

AN EBD APPROACH TO EMBEDDED PRODUCT DESIGN

Jun Zhang

A Thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Quality System Engineering) at

Concordia University

Montreal, Quebec, Canada

Quality Systems Engineering

November 2011

© Jun Zhang, 2011

http://www.ciise.concordia.ca/prospectivestudents/qualitysystemsengineering/index.php

ii

iii

ABSTRACT

AN EBD APPROACH TO EMBEDDED PRODUCT DESIGN

Jun Zhang

In contrast to general-purpose computers, an embedded system has a special function for

a special purpose. Nowadays, embedded products play an important role in daily life, and

they are widely used almost everywhere, such as in GPS, mobile phones, digital TV,

transportation systems, computer systems in aircraft, computer systems in vehicles.

Despite its popularity, the development process for embedded products is usually very

complicated and thus very often results in over time (development time), or in over-

budget (cost) or a lack of expected product specifications. Therefore, it is necessary to

use an appropriate prescriptive method or design methodology to guide a designer in the

design process.

The objective of the present thesis is to introduce a new approach to embedded system

engineering to implement a new embedded product design. A rich working experience in

industry suggests that there is a need for such work. Compared to the traditional

approach, which uses product-based or process-based design analysis, the proposed

approach uses environment-based design (EBD) methodology for the whole embedded

system development life cycle, which may be a systematic procedure aimed to help

designers during embedded product development. To better illustrate the application of

the proposed design approach to embedded system engineering, an original example of

an embedded ARM Linux system is used as a case study in the present thesis.

iv

ACKNOWLEDGMENTS

I would like to thank Professor Yong Zeng for constructive and insightful suggestions

and guidance during my graduate career in his Design Lab. I thank him for helpful

suggestions and his constant encouragement.

I want to thank all the members in the Design Lab, especially Suo Tan and Thanh An

Nguyen.

Finally, I also take this opportunity to thank my family. Without their support, I would

not have gone so far.

v

Table of Contents

List of Figures .. viii

List of Tables ...x

Chapter 1 INTRODUCTION ...1

1.1 Background ..1

1.2 Copyright statement about case studies ...2

1.3 Motivation ..3

1.4 Contributions ..4

1.5 Thesis organization ..5

Chapter 2 EMBEDDED SYSTEM DESIGN ..7

2.1 Embedded systems ...7

2.1.1 Introduction of embedded Linux system: terminology 8

2.1.2 Embedded product structure ... 13

2.1.3 Embedded system design flow ... 14

2.1.4 Recommendation of a good design in an embedded product design 16

2.2 Criteria of an effective design methodology ..16

2.3 Embedded system design methodology: related work ...17

2.4 Motivation of the EBD in embedded system design ..23

Chapter 3 APPLICATION OF EBD TO EMBEDDED PRODUCT DESIGN24

3.1 Case study introduction ..25

vi

3.2 Overview: why EBD in an embedded system development26

3.3 Understanding design problems: embedded product life cycle environment analysis30

3.4 Analyzing design problems: conflict identification in embedded product life cycle43

3.5 Solving design problems: solution generation ...48

Chapter 4 VALIDATION OF EBD: EMBEDDED PRODUCT DEVELOPMENT - A

CASE STUDY ...50

4.1 Introduction ..51

4.1.1 Additional case review ... 51

4.1.2 Must-do task list for a detailed product development 53

4.1.3 Example of a hidden problem ... 55

4.2 Development process without EBD methodology ...56

4.2.1 Product development process ... 56

4.2.2 Quality of development process ... 64

4.3 Analyzing and diagnosing the development process using EBD65

4.3.1 Adjustment of the development process using EBD .. 65

4.3.2 Design state... 75

4.3.3 Distrusted variables life time .. 93

4.3.4 EBD approach to the development process: examples 95

4.3.5 Result of EBD approach ... 96

4.4 Quality of two approaches..97

vii

Chapter 5 CONCLUSIONS AND FUTURE WORK ..98

5.1 Conclusion: why use an EBD in embedded system design98

5.2 Future work ..100

APPENDIX ..101

1.1 Overview of environment-based design ...101

1.2 Recursive object model ..101

1.2.1 Mathematical foundation .. 102

1.2.2 ROM: graphical representation of natural language 103

1.2.3 ROMA: translation of natural language to ROM diagram 105

1.3 Formulization of design requirements..106

1.4 Environment analysis ...109

1.5 Conflict identification ..112

1.6 Solution generation ..113

1.7 Relationships between the three activities of EBD ..114

Bibliography ..115

viii

List of Figures

Figure 1 Embedded system schematic example: memory interface 9

Figure 2 An embedded system PCB example.. 10

Figure 3 Crossing development environment - An example: a distributed system

development .. 12

Figure 4 An example of an embedded system ... 13

Figure 5 Scope of the development/design in the present thesis 15

Figure 6 The system ... 25

Figure 7 Three major product environments [36] ... 27

Figure 8 Seven events & eight levels for design requirements [37] 28

Figure 9 EBD process model [36] .. 28

Figure 10 Illustration of problems existing in software product development [38] 29

Figure 11 Created first ROM diagram .. 32

Figure 12 Created first updated ROM diagram .. 33

Figure 13 Seven events & eight levels of requirements-AB[19] 38

Figure 14 Conflict relationships analysis: an example ... 47

Figure 15 The best roadmap for solving the conflicts ... 49

Figure 16 The remote station system components ... 53

Figure 17 An example of SDRAM mounting – hidden problems 55

Figure 18 An example of results from SDRAM pins problems- effect from a hidden

problem ... 56

Figure 19 Detailed development process without using EBD ... 63

ix

Figure 20 Detailed development process with EBD application 74

Figure 21 Design state & development time.. 75

Figure 22 Variables in each design environment & development time 93

Figure 23 EBD approach to the development process .. 95

Figure 24 Quality of two approaches .. 97

x

List of Tables

Table 1 Rules for generic questions[39] ... 34

Table 2 Generic domain questions and answers ... 35

Table 3 Specific domain questions and answers example using ROM 38

Table 4 Lifecycle analysis of the embedded product design problem- specific domain

questions ... 42

Table 5 Conflict identification .. 44

Table 6 Root conflicts analysis ... 48

Table 7 Technical to-do list for the development ... 54

Table 8 Detailed system development process and its duration 57

Table 9 Result without EBD ... 64

Table 10 EBD analysis for phase one .. 66

Table 11 EBD diagnose for phase two ... 69

Table 12 EBD analysis and diagnose for phase three .. 72

Table 13 X variable & C constant: two examples .. 94

Table 14 Result with EBD .. 96

1

Chapter 1

INTRODUCTION

1.1 Background

In contrast to general-purpose computers which are designed to meet the needs of many

different end-users, an embedded system has a special function for special purpose [1].

In other words, an embedded system is designed to perform a special function. The

earlier development of modern embedded systems can be dated back to the 1960’s.

Apollo Guidance Computer, developed at the MIT Instrumentation Laboratory in the

1960’s, is one of the early recognizably modern embedded systems. Since then,

embedded systems have gone through a dramatic evolution. The price of embedded

systems has significantly decreased whereas the processing power and functionality has

dramatically increased. This leads to the significantly increased popularity of embedded

systems in a wide range of devices.

In the past half century, embedded systems have undergone a dramatic evolution which

has resulted in a significantly decreased cost and increased functionality. This, in turn,

leads to the greatly increased demand for embedded products. Nowadays, embedded

products play an important role in everyday life and are widely used in daily life, such as

global positioning systems (GPS), mobile phones, digital television (TV), transportation

2

systems, computer systems in aircraft, and computer systems in vehicles. The

development process for embedded products is very complicated and thus fails very

often. Therefore, it is important to use an appropriate design methodology to control

design quality. For example, the author has found that some embedded system

development projects fail without even starting to write a single code due to a

misunderstanding of design requirements. Therefore, it is important to use an appropriate

design methodology to assist the design process and to control design quality.

The present thesis illustrates how to apply EBD to embedded product designs.

1.2 Copyright statement about case studies

The author of the present thesis has worked on the design of embedded systems in

different scales. Due to the copyright from the confidential agreement that the author

has signed with different organizations, the author has no written permit from a company

to use real projects as the case study and therefore those industrial case studies cannot be

used in the present thesis. Instead, the author created the original case study for the

present thesis research.

This is to state that the case study is not associated with any real industrial project or

company. In regard to the case study, two things can be stated with confidence because

3

of the author’s rich working experience in industry:

 For the purposes of showing EBD approach to embedded system design, there is

no difference between the embedded system example used here and that of a real

project used in a company;

 The example chosen is comparable to a project from the real world.

Consequently, this thesis does not break any confidential agreement that the

author has signed with any organization.

1.3 Motivation

Many IT companies do not have final sellable products even if they have great ideas in

the beginning. In order to have sellable products to release and to allow entry into the

market as soon as possible, designers often suffer some kind of stress due to budget, the

expected development duration of the product, and product quality requirement. These

conditions may affect the designers’ creation during the process of developing new

products. It is very common for expert designers to appear to be “ill-behaved” problem

solvers, especially in terms of the development duration and product cost. Therefore, it is

very important to develop a new design methodology that can help designers in the

process of product design and lead to the improvement of design efficiency, as well as

product quality.

4

The objective of the present thesis is to show how to apply EBD to embedded product

development to improve design quality. It is hoped that by applying EBD to embedded

product development, product quality will be improved and that many IT companies will

benefit. In other words, the results of the proposed research will satisfy the needs of

many IT companies, particularly those of companies that have to develop more

competitive products and take some market share away from their competitors.

1.4 Contributions

In the present thesis, the description of EBD is attached in the appendix. In the present

thesis, a brief review of embedded systems is first given, as well as the design

methodology for embedded system development. This is followed by the illustration of

how to apply EBD to embedded system development. In addition, the validation of EBD

will be discussed. The main contributions of this thesis include the following:

(1) A new approach to embedded system design, conceptual design model EBD, is

proposed to guide embedded developers in the design process. This is a new model

in embedded system engineering.

The first stage of EBD (environment analysis) benefits both managers in

development engineering and developers. The second stage of EBD (conflict

5

identification) and the third stage of EBD (solution generation) are beneficial mainly

to developers. However, that concept also works for managers.

(2) The application of EBD to an embedded product design is illustrated by the general

concept.

(3) To illustrate the application of the proposed model and the quantitative approach,

the case of an embedded ARM Linux product, a real-world example, is adopted

studied as a case study.

1.5 Thesis organization

The rest of the present thesis is organized as follows:

(1) Chapter 1 INTRODUCTION: introduction of the background, motivation and

contributions;

(2) Chapter 2 EMBEDDED PRODUCT DESIGN: introduction of the embedded system

terminology, the embedded product structure, the embedded system design flow, and

the recommendation of a good design in an embedded product design;

(3) Chapter 3 APPLICATION OF EBD TO EMBEDDED PRODUCT DESIGN:

explanation of why EBD can be used to embedded system development, and from

general point of view, explanation of how to apply EBD to an embedded product

design step by step: understanding design problems, analyzing design problems, and

then solving design problems. An example (no confidential data from a real

6

company are used) is used to show how to apply the EBD for practiced application.

(4) Chapter 4 VALIDATION OF EBD: EMBEDDED DEVELOPMENT CASE

STUDY: review of the case including an additional introduction, and then

description of detailed development process. This is followed by the validation of the

result with two different design procedures – by using EBD and by not using EBD.

(5) Chapter 5 CONCLUSIONS AND FUTURE WORK: concluding remarks about why

an EBD in embedded system design and future work.

In the present thesis, the description of EBD is attached in the appendix. If you want to

know what EBD is , please go to Appendix.

7

Chapter 2

EMBEDDED SYSTEM DESIGN

In Chapter 1, the background of the embedded system design is introduced. Then some

basic terminology used in embedded systems is explained, and the recommendation of a

good embedded design is explained. Finally, in Chapter 4, EBD is validated whether or

not EBD design methodology can help an embedded designer to reach a high level of

embedded design.

The objective of the present thesis is to bring a new design methodology to embedded

product design engineering, thereby enhancing the quality of design. To achieve this

objective, this literature review covers the following areas:

(1) Introduction of the embedded system : terminology

(2) Embedded system design methodology: related work

2.1 Embedded systems

Embedded products are widely used in daily life, such as GPS, mobile phones, digital

TV, transportation systems, aircraft computer systems, vehicles. The development

process is complicated and thus fails very often.

8

It is difficult to define or to describe embedded systems precisely. There have been

many different definitions for embedded systems because the field is a wide and varied.

The following are some examples of possible definitions:

 An embedded system is a special function for special purpose computer system

with a combination of hardware and software[1].

 An embedded computer system (or simply an embedded system) is “a digital

system which uses a microprocessor running software to implement some or all

of its functions” [2].

For the different operating system (OS), we have the embedded Linux system, the

embedded Windows CE, embedded VXWORKS, the embedded android system and so

forth. According to the CPU, there are embedded ARM system, embedded PPC system,

embedded Intel system, etc.

2.1.1 Introduction of embedded Linux system: terminology

A brief overview of some terminologies used for embedded systems is given below:

(1) Embedded hardware (embedded HW):

a) Schematic(SCH) : in an embedded system design, a schematic diagram is a diagram

showing the logic of the hardware – used for the product and also often reflects the pre-

9

design of the printed circuit board (PCB) [3].

An example of a SCH is shown in the following Figure 1:

Figure 1 Embedded system schematic example: memory interface

b) PCB: A printed circuit board (PCB) is designed for manufacturing or fixing a target

board. It mechanically supports Chips on the board. This kind of system is called a System

on Board (SOB). System on Chip (SOC) is not the topic in the thesis. In addition, a PCB

electrically connects electronic components through conductive pathways, VIAs, tracks or

signal traces. It is etched from copper sheets laminated onto a non-conductive substrate [4-

6].

