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ABSTRACT
There is an alarming increase in the number of cyber-crime
incidents through anonymous e-mails. The problem of e-
mail authorship attribution is to identify the most plausi-
ble author of an anonymous e-mail from a group of poten-
tial suspects. Most previous contributions employed a tradi-
tional classification approach, such as decision tree and Sup-
port Vector Machine (SVM), to identify the author and stud-
ied the effects of different writing style features on the classi-
fication accuracy. However, little attention has been given on
ensuring the quality of the evidence. In this paper, we intro-
duce an innovative data mining method to capture the write-
print of every suspect and model it as combinations of fea-
tures that occurred frequently in the suspect’s emails. This
notion is called frequent pattern, which has proven to be
effective in many data mining applications, but it is the first
time to be applied to the problem of authorship attribution.
Unlike the traditional approach, the extracted write-print by
our method is unique among the suspects and, therefore,
provides convincing and credible evidence for presenting it
in a court of law. Experiments on real-life e-mails suggest
that the proposed method can effectively identify the author
and the results are supported by a strong evidence.

Keywords
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1. INTRODUCTION
E-mail is one of the most widely used way of writ-

ten communication over the Internet, and its traffic
has increased exponentially with the advent of world
wide web. Trillions of business letters, financial trans-
actions, governmental orders and friendly messages are
exchanged through e-mail system each year. The in-
crease in e-mail traffic comes also with an increase in the
use of e-mails for illegitimate purposes [18]. Phishing,
spamming, e-mail bombing, threatening, cyber bully-
ing, racial vilification, child pornography, and sexual

harassments are common examples of e-mail abuses.
Terrorist groups and criminal gangs are using e-mail
systems as a safe channel for their communication. E-
mail is also abused for committing infrastructure crimes
by transmitting worms, viruses, trojan horses, hoaxes
and other malicious executables over the Internet. In
many misuse cases, the criminals attempt to hide their
true identity. Likewise, in phishing, a person may try to
impersonate a manager or a financial adviser to obtain
clients’ secret information.

E-mail systems are inherently vulnerable to misuse
for three main reasons. First, an e-mail can be spoofed
and the meta data contained in its header about the
sender and the path along which the message has trav-
elled can be forged or anonymized. An e-mail can be
routed through anonymous e-mail servers to hide the in-
formation about its origin. Second, e-mail systems are
capable of transporting executables, hyperlinks, trojan
horses, and scripts. Third, the Internet including e-
mail services are accessible through public places, such
as net cafes and libraries, which further deteriorates the
anonymity issue. Presently, there is no adequate proac-
tive mechanism to prevent e-mail misuses, and merely
installing filters and firewalls are insufficient. In this
situation, forensic e-mail analysis with special focus on
authorship attribution can help prosecute the offender
of e-mail misuse by means of law [18].

The problem of authorship attribution in the context
of e-mail forensics can be described as follows: A cyber
forensic investigator wants to determine the author of
a given malicious e-mail µ and has to identify that the
author is likely to be one of the suspects {S1, · · · , Sn}.
The problem is to identify the most plausible author
from the suspects {S1, · · · , Sn} and to gather convinc-
ing evidence to support the finding in a court of law. In
forensic science, an individual can be uniquely identi-
fied by his/her fingerprint. Similarly, in cyber forensics,
an investigator would like to identify the “write-print”
of an individual from his/her e-mails and use it for au-
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thorship attribution. The key question is:

What exactly are the patterns that can represent the
write-print of an individual?

Our insight is that the write-print of an individual is
the combinations of features that occur frequently in
his/her written e-mails. The commonly used features
are lexical, syntactical, structural and content-specific
attributes (see Section 2.1). By matching the write-
print with the malicious e-mail, the true author can be
identified. Most importantly, the matched write-print
should provide credible evidence for supporting the con-
clusion. The research community [6][18][23] has devoted
a lot of efforts in studying stylistic and structural fea-
tures individually, but very few of them has studied the
combinations of features that form a write-print and
addressed the issue of evidence gathering.

