4120 | 20.3449 | 54.5289
Salesman 1.1471 | 1.3493 | 1.5532 || 21.4858 | 53.0975 | 132.1720
Trevor 0.4044 | 0.4653 | 0.5533 || 0.1966 | 1.1095 5.7199

Table 3.2: Average value of the generalized Gaussian distribution parameters, s,
and v, for the modeling of the DW'T' coefficients for some test videos for the HL
subbands

e v, = 2: In this case, the GG distribution is equivalent to the Gaussian

@
N’le

distribution which has a zero mean and a variance of

To evaluate the modeling of the empirical distribution by the GG distribu-
tion, six different video sequences have been used. All the frames in each of the
video sequences have been transformed to the wavelet domain using a three level
decomposition. The resulting wavelet coefficients corresponding to each of the
subbands were then approximated using the GG distribution. The model param-
eters (v, and s,) for each subband were estimated form its variance and kurtosis

as described above. Tables 3.1, 3.2 and 3.3 present the estimated values of the
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Test Image U, Su

lzl\l:2\l:3 lzl\le\ =3
Miss America | 1.0177 | 0.4255 | 0.5312 || 1.6216 | 0.1407 | 1.4561
Hall 0.3634 | 0.3968 | 0.5149 | 0.0380 | 0.3538 | 3.3652
Train 0.4959 | 0.6676 | 0.5063 || 0.3387 | 4.2267 | 3.7797
Patrol Car | 0.3310 | 0.3459 | 0.3758 || 0.0151 | 0.0674 | 0.4877
Salesman 0.6860 | 0.9413 | 1.1324 || 2.4479 | 8.9292 | 16.1209
Trevor 0.5975 | 0.4694 | 0.5710 || 0.4004 | 0.4927 | 3.4140

Table 3.3: Average value of the generalized Gaussian distribution parameters, s,
and v, for the modeling of the DWT coefficients for some test videos for the HH
subbands

model parameters for each of the subbands for the six videos used for evaluation.
The results are obtained by averaging the model parameters for corresponding
subbands over all the frames of the respective video sequences. To compare the
relative performance of this approximation, the same empirical subband data was
also modeled using the Gaussian and Laplacian distributions. Figures 3.2 and 3.3
show the fitted histograms of all the subbands belonging to frame 20 of Trevor and
frame 10 of Train video sequences, respectively. The efficacy of the GGD prior
to model the subband coefficients much better than the Gaussian and Laplacian
distributions is evident in these histograms. The GGD prior is able to closely
model the sharp peak in the histograms around the zero coefficient magnitude as
well as the heavy tails.

To quantify the performance of the different PDF priors in fitting the empirical

PDF the following two metrics have been used:

e Kolmogorov-Smirnov Distance (KSD): The KSD quantifies a distance be-

tween the empirical distribution function and the reference distribution used
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using a 3-level de-

composition of frame 20 of the Trevor video sequence. The empirical subband
histogram has been fitted using the generalized Gaussian, Gaussian and Lapla-

cian distributions.
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Figure 3.3: Modeling of the subband coefficients generated using a 3-level de-
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to model it. It can be expressed as:
KSD = max/[px(a:) — pa(z)]dx. (3.7)

e Kullback- Leibler Divergence (KLD): KLLD is a non-symmetric measure of
the difference between two probability distributions, viz., the empirical one

and the one used to define it. It can be computed as:

~

Pa()
pa(z)

KLD = /ﬁx(x) In dx. (3.8)
Table 3.4 presents the computed values of KSD and KLD for the modeling of the
empirical pdf corresponding to the subband coefficients for all the frames in the
six videos used for evaluation using the GG, Gaussian and Laplacian distributions.
The estimated values of these measures show that the GG distribution is able to
fit the empirical data most precisely and have the least amount of distance and
divergence from the empirical pdf. This high degree of matching between the
empirical and the GG pdfs is because of the ability of the GG pdf to approximate

for the sharp-peaked and heavy-tailed nature of the empirical pdf more accurately.

3.3 Spatio-Temporal Modeling of Subband Coeffi-
cients

The spatial modeling of the subband coefficients has been discussed in the previous
section and is the one generally exploited when exploiting the various properties
of the subband coefficients, such as sparseness, clustering and inter-subband cor-

relations, for various applications. However, not much work has been done to
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Test Image KSD KLD
=1 | I=2 | 1=3 =1 | I=2 [ I=3
HH
GG PDF 0.0976 | 0.1451 0.1553 || 0.1147 | 0.0936 | 0.1305
Laplacian PDF || 0.2569 | 0.2965 0.2573 0.1420 0.2944 | 0.3982
Gaussian PDF | 0.3540 | 0.3925 0.3473 0.4538 0.7367 | 0.8596
LH
GG PDF 0.1333 | 0.1159 | 0.1099 | 0.1002 | 0.1160 | 0.2064
Laplacian PDF || 0.2717 | 0.2222 0.1635 0.3557 | 0.3968 | 0.3630
Gaussian PDF | 0.3878 | 0.3337 | 0.2735 0.8053 0.8917 | 0.7327
HL
GG PDF 0.1420 | 0.1002 | 0.1251 0.1183 | 0.1203 | 0.1667
Laplacian PDF || 0.2499 | 0.1824 | 0.1789 0.4705 0.3871 | 0.3877
Gaussian PDF | 0.3459 | 0.2942 0.2789 0.9694 | 0.8266 | 0.7688

Table 3.4: Values of the metrics KSD and KLD for the modeling of the subband
coefficients using GG, Gaussian and Laplacian distributions. The average values
of KLLD and KSD are obtained using all the frames of the 6 different test sequences.

utilize any relationship that exists between the subband coefficients in the tem-
poral direction.

Figure 3.4 (a) shows two consecutive frames of the Trevor video sequence where
the background is stationary while the object in the foreground (man) is moving.
As is evident, there exists a lot of redundancy in the temporal direction between
any two corresponding pixels at the same location in adjacent frames and this
redundancy has been successfully exploited in applications like video coding. Even
in sequences depicting motion, the temporal correlations persist in the regions
not affected by motion. Motion primarily causes a change in the location of the
edges from one frame to another. Since wavelets are able to preserve the edge
information owing to spatial clustering, this motion, in the form of movement of
edges, can also be captured and represented in the wavelet domain. The edges of
the objects that are immobile are represented at the same locations in the wavelet

domain representation of different frames, while the spatially uniform regions in
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space are mapped to relatively low values in the wavelet domain. Thus, it is
feasible to exploit the temporal redundancy of a video sequence in the wavelet
domain as well.

One of the subbands ( HL;) corresponding to the 3-level wavelet decomposition
of the two successive video frames is shown in Figure 3.4 (b). As can be seen,
wavelets act as edge detectors and spatial clustering of significant coefficients along
the spatial edges can be observed in the subband representation. Thus, the motion
occurring in the video, in the form of movement of edges, can also be captured
and represented in the wavelet domain and this concept is explored here.

Figure 3.4 (c) presents the difference of the HL; subbands corresponding to
the two successive frames of the Trevor video sequence. The observed coefficients
after the difference signify the change in the scene from one frame to the next
which is caused due to motion. Thus, if X" is the set of subband coefficients for
the current frame, n, and X"~ ! is the set of subband coefficients for the previous

frame, n — 1, then X" can be represented as
X" =X""t Mt (3.9)

where M"~! is the motion noise introduced in the subband representation of the

frame at instance n — 1 and can be explicitly defined as
n—1 __ n—1|: .
M ={M7|i=1,2,..,Land j=1,2,.., K} (3.10)

where, (i, j) represent the row and column coordinates of the wavelet coefficients,
respectively, n denotes the transformed frame index, and L and K are the number
of rows and columns in each wavelet domain representation, respectively. Since

the observed motion noise is more pronounced around the edges and textured

42



(a) Original Frames 20 and 21 from Trevor Sequence

(b) HL; subbands
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(c) Difference of the two subbands shown above and its histogram

Figure 3.4: (a) Two consecutive frames of Trevor video sequence in time domain;
(b) HL; subband in the wavelet decomposition of two consecutive frames which
are shown in (a). The subband coefficient values have been rescaled for visual-
ization; and (c¢) The difference between the two subbands and the corresponding
histogram.
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areas, the wavelet coefficients corresponding to the motion noise also demonstrate
the sparseness and clustering properties.

Figure 3.4 (c) also presents the histogram of the coefficients corresponding to
one of the subbands of the motion noise frame wavelet coefficients. Similar to
the histograms of the original frame subband coefficients, the histogram of the
motion noise frame subband coefficients exhibits a sharp peak around its mean
and is heavy-tailed. Thus, similar to the modeling of the coefficients belonging to
the different subbands in X", the coefficients belonging to the different subbands
in M"~! (or M" corresponding to the time instant n + 1) can be fitted using the
GGD prior as:

U x .,
pm(m) = ) exp(—]s—] ™), Sy Vm > 0 (3.11)

- QSmF(i m

where p,,,(m) is the pdf of the random variable m, and the shape parameter, and
Uy, and s, are the model parameters. The variance and kurtosis of this random

variable can be defined as

» _ 216
and
L(-T(GE)

For each subband, the model parameters v, and s,, can be estimated by em-
pirically estimating the variance and the kurtosis of the motion noise subband
coefficients and solving (3.12) and (3.13) for the model parameters. The wavelet
coefficients belonging to each subband of M"~! can be treated as i.i.d. random
variables and can be obtained by subtracting the corresponding subband coeffi-
cients form successive frames.

To evaluate the modeling of the empirical distribution of the motion noise
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Test Image Vi Sm
lzl\l:2\l:3 lzl\ [=2 \ [=3

Miss America | 1.1045 | 0.6464 | 0.5743 || 3.1238 | 0.7307 | 0.6469
Hall 0.4985 | 0.4383 | 0.4561 || 0.4391 | 0.5059 | 0.7943
Train 0.3755 | 0.4263 | 0.3657 || 0.1469 | 0.7915 | 0.5362
Patrol Car | 0.3514 | 0.4164 | 0.6166 || 0.0653 | 0.5596 | 11.0135
Salesman 0.8128 | 0.9840 | 1.2870 || 5.2188 | 14.3294 | 26.0670
Trevor 0.6823 | 0.4723 | 0.5393 || 0.9785 | 0.4398 | 1.4266

Table 3.5: Average value of the generalized Gaussian distribution parameters, s,,
and v, for the modeling of the motion noise wavelet coefficients for some test
videos for the LH subbands

Test Image U, Sm

lzl\l:2\l:3 =1 \ [=2 \ [=3

Miss America | 0.4534 | 0.3693 | 0.3650 || 0.1397 | 0.0956 0.1555
Hall 0.4577 | 0.4949 | 0.5679 || 0.2446 | 0.7312 1.2481
Train 0.5954 | 0.7241 | 0.6932 | 6.8438 | 11.8236 | 11.2135
Patrol Car | 0.6882 | 0.6878 | 0.7264 || 8.8621 | 12.0397 | 22.2666
Salesman 1.3339 | 1.4174 | 1.7258 || 36.6167 | 77.8455 | 228.4577
Trevor 0.3922 | 0.4347 | 0.5218 || 0.1852 | 0.5918 2.0075

Table 3.6: Average value of the generalized Gaussian distribution parameters, s,,
and v, for the modeling of the motion noise wavelet coefficients for some test
videos for the HL subbands

Test Image U, Sm
lzl\le\le lzl\ =2 \ =3
Miss America | 0.9578 | 0.6125 | 0.4988 || 2.7264 | 0.5230 | 0.3509
Hall 0.6707 | 0.5224 | 0.4668 || 0.4780 | 0.7774 | 0.5914
Train 0.4502 | 0.6665 | 0.5314 || 0.2637 | 3.3037 | 2.4755
Patrol Car | 0.3141 | 0.3424 | 0.4162 || 0.0144 | 0.0818 | 0.7817
Salesman 0.7727 | 1.1352 | 1.1330 || 4.8446 | 16.6685 | 24.0621
Trevor 0.7770 | 0.4954 | 0.5349 || 0.9869 | 0.4440 | 1.1497
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Table 3.7: Average value of the generalized Gaussian distribution parameters, s,,
and v, for the modeling of the motion noise wavelet coefficients for some test
videos for the HH subbands




wavelet coefficients by the GG distribution, six different video sequences have
been used. All the frames in each of the video sequences have been transformed
to the wavelet domain using a three level decomposition and the successive wavelet
domain frames were subtracted from one another to obtain the motion noise co-
efficients. The resulting coefficients corresponding to each of the subbands were
then approximated using the GG distribution. The model parameters (v, and
$m) for each subband were estimated from its variance and kurtosis as described
above. Tables 3.5, 3.6 and 3.7 present the estimated values of the model param-
eters for each of the subbands for the six videos used for evaluation. The results
are obtained by averaging the model parameters for corresponding subbands over
all the frames of the respective video sequences. To compare the relative perfor-
mance of this approximation, the same empirical subband data was also modeled
using the Gaussian and Laplacian distributions. Figures 3.5 and 3.6 show the
fitted histograms of all the subbands belonging to motion noise coefficients corre-
sponding to the frames 20 and 21 of Trevor and frames 10 and 11 of Train video
sequences, respectively. On visual inspection, the GGD prior is able to model the
sharp peaks in the histograms around the zero mean as well as the heavy tails
much more precisely than the Gaussian or the Laplacian distributions.

