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ABSTRACT 

 

Comprehensive Mapping of PERIOD2 Expression Patterns                                             

in the Rat Forebrain Across the 24-hr Day 

 

Valerie Harbour, Ph.D. 

Concordia University, 2011 

 

In mammals, a light-entrainable circadian clock located in the suprachiasmatic nucleus 

(SCN) regulates circadian behavioural and physiological rhythms by synchronizing 

oscillators throughout the brain and body. Synchrony between these multiple oscillators 

is believed to be essential for normal daily functions, and disruptions of the phase 

relationships between them are associated with several disorders and disease. 

Importantly, the nature of the relationship between the master SCN clock and subordinate 

oscillators in the rest of the brain is not well defined. We performed an unparalleled high 

temporal resolution analysis of potential extra-SCN brain oscillators by analyzing the 

expression of the clock protein PERIOD2 (PER2) throughout the forebrain of the inbred 

Lewis (LEW/Crl) rat. In addition, we analyzed the transcript levels of two core clock 

genes, Per2 and Bmal1, and a clock-controlled gene, Dbp, in the SCN and two limbic 

forebrain regions. Eighty-four LEW/Crl male rats were individually housed in cages 

equipped with running wheels and were entrained to a regular 12-hr:12-hr light/dark 

cycle. After 3-4 weeks on this schedule, rats were perfused every 30 min across the 24-hr 

day, giving a total of 48 time-points (n=1-4/time-point). In this thesis, I report the 
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presence of circadian rhythms in clock gene expression in brain areas important for 

locomotion, stress, emotion, motivation, and learning and memory, and further explore 

the relationship between these rhythms. Twenty-two brain areas showed PER2 

expression including the SCN, bed nucleus, and several regions of the amygdala, 

hippocampus, striatum, and cortex. Of these, 20 structures displayed circadian rhythms in 

PER2 expression. Remarkably, none of the PER2 rhythms in any of the regions analyzed 

were in phase with the SCN. Instead, an intricate network of brain oscillators with clock 

gene expression peaking at different times throughout the day was revealed. Furthermore, 

Per2, Bmal1, and Dbp were rhythmic in the SCN, CEAl, and DG, albeit to different 

degrees, consistent with the presence of a functional circadian clock in these regions. The 

data demonstrate the presence of complex and previously unappreciated associations of 

clock phases throughout the mammalian brain. This comprehensive atlas of clock gene 

rhythms in the normal rat brain will provide a sound baseline for studies of circadian 

clock function in animal models of disease.  
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NOTES ON NOMENCLATURE 

 

 In order to readily differentiate between genes and proteins, mRNA or anything 

other than the final protein product are Italicized with the first letter capitalized, whereas 

proteins are written in CAPITAL letters. This has been made consistent throughout the 

thesis 

 

Only rats were used in this thesis, thus the “r” before a given gene or protein has 

been omitted. When there is mention of clock genes in another species, it is explicitly 

specified.  
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LIST OF ABBREVIATIONS 

 

ACAv   Anterior cingulate area, ventral 

AIp   Agranular insular cortex, posterior 

ASd   Anterior striatum, dorsal 

ASm   Anterior striatum, medial 

AVP   Arginine vasopressin 

BLA   Basolateral amygdala 

Bmal1, BMAL1 Brain and muscle Arnt-like gene, protein 1 

BNSTov  Bed nucleus of the stria terminalis, oval nucleus 

CA1   Field CA1, Ammon’s horn 

CA3   Field CA3, Ammon’s horn 

CCG   Clock-controlled gene 

CEAl   Central amygdala, lateral 

CK1�, �  Casein kinase 1 delta, epsilon  

Clock, CLOCK Circadian locomotor output cycles kaput gene, protein 

Cry, CRY  Cryptochrome gene, protein 

Dbp   albumin promoter D-site binding protein gene 

DG   Dentate gyrus 

ENK   Enkephalin 

ENTld   Entorhinal cortex, lateral, deep layers (IV-VI) 

ENTls   Entorhinal cortex, lateral, superficial layers (I-III) 

EPd   Endopiriform cortex, dorsal  
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GRP   Gastrin-releasing peptide 

GSK3   Glycogen synthase kinase 3  

IHC   Immunohistochemistry 

KO   Knockout  

LD   Light/dark cycle 

MEApd  Medial amygdala, posterodorsal 

NAc   Nucleus accumbens 

NAcc   Nucleus accumbens core 

NAcsh   Nucleus accumbens shell 

OB   Olfactory bulb 

Per2, PER2  Period2 gene, protein 

PIR2   Piriform cortex, pyramidal layer 2 

qRT-PCR  Quantitative Real-Time polymerase chain reaction 

PSd   Posterior striatum, dorsal 

PSm   Posterior striatum, medial 

RF   Restricted feeding 

SCN   Suprachiasmatic nucleus 

SCNc   Suprachiasmatic nucleus core 

SCNsh   Suprachiasmatic nucleus shell 

VIP   Vasoactive intestinal polypeptide 

WRA   Wheel-running activity  

ZT   Zeitgeber time 
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INTRODUCTION 

 To adapt to the 24-hr light/dark (LD) cycle imposed by the Earth’s rotation on its 

axis most living organisms have developed an internal timing mechanism, modulated by 

light, that regulates daily rhythms in physiology and behaviour. This daily time keeping 

allows organisms to anticipate day/night transitions and establish the best time for 

activities and processes such as leaf movements in plants, cell division and DNA 

replication in eukaryotes, and foraging and sleeping in vertebrates, thereby increasing 

survivability.   

In mammals, this timing mechanism, also known as the ‘biological clock’, 

regulates nearly all physiological processes essential for normal organismal functioning, 

from gene expression, hormone secretion, and body temperature, to mood, feeding, and 

most notably, the sleep/wake cycle (Cassone, Warren, Brooks, & Lu, 1993; Reppert & 

Weaver, 2002). The importance of these ‘circadian’ (from the Latin circa diem meaning 

‘about a day’) rhythms is underscored by the evidence that their disruption can lead to a 

myriad of health and behavioural problems such as metabolic, sleep, and mood disorders, 

and even cancer (Arble, Ramsey, Bass, & Turek, 2010; Lamont, James, Boivin, & 

Cermakian, 2007). A familiar example of the consequences of circadian disruption is the 

general malaise felt in relation to jet lag and rotating shift work (Bunney & Bunney, 

2000). 

Mammalian circadian rhythms are thought to be regulated by central and 

peripheral circadian oscillators that are under the synchronizing control of a light-

entrainable master clock, located in the suprachiasmatic nucleus (SCN) of the 

hypothalamus (Lowrey & Takahashi, 2000). In recent years, a great deal has been learned 
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about the core ‘clock’ genes and molecular programs responsible for the generation of 

circadian rhythms at the cell and tissue levels, and about the cellular and neural 

mechanisms mediating circadian rhythms in the SCN. In contrast, very little is known 

about the nature, regulation, and function of circadian oscillators outside the SCN. 

Using the core clock protein, PERIOD2 (PER2), as a functional marker (Akashi, 

Ichise, Mamine, & Takumi, 2006; Zheng et al., 1999), our laboratory has previously 

characterized novel SCN-driven circadian oscillators in four anatomically and 

functionally interconnected regions of the limbic forebrain: the oval nucleus of the bed 

nucleus of the stria terminalis (BNSTov), the lateral central amygdala (CEAl), the 

basolateral amygdala (BLA), and the dentate gyrus (DG) of the hippocampus (Amir, 

Lamont, Robinson, & Stewart, 2004; Lamont, Robinson, Stewart, & Amir, 2005). 

Remarkably, the rhythms in PER2 in the BNSTov and CEAl peaked at opposite time of 

day than those found in the BLA and DG, revealing that distinct phase relationships exist 

between subordinate brain oscillators. A leading hypothesis is that the network 

organization of extra-SCN oscillators defines the normal functioning state of the brain. 

However, their number, the extent of their distribution, and the phase relationship they 

establish between themselves and with the SCN still remains unclear. Using a high 

temporal resolution analysis of PER2 expression, the aim of this thesis was to identify 

novel circadian oscillators in the rat forebrain and characterize their phase relationships. 

A brief review of the circadian system pertinent to this thesis is given below. 

 

The suprachiasmatic nucleus  



� ��

The SCN is a bilateral structure located in the anterior hypothalamus above the 

optic chiasm on either side of the third ventricle. Each nucleus is composed of 

approximately 10,000 neurons, most of which are considered to be self-sustained 

autonomous oscillators (Reppert & Weaver, 2001; Welsh, Logothetis, Meister, & 

Reppert, 1995). The SCN can be divided into two sub-structures, the ventrolateral core 

and dorsomedial shell (Moore, Speh, & Leak, 2002; Van den Pol, 1980). The cells in the 

core are retinorecipient and play a key role in photic entrainment, whereas, the cells in 

the shell act as the main output system of the SCN communicating timing signals to the 

rest of the brain (Drouyer, LeSauter, Hernandez, & Silver, 2010; Leak, Card, & Moore, 

1999). In addition to direct retinal input through the retinohypothalamic tract (RHT), 

containing glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP, 

(Moore & Lenn, 1972), the core also receives indirect input from the retina via 

projections from the retinorecipient thalamic intergeniculate leaflet (containing 

neuropeptide Y and gamma-aminobutyric acid, GABA) (Morin & Blanchard, 2001; 

Pickard, 1985), and serotonergic projections from the median raphe nucleus (Moga & 

Moore, 1997). The shell receives non-visual moderate to sparse projections from multiple 

areas, including the surrounding hypothalamic regions, thalamus, basal forebrain, limbic 

cortex, and brainstem (Moga & Moore, 1997; Moore, Speh, & Leak, 2002). Thus, 

efferents from the core send circadian timing signals to the shell carrying information 

about external light-cues, while projections from the shell send signals that integrate 

timing information from the core along with non-visual information from multiple brain 

areas (Moore, Speh, & Leak, 2002). While the core projects mostly to the shell, the shell 

projects heavily to the subparaventricular zone and also to other regions in the adjoining 
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hypothalamus, such as the dorsomedial and ventromedial nuclei, paraventricular nucleus, 

and medial preoptic area, with few efferent projections to the SCN core (Leak & Moore, 

2001; Watts & Swanson, 1987). There has also been some evidence for sparse 

projections from the SCN to the BNST (Leak & Moore, 2001; Watts & Swanson, 1987) 

and medial amygdala (Canteras, Ribeiro-Barbosa, Goto, Cipolla-Neto, & Swanson, 2011; 

Watts & Swanson, 1987).  

Although most, if not all, neurons in the SCN are GABAergic (Moore & Speh, 

1993), clear distinctions can be made between the core and shell subdivisions based on 

their respective distribution of neuropeptides. Neurons in the core mostly express 

vasoactive intestinal polypeptide (VIP) or gastrin-releasing peptide (GRP), while neurons 

in the shell mostly express arginine vasopressin (AVP) (Moore, Speh, & Leak, 2002). In 

addition, other neuropeptides co-localized with GABAergic neurons are produced 

distinctly within the subdivisions of the SCN in smaller quantities. Specifically, neurons 

in the core also express calbindin, neurotensin, or substance P, while neurons in the shell 

also express calretinin, enkephalin (ENK), or somatostatin (Moore, Speh, & Leak, 2002). 

In both nocturnal and diurnal rodents, most SCN neurons display 24-hr rhythms 

in firing rate with peak activity occurring during the subjective day and low levels of 

firing during the subjective night (Inouye & Kawamura, 1979; Smale, Nunez, & 

Schwartz, 2008; van Esseveldt, Lehman, & Boer, 2000; Welsh, Logothetis, Meister, & 

Reppert, 1995). In vivo simultaneous recordings of multiunit activity have revealed 

circadian changes in firing rates in other brain regions in both rats and hamsters, such as 

the thalamus, hypothalamus, dorsal and ventral striatum, raphe nucleus, and visual cortex, 

that peak in antiphase with the firing rate seen in the SCN, in the subjective night (Inouye 
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& Kawamura, 1979; Yamazaki, Kerbeshian, Hocker, Block, & Menaker, 1998). In 

contrast, firing rates in the BNSTov were found to peak in phase with the SCN, during 

the subjective day (Yamazaki, Kerbeshian, Hocker, Block, & Menaker, 1998). These data 

are consistent with the unique phase relationship seen in PER2 protein expression 

between the SCN and BNSTov (Amir, Lamont, Robinson, & Stewart, 2004). 

The SCN possesses all the necessary characteristics of a circadian pacemaker: 

intrinsic rhythmicity (Abe et al., 2002; Green & Gillette, 1982; Yamazaki et al., 2000), an 

endogenous (i.e. free running) period of approximately 24-hrs (Groos & Hendriks, 1982; 

Inouye & Kawamura, 1979; Yamazaki, Kerbeshian, Hocker, Block, & Menaker, 1998), 

entrainment to external time cues, an ability to keep accurate time across varying 

temperatures (described as ‘temperature compensation’) (Herzog & Huckfeldt, 2003; 

Ruby, Burns, & Heller, 1999), and an ability to drive rhythms in physiology and 

behaviour. For example, the diurnal rhythm in locomotor activity is driven by the SCN. 

Furthermore, the pineal hormone, melatonin, displays a 24-hr rhythm that is regulated by 

the SCN and is suppressed by light, and also feeds back onto the SCN playing a key role 

in the regulation of the expression of certain clock genes (Jilg et al., 2005; Uz, 

Akhisaroglu, Ahmed, & Manev, 2003; von Gall et al., 2002). Rhythmic cortisol 

(corticosterone in rodents) secretion from the adrenal glands is also under the control of 

the SCN, showing peak levels at the time of awakening with minimal levels early in the 

inactive phase (Weitzman et al., 1971). The diurnal rhythm of core body temperature is 

also driven by the SCN, with the lowest values seen a few hours before awakening 

(Refinetti & Menaker, 1992).  
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The master clock is appropriately named in that lesions of the SCN result in 

complete behavioural and physiological arrhythmicity (Abe, Kroning, Greer, & 

Critchlow, 1979; Stephan & Zucker, 1972). Confirmation of the role of the SCN as the 

master clock comes from experiments where fetal SCN transplants were found to restore 

locomotor rhythmicity in SCN-ablated recipients, and importantly, to do so with the 

period of the donor (Lehman et al., 1987; Ralph, Foster, Davis, & Menaker, 1990). The 

finding that periodicity is contained within the cells of the SCN and that rhythm 

properties of the donor can be communicated to host tissue established the SCN as both 

necessary and sufficient for circadian function. Notably, these transplant experiments also 

established that the SCN relies on both diffusible signals and synaptic transmission to 

regulate rhythms throughout the brain and body. Knife-cut isolation of the SCN, which 

sever efferent axonal projections, induce arrhythmicity in locomotor behaviour, sleep 

wakefulness, and electrical firing rates in the brain, while the rhythm in the stress 

hormone corticosterone remains unaffected (Honma, Honma, & Hiroshige, 1984; Inouye 

& Kawamura, 1979). Conversely, encapsulating an SCN graft in a semi-permeable 

membrane, which only allows diffusible signals to pass through, restores circadian 

activity rhythms of SCN-ablated recipients to some degree, highlighting the involvement 

of both synaptic transmission and humoral factors (Silver, LeSauter, Tresco, & Lehman, 

1996).  

More recently, a series of elegant in vitro experiments further confirmed the role 

for neuronal and diffusible signals in the coordination of circadian rhythms by the SCN. 

For example, diffusible signals from cultured SCN can sustain rhythmicity in cultured 

astrocytes, which normally lose rhythmicity after a few cycles in vitro (Prolo, Takahashi, 
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& Herzog, 2005). Importantly, this ability appears specific to the SCN since a slice of 

cortex is unable to sustain rhythms in other cells (Prolo, Takahashi, & Herzog, 2005). 

The cultured SCN can also induce circadian oscillations in a genetically arrhythmic SCN. 

Maywood and colleagues (2011) showed that a wild type SCN could induce rhythmicity 

in a genetically arrhythmic SCN using diffusible (paracrine) signals (Maywood, 

Chesham, O'Brien, & Hastings, 2011). These diffusible signals were able to rescue 

arrhythmicity induced either by lack of an essential coupling agent (VIP) or by lack of 

essential clock genes (Cry1 and Cry2 null). In agreement with the transplantation studies 

cited above, the period induced in the arrhythmic SCN (host) was determined by the graft 

(donor) (Maywood, Chesham, O'Brien, & Hastings, 2011). Although diffusible signals 

play a clear role in rhythmic coordination, direct neuronal contact also controls circadian 

parameters in specific brain areas. Using a slice model previously developed (Trudel & 

Bourque, 2003), it was found that direct synaptic communication between the SCN and 

the supraoptic nucleus (SON) controls circadian changes in the sensing of osmotic 

challenges (Trudel & Bourque, 2010). This is done through presynaptic silencing of 

osmosensory afferent synapses in the SON (Trudel & Bourque, 2010). Thus, both 

diffusible and direct synaptic signals from the SCN are critical for temporally 

coordinating circadian rhythms among multiple oscillating structures. 

 

Entrainment to the 24-hr day 

 In the absence of external time cues, outputs of the master clock, such as rhythmic 

locomotor activity, display an endogenous ‘free running’ rhythm slightly different from 

24-hrs. For example, humans and rats have a daily endogenous period slightly longer 
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than 24-hrs, approximately 24.2-hrs (Czeisler et al., 1999; Stephan, 1983), whereas mice 

have a shorter endogenous period of approximately 23.5-hrs (Pittendrigh & Daan, 

1976b). In order for circadian rhythms to be in tune with the solar cycle, the master clock 

in the SCN needs to be synchronized (entrained) to the LD cycle. Light is the major 

environmental synchronizer, or zeitgeber (ZT; time giver), that entrains the SCN on a 

daily basis (Rusak & Zucker, 1979). Importantly, the SCN responds almost exclusively to 

light, and therefore buffers the entire system against perturbations. As previously noted, 

light is communicated to the SCN directly from the retina via the RHT and induces daily 

adjustments (resetting) of the SCN clock ensuring synchrony with the 24-hr LD cycle. 

The response of the SCN clock to light varies according to the phase of the circadian 

cycle. In rodents housed in constant darkness, light presented during the subjective day 

(the inactive phase of the cycle) has no effect on circadian rhythms, whereas light 

presented during the subjective night (the active phase of the cycle) causes phase shifts. 

Specifically, light presented early in the night (which would correspond to dusk in a LD 

cycle) causes phase delays, while light presented in the late night (near dawn in a LD 

cycle) causes phase advances (Dann & Pittendrigh, 1976).  Following entrainment, 

endogenous rhythms establish a stable phase relationship with the external zeitgeber.  

Conversely, extra-SCN oscillators have been shown to respond and entrain to 

non-photic cues, allowing for flexibility within the circadian system, thereby optimizing 

survival (review: Mrosovsky, 1996). Examples of some non-photic time cues include the 

scheduled presentation of food (Stephan, 2002; Stephan, Swann, & Sisk, 1979; 

Waddington Lamont et al., 2007), odors (Amir, Cain, Sullivan, Robinson, & Stewart, 

1999; Funk & Amir, 2000; Governale & Lee, 2001), and exercise (reviewed in 
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Mistlberger & Skene, 2005). While these zeitgebers have little to no effect on the SCN, 

they can influence circadian rhythms in physiology and behaviour (Amir & Stewart, 

2009b), and even dissociate rhythms in subordinate clocks from the SCN, which remains 

synchronized to the LD cycle (e.g. Masubuchi et al., 2000; Waddington Lamont et al., 

2007). However, the inviolability of the SCN is dependent on context. For example, in 

conditions of constant light, rhythms in the SCN are abolished, resulting in physiological 

and behavioural arrhythmicity. Under these conditions, the restriction of food 

presentation to a brief period during the day (restricted feeding, RF), can re-entrain a 

rhythm in the SCN clock (Lamont, Diaz, Barry-Shaw, Stewart, & Amir, 2005). 