The classification models employed in previous con-
tributions on authorship attribution has two broad cat-
egories: Decision tree (C4.5) [17] and Support Vector
Machine (SVM) [5]. While building a decision tree, a
decision node is constructed by simply considering the
local information of one attribute, therefore, it fails to
capture the combined effect of several features. In con-
trast, SVM avoids such problem by considering all fea-
tures when a hyperplane is created. However, SVM is
a like a blackbox function which takes some input (the
malicious e-mail) and provides an output (the author).
It fails to provide intuitive explanation of how it arrives
to a certain conclusion. Therefore, SVM may not be
the best choice in the context of e-mail forensic investi-
gation, where collecting credible evidence is one of the
primary objectives.

In this paper, we are introducing a novel approach
of authorship attribution in which the unique write-
print of every suspect is extracted. These write-prints
are used to identify the true author of a disputed e-
mail, and to gather convincing and credible evidence
to support the finding. To concisely model the write-
print of an individual, we borrow the concept of frequent
pattern (a.k.a. frequent itemset) [2] from data mining
to capture the combinations of features that frequently
occurred in an individual’s e-mails. Frequent pattern
mining has been proven to be a very successful data
mining technique for finding hidden patterns in DNA
sequences, customer purchasing habits, security intru-
sions, and many other applications of pattern recogni-
tion. To the best of our knowledge, this is the first
paper introducing the concept of frequent pattern to
the problem of authorship attribution.

Figure 1 depicts an overview of our proposed method.
We first extract the set of frequent patterns indepen-
dently from the e-mails Ei written by suspect Si. Though
the set of frequent patterns captures the writing style
of a suspect Si, it is inappropriate to use all the fre-
quent patterns to form the write-print of a suspect Si
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Figure 1: Mining write-print WP (E2) of S2

because an other suspect, say Sj , may share some com-
mon writing patterns with Si. Therefore, it is crucial to
filter out the common frequent patterns and identify the
unique patterns that can differentiate the writing style
of a suspect from that of others. These unique patterns
form the write-print of a suspect. This approach has
the following merits that are not found in most of the
existing works.

• Justifiable evidence: The write-print, represented
as a set of unique patterns, is extracted from the
e-mails of a particular suspect. Our method guar-
antees that the identified patterns are frequent in
the e-mails of one suspect only, and are not fre-
quent in others’ emails. It will be difficult for the
accused suspect to deny the validity of the find-
ings. The results obtained are traceable, justifi-
able, and can be presented quantitatively with a
statistical support.

• Flexible writing styles: The frequent patterns min-
ing technique can adopt all four types of com-
monly used writing style features (described in
Section 2.1). This flexibility is important for de-
termining the combined effect of different features.
This is much more flexible than the traditional de-
cision tree, which primarily relies on the nodes at
the top of the tree to differentiate the writing styles
of all suspects.

• Features optimization: Unlike the traditional ap-
proaches where it is hard to determine the contri-
bution of each feature in the authorship attribu-
tion process [7], the proposed technique is based
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on the distinctive patterns, which are the combi-
nation of features. The support associated to each
pattern in the write-print set determines the con-
tribution of each pattern.

• Generic application: The dataset used in most
of the existing techniques are constrained by the
number, size and topic of e-mails. Our experi-
ments on the real-life data, the Enron e-mail cor-
pus, suggest that the proposed approach is very
robust to these factors. This is crucial for the ap-
plication in real world investigations.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the previous contributions. Section 3
formally defines the problem and the notions of write-
print. Section 4 describes our proposed approach. Sec-
tion 5 evaluates our proposed method on real-life e-mail
dataset. Section 6 concludes the paper.