An example of a PCB is shown below in the following Figure 2:

http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Electrical_conductor
http://en.wikipedia.org/wiki/Industrial_etching
http://en.wikipedia.org/wiki/Laminated

10

Figure 2 An embedded system PCB example

(2) Embedded software (embedded SW)

a) Boot loader

A CPU can only execute program code found from ROM or RAM. And operating systems

and applications images are stored on nonvolatile date storage such as NAND flash, NOR

flash or NFS server. When an embedded system is first powered on, it usually does not have

an operating system in ROM or RAM. The computer system has to execute a minimum image

from ROM. This image is the boot loader image [7].

The job of the Boot Loader is to initialize minimum hardware components from an unknown

state to a known state, to load the kernel from the loading memory to the running memory and

11

so on. Examples of boot loaders are the following: bootstrap loader, LILO, GRUB, ROLO,

Loadin, Etherboot, LinuxBIOS, Compaq’s bootldr, blob, PMON, sh-boot, u-boot, 2nd boot

loader. Multiple-stage boot loaders are used according to the platform. Their design constraints

are that they often need to have a small footprint due to one-time use.

b) Kernel

A kernel is a bridge between user applications and the hardware. The job of kernel is to

process date and to manage the system resources and the hardware system. The kernel is the

main part of computer operating systems [8].

c) Device driver

In an embedded system, usually, the hardware connects to the communications subsystem or

the computer bus. Therefore, device driver software is to allow the higher-level computer

programs to interact with a hardware device. For example, when a program calls up routines

in the device driver, then the driver sends commands to the hardware device. Applications

talk to hardware devices through the device driver [9].

d) Root file system

Applications would be able to access any data by file name or directory with a file system. A

file system's job is mainly to organize data, manage the available space on the device(s),

provide mechanisms to control access to the data and metadata, and update data in the same

file at nearly the same time. Some file systems, such as procfs, may be virtual distinguishable

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Organize
http://en.wikipedia.org/wiki/Metadata

12

from a directory service and registry[10].

e) Application

 An application, often called “app”, helps the user to perform specific functions such as

calling on media players software , GUI functions , Microsoft Office , android applications

for education. Apps may be separated from the kernel in some operating systems such as

Linux. In some operating systems such as VXWORKS, they are not separated. The system

software serves the application in terms of user [11].

(3) Crossing development environment

A crossing development environment is shown in Figure 3 below.

a) Target board is the PROTOTYPE of the product.

b) Host is the computer for embedded developers to develop images.

c) Server is the computer that manages the sharing of resources. The source control

software is often used such as perforce or SVN.

Figure 3 Crossing development environment - An example: a distributed system

development

http://en.wikipedia.org/wiki/Directory_service
http://en.wikipedia.org/wiki/Windows_registry
http://en.wikipedia.org/wiki/Windows_registry
http://en.wikipedia.org/wiki/Media_player_%28application_software%29
http://en.wikipedia.org/wiki/Microsoft_Office
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Educational_software

13

2.1.2 Embedded product structure

To sum up, in general, an embedded system structure may resemble the structure shown

in the following Figure 4:

Figure 4 An example of an embedded system

The peripherals of an embedded system may be different due to different product. For

example, the core of embedded systems talks with the outside world via peripherals.

Examples are the following: Serial Communication Interfaces (SCI), Multi Media Cards

(SD Cards, Compact Flash etc.),Networks(Ethernet, Lon Works, etc.), Discrete

IO(General Purpose Input/output), Analog to Digital/Digital to Analog, Debugging(

JTAG, ISP, ICSP, BDM Port, BITP, and DP9 ports) , GPS. For example, if you are

developing a digital camera, you may have the following peripherals: LCD for display,

flash memory for storage, RAM for running images, a keyboard for the user to input, a

speaker to play sounds, a USB to connect to a printer or a PC.

http://en.wikipedia.org/wiki/Peripheral
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/LonWorks
http://en.wikipedia.org/wiki/General_Purpose_Input/Output
http://en.wikipedia.org/wiki/JTAG
http://en.wikipedia.org/wiki/In-System_Programming
http://en.wikipedia.org/wiki/In_Circuit_Serial_Programming_%28ICSP%29
http://en.wikipedia.org/wiki/Background_Debug_Mode_interface

14

If an embedded system is too simple, the loader, kernel, ROOTFS, drivers, applications

may be optional. SW may not have a kernel (operating system) such as the MCS-51

based embedded system used many years ago, or it may not need to develop drivers…

2.1.3 Embedded system design flow

A new embedded product life cycle may be different. The scope of the

development/design would therefore be different.

Figure 5 shows a general embedded product life cycle. The topic in the present thesis

would include only the development process shown in the rectangle with the red shape:

design requirements, design, debug/test, software-based electronic components test in a

manufacturing process, and redefined design requirements.

15

Figure 5 Scope of the development/design in the present thesis

This Figure 5 also shows an example of the development process in an embedded

product life cycle.

16

2.1.4 Recommendation of a good design in an embedded

product design

A recommendation for a good embedded product design/development would be as

follows:

 Product features (final design) meet with most design requirements. In other words,

a good embedded product design should give customers satisfaction;

 Development time is short ;

 Cost is low ;

 It is easy to update HW/SW; it is possible to update HW/SW; and the updating cost

is not too high.

A quality process in embedded product development should at least include points 1, 2,

and 3 given above. In industry, experienced engineers should pay more attention to the

4th point above.

2.2 Criteria of an effective design methodology

An effective design methodology should:

(1) Be able to help the designer have a “good design” in terms of shorter

development time and cost, as mentioned in the last section.

(2) Be able to guide a designer to jump out of a recursive loop[12]

(3) Be able to improve design process[13] [2].

17

2.3 Embedded system design methodology: related

work

The first conference on design methodology was held in London in 1962 [14] . Since

then, many conferences on this topic have been held due to the increased realization of

the importance of design methodology. In terms of the development of engineering

design methodology, there was significant improvement of it in the 1980s[15]. Although

many design methodologies have been proposed in this area so far, due to the complexity

of embedded systems, it is very hard to find one approach that fits all.

In this section, there is a brief review of some related existing major embedded system

design methodologies and their advantages and disadvantages. Some of the representative

major embedded system design methodologies are summarized as follows:

(1) The test-driven development of embedded systems

This method is based largely on test-driven development using existing software test

infrastructures (such as Extreme Programming) with both custom hardware and

custom software. They use Extreme Programming trying to detect the problems

caused by changing earlier requirements. For example, a developer first writes failing

test cases for the necessary functionality, and then writes code, debugs the system,

and then refractors as necessary until 100% of the test cases pass[16].

18

The advantage of this method is that it tries to detect problems earlier under changing

requirements. However, the main disadvantage of this method is that it uses existing

software to test infrastructures. Three questions must be asked:

 Can the hardware be trusted in an embedded product design based on an

earlier process?

 Can the software be trusted in an embedded product design based on an earlier

process?

 Where is the existing trusted software in an embedded product design based

on an earlier process?

We cannot use a distrusted hardware or software to test other hardware or

software. We can use trusted hardware or software to test other hardware or

software.

(2) Platform-Based Design methodology for embedded systems

Platform-Based Design methodology reduces time-to-market in terms of development

time[17]. Examples are the TI OMAP platform for cellular phones, the Nexperia

platforms for consumer electronics, the Intel Centrino platform for laptops. However,

Business Week reported that Intel CEO Ottellini called those kind of companies are a

“platform company” [18]. Many companies approach platform development simply

as ABC(ad hoc, Bottom-up, and Core-centric) [17]. Alberto Sangiovanni-Vincentelli

19

and Grant Martin (the authors) believe that Platform-Based Design is “top-down”,

“Bottom-up” and “meet-in-the- middle” [19]. Alberto Sangiovanni-Vincentelli and

Grant Martin also believe that the embedded system design involves two essential

components: a rigorous methodology for embedded software development and

platform-based design[19]. Motorola’s Silver and Green Oak, “develop a family of

similar chips that differ in one or more components but are based on the same

microprocessor” [19]. Such a chip family is also a platform[19].

The advantage of this method is that the time-to-market may be shorter because of

using the platform. Also , because the system platforms may already be defined,

what the designers need to do is just apply it[20]. However, one of the biggest

disadvantages of this approach is that a platform gives the designer only limited

choices [21]. This is because a different products have different functions different

constraints. So, different architecture platforms may need to be applied. This is not

difficult to understand.

(3) Hardware/Software Co-design

Traditional embedded system design develops hardware and software separately[22].

Many researchers are trying to develop and improve this Co-design approach[22]

.This approach is to find out what the well-understood design problems are, and also

what the unsolved design problems are, as well as the relationship between hardware

and software in the early stages of embedded system design [23] , because SW and

HW shares resources in the embedded product [20].

20

However, to make a good design tradeoffs, the designer has to be knowledgeable in

both hardware and software domains [23].

In other words, hardware/software co-design tyies to develop HW and SW of the

embedded product dependently because of the dependence and interaction between

hardware and software [24-27]. This is important because embedded products are

becoming more and more complicated. Hardware and software rely more and more

on each other [24-27].

Co-design may be good in some cases such as in the middle stage of the development

process. However, it is important to ask:

 In the earlier stages of modern new embedded product design, no SW such as the

boot loader is running, so where is the trusted software to co-design or test the

HW?

 And, because it is co-designed, it has to start from the system-level specification.

However, system-level specification is often a variable and may be changed in the

later design stage.

(4) Interface-Based Design

The central idea of Interface-Based Design is that different components can be

connected only if their interfaces match. In other words, the other side of the interface

does not have to know the details of the internals [28]. This approach requests that

21

the output of one component be “compatible” with the input of the other component

[28].

Similar to Interface-Based Design, Thomas and Luca de Alfaro purposed component-

based design, they wanted each component to function in its environment and they

wanted the designer to pay attention to the relations between those components by

asking the following questions [29]:

 What does it do?

 And how can it be used [29] ?

(5) Model-based design

Model-based design methodology gives a designer a faster and more cost-effective

design methodology for embedded system design [30] [31]. Due to the complicated

development process for embedded system, it is helpful to develop a good model.

Model-Based Design allows you to improve efficiency by automatically generating

embedded software code such as using C++ UML. However, it cannot guide a

designer to solve all the design problems in terms of conflicts. And, it does not fit all

your needs due to your different the design requirements.

Since embedded system started in the 1960’s, embedded system design methodology [32]

has summarized by Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer and Gunar

Schirner as follows:

22

(1) Capture-and-Simulate methodology (1960s to 1980s) [32]

At that time, hardware and software was separately developed and there was a gap

between them[32]. Software designers tested some requirements and then gave

those specifications to hardware designers [33]. It took many years for designers

to realize that the specifications can be always updated from their implementation.

This is called capture-and-simulate because the designer captures the design

description often at the end of the design. And it is for simulation purposes only

[32].

(2) Describe-and-Synthesize methodology (the late 1980s to the late 1990s) [32]

In the 1980s, because some development tools for logical synthesis were

developed, both the behavior and the structure of designs could be captured [32].

Therefore, in this methodology, behavior and function come first and then the

structure or implementation follow [32, 33]. This methodology improved

Capture-and-Simulate methodology [32]. However, today’s embedded system

designs[34] are sometimes too large for this methodology [32, 35]. Later, in the

1990s, Register-Transfer-Level (RTL) was introduced to embedded system

engineering; however, the gap is still there because there was no relation between

RTL and the higher system level [32].

(3) Specify, Explore-and-Refine methodology (the early 2000s to 2010) [32]

In order to close the gap between higher system level and RTL including HW and

SW, Specify, Explore-and-Refine methodology was developed [32]. This

methodology can be described as consisting of a sequence of models[22] in which

each model is the refinement of previous ones [32].

23

2.4 Motivation of the EBD in embedded system

design

We have discussed a good design in Section 2.1.4 as well as the criteria of an effective

design methodology in 2.3, including advantages and disadvantages. We have found that

all of those embedded system design methodologies are not for general purpose. With

this objective, EBD is carried out for the application of embedded system design.

24

Chapter 3

APPLICATION OF EBD TO

EMBEDDED PRODUCT DESIGN

With the background introduced in Chapter 1, the knowledge of embedded systems and

a recommendation (or so-called definition) of a good design in Chapter 2, now in

Chapter 3, will introduce:

 Why EBD is recommended to embedded system design

 How to apply EBD into an embedded system design.

Due to diversify of embedded systems from very simple to a complex embedded system,

an example is used to show how to use EBD from general point of view. The example is

an embedded ARM Linux system for natural rainfall and water levels control.

 The detailed development is shown in the next chapter. In this Chapter the concept

design is shown. The advantage of applying EBD will be shown in the next chapter by

giving the detailed development.

25

3.1 Case study introduction

All of the whole systems shown in Figure 6 are to track natural rainfall and water levels

in local and nearby reservoirs (or rivers, or lakes). The purpose for the tracking is to

avoid drought and flood disaster to local residents because of an excess of rain or a

scarcity of rain. The function of the remote station (embedded system) shown in Figure

6 from 1# to N+1 # below is to collect the data of rainfall and the level of water. After

being dealt with by the system, the signals are sent by the network to the central station

server shown in Figure 6.