 

Molecular clockwork 

 The molecular program responsible for the generation of circadian rhythms at the 

cellular level has been well established in mammals and is similar across different 

species. Every cell in the mammalian SCN is thought to contain this oscillatory 

machinery (Herzog, Takahashi, & Block, 1998; Welsh, Logothetis, Meister, & Reppert, 

1995). At its most basic level, circadian rhythms are generated by a small set of core 

clock genes that are driven by transcription/translation auto-regulatory feedback loops 

(see Fig.1 for a schematic diagram of the following description). The positive arm of the 

primary feedback loop is comprised of the basic helix-loop-helix (bHLH)-PAS (PER-

ARNT-SIM) transcription factors CLOCK (circadian locomotor output cycles kaput) and 

BMAL1 (Brain and muscle Arnt-like 1) (Hogenesch et al., 1997; Yu, Nomura, & Ikeda, 

2002). The negative arm of the primary feedback loop is comprised of the protein 

products of the Period (Per 1, 2, 3) and Cryptochrome (Cry 1, 2) genes (Kume et al.,  
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Figure 1. Molecular clock. Simplified schematic diagram of the circadian molecular 
clock. Genes are in italic, PROTEINS ARE CAPITALIZED, P= phosphorylation,       + 
= activation,         = inhibition,          = transcription,          = translation. 
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1999; Reppert & Weaver, 2001; Shearman et al., 2000). Specifically, CLOCK and 

BMAL1 heterodimerize and activate the transcription of the Per and Cry genes through 

E-box enhancers highly selective for the CACGTG nucleotide sequence. The resulting 

protein products form PER:CRY heterodimers that translocate back to the nucleus and act 

on the CLOCK:BMAL1 complex to inhibit their own transcription (Shearman et al., 

2000; Yu, Nomura, & Ikeda, 2002). In addition, PER2 acts on its own to activate Bmal1, 

contributing to the positive arm of the feedback loop (Kume et al., 1999; Reppert & 

Weaver, 2001; Shearman et al., 2000; Zheng et al., 1999).  

 Another, secondary, feedback loop is created by CLOCK:BMAL1 heterodimers 

activating the transcription of the retinoic acid-related orphan nuclear receptor (ROR) 

genes, Rev-erb� and Ror� (Preitner et al., 2002; Sato et al., 2004; Ueda et al., 2002). The 

resulting REV-ERB	 and ROR	 proteins actively compete for binding at the ROR 

response elements in the BMAL1 promoter, where REV-ERBs repress (Preitner et al., 

2002) and RORs activate (Akashi & Takumi, 2005; Sato et al., 2004) Bmal1 

transcription. Although this feedback loop is not necessary for circadian rhythmicity, it 

helps to stabilize and fine-tune the oscillations (Akashi & Takumi, 2005; Preitner et al., 

2002; Sato et al., 2004).  

An overview of the timeframe of the interacting genes and proteins of the primary 

and secondary feedback loops in the SCN is as follows: In the absence of time cues (most 

notably light), the 24-hr day is measured in circadian time (CT) based on endogenous 

activity rhythms. At the beginning of the circadian day (CT0) accumulation of the 

CLOCK:BMAL1 heterodimers initiates the transcription of the Per, Cry, Rora, and Rev-

Erb� genes. The timing of peak mRNA expression of these genes is spread out, with the 
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rhythm of Per1 and Rev-Erb� peaking between CT4-6, followed by Per3 (CT4-8), Ror� 

(CT6-10), Per2 (CT8-10), and Cry1 at around CT10. The protein product of these genes 

peak approximately 4 to 6-hrs later (Reppert & Weaver, 2001). The expression of Clock 

is constitutive and the expression of Cry2 is weak with no clear rhythm (Lowrey & 

Takahashi, 2000). REV-ERB	 inhibits Bmal1 transcription causing a decrease in 

BMAL1 protein levels. By the middle of the 24-hr day (CT12) both PER and CRY 

proteins are expressed at high levels in the nucleus, where CRY, and to a lesser degree 

PER2, inhibit CLOCK:BMAL1 mediated transcription. At the same time, PER2 and 

ROR	 work to enhance Bmal1 transcription, leading to peak Bmal1 expression between 

CT15-18. The rhythm in BMAL1 protein subsequently peaks 4 to 6-hrs later, from CT22-

24, which then starts a new cycle of gene transcription at the beginning of the circadian 

day (CT0) (Ko & Takahashi, 2006; Reppert & Weaver, 2001; Yu, Nomura, & Ikeda, 

2002). 

These auto-regulatory feedback loops take approximately 24-hrs to complete one 

cycle and underlie the 24-hr rhythmicity seen in physiology and behaviour (Kalsbeek, 

Perreau-Lenz, & Buijs, 2006). Post-transcriptional modifications such as phosphorylation 

and ubiquitination also play critical roles in the generation of the delay in protein 

expression necessary to maintain these 24-hr rhythms, influencing the period and phase 

of oscillations. For example, the enzymes casein kinase 1 epsilon (CK1�) and delta 

(CK1�) phosphorylate the PER proteins, affecting dimerization with the CRY proteins, 

movement between the cytoplasm and nucleus, and lead to their degradation (Dunlap, 

Loros, & DeCoursey, 2004; Reppert & Weaver, 2001). The Drosophila shaggy 

homologue, glycogen synthase kinase 3 (GSK3), is another enzyme that phosphorylates 
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the PER proteins as well as REV-ERB�, and is thought to be an important regulator of 

the circadian clock and necessary for proper circadian function (Iitaka, Miyazaki, Akaike, 

& Ishida, 2005). The genes, proteins, and enzymes of the molecular clock all work 

together to regulate circadian oscillations, and abnormalities, such as clock gene 

mutations, can have profound effects on both physiology and behaviour. In addition, 

CLOCK:BMAL1 can potentially regulate the expression of any gene that contains an E-

box sequence in their promoter region, thus having effects outside of  ‘classical clock 

function’.  

 One way in which the circadian system can modulate some of these non-clock 

functions is through clock-controlled genes (CCG) (Reppert & Weaver, 2001), which are 

dependent on the primary feedback loop for their own transcription, but are not 

themselves critical for the functioning of the circadian clock. It is well established that 

CLOCK:BMAL1 activate the transcription of numerous CCGs (Jin et al., 1999), which 

can in turn moderately influence the clock, but more importantly, can intensify the 

influence of the clock on numerous target genes. The CCG, Dbp (albumin gene D-site 

binding protein), a PAR leucine zipper transcription factor, shows a robust rhythm in the 

SCN, with peak expression occurring during the subjective day, as well as in other brain 

areas, such as the striatum and cortex, but with a phase that is delayed by 4 to 8-hrs 

compared to the SCN (Yamaguchi et al., 2000; Yan, Miyake, & Okamura, 2000). Dbp is 

also highly rhythmic in the liver with peak expression occurring 4-hrs later than in the 

SCN (Lopez-Molina, Conquet, Dubois-Dauphin, & Schibler, 1997). The expression of 

CCGs is often used to assess the functionality of the underlying molecular clock.  
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Genetic disruption of clock genes 

The importance of proper clock gene function becomes evident when examining 

the consequences of clock gene disruptions. Two methods have been used to induce these 

disruptions: mutations, which modify a part of a gene leading to the expression of a non-

functional protein, and knockouts (KO), which delete a gene (or its start sequence) 

entirely, resulting in the absence of the protein. Numerous clock gene disruptions in 

rodents lead to abnormal circadian activity rhythms by either shortening or lengthening 

the circadian period, and sometimes causing complete behavioural arrhythmicity. The tau 

mutant hamster discovered in 1988 was found to have a shortened wheel-running period; 

22-hrs in heterozygotes and 20-hrs in homozygotes (Ralph & Menaker, 1988). The 

mutation was later found to reside in the CK1� enzyme (Lowrey et al., 2000). Decreases 

in the period of cortisol and melatonin rhythms are also apparent in these mutants (Lucas, 

Stirland, Darrow, Menaker, & Loudon, 1999). Cryptochrome KO mice display opposing 

effects depending on the gene affected; Cry1 KO have a shorter period (by ~1-hr), 

whereas Cry2 KO have a period that is approximately 1-hr longer (van der Horst et al., 

1999; Vitaterna et al., 1999). Period1 mutants have a shorter free running period, 

whereas Per2 mutants initially have a longer period and then become arrhythmic (Zheng 

et al., 2001; Zheng et al., 1999). Period3 KO mice have a very mild phenotype with a 

free-running period only slightly shorter than normal (Shearman, Jin, Lee, Reppert, & 

Weaver, 2000). When housed in constant darkness, animals with disruptions in both 

Cry1/Cry2 or Per1/Per2 become completely arrhythmic, as do Bmal1 KO mice (Bunger 

et al., 2000; van der Horst et al., 1999; Vitaterna et al., 1999).  
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CLOCK KO mice surprisingly show only a mild phenotype, with some changes 

in clock gene expression but no effect on wheel-running behaviour (Debruyne et al., 

2006). This is most likely due to the presence of NPAS2, a CLOCK analog (Reick, 

Garcia, Dudley, & McKnight, 2001), compensating for the absence of CLOCK. In 

contrast, mice with a mutation in the Clock gene (which acts as a dominant negative) 

have a longer free running period compared to wild types (Vitaterna et al., 1994). They 

also show numerous alterations in physiology and behaviour including, hyperphagia, 

greater consumption of their daily food intake during the day, obesity, and have elevated 

levels of cholesterol, leptin, lipids, glucose, and decreased levels of insulin (Turek et al., 

2005; Williams & Schwartz, 2005). Clock mutants also show behavioural phenotypes 

that are similar to mania; they are hyperactive, sleep less, are less anxious compared to 

wild types, and show increased sensitivity to cocaine (McClung et al., 2005; Roybal et 

al., 2007). Thus, it appears that disruptions in the molecular circadian machinery have far 

reaching implications for overall health and behaviour. For instance, disturbances in 

circadian rhythms are commonly seen in mental illness, especially in mood disorders 

such as major depression and bipolar disorder, and in sleep disorders (Cermakian & 

Boivin, 2003). Interestingly, recent evidence has linked mutations in specific clock genes 

with these disorders in humans (reviewed in Waddington Lamont, Legault-Coutu, 

Cermakian, & Boivin, 2007). For example, variations in Per2, Bmal1, and NPAS2 have 

been associated with seasonal affective disorder (Partonen et al., 2007), and variations in 

the 3111C Clock gene allele have been linked with bipolar disorder (Benedetti et al., 

2003; Serretti et al., 2003). Moreover, the rhythms in melatonin, cortisol, and core body 
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temperature described earlier are all commonly disrupted in these psychopathologies 

(Bunney & Bunney, 2000).   

 

The multifaceted roles of Period 

Although their task within the molecular clockwork of the biological timing 

system is well characterized, Per genes appear to be pleiotropic, having roles outside the 

machinery associated with circadian rhythms. Mutations in the Per genes have been 

linked to numerous abnormalities in physiology and behaviour. For example, Period2 

mutants show alterations in the glutamatergic system, which is accompanied by an 

increase in ethanol preference in these mice (Spanagel et al., 2005). Interestingly, in 

humans, there is an association between alcoholism and variations in the Per2 gene 

(Spanagel et al., 2005). Mice with genetic modifications in either Per1 or Per2 show 

opposing responses to cocaine exposure; cocaine sensitization is absent in Per1 KO mice 

while it is potentiated in the Per2 KO, implicating these genes in reward (Abarca, 

Albrecht, & Spanagel, 2002). Furthermore, Per1 KO mice fail to show conditioned place 

preference for cocaine (Abarca, Albrecht, & Spanagel, 2002). Period2 mutant mice also 

lack the ability to show food anticipation (Feillet et al., 2006), further demonstrating the 

importance of this gene in the regulation of motivated behaviours. Period2 mutant mice 

also respond abnormally to Gamma-irradiation and are more likely to develop tumors 

than wild type mice, suggesting a tumor suppressive role for Per2 (Fu, Pelicano, Liu, 

Huang, & Lee, 2002; Lee, 2006). This finding is further confirmed by human data 

showing that Per1, Per2, and Per3 expression is abnormal in breast cancer cells (Chen et 
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al., 2005). In addition, over-expression of Per2 has been shown to induce apoptosis in 

cancer cells (Hua et al., 2006).  

Mutations in the human Per2 gene have also been linked to sleep abnormalities. 

Familial advanced sleep phase syndrome, a sleep disorder affecting a person’s wake and 

sleep times, has been linked to a serine to glycine mutation within the CK1� binding 

region of the PER2 protein, resulting in a decrease in phosphorylation, faster 

accumulation of PER2, an acceleration of the molecular feedback loops, and 

consequently, a shorter period (Toh et al., 2001). In another study, a missense mutation in 

the CkI� gene, also resulting in a reduction of PER2 phosphorylation, was found to be 

associated with this syndrome (Xu et al., 2005).  

Nuclear receptors play important roles in regulating the expression of multiple 

genes important for functions such as reproduction, development, and metabolism (Yang 

et al., 2006), and importantly, PER2 has been found to act as a nuclear receptor co-

regulator (Ripperger, Schmutz, & Albrecht, 2010). Specifically, PER2 interacts with 

REV-ERB	 and peroxisome proliferator-activated receptor alpha (PPAR	) modulating 

Bmal1 expression (Ripperger, Schmutz, & Albrecht, 2010; Schmutz, Ripperger, 

Baeriswyl-Aebischer, & Albrecht, 2010). In addition, PER2 can provide circadian 

information to non-rhythmic nuclear receptors, such as Hnf4� in the liver, directly 

modulating metabolic functions (Ripperger, Schmutz, & Albrecht, 2010; Schmutz, 

Ripperger, Baeriswyl-Aebischer, & Albrecht, 2010).  

 In conclusion, Period genes appear to play an important role in numerous 

physiological and behavioural processes that go beyond what would be considered 

‘classical circadian functions’.  
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Extra-SCN oscillators 

Although the SCN is considered the master pacemaker, circadian oscillators have 

recently been observed in other regions of the brain (Abe et al., 2002; Amir, Lamont, 

Robinson, & Stewart, 2004; Guilding & Piggins, 2007; Lamont, Robinson, Stewart, & 

Amir, 2005) and in peripheral organs and tissues (Hogenesch, Panda, Kay, & Takahashi, 

2003; Yamazaki et al., 2000; Yoo et al., 2004). The SCN is thought to act as a master 

conductor, synchronizing rhythms in these subordinate oscillators (Yoo et al., 2004). 

Yamazaki et al (2000) have shown circadian rhythms in rat peripheral tissues 

using continuous bioluminescence recording in Per1-luciferase transgenic rats. Cultured 

explants of the liver, lung, and skeletal muscle continued to oscillate for two to seven 

days without input from the SCN before damping out (Yamazaki et al., 2000). 

Importantly, this damping was not due to cell death, as rhythmicity could be reinstated 

with medium change. It seems that without input from the SCN, rhythms in peripheral 

tissue remain synchronized for short periods of time before becoming uncoupled. Also 

using the Per1-luciferase transgene as a marker for circadian oscillations, Abe and 

colleagues (2002) found that although many structures in the brain exhibit some rhythms 

in vitro, only four structures besides the SCN, the olfactory bulbs, the arcuate nucleus, 

and the pineal and pituitary glands, showed near 24-hr oscillations and continued to do so 

for more than three cycles before damping out (Abe et al., 2002).  

Using semiquantitative in situ hybridization in the rat, Shieh (2003) found clock 

gene mRNA expression in 50 out of 83 brain regions examined (Shieh, 2003). 

Importantly, Per1, Per2, and Clock were all concurrently present, with the exception of 
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the SON of the hypothalamus and the superior olivary nucleus of the brain stem, which 

showed Clock expression only. Surprisingly, the BLA and BNST, regions that we have 

shown to express rhythms in PER2 protein, were found to express very low to no levels 

of these clock genes. However, it is important to note that only one time-point was 

examined per region (either ZT4 or ZT6), the possibility therefore remains that these 

clock genes peak at a different time in these regions. In another study, Per1 expression at 

ZT4 was also found to be similarly expressed throughout the hamster brain (Yamamoto 

et al., 2001).  

Although important, the studies mentioned above either use organotypic tissue 

explants or only look at one time-point. The first method, by definition, isolates the tissue 

sample from all connections, while the second method only establishes if a gene or 

protein is expressed at that specific time, and hence gives no temporal expression profile 

information. Consequently, these experiments fail to provide any insight about the 

presence or absence of a rhythm or about phase relationships between subordinate 

oscillators in the intact animal.  

 

Subordinate oscillators in the forebrain 

As previously mentioned, using a low temporal resolution analysis of PER2 

expression, our laboratory identified several circadian oscillators in limbic forebrain areas 

known to be involved in emotion, motivation, and learning and memory; the BNSTov, 

CEAl, BLA, and DG (Amir, Lamont, Robinson, & Stewart, 2004; Lamont, Robinson, 

Stewart, & Amir, 2005). Uniquely amongst subordinate oscillators, it was established that 

the BNSTov and CEAl have PER2 rhythms that are in phase with that of the SCN, with 
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peak expression occurring at the beginning of the dark phase of the LD cycle, at ZT13 

(Amir, Lamont, Robinson, & Stewart, 2004; Lamont, Robinson, Stewart, & Amir, 2005). 

Whereas the BLA and DG have PER2 rhythms that are 180˚ out of phase, with PER2 

expression peaking at the beginning of the light phase, at ZT1 (Lamont, Robinson, 

Stewart, & Amir, 2005).  

The BNSTov and CEAl are two regions that are highly anatomically 

interconnected, and neurochemically and functionally related (Day, Curran, Watson, & 

Akil, 1999; Swanson, 2003). Together, these regions are commonly referred to as the 

central extended amygdala (Alheid, 2003), and have been shown to be involved in 

multiple behavioural systems including: feeding (Petrovich & Gallagher, 2003); drug 

addiction and relapse (Day et al., 2001; Erb, Salmaso, Rodaros, & Stewart, 2001; Erb, 

Shaham, & Stewart, 2001); and fear and anxiety (Davis, 1998; Lee & Davis, 1997). In 

contrast, the BLA resembles the neighboring cortex more than the rest of the amygdala, 

and mainly projects to the medial CEA and other regions in the amygdala, the cortex, and 

the hippocampus through the entorhinal cortex (Dong, Petrovich, & Swanson, 2001; 

Dong, Petrovich, Watts, & Swanson, 2001; Petrovich, Canteras, & Swanson, 2001), but 

does not have dense connections to the BNSTov (Dong, Petrovich, & Swanson, 2001). 

The hippocampus sends extensive projections to most of the amygdala (Petrovich, 

Canteras, & Swanson, 2001) and has been implicated in the stress pathway, affective 

disorders, and learning and memory through long-term potentiation (LTP) and 

neurogenesis in the DG (Gould, Tanapat, Hastings, & Shors, 1999; Malberg & Duman, 

2003; McEwen, 2001). Together, the hippocampus and amygdala are thought to play an 

important role in the integration of learning and memory of emotional states.   
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Studies of the mechanisms that control the rhythms of PER2 expression in these 

limbic forebrain areas have shown that they are all under the control of the SCN. 