2. RELATED WORK
Most previous contributions on authorship attribu-

tion are applications of text classification analysis [6].
The process starts by identifying a set of writing style
features of a person that are relatively common in most
of his works. A classifier is trained on the collected writ-
ing style features to build a model, which is then used to
classify the disputed e-mail to the most plausible author
among the suspects. In this section, we review the com-
monly employed writing style features and summarize
the techniques of e-mail authorship attribution, found
in the literature of authorship attribution.

2.1 Writing Style Features
There is no pre-defined set of features that can be

used to differentiate the writing styles of different sus-
pects. The writing patterns usually contain the charac-
teristics of words usage, words sequence, composition
and layouts, common spelling and grammatical mis-
takes, vocabulary richness, hyphenation and punctua-
tion. Abbasi and Chen [1] presented a comprehensive
analysis on the stylistics features. Below, we provide a
summary of the common writing style features, namely,
lexical, syntactical, structural and content-specific at-
tributes.

Lexical Features are the characteristics of both char-
acters and words or tokens. In terms of characters, for
instance, frequency of letters, frequency of capital let-
ters, total number of characters per token and char-
acter count per sentence, are the most relevant met-
rics. Word-based lexical features may include word
lengths distribution, words per sentence, and vocabu-
lary richness. Initially, researchers thought that vocab-
ulary richness [20][21] and word usage [12] are discrim-
inating features to be used for authorship attribution.
Syntactic Features include the distribution of function

words (such as “upon”, “thus”, “above”) and punc-
tuation play a significant role in authorship attribu-
tion [3][13][19]. Structural Features are used to measure
the overall layout and organization of text within docu-
ments. For instance, average paragraph length, number
of paragraphs per document, presence of greetings and
their position within the e-mail are common structural
features. Moreover, the presence of sender signature
including his contact information is one of the special
structural feature of e-mail documents. Content-specific
Features are collection of certain key-words commonly
found in a specific domain and may vary from context
to context even for the same author. Zheng et al. [23]
used 11 keywords from the cybercrime taxonomy in au-
thorship analysis experiments.

2.2 E-mail Authorship Analysis
Authorship analysis has been very successful in re-

solving authorship attribution disputes over literary and
conventional writings [16]. However, e-mail authorship
attribution poses some special challenges due to its spe-
cial characteristics of size and composition, as compared
to literary works [7]. Literary documents are usually
large in size comprising of (at least) several paragraphs
and have a definite syntactic and semantic structure.
In contrast, e-mails are short in size and usually do not
follow definite syntactic or grammatical rules, therefore,
it is hard to learn from them about the writing patterns
of their author. Ledger and Merriam [15], for instance,
established that authorship analysis results would not
be significant for texts containing less than 500 words.
Moreover, e-mails are more interactive and informal in
style, and people are not couscous about the spelling
and grammatical mistakes particularly in informal e-
mails. Therefore, techniques which are very successful
in literary and traditional works are not applicable in
the e-mail authorship attribution.

Teng et al. [18] and De Vel et al. [6] applied sup-
port vector machine (SVM) classification model over
a set of stylistic and structural features for e-mail au-
thorship attribution. De Vel et al. [8] and Corney et
al. [4] performed extensive experiments and found that
the classification accuracy decreases when the size of
training set decreases, the number of authors increases,
or the length of documents decreases. Recently, Zheng
et al. [23][24] used a comprehensive set of lexical, syn-
tactical and structural features including 10-11 content-
specific keywords. Van Halteren [10] used the same set
of linguistic features for authorship attribution of class
essays. De Vel et al. [6] further found that by increas-
ing the number of function words from 122 to 320, the
performance of SVM worsened, which weakens the ar-
gument that SVM supports high dimensionality. This
result also illustrates that adding more features does
not necessarily improve the accuracy. In contrast, in
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this paper we focus on identifying the combinations of
key features that can differentiate the writing style of
different suspects and filtering out the useless features
that do not contribute towards the goal of authorship
attribution.