1

2

3

4

Remote Station
(embedded system)

 1#
Action

Central Station

1

2

3

4

Remote Station
(embedded system)

 2#
Action

1

2

3

4

Remote Station
(embedded system)

 N #
Action

1

2

3

4

Remote Station
(embedded system)

 N+1#
Action

Figure 6 The system

Where,

 Input of remote station are 1#, 2#, 3# and 4 #

 Output of remote station is “Action” - release water or/and send data to server

 Data process unit is the remote station (embedded system)

26

 Input 1 is rainfall

 Input 2 is water level

 Input 3 is water level back-up

 Input 4 is level of battery power

That remote station (embedded system) shown in Figure 6 above is the one designed in

the case study not only for this chapter for concept design as an application of EBD but

also for the next chapter for the detailed development as a validation of EBD.

3.2 Overview: why EBD in an embedded system

development

Some embedded system developers, just like the author years ago, may think this way:

do not talk about methodologies, just do the development. The author also thought this

way years ago; however, debugging, testing, redesigning, verification and validation

would take longer than expected.

To get started naturally, first understand why EBD can be applied to an embedded

system development process.

First, an embedded product is a computing system for special purposes for special

functions with a combination of HW and SW. It is an artificial system created by human

beings with some constraints and it serves people. It has to exist in working nature

following a life cycle. Therefore, the product cannot come into conflict with its working

27

environments going from nature to the built and human environments. For example, an

aerospace sensor system (embedded system) works at a very low natural temperature

and in a natural environment with a specific humidity, an environment which is different

from the environments in which it was developed. So when developing it, these

parameters have to be considered. When an embedded product targets the North

American market, a 120V should be used whereas a 220V should be used if it is

targeting the Chinese market.

Then next, let us see what EBD states :1) there are three major product environments

shown in Figure 7 below [36]; 2) the classifications for the product environment can be

divided into natural, built and human as shown in A of Figure 8 below [37] or is based

on the product life cycle shown in B of Figure 8 below [37]; 3) the EBD process is

composed of environment analysis, conflict identification and solution generation as

shown in Figure 9 below [36].

Figure 7 Three major product environments [36]

28

Figure 8 Seven events & eight levels for design requirements [37]

Figure 9 EBD process model [36]

Now finally, let us come back to see how people usually solve a problem (embedded

system development process):

29

(1) Understand embedded system design problems

(2) Analyzing embedded system design problems

(3) Solving embedded system design problems

However, people often fail at the first step: understanding the design problems. Figure

10 shows how important it is to understand design requirements correctly.

Figure 10 Illustration of problems existing in software product development [38]

According to Standish Group statistical data, only 16.2% of software projects are

completed on time and within the budget. The website It-cortex concludes that only 1

out 5 IT projects is likely to bring full satisfaction and only 16.2% of software projects

that are completed on-time and on-budget bring full satisfaction [38].

In the following section, a step-by-step guide is presented to show how to apply EBD to

an embedded product design.

30

3.3 Understanding design problems: embedded

product life cycle environment analysis

No matter whether you apply EBD to embedded system design or not, without doubt, to

understand what to do is the first thing for a developer dealing with an embedded system

design. According to EBD, the purpose of environment analysis is to understand design

problems. In other words, the purpose is to understand design requirements early and in

a right way by analyzing the product working environment in its life cycle from nature,

to the built, human environment.

In embedded system engineering, design requirements or specifications are often

verbally received from other design engineers or users. No matter what other design

requirements are, they should finally be changed into technical design requirements. The

developer will often then create code that handles the specifications. The author has

learned from experience that development time is very often longer than expected

because of testing, validating, debugging, redesigning, and redefining the design

requirements.

Let us start with a simple embedded system design example to understand it. We start

with a simple word to describe the objective of the expected embedded product

according to the understanding of the concept.

31

Objective:

Objective 0: develop a machine to do something (verbally received embedded system

design requirements).

Very often, the objective for the design is given by someone who may know very little

about computer systems or the real meaning of an embedded system. Or he/she does not

have any knowledge of embedded system design. He/she just expresses this objective to

professionals, asking generic questions.

Objective 1(transferred into technical design requirements):

(1) Develop embedded hardware;

(2) and develop embedded software

 to initialize hardware components;

 to load binary images to target the board;

 to load images from a loading address to a running address;

 to manage electronic components;

 to boot up a system;

 to provide a service to the user;

 to provide distributed individual online updating features for some images.

This is a general development objective description for the remote station (the embedded

system), shown in Figure 6 above. To better understand design problems including

hidden problems, the following general questions would be recommended in the next

32

section, namely Step 2.

Step 1: Create a ROM diagram from the initialized design/development objective.

Figure 11 Created first ROM diagram

This first ROM diagram shown above in Figure 11 was created for the initialized

design problem: verbally received embedded system design requirements.

We recommend generating a ROM from your answer rather than your questions

because the purpose of generating a ROM is the following:

 To get what a user really needs by asking the right questions and

collecting the right answers.

 To find the key components.

Having transferred the technical design requirements shown above from a natural

language, we now create it in an updated ROM diagram (Figure 12).

33

Figure 12 Created first updated ROM diagram

Figure 12 above was created first as an updated ROM diagram to initialize the

design problem: having changed it into technical design requirements.

According to EBD (rules for objects analysis), for example, from ROM Figure

11 above, we already know the key environment components - machine and

something. The reason is that - for “machine”, there is one constraint relationship

and one predicate relation; for “something” there is one predicate relation and

one connection relation.

34

Similarly, in Figure 12 ROM above, using Rules for object analysis according to

EBD, you may have key environment components: an embedded system,

hardware components, binary images, and images from a loading address to a

running address, some electronic components, and the system, service and

distributed online updating feature for each image.

Then taking the following steps, we ask the right generic questions and the

specific questions. Professionals may ask better but fewer questions than non-

professionals. However, non-professionals are still able to ask concept and

preliminary design questions. For a detailed development, non-professionals may

not be able to give the right answers in some cases.

Step 2: Ask generic questions and collect answers and then repeat

until no more generic questions can be asked.

According to EBD, rules for generic questions shown in APPENDIX, as follows:

Table 1 Rules for generic questions[39]

Rule 1 Before an object can be further defined, the objects constraining them

should be defined.

Rule 2 An object with the most undefined constraints should be taken care of

first.

35

From the ROM, we already know that the key or critical environment component

is an embedded product (machine). This is not hard to understand: we should

have a working computer system first and then do the rest. Therefore, the

expected product should be a computer system first. Following the EBD (Rules

for objects analysis), the following questions and answers for general embedded

product generic questions are collected.

Table 2 Generic domain questions and answers

Generic questions asking

 Questions & Answers Stopping asking

questions

develop

(Who/how/

what to +

object

constrainin

g N1)

Q1: Who develops it?

A1: professionals

Stop for now

Q3: How to develop it?

A3: ask professional embedded engineers.

They know how to parallel implement the system

including its HW components and SW components

Stop for now

A machine

(What +

N1)

Q: What kind of machine?

 A: a computer system

Q: What kind of computer system?

A: An embedded system

Q: What kind of embedded system?

A: an embedded product-a computer system with

specific function that it does something for humans. it

is a combination of HW and SW.

Stop for now:

because it is

clear that we

design an

embedded

system.

Do

(

Who/How

+ object

constrainin

g N2)

Q6: Who does something?

A6:This artificial embedded computer system does

something intelligently

Q17: What does the artificial mean?

A15: It means it is made by humans and has

constraints and is not perfect

Stop for now:

 because Low-

Level

embedded SW

design

requirements

would be clear

from the A16

sequence

Q7: What to do?

A7: the embedded product does something

Q8: How to do something?

A8: the embedded product intelligently knows how

36

to do something and what to do.

(Once powered up, it can do what human products can

do for humans)

Q18: How to do it intelligently?

A16: developers design a number of SW modules

telling it what to do by following a certain sequence :

1. Power up

Example of an additional question: how to power up

the system? How to code it?

2. Run Boot loader

Example of additional questions: how/where to run

boot loader?

3. Load kernel to running address

Example of additional question: how/where to load?

4. Run kernel

Example of an additional question: how/where to run?

5. Find ROOTFS and then run applications

Example of additional question: how/where to find

and run it?

Something

 (What

+N2)

Q9: What is the something?

A9: something means the specific function of the

system

Something means this product is a computer system

with specific functions instead of a computer system

with a general function, and it knows what /how to do.

In another words, humans wanted the artificial

embedded computer system to perform something for

humans intelligently. From the technical point of

view, it is the job of the applications to perform this.

What specific function?

A14: special function means it executea a specific

code and is able to do this and/or that as the user

requires .This and that in here is what you want this

product to do.

Stop for now:

because what

high level

applications

needed would

be clear for now

With answers collected by asking the generic domain questions, in order to ask

more right question after this stage, you should update a ROM diagram from the

generic domain answers. At this point, do not update this ROM because the goal

in the present paper is just to show the concept of applying EBD to an embedded

system design.

37

Step 3: Ask specific domain questions and collect answers and then

repeat until no more generic questions can be asked.

This stage is to get the detailed design requirements. According to EBD (Rules for

asking domain specific questions[39], as discussed in the last section, to get

detailed design requirements, we should understand that:

1. The product design requirements should be analyzed at each event in its life

cycle[37]

In a different embedded product design such as different devices design, its life cycle

may encounter different events. For example, you may divide your product

life=cycle events into design /development, test and debug, software=based HW

components testing for manufacturing, manufacturing, sale, transportation, use,

maintenance and recycling. Figure 13, which follows, is just an example.

38

Figure 13 Seven events & eight levels of requirements-AB[19]

2. The priority of consideration from high to low is: nature, built to human [19]

Due to the large variety of embedded systems, there is also a large variety of specific

design requirements in terms of specific domain questions and answers. It is not

possible to provide the detailed conflicts for all the embedded systems in general.

However, the following questions are recommended at this stage:

Table 3 Specific domain questions and answers example using ROM

specific questions asking

recommend questions example Answers

1, what system components do you need in terms of HW and SW?

1.1 What HW components?

1.1.1: What CPU? Why this CPU? What is CPU chip cost including

other related HW components such as peripherals? Why MMU/why no

MMU?

CPU- The expected answer may be one from PowerPC, ARM, Intel,

System

components(HW

components and

SW components)

determination

would be clear

39

AMD, MIPS, M68k, COLDFIRE, AVR, M32C, PIC, RL78, SHARC,

SPARC, ST6, MCS-51 etc.

1.1.2: What memory? What size? SRAM size and expected images

footprint? SDRAM size and expected images footprint? What flash? No

flash? NAND flash? SD card? EEPROM? Why this flash? What type?

Size? Or flash with XIP?

1.1.3 What peripherals? What network? Blue tooth? GPS? What

drivers?

1.2 What SW components?

1.2.1 What SW images? Elf or Bin?

1.2.2 What Boot Loader image? U-boot? Grub?

1.2.3 What kernel image? BZIMAGE or other?

1.2.4 What ROOTFS image? CRAMFS, ext2...?

1.2.5 What applications? Video player or what?

1.2.6 What restrictions on the SW and so on?

1.2 What operating system do we need?

The expected answer may be Linux, Windows CE, VXWORKS, and

android and so on.

1.2.1The cost of the OS in terms of the related SW module including

drivers and so on?

1.2.2 What version?

Possible answers are Linux 2.4, 2.6 and so on.

1.2.3What modules do we need to develop?

1.2.4 What interface do we have or need?

 1.2.5 What drivers do we need?

 1.2.6 Do we need a real time operating system (RTOS)?

1.2.7 Do we really need operating system OS or no OS?

Mostly we use OS but some outdated simple systems do not. You may

have more questions like: Why do we need an OS and why not?

What operating

system and drivers

needed would be

use is clear

1.3 Develop Boot Loader or use existing open source?

Ex: Why develop it u-boot?

1.3.1 If the OS may be updated into another OS in the future, can your

loader be applied?

1.3.2 Development cost?

1.3.3 Open source cost for Boot Loader?

1.3.4 What perimeter to transfer to kernel if using u-boot?

1.3.5 What size limitation?

design

requirements

would be clear for

now

1.4 Do we need to develop a ROOTFS or can we use open source?

Ex: Why yes?

Why not?

design

requirements

would be clear for

40

 now

1.5 What applications do we need?

design

requirements

would be clear for

now

1.6 How to boot up the system?

1.6.1 How to power up the system?

1.6.2 Push a button or not?

1.6.3 Execute specific code from CPU specific offset?

 1.6.4 How to run boot loader?

1.6.5 Which memory location will execute which specific program?

1.6.6 How to load kernel to running address?

1.6.7 Where is the running address for xx image?

1.6.8 Where is loading address for xxx image?

 1.6.9 If bad block in loading address of flash, what to do?

 1.6.10 How to run kernel?

 1.6.11 How to run applications?

Boot up app would

be clear

1.7What is the life cycle of the embedded product?

Design

requirements

would be from life

cycle of the

product

1.8What are constraints for each event of the product life cycle?

1.9What constraints for the system?

Example: Will a radiation environment affect the system’s functioning?

other constraints ...

What constraints

would be clear

We stop to ask questions once the design requirements are clear. We do not give

a detailed answer because of the large variety of embedded systems. For

example, in embedded product development, it may not be possible to use open

source and therefore the boot loader will have to be customized. Then you will

have your own answer. There would be more detailed questions asked in the

specific questions stage according to your product. At this point, it is enough to

just show a general process of how to apply an EBD to the embedded product

design process.

41

So far, by asking specific domain questions, the HW components should be

determined to use, including CPU and memory, for the remote station system.

We also have embedded remote station system SW components determination

including OS, file system, loaders, and applications and so on. In addition, we

have low level embedded remote station system SW design requirements. Next,

it is time to do the HW development and the SW coding. At this point, you

should also have an updated ROM from your answers. We do not refer to an

updated ROM for asking specific domain questions because of the large variety

of embedded systems.