For a quantitative analysis of the fitting of the empirical pdf using the three
a priort distributions, Table 3.8 presents the computed values of KSD and KLLD
for all the six video sequences used for evaluation. The presented values of these
measures show that the GG distribution is able to approximate for the character-
istics of the empirical pdf most accurately with the least amount of distance and
divergence.

Thus, the subband coefficients corresponding to the individual frames in a

video sequence have been successfully modeled in a unified spatio-temporal frame-
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Figure 3.5: Modeling of the motion noise subband coefficients for frames 20 and
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using the generalized Gaussian, Gaussian and Laplacian distributions.
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Figure 3.6: Modeling of the motion noise subband coefficients for frames 10 and
11 of the Train video sequence. The empirical subband histogram has been fitted
using the generalized Gaussian, Gaussian and Laplacian distributions.
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Test Image KSD KLD
=1 | I=2 | 1=3 =1 | I=2 [ I=3
HH
GG PDF 0.1166 | 0.1464 | 0.1746 | 0.0942 0.1187 | 0.1430
Laplacian PDF || 0.2451 0.2715 0.2764 0.1020 0.1766 | 0.2761
Gaussian PDF | 0.3416 | 0.3695 0.3606 0.3284 | 0.4693 | 0.6559
LH
GG PDF 0.1056 | 0.1403 | 0.1619 | 0.0819 | 0.1062 | 0.1784
Laplacian PDF || 0.2537 | 0.2777 | 0.2570 0.1769 0.3201 | 0.4787
Gaussian PDF | 0.3653 | 0.3730 | 0.3439 0.4824 | 0.7323 | 0.9369
HL
GG PDF 0.1167 | 0.1313 | 0.1650 | 0.1625 | 0.1473 | 0.1686
Laplacian PDF || 0.2378 0.2428 0.2490 0.1818 0.1927 | 0.2494
Gaussian PDF | 0.3342 0.3401 0.3269 0.4787 | 0.5001 | 0.5587

Table 3.8: Values of the metrics KSD and KLD for the modeling of the motion
noise subband coefficients using GG, Gaussian and Laplacian distributions. The
average values of KLD and KSD are obtained using all the frames of 6 different
test sequences.

work using a single a priori distribution.

3.4 Conclusion

In this chapter, a unified spatio-temporal framework for the modeling of the video
sequences in the wavelet domain has been proposed. The subband coefficients
generated using the application of 2D DWT on the input video sequence frames
have been modeled using the generalized Gaussian distribution. Via extensive
results it has been shown that the GG prior used for the subband coefficients
offers a very accurate and close fit to the empirical pdf exhibited by the subband
coefficients.

It has been shown that similar to the temporal redundancies that exist in the
time domain, these redundancies also exist in the corresponding subband coeffi-

cients belonging to successive frames. A modeling framework has been proposed
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which models these temporal redundancies using the same GG prior that has been
used to model the spatial subband coefficients. This modeling has been validated
using extensive experimentation and the corresponding results are also presented.

In the following chapters, it will be shown that is possible to use this spatio-
temporal framework for the modeling of video sequences in the wavelet domain in

a variety of ways to develop noise reduction algorithms.
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Chapter 4

Wavelet Domain Video Denoising
Using Temporal DCT and Adaptive
Thresholding

4.1 Introduction

As discussed in Chapter 1, the corruption of digital video sequences by noise is
a common problem and this noise needs to be reduced before any display of the
video sequences for visual purpose or before any further processing of the sequence
for other applications such as segmentation and compression.

The existence of the spatio-temporal redundancies in the video sequences, in
the time as well as wavelet domains, has been shown in Chapter 3. Despite
this fact, while the spatial redundancies have been successfully exploited in the
wavelet domain for the noise reduction in individual frames, the incorporation of
the temporal redundancies in the noise reduction frame has been primarily in the

time domain and ad hoc in nature (e.g., [29, 52, 59]). Thus, in this chapter, a fully
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wavelet domain-based algorithm is proposed for video noise reduction, which is
based on the spatio-temporal framework for video modeling discussed in Chapter
3.

The proposed algorithm requires only the local neighboring frames for its oper-
ation and before utilizing the spatial redundancies in the wavelet domain for noise
reduction, the temporal subband coefficients are pre-processed using 1D discrete
cosine transform (DCT) to reduce the redundancies in the temporal direction. It
is shown that, even after the application of the DCT, the inter-subband spatial
correlations still persist and that it is possible to model the decorrelated subband
coefficients using the generalized Gaussian distribution . Based on this modeling,
the resultant wavelet coefficients are effectively denoised using a low-complexity,
hierarchically adapted thresholding scheme.

This chapter is organized as follows. A formulation of the noise reduction
problem is provided in Section 4.2, while a description of the proposed system
model is provided in Section 4.3. In Section 4.4, DCT is explored as a means for
removing the temporal redundancy in the corresponding wavelet coefficients in
consecutive frames. The hierarchically adapted threshold for the shrinkage of the
noisy wavelet coefficients is discussed in Section 4.5. Experimental results com-
paring the proposed algorithm to several state-of-the-art techniques are presented

in Section 4.6.

4.2 Problem Formulation

This chapter is concerned with noise reduction in digital video and concentrates
on the reduction of independent and identically distributed (i.i.d.), additive white

Gaussian noise (AWGN), which is the most prevalent and thus, the most com-
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monly considered type of noise in literature. The noisy video signal, g;%, which is

discretized both in the spatial and temporal coordinates, can be modeled by

g5 = ity i=1 . Landj=1,... K (4.1)

where (i, j) denotes the spatial coordinates, n denotes the frame index, L and K
are the number of rows and columns in each input frame, and [ and n;; denote
the original video signal and the AWGN, respectively. The bold-faced notation is
used to represent the set of pixels in the n'* noisy and noise-free frames and the
AWGN as g", f* and 71", respectively. The AWGN can be modeled as a normal

random variable with zero mean and as variance:
n" € N(0,07) (4.2)

The video sequence filtering problem is to find an estimate f;} of the true video
signal f/i based on the noisy observation g;’.
Each of the input noisy frames, g”, is transformed to the wavelet domain using

a critically-sampled (i.e., non-redundant) discrete wavelet transform (DWT)
Y"=DWT(g") (4.3)

where Y"is the set of the noisy wavelet coefficients for the n'* frame. Owing to
the linearity and the orthogonality of the DW'T operation, the corrupting noise
in the wavelet domain is also AWGN. In the wavelet domain, the video signal can
be represented as

YVi=Xl+e: i=1,...,Land j=1,... . K (4.4)

ij)
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where (i, 7) and n represent the spatial coordinates and the frame index, respec-
tively, V7 and X} are respectively the noisy and noise-free wavelet coefficients,
and €} are the independent and identically distributed (i.i.d.) samples from an
AWGN process having a zero mean and variance 7 (where o2 — o7).

Thus, in the wavelet domain, the noise reduction problem is to find an estimate

X" of the original frame X" based on the noisy observation Y".

4.3 System Description

There exists spatial as well as temporal redundancy or correlation in the wavelet
domain representation of the input video sequence. The present approach tries to
minimize the temporal redundancy of the wavelet coefficients in the current frame
from those in its immediate neighborhood before any spatial noise reduction is
performed. This is achieved via the application of the DCT along the temporal
direction and serves to improve the efficiency of the algorithm and reduce noise
more aggressively. In this work, the application of the 2D DW'T followed by DCT
in the temporal direction is preferred over the 3D DWT, as the latter processes
the video sequence as a 3D block of data and thus, is computationally very expen-
sive, has large memory requirements and is not real-time. To restrict the memory
requirements and computational burden to a minimum, only the frames in the
immediate neighborhood of the current frame are utilized. The temporal redun-
dancy in the wavelet domain representations of the noisy current, past and future

frames is minimized as

n— =L n—N=L
D;; Y
— DCT : (4.5)
nt 85t nt S5
D Yij
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where D* (n — % <i1<n+ %) are the current, past and future frames after
the application of the DCT. The resultant frames are then spatially denoised using

wavelet thresholding as follows

D D"z
= Denoising : (4.6)
D DT
where D? (n — % <i<n+ %) are the denoised versions of the DCT trans-

formed frames. After spatial noise reduction, the frames are operated upon by

the inverse of the DCT operation as

on— Nt N
X D;;
: — IDCT : (4.7)
Ay N1 (o N1
ng 2 ng 2

where X"is the denoised estimate of the set of noise-free wavelet coefficients in
the current frame. The output of the inverse discrete wavelet transform operation
(IDWT) on the denoised coefficients in the current frame yields the denoised time

domain pixel values as follows:

f* = IDWT(X") (4.8)

where " is the required denoised estimate of the noise-free n'” frame in the time
domain.

The block diagram of the proposed scheme is presented in Fig. 4.1.
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Input Frame
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IDCT

Inverse Wavelet Transform
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Figure 4.1: Block Diagram of the proposed video noise reduction scheme.
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4.4 Temporal DCT

To process the corresponding subband coefficients in the temporal direction, a

(N=1)
2

N-point DCT of the corresponding noisy wavelet coefficients in the past

frames, % future frames and the current frame n is used. This transform
serves to reduce the temporal redundancy prior to the spatial denoising of the

noisy subband coefficients. For a N-point DCT, the operations in (4.5) can thus

be expressed as

where

1 2 N -1 N -1
a(O):\/N, Oé(k):\/ﬁ forn—T+1§k§n+T (4.10)

The inverse transform can be expressed as

k=n+(51) A . B B
=3 _l)a(k)Dl..cos(—(Q(l—rH_M)+1)(k_n+¥))’

N-1 N—-1
n-S slsnt T

(4.11)

In order to keep the computational complexity low and to reduce the memory
requirements, in this work we have process the current noisy frame using: (a) only
the single past frame (2 total frames); (b) only one past and one future frame (3

total frames); and (c¢) two past and two future frames (5 total frames).
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4.5 Hierarchically Adapted Wavelet Thresholding

The critically-sampled DW'T has a subband structure as shown in the Fig. 4.2.
The subbands LHy, HL; and H Hy are called the detail subbands, where k is the
scale varying from 1,...,.J and J is the total number of decomposition levels.
The LL; subband is the low-resolution residue and the size of a subband at scale
k is 2%)(2% For subbands LH;,HL; and HHj, with scale k < J — 1, the parent
subbands are defined as LHy1,H Ly, 1 and H Hy 1, respectively (see also Fig. 4).
Similarly, for the subbands LHy,HL; and HHy, 2 < k < J, the children subbands
are defined as LH;_1,HLy_1 and HHj_1, respectively. For a subband coefficient,
Dy, at the position (7, 7) in a subband of frame n, the parent coefficient, P, is
the ({%w , (%D coefficient in the parent subband, where [.] maps the input value
to the nearest lower integer.

The correlation that exists among the subband coefficients and their corre-
sponding children has long been recognized (e.g., [51]). Consider Z" as the set
of correlated subband coefficients that belong to a tree (as depicted in Fig. 4.2
(b)) in the wavelet representation of frame n. For this discussion, these wavelet
coefficients belonging to a tree are treated as random variables and their correla-
tion coefficient is defined as +7%. In the case where only the past frame is utilized
for denoising, after the application of the DCT (see (4.9)), the resultant subband
coefficients are proportional to the sum and difference of the subband coefficients
of the input frames n and n — 1, respectively. If we denote by B, the set of coeffi-
cients that are proportional to the sum of the two subband coefficients, and by C,

the set of coefficients that are proportional to the difference of the two subband

coefficients, then the resultant coefficients would have a correlation given by

VB =Yy g+ 2Veross (4.12)
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(a) Subband structure (b) Parent-child tree

Figure 4.2: Subband structure and parent-child relationship in a 4-level orthogonal
discrete wavelet transform
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Yo =Yg "+ 7% = 2Veross (4.13)

where 7,055 1S the cross-correlation term. If the two input frames are exactly
the same (representing no motion), then Ye.ss = 73*1 = 7. Thus, coefficients
belonging to the sets B and C would also be correlated and would have the same
parent-child correspondence as existed before the application of the DCT in the
temporal direction. Only in the case when the two input frames are exactly the
same, the difference coefficients, C, would all become zero. This reasoning is valid
for the cases where more than two frames are used for denoising the current noisy
frame.