Lesioning the SCN completely blunts PER2 rhythms in these regions (Lamont, Diaz, 

Barry-Shaw, Stewart, & Amir, 2005). It has also been shown that unilateral SCN lesions 

blunt rhythmic PER2 expression in the BNSTov ipsilateral to the lesioned SCN, 

suggesting that the rhythm in PER2 expression observed in the BNSTov is due, in part, to 

ipsilateral neural connections from the SCN (Amir, Lamont, Robinson, & Stewart, 2004). 

Bilateral adrenalectomy was also found to blunt PER2 rhythms in the BNSTov and 

CEAl, but not in BLA and DG (Amir, Lamont, Robinson, & Stewart, 2004; Segall, 

Perrin, Walker, Stewart, & Amir, 2006) and this effect was found to be reversed by 

rhythmic corticosterone self-administration via the drinking water but not via a constant 

release pellet (Segall, Perrin, Walker, Stewart, & Amir, 2006). These data suggest that 

the PER2 rhythm in the BNSTov and CEAl depend on the rhythm rather than the mere 

presence of corticosterone in the circulation. Finally, it was found that the rhythms of 

PER2 expression in the limbic forebrain are sensitive to treatments that disrupt energy 

balance. Specifically, daily restricted feeding schedules, which are known to induce food 

anticipatory behavioural and physiological rhythms, including body temperature and 

corticosterone secretion (Boulos & Terman, 1980; Mistlberger, 1994; Stephan, 2002), can 

entrain PER2 rhythms in the BNSTov, CEA, BLA and DG and uncouple them from the 

SCN (Lamont, Diaz, Barry-Shaw, Stewart, & Amir, 2005; Waddington Lamont et al., 

2007).  

The striatum is a large sub-cortical structure within the forebrain that functions as 

the major input system of the basal ganglia (Gerfen, 2004). It consists of the dorsal 
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striatum (also known as caudate putamen), and the ventral striatum, which can be further 

divided into the nucleus accumbens (NAc) core and shell. Notably, circadian rhythms in 

the expression of core clock genes have been found, by our laboratory and others, in the 

dorsal striatum, a region important for motor control, reward, and learning (Amir, 

Harbour, & Robinson, 2006; Imbesi et al., 2009; Shieh, 2003). The rhythm of PER2 

expression in this region followed the pattern seen in the BLA and DG with peak 

expression occurring at the beginning of the light phase (ZT1) (Amir, Harbour, & 

Robinson, 2006). Furthermore, the neurotransmitter dopamine was found to be involved 

in the regulation of both PER2 protein and Per2 mRNA (Hood et al., 2010), BMAL1 

protein, and the clock-controlled gene, Dbp (Sahar, Zocchi, Kinoshita, Borrelli, & 

Sassone-Corsi, 2010) in the dorsal striatum. Interestingly, the effect of dopamine on 

PER2 rhythms in the dorsal striatum was found to be mediated by the D2 dopamine 

receptor (Hood et al., 2010), and preliminary work in our laboratory shows that PER2 is 

co-localized within neurons expressing dopamine D2 receptors or ENK in the dorsal 

striatum (Hood, 2010). Clock gene expression is also rhythmic in the ventral striatum, a 

region important for reward and addiction. Rhythms in PER1 protein show similar phase 

patterns in both the NAc core and shell subdivisions with peak expression occurring at 

the end of the dark portion of the LD cycle (Angeles-Castellanos, Mendoza, & Escobar, 

2007). Li and colleagues (2009) have also shown that the NAc exhibits rhythmic 

expressions in Per1 and Per2 mRNA, peaking at the beginning-middle of the light phase 

in the NAc core, and at the end of the dark phase in the NAc shell, showing differential 

clock gene expression within the whole striatum (Li, Liu, Jiang, & Lu, 2009). 
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 Although the striatum is cytoarchitectually homogenous, with 90-95% of neurons 

being GABAergic medium spiny neurons, the afferents to the striatum (mostly cortical) 

differ considerably (Gerfen, 2004). It is interesting that most research tends to group the 

whole dorsal striatum, sometimes even including the ventral striatum, into one structure 

when there are potentially functional differences due to distinct cortical inputs. However, 

one study went to the extreme by dividing the striatum into 26 segments and reported 

differences in cocaine-induced changes in gene regulation between certain subdivisions 

(Willuhn, Sun, & Steiner, 2003). 

 

The present thesis 

The mammalian brain contains multiple areas that exhibit circadian oscillations in 

clock gene expression and electrical activity. This suggests that a tightly regulated 

interplay between oscillators is responsible for normal, daily brain function. The studies 

previously mentioned are limited by the small number of time-points (usually 4-8) used 

to assess rhythms in clock genes. Due to their limited temporal resolution, it is possible 

that numerous aspects of these rhythms, such as their genuine phase and amplitude, 

remain hidden. A more detailed analysis is necessary to reveal the relationships of 

rhythmic brain areas in order to get a clear understanding of clock gene expression 

patterns and their possible tissue-specific functions. We therefore embarked on an 

extensive mapping of the rhythmic expression of the clock protein PER2 in brain areas 

important for stress, emotion, motivation, and learning and memory. The resulting atlas 

will present a fine grain analysis of PER2 rhythms in the normal rat brain and provide a 
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baseline for studying the role of tissue-specific rhythms in cognitive and appetitive 

disorders. 

The objectives for this thesis were four fold: First, re-examine and refine PER2 

expression patterns in the SCN and the five regions of the forebrain previously 

mentioned, the BNSTov, CEAl, BLA, DG, and striatum. This was done using an 

unprecedented high temporal resolution IHC analysis of PER2 expression every 30 min 

across the 24-hr day, resulting in 48 time-points. Second, to characterize the presence of 

other PER2 containing regions in the amygdala, hippocampus, and striatum as well as in 

regions of the cortex. Third, to establish the phase relationships between all regions and 

between these regions and the master SCN clock. A fundamental question was whether 

all regions would fall into one of the two PER2 expression patterns previously described 

(peaking either near ZT1 or ZT13). These first three objectives make up Chapter 1.  

 Finally, the fourth objective was to confirm the presence of the circadian 

molecular machinery by measuring mRNA expression of the core clock genes Per2 and 

Bmal1, and a clock-controlled gene, Dbp, using quantitative real-time polymerase chain 

reaction (qRT-PCR). This was done in order to 1) establish the phase relationship 

between PER2 protein and Per2 mRNA in the SCN and two limbic forebrain regions (the 

CEAl and DG) and 2) to compare different clock gene expression profiles in these 

regions. The qRT-PCR data make up Chapter 2. The results from this thesis have been 

presented at scientific conferences and published in abstract form (Harbour, Weigl, 

Robinson, & Amir, 2010, 2011; Weigl, Harbour, Robinson, Dufresne, & Amir, 2010). 
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CHAPTER 1: PERIOD2 protein 

 

METHODS 

Animals and Housing 

 Eighty-four male inbred Lewis (LEW/Crl) rats weighing 150-200 grams upon 

arrival (Charles River, St-Constant, QC) were used. Rats arrived in seven successive 

batches of 12 with each batch (i.e. group) housed in the same experimentation room. Rats 

were individually housed in cages (9.5 in wide x 8 in. height x 16 in. deep) equipped with 

running wheels and had ad libitum access to rat chow and water. Each cage was housed 

within a custom-built ventilated, sound and light-tight isolation chamber (17.5 in wide x 

27.5 in height x 27.5 in deep) equipped with a computer-controlled lighting system 

(VitalView software; Mini Mitter Co. Inc., Sunriver, OR). Wheel-running activity 

(WRA) was recorded continuously and displayed in 10-min bins using VitalView 

software. Single plotted actograms were created to display and analyze WRA rhythms 

using Circadia software (v2.1.6). All procedures were carried out in accordance with the 

Canadian Council on Animal Care guidelines and were approved by the Animal Care 

Committee of Concordia University.  

 

Procedure 

 Rats were kept on one of four 12-hr:12-hr LD cycles (lights on at 3:00, 9:00, 

15:00, or 21:00; light = 100 lux at cage bottom) to facilitate the time of perfusions. After 

three to four weeks rats were perfused every 30 min across the 24-hr day to give a total of 

48 zeitgeber times (ZT; where ZT0 denotes lights on and ZT12 denotes lights off) with 
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an n of 1-4 per time-point. Within each of the seven groups, rats were assigned perfusion 

times spread across the 48 time-points in order to have a representative distribution of 

ZTs in each group. 

 

Tissue Preparation  

 At the appropriate time, rats were deeply anesthetized with sodium pentobarbital 

(~100mg/kg, i.p.) and perfused transcardially with 300ml of cold saline (0.9% NaCl) 

followed by 300ml of cold paraformaldehyde (4% in a 0.1M phosphate buffer, pH 7.3). 

Brains were removed and post-fixed overnight in paraformaldehyde at 4˚C. Three sets of 

serial coronal sections (50μm thick) through regions of interest were collected using a 

Vibratome tissue slicer (St-Louis, MO) and stored in Watson’s Cryoprotectant (Watson, 

Wiegand, Clough, & Hoffman, 1986) at –20˚C until processed for immunohistochemistry 

(IHC) or quantitative real-time polymerase chain reaction (qRT-PCR). 

 

Immunohistochemistry 

Free-floating sections from the 1st set of brain slices were rinsed (6 x 10 min) in 

cold 0.9% Trizma buffered saline (TBS; pH 7.6) and incubated in a hydrogen peroxide 

quench solution (3% H2O2 in TBS) for 30 min at room temperature. Sections were then 

rinsed (3 x 10 min) in TBS and incubated in a pre-block solution made of 0.3% Triton X-

100 in TBS (Triton-TBS) and 5% Normal Goat Serum (NGS), for one hour at 4˚C, and 

then directly transferred into the primary solution. Sections were incubated in PER2 

polyclonal antibody raised in rabbit (Alpha Diagnostic International, San Antonio, TX) 

diluted 1:800 in Triton-TBS and 3% NGS, and incubated for approximately 48-hrs at 
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4˚C. The PER2 antibody has been previously tested and validated with blocking 

experiments (Amir, Lamont, Robinson, & Stewart, 2004). After the primary antibody 

incubation, sections were once again rinsed in cold TBS and then transferred to a 

secondary solution consisting of biotinylated anti-rabbit IgG made in goat (Vector 

Laboratories, Burlington, ON) diluted 1:200 in Triton-TBS and 3% NGS for one hour at 

4˚C. After incubation with the secondary antibody, sections were rinsed (3 x 10 min) with 

cold TBS and incubated in a tertiary solution (avidin biotin peroxidase complex in TBS) 

for 2hrs at 4˚C (Vectastain Elite ABC Kit, Vector Laboratories). Finally, sections were 

rinsed in TBS, and then again in cold 50 mM Tris-HCl for 10 min. Sections were then 

incubated for 10 min in 0.05% 3,3´-diaminobenzidine (DAB) in Tris-HCl and further 

incubated for 10 min in a DAB/50 mM Tris-HCl with 0.01% H202 and 8% NiCl2. 

Sections were rinsed a final time in cold TBS and wet-mounted onto gel-coated 

microscope slides, allowed to dry overnight, and then dehydrated through graded ethanol 

concentrations, soaked in Citrisolve (Fisher Scientific, Houston, TX) for a minimum of 

30 min, and finally cover-slipped with Permount (Fisher).  

 

Data Analysis 

 Brain sections were examined under a light microscope using a 20X objective 

(Leitz Laborlux S). Regions of interest were identified using Brain Maps: Structure of the 

rat brain 3rd edition (Swanson, 2004), except for the nucleus accumbens, where The Rat 

Brain 5th edition (Paxinos & Watson, 2005) was used. Given that the dorsal striatum 

(from now on referred to as the striatum only) is such a large structure, we determined 

that a simplified version of Willuhn et al.’s striatal subdivisions was the most appropriate 
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to use in our context, due the potential significance of the various afferent projections 

from different nuclei on the function of local clocks (Willuhn, Sun, & Steiner, 2003). We 

decided to examine four areas of the striatum based on distinct cortical afferents: a medial 

division, adjacent to the lateral ventricles, was recognized due to distinct afferents from 

both the ventral and dorsal anterior cingulate cortex. A dorsal division, located laterally 

just under the corpus callosum, was recognized due to afferents from the somatosensory 

cortex and medial agranular cortex (corticostriatal afferents are reviewed in Willuhn, 

Sun, & Steiner, 2003). Moreover, due to such a large rostral-caudal expansion of the 

striatum, these regions were further subdivided into anterior and posterior sections, with 

the joining of the anterior commissure as the boundary between the anterior from 

posterior portions, yielding a total of four striatal subdivisions (see Figures 17-20 for 

visual representations). Once identified, all regions were digitized using a Sony XC-77 

Video Camera, a Scion LG-3 frame grabber, and NIH Image software (v1.63, 

http://rsb.info.nih.gov/nih-image/). Multiple bilateral images from these regions were 

captured using a 400X400 μm template. Cells immunopositive for PER2 were counted by 

an observer blind to group membership (in this case ZT) using Image SXM software 

(v1.9, SD Barrett, http://www.ImageSXM.org.uk). To determine immunopositive cells, 

particle analysis was set to recognize pixels between 9 and 99 and the threshold was 

manually set as consistently as possible for each brain region. An average of the five 

unilateral sections containing the highest number of labeled nuclei for each region was 

calculated for each rat. If a brain region has an n less than 84, it is due to tissue damage 

and an inability to count cells in that specific area.  
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All analyses and graphs were done using GraphPad Prism (v5.0, HJ Motulsky, 

www.graphpad.com/prism). Data points for each individual rat were plotted for each 

brain region with number of PER2-immunoreactive cells (PER-ir) on the Y-axis and ZT 

on the X-axis. Sine waves (least-squares regression) were then fit to each graph in order 

to better visualize time of peak and trough for each region:  

Equation: Y= M + A*sin (F*X + PS) 

Where M stands for the mesor (i.e. average of the spread of the data from the mid-point of 

the curve), A stands for amplitude (calculated from the mesor), F stands for frequency (in 

radians), and PS stands for phase shift, which is the earliest time Y= 0 measured in X axis 

units.  

First, outliers were found using the ROUT method with a False Discovery Rate of 

1% and removed from all analyses (see Motulsky & Brown, 2006 for details of the 

procedure). The data were then fit using two sine waves (models): one where the frequency 

was constrained to exactly 24-hrs, and one where the frequency was free to vary up to 28-hrs 

(since circadian rhythms can vary from 24-hrs). Next, the effectiveness of each model was 

compared using the Akaike Information Criterion (AIC), which quantifies how well each 

model fit the data compared to each other (reviewed in Anderson, 2008). We next determined 

whether the difference in AIC between the models was meaningful based on the ratio of 

probability (i.e. Evidence Ratio). The magnitude of the Evidence Ratio indicates how much 

more likely one model is over the other (reviewed in Anderson, 2008). The guidelines in the 

Prism manual that state that an Evidence Ratio of 12 or less suggests no meaningful 

differences between the models were followed (Motulsky & Christopoulos, 2003). When 

possible, both models are graphed for each brain region, however, if no significant difference 
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was found between the two models, information from the 24-hr model was used for further 

analysis (e.g. amplitude values).  

Regressions assume that the data come from a normal, i.e. Gaussian, distribution. To 

further assess the goodness of fit of the curves generated from the models, the D’Agostino-

Pearson omnibus K2 normality test (D'Agostino, 1986) and the Wald-Wolfowitz Runs test 

(Wald & Wolfowitz, 1940) were applied to the data. The normality test examines skewness 

and kurtosis in order to assess how far from Gaussian the data are. A data set fails the 

normality test when the p value is �.05, meaning that it deviates significantly from a normal 

distribution. The Runs test determines whether the fitted curve deviates systematically from 

the data (i.e. it looks for patterns in the residuals). A data set fails the Runs test when the p 

value is �.05, meaning that the data points are not randomly distributed along the curve. The 

statistics for these two tests will only be mentioned in the Results if they are significant 

(meaning the data set has failed the test).   

In addition to the tests mentioned above, PER2 rhythm amplitudes generated by the 

sine-fitting model (measured in PER2-ir cells from peak to trough) between sub-regions of 

each broader anatomical area (for example, the DG, CA1, and CA3 of the hippocampus) 

were compared using 1-way analysis of variances (ANOVA). Significant effects were further 

analyzed with Bonferroni multiple comparison post-hocs. In order to compare the strength of 

the rhythm in each region, we derived a Rhythmicity Index (RI) value by dividing the peak to 

trough amplitude by the mesor (the average of the spread of the data). Rhythmicity Indices 

for each region were then normalized to the SCN, which was given a value of 1. The RI 

therefore takes into account the amplitude of the PER2 rhythm as well as the average PER2 
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expression, providing a more meaningful analysis of the rhythms, and allowing for 

comparisons of rhythmicity between regions with different levels of PER2 expression.  

The data from the SCN were used as the standard for determining the rhythmicity 

criteria for other regions, given that the SCN has a high amplitude rhythm in PER2 

expression. The fit (R2 value) for the best sine wave model (determined by the Evidence 

Ration) and the normalized amplitude (RI value) for PER2 in the SCN were used. 

Specifically, the criteria for rhythmicity were set as follows: a brain region was 

considered rhythmic if the R2 value was 1/3rd or more of that of the SCN, and the RI 

value was 1/4th or more (i.e. 25%).  

Finally, correlations were made comparing PER2 expression patterns (using 

individual data points from each rat) between sub-regions of each broader anatomical area 

(i.e. amygdala, cortex, etc.) and with the SCN, to examine the nature and strength of the 

relationships between these regions. Alpha level was set to .05 for all analyses.  
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RESULTS 

 All rats entrained to their LD cycle with the majority of the wheel-running 

activity (WRA) being confined to the night (or dark) portion of the cycle. Figure 2 shows 

representative single plotted actograms showing stable entrainment to the 24-hr day.  

Figure 3 shows the day/night distribution of WRA separated into the seven perfusion 

groups. As expected, the majority of the activity was restricted to the dark portion of the 

cycle for all groups (main effect of light/dark WRA, F(1,77)=59.94, p=<.0001). Although 

there were group differences in the LD distribution of WRA (interaction: F(6,77)=2.99, 

p<.05), this effect was not reflected in a main effect of group (F(6,77)=2.75, p=.067).  

 In addition to the SCN, PER2 expression was characterized in four major brain 

areas that play important roles in a wide range of behaviours: the amygdala, 

hippocampus, striatum, and cortex. In total, 22 forebrain regions were analyzed for PER2 

expression every 30 minutes across the 24-hr day. Figure 4 shows a schematic sagittal 

view of the rat brain (adapted from Swanson, 2004) illustrating the regions examined and 

their respective location. Detailed results for each individual region are as follows.  

 

Suprachiasmatic nucleus 

 As previously shown by our laboratory and others (Beaule, Houle, & Amir, 2003; 

Field et al., 2000; Yoo et al., 2004), we found that PER2 expression in the SCN followed 

a high amplitude (peak to trough value of 329.2) circadian rhythm with peak expression 

occurring in the early part of the dark phase (Fig. 5). The AIC computation and an 

Evidence Ratio of 31.56 revealed that the <28-hr model is approximately 32 times more  
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Figure 2. Wheel-running activity. Representative single-plotted actograms from 4 rats 
showing stable entrainment to the 24-hr LD cycle. White and grey backgrounds indicate 
lights on or off, respectively. Black vertical marks indicate periods of activity of at least 
10 wheel revolutions/10 min. Successive days are plotted from top to bottom. 
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Figure 3. Individual differences in wheel-running activity. Average number of wheel 
revolutions (±SEM) for the light (ZT0-ZT12) and dark (ZT12-ZT24) periods of the last 7 
days of activity for each group (n= 12/group). 