In the current literature, each type of the four fea-
tures sets is applied independently from the other, which
may otherwise produce different results [6]. For instance
the word usage and composition style may vary from
one structural pattern to another. In our approach,
the write-prints could be the combination of all the
four types of writing style features. Moreover, the cur-
rent literature of authorship attribution suffers from the
problem of having too many features. It is difficult to
determine the set of features that should be used for a
given set of e-mails. Previous research [6] has shown
that adding useless features may decrease the accuracy
because a classifier may capture the useless features as
noise. Using those noisy features for classification di-
minishes the justification of evidence for supporting the
finding. Some studies identify some particular useful
style markers, but the identified style markers are data
dependent and may not be applicable to other data sets.
Our approach overcomes this limitation by flexibly ex-
tracting the evidence (combinations of frequently oc-
curred features) from the data itself, provided. The
insignificant noisy features are filtered out.

3. PROBLEM STATEMENT
Let {S1, · · · , Sn} be the set of suspected authors of

a malicious e-mail µ. We assume that there is a col-
lection of e-mails, denoted by Ei, for each suspect Si ∈
{S1, · · · , Sn}. The problem of authorship attribution is
to identify the most plausible author Sa, from the sus-
pects {S1, · · · , Sn}, whose collection of e-mails Ea has
the “best match” with the patterns in the malicious e-
mail µ. Intuitively, a collection of e-mails Ei matches µ
if Ei and µ share similar patterns of vocabulary usage,
structural and/or stylometric features. The primary ob-
jective of a cyber forensic investigator is to precisely ex-
tract the patterns of each suspect, so she can use such
patterns to identify the author of the malicious e-mail
µ and present such patterns as evidence to support her
finding.

What are the patterns that can represent the “write-
print” of a suspect Si? Specifically, we want to extract
the patterns that uniquely represent the writing style
of a suspect Si, but does not represent the writing style
of any other suspect Sj , where i 6= j. In the rest of
this section, we discuss the pre-processing of features
and formally define the notions of frequent pattern and
write-print.

3.1 Pre-Processing
Let Ei be a collection of e-mails written by suspect

Si ∈ {S1, · · · , Sn}. First, we extract the features from
each e-mail in Ei. In the rest of this section, the term
“feature” refers to either a stylometric feature described
in Section 2.1 or a word appearing in the e-mails. The
spaces, punctuation, special characters and blank lines
are removed. Next, we discretize each normalized word
frequency into a set of intervals, for example, [0-0.25],
(0.25-0.5], (0.5-0.75], (0.75-1]. Each interval is called a
feature item. The normalized feature frequency is then
matched with these intervals. Then assign value 1 to
the feature item if the interval contains the normal-
ized feature frequency; otherwise assign value 0. This
will simplify the procedure by determining the presence
or absence of a pattern. Common discretization tech-
niques are:

• Equal-width discretization, where the size of each
interval is the same.

• Equal-frequency discretization, where each interval
has approximately the same number of records as-
signed to it.

• Clustering-based discretization, where clustering is
performed on the distance of neighboring points.

Example 3.1. Consider Table 1, which contains 10
e-mails. We extracted three features {A,B,C} from the
10 e-mails. We first discretize each feature into feature
items. For example, a stylometric feature A having a
normalized range of [0, 1] can be discretized into four in-
tervals A1 = [0, 0.25], A2 = (0.25, 0.5], A3 = (0.5, 0.75],
A4 = (0.75, 1], representing four feature items. Simi-
larly, features B and C are discretized into B1 = [0, 0.5],
B2 = (0.5, 1], C1 = [0, 0.5], and C2 = (0.5, 1]. An
e-mail ε1 having features A = 0.3, B = 0.25, and
C = 0.25 can be represented as feature vector 〈 0, 1,
0, 0, 1, 0, 1, 0 〉.
3.2 Frequent Pattern

Intuitively, the “writing pattern” or the “writing style”
in an ensemble of e-mails Ei (written by suspect Si) is
a combination of feature items that frequently occurs
in Ei. We concisely model and capture such frequently
occurred patterns by the concept of frequent itemset [2]
described as follows.