Figure 4.3 (a) shows the one horizontal subband from the multi-resolution
subband structures generated after a 4-level non-redundant orthogonal DWT and
temporal DCT using (4.9). Even after the DCT operation to minimize temporal
redundancies, the spatial clustering property of the wavelet transform is visible.
As discussed above, there also exists a strong correlation among the correspond-
ing coefficients in subsequent subbands. This correlation is depicted as in Fig.
4.2, where the tail of an arrow denotes the parent coefficients and the arrow head
denotes the corresponding children coefficients, and is also evident in the two sub-
sequent subbands shown from one decorrelated frame of Miss America sequence
in Figure 4.4.

Figure 4.3 (b) presents the histograms of the original subband coefficients from
the decorrelated wavelet coefficients from two successive frames. Noticing the
evident sharp-peaked and heavy-tailed nature of these histograms, the coefficients

belonging to the different subbands in the decorrelated frames D™ have been fitted
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Figure 4.3: (a) Horizontal subbands from the wavelet and DCT transformed con-
secutive frames from the Trevor sequence; and (b) The corresponding histograms
of the decorrelated subbands in (a)
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Figure 4.4: Subbands H Ly and H L, of a frame from sequence Miss America after
application of DCT.

using the GGD prior as:

Vq T
d) = ———~ —|—1" >0 4.14
pild) = 5o Pl o). s (1.14)

where py(d) is the pdf of the random variable d, and the shape parameter, and
vy and s4 are the model parameters. The variance and kurtosis of this random

variable can be defined as

) r'G)
O-d:SdF(Vid)’ (415)
and
T(T()

For each subband, the model parameters v, and s; can be estimated by using the
empirically estimating the variance and kurtosis of the decorrelated subbands and
solving 4.15 and 4.16 for the model parameters.

Six different video sequences are used to evaluate the modeling performance

of the GG prior for the decorrelated subband coefficients. The model parameters
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Test Image

Vq

Sd

[=1[1=2]1=3

[=1] 1=2 ] =3

Miss America | 0.5433 | 0.4863 | 0.6065 || 0.6868 | 1.1662 | 9.6918
Hall 0.4316 | 0.5967 | 0.7340 | 1.1104 | 13.6666 | 53.4711
Train 0.4447 | 0.4465 | 0.6266 | 1.2644 | 4.3889 | 27.1056
Patrol Car | 0.3828 | 0.3976 | 0.6129 || 0.2454 | 0.6731 | 21.7615
Salesman 0.7773 | 0.9977 | 1.3071 | 4.8334 | 14.3425 | 27.5562
Trevor 0.7244 | 0.7356 | 0.8355 || 4.4302 | 11.6160 | 41.8386

Table 4.1: Average value of the generalized Gaussian distribution parameters, sq4
and v, for the modeling of the decorrelated wavelet coefficients for some test videos
for the LH subbands

Test Image Vg Sd

lzl\l:2\l:3 =1 \ [=2 \ [=3

Miss America | 0.3098 | 0.4164 | 0.4719 || 0.0478 | 0.7457 | 4.1787
Hall 0.3880 | 0.5309 | 0.6086 || 0.6389 | 8.3130 | 32.6814
Train 0.6039 | 0.8475 | 0.9184 || 9.1894 | 41.7852 | 99.6454
Patrol Car | 0.6940 | 0.7259 | 0.7844 || 10.9083 | 35.6565 | 100.9352
Salesman 1.3992 | 1.4113 | 1.3254 || 37.9322 | 79.3889 | 136.5275
Trevor 0.4118 | 0.4580 | 0.5482 || 0.3749 | 1.9296 | 10.7243

Table 4.2: Average value of the generalized Gaussian distribution parameters, sq4
and v, for the modeling of the decorrelated wavelet coefficients for some test videos
for the HLL subbands

Test Image Vg Sq
lzl\le\le lzl\ =2 \ =3
Miss America | 0.7536 | 0.4122 | 0.5300 || 0.6263 | 0.2165 | 2.8438
Hall 0.3489 | 0.3866 | 0.5084 || 0.0529 | 0.5746 | 6.2386
Train 0.4915 | 0.6506 | 0.4928 || 0.5021 | 7.1599 | 6.4249
Patrol Car | 0.3378 | 0.3543 | 0.3836 || 0.0309 | 0.1214 | 1.0528
Salesman 0.7415 | 1.0733 | 1.3464 || 4.2549 | 16.0229 | 26.4280
Trevor 0.5243 | 0.4544 | 0.5617 || 0.3899 | 0.7760 | 6.1517
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Table 4.3: Average value of the generalized Gaussian distribution parameters,
sq and v4 for the modeling of the decorrelated wavelet coefficients for some test
videos for the HH subbands




(vq and s4) for each subband are estimated from its variance and kurtosis as
described above. Tables 4.1, 4.2 and 4.3 present the averaged estimated values
of the model parameters for each of the subbands for the six videos used for
evaluation. The same empirical subband data is also modeled using the Gaussian
and Laplacian distributions to compare the modeling performance of the GG
distribution. Figure 4.5 and 4.6 show the fitted histograms of all the subbands
belonging to decorrelated coefficients corresponding to the Trevor and Train video
sequences. On visual inspection, the GGD prior is able to model the sharp peaks
in the histograms around the zero mean as well as the heavy tails much more
precisely than the Gaussian or the Laplacian distributions.

Table 4.4 presents the computed values of KSD and KLD for all the six video
sequences used for quantitative evaluation. The presented values of these measures
show that the GG distribution has the least distance and divergence while fitting
the empirical pdf.

With the assumption of a GGD prior for the decorrelated subband coefficients,
an approximate MSE-optimal soft-threshold, Tjyes, has been proposed by Chang
et al. [49]

Tbayes = 6__6 (417)

where the estimated noise variance, 62, is computed using a robust estimator [45]

such as

. median (|HH|)\
"2:( 0.67‘45 l)) ‘ (4.18)

The signal power, 7Gx, is estimated by a truncated moment estimator

Gq= \/maX bZD“ Bl (4.19)

where b is the total number of coefficients in the considered subband.
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Test Image KSD KLD
=1 | I=2 | 1=3 =1 | I=2 [ I=3
HH
GG PDF 0.1235 | 0.1442 | 0.1509 | 0.1049 0.0833 | 0.1388
Laplacian PDF || 0.3024 | 0.2947 | 0.2543 0.1644 | 0.3396 | 0.4290
Gaussian PDF | 0.3955 0.3845 0.3386 0.4734 | 0.7998 | 0.8956
LH
GG PDF 0.1378 | 0.1202 | 0.1117 | 0.1182 | 0.1202 | 0.2037
Laplacian PDF | 0.2864 | 0.2180 | 0.1655 0.3978 0.2180 | 0.3687
Gaussian PDF | 0.4037 | 0.3327 | 0.2682 0.8202 0.3327 | 0.7347
HL
GG PDF 0.1356 | 0.1042 | 0.1305 | 0.1162 | 0.1328 | 0.1762
Laplacian PDF || 0.2556 | 0.1859 | 0.1850 0.5349 0.4354 | 0.4109
Gaussian PDF | 0.3496 | 0.3004 | 0.2893 1.0371 0.8809 | 0.7963

Table 4.4: Values of the metrics KSD and KLD for the modeling of the decorre-
lated subband coefficients using GG, Gaussian and Laplacian distributions. The
average values of KLD and KSD are obtained using all the frames of 6 different
test sequences.

Although the above threshold is nearly subband optimal, it does not consider
the properties of the individual coefficients in the subband. This threshold has
been better adapted to obtain better denoising results [81]. Since the coefficient
values in the subsequent subbands are correlated, a coefficient having a high value
in a parent subband, which usually represents an edge or high frequency infor-
mation, gives a fair indication that the child coefficient would more probably be
a relatively high value than not. A zero in a parent coefficient indicates a zero
or low value in the child coefficient. Using this philosophy, we scale the nearly
MSE-optimal threshold computed for the entire subband using the individual par-
ent coefficients. This yields an adaptive threshold which acts individually on each
subband coefficient. We do the computations for the subbands in decreasing order
of scales and thus, denoise the parent coefficient earlier than the progeny. We use

the denoised parent coefficients to get an accurate estimate of the correspond-
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ing subband coefficient values in the actual image sequence. The hierarchically

adapted threshold (HAT) obtained can be expressed as

(3'2

HAT}; = - T "
04 (Ct + ﬁW(IP;}\))

where P;; are the soft-thresholded parent coefficients. The variable in the de-
nominator, & > 0, has been added to avoid the singularity that occurs when
the thresholded parent coefficient is zero. The variable § > 0 is used to vary
the contribution of the parent coefficient in the final scaling of the subband opti-
mal threshold. The parameters a and [ are experimentally determined and their
estimation is discussed in Section 4.6.2.

In case the relative value of the parent coefficient is low (e.g., zero), the thresh-
old value is made higher to threshold the current subband coefficient more strongly
as the value of the original coefficient would most likely be low and the rest of
the contribution to this coefficient is due to white noise. In case of a high relative
value of a parent coefficient, the threshold is lowered so as to retain more of the
current coefficient. The threshold adapts to the level of noise in the signal. In the
case when the noise level is low, a low magnitude threshold preserves most of the
signal while eliminating noise. On the other hand, when noise is predominant, a
high threshold value removes most of the noise from the signal and retains the
significant coefficients corresponding to the image spatial features in the image.

All the subbands, with the exception of the LLj; subband, are thresholded
using (4.20). This procedure is performed with both the decorrelated frames.

The denoised estimate, ﬁg using the noisy decorrelated frame in the wavelet

68



domain, D}, is obtained using soft thresholding [46] as

DYy = sign(D})(max(0, |Dfj| — HATY)). (121)

The two denoised and decorrelated frames obtained after soft thresholding are
operated upon by the inverse of the DCT operation using (4.11). X" obtained as
a result of this operation is the denoised estimate of the set of original noise-free
wavelet coefficients in the frame n, X".

The final denoised estimate of the original pixel set is obtained using (4.8).

4.6 Experimental Results and Discussion

4.6.1 Performance Criteria

The following criteria are used to evaluate the performance of different noise re-

duction algorithms:

1. Objective criteria: The peak signal to noise ratio (PSNR) is chosen as
the objective criterion for the evaluation of noise reduction effectiveness. It
is one of the most popular objective criteria, along with mean squared error
(MSE) and signal to noise ratio (SNR). Given the n'* frame in an original
sequence and in a corrupted or estimated version of the original, the PSNR

can be computed as:

2 2

A S S (G g) — (i)

where K and L are the number of columns and the number of rows in one

frame of the video sequence (one field in case of interlaced video), respec-
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tively.

2. Subjective criteria: The performance of the noise reduction algorithms
is also compared based on the subjective evaluation of the video sequences.
The commonly used objective criteria, like PSNR, MSE and SNR, although
mathematically tractable, do not conform closely to the human visual sys-
tem. This makes the subjective evaluation of the filtered sequences neces-

sary.

4.6.2 Experimental Results

To validate the efficacy of the proposed video denoising scheme without motion
compensation (DCWT) we have compared its performance with some state-of-
the-art noise reduction algorithms, such as the 3D Rational filter (RF) [26], 3D
KNN filter |24], 3D alpha-trimmed mean (ATM) filter [24] and the multiple class
averaging (MCA) algorithm [29] (which operates in the wavelet domain). For the
evaluation of the proposed scheme wherein motion in the previous (and future)
frames is compensated (MC-DCWT), its performance is compared with the 3D
LMMSE filter [35], the adapted weighted averaging (AWA) filter [35], the joint
Kalman and Wiener filter (JKW) [39] and the MC3DWTr |58] (wavelet domain).
To evaluate the effect of the application of the DCT in the temporal direction
on the overall denoising of the video sequence, the output generated using only
the spatial denoising algorithm (HAT) has also been used for comparison. For
comparison with KNN and ATF filters, a window size that yields the maximum
average output PSNR over the 60 frames is selected in the final algorithm. This
results in a window size of 3x5x5 for both these filters. The use of three temporal
frames helps maintain the stationary nature of the pixels in the window, while the

oxH size spatial window removes noise by averaging while keeping blurring to an
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acceptable level.