�
�

The master clock

BNSTov

CEAl

BLA

MEA

The amygdala

DG

CA1

CA3

The hippocampus

EPd

PIR2

ACAv

AIp

ENTl sup

ENTl deep

The cortexThe striatum

Ant Striatum m

Ant Striatum d

Post Striatum m

Post Striatum d

NAc core

NAc shell

SCN

core

shell

 

Figure 4. Schematic diagram of the rat brain (sagittal view). Depiction of the five 
major brain areas (SCN:�, Amygdala:�, Hippocampus:�, Striatum:�, and Cortex: �) 
that were analyzed for this study. In total, 22 different sub-regions were examined.  
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Figure 5. Suprachiasmatic Nucleus (SCN). A) Schematic diagrams of the SCN, coronal view 
(left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the SCN of each individual rat (diamonds) across 48 
zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. R2= 
Goodness of fit value for given sine wave. n= 81 (1 outlier removed, red diamond).  
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likely to be correct than the 24-hr model (Fig. 5C). Interestingly, the <28-hr model fit a 

curve with a frequency (i.e. period) of 25.8-hrs for the SCN. The data also show that 

PER2 expression in the SCN peaks at around ZT14.5, which is slightly later than 

previously found when using fewer time-points (Amir, Lamont, Robinson, & Stewart, 

2004; Beaule, Houle, & Amir, 2003; Field et al., 2000). This can be further visualized by 

looking at Figure 6, which shows representative photomicrographs of PER2 expression 

every hour across the 24-hr day.  

 The best-fitted curve for the SCN has an R2 value of .929, therefore, a brain 

region must have an R2 value of at least .310 (1/3rd of that of the SCN) to meet the 

criteria for rhythmicity. 

 

SCN subdivisions 

 As previously mentioned, the SCN can be subdivided into two anatomically and 

functionally different regions, the ventrolateral core and dorsomedial shell (Moore, Speh, 

& Leak, 2002; Van den Pol, 1980). PER2 expression patterns in the SCN were further 

explored by analyzing these two regions separately. The distinction between the two 

regions of the SCN can be seen at most ZT times (Figs. 6, 7A). Interestingly, the model 

that best fit the data differed between the core and shell. For the SCN core, the AIC 

computation and an Evidence Ratio of 4478.48 clearly suggest that the <28-hr model is 

the best fit for this SCN compartment (Fig. 7C). However, the <28-hr model reached the 

upper limit of the frequency constraint for the core and failed the Runs test (p <.002) (see 

Fig. A1). In summary, although the SCN core is visibly rhythmic, neither of the models 

fit the data perfectly.
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Figure 6. PERIOD2 in the SCN. Representative photomicrographs of PER2 expression 
in the SCN every hour across the 24-hr day. Zeitgeber time (ZT) 0 denotes lights on, 
ZT12 lights off. 
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Figure 7. SCN core and shell. A) Representative photomicrograph of PER2 expression 
at ZT19. Arrows highlight the core and shell regions. Mean number of PER2-
immunoreactive cells in the SCNsh (B) and SCNc (C) of each individual rat (diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, 
respectively. R2= Goodness of fit value for given sine wave. n= 81 (1 outlier removed, red 
diamond)
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In contrast, there were no meaningful differences between the two models in their 

ability to provide a fit for the SCN shell (Evidence Ratio of 2.07, Fig. 7B). However, the 

<28-hr model fitted a curve with a period close to 24-hrs, 24.66-hrs. A summary of 

results from the AIC, normality test, and Runs test for the SCN (and all regions) can be 

found in Table 1.  

Interestingly, the SCN core and shell also differed in time of peak PER2 

expression, with the core peaking slightly earlier, a little before ZT14, and the shell 

peaking slightly after ZT14.5 (Fig. 8A). We found that the amplitude of the PER2 rhythm 

for the SCN core is much lower than that of the shell, with amplitude values (from peak 

to trough) of 107.7 and 216.8, respectively (t(240)=9.17, p<.001, Fig. 8B). However, when 

normalized to take into account the spread of the data in each sub-region, the 

Rhythmicity Index (RI) revealed that individual rhythms in the core and shell are similar 

and are as strong as the rhythm in the whole SCN (RI values of 1.04 and .95, 

respectively, compared to the whole SCN (1)). Finally, PER2 expression between the 

core and shell of the SCN is highly correlated, with a Pearson r value of .85.   

 

BNSTov and amygdala  

Oval nucleus of the bed nucleus of the stria terminalis 

Since the BNSTov is neurochemically and functionally similar to the CEA, and is 

considered part of the central extended amygdala (Alheid, 2003), we have chosen to 

group the BNSTov with the amygdala. As previously reported (Amir, Lamont, Robinson, 

& Stewart, 2004), the BNSTov showed a highly rhythmic pattern (R2 =.573) of PER2 

expression with an amplitude of 80.56 (Fig. 9). According to the AIC computation the 
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Table 1. Summary of statistical tests conducted on sine wave data. Values in bold are 
statistically significant (p<.05), except for AIC results which don’t have a p value, here 
values in bold are deemed to be meaningfully different based on the Evidence Ratio.  
  

 
 
 
Notes on following page. 



� 	��

Notes:  
N/A: not applicable, for these regions the <28-hr model could not be fitted to the data. 
 
Outliers were found using the ROUT method (which combines Robust regression with 
Outlier removal) with a False Discovery Rate of 1% (recommended by Prism) and removed 
from all analyses (Motulsky & Brown, 2006).   
 
Akaike Information Criterion (AIC): The data were fit with two models, Model 1: 
frequency =24-hrs, Model 2: frequency is <28-hrs, and compared using the AIC. The AIC 
quantifies how well each model fit the data (based on goodness-of-fit, i.e. sum of squares, 
and the number of parameters in each model), and determines the preferred model (column 1 
in AIC). The difference in AIC is what matters and tells us the likelihood that a model is 
correct (column 2, Prism calculates the corrected AIC (AICc) which corrects for low sample 
size), and with the Evidence Ratio (the probability that model 1 is correct over the probability 
that model 2 is correct, column 3), qualifies the difference between the models. We followed 
the guidelines in the Prism manual that state that an Evidence Ratio of 12 or less suggests no 
meaningful differences between the models (Motulsky & Christopoulos, 2003).  
 
D’Agostino-Pearson omnibus K2 test (i.e. normality test): This test determines the 
skewness and kurtosis for a given data set and quantifies how far from Gaussian the 
distribution is (in terms of asymmetry and shape) and calculates how far each of these 
values differs from the value expected with a Gaussian distribution. A data set fails the 
normality test when the p value is �.05, meaning that it deviates significantly from a normal 
distribution.  
 
Wald-Wolfowitz Runs Test (i.e. Runs test): This test determines whether the fitted curve 
deviates systematically from the data (i.e. it looks for patterns in the residuals). A run is a 
consecutive series of data points whose residuals are either all positive or all negative (a 
small number of runs would indicate patterns in the residuals). A data set fails the Runs 
test when the p value is �.05, meaning that the data points are not randomly distributed along 
the curve.  
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Figure 8. Suprachiasmatic Nucleus. A) Sine-fitted PER2 expression patterns in the 
SCN core and shell across 48 zeitgeber times. Solid line: 24-hr fit, dotted line: <28-hr fit. 
B) Amplitudes (mean number ± SEM of PER2 immunoreactive cells) measured from 
peak to trough, in the core and shell compared to the whole SCN, Symbols indicate 
statistical significance (p<.001) as follows: *: whole SCN compared to both subdivisions, 
†: core compared to shell. C) Rhythmicity index values for the SCN core and shell 
normalized to the whole SCN. 



� 		�

A

B

C

ZT1 ZT13

18

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

200

ZT

P
E

R
2

-i
r
 c

e
ll
s

= 24hrs  R2=.573

< 28hrs  R2=.587

 
Figure 9. Oval Nucleus of the Bed Nucleus of the Stria Terminalis (BNSTov). A) Schematic 
diagrams of the BNSTov, coronal view (left) and sagittal view (right), number corresponds to 
level in the Swanson atlas. B) Representative photomicrographs (square in A) of PER2 expression 
at ZT1 and ZT13. C) Mean number of PER2-immunoreactive cells in the BNSTov of each 
individual rat (black diamonds) across 48 zeitgeber times. White and grey backgrounds indicate 
lights on and off, respectively. R2= Goodness of fit value for given sine wave. n= 84
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<28-hr model best fit the data for this region, however, an Evidence Ratio of 1.31 

revealed that the difference between the two models is insignificant (Fig. 9C). We found 

that PER2 expression peaks at approximately ZT11 in the BNSTov, which is slightly 

earlier than previously reported when using fewer time-points. Importantly, these results 

indicate that PER2 expression in the BNSTov is not in perfect phase with the SCN, as 

previously thought.  

 

Central amygdala, lateral part 

 The CEAl also showed highly rhythmic PER2 expression (R2 =.564) across the 

24-hr day with an amplitude of 115.14 (Fig. 10). Like the BNSTov, the AIC computation 

suggested that the <28-hr model best fit the data for this region, but an Evidence Ratio of 

4.02 indicated that the difference between the two models is insignificant (Fig. 10C). 

Importantly, as previously reported (Lamont, Robinson, Stewart, & Amir, 2005), PER2 

expression in the CEAl is in phase with that of the BNSTov, showing peak expression at 

ZT11.  

 

Basolateral amygdala 

 As previously reported (Lamont, Robinson, Stewart, & Amir, 2005), PER2 

expression in the BLA is highly rhythmic with an amplitude of 64.36 (Fig. 11). There 

were no meaningful differences between the 24-hr and <28-hr model for the BLA data 

(Evidence Ratio 3.1), as can be seen by the visual representations of the sine waves along 

with the identical R2 values of .606 (Fig. 11C). The <28-hr model fit a curve with a 

period of 23.9-hrs for the BLA, supporting the quality of the fit obtained with the 24-hr 
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Figur
e 10. Central Nucleus of the amygdala, lateral (CEAl). A) Schematic diagrams of the CEAl, 
coronal view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. 
B) Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) 
Mean number of PER2-immunoreactive cells in the CEAl of each individual rat (black 
diamonds) across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, 
respectively. R2= Goodness of fit value for given sine wave. n= 84 
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Figure 11. Basolateral Amygdala (BLA). A) Schematic diagrams of the BLA, coronal view 
(left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the BLA of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for given sine wave. n= 84
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model. Interestingly, peak PER2 expression in the BLA also occurs earlier than 

previously found (Lamont, Robinson, Stewart, & Amir, 2005), with expression peaking 

at the end of the dark phase, at around ZT22.5. Importantly, the rhythm in PER2 

expression in the BLA remained in anti-phase with that of the BNSTov and CEAl, as 

previously reported by our laboratory. 

 

Medial amygdala, posteriodorsal part 

 As can be seen in Figures 12B and 12C, PER2 expression in the MEApd is evenly 

distributed throughout the 24-hr day. No significant differences were found between the 

24-hr and <28-hr model for this region (Evidence Ratio of 2.54). Although PER2 is 

expressed in the MEApd, suggesting the presence of a circadian clock, the extremely low 

amplitude of 16.74 and an R2 of .141 led us to conclude that this region is arrhythmic 

under normal lighting conditions.  

 

In summary, there are phase differences in PER2 expression in the different sub-

regions of the BNSTov/amygdala. Specifically, PER2 expression in the BNSTov and 

CEAl is in phase with each other, while the BLA is in anti-phase with these regions, and 

the MEApd is arrhythmic (Fig. 13A). Notably, none of the rhythms in these regions are in 

phase (or anti-phase) with the PER2 rhythm of the SCN, which peaks at approximately 

ZT14.5.  

There are also differences in amplitude between the SCN, BNSTov, and 

amygdala (F(4,412)=208.6, p<.0001, Fig. 13B). Specifically, the amplitude in the CEAl is 

significantly higher than in all other sub-regions of the amygdala (BNSTov: t(414)=2.95, 
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Figur
e 12. Medial Amygdala, posteriodorsal (MEApd). A) Schematic diagrams of the MEApd, 
coronal view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. 
B) Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) 
Mean number of PER2-immunoreactive cells in the MEApd of each individual rat (black 
diamonds) across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, 
respectively. R2= Goodness of fit value for given sine wave. n= 84 
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Figure 13. Amygdala. A) Sine-fitted PER2 expression patterns in all 4 regions of the 
amygdala across 48 zeitgeber times. B) Amplitudes (mean number ± SEM of PER2 
immunoreactive cells) measured from peak to trough, in each region of the amygdala, 
compared to the SCN. Symbols indicate statistical significance (p<.05) as follows: *: SCN 
compared to all other regions, †: CEAl compared to all other regions, ‡: MEApd compared to 
all other regions. C) Rhythmicity index values for the 4 regions of the amygdala normalized to 
the SCN.
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p<.05, BLA: t(414)=4.32, p<.001, MEApd: t(414)=8.38, p<.001), whereas the amplitude in 

the MEApd is lower than in all other regions (BNSTov: t(414)=5.44, p<.001, BLA: 

t(414)=4.06, p<.001). Finally, the PER2 amplitude in the SCN is significantly higher than 

in all the BNST/amygdalar sub-regions. However, when normalized to take into account 

the spread of the data for each region relative to the SCN, the BNSTov, CEAl, and BLA 

show rhythms that are at least 50% as rhythmic as the SCN (RI values of .51, .50, .66, 

respectively, Fig. 13C). We found that the MEApd has an RI value of .27 relative to the 

SCN. Although this is slightly more (2%) than the RI cutoff for rhythmicity, given the 

low R2 value for this region (less than half of 1/3rd of the SCN) it was determined to be 

arrhythmic. 

Correlations of PER2 expression across the 24-hr day between the three rhythmic 

BNST/amygdala regions and the SCN revealed statistically significant moderate 

relationships (see Table 2). Notably, a very high correlation of .88 was found between the 

BNSTov and CEAl, consistent with the anatomical evidence that these two regions are 

highly interconnected and functionally related.  

 

Table 2. Correlations of PER2 expression in the amygdala. Pearson r values 

comparing regions of the BNST/amygdala and the master SCN clock across the 24-hr 

day. The MEApd has been omitted since it is arrhythmic. Values in bold are statistically 

significant (p<.05).  

 

Region BNSTov CEAl BLA 

SCN 0.45 0.49 -0.34 

BNSTov  0.88 -0.49 

CEAl   -0.45 
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Hippocampus 

Dentate gyrus 

 As previously reported (Lamont, Robinson, Stewart, & Amir, 2005), the DG 

showed a highly rhythmic PER2 expression pattern (R2 =.843) with an amplitude of 

77.39 (Fig. 14). According to the AIC computation and an Evidence Ratio of 18.72, the 

<28-hr model best fit the data for the DG (Fig. 14C). Here, the <28-hr model fit a curve 

with a period of 20.4-hrs but also failed the Runs test (p <.001) (see Fig. A2), indicating 

that neither model fit the data perfectly. The PER2 peak in the DG occurs at 

approximately ZT23.5, only slightly earlier than previously found. Importantly, the time 

of peak PER2 expression in the DG is 1-hr later than in the BLA, two regions we 

previously thought to be in perfect phase.  

 

CA1 

 We found that the CA1 exhibits a weak rhythm in PER2 expression (R2 value of 

.392) with relatively low amplitude of 31.68 (Fig. 15). No meaningful differences were 

found between the two models for this region (Evidence Ratio of 2.65) (Fig. 15C). 

Notably, the peak of PER2 expression in the CA1 occurs at approximately ZT21.5, which 

is 2-hrs earlier than the peak found in the DG.  

 

CA3 

 Compared to the CA1, the CA3 displays a highly rhythmic pattern in PER2 

expression (R2 =.725, Fig. 16). Here, the <28-hr model could not be fitted to the data; 

Prism labeled the curve as ‘ambiguous’, meaning that it could not fit all parameters 
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Figure 14. Dentate Gyrus (DG). A) Schematic diagrams of the DG, coronal view (left) and 
sagittal view (right), number corresponds to level in the Swanson atlas. B) Representative 
photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean number of 
PER2-immunoreactive cells in the DG of each individual rat (diamonds) across 48 zeitgeber 
times. White and grey backgrounds indicate lights on and off, respectively. R2= Goodness of 
fit value for given sine wave. n= 78 (6 outliers removed, red diamonds)
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Figure 15. CA1. A) Schematic diagrams of the CA1, coronal view (left) and sagittal view 
(right), number corresponds to level in the Swanson atlas. B) Representative 
photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean number of 
PER2-immunoreactive cells in the CA1 of each individual rat (black diamonds) across 48 
zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. R2= 
Goodness of fit value for given sine wave. n= 84 



� 

�

0 2 4 6 8 10 12 14 16 18 20 22 24

0

25

50

75

100

ZT

P
E

R
2

-i
r
 c

e
ll
s

A

B

C

ZT1 ZT13

30

= 24hrs  R2=.725

 
Figure 16. CA3. A) Schematic diagrams of the CA3, coronal view (left) and sagittal view 
(right), number corresponds to level in the Swanson atlas. B) Representative 
photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean number of 
PER2-immunoreactive cells in the CA3 of each individual rat (diamonds) across 48 zeitgeber 
times. White and grey backgrounds indicate lights on and off, respectively. R2= Goodness of 
fit value for given sine wave. n= 82 (2 outliers removed, red diamonds)
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appropriately for this model. Therefore, the AIC could not be calculated for this region 

and thus the 24-hr model was used. We found that the CA3 has an amplitude of 44.2 and 

PER2 expression in this region peaks in phase with the DG, at around ZT23.5.  

 

 In summary, the three sub-regions of the hippocampus differ slightly in PER2 

phase (Fig. 17A). Specifically, PER2 expression in the CA1 peaks 2-hrs earlier than in 

the DG and CA3 (which are in phase regarding peak expression but differ by 2-hrs for the 

trough of PER2 expression). Notably, none of the rhythms in these regions are in phase 

(or anti-phase) with the PER2 rhythm of the SCN.  

Amplitude levels in these regions and the SCN also differ (F(3,321)=451.0, p<.0001, 

Fig. 17B). Specifically, the amplitude in the DG is significantly higher than in the CA1 

(t(322)=4.87, p<.001) and CA3 (t(322)=3.52, p<.01), and the PER2 amplitude in the SCN is 

significantly higher than in all three hippocampal regions. Interestingly, calculation of the 

RI showed that the rhythm in the DG is as strong as the rhythm in the SCN (RI value of 

1.04) (Fig. 17C). Furthermore, the CA3 also has a very strong rhythm with an RI value of 

.91. The CA1, on the other hand, has a relatively weak rhythm when compared to the 

SCN (RI value of .38). 