Let U = {f1, · · · , fm} denote the universe of all fea-
ture items. Let Ei be a set of e-mails where each e-
mail ε is represented as a set of feature items such that
ε ⊆ U . An e-mail ε contains a feature item fi if the
numerical feature value of the e-mail ε falls within the
interval of fi. For example, e-mail ε1 in Table 1 can be
represented as a set of feature items ε1 = {A2, B1, C1}.
Table 2 shows the 10 e-mails from Table 1 in this for-
mat.

Let F ⊆ U be a set of feature items called an pattern.
An e-mail ε contains a pattern F if F ⊆ ε. A pat-
tern that contains k feature items is a k-pattern. For
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Feature A Feature B Feature C
E-mail A1 A2 A3 A4 B1 B2 C1 C2

ε1 0 1 0 0 1 0 1 0
ε2 0 1 0 0 1 0 1 0
ε3 0 1 0 0 1 0 1 0
ε4 1 0 0 0 1 0 1 0
ε5 0 0 0 1 1 0 1 0
ε6 0 0 1 0 0 1 0 1
ε7 0 0 0 1 1 0 0 1
ε8 0 0 1 0 0 1 0 1
ε9 0 1 0 0 1 0 0 1
ε10 1 0 0 0 1 0 0 1

Table 1: Feature Vectors

E-mail
ε1 = {A2, B1, C1}
ε2 = {A2, B1, C1}
ε3 = {A2, B1, C1}
ε4 = {A1, B1, C1}
ε5 = {A4, B1, C1}
ε6 = {A3, B2, C2}
ε7 = {A4, B1, C2}
ε8 = {A3, B2, C2}
ε9 = {A2, B1, C2}
ε10 = {A1, B1, C2}

Table 2: Feature Items

example, the pattern F = {f1, f4, f6} is a 3-pattern.
The support of a pattern F is the percentage of e-mails
in Ei that contains F . A pattern F is a frequent pat-
tern in a set of e-mails Ei if the support of F is greater
than or equal to some user-specified minimum support
threshold.

Definition 3.1 (Frequent pattern). Let Ei be
the set of e-mails written by suspect Si. Let support(F |Ei)
be the percentage of e-mails in Ei that contain the pat-
tern F , where F ⊆ U . A pattern F is a frequent pattern
in Ei if support(F |Ei) ≥ min sup, where the minimum
support threshold min sup is a real number in an in-
terval of [0, 1].

The writing pattern of a suspect Si is represented
as a set of frequent patterns, denoted by FP (Ei) =
{F1, · · · , Fk}, extracted from his/her e-mails Ei.

Example 3.2. Consider Table 2. Suppose the user-
specified threshold min sup = 0.3, which means that a
pattern F = {f1, · · · , fk} is frequent if at least 3 out of
the 10 e-mails contain all feature items in F . {A1} is
not a frequent pattern because it has support 2/10=0.2.
{A2} is a 1-frequent pattern because it has support 0.4.

{A2, B1} is a 2-frequent pattern because it has support
0.4. {A2, B1, C1} is a 3-frequent pattern because it has
support 0.3. Example 4.1 will show how to efficiently
compute all frequent patterns.

3.3 Write-Print
In forensic science, an individual can be uniquely

identified by his/her fingerprint. In cyber forensics,
can we identify the “write-print” of an individual from
his/her e-mails? We do not claim that the identified
write-print in this paper can uniquely distinguish every
individual in the world, but the identified write-print is
accurate enough to uniquely identify the writing pat-
tern of an individual among the suspects {S1, · · · , Sn}
because common patterns among the suspects are fil-
tered out and will not become part of the write-print.

The notion of frequent patterns in Definition 3.1 cap-
tures the writing pattern of a suspect. However, two
suspects Si and Sj may share some similar writing pat-
terns. Therefore, it is important to filter out the com-
mon frequent patterns and retain the frequent patterns
that are unique to each suspect. This leads us to the
notion of write-print.