42

According to EBD, the following Table 4 is recommended to determine the design

requirements including hidden design requirements in the product life cycle (from Event

#1# to Event #n#), for example, in the following Table 4, conflicts and constraints.

Table 4 Lifecycle analysis of the embedded product design problem- specific domain

questions

Events

in life

cycle of

embedde

d

product

embedded

product

nature

environme

nt in life

cycle

Your

embedded product

 built environment

in life cycle

Your

embedded product

 human environment

 in life cycle

Nature

law and

rules

Social

law,

technical

regulatio

ns, or

other

criteria

Technic

al

limitatio

ns

Cost,

time,

human

resourc

e

Basic

functio

ns

Exten

ded

functi

ons

Except

ion

control

Human

machine

interface

Event 1#

E1N1

Constraint

s 1N1

E1B1

Constraints 1B1

E1H1

Constraints 1H1

Event 2#

E2N2

Constraint

s 2N2

E2B2

Constraints 2B2

E2H2

Constraints 2B2

...

43

In Table 4, EiNi / EiBi / EiHi represent event i# in its environment component:

 What is the design requirement from the product’s natural environment, the

product’s built environment, and /or the product’s human environment?

 What Constraints N, Constraints B and /or Constraints B do we have in Event #.

In Table 4 above, for the remote embedded station system, we find the following

conflicts shown in the Table 5 in the next section.

3.4 Analyzing design problems: conflict

identification in embedded product life cycle

Due to the large variety of embedded systems, there is also a large variety of conflicts. It

is not possible to provide the detailed conflicts for all embedded systems in general.

However, in this section, give some reasonable and commonly seen examples of

conflicts. The case study used in this chapter shows a designer how to apply EBD to an

Event #

EiNi

Constraint

s N

EiBi

Constraints B

EiHi

Constraints B

Event n#

EnNn

Constraint

s n N n

EnBn

Constraints n B n

EnHn

Constraints n B n

44

embedded concept system design. It will be validated by looking at the detailed

development process in the next chapter.

The conflict identification example, for the embedded remote station system design, is

used to show how to use EBD in the concept design process. This is introduced at the

beginning of this chapter. Again, due to the large variety of embedded systems, there

may be many conflicts due to the variety of different products.

After the specific domain questions and answers given in Table 4, there may be a

number of conflicts as shown in Table 5:

(1) Conflict identification

Table 5 Conflict identification

Name Conflicts Description

CI-1 Size /weight many chips

User wants the product size to be small and does not want

the product to be too heavy ; but to achieve this, many

electronic components must be used and therefore the

PCB board would be big.

CI-2

Less

memory

more

memory

To satisfy the user with a low price, we have to make

product cost less. To save product cost, we have to use

less memory. To have better product performance and

features, we have to implement additional features using

45

the SW and therefore using more memory is necessary.

CI-3

System

safety

HW

components

cost

Using cheap chips, PCB make or other cheap components

would reduce the cost but the system safety would be an

issue.

CI-4

System

safety

easy to use

The user wants the menu to be easy to use and understand.

The user wants to feel that the product is comfortable and

convenient. But system safety would be an issue in some

cases if it is too comfortable and convenient. Example:

automatic reports of rainfall data.

CI-5

low

operating

environment

excessive

heat

operating

environment

The expected product operating environment is at a low

temperature, but an excessive heat operating environment

may occur due to small size design.

CI-6

long-term

battery

multi task

The device will work in a remote area with no power

supply. A low power design is needed (a long-term battery

operation).And also multi computing task and

applications keep the CPU busy all the time and consume

a large quantity of power. And we do not want the device

to remain idle because we want do more with the SW, not

with the HW. One of the major conflicts is that when we

need the system to work in the rain; it is very often there is

no battery or a low battery.

CI-7 quality development Good product quality, high performance and more features

46

 time are needed. To have quality product, we have to have

more time to do it.

to release product earlier, we have to reduce development

time

CI-8 Small size

excessive

heat

If the size is too small, in a hot environment, the

components would be running at an unsafe operating

temperature and therefore the integrated circuits such as

CPU and other chips would be damaged.

CI-9 Speed heat

The user wants high speed. But a fast running CPU may

generate excessive heat, an effect which is not wanted.

CI-10

More SW

tasks; Do

more thing

using SW,

not HW

Heat and

system

reliability

 We want both low heat and more SW tasks running.

Because of our cost saving goal, we design embedded

products using the SW to do as much as we can instead of

the HW. When no task is running, the system can be put to

sleep. However, more tasks cause a heat increase, and this

increased heat risks the safety of electronic components

safety, and in addition system safety. Also, more and

complicated SW tasks may bring about some potential

bugs or other deadlocks to the system. This would threaten

the system reliability.

CI-11 Price cost

Lower price is needed because user wanted. But product

cost may be high.

CI-12 Do more Less memory On the one hand, we want to do more things using SW,

47

thing using

SW, not

HW

not HW because of cost; on the other hand, we want to use

less memory (SRAM, SDRAM, flash...) to save product

cost.

(2) Conflict relationships analysis

Figure 14 shows all the relationships between all the conflicts from CI-1 to CI-12.

CI-1#

CI-4#

CI-6#

CI-3#

CI-12#

CI-10#

CI-8# CI-7#

CI-2#

CI-9#

CI-11# CI-5#

Figure 14 Conflict relationships analysis: an example

48

3.5 Solving design problems: solution generation

Table 6 Root conflicts analysis

 CI-1 CI-2 CI-3 CI-4 CI-5 CI-6 CI-7 CI-8 CI-9 CI-10 CI-11 CI-12

CI-1 N/A 1>2 1>3 1>4 1>5 1>6 1>7 1<8 1<9 1<10 1>11 1<12

CI-2 2<1 N/A 2>3 2<4 2<5 2<6 2>7 2>8 2<9 2<10 2>11 2<12

CI-3 3<1 3>2 N/A 3>4 3>5 3>6 3>7 3<8 3<9 3<10 3>11 3<12

CI-4 4<1 4>2 4<3 N/A 4>5 4>6 4>7 4<8 4<9 4<10 4>11 4<12

CI-5 5<1 5>2 5<3 5<4 N/A 5>6 5>7 5<8 5<9 5<10 5>11 5<12

CI-6 6<1 6>2 6<3 6<4 6<5 N/A 6>7 6<8 6<9 6<10 6>11 6<12

CI-7 7<1 7<2 7<3 7<4 7<5 7<6 N/A 7<8 7<9 7<10 7<11 7<12

CI-8 8>1 8>2 8>3 8>4 8>5 8>6 8>7 N/A 8<9 8<10 8>11 8<12

CI-9 9>1 9>2 9>3 9>4 9>5 9>6 9>7 9>8 N/A 9<10 9>11 9<12

CI-10 10>1 10>2 10>3 10>4 10>5 10>6 10>7 10>8 10>9 N/A 10>11 N/A

CI-11 11<1 11<2 11<3 11<4 11<5 11<6 11>7 11<8 11<9 11<10 N/A 11<12

CI-12 12>1 12>2 12>3 12>4 12>5 12>6 12>7 12>8 12>9 N/A 12>11 N/A

49

From the relationship of the conflicts, we find that some conflicts are the root of other

conflicts. In Table 6, we can find that the root conflicts of all are CI-10 and CI12. Root

conflict does not depend on any other conflicts to be solved first.

Therefore, the best roadmap for solving all the conflicts of the design is shown in Figure

15.

CI-10
CI-12

CI-4 CI-5 CI-6

CI-9 CI-8 CI-2

CI-11CI-7

CI-1

CI-3

Figure 15 The best roadmap for solving the conflicts

50

Chapter 4

VALIDATION OF EBD:

EMBEDDED PRODUCT

DEVELOPMENT - A CASE

STUDY

In Chapter 3, from a general point of view, we dealt with the application of the EBD to

embedded system concept design and how to use the EBD in the embedded system

design process.

In this chapter, instead of showing how to use EBD in an embedded system concept

design as we did in the last chapter, we use a detailed embedded system development of

the case study mentioned in Chapter 3 to discuss rainfall and the control of the level of

water for the local residents to validate EBD design methodology.

51

4.1 Introduction

4.1.1 Additional case review

As mentioned in the last chapter, the remote station embedded system in this case study

consists of collecting data about the level of rainfall and water in reservoirs and then

sending the data to a server.

The systems track natural rainfall and water levels in the local and nearby reservoirs (or

a river, or a lake). The purpose for such tracking is to avoid drought and flood disaster

caused by too little or too much rain. The function of the embedded remote station

system is to collect signals from the two sensors: the rainfall sensor and the water-level

sensor. After being dealt with by the system, the signals are sent to a central station

(server) by the network.

That embedded remote station system is the one designed in the case study.

The system works according to the following rule:

Rule 1: No matter whether the level of water in the reservoirs (or a river, or a lake) is

normal or abnormal, once it rains the system keeps sending data to the central

station. Once the level of water is abnormal, instead of sending normal data,

the system sends urgent mask messages to the server.

Rule 2: When the level of water in the reservoirs (or a river, or a lake) is abnormal or at

52

a dangerous level, whether it rains or not, the system sends data to the central

station with urgent mask messages and releases some water.

Rule 3: When the water level in some remote station is higher than that in others cases,

the central station sends commands to the remote station to ask the terminal

station system to balance the water level by releasing some water.

Rule 4: When there is no rain AND the water level is at a normal level, the system is put

into a sleep state to save battery life. Once it rains, the system wakes up and

starts to send data to the central station server.

One major conflict for the system is the following: when we need the system to work due

to rain, it is often that there is no battery power or there is a low battery level; the network

throughput is not large enough to send data out as soon as necessary. A low power

design, not only in the HW but also in the SW, is essential. This means that the system

needs to be put into a sleep state to save power when there is no rain and the water level

is normal. However, once it rains, waking up the system takes time.

53

Figure 16 shows the remote station system components.

Figure 16 The remote station system components

4.1.2 Must-do task list for a detailed product development

Whether an EBD is used or not, developing the remote station embedded system, you

have to follow the task lists shown in Table 7 for the new product (a must-do list) for the

detailed development), which is not the concept design discussed in Chapter 3. The

remote station

embedded system
components

HW

CPU
Memory

RAM

SRAM SDRA
M

ROM

flash Other

peripherals

USB RS-232
wireless
network

wifi Keyboard LCD
GPI
O

Sensor printer

SW

Boot lader kernel

config drivers app

RootFS Applications

54

detailed development process would be used to validate the EBD.

Table 7 Technical to-do list for the development

Task

 name

Task description

(activity description)

Task 1# Design requirements analysis

Task 2# Hardware schematic design including low power design

Task 3# PCB layout design including low power design

Task 4# Develop NAND flash driver including memory layout partition coding

for distributed updating of Bootstrap, U-Boot, u-boot parameters,

kernel, and applications. SD card driver

Task 5# Develop SDRAM driver including reading datasheet and testing

Task 6# Develop U-boot including reading relative code such as start.S, CPU

datasheet , developing relative device drivers and so on

Task 7# Develop kernel including NFS configuration, memory configuration,

file system configuration, I/O configuration and other configuration,

system components selection, coding for some protocols, coding

related applications under /bin and /sbin, coding other SW components

and building kernel and so on

Task 8# Develop necessary kernel device drivers including keyboard device

driver, LED driver, LCD, SD card, sensor, printer, USB, I2C and

water level, rainfall and network device drivers and so on.

Task 9# Develop ROOT file system using BusyBox

55

Task 10# Develop applications such as multi thread applications for multi task

purposes and real time purposes

Task 11# Develop software-based module for memory and other HW

components testing for manufacturing, such as pins short, open or

other issues shown in Figure 17and Figure 18.

Task 12# Validation and verification

Task 13# QA test

Task 14# documentation

This list from 1# to 14# includes what is necessary for an embedded product

development. However, it must be noted that this is not a linear development process

from task number 1# 14#. 1# to 14 # here are just the task names.

4.1.3 Example of a hidden problem

Figure 17 An example of SDRAM mounting – hidden problems

56

Figure 18 An example of results from SDRAM pins problems- effect from a hidden

problem

The first Figure 17 above and the second Figure 18 above show the reason for coding

software-based modules to test hardware components such as SDRAM pins short, open

or other issues. Software-based module development for a hardware components test is

not the only good BSP development but is also good for manufacturing because of

hidden problems.

4.2 Development process without EBD

methodology

4.2.1 Product development process

(1) Task duration in the detailed product development process

Table 8 below shows the product development tasks and their duration without using

EBD. This is NOT a linear development process from task number T1# to task

57

number T34#. In other words, those task numbers from T1# to T34# do not refer to

a development sequence from 1# to 34#. We will discuss this later.

Table 8 Detailed system development process and its duration

Task

name

Task description

(activity description)

Total

duration: Tx

(hours)

 T1# meeting with team to understand the project, relative system,

how the system works, what the system works for, and

design requirements and so on

64

T2# system level design documentation including design

requirements and design schedule and so on

48

T3# Hardware component determination including

reading relative datasheet documents for chip selection,

meeting with HW engineers to understand the HW logic and

the system function, and discussions with system users

48

T4# Hardware design document including collecting detailed

design requirements by meeting with team, and design

schedule

48

T5# hardware schematic design including low power design 96

T6# PCB layout design including low power design 168

T7# Prototype assembly 16

T8# hardware system testing and debugging 40

T9# SW design requirements analysis 72

58

T10# SW component determination including

reading relative datasheet documents for operating system

selection,version selection,loader selection, ROOT FS

selection and so on

32

T11# Write SW design document including collecting detailed

design requirements by meeting with team, and design

schedule

56

T12# Set up development environment including installing GNU

cross development tool chain, NFS(host) environment, TFTP

server, coding MAKE script for SW source control, installing

KDB, and GDB, configuring MINICOM and testing RS232

communication

16

T13# Develop NAND flash driver including memory layout

partition coding for distributed updating of Bootstrap, U-

Boot, u-boot parameters, kernel, and applications.