Correlations of PER2 expression between these hippocampal regions and the SCN 

revealed differences in the strength of the relationship between these regions. For all 

results consult Table 3. Notably, the SCN has a low negative correlation of -.28 with the 

DG and an even lower non-significant correlation with the CA1 (r =-.07). However, the 

SCN is highly correlated with the CA3 (r =-.61). Finally, the DG and CA3, which are in 




��

0 2 4 6 8 10 12 14 16 18 20 22 24

0

25

50

75

100

ZT

P
E

R
2

-i
r
 c

e
ll
s

DG

CA1

CA3

A

B

SCN DG CA1 CA3

0

50

100

150

200

250

300

350

a
m

p
li
tu

d
e

 (
p

e
a

k
 t
o

 t
r
o

u
g

h
)

P
E

R
2

-i
r
 c

e
ll
s

SCN DG CA1 CA3

0.0

0.2

0.4

0.6

0.8

1.0

R
h

y
th

m
ic

it
y

 I
n

d
e

x
  

r
e

la
ti
v

e
 t
o

 t
h

e
 S

C
N

 
C

†

*

 

Figure 17. Hippocampus. A) Sine-fitted PER2 expression patterns in all 3 regions of the 
hippocampus across 48 zeitgeber times. Solid line: 24-hr fit, dotted line: <28-hr fit. B) 
Amplitudes (mean number ± SEM of PER2 immunoreactive cells) measured from peak 
to trough, in each region of the hippocampus, compared to the SCN. Symbols indicate 
statistical significance (p<.01) as follows: *: SCN compared to all other regions, †: DG 
compared to all other regions. C) Rhythmicity index values for the 3 regions of the 
hippocampus normalized to the SCN. 
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phase for peak PER2 expression and have similar amplitudes, are also highly correlated (r 

=.75).  

 

Table 3. Correlations of PER2 expression in the hippocampus. Pearson r values 

comparing regions of the hippocampus and the master SCN clock across the 24-hr day. 

Values in bold are statistically significant (p<.05). 

 

Region DG CA1 CA3 

SCN -0.28 -0.07 -0.61 

DG  0.59 0.75 

CA1   0.54 

 

 

Striatum 

Anterior striatum, dorsal and medial 

 Both the dorsal and medial anterior striatum exhibit rhythmic patterns of PER2 

expression (R2 =.64 and .542, respectively; Fig. 18 & 19). The <28-hr model could not be 

fitted to the data for either region (Prism labeled the curves as ‘ambiguous’), thus the 24-

hr model was used for each region (Fig. 18C & 19C, respectively). The dorsal 

subdivision, however, failed the Runs test (p <.01) indicating that the fit is not perfect 

(see Fig. A3). We found that the dorsal and medial striatum have similar amplitudes 

(76.54 and 79.44, respectively) and are in phase, with peak PER2 expression occurring at 

around ZT23.5 for each region.  

 

Posterior striatum, dorsal and medial
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Figure 18. Anterior striatum, dorsal (ASd). A) Schematic diagrams of the ASd, coronal view 
(left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the ASd of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for sine wave. n= 84
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Figure 19. Anterior striatum, medial (ASm). A) Schematic diagrams of the ASm, coronal 
view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the ASm of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for sine wave. n= 82
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Both the dorsal and medial posterior striatum also exhibit rhythmic patterns of 

PER2 expression (R2 =.49 and .492, respectively; Fig. 20 & 21). Similar to the anterior 

striatum, the <28-hr model could not be fitted to the data for either posterior region, thus 

the 24-hr model was used (Fig. 20C & 21C, respectively). However, the 24-hr model 

does not fit the data perfectly, as indicated by the dorsal part failing the Runs Test (p<.05) 

(see Fig. A4), and the medial part failing the normality test (K2=6.56, p<.05). The 

posterior dorsal striatum has a slightly lower amplitude compared to the medial striatum 

(54.28 vs. 79.58), however this difference is not statistically significant (t(558)=2.03, p 

>.05). Importantly, we found that the two subdivisions of the posterior striatum are in 

phase with each other as well as with the two subdivisions of the anterior striatum, with 

peak PER2 expression occurring at around ZT23.5.  

 

Nucleus accumbens, core and shell 

 The NAc is part of the ventral striatum. The core and shell of the NAc show 

strikingly different patterns of PER2 expression. The core (NAcc) shows a highly 

rhythmic pattern of PER2 expression (R2 =.69; Fig. 22) with an amplitude of 176.78 (2nd 

highest after the SCN). According to the AIC computation, the <28-hr model best fit the 

data for this region, but an Evidence Ratio of 1.8 indicates that the difference between the 

two models is insignificant (Fig. 22C). We found that peak PER2 occurs at 

approximately ZT22.5, 1-hr earlier than the four sub-regions of the dorsal striatum.  

As can be seen by the spread of data points in Figure 23C, PER2 expression in the 

shell (NAcsh) is evenly distributed throughout the 24-hr day. The <28-hr could not be 

fitted to the data in this region and the 24-hr model failed the normality test (K2=6.59, 



� ���

0 2 4 6 8 10 12 14 16 18 20 22 24

0

25

50

75

100

125

150

175

200

ZT

P
E

R
2

-i
r
 c

e
ll
s

A

B

C

ZT1 ZT13

20

= 24hrs  R2=.49

 
Figure 20. Posterior striatum, dorsal (PSd). A) Schematic diagrams of the PSd, coronal view 
(left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the PSd of each individual rat (diamonds) across 48 
zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. R2= 
Goodness of fit value for sine wave. n= 83 (1 outlier removed, red diamond)
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Figure 21. Posterior striatum, medial (PSm). A) Schematic diagrams of the PSm, coronal 
view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the PSm of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for sine wave. n= 82
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Figure 22. Nucleus Accumbens, core (NAcc). A) Schematic diagrams of the NAcc, coronal 
view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the NAcc of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for given sine wave. n= 74 
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Figure 23. Nucleus Accumbens, shell (NAcsh). A) Schematic diagrams of the NAcsh, coronal 
view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the NAcsh of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for sine wave. n= 74
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p<.05). Although PER2 is expressed in the NAcsh, suggesting the presence of a circadian 

clock, the extremely low amplitude of 4.33 and an R2 of .006 does not meet the criteria 

for rhythmicity outlined earlier, and so it was determined that this region is not rhythmic 

under normal lighting conditions.  

 

In summary, PER2 expression patterns in the four sub-regions of the dorsal 

striatum are similar to one another, with identical peak PER2 times and comparable 

amplitudes. Notably, none of the rhythms in these regions are in anti-phase with the 

rhythm of the SCN. Moreover, the dorsal and ventral striatum differ slightly in phase 

(Fig. 24A) as well as differ greatly in amplitude levels (SCN included: F(6,554)=144, 

p<.0001,  Fig. 24B). Specifically, the amplitude in the NAcc is higher than in all other 

striatal regions (ASd: t(558)=7.84, p<.001, ASm: t(558)=7.57, p<.001, PSd: t(558)=9.58, 

p<.001, PSm: t(558)=7.56, p<.001, NAcsh: t(558)=13.1, p<.001), whereas the amplitude in 

the NAcsh is lower than in all other striatal regions (ASd: t(558)=5.65, p<.001, ASm: 

t(558)=5.84, p<.001, PSd: t(558)=3.91, p<.01, PSm: t(558)=5.85, p<.001). Furthermore, the 

PER2 amplitude in the SCN is significantly higher than in all the striatal sub-regions. 

However, when the RI values are compared, all regions of the striatum, except for the 

NAcsh, show strong rhythms with values ranging from .62 to .84 (Fig. 24C). The NAcsh 

shell, which we determined to be arrhythmic, has an RI value of .06 relative to the SCN. 

Correlations of PER2 expression across the 24-hr day between the five rhythmic 

regions of the striatum and the SCN reveal statistically significant moderate to high 

relationships between these regions (see Table 4). Notably, the SCN is moderately 

negatively correlated with all sub-regions of the striatum, while the sub-regions of the 



���

ASd

ASm

PSd

PSm

NAcc

NAcsh

0 2 4 6 8 10 12 14 16 18 20 22 24

0

50

100

150

200

250

ZT

P
E

R
2

-i
r
 c

e
ll
s

A

B

SCN ASd ASm PSd PSm NAccNAcsh

0

50

100

150

200

250

300

350

a
m

p
li
tu

d
e

 (
p

e
a

k
 t
o

 t
r
o

u
g

h
)

P
E

R
2

-i
r
 c

e
ll
s

SCN ASd ASm PSd PSm NAccNAcsh

0.0

0.2

0.4

0.6

0.8

1.0

R
h

y
th

m
ic

it
y

 I
n

d
e

x
  

r
e

la
ti
v

e
 t
o

 t
h

e
 S

C
N

 
C

*

†

‡

 

Figure 24. Striatum. A) Sine-fitted PER2 expression patterns in all 6 regions of the 
striatum across 48 zeitgeber times. B) Amplitudes (mean number ± SEM of PER2 
immunoreactive cells) measured from peak to trough, in each region of the striatum, 
compared to the SCN. Symbols indicate statistical significance (p<.01) as follows: *: 
SCN compared to all other regions, †: NAcc compared to all other regions, ‡: NAcsh 
compared to all other regions. C) Rhythmicity index values for the 6 regions of the 
striatum normalized to the SCN. 
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striatum are highly correlated with each other, with Pearson r values ranging from .70 to 

.91.  

 

Table 4. Correlations of PER2 expression in the striatum. Pearson r values comparing 

regions of the striatum and the master SCN clock across the 24-hr day. The NAcsh has 

been omitted since it is arrhythmic. Values in bold are statistically significant (p<.05).  

 

Region ASd ASm PSd PSm NAcc 

SCN -0.52 -0.47 -0.44 -0.45 -0.41 

ASd  0.91 0.83 0.83 0.84 

ASm   0.81 0.88 0.82 

PSd    0.89 0.70 

PSm     0.76 

 
 

Cortex 

Endopiriform cortex, dorsal 

 As shown in Fig. 25, the EPd showed a clear rhythmic pattern of PER2 expression 

(R2 =.76). No meaningful differences were found between the 24-hr and <28-hr model 

(Evidence Ratio of 1.17), however, the 24-hr model failed the Runs Test (p=.05) (see Fig. 

A5), indicating that it does not fit the data perfectly. We found that the EPd has an 

amplitude of 76.22 and peak PER2 expression occurs at approximately ZT21. 

 

Piriform cortex, pyramidal layer II 

The PIR2 showed a rhythmic pattern of PER2 expression (R2 =.736) with a low 

amplitude of 28.06 (Fig. 26). The <28-hr model could not be fitted to the data for this 
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Figure 25. Endopiriform cortex, dorsal (EPd). A) Schematic diagrams of the EPd, coronal 
view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the EPd of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for given sine wave. n= 84
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Figure 26. Piriform cortex, pyramidal layer (PIR2). A) Schematic diagrams of the PIR2, 
coronal (left) and sagittal view (right), number corresponds to level in the Swanson atlas. B) 
Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) Mean 
number of PER2-immunoreactive cells in the PIR2 of each individual rat (diamonds) across 48 
zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. R2= 
Goodness of fit value for sine wave. n= 78 (6 outliers removed, red diamonds)
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region (Prism labeled the curves as ‘ambiguous’), thus the 24-hr model was used (Fig. 

26C). However, the Runs Test indicates that the 24-hr model does not fit the data 

perfectly (p <.001, see Fig. A6). We found that peak PER2 expression in the PIR2 occurs 

at approximately ZT23.5, 2.5-hrs later than in the EPd.  

 

Anterior cingulate area, ventral 

 We found that the ACAv exhibits a rhythmic pattern of PER2 expression (R2 

=.427) with an amplitude of 83.84 (Fig. 27). According to the AIC computation and an 

Evidence Ratio of 146.43, the <28-hr model best fit the data for this region (Fig. 27C). 

Interestingly, the <28-hr model reached the upper limit of the frequency constraint for the 

ACAv, indicating that the curve fit the data with a period of 28-hrs. Peak PER2 

expression in this region occurs at approximately ZT17.  

 

Agranular insular cortex, posterior 

 The AIp also shows a rhythmic pattern of PER2 expression (R2 =.74) across the 

24-hr day (Fig. 28). Although the AIC computation suggests that the <28-hr best fit the 

data for this region, an Evidence Ratio of 4.08 indicates that the difference between the 

two models is insignificant (Fig. 28C). We found that the AIp has an amplitude of 116.74 

and peak PER2 expression occurs at approximately ZT21.  

 

Entorhnial cortex, lateral, superficial (I-III) and deep (IV-VI) layers 

 The superficial and deep layers of the ENTl show similar patterns of PER2 

expression across the 24-hr day (Fig. 29 & 30, respectively). However, the deep layers 
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Figure 27. Anterior Cingulate Area, ventral (ACAv).  A) Schematic diagrams of the ACAv, 
coronal view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. 
B) Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) 
Mean number of PER2-immunoreactive cells in the ACAv of each individual rat (black 
diamonds) across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, 
respectively. R2= Goodness of fit value for given sine wave. n= 83 (1 outlier removed, red 
diamond) 
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Figure 28. Agranular Insular cortex, posterior (AIp). A) Schematic diagrams of the AIp, 
coronal view (left) and sagittal view (right), number corresponds to level in the Swanson atlas. 
B) Representative photomicrographs (square in A) of PER2 expression at ZT1 and ZT13. C) 
Mean number of PER2-immunoreactive cells in the AIp of each individual rat (black diamonds) 
across 48 zeitgeber times. White and grey backgrounds indicate lights on and off, respectively. 
R2= Goodness of fit value for given sine wave. n= 84
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Figure 29. Entorhinal cortex,  lateral, superficial layers (ENTls). A) Schematic diagrams of 
the ENTl sup, coronal view (left) and sagittal view (right), number corresponds to level in the 
Swanson atlas. B) Representative photomicrographs (square in A) of PER2 expression at ZT1 
and ZT13. C) Mean number of PER2-immunoreactive cells in the ENTl sup of each individual 
rat (black diamonds) across 48 zeitgeber times. White and grey backgrounds indicate lights on 
and off, respectively. R2= Goodness of fit value for given sine wave. n= 79
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Figure 30. Entorhinal cortex, lateral, deep layers (ENTld). A) Schematic diagrams of the 
ENTl deep, coronal view (left) and sagittal view (right), number corresponds to level in the 
Swanson atlas. B) Representative photomicrographs (square in A) of PER2 expression at ZT1 
and ZT13. C) Mean number of PER2-immunoreactive cells in the ENTl deep of each individual 
rat (black diamonds) across 48 zeitgeber times. White and grey backgrounds indicate lights on 
and off, respectively. R2= Goodness of fit value for given sine wave. n= 79
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have a higher amplitude (99.2 vs. 66.14, non-significant difference) and higher overall 

levels of PER2 compared to the superficial layers. No meaningful differences were found 

between the 24-hr and <28-hr models for the ENTls (Evidence Ratio of 2.71), as can be 

seen by the visual representation of the sine waves and the almost identical R2 values of 

.675 and .676, respectively (Fig. 29C). Peak PER2 expression in this region occurs at 

approximately ZT21.5. These data originate solely from layers II and III of the ENTl, as 

there were no detectible PER2 labeled cells in layer I (see Fig. 29B).  

 According to the AIC computation, the <28-hr model best fit the data for the 

ENTld but an Evidence Ratio of 1.51 indicates that this difference is insignificant (Fig. 

30C). Peak PER2 expression in this region of the ENTl occurs at approximately ZT21, in 

phase with two other regions of the cortex, the AIp and EPd. 

 

In summary, certain sub-regions of the cortex mentioned above differ in phase. 

Specifically, PER2 expression in the ENTls peaks half an hour later than in the ENTld, 

EPd, and AIP (which are in phase), expression in the PIR2 peaks almost 3-hrs later, and 

the rhythm of PER2 expression in the ACAv peaks 4-hrs earlier than in the 

ENTld/EPd/AIp cluster (Fig. 31A). Once again, none of the rhythms in these regions are 

in phase (or anti-phase) with the rhythm in the SCN.  

Most of the cortical regions differ in amplitude levels (SCN included: 

F(6,561)=164.5, p<.0001). Specifically, the amplitude in the PIR2 is significantly lower than 

in all other cortical regions (EPd: t(565)=4.43, p<.001, ACAv: t(565)=5.12, p<.001, AIp: 

t(565)=8.12, p<.001, ENTls: t(565)=3.45, p<.05, ENTld: t(565)=6.45, p<.001), and the 

amplitude in the AIp is higher than in the EPd (t(565)=3.8, p<.01), ACAv (t(565)=3.07,  
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Figure 31. Cortex. A) Sine-fitted PER2 expression patterns in all 6 regions of the cortex 
across 48 zeitgeber times. Solid line: 24-hr fit, dotted line: <28-hr fit. B) Amplitudes 
(mean number ± SEM of PER2 immunoreactive cells) measured from peak to trough, in 
each region of the cortex, compared to the SCN. Symbols indicate statistical significance 
(p<.05) as follows: *: SCN compared to all other regions, †: PIR2 compared to all other 
regions, ‡: AIp compared to EPd, ACAv, and ENTls. C) Rhythmicity index values for the 
6 regions of the cortex normalized to the SCN. 
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p<.05), and ENTls (t(565)=4.67, p<.001) (Fig. 31B). Finally, the amplitude in the SCN is 

significantly higher than in all the cortical regions. However, when RI values for these 

regions are normalized to the SCN, it becomes evident that most of the sub-regions of the 

cortex show strong rhythms (Fig. 31C). Specifically, the EPd has a rhythm that is 75% as 

rhythmic as the SCN, while surprisingly, the cortical region with the lowest amplitude, 

the PIR2, has a very strong rhythm comparable to that of the SCN (RI value of .92). The 

ACAv has the weakest rhythm out of the cortical regions with a rhythm that is just under 

half as rhythmic as that of the SCN (RI value of .43), while the AIp is 90% as rhythmic 

as the SCN. Finally, the two regions of the ENTl cortex show differences in rhythmicity 

levels with the ENTls having a slightly stronger rhythm than the ENTld (RI values of .86 

and .70, respectively).  

Correlations of PER2 expression across the 24-hr day between the six regions of 

the cortex and the SCN reveal differences in the strength of the relationships between 

these regions (see Table 5). Notably, the SCN is only significantly correlated with two 

sub-regions of the cortex, the ACAv (.42) and PIR2 (-.56). Not surprisingly, the three 

regions that are in perfect phase, the EPd, AIp, and ENTld, are all highly correlated with 

each other, with Pearson r values ranging from .84 to .86.  

 

Table 5. Correlations of PER2 expression in the cortex. Pearson r values comparing 

regions of the cortex and the master SCN clock across the 24-hr day. Values in bold are 

statistically significant (p<.05). 

 

Region ACAv AIp EPd PIR2 ENTls ENTld 

SCN 0.42 -0.11 -0.07 -0.56 -0.07 -0.06 

ACAv  0.37 0.45 0.11 0.47 0.53 
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Region ACAv AIp EPd PIR2 ENTls ENTld 

AIp   0.86 0.67 0.88 0.84 

EPd    0.67 0.86 0.84 

PIR2     0.68 0.64 

ENTls      0.91 

 

 

Summary of results 

It is clear that the previous notion of simply two phase patterns in PER2 

expression (i.e. peaking at either the beginning of the dark or light portion of the cycle) is 

not supported by the present findings. The high temporal resolution analysis used in this 

thesis revealed complex patterns of PER2 expression between brain regions (Fig. 32A). 