We use three sequences in the CIF format, Hall (Ha), Foreman (Fo) and Miss
America (MA), and two interlaced sequences in PAL format, Patrol Car (PC) and
Train (Tr). Peak signal to noise ratio (PSNR) and visual evaluation are used to
evaluate the relative performance of the various algorithms. The video sequences
are corrupted with three different additive white GGaussian noise powers, so that
the input PSNR to the different filtering schemes is 20 dB, 25 dB and 30 dB,
respectively.

To estimate the optimal values of the parameters o and 3, the PSNR values for
a dataset of images corrupted with ten different noise powers are calculated over a
range of values o and . The values of a and 3 corresponding to the maximum of
the averaged PSNR over the entire dataset are used to generate the final results.
These estimated values of the parameters, corresponding to the maximum average
output PSNR, are a = 0.43 and § = 4.3.

Table 4.5 presents the average PSNR values for the different non-motion-
compensated filter outputs with the sequences having PSNRs of 20 dB, 25 dB
and 30 dB as input. We also compare the performance of the proposed spatio-
temporal filter to that of only the spatial filter in these tables. The proposed filter,
DCWT, yields an average PSNR gain in the range of 6 to 14 dB over the cor-
rupted sequence and gains of 0.8-7 dB over the compared schemes. For sequences
having high motion content, such as Tr or PC, the amount of PSNR improvement
is less than that for sequences having lower motion content (e.g., MA and Ha).
This is supported by the fact that the PSNR improvement of the spatio-temporal
filter over the spatial filter (HAT) decreases with an increase in the motion con-
tent. While for sequences having a low motion content, the proposed filter yields

an improvement of 1-1.5 dB over HAT, for sequences with high motion content,
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this improvement is reduced to approximately 0.5-0.75 dB. This can be attributed
to the fact that motion causes the corresponding pixels in consecutive frames to
differ which reduces the contribution of the pixel in the past frame during the
filtering of the current pixel. Thus, the improvement in the output PSNR as a
result of filtering is dependent upon the amount of motion and detail in the input
sequence.

Table 4.5 also presents the PSNR values obtained using the motion-compensated
schemes. The motion compensation has been done in the temporal direction us-
ing the half-pixel level block matching technique with a block size of 8x8. The
motion vectors have been estimated using the past denoised frame and the cur-
rent and the future noisy frames; the estimated motion vectors are then used for
compensating motion in the past and the future noisy sequences. The proposed
filter with motion compensation, MC-DCWT, yields a PSNR gain in the range
0.7-4 dB over the AWA, LMMSE and JKW filters, depending upon the amount of
motion and detail in the input sequence. The more the detail in the sequence, the
more significant is the effect of blurring and thus the reduction in the PSNR. The
motion compensation serves to reduce the effect of motion while performing the
spatio-temporal filtering and improve the PSNR gain. The applied motion com-
pensation successfully accounts for the high amount of motion in the sequences
(e.g., as in Foreman). With respect to the spatial denoising scheme, a PSNR gain
of about 1 - 1.5 dB is achieved. The PSNR gain for the proposed filter over the
spatial denoising scheme is more pronounced in this case where the motion has
been compensated. Even the sequences having high motion show a significant
increase in the PSNR.

When compared to the MC3DWTr filter, the MC3DWTr filter has a marginally

better performance ( 70.25 dB) than the proposed filter, when both the filters use
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a total of two frames for processing. This improvement is due to the denoised past
coefficients that are used in the estimation process in the case of the MC3DW'Tr
filter.

As compared to the DCWT, a gain of 0.4-0.6 dB is obtained while utilizing
MC-DCWT. The PSNR gain while utilizing motion compensation is dependent
upon the motion content of the input sequences. The motion compensation is able
to compensate the motion in the sequences having a large amount of movement
and thus, accounts for a greater increase in the output PSNR. On the other hand,
the sequences which do not have a significant amount of motion do not gain
much in terms of output PSNR despite the use of motion compensation. The
compensation of motion in the proposed algorithm is able to suppress flicker in
the filtered output and results in an output that is visually more pleasant.

The performance of the proposed filter utilizing a different number of input
frames for denoising the current noisy frame is evaluated in Table 4.6. As is
evident, the output PSNR of the filtered output increases with an increase in
the number of input frames. The filtered outputs obtained using three frames
have a PSNR improvement of about 0.5 dB over the outputs obtained using only
two frames. Furthermore, the use of five frames for filtering of the current frame
yields a PSNR improvement of nearly 1 dB over the use of two frames. These
improvements are consistent for both the motion-compensated and non-motion-
compensated filters.

Figure 4.7 shows the PSNR curves obtained using the non-motion-compensated
algorithms for 60 frames of different video sequences corrupted with different noise
powers. The sequences which are used feature different amount of motion, with
the Patrol Car sequence showing a significant amount of local as well as global

motion, while the Miss America and Hall sequences showing local motion with
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Figure 4.7: PSNR comparison of the different algorithms for 60 frames of MA,
Ha and PC sequences having input PSNRs of 20 dB, 25 dB and 25 dB, resp., for
non-motion compensated filtering.
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’ H Non-motion-compensated Filters H Motion-compensated Filters ‘ Spatial Filter ‘

| |2F. [3Fr. | 5F. [2F. [3F.| 5F. [ (HAT) |
’ Input PSNR = 20 dB ‘
MA 34.83 | 35.34 35.62 34.98 | 35.55 | 35.83 33.6
Ha 29.11 | 29.75 30.08 29.35 | 30.11 | 30.45 27.58
Fo 29.54 | 30.2 30.38 29.77 | 30.52 | 30.72 27.34
PC 27.29 | 27.63 27.92 27.85 | 28.07 | 28.35 26.84
Tr 25.88 | 26.19 26.42 26.43 | 26.77 | 27.12 25.31
Average || 29.33 | 29.82 30.08 29.67 | 30.21 | 30.50 28.13
’ Input PSNR — 25 dB
MA 36.78 | 37.25 37.52 36.93 | 37.54 | 37.86 35.82
Ha 32.47 | 32.87 33.37 32.71 | 33.36 | 33.70 30.99
Fo 32.15 | 32.67 32.93 32.44 | 33.10 | 33.31 30.75
PC 30.66 | 30.98 31.31 31.12 | 31.42 | 31.71 30.23
Tr 29.43 | 29.77 30.20 29.96 | 30.38 | 30.75 29.02
Average | 32.30 | 32.71 33.1 32.63 | 33.12 | 33.47 31.36
’ Input PSNR = 30 dB
MA 38.72 | 39.12 39.48 38.89 | 39.28 | 39.72 38.13
Ha 35.61 | 36.10 36.45 35.92 | 36.45 | 36.82 34.39
Fo 34.96 | 35.32 35.42 35.26 | 35.83 | 35.93 33.82
PC 34.27 | 34.55 34.80 34.85 | 35.10 | 35.38 34.12
Tr 33.03 | 33.36 33.72 33.64 | 33.96 | 34.27 32.73
Average || 35.32 | 35.71 35.97 35.72 | 36.13 | 36.43 34.64

Table 4.6: PSNR comparison of the proposed non-motion-compensated and
motion-compensated algorithms with 2, 3 and 5 corrupted input frames with
input PSNRs of 20dB, 25 dB and 30 dB, resp.

a stationary background. The performance of the KNN and RF filters suffers
significantly while processing frames containing significant amount of motion and
even in the presence of low motion, their performance is not aggressive enough to
remove sufficient amount of noise form the video. The proposed filter outperforms
these filters to the tune of 4-6 dB. Even compared to the wavelet domain filter
(MCA), the proposed filter yields an improvement of about 0.5-3 dB.

The PSNR curves obtained using motion-compensated filtering on the above

sequence are presented in Figure 4.9. As compared to the AWA, LMMSE and
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Figure 4.8: PSNR comparison of the different algorithms for 60 frames of MA,
Ha and PC sequences having input PSNRs of 20 dB, 25 dB and 25 dB, resp., for
Motion compensated filtering
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JKW schemes, the proposed filter yields an improvement of about 1.5 -2 dB. The
performance of the MC3DW'Ir filter is ~0.25 dB better than the proposed filter
on average.

The PSNR curves comparing the proposed filter with different number of input
frames are presented in the Fig. 4.9. The PSNR improvement achieved with
the use of additional frames for filtering the current frame is evident from these
curves. The increased number of frames for filtering provides additional data for
processing purposes and this in turn leads to more aggressively filtered outputs.

Figure 4.10 presents the performance results on the 17" frame of the Miss
America sequence which has an input PSNR of 20 dB using filters without motion-
compensation. The proposed DCWT filter yields the best output in terms of visual
quality as compared to ATM, KNN, RF and MCA filters. The time domain filters
cause excessive blurring and are also unable to filter out the noise aggressively.
Even the wavelet domain filter, MCA, causes the loss of some of the detail in the
denoised image and is unable to reduce noise to a good extent. The proposed filter,
on the other hand, is able to preserve all the fine spatial details and also reduce the
amount of flicker and residual noise in the actual video. The visual performance
for the motion-compensated schemes is compared in Fig. 4.11. The superior
performance of the proposed MC-DCWT filter in terms of edge preservation and
noise reduction is clearly evident as compared to the AWA | LMMSE and JKW
filters. These time domain filters used for comparison are unable to suppress the
noise to the same extent as the proposed filter. The proposed filter performs yields
almost similar quality results when compared visually with the MC3DWTr filter.

Figure 4.12 presents the filtered outputs for the 5* frame of the Hall video
sequence. The increased number of frames for filtering provides additional data for

processing purposes and this in turn leads to more aggressively filtered outputs.
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(b) Noisv Frame

(a) Original Frame

(c) Proposed Filter (2 frames) (d) ATM Filter

(e) 3D KNN Filter (f) Rational Filter

(g) MCA Filter

Figure 4.10: Filtered outputs of the 17" frame of the Miss America sequence for

non-motion-compensated filters
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(b) Noisv Frame

(a) Original Frame

(c) Proposed Filter (2 frames) (d) MC3DWTr Filter

(e) LMMSE Filter (f) AWA Filter

(g) JKW Filter

Figure 4.11: Filtered outputs of the 17" frame of the Miss America sequence for
motion-compensated filters
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The sequences produced by the filter using five input frames are more visually
pleasing and have a reduced amount of flicker artifacts. Furthermore, the edges

are better preserved while at the same time, noise is more aggressively reduced.

4.7 Conclusion

The problem of video noise reduction in the wavelet domain has been addressed
in this chapter. The spatial as well as temporal redundancies have been exploited
for the development of a low-complexity and adaptive technique which operates
under the video modeling framework proposed in this dissertation. Before the
subband coefficients are processed spatially for noise reduction, their correlation
with the corresponding temporal neighbors has been minimized by the use of DCT
in the temporal direction. It has been shown that the decorrelated coefficients
can still be modeled using the GG distribution and the spatial inter-subband
correlations which existed before the application of the DCT, still persist after
the decorrelation. Using this, the spatial noise reduction has been performed
using a locally adaptive, hierarchical noise reduction technique.

The effect of explicit motion estimation as well as compensation on the perfor-
mance of the proposed technique has been evaluated and discussed. Furthermore,
the effect of using a variable support in the temporal direction (2, 3 or 5 frames)
while employing the proposed technique has also been analyzed.

It has also been shown using extensive experimentation that the proposed
scheme outperforms several state-of-the-art video noise reduction algorithms, in

time as well as wavelet domains, quantitatively as well as in terms of visual quality.

82



(a) Original Frame

(c) Proposed Filter (2 Frames) (d) Proposed Filter (3 Frames)

(e) Proposed Filter (5 Frames)

Figure 4.12: Filtered outputs of the 5 field of the Hall sequence for proposed
MC-DCWT filter with 2, 3 and 5 frames, respectively.
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Chapter 5

Bayesian Algorithms for Video
Noise Reduction in the Wavelet

Domain

5.1 Introduction

In the previous chapter, the problem of additive white Gaussian noise removal
from the video sequences was considered. In order to aggressively reduce noise
while still preserving the details in the video frames, a spatio-temporal filter was
formulated within the proposed wavelet-domain video modeling framework (see
Chapter 3) where the temporal redundancies between consecutive frames in the
wavelet domain were minimized before spatially denoising the subband coeffi-
cients. While the approach used in the previous chapter comprised of minimizing
the temporal correlations, it is also possible to utilize those correlations and take
those into account while denoising the current subband coefficients.