96

T14# Develop SDRAM driver including reading datasheet and

testing

56

T15# develop U-boot including reading relative code such as

start.S, reading CPU datasheet, and developing relative

device drivers and so on

320

T16# Debug/evaluate /test u-boot including loading memory

reservation, image relocation, MMU issue and so on

24

T17# Set up kernel development environment including NFS, /proc 8

59

file system, and TCL configuration file reinstalling and

relative test and so on

T18# Develop kernel including NFS configuration, memory

configuration, file system configuration, I/O configuration

and other configuration, system components selection,

coding for some protocols, coding relative for applications

under /bin and /sbin, coding other SW components and

building kernel and so on

76

T19# Prototype system test from so-called system-level 24

T20# Develop necessary kernel device drivers (one by one and step

by step) including keyboard device driver, LED driver, LCD,

SD card, sensor, printer, USB, I2C and water level, rainfall

and network device drivers and so on.

312

T21# Develop use space SW modules to test kernel drivers

performance

24

T22# Develop ROOT file system using BusyBox 56

T23# Prototype system test from system level 16

T24# System-level test & debugging from hardware to software

including u-boot, kernel, and ROOT file system. Design of

experience is recommended for the evaluation because bugs

may be from one or more of – HW, u-boot, kernel, and

ROOT file system.

40

T25# Prototype firmware system performance QA test 24

60

T26# Close low-level SW development project including

documentation

48

T27# Develop applications such as multi thread for multi task

purpose

36

T28# Develop modules for real time purpose 40

T29# SW Low power optimization 16

T30# Network driver optimization; network TCP/IP layer 3 and

layer 4 applications development

40

T31# Exception handler optimization for exception such as the

rainfall sensor broken due to thunder and radiation

environment

24

T32# Develop software-based module for memory and other HW

components testing for manufacturing, such as pins short,

open or other issue shown in Figure 17and Figure 18.

176

T33# System level “final” QA test

 Evaluate/test NAND flash driver with some

debugging, including invalid bad block issue, erase

problem. This includes link file coding, different

loading address evaluation

 Evaluate SDRAM driver with some debugging

 test image footprint limitation for SRAM and

SDRAM

 Debug NAND and SDRAM

642

61

 Hardware system test by using u-boot software (part

of HW only)

 Hardware debugging. Example: NAND block can be

erased only at 12V! The power of back-up power

supply (USB) cannot reach expected voltage.

 Optimize u-boot by meeting hardware limitation,and

adding/remove some drivers, and tailoring it to a

smaller footprint and so on

 Optimize & test kernel for footprint requirement to

meet planed flash memory layout and its partition

 Evaluate kernel using u-boot;

 Evaluate u-boot using kernel;

 Evaluate the hardware system by using u-boot

software and kernel software.

 Examples are some kernel device driver VS HW

design

 Debug kernel boot-up application and removing

unnecessary section in the image segment for small

footprint purpose

 Debug u-boot

 Debug hardware system

 Optimize some drivers including interrupt handler,

bottom-half, sleep queue, memory allocation, race

62

condition

 Test hardware devices and kernel drivers

 Debug hardware system and kernel driver

 Evaluate kernel using u-boot and ROOT file system

and hardware system;

 Evaluate u-boot using kernel and ROOT file system

and hardware system;

 Evaluate hardware system by using u-boot software,

kernel software and some of device drivers. Examples

are some kernel device driver VS HW design

 Evaluate ROOT file system using u-boot and kernel

and hardware system

 System-level debugging from HW to all SW

T34# System documentation 48

Total

time

 2850

The task T33# is all about test, investigating, validating, debugging and so on. Debugging

and redesigning take too much time.

63

(2) Development process model

Many embedded designers may follow this development process shown in Figure 19.

Figure 19 Detailed development process without using EBD

SW DEV
Design
Requirements
Analysis

Design documents

HW target board DEV
Manufacturing
assembly

Design Requirements Analysis

Target board test
using hardware

tool

Boot loader NAND
SDRAM
U-boot

…

Kernel DEV
Kernel
Drivers

…

Root file system
DEV

Applications DEV

Verification
Validation
Evaluation / test
Hardware debugging
SW debugging
System-level debugging/testing/validation ….
QA test
Optimization such as driver, exception handler
… ...

User

What went wrong and
Where is the source ?

Who are variables
and who are
constants ?

release

Final debugging,
verification, validation
evaluation / stage test
hardware debugging,
Software debugging
System-level debugging/testing/validation
….
QA test, system optimization such as driver,
exception handler
… ...

64

Everything may go very well with the development process from design requirements

analysis, detail HW & SW development including some small test during the

development process. However, when the design stage comes to the final QA test, many

problems may show up and developers may spend a lot of time debugging, testing, and

redesigning. And, it may be hard to find the problem and where its source is. The reason

is that the developer collects a wide range of distrusted variables in each design stage

without validating what the variables are and what is constant in an earlier stage. This

problem will be discussed later in Section 4.3.

4.2.2 Quality of development process

The results from the development process without applying EBD methodology are

shown in Table 9 below.

Table 9 Result without EBD

Design activity Design

task name

Total

duration

(hours)

Rate

Design requirements

and documentation

1,2,4,9,11 336 11.79%

Detail DEV+ test

(HW & SW)

3,5,6,7,8,10,12,

13,14,15,16,17,

18,19,20,21,22,

23,24,25,26,27,

28,29,30,31,32

1872 65.68%

Final debugging verification,

validation, test and evaluation

and so on

33 642 22.53%

Total 2850 100%

65

The total development time used for the product is 2850 hours. This development time is

absolutely too long. This speed would not satisfy the company.

4.3 Analyzing and diagnosing the development

process using EBD

4.3.1 Adjustment of the development process using EBD

Table 10, Table 11 and Table 12 below show the product development tasks and their

duration with the adjustment of EBD methodology. With EBD, the development

process is composed of sixteen design states from S0 to S15.

With EBD adjustment, task duration in the detailed product development process is

Tx'=Tx± ∆.

Where ,

 Tx' is the task duration in the detailed product development process with EBD

adjustment.

 Tx is the task duration without using EBD.

 ∆ is the time difference between those two approaches.

(1) Analyzing the phase one of the development process using EBD

66

In the phase one of the development process, it is mainly about:

 System level design requirements analysis

 HW design requirements , system components selection , and HW

implementation including small debugging using HW tool

 SW design requirements , system components selection , and SW design

environment implementation

There are four design states in the phase : S0, S1, S2, and S3.

Table 10 below shows the product development tasks and their duration with the

adjustment of EBD methodology.

Table 10 EBD analysis for phase one

Design

state /Task

name

Task description

(activity description)

Total

duration:

Tx'=Tx± ∆

(hours)

 S0(T1') Meeting with team to understand the project, related system,

how the system works, what the system works for, and design

requirements

64

S0(T2') system level design documentation including design

requirements and design schedule

48

S1(T3') Hardware component determination including

reading relative datasheet documents for chip selection,

meeting with HW engineers to understand the HW logical and

the system function and talking to system users

40

67

S1(T4') Hardware design document including collecting detail design

requirements by meeting with team, and design schedule

48

S1(T5') hardware schematic design including low power design 88

S1(T6') PCB layout design including low power design 144

S1(T7') Prototype assembly 16

S2(T8') hardware system testing and debugging 24

S3(T9') SW design requirements analysis 72

S3(T10') SW component determination including

reading related datasheet documents for operating system

selection, version selection, loader selection, ROOT FS

selection

32

S3(T11') Write SW design document including collecting detail design

requirements by meeting with team, and design schedule

56

S3(T12') Set up development environment including installing GNU

cross development tool chain, NFS(host) environment, TFTP

server, coding MAKE script for SW source control, installing

KDB, and GDB, configuring MINICOM and testing RS232

communication.

16

Total time 648

68

(2) Diagnosing the phase two of the development process using EBD

In phase two of the development process, it is mainly about:

 SW detailed development including HW co-design

 HW / SW test, evaluation, optimization, debugging

There are four design states in the phase : S4, S5,S6,S7,S8,S9,S10,and S11.

Without using EBD, when the design stage comes to the final QA test, it may be hard

to find the problem and where its source is. Therefore, developers may spend a lot of

time debugging, testing, and redesigning. As discussed in last section, the reason is

that the developer collects a wide range of distrusted variables in each design stage

without validating what the variables are and what is constant in an earlier stage. So,

EBD helps a designer validate the product environment by testing some possible

situation, investigating a hidden problem, validating or evaluating the designer’s

thinking. For example, it may require adding your relocation code into a good loader

to see if it works. This is to evaluate if the relocation code really works before taking

next action.

69

Table 11 below shows the product development tasks and their duration with the

adjustment of EBD methodology.

Table 11 EBD diagnose for phase two

Design

state /Task

name

Task description

(activity description)

Total

duration:

Tx'=Tx± ∆
(hours)

S4(T13') Develop NAND flash driver including memory layout

partition coding for distributed updating of Bootstrap, U-Boot,

u-boot parameters, kernel, and applications.

96

S4(T14') Evaluate/test NAND flash driver with some debugging,

including invalid bad block issue, erase problem and so on;

This includes link file coding, different loading address

evaluation

24

S4(T15') Develop SDRAM driver including reading datasheet and

testing

48

S4(T16') Evaluate SDRAM driver with some debugging 24

S4(T17') test image footprint limitation for SRAM and SDRAM 16

S4(T18') Debug NAND and SDRAM 48

S4(T19') develop U-boot including reading relative code such as start.S,

reading CPU datasheet, and developing relative device drivers

248

S5(T20') Hardware system test by using u-boot software (part of HW

only)

24

S5(T21') Hardware debugging. Example: NAND block can be erased 16

70

only at 12V! The power of back-up power supply (USB)

cannot reach expected voltage.

S5(T22') Debug/evaluate/test u-boot including loading memory

reservation, image relocation, MMU issue

24

S5(T23') Optimize u-boot by meeting hardware limitation, and

adding/remove some drivers, and tailoring it to a smaller

footprint

40

S6(T24') Set up kernel development environment including NFS, /proc

file system, and TCL configuration file reinstalling and

relative test

8

S6(T25') Develop kernel including NFS configuration, memory

configuration, file system configuration, I/O configuration and

other configuration, system components selection, coding for

some protocols, coding relative for applications under /bin and

/sbin, coding other SW components , building kernel

68

S6(T26') Optimize & test kernel for footprint requirement to meet

planed flash memory layout and its partition

40

S7(T27') Evaluate kernel using u-boot;

Evaluate u-boot using kernel;

Evaluate hardware system by using u-boot software and kernel

software.

Examples are some kernel device driver VS HW design

40

S89(T28') Debug kernel boot-up application and removing unnecessary 40

71

section in the image segment for small footprint purpose

Debug u-boot

Debug hardware system

S89(T29') Prototype system test from so-called system-level 24

S10(T30') Develop necessary kernel device drivers (one by one and step

by step) including keyboard device driver, LED driver, LCD,

SD card, sensor, printer, USB, I2C and water level, rainfall

and network device drivers.

312

S10(T31') Optimize some drivers including interrupt handler, bottom-

half, sleep queue, memory allocation, race condition.

76

S10(T32') Develop use space SW modules to test kernel drivers

performance

24

S10(T33') Test hardware devices and kernel drivers 24

S10(T34') Debug hardware system and kernel driver 40

S11(T35') Develop ROOT file system using BusyBox 48

S11(T36') Evaluate kernel using u-boot and ROOT file system and

hardware system;

Evaluate u-boot using kernel and ROOT file system and

hardware system;

Evaluate hardware system by using u-boot software, kernel

software and some of device drivers. Examples are some

kernel device driver VS HW design.

Evaluate ROOT file system using u-boot and kernel and

48

72

hardware system

S11(T37') Prototype system test from system level 8

S11(T38') System-level test & debugging from hardware to software

including u-boot, kernel, and ROOT file system. Design of

experience is recommended for the evaluation because bugs

may be from one or more of – HW, u-boot, kernel, and ROOT

file system.

32

S11(T39') Prototype firmware system performance QA test 16

S11(T40') Close low-level SW development project including

documentation

40

Total time 1184

(3) Adjustment of the phase three of the development process using EBD

Table 12 below shows the product development tasks and their duration with the

adjustment of EBD methodology.

Table 12 EBD analysis and diagnose for phase three

Design

state /Task

name

Task description

(activity description)

Total

duration:

Tx'=Tx± ∆

(hours)

S12(T41') Develop applications such as multi thread for multi task 24

73

purpose

S12(T42') Develop modules for real time purpose 32

S14(T43') SW Low power optimization 16

S14(T44') Network driver optimization; network TCP/IP layer 3 and

layer 4 applications development

32

S14(T45') Exception handler optimization for exception such as rainfall

sensor broken due to thunder and a radiation environment

16

S13(T46') Develop software-based module for memory and other HW

components testing for manufacturing, such as pins short, open

or other issue shown in Figure 17and Figure 18.

152

S13(T47') System level final QA test 32

S13(T48') System-level debugging from HW to all SW 56

S15(T49') System documentation 48

Total time 408

(4) Adjustment of the development process model

Figure 20 below shows the development process with EBD application.