In addition, two arrhythmic regions were also identified: the MEApd and NAcsh. Except 

for the BNSTov and CEAl, PER2 expression in all regions peaked during the dark phase 

(between ZT12-ZT24). Regions can be grouped into four “clusters” based on time of 

peak PER2 expression, with a cluster being defined as multiple regions peaking within 30 

min of each other: the BNSTov and CEAl form the only cluster peaking during the light 

phase at ZT11, four regions of the cortex (the AIp, EPd, ENTl deep and superficial) and 

the CA3 of the hippocampus form a cluster around ZT21-ZT21.5, the BLA and NAc core 

form a cluster at ZT22.5, and the four sub-regions of the dorsal striatum along with the 

DG, CA3, and PIR2 form a final cluster at ZT23.5. The rhythms of PER2 expression in 

the SCN and ACAv stand on their own, peaking several hours apart from all other 

regions (Fig. 32B). 
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displaying peak PER2 expression in all 20 rhythmic regions. Numbers around the ‘clock’ are in 
ZT time. �: SCN, �: amygdala, �: hippocampus, �: striatum, �: cortex. 
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While the SCN undoubtedly has the highest amplitude (Fig. 33A), the RI revealed 

that most of the regions analyzed have strong PER2 rhythms regardless of having low 

absolute amplitude levels (Fig. 33B). Moreover, it was found that the CA1 of the 

hippocampus has the weakest rhythm among the rhythmic regions while the DG of the 

hippocampus has the strongest rhythm, relative to the SCN.  

 In conclusion, we found that 20/22 brain regions analyzed display rhythms in 

PER2 expression, with a clustered distribution of phases mostly during the night period, 

and surprisingly, with none of the rhythms in any regions being in phase with the SCN. 
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Figure 33. Summary: Comparing amplitude and strength of rhythms between all 
regions. A) Amplitudes (mean number ± SEM of PER2 immunoreactive cells) measured 
from peak to trough, in all brain regions. B) Rhythmicity Index for each brain region 
normalized to the SCN.  
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CHAPTER 2: Period2, Bmal1, and Dbp mRNA 
 

METHODS 

 Subjects from this experiment were the same as those used in Chapter 1, 

therefore, animal housing and tissue preparation are the same as described previously.  

 

Procedure 

 Brains sections from 74 of the 84 rats were used for the quantitative real-time 

polymerase chain reaction (qRT-PCR) analysis. Messenger RNA (mRNA) expression of 

two core clock genes (Per2, Bmal1) and one clock-controlled gene (Dbp) were compared 

between three brain regions: the SCN, CEAl, and DG. Per2 and Bmal1 were chosen so 

that a clock gene from both the negative and positive arms of the molecular loop could be 

examined, while Dbp was chosen as it provides information about rhythms driven by the 

clock, while not being part of the core molecular loop. The CEAl and DG were selected 

because of their antiphase PER2 expression patterns.  

 

RNA extraction 

Free-floating sections from the 2nd set of brain slices were rinsed (6 x 5 min) in 

cold TBS to remove the Watson’s Cryoprotectant solution. The three regions of interest 

(the SCN, CEAl, and DG) were bilaterally dissected from the relevant 50μm thick 

sections under a dissecting microscope using sterile plastic Petri dishes (filled with cold 

TBS) and a scalpel. All instruments were pre-cleaned with RNaseZap solution 

(#AM9780, Ambion) to neutralize RNase, and a new Petri dish, scalpel blade, and gloves 

were used for each individual brain to avoid contamination. Total RNA was isolated from 
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each of the regions using the RecoverAll
 Total Nucleic Acid Isolation kit (#AM1975, 

Ambion) following modified manufacturer's instructions. Briefly, the dissected tissues 

were dehydrated with two washes in 100% ethanol. The pellet was then air dried at room 

temperature for 30 min then re-suspended in 150�l of digestion buffer with 4�l protease 

and incubated at 50˚C for 15 min and then 80˚C for 30 min. RNA was isolated by capture 

on a glass-fiber filter and purified from residual cellular fragments and proteins by 

subsequent 100% ethanol and isolation additive washes and centrifugation steps (10,000g 

for 30 sec). Then, 60μl of DNase mix was added to the filter and incubated at room 

temperature for 30 min and washed out with a series of ethanol washes and centrifugation 

steps (10,000g for 30-60 sec) in order to purify the RNA from DNA residuals. Finally, 

the purified RNA was eluted in 60 �l of elution solution at room temperature for 1 min 

and centrifuged at 10,000g for 1 min. Three μl from each sample were taken for RNA 

quantification and the rest was frozen at -80˚C.  

The RNA integrity profile (RIN) of each sample and its concentration was 

assessed using the Experion RNA StdSens Analysis kit (Bio-Rad, Hercules, CA). The 

Nanodrop2100c spectrophotometer (Thermo Fisher Scientific, Wilmington, DE) was 

used to measure the absorbance ratios at 260/280nm and 260/230nm to assess DNA and 

protein contamination, respectively. 

 

RNA purification 

 If the absorbance ratio at 260/280nm was below 1.7, indicating probable DNA 

contamination, RNA samples were treated with the TURBO DNA-free kit (#AM1907, 

Ambion) following manufacturer’s instructions. The RNA samples were then re-frozen at 

-80C until reverse-transcribed. 
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cDNA reverse transcription 

 Total RNA (�1μg) from each brain region of each rat was reverse transcribed to 

single stranded cDNA using the High-Capacity cDNA Reverse Transcription kit with 

RNase inhibitor (#4374966, Applied Biosystems, Foster City, CA) according to 

manufacturer’s instructions. Briefly, the reaction was carried out in a 40μl volume, 

consisting of 20μl of RNA and 20μl of 2XRT master mix containing 4μl reverse 

transcription (RT) buffer, 1.6μl of 100mM deoxyribonucleotide triphosphate (dNTP) 

mixture, 4μl of 10X random primers, 2μl of MultiScribe™ RT enzyme (50U/μl), and 2μl 

of RNase inhibitor. For each brain region, two negative controls were also included: one 

without the reverse transcriptase enzyme (No Reverse Transcriptase, NRT) to control for 

any potential genomic DNA contamination, and one without any RNA to assess purity of 

reagents. Reverse transcription was carried out on the 40μl samples using the CFX96 

Real-Time PCR C-1000
 Thermo Cycler (Bio-Rad) with the following reaction 

conditions: 10 min at 25˚C, 120 min at 37˚C, and 5 min at 85˚C (enzyme inactivation and 

denaturation). Once reverse-transcription was complete, samples were stored at -20˚C. 

 

Quantitative Real-Time PCR 

 For each of the brain structures, mRNA levels for the three target genes (Per2, 

Bmal1, and Dbp) were determined using qRT-PCR with custom-designed PerfectProbe 

Gene Detection kits (PrimerDesign, Southampton, UK). Primers/probe sequences and 

amplicon lengths of the genes of interest are listed in Table 6. The relative quantity of 

mRNA for each gene of interest was measured relative to four housekeeping genes 
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(HKGs): B2M (beta-2-microglobulin), Hmbs (hydroxymethyl-bilane synthase), Top1 

(topoisomerase (DNA) 1), and Ywhaz (tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein, zeta polypeptide), which were measured using 

prevalidated PerfectProbe kits (HKG sequences not available, PrimerDesign). 

Housekeeping genes encode proteins that provide essential functions for cell survival, 

and, in theory, remain stable across different tissues and manipulations. However, it has 

been recognized that HKGs can vary across different conditions and cell types (Deindl, 

Boengler, van Royen, & Schaper, 2002; Dheda et al., 2005), and so must be pre-tested for 

any given study (Radonic et al., 2004). Furthermore, the use of at least three HKGs has 

been proposed for optimal normalization of qRT-PCR data (Vandesompele et al., 2002). 

The four HK genes used in this thesis remained stable across the SCN, CEAl, and DG 

during pre-testing and therefore were deemed to be satisfactory internal controls. A fifth 

and commonly used HKG, Gapdh (glyceraldehyde-3-phosphate dehydrogenase), was 

also tested but its expression varied and so was eliminated from the study. Quantitative 

real-time PCR was performed on the CFX96 Real Time PCR Detection System (Bio-

Rad) with the following parameters: Initialization 95˚C for 30 sec, followed by 50 cycles 

of Denaturation 95˚C for 10 sec, Annealation 50˚C for 20 sec, and Extension (and data 

collection) 62˚C for 30 sec. Amplifications were performed in 20μl volume reactions 

containing 5μl of cDNA (optimally 25ng), 10μl of TaqMan Fast Universal Master Mix 

(#4367846, Applied Biosystems), and 5μl of PerfectProbe primers/probe mix 

(PrimerDesign) according to manufacturer’s instructions. Samples with a CT (threshold 

cycle) value of 35 or less were deemed usable.  
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Table 6. Primer/ Probe sequences and Amplicon length of target clock genes.  

Target 
Gene 

Sense Primer 
Sequence, 5’: 

Antisense Primer 
Sequence, 5’: 

Probe Sequence, 5’: 
Length 

(bp) 

Per2 TTC CAC CAG CAA 
CCC CAA A 3’

CAG GAG TTA 
TTT CAG AGG 

CAA GT 3’ 

CTT CCC CAG CCA GCC 
TCA CTT TCC Ggg aag 3’

93 

Bmal1 
(Arntl) 

ACC AGG GTT TGA 
AGT TAG AGT C 3’ 

AAG TCA CTG 
ATT GTG GAG 

GAA AT 3’ 

CCA TTC TCT            
GGT CCG CCA            

TTG GAA GGg aat gg 3’ 
88 

Dbp 
ACC CAC TCG        

CCC AGA CTA TA 
3’ 

AGC AAG CCT    
CCA GTA TCA 

GAA 3’ 

CTT CAA ATC            
CTA CGA GCA           

CTG CGG GGG ttg aag 3’ 
125 

For each sample type, a 4-fold serial dilution (100-0.39 ng) standard curve was 

used to determine amplification efficiency of the target genes and the working cDNA 

concentration, with samples run in duplicate. The qRT-PCR reactions were carried out on 

96-well plates. During cDNA synthesis, a negative control (NRT) with all synthesis 

reagents, but without RNA, was made and run once for every brain region and gene. A no 

template control (NTC), with water in place of cDNA, was also run for every gene on 

every plate to rule out contamination. In addition, two positive controls were used in 

order to validate the efficiency and repetitive nature of the primer/probe assays. 

Specifically, a commercial brain sample (with validated high RIN quality) was run once 

for every brain region and gene, and two of the pooled cDNA dilutions taken for the 

standard curve were run across all plates. All cDNA samples were run in triplicate. 

Data analysis 

The 2– C� method (Livak & Schmittgen, 2001) was applied in order to quantify 

the relative mRNA levels of Per2, Bmal1, and Dbp for each rat and brain region. First, 
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the target gene expression levels in each rat and brain region were normalized to a 

combination of the �2 most stable HKGs as determined by geNorm software 

(http://medgen.ugent.be/~jvdesomp/genorm). Then, the relative values were re-

normalized with respect to the highest expression value within each of the seven groups 

described earlier.  

As in the previous chapter, 24-hr and <28-hr sine waves were fitted to each data 

set along with the previously mentioned tests. Correlations were also made between the 

expression patterns in the three clock genes in each brain region and between brain regions 

for the same clock gene. Alpha level was set to .05 for all analyses. 
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RESULTS 

 For the three brain regions and three genes examined, no outliers were found and 

all data sets passed the Runs test, indicating that the data do not deviate systematically 

from the fitted curves. However, compared to the PER2 protein data, the distribution of 

individual points for the mRNA is noisier, as can be seen by smaller R2 values associated 

with the sine fitted curves. Because of this, the criteria for rhythmicity are slightly more 

lenient for the mRNA data to avoid falsely determining a region as being arrhythmic. For 

each clock gene data set, the two other regions must have an R2 value that is at least 1/4th 

that of the SCN to be considered rhythmic. Since the amplitudes are already normalized, 

Rhythmicity Indices were not calculated for these data.  

 
Suprachiasmatic nucleus 

 The SCN showed a highly rhythmic pattern in Per2 expression with a relative 

amplitude of .61 (measured from peak to trough in relative mRNA levels). There were no 

meaningful differences between the 24-hr and <28-hr model for the Per2 data (Evidence 

Ratio of 3.12). This is confirmed visually by representations of the sine waves with 

identical R2 values of .496 (Fig. 34A). We found that the peak of Per2 expression in the 

SCN occurs at approximately ZT9.5, which is within the time range previously reported 

(Bae et al., 2001; Reppert & Weaver, 2001). 

 Bmal1 expression in the SCN also showed a rhythmic pattern of expression, 

although with the lowest R2 value out of the SCN clock genes (.297), with a relative 

amplitude of .37 (Fig. 34B). Here, the AIC computation indicated that the <28-hr best fit 

the data, however, the difference between the two models is not significant (Evidence 

Ratio of 4.05). Peak Bmal1 expression in the SCN occurs at around ZT17.5. 
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Figure 34. Suprachiasmatic Nucleus (SCN). Relative mRNA levels of A) Per2 B) Bmal1 and 
C) Dbp in the SCN of each individual rat (black diamonds) across 48 zeitgeber times. White 
and grey backgrounds indicate lights on and off, respectively. R2= Goodness of fit value for 
given sine wave. n= 73 for each graph
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We found that the clock-controlled gene, Dbp, is highly rhythmic in the SCN with 

a relative amplitude of .55. There were no meaningful differences between the 24-hr and 

<28-hr models for the Dbp data (Evidence Ratio of 2.91). This is confirmed by visual 

representations of the sine waves along with the almost identical R2 values of .505 and 

.506, respectively (Fig. 34C). Peak Dbp expression in the SCN occurs at around ZT7.5. 

Naturally, phase differences were found between the three genes examined in the 

SCN (Fig. 35A). Specifically, Per2 and Dbp follow similar patterns but with a 2-hr 

difference in time of peak expression (peaks at ZT9.5 and ZT7.5, respectively). In 

contrast, Per2 and Dbp peak 16 and 14-hrs later, respectively, than Bmal1 expression 

(ZT17.5). Correlations in the SCN between the three genes across the 24-hr day revealed 

a statistically significant moderate relationship between Per2 and Dbp only (r= .59, see 

Table 7A).  

Given the R2 values for the three genes in the SCN, the rhythmicity criteria for the 

CEAl and DG (1/4th that of the SCN) are as follows: for Per2 these regions must have an 

R2 value of at least .124, for Bmal1 an R2 value of at least .074, and for Dbp an R2 value 

of at least .126.  

 

Central amygdala, lateral part 

Per2 expression in the CEAl showed a low relative amplitude (.24) rhythm with 

peak expression at around ZT9 (Fig. 36A). There were no meaningful differences 

between the 24-hr and <28-hr model for the Per2 data (Evidence Ratio 3.16), as can be 

seen by the visual representations of the sine waves and identical R2 values of .153 (Fig. 

36A).  
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Figure 35. Summary: Comparing phase between all regions and genes. Sine fitted 
Per2, Bmal1, and Dbp expression patterns in the SCN (A), CEAl (B), and DG (C) across 
48 zeitgeber times. 
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Table 7. Correlations between Per2, Bmal1, and Dbp expression. Pearson r values 
comparing clock genes in the SCN (A), CEAl (B), and DG (C) across the 24-hr day. 
Values in bold are statistically significant (p<.05). 
 
 

A) SCN 

clock gene Bmal1 Dbp 

Per2 -0.08 0.59 

Bmal1  -0.20 

 
 

B) CEAl 

clock gene Bmal1 Dbp 

Per2 0.17 0.40 

Bmal1  -0.19 

 
 

C) DG 

clock gene Bmal1 Dbp 

Per2 -0.20 0.20 

Bmal1  0.13 
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Figure 36. Central amygdala, lateral (CEAl). Relative mRNA levels of A) Per2 B) 
Bmal1 and C) Dbp in the CEAl of each individual rat (black diamonds) across 48 zeitgeber 
times. White and grey backgrounds indicate lights on and off, respectively. R2= Goodness of 
fit value for given sine wave. n= 74 for each graph
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Bmal1 expression in the CEAl also showed a low relative amplitude (.25) rhythm 

with peak expression occurring at around ZT18 (R2 =.168, Fig. 36B). No meaningful 

differences were found between the two models for this region (Evidence Ratio of 2.15).  

Dbp expression in the CEAl, on the other hand, showed a stronger rhythmic 

pattern (R2 value of .318) with a relative amplitude of .32 (Fig. 36C). No meaningful 

differences were found between the two models for this region (Evidence Ratio of 2.38). 

We found that peak Dbp expression in the CEAl occurs at approximately ZT7. 

Both Per2 and Bmal1 rhythms in the CEAl were weaker (lower R2 values) than in 

the SCN and DG. Similar phase differences as in the SCN were found between the three 

genes examined in the CEAl (Fig. 35B). Specifically, Per2 and Dbp follow similar 

patterns but, again, with a 2-hr difference in time of peak expression (ZT9 and ZT7, 

respectively), while these two genes follow Bmal1 peak expression (ZT18) by 15 and 13-

hrs, respectively. Correlations in the CEAl between the three genes across the 24-hr day 

also revealed a statistically significant moderate relationship between Per2 and Dbp only 

(r= .40, see Table 7B).  

 

Dentate gyrus 

The DG showed a highly rhythmic pattern in Per2 expression (R2 =.408) with a 

relative amplitude of .48 (Fig. 37A). No meaningful differences were found between the 

two models for this region (Evidence Ratio of 1.78), however, both models failed the 

normality test (24-hr model: K2=6.36, p<.05), indicating that neither model fit the data 

perfectly. We found that peak Per2 expression in the DG occurs at approximately 
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Figure 37. Dentate gyrus (DG). Relative mRNA levels of A) Per2 B) Bmal1 and C) Dbp in 
the DG of each individual rat (black diamonds) across 48 zeitgeber times. White and grey 
backgrounds indicate lights on and off, respectively. R2= Goodness of fit value for given 
sine wave. n= 74, except for Per2 where n=73
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ZT16.5. One sample in this data set had a CT value of over 35 with high variability 

between the triplicates and so was excluded from the analysis.  

Bmal1 expression in the DG also showed a rhythmic pattern of expression with a 

relative amplitude of .35 (Fig. 37B). No meaningful differences were found between the 

24-hr and <28-hr models for this region (Evidence Ratio of 2.8), as can be seen by the 

visual representations of the sine waves and the almost identical R2 values of .30 and 

.302, respectively (Fig. 36B). Peak Bmal1 expression in the DG occurs at approximately 

ZT2.5.  

Dbp expression in the DG also showed a rhythmic pattern of expression (R2 

=.221) with a relative amplitude of .37 (Fig. 37C). No meaningful differences were found 

between the two models for this region (Evidence Ratio of 1.74). We found that peak 

Dbp expression in the DG occurs at approximately ZT9.5. 

In the DG, we found that each gene examined has a different phase. Specifically, 

peak Per2 expression (ZT16.5) follows Bmal1 peak expression (ZT2.5) by 14-hrs, while 

peak Dbp expression (ZT9.5) follows Bmal1 by 7-hrs (Fig. 35C). Correlations in the DG 

between the three genes across the 24-hr day revealed no statistically significant 

relationships (see Table 7C).  

 

Summary of results 

Per2 

There are phase differences in Per2 expression in the three brain regions 

analyzed. Specifically, unlike PER2 protein, Per2 gene expression in the SCN and CEAl 

are almost in phase with only a half hour difference in time of peak expression, while the 
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DG peaks approximately 7-hrs later (Fig. 38A, 42A). Importantly, when comparing 

PER2 protein to Per2 mRNA for each of these three regions, we found that in the SCN, 

protein expression peaks 5-hrs after mRNA (Fig. 39A), in the CEAl, PER2 protein peaks 

only 2-hrs after Per2 mRNA (Fig. 39B), and in the DG PER2 protein peaks 7-hrs after 

Per2 mRNA (Fig. 39C). 