Thus, in this chapter, Bayesian operators are developed which yield an esti-
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mate of the noise-free wavelet coefficients in the current frame conditioned not
only on the available noisy coefficients belonging to the current frame, but also
on the corresponding estimated noise-free coefficients in the past frame. A spatio-
temporal framework for the modeling of the subband coefficients was discussed in
Chapter 3 that not only models the current subband coefficients using the gen-
eralized Gaussian distribution, but also the difference between the neighboring
subbands, which is caused due to motion, using the same a prior: distribution
and this framework is exploited for this development. Minimum mean squared
error (MMSE) estimation as well as maximum a posteriori (MAP) estimation is
considered for the development of the filtering operators in the Bayesian frame-
work.

The chapter is organized as follows. A brief formulation of the problem is
provided in Section 5.2. The Bayesian operator based on MMSE estimation is
discussed in Section 5.3, while the one based on MAP estimation is developed in
Section 5.4. Section 5.5 presents the simulation results and a detailed performance
comparison of the proposed algorithm with some of the existing state-of-the-art

techniques for video denoising.

5.2 Problem Formulation

Consider a noise-free video sequence whose n'” frame can be represented as f”.
Each of the noise-free frames in the original video sequence is corrupted with a set
of zero-mean AWGN, 1", having a variance 05, so as to yield the observed frames
of the noisy video sequence:

g'=1f"+n" (5.1)
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This chapter is concerned with obtaining an estimate, f'", of the noise-free frame,
f", given the observed noisy frame, g".

The input noisy frame is transformed to the wavelet domain using the critically-
sampled discrete wavelet transform (DWT) and owing to the linearity and orthog-
onality of the wavelet transform, the corrupting noise in the wavelet domain is
also additive:

Y= X" e (5.2)

where Y™ and X" are the sets of noisy and noise-free wavelet coefficients and €" is
the set of corrupting zero-mean AWGN coefficients having a variance 0. Owing to
the above mentioned orthogonality and linearity of the wavelet transform, o2 = 0%.

Furthermore, as discussed in Section 3.3, the noise-free wavelet coefficients in
the current frame n, X", can be expressed in terms of the noise-free coefficients

in the previous frame n — 1, X" !, as

X" =X""t Mt (5.3)

where M"~! is the motion noise introduced in the subband representation of the
frame at instance n — 1.

Thus, in this chapter we address the wavelet domain noise reduction problem
of finding an estimate X" of the original frame X" based on the noisy observation
Y" where X" has been modeled in terms of the previous frame X"~ ! and the

motion noise .
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5.3 Spatio-temporal MMSE Estimation

To estimate the noise-free wavelet coefficients corresponding to frame n, a Bayesian
processor based on the signal models described in the previous section is used for
each subband. Since the past frame n — 1 is denoised ahead of the frame n, the
noise-free estimates of the wavelet coefficients in that frame are available for es-
timation process, along with the noisy coefficients in the current frame. For the
representation of the Bayesian processor in each subband, we denote the noisy
coefficients in the subband as y", the noise-free estimates of the wavelet coef-
ficients in the current and corresponding subband in the past frame as 2" and

sn—1

2", respectively. The difference set for a subband in frame n is denoted by

7nn—1
The Bayes risk estimator under a quadratic cost function minimizes the mean-

square error (MSE) and is given by the conditional mean of 2", given y™ and "},

and can be expressed as:

2y, 2 = /x”pmynin_l(:c”]y”,@"1).d:1:" (5.4)

Resolving (5.4), it can be expressed as

S i,n—l) . fJ}npyn|xn(yﬂx")pxn@nfl(l‘n|fn_1).dxn

- ! (5.5)
fpynm(y"\x")pxnm_l(:c"\x”*l).d:c"

Note that in (5.5), the noisy coefficients in the current frame have been modeled
as the sum of the noise-free coefficients in the current frame and AWGN (i.e.,

y" = a" + €"), and thus

Pynjan (Y [2") = pen (y" — 27). (5.6)
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Here, € is the random variable denoting the AWGN having a zero mean and

variance, o2, which can be estimated as [45]

o (median(|HH;|)\>
- 5.7
7 ( 0.6745 (5.7)

where H H, denotes the largest diagonal detail subband in the wavelet decompo-
sition of the noisy frame.

Also, using the conditional description of the current frame subband coeffi-
cients in terms of the previous frame and motion noise coefficients as described in

(5.3) (i.e., 2" = 2"+ m"1),
Panjan—1 (2" ) = prna (™ — 2771, (5.8)

where the set of random variables, m"~! has been shown to have a GG distribution

(see Section 3.3) and can be described as:

Ym exp(—|£|l’m), S Um > 0 (5.9)

ST ER R

To estimate the model parameters v,, and s, for the set of random variables
m™!, we obtain a noisy version of this random variable by subtracting the es-
timated wavelet coefficients in the past frame, 2"7!, from the observed wavelet
coefficients in the current frame, y”. This results in a noisy mixture comprising of
two independent random variables, one GG distributed (m"™~!) and one Gaussian

distributed (€"). The model parameters v, and s,, can thus be estimated from

this noisy mixture using the following equations [48|:

2 T(2
0&2034—%, (5.10)
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Gols, () | sml'(G2)
rG) L)

Um,
where 0120 and my,, are the variance and the fourth moments of the noisy version

(5.11)

4
My = 30, +

of the random variable, m"~!, respectively.

The resultant Bayesian processor for each subband can thus be written as

n An*1> fx”pen yn — xn)pm" 1(1.71 B i.n—1> dx"
T

. 5.12
[ pen (y™ — &) prn—1 (2™ — &7 1).dam (5.12)

For the first frame, where the past frame coefficients are not available, the
estimation is performed using only the available noisy coefficients. In this case,

the Bayesian operator can be expressed as:

= [ 2" pynyn (z"|y™).dz" (5.13)
which, using (5.6) can be rewritten as

Y fpén — ")y (™). d2"

(5.14)

where p,» (™) has a GG distribution (see Section 3.2) and whose model parameters
can be estimated using (5.10) and (5.11) when the available noisy coefficients in
the subband, 3™, are used to estimate the variance and the fourth moment.
Figures 5.1 (a) and 5.2 (a) show the resultant shrinkage function, where the
Bayesian output is conditioned upon two input parameters. The shrinkage func-
tion considers both the noisy current frame coefficient and the estimated noise-free
past frame coefficient to estimate the corresponding noise-free coefficient in the
current frame. If the estimated value of the coefficient in the past frame is high

(or low), then owing to the redundancy in time, the value of the noise-free co-
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Figure 5.1: Shrinkage function obtained using the MMSE estimation of the cur-
rent noise-free coefficients conditioned upon the current noisy coefficients and the
denoised past frame coefficients. Also shown are the shrinkage operation as func-
tions of the noisy subband coefficients in the current frame for a particular value
of 37 1.
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Figure 5.2: Shrinkage function obtained using the MMSE estimation of the cur-
rent noise-free coefficients conditioned upon the current noisy coefficients and the
denoised past frame coefficients. Also shown are the shrinkage operation as func-
tions of the noisy subband coefficients in the current frame for a particular value
of 37 1.
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efficient in the current frame has a high probability of being a large (or small)
value. This intuitive reasoning is captured in the presented shrinkage function.
This can be further illustrated by considering particular values of the estimated
noise-free coefficient in the past frame, "1, for which the operator in (5.12) re-
duces to the Bayesian function which is conditioned on only one parameter, y",
and is similar to (5.14). This one variable function is depicted in Figures 5.1 (b-c)
and 5.2 (b-c) where the shrinkage operator has been plotted only as a function of

L' = 0, the shrinkage operators are similar

y" for a constant value of 2"~ 1. For 2"~
to the traditional MMSE operators. However, when 2"7! > 0 or 2! < 0, then
the shrinkage of y" is not symmetric about 0, but is conditioned upon the value
of 271, This allows the proposed MMSE shrinkage operator to be adaptive to
not only the input current frame noisy data, but also to the estimated noise-free
values from the past frames.

The output of the inverse wavelet transform operation on the denoised coeffi-

cients in the current frame yields the denoised time domain pixel values as

f* = InverseDWT(X"). (5.15)

5.4 Spatio-temporal MAP Estimation

In this section, the Bayesian processor based on the MAP estimation is developed
for the estimation of the noise-free wavelet coefficients corresponding to frame
n. As in the previous section, for the representation of the Bayesian processor in
each subband, we denote the noisy coefficients in the subband as y”, the noise-free
estimates of the wavelet coefficients in the current and corresponding subband in

1

the past frame as x™ and 2", respectively. The difference set for a subband in

frame n is denoted by m™~!. The noise-free estimates of the wavelet coefficients
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in the past frame n — 1 are used along with the noisy coefficients in the current
frame in the estimation process.

The MAP estimate of the noise-free subband coefficient can be expressed as

d
%lnpxn|yn@nf1(ajn|y”,i""_l) =0, (5.16)

where the density of the current frame noise-free subband coefficients, x™, condi-

tioned on y"™ and 2"~ ! can be expressed as
“n—1
Pyrjan (Y |2")panjzn— (2" [2"7)

ni,n sn—1
. , _ _ , 5.17
Petir s W) = e e O

Using (5.6) and (5.8), (5.18) can be rewritten as

an—1 pen (Y —2™)p, n—1(z"—2" 1)

n n J—
JUJE"IyM:”—l(i’j [y, 2" ) = Tpen (y"—a™)p, n1(@"—2" 1).dz"

(5.18)

Since € is the random variable denoting the AWGN having a mean zero and
variance o2, which can be estimated using (5.7), and m"~! has a GG distribution

with parameters vand s,,, substituting (5.18) in (5.16),

0 N Pen (Y™ — &™) ppn—1 (™ — ")

= 0. 5.19
Ox™ [ pen (Y — ) prn—1 (x™ — 27 1).dx” (5.19)
Solving (5.19),

g P (v —2")] + 5o In [prn—1(z™ — 2" )] =0, (5.20)

which results in:

yn — " o " — ‘%n—l Vm

- =0. 5.21
( o? ) Oxm Sm (5:21)
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The solution of (5.21) in terms of z™ is the MAP estimate, ", of the noise-free
subband coefficient. For the first frame, where the past frame coefficients are not
available, the estimation is performed using only the available noisy coefficients.
In this case, the Bayesian MAP operator can be expressed in its traditional form
as:

0

%lnpxnwn(x”w”) =0, (5.22)

which can be solved as:

Vg

=0 (5.23)

x’l’b

Sz

yn — " B o
o? oxn

where v, and s, are the model parameters for p,»(z"), which has a GG density,

and can be estimated using (5.10) and (5.11) when the available noisy coefficients
in the subband are used to estimate 0'3) and 1my, .

Figures 5.3 (a) and 5.4 (a) show the proposed shrinkage operator for the MAP
Bayesian estimation conditioned upon two input parameters. The shrinkage func-
tion considers both 3™ and the estimated noise-free past frame coefficients, "1,
in order to estimate the corresponding noise-free coefficient in the current frame,
2™, Owing to the high redundancy between the corresponding coefficients in suc-
cessive frames, the probability of a high (or low) valued coefficient in the current
frame is dependent upon the value of the corresponding coefficient in the past
frame. The presented 2D shrinkage operators illustrate this reasoning. This can
be further simplified by considering particular values of the estimated noise-free
coefficient in the past frame, 2", for which the operator in (5.21) reduces to the
traditional conditional Bayesian function dependent only upon 3™ and is similar

to (5.23). This one variable function is depicted in Figures 5.3 (b-c) and 5.4 (b-

¢) where the shrinkage operator has been plotted only as a function of y" for a
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Figure 5.3: Shrinkage function obtained using the MAP estimation of the cur-
rent noise-free coefficients conditioned upon the current noisy coefficients and the
denoised past frame coefficients. Also shown are the shrinkage operation as func-
tions of the noisy subband coefficients in the current frame for a particular value
of 37 1.
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Figure 5.4: Shrinkage function obtained using the MAP estimation of the cur-
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tions of the noisy subband coefficients in the current frame for a particular value
of 37 1.
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constant value of 2"~ !. For 2"~! = 0, the traditional MAP operators which are
symmetric about 0 along the x- and the y- axis are obtained. However, when
2"~ 1 > 0 or 277! < 0, then the shrinkage of " is not symmetric about 0, but is

conditioned upon the value of 7!

and thus, the point of symmetry slides along
the = y line based on #"~!. This allows for a spatio-temporally adaptive MAP
operator which can reduce noise in the subband coefficients more intuitively.