74

1 2 3 4 5 6 7

8

9

10 11 12 13 14

15

16171819

20 21 22 23 24

28 27 2526

35

34 33 32 31 30 29

36

37 38 39 40 41 42 43

4748
464445

49

Figure 20 Detailed development process with EBD application

75

4.3.2 Design state

TIME

STATE

E0
Design
requirements
Meeting
DOC

E1
HW
determination
SCH DEV
PCB DEV

E2
Unknown

HW PROTOTYPE

E3
SW determination

Doc
DEV preparation

E4
SW DEV
Test +debug
MEM+
CPU+
u-boot

E5
SW+HW
test & debug

E6
Kernel DEV

E7
Evaluation
SW+HW

E8+E9
PROTOTYPE System

test
SW test

E10
Kernel driver DEV

E11
HW test
Driver test
low-level SW test
QA test

System level test & evaluate
& debugging

E12
Application DEV

E14
 Optimization

Low – level SW +APP +
Exception

Final QA+ debugging

E13
SW DEV manufacturing

Software-based hardware
components test for manufacturing

E15
Released final product

Y-
A

xi
s

x-Axis

Figure 21 Design state & development time

To sum up the design components in the development process shown in Figure 20 above,

we find that the design process shows the spiral evolution of design as shown in Figure

21 above.

76

Next, explain the detailed design state including the product design environment and the

product design state in the following from (1) to (15).

Where, X-Variables-distrusted environment component, meaning it is not confirmed and

tested.

For example, when software receives a target board from the hardware department, it is

an unknown state of a prototype (Variables); it may be tested by hardware engineers but

not validated by SW code.

C-Constant -trusted environment component, meaning it is fully tested and fully trusted.

(1) Design state 0(S0): task 1#, 2 #

a. Product Design Environment 0(E0)

E0= 𝑥0𝑖
𝑖
1 = 𝑋01 + 𝑋02 + 𝑋03+𝑋04

Where,

𝑋01 = design requirements, distrusted variable

𝑋02= design documents, distrusted variable

𝑋03=(efficacy of)meetings, distrusted variable;

77

b. Product design state

S0= E0= 𝑥0𝑖
𝑖
1 = 𝑋01 + 𝑋02 + 𝑋03

This state initialized the design problem and it may not be the real expected problem and

may need to be redefined in the later design process.

(2) Design state 1(S1): task 3#,4#,5#,6#,7#

a. Product Design Environment 1(E1)

E1= 𝑥1𝑖
𝑖
1 = 𝑋11 + 𝑋12 + 𝑋13+𝑋14+𝑋15

Where,

𝑋11 = Hardware components determination, distrusted variable;

𝑋12 =HW Schematic, distrusted variable;

𝑋13=HW PCB, distrusted variable;

𝑋14 = manufacturing of target board and assembly of target board, distrusted

variable;

𝑋15 =Prototype, distrusted variable;

Where from Hardware components determination, HW Schematic design, HW

PCB design, quality of manufacturing, to prototype assembly, they all may be

78

designed or made wrongly. This may need to be redesigned in the later design

process.

b. Product design state

S1=s0+E1= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 =𝑋01 + 𝑋02 + 𝑋03+𝑋11 + 𝑋12 + 𝑋13+𝑋14+𝑋15

In this design state, the designer already has those components: redefined HW design

requirements, relative documents, and the hardware such as HW Schematic, HW PCB

and prototype and so on. But some of them may make troubles.

(3) Design state 2(S2): task 8#

a. Product Design Environment 2(E2)

E2= 𝑥2𝑖
𝑖
1 = 𝑋21 + 𝑋22 +𝑋23

Where,

𝑋21= unknown state of prototype;

𝑋22= HW test

𝑋23= HW debugging or redesigning

Where HW test (𝑋22) in this stage is using HW tool. Some hiding problem cannot

be found. HW debugging or redesigning (𝑋23) may go to wrong way and change

form good to a bad design for example.

79

b. Product design state S2

S2=E0+E1+E2= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 =𝑋01 + 𝑋02 + 𝑋03 +𝑋11 + 𝑋12 +

𝑋13+𝑋14+𝑋15 + 𝑋21 + 𝑋22 +𝑋23

This state, we have an unknown state of prototype because its hidden problem may not be

fully found yet in this stage of design.

(4) Design state 3(S3): task 9#, 10#, 11#, 12#

a. Product Design Environment 3(E3)

E3= 𝑥3𝑖
𝑖
1 = 𝑋31+𝑋32+𝑋33+𝑋34+𝑋35

 Where,

𝑋31= SW components (determination)

𝑋32= design documents

𝑋33= SW development environment structure (DEV ENV setting up)

𝑋34= SW design requirements analysis

𝑋35 =relationship between SW components(determination) and 𝑋11(Hardware

components determination)

80

b. Product design state S3

S3=s2+E3= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
31 =𝑋01 + 𝑋02 + 𝑋03 +𝑋11 + 𝑋12 +

𝑋13+𝑋14+𝑋15 + 𝑋21 + 𝑋22 +𝑋23 +𝑋31+𝑋32+𝑋33+𝑋34+𝑋35

(5) Design state 4 (S4): task 13#, 14#, 15#, 16#, 17#, 18#, and 19#

a. Product Design Environment (E4)

E4= 𝑥4𝑖
𝑖
1 + 𝐶4𝑗

𝑗
1

 𝑥4𝑖
𝑖
41 = 𝑋41 + 𝑋42 +𝑋43 + 𝑋44 + 𝑋45 + 𝑋46 + 𝑋47 + 𝑋48 + 𝑋49 + 𝑋410 + 𝑋411 +

𝑋412 + 𝑋413 + 𝑋414 + 𝑋415+𝑋416 +𝑋417

 C4j
j
1 = 𝐶41+𝐶42

Where,

𝑋41=NAND SW code

𝑋42=state of NAND hardware (example : hiding problem such ad invalid block or

data bus Figure 17and Figure 18)

𝑋43 = SDRAM SW code

𝑋44= SDRAM HW state

𝑋45= CPU initialization code

𝑋46= CPU state

𝑋47= SW for boot up

81

𝑋48= relative driver

𝑋49= NAND Evaluation

𝑋410= SDRAM Evaluation

𝑋411 =footprint limitation

𝑋412 = memory debugging

𝑋413 =U-BOOT code

𝑋414 = 𝑈 − 𝑏𝑜𝑜𝑡 𝑖𝑚𝑎𝑔𝑒

𝑋415 =Rrelationships between HW components and SW including u-boot and

NAND code and SDRAM code (the sub-system of the product system)

𝑋416 =test and debugging

𝑋417=unknown or hiding environments (problems)

𝐶41=working code (confirmed as constant)

𝐶42= working HW components (confirmed as constant)

b. Product design state S4

S4= s3+ E4= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 =𝑋01 + 𝑋02 +

𝑋03 + 𝑋11 + 𝑋12 + 𝑋13 + 𝑋14 + 𝑋15 + 𝑋21 + 𝑋22 + 𝑋23

+𝑋31+𝑋32+𝑋33+𝑋34+𝑋35+ 𝑥4𝑖
𝑖
1 + 𝐶4𝑗

𝑗
1

82

= 𝑋01 + 𝑋02 + 𝑋03 + 𝑋11 + 𝑋12 + 𝑋13 + 𝑋14 + 𝑋15 + 𝑋21 + 𝑋22 + 𝑋23

+𝑋31 +𝑋32 +𝑋33 +𝑋34 +𝑋35 +𝑋41 + 𝑋42 +𝑋43 + 𝑋44 + 𝑋45 + 𝑋46 + 𝑋47 + 𝑋48 +

𝑋49 + 𝑋410 + 𝑋411 + 𝑋412 + 𝑋413 + 𝑋414 + 𝑋415+𝑋416 +𝑋417+𝐶41+𝐶42

This state is mainly u-boot development, HW test using u-boot, and u-boot test using

HW. However, both HW and u-boot may have bugs. Therefore, the test at this stage

would confirm only some of the working components.

(6) Design state 5 (S5): task 20#,21#,22#,23#

a. Product Design Environment (E5)

E5= 𝑥5𝑖
𝑖
1 + 𝐶5𝑗

𝑗
1

Where,

𝑋51 = Part of HW system test using u-boot software

𝑋52= Hardware debugging

𝑋53= evaluate u-boot using HW board

𝑋54= U-BOOT debugging

𝑋55= U-boot optimization

𝑋56= U-BOOT drivers

𝑋57=Tailoring it to a smaller footprint

83

𝑋58=Relationship between u-boot image and 𝑋51to 𝑋56

𝑋59=U-BOOT image

 𝐶5𝑗
𝑗
1 =confirmed SW modules and HW component (confirmed cconstant, no

bugs found)

Some of those new problems would be from a previous design process including

redesign or test activities. And some of those problems may not be real problems

due to misleading test.

b. Product design state S5

S5=s4+E5= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 + 𝐶5𝑗

𝑗
1

(7) Design state 6 (S6): task 24#,25#, 26#

a. Product Design Environment (E6)

E6= 𝑥6𝑖
𝑖
1 +𝐶61+𝐶62

Where,

𝑋61=kernel development environment

𝑋62= kernel developed

𝑋63=kernel optimization result

𝑋64= kernel source code

84

𝑋65= kernel module

𝑋66= kernel image

𝐶61=working code (confirmed as constant)

𝐶62= working HW components (confirmed as constant)

b. Product design state S6

S6= s5+ E6= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 +

 𝐶5𝑗
𝑗
1 + 𝑥6𝑖

𝑖
1 +𝐶61 + 𝐶62

(8) Design state (S7): task 27#

a. Product Design Environment (E7)

E7= 𝑥7𝑖
𝑖
1 + 𝐶71 + 𝐶72=𝑋71+𝑋72+𝑋73+𝑋74+𝐶71 +𝐶72

Where,

𝑋71=Evaluate kernel using u-boot;

𝑋72=Evaluate u-boot using kernel;

𝑋73=Evaluate hardware system by using u-boot software and kernel software.

𝑋74=relationship between u-boot, kernel and HW

𝐶71=working code (confirmed as constant)

85

𝐶72= working HW components (confirmed as constant)

b. Product design state (S7)

S7= s6+ E7= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 +

 𝐶5𝑗
𝑗
1 + 𝑥6𝑖

𝑖
1 + 𝑥7𝑖

𝑖
1 +𝐶71 +𝐶72+𝐶61 + 𝐶62

This state is to evaluate SW and HW and system.

(9) Design state (S8+S9): task 28#, 29#

a. Product Design Environment (E8)

E8+E9= 𝑥89𝑖
𝑖
1 +𝐶892 + 𝐶891 = 𝑋891+𝑋892+𝑋893+𝑋894+𝑋895+𝐶892+𝐶891

Where,

𝑋891 =debug kernel boot-up application

𝑋892=debug u-boot

𝑋893=debug hardware system

𝑋894=system-level prototype test

𝑋895=debug report

𝐶891=working code (confirmed as constant)

86

𝐶892= working HW components (confirmed as constant)

b. Product design state (S8+S9)

S9+S8= s7+E8+E9= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 +

 𝑥5𝑖
𝑖
1 + 𝐶5𝑗

𝑗
1 + 𝑥6𝑖

𝑖
1 + 𝑥7𝑖

𝑖
1 𝑥89𝑖

𝑖
1 +𝐶71 +𝐶72+𝐶61 + 𝐶62+𝐶892+𝐶891

This state is to debug and test SW and the system (system-level).

(10) Design state (s10): task 30#, 31#, 32#,33#,34#

a. Product Design Environment (E10)

E10= 𝑥10𝑖
𝑖
1 ++𝐶101+𝐶102 =𝑋101+𝑋102+𝑋103+𝑋104+𝑋105+𝑋106+𝐶101+𝐶102

Where,

𝑋101 =Kernel device drivers

𝑋102= Optimize some drivers

𝑋103=Use space SW modules to test kernel driver’s performance

𝑋104= Test hardware devices and kernel drivers

𝑋105= Debug hardware system

𝑋106= Debug kernel driver

𝐶101=working code (confirmed as constant)

𝐶102= working HW components (confirmed as constant)

87

b. Product design state (S10)

S10=s8+s9+E10= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 +

 𝐶5𝑗
𝑗
1 + 𝑥6𝑖

𝑖
1 + 𝑥7𝑖

𝑖
1 𝑥89𝑖

𝑖
1 + 𝐶71 + 𝐶72 + 𝐶61 +

𝐶62+𝐶892+𝐶891+ 𝑥10𝑖
𝑖
1 ++𝐶101+𝐶102

This state is to develop kernel driver.