Relative Per2 mRNA amplitude levels also differ in these regions (F(2,218)=7.4, 

p<.001, Fig. 38B). Specifically, Bonferroni post-hoc tests showed that the amplitude in 

the CEAl is significantly lower than in both the SCN (t(218)=3.79, p<.001) and DG 

(t(218)=2.44, p<.05). Finally, correlations of Per2 expression across the 24-hr day between 

the SCN, CEAl, and DG revealed differences in the strength of the relationships between 

these regions (see Table 8A). Specifically, a moderate statistically significant relationship 

of .40 was found between the SCN and CEAl only. 

 

Bmal1 

Phase differences in Bmal1 expression between the three regions examined were 

also found. Specifically, similar to the results obtained for Per2, Bmal1 rhythms in the 

SCN and CEAl are almost in phase, with only a half hour difference in time of peak 

expression, while the DG peaks about 15-hrs earlier (Fig. 40A, 42B). Relative Bmal1 

mRNA amplitude levels did not differ significantly in these regions (F(2,218)=.993, p=.372, 

Fig. 40B). Finally, correlations of Bmal1 expression across the 24-hr day between the 

SCN, CEAl, and DG revealed differences in the strength of the relationships between 

these regions (see Table 8B). Specifically, a small to moderate statistically significant 

correlation of .30 was found between the SCN and CEAl only.  
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Figure 38. Per2. A) Sine-fitted Per2 expression patterns in all 3 regions across 48 
zeitgeber times. B) Amplitudes (mean number ± SEM of relative Per2 mRNA) measured 
from peak to trough, in each region. Symbol indicates statistical significance (p<.05) as 
follows: *: CEAl compared to all other regions. 
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Figure 39. PER2 protein vs Per2 mRNA. Sine-fitted Per2 mRNA (light blue) versus PER2 
protein expression in the A) suprachiasmatic nucleus B) central amygdala, lateral and C) 
dentate gyrus across 48 zeitgeber times. Solid lines: 24-hr fit, dotted lines: <28-hr fit.
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Table 8. Correlations between the SCN, CEAl, and DG. Pearson r values comparing 
brain regions for Per2 (A), Bmal1 (B), and Dbp (C) expression across the 24-hr day. 
Values in bold are statistically significant (p<.05). 
 
 

A) Per2 

Region CEAl DG 

SCN 0.40 0.02 

CEAl  0.09 

 
 

B) Bmal1 

Region CEAl DG 

SCN 0.30 -0.12 

CEAl  0.09 

 
 

C) Dbp 

Region CEAl DG 

SCN 0.52 0.33 

CEAl  0.39 
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Figure 40. Bmal1. A) Sine-fitted Bmal1 expression patterns in all 3 regions across 48 
zeitgeber times. B) Amplitudes (mean number ± SEM of relative Bmal1 mRNA) 
measured from peak to trough, in each region.  
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Dbp 

The phase relationships of Dbp expression in the SCN, CEAl, and DG differ only 

slightly compared to expression patterns of Per2 and Bmal1 in these regions. 

Specifically, the SCN and CEAl are almost in phase, with only a half hour difference in 

peak Dbp expression, but in contrast to the two clock genes, Dbp expression in the DG 

peaks only about 2-hrs later (Fig. 41A, 42C). Relative Dbp mRNA amplitude levels differ 

in these regions (F(2,218)=3.09, p<.05), however, Bonferroni post-hoc tests did not find any 

significant differences (Fig. 41B). Finally, correlations of Dbp expression across the 24-

hr day between the SCN, CEAl, and DG revealed moderate statistically significant 

relationships between all regions with Pearson r values ranging from .33 to .52 (see Table 

8C).  
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Figure 41. Dbp. A) Sine-fitted Dbp expression patterns in all 3 regions across 48 
zeitgeber times. B) Amplitudes (mean number ± SEM of relative Dbp mRNA) measured 
from peak to trough, in each region. 
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Figure 42. Summary: Comparing phase between regions. 24-hr circular diagram 
displaying peak Per2 (A), Bmal1 (B), and Dbp (C) expression in the SCN, CEAl, and DG. 
Numbers around the ‘clock’ are in zeitgeber time.
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DISCUSSION 

Using a high temporal resolution analysis of PER expression, the present thesis 

sought to re-examine the rhythms in previously characterized areas of the limbic 

forebrain, discover novel regions exhibiting rhythmic clock gene expression, and 

importantly, establish the phase relationships between the rhythms in these regions under 

basal conditions. In total, 22 sub-regions of the male rat forebrain were studied and we 

found that 20 of these regions showed measurable circadian rhythms. Analysis of these 

rhythms further revealed a multifaceted, region-specific distribution of peak PER2 

expression patterns across the 24-hr day. These results suggest that a complex network of 

differently phased brain clocks interact to regulate basal physiology and behaviour in 

rodents.  

 

The brain is a multi-oscillator organ 

As previously reported, using a lower temporal resolution analysis, a number of 

areas of the rat brain show circadian oscillations in PER2 expression. The rhythms in 

these areas showed two opposing phases: one where peak expression occurs at the 

beginning of the dark portion of the LD cycle, in phase with the start of locomotor 

activity, as was seen in the SCN, BNSTov, and CEAl, the other occurring at the 

beginning of the light portion of the cycle, as was seen in the BLA, DG, and dorsal 

striatum (Amir, Harbour, & Robinson, 2006; Amir, Lamont, Robinson, & Stewart, 2004; 

Beaule, Houle, & Amir, 2003; Lamont, Robinson, Stewart, & Amir, 2005). 

The in phase- or in antiphase- to the SCN relationships previously observed were 

thought to reflect the general organization of extra-SCN oscillators. However, when 
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analyzed with a high temporal resolution and when including additional regions showing 

rhythmic PER2 expression, a more complex distribution of phases emerged. Four distinct 

clusters of cyclic expression can be observed within these 20 regions along with some 

regions that peak in isolation (see Fig. 32B). A phase “cluster” was defined as peak PER2 

expression occurring in multiple regions within 30 min of each other. The BNSTov and 

CEAl form one cluster, and are the only regions that show peak PER2 expression during 

the light portion of the LD cycle, albeit at the very end, at ZT11. The AIp, EPd, ENTld, 

ENTls of the cortex and the CA1 of the hippocampus showed peak phases occurring 

between ZT21 and ZT21.5, forming a second cluster. PER2 expression in the BLA and 

NAc core peaks at ZT22.5 forming a third cluster. The four sub-regions of the dorsal 

striatum (ASd, ASm, PSd, PSm), the PIR2 of the cortex, and the DG and CA3 of the 

hippocampus peak 1 hour later, at ZT23.5, forming a fourth cluster. Finally, the rhythms 

in the ACAv of the cortex and, most notably, the SCN, do not form clusters with other 

regions but instead peak on their own at ZT17 and ZT14.5, respectively. However, the 

possibility remains that other regions that have not been examined in this thesis form 

clusters with the SCN and ACAv. It is especially intriguing that some regions within the 

same brain structure, which are anatomically interconnected and functionally related, are 

in different phase clusters. For example, in the hippocampus, PER2 expression in the 

CA1 peaks at a different time than in the DG and CA3, and the EPd, which is considered 

to be part of the piriform cortex, is in a different phase cluster than the PIR2.  

In addition, mRNA expression of two core clock genes, Per2 and Bmal1, and one 

clock-controlled gene, Dbp, were examined to further assess the circadian molecular 

machinery in the SCN and two limbic forebrain regions that have been shown to express 



� ��
�

opposite patterns in PER2 protein. Although transcript levels of these genes were noisier 

than the PER2 protein data, they were all rhythmically expressed in the SCN, CEAl, and 

DG, consistent with the presence of a functional circadian clock in these regions. 

Analysis of these rhythms across 24-hrs further revealed differential peak expression 

between the three genes and regions analyzed (see Fig. 42). Interestingly, the 3.5-hrs 

difference in phase between the SCN and CEAl seen at the PER2 protein level did not 

translate to the mRNA data. Here, peak Per2 mRNA expression between the SCN and 

CEAl differed by only 30 min (ZT9.5 and ZT9, respectively). The pattern in Per2 

expression found in the SCN is consistent with previous reports of peak expression 

between ZT8 -10 (Bae et al., 2001; Reppert & Weaver, 2001). The SCN and CEAl 

differed by 1-hr in peak Bmal1 expression (ZT17.5 and ZT18.5, respectively), and were 

identical in peak Dbp expression (ZT7.5). Peak Per2 expression in the DG occurred 7-hrs 

later than in the SCN and CEAl, at ZT16.5, while Bmal1 expression in the DG peaked at 

ZT2.5, which is 9 and 8-hrs later than in the SCN and CEAl, respectively. Conversely, 

the phase relationship between the DG and the SCN and CEAl differed by only 2-hrs for 

the Dbp data. It is interesting that the phase relationship between these regions is similar 

for the two core clock genes but differs for Dbp, a clock-controlled gene. This might 

suggest a functional difference in the regulation of this gene in the DG and points 

towards the possibility that the role of clock-controlled genes might be different across 

areas.  

 

The SCN stands alone 
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Importantly, using a fine sampling interval of 30 min across the 24-hr day allowed 

us to accurately determine the timing of peak PER2 expression in the SCN. The data in 

the present thesis is in general agreement with peak PER2 occurring at the beginning of 

the dark portion of the LD cycle (Field et al., 2000; Reppert & Weaver, 2001). However, 

fitting a circadian sine wave function to these data established that peak PER2 expression 

occurs approximately 2-hrs later than previously found when examining fewer time-

points in rats (Beaule, Houle, & Amir, 2003) and in mice (Reppert & Weaver, 2001). 

Furthermore, the phase difference between Per2 mRNA and protein in the SCN was 

found to be 5-hrs, confirming the 4 to 6-hr lag in protein expression previously reported 

elsewhere (see Fig. 39A; Bae et al., 2001; Field et al., 2000; Reppert & Weaver, 2001). 

Interestingly, the results from this thesis show that the SCN stands alone, and that no 

other brain region peaks exactly in phase or in antiphase with the PER2 rhythm in the 

SCN, which is also in contrast to previous observations (Amir, Lamont, Robinson, & 

Stewart, 2004; Lamont, Robinson, Stewart, & Amir, 2005). 

In contrast to previous work in our laboratory showing no differences in PER2 

phase between the SCN core and shell when sampled every 3-hrs (Beaule, Houle, & 

Amir, 2003), the high temporal resolution analysis in the present thesis showed that 

PER2 expression in the core peaks slightly earlier than in the shell. This finding is not 

surprising given that the core receives environmental light cues and subsequently 

transmits this entraining information to the shell (Moore, Speh, & Leak, 2002). This 

suggests that under stable entrainment conditions in vivo, light regulates (i.e. entrains) 

rhythms in the SCN core, which then sets the phase for rhythms in the shell. The small 

phase difference in PER2 reported here may be a representation of such entrainment 
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properties. In agreement with this, it has been shown that the core and shell subdivisions 

have differential rates of re-entrainment to phase shifts in the LD cycle, with the shell 

lagging behind the core (Yan & Silver, 2002, 2004). In contrast, bioluminescence 

recordings of isolated SCN organotypic slices have shown opposite phase differences 

between the core and shell subdivisions, although similar in magnitude. In these studies, 

PER1 and PER2 protein and Per1 mRNA have been shown to peak slightly earlier in the 

shell, rather than in the core (Evans, Leise, Castanon-Cervantes, & Davidson, 2011; 

Foley et al., 2011; Yamaguchi et al., 2003). The opposite direction in core-shell phase 

difference between our results and those obtained in vitro can possibly be explained by 

the latter data originating from free running isolated SCN cultures.  

 

Validation of established clocks 

 Limbic forebrain 

The present thesis confirmed previously reported results that the PER2 rhythms in 

the BNSTov and CEAl are in perfect phase with each other (Amir, Lamont, Robinson, & 

Stewart, 2004; Lamont, Robinson, Stewart, & Amir, 2005). However, the time of peak 

PER2 expression was found to occur at ZT11 in these regions, approximately 2-hrs 

earlier than previously described. The high correlation of .88 comparing PER2 expression 

patterns between the BNSTov and CEAl further confirms the similarities between these 

two regions. Interestingly, the phase difference between Per2 mRNA and PER2 protein 

in the CEAl was only 2-hrs, in contrast to the usual 4 to 6-hr lag between mRNA and 

protein (see Fig. 39B). Furthermore, PER2 expression in the BLA remained 180˚ out of 

phase with the rhythms in BNSTov and CEAl as previously shown (Lamont, Robinson, 
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Stewart, & Amir, 2005), with a notable difference in peak expression now occurring at 

approximately ZT22.5. Peak PER2 expression in the DG, on the other hand, occurred 1 

hour later than in the BLA, at ZT23.5, and is therefore not in perfect phase with this 

region as previously reported, and consequently, is also not in perfect antiphase with the 

rhythms in the BNSTov and CEAl. Peak Per2 mRNA in the DG occurred at ZT16.5, 7-

hrs earlier than the peak in PER2 protein (see Fig. 39C), which is in general agreement 

with the time lag usually seen between mRNA and protein expression (Reppert & 

Weaver, 2001).  

  

Striatum 

The dorsal striatum is a large structure with distinct segregations of afferent 

projections (Gerfen, 2004). Based on these previously described cortical afferents, four 

subdivisions of the dorsal striatum were examined (anterior dorsal, anterior medial, 

posterior dorsal, and posterior medial). These striatal subdivisions all displayed rhythmic 

PER2 patterns with peak expression occurring at the end of the dark phase, at 

approximately ZT23.5. The area that corresponds to the anterior dorsal division in this 

thesis has been previously shown to express peak PER2 levels at ZT1 when using fewer 

time-points (Amir, Harbour, & Robinson, 2006), which is slightly later than what is 

reported here, but is still in general agreement with peak expression occurring during the 

transition from dark to light for the striatum. The results show that these striatal 

subdivisions are virtually identical in amplitude and phase of PER2 expression, 

suggesting that under basal conditions, and in spite of the difference in afferent 

projections, the dorsal striatum shows homogeneous PER2 rhythms and does not need to 



� ����

be subdivided based on rhythmic properties. This can be further confirmed by the high 

correlation values ranging from .83 to .91 comparing PER2 expression patterns between 

these regions. However, given the distinct distribution of cortical afferents to striatal sub-

regions, it is conceivable that dissociations of PER2 rhythms could occur under specific 

conditions. In agreement with this, Willuhn and colleagues (2003) have shown 

differential regulation of c-fos and dynorphin among striatal subdivisions following 

cocaine administration, demonstrating the need to consider possible roles of different 

sub-regions within this large forebrain structure.  

The NAc core showed a robust rhythm in PER2 expression with the largest 

amplitude after the SCN. The PER2 rhythm in the NAc core is similar in phase to those 

in the four sub-regions of the dorsal striatum, with peak expression occurring before light 

onset, at ZT22.5. Conversely, the NAc shell had low levels of PER2-ir cells randomly 

distributed across the 24-hr day, resulting in overall arrhythmic PER2 expression. This 

differs from mRNA data where Per2 has been shown to be rhythmic in both sub-

divisions of the NAc (Li, Liu, Jiang, & Lu, 2009). However, it is well known that 

changes in mRNA do not always correlate with changes in protein, and vice versa 

(Anderson & Seilhamer, 1997; Gygi, Rochon, Franza, & Aebersold, 1999). Intriguingly, 

a rhythm in the NAc shell in both PER1 and PER2 protein has been reported in the 

diurnal grass rat (Ramanathan, Stowie, Smale, & Nunez, 2010b), suggesting a possible 

functional difference in this region between diurnal and nocturnal species.  

 

Novel rhythms in PER2 
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Rhythms in PER2 expression were found in the CA1 and CA3 of the 

hippocampus, and all regions of the cortex examined: layer II of the piriform cortex 

(PIR2), the dorsal endopiriform (EPd) cortex, the ventral part of the anterior cingulate 

(ACAv), the posterior part of the anterior agranular insular cortex (AIp), and the 

superficial (I-III) and deep (IV-VI) layers of the lateral entorhinal cortex (ENTls and 

ENTld, respectively). Although the presence of clock genes such as Per1, Per2, and 

Clock have previously been reported in most of these regions (Abe et al., 2002; Shieh, 

2003; Yamamoto et al., 2001), this is the first time, to our knowledge, that actual rhythms 

have been characterized in these regions in a nocturnal rodent.  

The PER2 rhythms in the CA1 and CA3 differed by 2-hrs, with peak expression 

occurring at ZT21.5 and ZT23.5, respectively. The majority of afferent information into 

the hippocampus flows from the DG, to the CA3, to the CA1. The CA1 acts as the major 

output of the hippocampus proper sending efferent signals to the ENT cortex and to 

multiple other cortical regions, including the AI, as well as the thalamus, hypothalamus, 

and the amygdala (Cenquizca & Swanson, 2006, 2007). Many of these areas also project 

back to the hippocampus (Pikkarainen, Ronkko, Savander, Insausti, & Pitkanen, 1999; 

Pitkanen, Pikkarainen, Nurminen, & Ylinen, 2000). In addition, the perforant path 

provides connections from the ENT cortex to all sub-regions of the hippocampal 

formation, including the three regions examined in the present thesis (Witter et al., 2000; 

Witter, Wouterlood, Naber, & Van Haeften, 2000).  

Rhythms in PER1 and PER2 protein have been previously reported in the CA1 in 

the diurnal grass rat (Ramanathan, Stowie, Smale, & Nunez, 2010b). In this study, 

diurnal rats were sacrificed every 4-hrs, and peak expression for both proteins was found 
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to occur at ZT10. The difference in phase between the rhythm in PER2 between the 

current thesis and the data obtained in diurnal rodents is in agreement with the finding 

that the phase-relationship among extra-SCN oscillators is inverted between diurnal and 

nocturnal rodents (Ramanathan, Stowie, Smale, & Nunez, 2010a, 2010b). 

The ENT cortex is both the major input and, together with the CA1 and 

subiculum, the major output system of the hippocampal formation, projecting mainly to 

the amygdala, especially the BLA, and the NAc, and to other cortical areas such as the 

anterior and posterior cingulate cortex (reviewed in Sewards & Sewards, 2003). The six 

layers of the ENT have been classically divided into superficial (I-III) and deep (IV-VI) 

layers, with the superficial layers acting as the primary ‘input’ station and the deep layers 

acting as the primary ‘output’ station (Burwell & Amaral, 1998; Kohler, 1988; Witter, 

Wouterlood, Naber, & Van Haeften, 2000), although there is some dispute to whether 

this still holds true (Sewards & Sewards, 2003; Canto, Wouterlood, & Witter, 2008). A 

slight difference in PER2 phase was found between the two subdivisions of the ENTl, 

with the superficial layers peaking 30 min after the deep layers at ZT21.5. 

We found that in the PIR2, PER2 expression peaked at ZT23.5. In the grass rat 

study mentioned above, a rhythm in PER1 and PER2 protein was also found in the PIR, 

with peak expression occurring at ZT10 (Ramanathan, Stowie, Smale, & Nunez, 2010b). 

The PIR is also known as the primary olfactory cortex due to major afferent input from 

the olfactory bulb (OB). In addition to direct input from the OB, the PIR also receives 

projections from the basal forebrain, thalamus, hypothalamus, and brainstem (Loscher & 

Ebert, 1996). The PIR itself projects back to the OB, hypothalamus, and thalamus, and 

sends efferent projections to the insular cortex, ENT, and regions of the amygdala 
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(Loscher & Ebert, 1996). Besides playing a major role in olfactory processing, the PIR 

has also been implicated in fear memory (Pantazopoulos, Dolatshad, & Davis, 2011) and 

epileptogenesis (Loscher & Ebert, 1996). 