Intuitively, a write-print can uniquely represent the
writing style of a suspect Si if its pattern is found only in
the e-mails written by Si, but not in any other suspect’s
e-mails. In other words, the write-print of a suspect Si

is a pattern F that is frequent in the emails Ei written
by Si but not frequent in the e-mails Ej written by any
other suspect Sj where i 6= j.

Definition 3.2 (Write-print). A write-print, de-
noted by WP (Ei), is a set of patterns where each pat-
tern F has support(F |Ei) ≥ min sup and support(F |Ej)
< min sup for any Ej where i 6= j, min sup is a user-
specified minimum threshold. In other words, WP (Ei) ⊆
FP (Ei), and WP (Ei)∩WP (Ej) = ∅ for any 1 ≤ i, j ≤
n and i 6= j.

Discussion: Our notion of write-print has two special

5



properties that make it different from the traditional
notion of write-print in the literature.

First, the combination of feature items that composes
the write-print of a suspect is dynamically generated
based on the embedded pattern in the e-mails. This
flexibility allows us to succinctly model the write-print
of different suspects by using different combinations of
feature items. In contrast, the traditional notion of
write-print considers one feature at a time without con-
sidering the combinations.

Second, every frequent pattern F in our notion of
write-print captures a piece of writing pattern that can
be found only in one suspect’s emails, but not in any
other suspects’ e-mails. The cyber forensic investigator
could precisely point out such matched patterns in the
malicious e-mail to support her conclusion of author-
ship identification. In contrast, the traditional classi-
fier, e.g., decision tree, attempts to use the same set
of features to capture the write-print of different sus-
pects. It is quite possible that the classifier would cap-
ture some common writing patterns and the investiga-
tor could unintentionally use those common patterns to
draw the wrong conclusion of authorship. Our notion of
write-print avoids such problem and, therefore, provides
more convincing and reliable evidence.

3.4 Refined Problem Statement
The problem of authorship attribution can be refined

into three subproblems: (1) To identify the write-print
WP (Ei) from each set of e-mails Ei ∈ {E1, · · · , Em}.
(2) To determine the author of the malicious e-mail µ
by matching µ with each of {WP (E1), · · · , WP (Em)}.
(3) To extract evidence for supporting the conclusion on
authorship. The evidence has to be intuitive enough for
convincing the judge and the jury in the court of law.
These three subproblems summarize the challenges in
typical investigation procedure.

To solve subproblems (1) and (2), we can first ex-
tract the set of frequent patterns FP (Ei) from Ei and
then filter out the common frequent patterns that also
appear in any other sets of emails Ej . For subproblem
(3), the write-print WP (Ea) could serve the evidence
for supporting the conclusion, where Ea is the set of
e-mails written by the identified author Sa.

4. OUR METHOD
Algorithm 1 presents a novel data mining method,

called AuthorMiner, for determining the authorship of a
malicious e-mail µ from a group of suspects {S1, · · · , Sn}
based on the extracted features of their previously writ-
ten e-mails {Ei, · · · , En}. In this section, an e-mail is
represented by a set of feature items. Below, we sum-
marize the algorithm in three phases. Sections 4.1-4.3
discuss each phase in detail.

Phase 1: Mining frequent patterns (Lines 1-3). Ex-

Algorithm 1 AuthorMiner
Require: The malicious e-mail µ.
Require: A set of e-mail {E1, · · · , En}, written by

{S1, · · · , Sn}.
/* Mining frequent patterns */

1: for each Ei ∈ {E1, · · · , En} do
2: extract frequent patterns FP (Ei) from Ei;
3: end for

/* Filtering out common frequent patterns */
4: for each FP (Ei) ∈ {FP (E1), · · · , FP (En)} do
5: for each FP (Ej) ∈ {FP (Ei+1), · · · , FP (En)}

do
6: for each frequent pattern Fx ∈ FP (Ei) do
7: for each frequent pattern Fy ∈ FP (Ej) do
8: if Fx == Fy then
9: FP (Ei) = FP (Ei)− Fx;