The output of the inverse wavelet transform operation on the denoised coef-

ficients in the current frame yields the denoised time domain pixel values, f* =

Inverse DWT(X™).

5.5 Experimental Results and Discussion

The performance of the proposed algorithms, TMMSE and TMAP, has been eval-

uated using the following state-of-the-art algorithms:

e in the time-domain: 3D Rational filter (RF) [26], 3D KNN filter |24], 3D
a-trimmed mean (ATM) filter [24], 3D LMMSE filter [35], the adapted
weighted averaging (AWA) filter [35] and the joint Kalman and Wiener filter
(JKW) [39].

e in the wavelet-domain: multiple class averaging (MCA) algorithm [29] and

MC3DWTr [58].

As described in Section 4.6.1, peak signal-to-noise ratio (PSNR) and visual quality
are used as the performance criteria for the relative evaluation of the different
algorithms.

Five different test sequences, viz. Hall (Ha), Miss America (MA), Foreman
(Fo), Patrol Car (PC) and Train (Tr), corrupted by three different AWGN powers

have been used for evaluation. The input PSNRs of the corrupted sequences are
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20 dB, 25 dB and 30 dB. The results presented for the proposed algorithms are
obtained after compensating the motion in the input sequence. The motion com-
pensation is done in the wavelet domain using the half-pixel level block matching
technique with a block size of 8x8. The motion vectors are estimated using the
past denoised frame and the current noisy frame; the estimated motion vectors are
then used for compensating motion in the past and the future noisy sequences.
The Symmlet-8 wavelet is used to decompose the input frames upto 4 dyadic
levels.

Table 5.1 presents the average PSNR values for the different algorithmic out-
puts with the sequences having PSNRs of 20 dB, 25 dB and 30 dB as input. The
proposed filters, TMMSE and TMAP, yield an average PSNR, gain in the range
of 6 to 14 dB over the corrupted sequences and gains of 1-7 dB over the compared
schemes. The amount of increase observed in the PSNR is dependent upon the
amount of detail in the sequence as well as the amount of motion occurring in the
captured scene. The more the amount of fine detail in the scene, the more likely
it is that some of the detail is smoothed over as a result of the filtering, resulting
in a reduced output PSNR. The effect of motion can be explained by the fact
that motion causes the corresponding pixels in consecutive frames to differ, which
reduces the contribution of the pixel in the past frame during the filtering of the
current pixel. The motion compensation that is applied serves to reduce the effect
of motion while performing the spatio-temporal filtering and improves the PSNR
gain. It successfully accounts for the high amount of motion in the sequences (e.g.,
as in Fo, PC and Tr). The proposed schemes even outperform the corresponding
wavelet domain algorithm, MCA, to the tune of 2-3 dB. When compared to the
state-of-the-art MC3DWTr, the proposed techniques, TMMSE and TMAP, yield

an average improvement of ~0.75 dB and T0.5 dB, respectively. Only for the MA
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Figure 5.5: PSNR comparison of the different algorithms for Miss America se-
quence having an input PSNR of 20 dB

sequence does the MC3DWTr outperform the proposed techniques. This can be
attributed to the very low amount of movement in the sequence along with a
stationary background and this allows for the explicit application of the DW'T in
the temporal direction to gain an advantage over spatio-temporal modeling.

Among the two schemes proposed in this chapter, TMMSE outperforms TMAP
by 70.2-0.3 dB on average. This can be attributed to the smooth shrinkage func-
tions generated by the LMMSE operator as compared to the soft thresholding
which is performed by the operator developed by the MAP mechanism.

Figures 5.5, 5.6 and 5.7 show the PSNR curves obtained using the different

algorithm when processing MA, Ha and PC sequences corrupted to have input
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PSNRs of 20 dB, 25 dB and 30 dB, respectively. The spatial filters are not able to
reduce the corrupting noise aggressively and thus the proposed filter outperforms
these filters to the tune of 4-6 dB. Even compared to the wavelet domain filter
(MCA), the proposed filter yields an improvement of about 0.5-3 dB. Furthermore,
the variation in the output PSNRs of the proposed filters over all the processed
frames is not high, which signifies that the proposed filter is able to adapt to the
motion that is occurring in the video without effecting its performance. Only
for the MA sequence the MC3DWTr filter marginally outperforms the proposed
filters but for all other sequences the prposeed filters yield a consistently better
PSNR curve.

A visual comparison of the outputs generated by the different filters is pre-
sented in Fig. 5.8 using one of the frames from the PC video sequence which has
an input PSNR of 25 dB. As is evident, the filters used for comparison (AWA
and JKW) are unable to remove most of the noise corrupting the input frame and
also cause blurring of the detail information. The performance of the proposed
wavelet domain filters is superior to these filters in terms of noise removal as well
as detail preservation. Among all the filters, the TMMSE filter yields the best
results visually, while the performance of the TMAP filter is also very similar to
the TMMSE. Both the proposed filters are able to suppress noise more aggresively
than the MC3DW'Tr filter while preserving more detail. The visual difference is
even more pronounced in the actual video as the proposed filters leads to the least
amount of “flicker” like artifacts which usually result as a result of denoising the

video frames spatially.
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(g) JKW Filter

Figure 5.8: Filtered (and zoomed) outputs of one frame of the Patrol Car sequence
for the different filters
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5.6 Conclusion

In this chapter, Bayesian algorithms for video denoising in the wavelet domain
have been proposed using the video modeling framework introduced in this dis-
sertation. The fact that the spatial as well as temporal redundancies that are
visible in the video sequence in the time domain also exist in the wavelet domain
has been utilized for the formulation of these filters. The Bayesian filters have
been developed using the minimum mean squared error as well as the maximum «
posteriori criteria. The proposed Bayesian operators estimate the noise-free sub-
band coefficients in the current frame, given the noisy coefficients in the current
frame and the denoised estimates of the past frame. Thus, using this formulation,
the magnitude of the corresponding subband coefficient in the past frame has a ef-
fect on how the shrinkage function is applied to the noisy coefficient in the current
frame. This allows for a more adaptive and robust noise reduction mechanism,
which can utilize both the spatial as well as the temporal redundancies within the
same operator.

It has also been shown using extensive experimentation that the proposed
schemes outperform several state-of-the-art video noise reduction algorithms quan-

titatively as well as in terms of the visual quality.
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Chapter 6

Video Noise Reduction Using
Adaptive Combination of Temporal

and Spatial Filters

6.1 Introduction

In the previous chapters, the noise reduction of video sequence has been accom-
plished in the wavelet domain via the use of spatio-temporal algorithms which
utilize not only the current frame subband coefficients, but also the corresponding
coefficients in the neighboring frames. In order to utilize this strategy, one or
more frames have to be stored in the memory along with the current frame. The
larger is the temporal support that needs to be utilized, the more extensive are
the memory requirements.

To counteract this problem and to keep memory requirements low while ex-
ploiting the temporal redundancies to the fullest, in this chapter we consider the

development of an algorithm which filters spatial and temporal information sepa-
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rately and then adaptively combines the independent estimates of the two filters
based on the reliability of the motion estimates. The Kalman filter has been
widely used for the filtering of temporal processes and and here it is applied for
the noise reduction of the video sequences in the wavelet domain via utilizing the
video modeling framework presented in Chapter 3. For spatial noise reduction,
the Bayesian shrinkage operator based on MMSE and presented in Section 5.3 has
been used.

The organization of the chapter is as follows. The problem is briefly formulated
in Section 6.2. In Section 6.3, the Kalman filter is developed which operates
over the temporal motion trajectories. The adaptive combination of the estimate
generated by the Kalman filter and the Bayesian MMSE processor is provided in

Section 6.4 while the experimental results are discussed in detail in Section 6.5.

6.2 Problem Formulation

As discussed in Section 3.3, the subband coefficients of the noise-free video se-
quence frame can be expressed in terms of the corresponding subband coefficients

in the past frame and the incurred motion noise, i.e.,

X" =X""t Mt (6.1)

The above equation is the equivalent of a controlled stochastic process, where the
process noise is similar to the observed motion noise. The motion noise has been
shown to have a generalized Gaussian distribution with the model parameters
Vm and s,,. For the special case where the shape parameter is equal to 2 (i.e.,

Vm = 2), the motion (process) noise can be assumed to be an i.i.d. random variable
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belonging to the normal distribution, such that

My € N(0,07,) (6.2)

2

where (i, j) denotes the spatial coordinates, n denotes the frame index and o7,

is the variance of the motion noise. In this chapter, we assume this formulation
of the motion noise, where it can be modeled as a normally distributed random
variable.

The noisy subband coefficients for the frame n, Y., which are actually observed

ij
in a captured video sequence, can be expressed as
n __ n n . ;o
Yi=Xi+e,, t=1...,Landj=1,..., K (6.3)
where X[ are the unknown noise-free wavelet coefficients for the frame n and €}
are i.i.d. and normally distributed random variables (measurement noise), such

that

€5 € N(0,0‘?) (64)

The estimated measurement noise variance, 62, can be estimated as [45]

5 median (| H H;
o~ =
‘ 0.6745

’))2, (HH, € Y") (6.5)

where HH, is the largest detail subband in the set of observed noisy subband
coefficients, Y™,

Since the motion (process) noise is generated by the motion occurring in a
scene while the measurement noise is generated during the digital video capture
process, the motion noise and the measurement noise are assumed to be indepen-

dent of each other. Thus, to estimate the variance of the motion noise, the noisy
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subband coefficients are used along with the estimated noise-free coefficients from
the previous frame. A noisy version of M"™ ! is obtained by subtracting X"
from Y". Using the independence of the motion noise and measurement noise,

the variance of the motion noise can be estimated as

dian(|HH,|)\ > .
o= (M) ot (e froxy) e

where H H, is the largest detail subband in the set of subband coefficients obtained
by subtracting the estimated noise-free coefficients belonging to the previous frame
from the observed noisy subband coefficients.

Using the system description provided by (6.1) and (6.3), this chapter ad-
dresses the problem of estimating the estimate of the noise-free subband coeffi-

cients, X", using the observed noisy coefficients, Y".

6.3 Wavelet Domain Temporal Kalman Filter

The description of the subband coefficients in a video sequence in the form de-
scribed by (6.1) and (6.3) makes the estimation of the noise-free subband coeffi-
cients an ideally suited problem for time recursive filtering. In the time domain,
Dugad et al. [39] have proposed a Kalman filter which operates on the pixel val-
ues in the temporal direction for the estimation of the denoised pixels. Based on
the proposed modeling of the subband coefficients, it is also possible to formu-
late such a time recursive Kalman filter in the wavelet domain also. Such a filter
works purely in the temporal direction along the motion trajectories in the video
sequence and thus necessitates the compensation of motion prior to the applica-
tion of the filter in order to find the subband coefficients corresponding to the

current one in the past frame.
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The Kalman filter has to be initialized before it can process the first frame.
To perform this initialization, the spatial estimate of the wavelet coefficient of the

first frame (which is obtained as described in the next section) is used and the

2

initial error is initialized as the variance of the measurement noise, 7.

The Kalman filter first performs the time update step wherein it estimates
the value of the current wavelet coefficient using the past available data along
the motion trajectory and then performs the measurement update step, where
it updates these estimates based on the observed value of the current wavelet

coefficient.

Initialization:

X%'O = Spatial Estimate,f(ilj (6.7)
Pl =57 (6.8)
Time Update:
X;ljmfl _ Xinjfl\nfl (69)
Pir;|n71 _ Pi1;71|n71 _’_&TQn (610)
Measurement Update:
A | A~ | 1 ‘n‘ln_l s | 1
Xl — gelnt Ty grinely (6.11)
i ] njn—1 ~ 1) ]
P+ ot
nln n|n—1 F)izln_l
Pin = pr - (6.12)
N
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XZ-'” is the required estimate generated by the Kalman filter and for a wavelet
coefficient at location (7,7) in the frame n, and for future processing, can be
denoted as Xk:;

Thus, the Kalman filters updates the estimation error recursively and based
on the updated error variance, estimates the noise-free subband coefficient in the
frame n. Based on the magnitude of the estimated motion noise, the Kalman filter
either allows or dampens the temporal smoothing of the observed noisy coefficient,

thus, making it an adaptive recursive temporal filter.