Interestingly, PER2 expression in the EPd, which is described by some as layer 

IV of the PIR cortex due to its proximity and heavy interconnections (Haberly, 1990), 

peaks 2.5-hrs earlier than the PIR2, at ZT21. Like the PIR, the EP not only has 

connections with the olfactory system, but also possesses reciprocal connections with the 

ENT, insular cortex, cortical amygdaloid nuclei, thalamus, and NAc shell (Kowianski, 

Lipowska, & Morys, 1999). It is not clear what the exact function of the EPd is, however, 

it has been implicated in temporal lobe epileptogenesis (Behan & Haberly, 1999; 

Kowianski, Lipowska, & Morys, 1999).  

We found that the rhythm in PER2 in the ACAv peaked on its own, at ZT17. The 

ACA is important for a wide range of autonomic functions, including regulation of heart 

rate and blood pressure, and in motivation and goal-directed behaviours (Devinsky, 

Morrell, & Vogt, 1995). The ACA can be subdivided anatomically and functionally into 

ventral (emotional) and dorsal (cognitive) regions. The ACAv has connections with the 

NAc core, amygdala, AI, and hypothalamus, and has been shown to be involved in the 

processing of salient emotional and motivational information (Cardinal, Parkinson, Hall, 

& Everitt, 2002; Neafsey, Terreberry, Hurley, Ruit, & Frysztak, 1993). Furthermore, both 

the anterior and posterior cingulate project to the deep layers of the ENT (Wyss & Van 

Groen, 1992). 

The agranular insular (AI) cortex is part of the anterior portion of the insular 

cortex so named because of the missing granular layer IV (Kobayashi, 2011). We found 
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that the rhythm in PER2 in the posterior part of this region peaks at ZT21.5. The AI 

innervates the NAc core and shell, the BNST, and the amygdala, and itself receives large 

input from the CEAl as well as the ENTl and thalamus (McDonald, Shammah-Lagnado, 

Shi, & Davis, 1999; Reep & Winans, 1982a, 1982b). The AI also has reciprocal 

connections with the PIR and EP cortices. The insular cortex has been shown to be 

important in addiction, emotions, and motor control, as well as in homeostatic functions 

including visceral sensation and gustatory processing (Kobayashi, 2011; Krushel & van 

der Kooy, 1988). 

 

PER2 is arrhythmic in certain brain regions 

Two out of the 22 sub-regions analyzed failed to meet the criteria for rhythmicity. 

Although PER2-ir labeled cells were present in the NAc shell and posteriodorsal part of 

the medial amygdala (MEApd), their expression was evenly distributed across the 24-hr 

day, leading to the classification of these regions as arrhythmic. What does it mean that 

the NAc shell and MEApd contain PER2-ir cells that are non-rhythmic as a whole? There 

are two possibilities: either individual PER2 expressing cells within these regions are 

arrhythmic, which then begs the question of PER2’s function in these regions, or, 

individual cells are still rhythmic but are not synchronized to each other, resulting in 

overall arrhythmicity. The latter is most probable given that it has been shown that 

individual cells within an arrhythmic SCN still oscillate with a period close to 24-hrs but 

are out of phase with each other (Welsh, Logothetis, Meister, & Reppert, 1995; Yoo et 

al., 2004; but see Webb, Angelo, Huettner, & Herzog, 2009). 
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These two regions are arrhythmic under basal conditions, which might lead one to 

wonder whether a rhythm in PER2 could be induced in these regions under different or 

abnormal conditions, as has been shown to occur in the dorsomedial hypothalamus 

(DMH). The DMH is known to show arrhythmic levels of PER2 and very low amplitude 

levels of PER1 under normal ad libitum conditions. However, when a rat is placed on a 

daily schedule of restricted feeding (RF), a robust rhythm in both these clock genes is 

induced (Mieda, Williams, Richardson, Tanaka, & Yanagisawa, 2006; Verwey & Amir, 

2011; Verwey, Khoja, Stewart, & Amir, 2007). Notably, it has been shown that a 2-hr 

daytime RF schedule shifted the rhythms in PER1 protein by 6-hrs to ZT12 in both the 

NAc core and shell (Angeles-Castellanos, Mendoza, & Escobar, 2007). It would be 

interesting to see if a rhythm in PER2 could be induced in the NAc shell by this same 

schedule. Moreover, as previously mentioned, Per1 and Per2 have been differentially 

implicated in cocaine sensitization (Abarca, Albrecht, & Spanagel, 2002). Given the 

important role of the NAc shell in drug addiction, it would be interesting to see if a 

rhythm in PER2 could be induced in this region by daily drug administration. 

Interestingly, Li and colleague (2010) have shown that during morphine withdrawal, 

Per1 mRNA in the NAc core and Per2 mRNA in the NAc shell show inverted rhythms 

compared to basal patterns (Li, Liu, Jiang, & Lu, 2009). 

 

Rhythmicity Index 

The Rhythmicity Index is a valuable tool that allows for the comparison of 

rhythms in different regions with varying levels of PER2 expression. By taking into 

account the mean level of PER2 expression as well as the amplitude, the RI provides a 
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more meaningful analysis of the rhythms and, importantly, quantifies the strength of 

rhythms allowing for comparisons between regions. All regions were normalized to the 

SCN, which was given a value of 1. Interestingly, the RI revealed that PER2 rhythms in 

the DG and CA3 of the hippocampus and the PIR2 and AIp of the cortex are as robust as 

the rhythm of the SCN, with RI values of over .90. Large rhythms may suggest large day-

night differences in the functional roles of these regions. For example, day-night 

differences in memory formation have been reported (Eckel-Mahan & Storm, 2009; 

Gerstner & Yin, 2010), consistent with the presence of functional clocks in the 

hippocampus.  

 

Different expression patterns within sub-divisions of the same structure 

 The fact that sub-divisions of the same brain structure differ in PER2 amplitude 

and phase (especially in the NAc, and to a lesser degree in the SCN, piriform cortex, and 

ENTl) is particularly intriguing. Whether these phase and/or amplitude differences are a 

reflection of different information processing mechanisms by the subdivisions of the 

same structure remains to be elucidated. In particular, it will be important to study the 

consequence of altering the phasing or amplitude in one compartment for the overall 

functioning of the whole structure. At the very least, this underscores the importance for 

future research to properly identify which specific sub-region within a larger functional 

structure is under study.  

 

Functional role of multi-oscillator organization 
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The SCN acts as a central coordinator, synchronizing oscillators throughout the 

organism to the 24-hr external environment. The present thesis further confirmed that the 

circadian system is comprised of numerous dispersed clocks “chiming” at different times 

of day. This complex temporal framework allows for great flexibility to subtle changes in 

the environment, such as alterations in seasonal day length, an adaptability important for 

survival (Yamazaki et al., 2000). However, this tightly knit organization is susceptible to 

disruption when faced with abrupt and large changes in environmental timing cues, such 

as can be seen with travel across time zones and rotating shift work.  

In agreement with this, rodents experiencing large shifts in the LD cycle display 

temporary disruption of the phase relationship between the SCN and subordinate clocks 

throughout the rest of body. This disruption lasts for several days before the phase 

relationship is reestablished following stable re-entrainment to the new LD cycle. For 

example, whereas Per1 rhythms in the SCN shift almost immediately following a 6-hr 

phase shift of the LD cycle, clocks in both peripheral tissues and brain structures take 

significantly longer (up to 6 days) before completely adjusting (Abe et al., 2002; 

Yamazaki et al., 2000). Our laboratory has also shown that re-entrainment of the PER2 

rhythm in the BSNTov to an 8-hr delay or advance in the LD cycle lagged behind the 

SCN by several days before re-establishing its normal phase relationship (Amir, Lamont, 

Robinson, & Stewart, 2004). Furthermore, we have shown that prolonged exposure to a 

26-hr LD cycle, which requires daily phase delays, uncoupled PER2 rhythms in the 

BNSTov and CEAl from the master SCN clock, while leaving other limbic forebrain 

regions unaffected, and led to the emergence of a new phase relationship between these 

regions (Harbour, Robinson, & Amir, 2011). 
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Together, the findings that large shifts in the entraining LD cycle are associated 

with differential rates of re-entrainment of clock gene rhythms in the SCN compared with 

those in other areas, suggest the existence of weak coupling between the master clock and 

subordinate oscillators in the brain and periphery. This highlights the susceptibility of 

extra-SCN oscillators to physiological and environmental perturbations. It may also 

simply be a function of a highly adaptable system that is better suited to respond to 

changes when oscillators have different phases. Pittendrigh and Daan in 1976 suggested 

that a clock with an endogenous period different from the external zeitgeber could entrain 

better than one where the period of the clock equals that of the time-cue (Pittendrigh & 

Daan, 1976a). 

It is believed that one of the key roles of subordinate oscillators in the brain is to 

maintain the operational integrity of neural circuits by regulating basic processes at the 

cell and tissue levels (Tu & McKnight, 2006). Accordingly, changes in the timing of such 

processes within these multiple brain areas may affect communication between these and 

other behaviourally important networks and, ultimately, alter the way in which 

motivationally and emotionally significant stimuli are translated into appropriate 

behavioural and physiological responses. Appropriate alignment of central and peripheral 

circadian oscillations is thought to be critical for the proper temporal organization of 

physiology and behaviour. In agreement with this, disruptions in circadian rhythms have 

been implicated in sleep disorders, cognitive dysfunction, mood disorders, and general 

malaise as seen in jet lag and shift work (Boivin, 2000; Bunney & Potkin, 2008; Bunney 

& Bunney, 2000). Whether these disorders induce, or are the result of, disrupted phase 

relationships between brain clocks is unknown. 
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The present thesis provides a snapshot of PER2 rhythms under normal basal 

conditions in brain regions known to play important roles in a wide range of motivated 

and appetitive behaviours. The fact that the PER2 rhythms in multiple regions adopt 

differential patterns in peak expression suggests that it is the phase relationship between 

the clocks in these regions that establishes a healthy functioning system. Understanding 

the phase relationship between brain clocks in animals models of emotional and cognitive 

disorders will provide critical insights into the mechanisms responsible for the 

establishment of appropriate phase relationships and will provide a starting point for the 

development of behavioural or pharmacological treatment. 

 Although the SCN provides a necessary signal for rhythmicity, several other factors 

have been identified that can directly affect the phase of individual extra-SCN oscillators. 

As previously mentioned, rhythms in PER2 in some extra-SCN brain regions are 

sensitive to homeostatic and hormonal perturbations that can directly influence 

behaviour. Most notably, schedules of RF are able to entrain or shift rhythms in multiple 

subordinate oscillators, effectively overriding SCN signals (Angeles-Castellanos, 

Mendoza, & Escobar, 2007; Mieda, Williams, Richardson, Tanaka, & Yanagisawa, 2006; 

Waddington Lamont et al., 2007; Wakamatsu et al., 2001). Interestingly, PER2 rhythms 

in the BNSTov and CEAl have been shown to be selectively sensitive to a wide range of 

hormonal dysregulation, while other regions in the limbic forebrain remain unaffected 

(Amir & Stewart, 2009a, 2009b). Specifically, the rhythms in PER2 in these regions are 

modulated by rhythmic corticosterone (Segall & Amir, 2010), thyroid hormones (Amir & 

Robinson, 2006), and gonadal hormones (Perrin, Segall, Harbour, Woodside, & Amir, 

2006). Understanding the nature of the signals that modulate clock-gene oscillations 



� ����

observed in extra-SCN regions will provide another critical starting point for the 

understanding of the role of these clocks in normal and pathological conditions. The 

tissue specific functions of these clocks within this complex temporal framework remain 

to be defined.  

 

Limitations 

 The data in this thesis were analyzed using least squares regression sine waves 

with imposed circadian frequencies. This was done in order to obtain empirical measures 

of phase, amplitude, and, to a lesser degree, period for the 22 brain regions examined. A 

limitation of the sampling duration arises from this method. We attempted to determine 

the best fit possible for both a 24-hr and <28-hr sine function on exactly 24-hrs (i.e. one 

day) of data. Due to the fact that these data are limited to one circadian cycle, it is very 

difficult to infer any information about period length. Most regions were fit with a fixed 

24-hr sine wave, with the rationale being that the rats were stably entrained to a 24-hr 

day. However, for those regions where the <28-hr model was the most appropriate fit for 

the data, we can only describe the period as the frequency to which the curve fit the data 

and nothing more. It is possible that with sampling across multiple days, period length 

could be different from what we have reported. Having more than one cycle of 24-hrs 

would greatly improve precision and accuracy of the measurements derived from this 

function.  

The possibility that extra-SCN clocks have periods that differ from 24-hrs under 

stable entrainment conditions is intriguing. For instance, when rhythmicity in peripheral 

organs and tissues is studied in vitro, each rhythmic structure has its own phase, 
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amplitude and, importantly, period, suggesting that the details of the molecular 

mechanism generating the circadian oscillation is tissue or region-specific (Yoo et al., 

2004). It is conceivable that similar differences exist in the rhythmic properties between 

extra-SCN brain oscillators. Furthermore, changes in the regular temporal conditions of 

these oscillators may be an underlying mechanism in pathology. For example, it is well 

established that disruptions in circadian rhythms are associated with mood disorders such 

as bipolar disorder (BD). Interestingly, it has been found that BD patients have 

abnormally fast daily rhythms in a number of physiological processes, suggesting a phase 

advance in the circadian clock, and thus a shortened period (Linkowski et al., 1994; 

McClung, 2007a). In agreement with this, the mood stabilizer lithium, the most common 

treatment for BD, has been shown to lengthen the circadian period in several species, 

including humans (reviewed in McClung, 2007a). Thus, it seems that relief from BD 

symptoms may be linked, at least in part, to re-synchronization of circadian oscillators to 

the 24-hr environment and consequently the re-establishment of proper phase alignment 

between these clocks.    

The nature of the data, that is, extracting one time-point from a given rat across 

the 24-hr day, introduces a limitation of inter-individual variability. The only way to 

increase the precision of the analysis of the expression of clock genes would be to sample 

continuously from the same rat. This is obviously impossible using IHC or qRT-PCR. 

Bioluminescence measurements would provide such high temporal resolution. However, 

at the present time, it is unfeasible to monitor clock gene-driven bioluminescence in vivo 

in the brain of intact animals, except for a few easily accessible areas (e.g. olfactory bulb; 

Abraham, Prior, Granados-Fuentes, Piwnica-Worms, & Herzog, 2005). That being said, 
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given the high temporal resolution analysis of sampling every 30 min across the 24-hr 

day, we are confident that the rhythms reported in this thesis are reliable.  

The fact that the <28-hr model could not be fit to several regions is also somewhat 

problematic. However, this is the case only in regions where the peak in PER2 expression 

is ‘missed’ or ‘cut-off’ (i.e. the CA3, sub-regions of the striatum, and PIR2), occurring at 

the very end of the dark phase or beginning of the light phase. This is simply a factor of 

the way the data are graphed. For example, if re-plotted so that the X-axis begins at ZT12 

and the peak of the rhythm is therefore moved to the middle of the graph, the <28-hr 

model can then be fit to the data. This was not done, however, because doing so would 

misalign the timing of the phases and comparisons would not be possible between these 

regions. Furthermore, for those regions that failed the Runs test (showing patterns in the 

spread of residuals from the curve), it is most likely due to the fact that PER2 levels were 

very low during some part of the day, creating a cluster near zero levels. For these 

regions, the sine fitted curve had to dip below zero to correctly fit the data, which violates 

the nature of the data as it is impossible to have negative amounts of PER2. Finally, given 

that the rats were entrained to a LD cycle, it must be noted that it is unknown whether the 

rhythms in the regions examined are endogenous. Rats would have to be put in constant 

conditions without any external zeitgebers present in order to address this. Replicating 

the experiment in rats housed in complete darkness would clarify this point. 

 

Future studies are needed to determine the functionality of PER2 in specific brain 

regions. A tool that may prove useful to address this issue is RNA interference (RNAi), 

which temporarily knocks down a targeted gene or protein. Region specific knockouts 
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can also be created using viral vectors, which would allow for a more permanent 

silencing of a specific clock component. These methods, along with specific tissue 

mutations, have been previously used in peripheral organs such as the liver (Etchegaray 

et al., 2006) and heart (Ko et al., 2011) to investigate specific clock functions in these 

tissues. McClung et al have also used short hairpin RNA (shRNA), expressed in an adeno 

virus, in the brain to further investigate the importance of Clock in mania-like behaviours 

(McClung, 2007b; Mukherjee et al., 2010; Roybal et al., 2007). They showed that 

knockdown of Clock, specifically in the ventral tegmental area, resulted in similar 

behavioural phenotypes seen in Clock mutants (Mukherjee et al., 2010). 

Injection of RNAi for PER2 into specific brain regions would allow for the study 

of behavioural and cognitive consequences of disrupted clock function in these areas 

(Gavrila et al., 2008). A crucial question still remaining would be whether it is 

specifically PER2 that is responsible for changes in physiology and behaviour, or 

whether is it the disruption of the molecular clockwork, itself, that is the cause. This 

could be addressed by silencing other clock genes (one at a time) in the same areas to see 

if any differences in phenotype occur.  

 

Conclusion 

In conclusion, our data demonstrate the presence of complex and previously 

unappreciated associations of PER2 expression both between functionally and 

anatomically distinct brain regions as well as between these brain areas and the master 

SCN clock. The multiple phases and, potentially, different periods observed in brain 

areas analyzed in the present thesis likely form the optimal organization needed for a 
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flexible multi-oscillatory system that is capable of being reset daily by environmental 

cues in order to yield adaptive behaviour. 
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Figure A1. Suprachiasmatic Nucleus core. A) Residuals graph of SCNc showing the 
distance from the fitted curve (positive numbers above the curve, negative numbers 
below the curve) across 48 Zeitgeber times. This region failed the Runs Test, as can be 
seen by the pattern in the residuals. B) Residuals graph of a region that did not fail the 
Runs test (CA1) for comparison.  



�	��

0 2 4 6 8 10 12 14 16 18 20 22 24

-60

-40

-20

0

20

40

60

ZT

D
is

ta
n

c
e

 f
r
o

m
 f
it
te

d
 c

u
r
v

e

(#
 o

f 
P

E
R

2
-i
r
 c

e
ll
s

)

 

Figure A2. Dentate gyrus. Residuals graph of DG showing the distance from the fitted 
curve (positive numbers above the curve, negative numbers below the curve) across 48 
Zeitgeber times. This region failed the Runs Test, as can be seen by the pattern in the 
residuals.  
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Figure A3. Anterior striatum, dorsal. Residuals graph of ASd showing the distance 
from the fitted curve (positive numbers above the curve, negative numbers below the 
curve) across 48 Zeitgeber times. This region failed the Runs Test, as can be seen by the 
pattern in the residuals.  
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Figure A4. Posterior striatum, dorsal. Residuals graph of PSd showing the distance 
from the fitted curve (positive numbers above the curve, negative numbers below the 
curve) across 48 Zeitgeber times. This region failed the Runs Test, as can be seen by the 
pattern in the residuals.  
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Figure A5. Endopiriform cortex, dorsal. Residuals graph of EPd showing the distance 
from the fitted curve (positive numbers above the curve, negative numbers below the 
curve) across 48 Zeitgeber times. This region failed the Runs Test, as can be seen by the 
pattern in the residuals.  
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Figure A6. Piriform cortex, pyramidal layer. Residuals graph of PIR2 showing the 
distance from the fitted curve (positive numbers above the curve, negative numbers 
below the curve) across 48 Zeitgeber times. This region failed the Runs Test, as can be 
seen by the pattern in the residuals.  