10: FP (Ej) = FP (Ej)− Fy;
11: end if
12: end for
13: end for
14: end for
15: WP (Ei) = pattern(Ei);
16: end for

/* Identifying author */
17: highest score = −1.0;
18: for all WP (Ei) ∈ {WP (E1), · · · , WP (En)} do
19: if Score(µ ≈ WP (Ei)) > highest score then
20: highest score = Score(µ ≈ WP (Ei));
21: author = Si;
22: end if
23: end for
24: return author;

tract the frequent patterns FP (Ei) from each collection
of e-mails Ei written by suspect Si. The extracted fre-
quent patterns capture the writing pattern of a suspect.

Phase 2: Filtering common frequent patterns (Lines
4-16). Though FP (Ei) has captured the writing pat-
terns of suspect Si, FP (Ei) may contain frequent pat-
terns that are common to other suspects. Therefore,
Phase 2 is to remove the common frequent patterns.
Specifically, a frequent pattern F in FP (Ei) is removed
if any other FP (Ej) also contains F , where i 6= j.
The remaining frequent patterns in FP (Ei) form the
write-print WP (Ei) of suspect Si. When this phase
completes, we have a set of write-prints {WP (E1), · · · ,
WP (En)} of suspects {S1, · · · , Sn}. Figure 1 illustrates
that the write-print WP (E2) comes from FP (E2) and
filters out the common patterns by comparing with FP
(E1) and FP (E3).

Phase 3: Identifying author (Lines 17-24). Compare
the malicious e-mail µ with each write-print WP (Ei) ∈
{WP (E1), · · · , WP (En)} and identify the most similar
write-print that matches µ. Intuitively, a write-print
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WP (Ei) is similar to the e-mail µ if many frequent pat-
terns in WP (Ei) can be found in µ. Our insight is that
the frequent patterns are not equally important. Their
importance is reflected by their supprt(F |Ei); therefore,
we derive a score function, Score(µ ≈ WP (Ei)) to mea-
sure the weighted similarity between the e-mail µ and
the frequent patterns in WP (Ei). The suspect Sa of
write-print WP (Ea), which has the highest Score(µ ≈
WP (Ei)), is classified to be the author of the malicious
e-mail µ.

4.1 Mining Patterns (Lines 1-3)
Lines 1-3 mine the frequent patterns FP (Ei) from

each collection of e-mail Ei ∈ {E1, · · · , En}, for 1 ≤
i ≤ n}. There are many data mining algorithms for
extracting frequent patterns, for example, Apriori [2],
FP-growth [11], and ECLAT [22]. Below, we provide
an overview of the Apriori algorithm which has been
previously applied to various text mining tasks [9][14].

Apriori is a level-wise iterative search algorithm that
uses frequent k-patterns to explore the frequent (k+1)-
patterns. First, the set of frequent 1-patterns is found
by scanning the e-mail Ei, accumulating the support
count of each feature item, and collecting the feature
item f ’s that has support({f}|Ei) ≥ min sup. The
resulting frequent 1-patterns is then used to find fre-
quent 2-patterns, which is then used to find frequent 3-
patterns, and so on, until no more frequent k-patterns
can be found. The generation of frequent k + 1-pattern
from frequent k-patterns is based on the following Apri-
ori property.

Property 4.1 (Apriori property). All nonempty
subsets of a frequent pattern must also be frequent.

By definition, a pattern F ′ is not frequent if support
(F ′|Ei) < min sup. The above property implies that
adding a feature item f to a non-frequent pattern F ′

will never make it more frequent. Thus, if a k-pattern
F ′ is not frequent, then there is no need to generate
(k+1)-pattern F ′∪f because F ′∪f is also not frequent.
The following example shows how the Apriori algorithm
exploits this property to efficiently extract all frequent
patterns. Refer to [2] for a formal description.