(11) Design state (s11): task 35#, 36#, 37#, 38#, 39#, 40#

a. Product Design Environment (E11)

E11= 𝑥11𝑖
𝑖
1 + 𝐶111 + 𝐶112 =𝑋111 +𝑋112 +𝑋113 +𝑋114 +𝑋115 +𝑋116 + 𝑋117 + 𝑋118 +

𝐶111 + 𝐶112

Where,

𝑋111= ROOT file system

𝑋112= Evaluate kernel using u-boot and ROOT file system and hardware system

𝑋113= Evaluate u-boot using kernel and ROOT file system and hardware system

𝑋114= Evaluate hardware system by using u-boot software, kernel software and

some of device drivers

𝑋115= Evaluate ROOT file system using u-boot and kernel and hardware system

𝑋116= Prototype system test

𝑋117= System-level debugging

88

𝑋118= System performance QA test

𝐶111=working code (confirmed as constant)

𝐶112= working HW components (confirmed as constant)

b. Product design state (S11)

S11= s10+ E11= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 +

 𝐶5𝑗
𝑗
1 + 𝑥6𝑖

𝑖
1 + 𝑥7𝑖

𝑖
1 + 𝑥89𝑖

𝑖
1 +𝐶71

+𝐶72+𝐶61 + 𝐶62+𝐶892+𝐶891+ 𝑥10𝑖
𝑖
1 +𝐶101+𝐶102 + 𝑥11𝑖

𝑖
1 + 𝐶111 + 𝐶112

(12) Design state (S12): task 41#, 42#

a. Product Design Environment(E12)

E12= 𝑥12𝑖
𝑖
1 + 𝐶12𝑗

𝑗
1

Where,

𝑋121= multi -thread applications

𝑋122= real time applications

𝑋123=kernel image

𝑋124= u-boot image

𝑋125= ROOT FS image

𝑋126= HW sensors condition

89

𝑋127= system test result

𝐶121=working code (confirmed as constant)

𝐶122= working HW components (confirmed as constant)

b. Product design state (S12)

S12=s11+ E12= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 +

 𝐶5𝑗
𝑗
1 + 𝑥6𝑖

𝑖
1 + 𝑥7𝑖

𝑖
1 + 𝑥89𝑖

𝑖
1 + 𝐶71

+ 𝐶72 + 𝐶61 + 𝐶62 + 𝐶892 + 𝐶891 + 𝑥10𝑖
𝑖
1 + 𝐶101 + 𝐶102 + 𝑥11𝑖

𝑖
1 + 𝐶111 +

𝐶112+ 𝑥12𝑖
𝑖
1 + 𝐶12𝑗

𝑗
1

This is an applications development state of the product design process.

(13) Design state (S13): task 46#, 47#, 48#

a. Product Design Environment (E13)

E13= 𝑥13𝑖
𝑖
1 + 𝐶13𝑗

𝑗
1

Where,

𝑋131 = manufacturing SW module (for software-based HW components test for

manufacturing)

𝑋132=HW components and the system

𝑋133=HW system

90

𝑋134=boot loaders

𝑋135=kernel

𝑋136=test tool

𝑋137=operator (test people)

𝑋138= System level final QA test

𝑋139= System-level debugging from HW to all SW

𝑋1310 = System documentation

𝐶131=working code (confirmed as constant)

𝐶132= working HW components (confirmed as constant)

b. Product design state (S14)

S13=s12+E13= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 +

 𝐶5𝑗
𝑗
1 + 𝑥6𝑖

𝑖
1 + 𝑥7𝑖

𝑖
1 + 𝑥89𝑖

𝑖
1 + 𝐶71

+ 𝐶72 + 𝐶61 + 𝐶62 + 𝐶892 + 𝐶891 + 𝑥10𝑖
𝑖
1 + 𝐶101 + 𝐶102 + 𝑥11𝑖

𝑖
1 + 𝐶111 +

𝐶112+ 𝑥12𝑖
𝑖
1 + 𝐶12𝑗

𝑗
1 + 𝑥13𝑖

𝑖
1 + 𝐶13𝑗

𝑗
1

This is a software-based HW components test for product manufacturing state of the

product design process.

91

(14) Design state (S14): task 43#, 44#, 45#

a. Product Design Environment (E14)

E14= 𝑥14𝑖
𝑖
1 + 𝐶14𝑗

𝑗
1

Where,

𝑋141= SW Low SW optimization

𝑋142= application optimization

𝑋143=new kernel image

𝑋144=new u-boot image

𝑋145= new ROOT FS image

𝑋146=new HW sensors condition

𝑋147= system test result

𝑋148= FINAL QA test result

𝐶131=working code (confirmed as constant)

𝐶132= working HW components (confirmed as constant)

b. Product design state (S14)

S14=s13+E14= 𝑥0𝑖
𝑖
1 + 𝑥1𝑖

𝑖
1 + 𝑥2𝑖

𝑖
1 + 𝑥3𝑖

𝑖
1 + 𝑥4𝑖

𝑖
1 + 𝐶4𝑗

𝑗
1 + 𝑥5𝑖

𝑖
1 +

 𝐶5𝑗
𝑗
1 + 𝑥6𝑖

𝑖
1 + 𝑥7𝑖

𝑖
1 + 𝑥89𝑖

𝑖
1 +𝐶71

92

+𝐶72+𝐶61 + 𝐶62+𝐶892+𝐶891+ 𝑥10𝑖
𝑖
1 +𝐶101+𝐶102 + 𝑥11𝑖

𝑖
1 + 𝐶111 +

𝐶112+ 𝑥12𝑖
𝑖
1 + 𝐶12𝑗

𝑗
1 + 𝑥13𝑖

𝑖
1 + 𝐶13𝑗

𝑗
1 + 𝑥14𝑖

𝑖
1 + 𝐶14𝑗

𝑗
1

This is final QA test and a final optimization state of the product design process.

(15) Design state (S15): task 49 #

a. Product Design Environment (E14)

E15= 𝐶15𝑗
𝑗
1

Where,

 𝐶15𝑗
𝑗
1 = trusted SW, HW, released system documents

b. Product design state (S15)

S15= E15= 𝐶15𝑗
𝑗
1

There is a state of product with no new problems found and no conflicts found in the

product environment. Therefore, the product is released.

93

4.3.3 Distrusted variables life time

An embedded product is released when no new problems are found and there are no

conflicts in the product environment.

.

Figure 22 Variables in each design environment & development time

Figure 22 above shows that in the earlier design stage, only distrusted variables

(environment components) are created, as the development process passes, more and

more distrusted variables (environment components) are found and created. At the end of

the design stage, the distrusted variables become trusted constants. An embedded product

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

Time

V
a
ri
a
b
le
s

94

is released when there are no problems (distrusted variables) found and no conflicts with

the product environment.

For example, the Table 13 below shows how a variable becomes a constant in the product

development life cycle.

Table 13 X variable & C constant: two examples

Hardware variable

/environment components

(E4= 𝑥4𝑖
𝑖
1 +…)

Tested by relative SW

variable/ environment

components

X variable is trusted

and confirmed as C

constant in the

design state

𝑋46= CPU state

(including clock and

Interrupt and so on)

𝑥41 ,𝑥43 ,𝑥45 ,𝑥47 ,𝑥48 ,

𝑥51 ,𝑥56 ,𝑥59 , 𝑥62

… …

S7

𝑋44= SDRAM HW state

(32M × 2 SDRAM)

𝑥43,𝑥47 ,𝑥48 ,𝑥410 ,

𝑥413,𝑥51 ,𝑥53 ,𝑥56 ,𝑥59 , 𝑥62

𝑥65 ,𝑥66 … …

S7

Till design state 7 (S7), X46 and X44 variables turn out to be trusted variable components

(confirmed constant in the design process) by evaluating in the design state 7(S7).

95

4.3.4 EBD approach to the development process: examples

insert

Figure 23 EBD approach to the development process

In embedded system development engineering, developers very often rush to design HW or

start to write code without fully validating her/his thinking, even if she/he understands design

requirements rightly. Still, recommend that designers should validate his/her ideas before

taking a design action. Figure 23 above shows that those environment analysis activities are

inserted into some of the design process by evaluating, testing, investigating.

96

Those actions are in fact trying to investigate and find out:

a) Which are the distrusted variable /environment components in the design stage

b) Which are the trusted constant /environment components in a design stage

With environment analysis, some possible situations would be found in an earlier stage.

Examples are as follows:

 Test designer’s thinking or idea before taking a design action. This is a human

environment analysis example.

 Hidden problems such as electrical wiring problems: memory pins short or open, or

improperly inserted chips. Test if each of the address pins can be set to 0 and 1 without

affecting any of the others. This may be very helpful when developing a board support

package (BSP). This is a built environment analysis example.

4.3.5 Result of EBD approach

Table 14 Result with EBD

Design activity Design tasks Total

duration

(hours)

Rate

Design requirements

meeting, test/environment analysis, and

documentation

1,2,4,9,11,14,16,17,18

,

20,21,22,23,26,27,28,

31,33,34,36,49

860 33.81%

Detail DEV+ TEST(HW & SW) 3,5,6,7,8,10,12,13,19,

24,25,29,30,32,35,41,

42,46

1436

56.45%

Final debugging verification, validation,

test and evaluation

and so on

37,38,39,40,43,44,45,

47,48

248

9.74%

Total 2544 100%

97

4.4 Quality of two approaches

In terms of development time, from the result with EBD (Table 14) and the result

without EBD (Table 9), we have the following comparing result shown in Figure 24

with two different development processes:

 Product-based or process-based embedded system development process

 Environment-based embedded system development

Figure 24 Quality of two approaches

0

500

1000

1500

2000

2500

3000

With EBD Without EBD

Final debugging verification ,
validation , test
and evaluation
and so on

Detail DEV+ TEST(HW & SW)

Design requirements and
documentation

98

Chapter 5

CONCLUSIONS AND FUTURE

WORK

In the present thesis, a new approach to embedded system design is introduced, its

application to embedded design is shown, and is a validated EBD using design log.

5.1 Conclusion: why use an EBD in embedded

system design

To sum up the case study from Chapter 3 and Chapter 4, the use of EBD in embedded

system design is recommended for the following reasons:

(1) Start to develop/code/design too early without completely understanding what to do, what

should be done, and how to do it, particularly in product life cycle thinking; This may

cause more time to redesign or debug

(2) Trying to fully understand the design requirements is the first thing an embedded

developer should do. Environment analysis in embedded system design includes :

a) Fully understand design requirements

b) Distinguish distrusted variables, and confirmed/ trusted constant component.

Distrusted variables in a design environment state example are the follow: unknown

99

SDRAM pins situation (pin open or short); Invalid/ bad block in a NAND flash

loading address.

Confirmed/ trusted constant environment component: tested SDRAM situation and

NAND flash loading address.

(3) The order of solving a problem is always to start from root conflicts. This is a question of

how to ask questions. Mostly, when a root conflict is solved, its relative dependent

conflicts would be solved or would be easier to be solved.

(4) Atomic design should be atomically developed. Once an atomic design problem is there

and it must be solved, the developer should persist and not move on to other tasks;

(5) Hidden conflicts can be found at an earlier stage by validating.

The hidden conflicts should not be found at the last moment;

(6) From the author's experience, without EBD, once a problem is too hard to be solved, he

would often easily:

a) Give up solving the current problem-A and then move on to solve problem-B.

Sometimes, a developer should not bypass the atomic design problem or a root

conflict and develop other tasks. Some tasks such as root conflicts should be

atomically finished;

b) Give up on solving current problem-A or generating solution-A and would then seek a

second solution such as solution-B. Sometimes solution-A may be related to a root

conflict and need to be solved before the generation of other solutions.

(7) In an embedded system development process, the environment analysis would depend on

the testing of some possible situation such as validating the designer’s thinking,

100

investigating a hidden problem, evaluating thinking and so on. For example, it may require

adding your relocation code into a good loader to see if it works. This is to evaluate if the

relocation code really works.

5.2 Future work

The following lists some points that we may require work in the future:

(1) About EBD

a) Environment analysis: ROM software should be developed more effectively

b) Conflict analysis and solution generation: more rules should be worked out.

(2) About the validation of EBD

a) More embedded system development should be carried out to validate EBD.

b) Design log is recommended to validate EBD.

101

APPENDIX

1.1 Overview of environment-based design

Environment-based design (EBD) is a design methodology derived from the axiomatic

theory of design modeling [40, 41]. Unlike the traditional design methodologies, the

EBD is based on the recursive logic of design. It provides guidance for designers from

the collection of necessary and sufficient information for a design task throughout the

generation and evaluation of design solutions.

The EBD includes three basic activities: environment analysis, conflict identification,

and solution generation. These three activities are interdependent and they work together

to generate and refine the design specifications and design solutions. In the following

sections, the recursive object model (ROM), a part of the EBD theory, will be first

introduced [40, 42, 43]. This is followed by the discussion of the three basic activities

sequentially.

1.2 Recursive object model

102

1.2.1 Mathematical foundation

The axiomatic theory of design modeling is a logical tool used to represent and reason

about object structures [41]. It is a formal approach for the development of design

theories following logical steps based on mathematical concepts and axioms. The basic

concepts of the universe and object and relation relies on two axioms: (1) Everything in

the universe is an object; (2) There are relationships between objects.

On the basis of the axiomatic theory of design modeling, structure operation is

developed to model the structure of complex objects. Structure operation () is defined

by the union () of an object and the interaction () of the object with itself [41].

Where O is the structure of an object O, everything in the universe can be viewed as

an object. Interactions between objects are also objects. Hence, structure operation

allows us to represent a hierarchical system with a single mathematical expression.

Suppose an object O is composed of m sub objects Oi (i＝1, 2, …, m). O can be

represented as follows:

where m is a finite natural number. Based on Eqs. (1) and (2), the structure of the object

O can be expanded as:

103

The above equations imply a recursive representation of an object.

Due to the capacity of human cognition and the scope of applications, the idea of a

primitive object is introduced. A primitive object, denoted by
a

iO
, is an object that

cannot or need not be further decomposed.

The object O may include other objects, suggesting that Eq. (1) is a recursive

representation of an object.

1.2.2 ROM: graphical representation of a natural language

The recursive object model (ROM) is a part of the EBD theory. It is a simple graphic

language used as an intermediate medium between natural language and structured

modeling language [40, 42, 43]. As shown in Table 1, the ROM is composed of five

basic elements, including two kinds of objects and three kinds of relationships [42].

104

Table 1 Symbols used in ROM[42].

Constraints (), represented by an arrow with a dotted head in Table 1, is a descriptive,

limiting, or particularizing relation of one object to another. The arrow for the symbol

representing constraints always points to the object to be constrained. A constraint

relation can be considered as an interaction from the constraining object Oi to the

constrained object Oj.