6.4 Sequential Combination of Spatial and Tem-
poral Estimates

The process described in the previous section provides an estimate of the noise-
free subband coefficients, and is based solely on the temporal behavior of the
video sequence. It is also possible to obtain a spatial estimate of the same sub-
band coefficients using the Bayesian MMSE processor described in Section 5.3.
This operator has a limited temporal support of one frame and thus, provides an

independent estimate of the subband coefficients, which can be expressed as

R ij

X, = TMMSE <Y’P X"-l) (6.13)

where Y, and X{Lj_l are the noisy subband coefficients in the current frame and

the corresponding estimate of the noise-free coefficients in the past frame.
Having obtained the two estimates (spatial and temporal) of the same subband

coefficient, these two estimates need to be combined in order to obtain the robust

spatio-temporal estimate of the noise-free subband coefficient in the current frame.
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Since the Kalman filter acts along the motion trajectories, it is sensitive to motion
estimation and in case a lot of scene motion is observed or if the estimated motion
compensation is not reliable, the estimate produced by the Kalman filter should
not be used to generate the final estimate. On the other hand, in video sequences
having no or very small motion, the Kalman filter performs as good as the spatial
filter and an equal weight for both the estimates is desired. Thus, depending upon

the estimated motion noise variance, the two estimates can be combined to obtain

the final estimate, XZ, as follows:
s n 2N
. (1—w)Xs,, + wXk,;, if 62, < 62
Xij = A”n Y o (6.14)
X, if G2 > 62

where the weighting function chosen is an exponential function, which is propor-
tional to the ratio of the variances of the motion and the measurement noises and

can be described as
! O (6.15)
w=—e - )
2 P\ "0

If the motion noise variance is low, then the estimated temporal estimate is
reliable and thus, both the spatial and temporal are utilized to obtain the final
estimate. However, if the motion noise variance is high due to the unreliable
motion estimates, then only the the spatial filter is utilized in the final estimate.

The output of the inverse wavelet transform operation on the denoised coeffi-

cients in the current frame yields the denoised time domain pixel values as

" = Inverse DWT(X") (6.16)
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6.5 Experimental Results and Discussion

The performance of the proposed algorithm which is based on the adaptive com-
bination of the spatially and temporally filtered video sequences, JKMMSE, is

evaluated using the following state-of-the-art algorithms:

e in the time-domain: 3D Rational filter (RF) [26], 3D KNN filter [24], 3D
a-trimmed mean (ATM) filter [24], 3D LMMSE filter [35], the adapted
weighted averaging (AWA) filter [35] and the joint Kalman and Wiener filter
(JKW) [39].

e in the wavelet-domain: multiple class averaging (MCA) algorithm [29] and

MC-3DWTr [58].

As metrics for the evaluation of the different algorithms, as described in Section
4.6.1, peak signal-to-noise ratio (PSNR) and visual quality are used.

Five different test sequences, viz. Hall (Ha), Miss America (MA), Foreman
(Fo), Patrol Car (PC) and Train (Tr), corrupted by three different AWGN powers
are used for evaluation. The sequences have varying amount of motion (both local
and global) as well as detail. The input PSNRs of the corrupted sequences are
20 dB, 25 dB and 30 dB. The necessary motion compensation of the past frames
is accomplished in the wavelet domain using the half-pixel level block matching
technique with a block size of 8x8. The motion vectors are estimated using the
past denoised frame and the current noisy frame; the estimated motion vectors are
then used for compensating motion in the past and the future noisy sequences.
The Symmlet-8 wavelet is used to decompose the input frames upto 4 dyadic
levels.

Table 6.1 presents the average PSNR values for the different algorithmic out-
puts with the sequences having PSNRs of 20 dB, 25 dB and 30 dB as input. The
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proposed filter, JKMMSE;, yields an average PSNR gain in the range of 7 to 15 dB
over the corrupted sequences and gains of 1-7.5 dB over the compared schemes.
The sequences in which the amount of motion is limited have a higher increase
in the PSNR even when compared to the TMMSE filter of the previous chapter.
This is so because with limited motion, the Kalman filter produces valid estimates
when using only the temporal data and thus, when combined with the spatially
filtered outputs with an almost equal weight, the resultant PSNR is better than
those of the two filters individually. This increase is to the tune of 0.3-0.75 dB
depending upon the amount of motion in the sequence. The amount of increase
observed is also dependent upon the level of detail in the sequence and for se-
quences with a large quantity of fine detail (such as Tr), the overall increase in
the PSNR is reduced. Since the Kalman filter acts along the motion compensated
trajectories, when combined with the spatial filter, it is still able to provide an
overall improvement in the PSNR even for sequence with significant local and
global motion. Among all the techniques used for comparison, the performance
of the MC3DWTr is the closest to the proposed algorithm, with the proposed
algorithm outperforming MC3DWTr by ~1 dB on average.

Figures 6.1, 6.2 and 6.3 show the PSNR curves obtained using the different
algorithms when processing Ha, PC and MA sequences corrupted to have input
PSNRs of 20 dB, 25 dB and 30 dB, respectively. The proposed filter outper-
forms the spatial filters to the tune of 4-6 dB and even compared to the wavelet
domain filter (MCA), the proposed filter yields an improvement of about 0.5-3
dB. Furthermore, even for the sequence containing significant motion (PC), the
overall performance of the combined filter is maintained over all the frames in
the sequence. Even when compared to the state-of-the-art MC3DW'Tr filter, the

proposed filter outperforms consistently in terms of PSNR.
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Figure 6.1: PSNR comparison of the different algorithms for Hall sequence having
an input PSNR of 20 dB
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Figure 6.2: PSNR comparison of the different algorithms for Patrol Car sequence
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A visual comparison of the outputs generated by the different filters is pre-
sented in Fig. 6.4 using one of the frames from the MA video sequence which has
an input PSNR of 20 dB. As is evident, the filters used for comparison (ATM,
LMMSE and MCA) are unable to remove most of the noise corrupting the input
frame and also cause significant blurring. The performance of the proposed JK-
MMSE filter is superior to these filters in terms of noise removal as well as detail
preservation. The MC3DW'Tr filter comes the closest to the propsoed filter in
terms of noise suppression when compared visually. Since the Kalman filter acts
only temporally, it is able to suppress any flicker artifacts which are introduced
with spatial-only filtering of the video sequences and when combined with the
spatio-temporal TMMSE filter, the overall result is a visually more pleasing video

sequence.

6.6 Conclusion

This chapter discussed a novel wavelet domain noise reduction scheme, where the
spatial and temporal noise reduction was performed separately based on the video
modeling framework introduced in this dissertation. The individually filtered re-
sults were then combined adaptively to generate a single noise-free estimate of the
original subband coefficient of the video sequence. For the noise reduction in the
temporal direction, a Kalman filter has been used and low-complexity techniques
have been suggested for the computation of the process and measurement noises.
The spatio noise reduction has been achieved using the adaptive TMMSE opera-
tor described in the previous chapter. The results obtained from both the filters
are then combined based on the amount of motion observed in the sequence. If

the motion is sufficiently compensated, then the temporal filter is weighted almost
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(b) Noisv Frame

(a) Original Frame

(¢) Proposed JKMMSE (d) MC3DWTr Filter

(e) ATM Filter (f) LMMSE Filter

(g) MCA Filter

Figure 6.4: Filtered outputs of the 17*" frame of the Miss America sequence for
the different algorithms
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equally with the spatial filter to generate the final output. On the other hand,
if a significant amount of motion noise is detected, then the final result is more
heavily dependent on the spatially filtered output.

Extensive simulations have been performed and the presented results when
compared with several state-of-the-art algorithms in literature confirm the supe-

rior performance of the proposed technique.

121



Chapter 7

Motion Adaptive Video Denoising
Based on Bivariate Shrinkage of

Wavelet Coefficients

7.1 Introduction

The previous chapters have addressed the problem of noise reduction by formulat-
ing algorithms that operate entirely in the wavelet domain. The temporal redun-
dancies that exist in the subband coefficients belonging to successive frames have
been exploited in a variety of ways, including decorrelation, condition Bayesian
filtering and Kalman filtering. The interscale correlation, on the other hand, has
been addressed only in Chapter 4 in a heuristic spatial thresholding mechanism. It
is also possible to exploit the interscale redundancies in a more structured Bayesian
framework and develop an operator which adapts to these spatial correlations.
Thus, in this chapter, a new wavelet-based video noise reduction algorithm

is discussed, where the inter-scale dependencies in the subband representation of
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each frame are modeled using a non-Gaussian bivariate distribution. The param-
eters for this bivariate distribution are estimated adaptively using the local corre-
lations that exist between neighboring coefficients within each subband. Based on
this bivariate distribution, a shrinkage function is developed using the mazimum a
posteriori (MAP) rule. To improve the performance of the filter, information from
the previous frames is also incorporated in the shrinkage function by detecting the
motion between the corresponding subband coefficients in successive frames.

The chapter is organized as follows. The formulation of the problem and the
modeling of the video sequence is presented in Section 7.2, while the proposed
MAP estimation is developed in Section 7.3. Section 7.4 discusses the simulation
results and performance comparison of the proposed algorithm with several other

state-of-the-art algorithms for video noise reduction..

7.2 Problem Formulation and Bivariate Modeling

Similar to previous chapters, the denoising of a video sequence corrupted by ad-

ditive white Gaussian noise is considered:
gl =f"+n" (7.1)

where g" and f"are the n'* frames or fields of the noisy and the noise-free se-
quences, respectively. The video noise, 1", is considered to be zero-mean AWGN

2

having a variance o,. Given the observed noisy frame, g", an estimate of the

original noise-free video sequence, f", is sought here . The input noisy frame is

transformed to the wavelet domain and the problem can be formulated as
Y"'=X"+4+¢€" (7.2)
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where Y” and X" are the sets of noisy and noise-free wavelet coefficients, respec-
tively. €" is the set of corrupting zero-mean AWGN coefficients having a variance

o2, which can be estimated from the noisy wavelet coefficients in the diagonal

median(|H Hi |) > 2

detail subband via a use of the robust estimator [45], 62 = ( T

The distribution of wavelet coefficients of video frames is sharp-peaked and
heavy-tailed and can be modeled using the generalized Gaussian (GG) distribution
(see Chapter 3). However, it is difficult to model the statistical dependencies
between wavelet coefficients using such marginal priors. As shown in Chapter 4,
there exist dependencies between the subband wavelet coefficients of a video frame
and the corresponding parent coefficients (in the adjacent coarser scale). Let x
denote a subband coefficient for the noise-free frame, n, and its parent at the next
coarser level be denoted as xi. Then

n_ ,n_ n
Yyr =xp T € (73)
v =7 + €
where y7 and y3 are the noisy observations of z7 and z7, and €} and €} are the
noise samples.

Figure (7.1) (a) shows the joint histogram obtained using the noise-free coef-
ficients belonging to the HL;and H Ly subbands of a noise-free frame from the
Trevor video sequence. This joint distribution has been modeled using a non-

Gaussian distribution [67] which can be described as

3 V3 o,
pxl,xz(x17$2) - 27_[_0_2 €xXp (_O__ 'T% + x%) ) (74‘)

xrx xrx

where p,, ., (21, %2) is the joint pdf of the random variables z; and x5 and U?m is

the variance of the distribution. Figure (7.1) (b) shows the plot of the distribu-
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tion described by (7.4) which is used to model the bivariate empirical histogram
of the parent and child subband coefficients. As is evident, the used bivariate
non-Gaussian distribution is able to model the empirical histogram very closely.
The sharp peak of the empirical histogram at the mean value (0) and the slowly
tapering tail is also reflected in the plot of the distribution used for modeling the

empirical histogram.

7.3 Adaptive Bivariate Shrinkage

In this section, the Bayesian processor based on the MAP estimation to estimate
the noise-free wavelet coefficients, 27, corresponding to frame n, is described. The
noisy subband coefficients in the current frame, 37, along with their corresponding

parents, y5, are used in the estimation process. We can write
y'=x"+¢€" (7.5)

where y" = {y7, g5}, x" = {af, 23} and € = {¢}, &5}

The MAP estimate of the noise-free subband coefficient can be obtained as

Sn

2"(y") = arg MAX Prcnyn (x"y™). (7.6)
This equation can be manipulated to be written as

SN

X"(y") = arg max[pen (y" — x")psxn (x")]. (7.7)
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Since the noise is i.i.d. and Gaussian,
2 2
€T ) +(€er
per(€") = 7 exp (——( 1) +) ) (7.8)
Solving (7.7) is equivalent to solving

X"(y") = arg max[In(pe (y" — x")) + In(pxn (x"))]. (7.9)
If we define f(x") = In(px» (x™)), then (7.9) can be solved by solving the following
two equations together:

S 4 ) =0

Yo —%3 + f2(5~(n) =0

2
J¢

(7.10)

where f1(X") and f5(X") are the derivatives of f(x") with respect to =7 and z7,

respectively. Solving (7.10), the joint shrinkage rule can be expressed as [67]

0.2
( (W) + (13)* — ig)

Ty = +yl (7.11)
(y0)* + (43)”

where the (.); signifies that only the positive values are considered, while the
negative values are put to zero.