Connection relation () is defined as the connection of two objects that do not constrain

each other. It can be considered as the interaction of one object Oi with another object

Oj.

105

Predicate relation () is the relation representing an act of an object on another or

representing the state of an object. It can be view as the interaction of one object Oi with

another object Oj.

Based on the ROM theory, each paragraph is composed of sentences. Each sentence

consists of phrases. Each phrase can be decomposed into words, which can be taken as

the primitive objects. Paragraphs, sentences and phrases are compound objects. The

ROM theory says that each word in a sentence is an object and each object may have

one or more relations to other objects. Furthermore, each sentence is also an object and

has a relation to other sentences in the paragraph.

1.2.3 ROMA: translation of natural language to ROM diagram

The ROM has been shown to be useful and applicable to many different problems.

Based on the ROM theory, a software system, ROMA, has been developed to support

the transformation of natural language into ROM diagrams[42]. The input of the ROMA

system is a paragraph of text and the output is the corresponding ROM diagrams. Most

of grammatically correct complex and simple sentences can be handled by the software.

The user interface feature of the software system allows users to interact with the

generated ROM diagrams and thus any problems produced during the transformation

process can be corrected in a user-friendly manner. This software allows designers to

generate ROM diagram much faster and therefore saves time in the design process.

106

1.3 Formulization of design requirements

As shown previously, the ROM diagram is a graphic representation of natural language.

The ROM has been proposed as a general methodology for the process of formalizing

design requirements [40, 42]. Based on the foundation of ROM theory, a product system

can be defined as the structure of an object () which includes a product (S) and its

environment (E)[40]. The product can be a software package, a process, an idea and so

on. Except for the product itself, everything else can be considered as an environment,

which can be direct, close and remote[44]. According to the properties, the environment

can also be divided into three kinds: natural, built, and human[40] .Built environments

are the artifacts designed and created by human beings whereas the human environment

includes all of the human beings but particularly the human users of an artifact.

where is the object that is included in any object.

On the basis of the structure operation defined in Eqs. (1)-(3), the product system can be

expressed as follows:

where E and S are structures of the environment and product, respectively. E S

and SE are the interactions between the environment and product.

Figure 1 shows the product system[40]. Since both the environment and the product may

107

have components, the structures of the environment and product can be further

decomposed into the subcomponents and their mutual interactions. Therefore, Eq. (9)

represents the recursive structure of a product system.

Figure 1 Product system[40]

Figure 2 shows the evolution of the design process[40]. The evolution of the design

process shows that any previously generated design concept can be viewed as an

environment component for the succeeding design. Thus, a new state of the design

consists of the structure of the old environment (Ei) and the newly generated design

concept[45] which is a partial design solution.

Figure 2 Evolution of the design process[40]

108

The recursive logic of design indicates that during the design process design knowledge

provides the basis for the generation and evaluation of design solutions and that the

design knowledge used for the current design is determined by the design solutions.

The formula of the engineering system can be derived from the natural language

requirement using ROM. The formulization process for the design requirements is

shown in Figure 3[43].

Figure 3 Formulization process of design requirements[43]

109

1.4 Environment analysis

The objective of environment analysis is to find out the key environment components, in

which the desired product works, and the relationships between the environment

components. The environment can be divided into natural, built and human based on the

properties or divided into close and remote based on their importance for the product

[40]. From the environment implied in the design problem described by the customers,

the designer will introduce extra environment components that are relevant to the design

problem at hands. The results from this analysis constitute an environment analysis. One

of the key methods for environment analysis is linguistic analysis. There are two types

of questions to be asked in environment analysis. These questions are generated by

ROM.

The first types of questions to be asked is generic questions, which are used to help

designers better understand the design problem through the ROM linguistic analysis. As

shown in Figure 4, each object in a ROM diagram is analyzed as a center object or a

constraining object which will be further identified or clarified.

110

Figure 4 Asking the generic questions[46]

Table 2.2 gives two rules for asking a question. These rules can be applied to determine

which objects should be extended first.

Table 2 Rules for generic questions [46]

Rule 1 Before an object can be further defined, the objects constraining them

should be defined.

Rule 2 An object with the most undefined constraints should be considered first.

111

The second type of questions is the domain specific questions. The main aim of domain

questions is to collect the information that would have a significant influence on the

design problem. The collected information consists of the domain-related environment

components, as well as their relationships that are defined without the knowledge about

design requirements and final solutions. Table 3 shows rules for asking domain-specific

questions and Figure 5 shows the main procedure for asking domain specific questions.

Table 3 Rules for asking domain-specific questions[46]

Rule 3 First to ask: what is the life cycle of the product to be designed?

Rule4 Ask questions about the natural, built, and human environment about each

state of the lifecycle of the product.

Rule 5 The sequence for asking questions is determined by the levels of

requirements in the EBD process so that those requirements at the lower

levels have higher priority and can be asked earlier.

Rule 6 Ask questions about the answers from Rule 1 and Rule 2 by applying the

rules related to generate generic questions.

112

Figure 5 Ask domain-specific questions [46]

1.5 Conflict identification

Conflict identification aims at identifying undesired conflicts between environment

relationships. A conflict consists of three elements: two competing objects and one

resource object which the former two objects contend for [47] . Conflicts are viewed as

the driving force in the EBD process. Table 4 shows three rules for the identification of

potential conflicts from a ROM diagram. These rules are not inclusive and are complete.

More robust rules need to be developed.

113

Table 4 Rules for identifying potential conflicts[12]

Rule 1 If an object has multiple constraints, then potential conflict exists between

any pair of constraining objects.

Rule 2 If an object has multiple predicate relations from other objects, then

potential conflict exists between a pair of those predicate relations.

Rule 3 If an object has multiple predicate relations to other objects, then a

potential conflict exists between a pair of those predicate relations.

1.6 Solution generation

The main goal of the design solutions is to meet the requirements. By generating some

design solutions, a set of key environment conflicts will be chosen and resolved at this

step. The newly generated solution becomes a part of the new product environment for

the succeeding design. This process continues until no more undesired environment

conflicts exist.

114

1.7 Relationships between the three activities of

EBD

As previously mentioned, the EBD can be divided into three activities: environment

analysis, conflict identification and solution generation. These three activities work

together to update design specifications and design solutions (Figure 7). The design

process continues until no more undesired conflicts exist in the environment.

Figure 7 EBD: process model [36]

115

Bibliography

1. Marwedel, P., Embedded system design, 2006, Springer: The Netherlands. p. 1-

12.

2. Akin, Ö. and C. Akin, On the process of creativity in puzzles, inventions, and

designs. Automation in Construction, 1998. 7(2-3): p. 123-138.

3. Wikipedia Schematic http://en.wikipedia.org/wiki/Schematic 2011.

4. Wikipedia Printed circuit board

http://en.wikipedia.org/wiki/Printed_circuit_board. 2011.

5. Dubey, R., Introduction to embedded system design using field programmable

gate arrays, 2009, Springer: London. p. 1-16.

6. Coombs, C.F., Printed circuits handbook. 6th ed ed2008, New York: McGraw-

Hill.

7. Wikipedia, Boot loader http://en.wikipedia.org/wiki/Booting. 2011.

8. Wikipedia, kernel http://en.wikipedia.org/wiki/Kernel_%28computing%29. 2011.

9. Wikipedia, device driver http://en.wikipedia.org/wiki/Device_driver. 2011.

10. Wikipedia, Root File System http://en.wikipedia.org/wiki/File_system. 2011.

11. Wikipedia, application http://en.wikipedia.org/wiki/Application_software. 2011.

12. Zeng, Y. Environment-based design (EBD). in the ASME 2011 International

Design Engineering Technical Conferences & computers and Information in

Engineering Conference. 2011. Washinton, DC, USA.

13. Peter, K., Design methodology and the nature of technical artefacts. Design

Studies, 2002. 23(3): p. 287-302.

116

14. Jones, J.C., and D.G. Thornley, ed. Conference on design methods. 1963,

Pergamon Press: Oxford.

15. Cross, N., Science and design methodology: a review. Research in Engineering

Design, 1993. 5: p. 63-69.

16. Dowty, M., Test Driven Development of Embedded Systems Using Existing

Software Test Infrastructure, in In Colorado Undergraduate Space Research

Symposium2004: University of Colorado at Boulder.

17. Altizer, B. and B. Consulting Toward A Methodology For Platform-Based Design

of Embedded Systems

http://www.basysconsulting.com/BASYSPubs/BASYS_PBD_White_Paper.pdf.

2002.

18. L.P, B. Businessweek "Inside Intel" January 9,2006.

19. Sangiovanni-Vincentelli, A. and G. Martin, Platform-based design and software

design methodology for embedded systems. Design & Test of Computers, IEEE,

2001. 18(6): p. 23-33.

20. Keutzer, K., et al., System-level design: orthogonalization of concerns and

platform-based design. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 2000. 19(12): p. 1523-1543.

21. Sander, I. Platform-Based Design of Heterogeneous Embedded Systems

http://www.snart.org/docs/2009/Ingo_handouts_RTiS2009.pdf. Aug,19,2009.

22. Camposano, R. and J. Wilberg, Embedded system design. Design Automation for

Embedded Systems, 1996. 1(1): p. 5-50.

117

23. De Michell, G. and R.K. Gupta, Hardware/software co-design. Proceedings of the

IEEE, 1997. 85(3): p. 349-365.

24. Ernst, R., J. Henkel. Hardware-software co-design of embedded controllers based

on hardware extraction. in Handouts of the workshop on Hardware-Software Co-

Design. 1992.

25. Adams, K., H. Schmitt, and D. Thomas. A model and methodology for hardware-

software codesign. in International Workshop on Hardware-Software Codesign

1993. Cambridge, Massaschusetts.

26. Wolf, W.H., Hardware-software codesign of embedded systems. Proceedings of

the IEEE, 1994. 82(7): p. 967-998.

27. Abid, M., T.B. Ismail, A. Changuel, C.A. Valderrama, M. Romdhani, G.F.

Marchioro, J.M. Daveau, and A.A. Jerraya, Hardware/software co-design

methodology for design of embedded systems. Integrated Computer-Aided

Engineering, 1998. 5(1): p. 69-83.

28. Wolf, P.v.d., et al., Design and programming of embedded multiprocessors: an

interface-centric approach, in Proceedings of the 2nd IEEE/ACM/IFIP

international conference on Hardware/software codesign and system

synthesis2004, ACM: Stockholm, Sweden. p. 206-217.

29. Alfaro, L.d. and T.A. Henzinger, Interface Theories for Component-Based

Design, in Proceedings of the First International Workshop on Embedded

Software2001, Springer-Verlag. p. 148-165.

30. Nicolescu, G., P.J. Mosterman, Model-based design for embedded systems2010,

Boca Raton, FL: CRC Press.

118

31. Schattkowsky, T., W. Muller, Model-based design of embedded systems.

Proceedings of the Seventh IEEE International Symposium on Object-Oriented

Real-Time Distributed Computing, 2004.

32. Daniel D. Gajski , S.A., Andreas Gerstlauer , Gunar Schirner, Embedded system

design2009, Irvine, CA ,U.S.A & Austin, TX, U.S.A: Springer Dordrecht

Heidelberg London New York. 352.

33. Sangiovanni-Vincentelli, A., M. Sgroi and L. Lavagno,, Formal models for

communication based design.

34. Kienhuis, B., E. Deprettere, K. Vissers, and P. van der Wolf. An approach for

quantitative analysis of application-specific dataflow architectures. in

Proceedings of Eleventh International conference of applications-specific

systems, Architectures and Processors (ASAP’97). 1997. Zurich, Switzerland.

35. Kienhuis, B., E.F. Deprettere, P. van de Wolf, and K. Vissers, A methodology to

design programmable embedded systems-The Y-char approach. Embedded

Processor Design challengers: Systems, Architectures, Modeling, and Simulation-

SAMOS 2002: p. 18-37.

36. Chen, M., Chen, Z., Kong, L., Zeng, Y., Analysis of medical devices design

requirements. Journal of Integrated Design and Process Science, 2005: p. 61-70.

37. Chen, Z.Y., Zeng, Y., Classification of product requirements based on product

environment. Concurrent Engineering, 2006. 14(3): p. 219-230.

38. Standish, http://www.it-cortex.com/Stat_Failure_Rate.htm, 1995

39. Wang, M. and Y. Zeng, Asking the right questions to elicit product requirements.

Int. J. Comput. Integr. Manuf., 2009. 22(4): p. 283-298.

119

40. Zeng, Y., Environment-based formulation of design problem. Transaction of

SDPS: Journal of Integrated Design and Process Science, 2004. 8(4): p. 45-63.

41. Zeng, Y., Axiomatic theory of design modeling. Transaction of SDPS: Journal of

Integrated Design and Process Science, 2002. 6(3): p. 1-28.

42. Zeng, Y., Recursive object model (ROM)-modeling of linguistic information in

engineering design. Computers in Industry, 2008. 59(6): p. 612-625.

43. Zeng, Y., Formalization of design requirements. in: Integrated Design of Process

Technologies (IDPT-2003), 2003.

44. Hubka, V.a.E., W.E, Theory of technical systems: A total concept theory for

engineering design1988: Spring-Verlag.

45. Blessing, L.T.S., Chakrabarti, A., DRM, a Design Research Methodology2009,

London: Springer.

46. Wang, M., Zeng, Y., Asking the right questions to elicit product requirements.

International Journal of Computer Integrated Manufacturing, 2009. 22(4): p. 283-

298.

47. Yan, B., Zeng, Y. On the structure of design conflicts. in The 12th World

Conference on Integrated Design & Process Technology. 2009. Alabama, USA.