Figure 7.2 shows two plots of this bivariate function for different combinations
of 0., and o.. The shrinkage function has a circular dead-zone where the estimated
value of the noise-free coefficients is zero. This shrinkage function maps all the
small subband coefficients to zero while smoothly shrinking the others based on
the values of the noisy subband coefficient and its corresponding parent.

To estimate o,,, the immediate neighborhood around the noisy subband co-

efficient y7 is utilized. For this estimation of o,,, a coefficient set S™ is defined,
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which includes the noisy coefficients in the 5x5 neighborhood centered at 7. Since
the input is a video sequence, it is also possible to utilize the information available
in the neighborhood frames, i.e., Y ! and Y"*'. However, the motion occur-
ring in the video might cause the statistics of the coefficients in Y*~! and Y"*!,
which correspond to yf, to change. Even if the motion in the video sequence
is estimated and then explicitly compensated, the past and the future subband
coefficients might not possess similar statistics to y'. Thus, in order to detect the
motion that has occurred in the region of interest between any pair of frames n
and n—1, the neighborhoods 8™ and S"~! around each of the corresponding noisy
coefficients y7 and """ are considered. The mean absolute difference between the

two regions is then computed as

1 _
MAD(n,n—1) = > lii—ui | (7.12)
ypieS”
y?i_legn_l

If the estimated difference is caused only due to the noise present in the video
signal, i.e., if MAD(n,n — 1) < o, then the coefficients in neighborhood S"~!
are also considered along with the coefficients in 8™ in order to estimate o,,.
Similarly, the motion between frames n and n + 1 is also checked and depending
upon the amount of motion, the subband coefficients belonging to the set S™*!
are included in the estimation of o,..

If § denotes the total neighborhood which includes all the corresponding coef-

ficients in the frames n, n—1 and n+ 1 where significant motion has not occurred,
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then o,, can be estimated as

1
A _ E 2
+

y1i€S

where Ng are the total number of coefficients in the neighborhood S.
The output of the inverse wavelet transform operation on the denoised coeffi-

cients in the current frame yields the denoised time domain pixel values as

" = InverseDWT(X"). (7.14)

7.4 Experimental Results and Discussion

The performance evaluation of the proposed spatio-temporally adaptive algorithm
which is based on bivariate modeling of the subband coefficients and maximum
a posteriori estimation, TBMAP, is presented in this section. Five different test
sequences, viz. Hall (Ha), Miss America (MA), Foreman (Fo), Patrol Car (PC)
and Train (Tr), corrupted by three different AWGN powers are used for evaluation.
The sequences have varying amount of motion (both local and global) as well as
detail. The input PSNRs of the corrupted sequences are 20 dB, 25 dB and 30
dB. The necessary motion compensation of the past frames is accomplished in
the wavelet domain using the half-pixel level block matching technique with a
block size of 8x8. The motion vectors are estimated using the past denoised frame
and the current noisy frame; the estimated motion vectors are then used for
compensating motion in the past and the future noisy sequences. The Symmlet-8
wavelet is used to decompose the input frames upto 4 dyadic levels.

The performance is compared with the 3D Rational filter (RF) 26|, 3D KNN
filter [24], 3D a-trimmed mean (ATM) filter [24], 3D LMMSE filter [35], the
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adapted weighted averaging (AWA) filter [35] and the joint Kalman and Wiener
filter (JKW) [39] (operating in time domain) and multiple class averaging (MCA)
algorithm [29] and MC3DWTr |58] filter which operate in the wavelet domain.

Peak signal-to-noise ratio (PSNR) and visual quality are used as metrics for
the evaluation of the different algorithms.

Table 7.1 presents the average PSNR values for the different algorithmic out-
puts with the sequences having PSNRs of 20 dB, 25 dB and 30 dB as input.
The proposed filter, TBMAP, yields an average PSNR, gain in the range of 7 to
14 dB over the corrupted sequences and gains of 0.4-6.75 dB over the compared
schemes. The proposed filter is able to adapt to the different levels of detail in
the video sequence as well as the different degrees of motion. It has a consistent
performance improvement over all the other algorithms even for sequences with a
high degree of motion, although this increase is relatively less when compared to
the PSNR increase with the sequences with lower degree of motion. Even when
compared to the state-of-the-art MC3DWTr algorithm, the proposed filter is able
to outperform it by ~0.25 - 0.4 dB on average.

Figures 7.3, 7.4 and 7.5 show the PSNR curves obtained using the different
algorithm when processing PC, MA, and Ha sequences corrupted to have input
PSNRs of 20 dB, 25 dB and 30 dB, respectively. The proposed filter consistently
outperforms the spatial as well as wavelet domain filters over the full length of the
evaluated sequences. The relative increase observed for the MA and Ha sequences
is more than that of the PC sequence on account of the high degree of motion in
the PC sequence which causes the TBMAP filter to use only the spatial support
for the estimation of the filter parameters.

A visual comparison of the outputs generated by the different filters is pre-

sented in Figure 7.6 using one of the frames from the PC video sequence which
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has an input PSNR of 25 dB. As is evident, the proposed filter produces results
which are more visually pleasing than filters used for comparison (MC3DWTr,
AWA, JKW and MCA). The TBMAP filter is able to reduce noise aggressively
due to the bivariate mapping of the subband coefficients and limits the blurring

of the detail information in the sequence.

7.5 Conclusion

A spatio-temporally adaptive filter which operates completely in the wavelet do-
main has been proposed in this chapter. The inter-subband correlations that exist
between the successive subbands corresponding to same frame allow the model-
ing of the parent and child coefficients as a non-Gaussian bivariate distribution.
Based on this distribution, a MAP estimator that estimates the noise-free subband
coefficients based on the available noisy coefficient and its corresponding parent
hsa been discussed. An adaptive spatio-temporal support has been used for the
estimation of the parameters used for the application of the resultant shrinkage
function.

Experimental results and simulations have shown the superiority of the pro-
posed filter in video noise reduction over several other algorithms based on both

PSNR and visual inspection.
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(g) MCA Filter

Figure 7.6: Filtered (and zoomed) outputs of one frame of the Patrol Car sequence
for the different filters

137



Chapter 8

Conclusion

8.1 Concluding Remarks

The corruption of video sequences with noise is a common phenomenon which
is always present to some extent owing to limitations on the hardware (such as
sensors), ambient lighting, storage media, etc. With the quick proliferation of
the digital videos it has become imperative that this noise be removed from these
sequences before either viewing these videos or more importantly, before process-
ing these videos for other applications, such as compression, segmentation and
tracking.

Wavelets have been extensively used to denoise the still images and their use
has been extended to the domain of video noise reduction. While a considerable
amount of research and effort has been spent on the modeling of the subband
coefficients corresponding to still images, not much work has been dedicated to
the field of video denoising. Videos are different from still images in that there
exists additional information in the temporal direction which can be exploited for

the enhancement of the videos, thus resulting in better noise reduction. However,
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most of the work in video denoising has concentrated on using the spatial filters
on individual frames and then using the temporal information in an ad hoc way.

Thus, one of the primary goals of this dissertation was to develop a unified
framework for spatio-temporal modeling of the wavelet domain representation of
the video sequences. In Chapter 3, such a framework was proposed utilizing an «a
priori distribution to model not only the spatial subband coefficients but also the
temporal relationship between them. The focus of the work was not to develop
priors which model the proposed spatio-temporal framework most accurately, but
to show that it is possible to create such an a prior: framework and model the
distributions using a distribution which has a good fit to the empirical data. For
the purpose of this dissertation, the spatio-temporal modeling has been done using
a generalized Gaussian distribution. Extensive simulations have been performed
to verify the validity of this modeling. In the subsequent chapters, the proposed
spatio-temporal model for the subband coefficients in a variety of different strate-
gies for noise reduction of the video sequences.

The second goal of this dissertation was to propose the possible alternative
strategies to exploit the proposed video model. There are several ways in which

the spatio-temporal redundancies can be exploited, such as:

e Reducing the temporal correlations between corresponding subbands before

performing any spatial noise reduction.

e Using the spatio-temporal information together in a unified framework that
performs optimal noise reduction based on both the spatial and temporal

data.

e Exploiting the spatial and temporal redundancies separately using separate

filters which operate only along the temporal directions and along the spatial
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orientation and then combining the outputs of the two filters adaptively.

e Using the inter-subband correlations in the wavelet representation of a single
frame in a multi-variate model and utilizing the spatio-temporal information

to enhance it performance.

This dissertation has proposed noise reduction techniques which try to address
all of the above strategies of utilizing the video subband data in an optimal and
coherent way.

In Chapter 4, a novel spatio-temporal filter for video denoising that operates
entirely in the wavelet domain was proposed. For effective noise reduction, the
spatial and the temporal redundancies that exist in the wavelet domain represen-
tation of a video signal were exploited. The discrete cosine transform (DCT) was
used to minimize the redundancies in the temporal direction. After the applica-
tion of the DCT, the coefficients in the different wavelet domain subbands for the
original image sequence were modeled using a prior having a generalized Gaussian
(GQG) distribution. Based on this prior, filtering of the noisy wavelet coefficients
in each subband was carried out using a low-complexity wavelet shrinkage method
that utilizes the correlation which exists between subsequent resolution levels.

In Chapter 5, based on the proposed video modeling framework, where the
subband coefficients in individual frames as well as the wavelet coefficient dif-
ference occurring between two consecutive frames can be modeled using the GG
distribution, Bayesian operators, based on minimum mean squared error as well
as maximum a posteriori estimation, were proposed. These operators estimate
the noise-free wavelet coefficients in the current frame conditioned on the noisy
coefficients in the current frame and the filtered coefficients in the past frame.

Based on the proposed statistical model, in Chapter 6, another novel noise

reduction technique, which exploits the spatial and temporal redundancies that
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persist in the wavelet domain representation of the video sequence sequentially
has been proposed. The separately processed outputs of a Kalman filter and a
spatial Bayesian filter are combined using an adaptive weighted averaging scheme.
In Chapter 7, the inter-scale dependencies in the subband representation of
each frame were also modeled using a non-Gaussian bivariate distribution. The
parameters for this bivariate distribution were estimated adaptively using the
local correlations that exist between neighboring coefficients within each subband.
Based on this bivariate distribution a shrinkage function was developed using the
maximum a posteriori rule. To improve the performance of the filter, information
from the adjacent frames was also incorporated in the shrinkage function.
Extensive experimental results for all the presented algorithms were presented
and these confirm that the proposed schemes outperform several state-of-the-art
spatio-temporal filters in terms of peak signal to noise ratio as well as visual
quality. For real-time implementation of the proposed algorithms, in scenarios
where only a digital signal processor is available with limited memory resources
and computational efficiency is more important, the DCWT and TBMAP algo-
rithms would be ideal. For implementation on a reconfigurable hardware, such as
an FPGA, the TMMSE and TMAP algorithms are better suited owing to their
possible implementation using lookup tables. Where more compuational power is
available and very high quality of noise reduction is necesary, the JKMMSE filter

would be a better fit.

8.2 Scope for Further Work

The research work presented in this dissertation can be extended in several di-

rections. One of the main focus in this research was to show the feasibility of a
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unified framework for the modeling of the spatio-temporal subband coefficients.
The GG distribution has been used as the prior for modeling the data in this
framework. The effect and accuracy of the use of a different prior, which could
make the overall model more robust, can be investigated .

The shrinkage operator based on the non-Gaussian bivariate function incorpo-
rates only the spatial correlations. It is possible to extend the same function to
incorporate not only the spatial subband correlations but also the temporal ones.
It would be worthwhile to investigate as to whether it is possible to extend this
filter in a way similar to the one proposed in Chapter 5 wherein the conditional
estimation of the present coefficient is done based on the current noisy one as well

the corresponding past coefficient.
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