Example 4.1. Consider Table 2 with min sup = 0.3.
First, identify all frequent 1-patterns by scanning the
database once to obtain the support of every item. The
items having support ≥ 0.3 are frequent 1-patterns, de-
noted by L1 = {{A2}, {B1}, {C1}, {C2}}. Then, join
L1 with itself, i.e. L1 1 L1, to generate the candidate
set C2 = {{A2, B1}, {A2, C1}, {A2, C2}, {B1, C1},
{B1, C2}, {C1, C2}} and scan the database once to
obtain the support of every pattern in C2. Identify
the frequent 2-patterns, denoted by L2 = {{A2, B1},
{A2, C1}, {B1, C1}, {B1, C2}}. Similarly, perform L2 1

L2 to generate C3 scan the database once to identify the
frequent 3-pattern which is L3 = {{A2, B1, C1}}. The
finding of each set of frequent k-patterns requires one
full scan of the e-mail feature items in Table 2.

4.2 Filtering Common Patterns (Lines 4-16)
This phase filters out the common frequent patterns

among {FP (E1), · · · , FP (En)}. Lines 4-16 in Algo-
rithm 1 describe the filtering procedure. The general
idea is to compare every frequent pattern Fx in FP (Ei)
with every frequent pattern Fy in all other FP (Ej),
and to remove them from FP (Ei) and FP (Ej) if Fx

and Fy are the same. The computational complexity of
this step is O(|FP (E)|n) where |FP (E)| is the number
of frequent patterns in FP (E) and n is the number of
suspects. The remaining frequent patterns in FP (Ei)
form the write-print WP (Ei) of suspect Si.

Example 4.2. Suppose there are three suspects S1,
S2, and S3 having three sets of e-mails E1, E2, and E3

respectively, as depicted in Figure 1. Let FP (E1) =
{{A1}, {B1}, {C2}, {A1, B1}, {A1, C2}, {B1, C2},
{A1, B1, C2}} be the frequent patterns of S1. Let FP (E2)
= {{A2}, {B1}, {C1}, {C2}, {A2, B1}, {A2, C1}, {B1,
C1}, {B1, C2}, {A2, B1, C1}} be the set of frequent
patterns from Example 4.1 of S2. Let FP (E3) = {{A1},
{B3}, {C2}, {A1, B3}, {A1, C2}, {B3, C2}, {A1, B3,
C2}} be the set of frequent patterns of S3. Then, we
discard {A1}, {B1}, {C2}, {A1, C2}, {B1, C2} because
more than one set of frequent patterns contains them.
The remaining frequent patterns form the write-print
of the suspect: WP (E1) = {{A1, B1}, {A1, B1, C2}},
WP (E2) = {{A2}, {C1}, {A2, B1}, {A2, C1}, {B1, C1},
{A2, B1, C1}}, and WP (E3) = {{B3}, {A1, B3}, {B3,
C2}, {A1, B3, C2}}.
4.3 Identifying Author (Lines 17-24)

Lines 17-24 determine the author of the malicious e-
mail µ by comparing µ with each write-print WP (Ei) ∈
{WP (E1), · · · , WP (En)} and identifying the most sim-
ilar write-print to µ. Intuitively, a write-print WP (Ei)
is similar to µ if many frequent patterns in WP (Ei)
matches the style in µ. Formally, a frequent pattern F
matches µ if µ contains every feature item in F .

Equation 1 shows the score function that quantifies
the similarity between the malicious e-mail µ and a
write-print WP (Ei). The frequent patterns are not
equally important, and their importance is reflected by
their support in Ei, i.e., the percentage of e-mails in Ei

sharing such combination of features. Thus, the score
function accumulates the support of a frequent pattern
and divides the result by the number of frequent pat-
terns in WP (Ei) to normalize the factor of different
sized WP (Ei).

Score(µ ≈ WP (Ei)) =

∑p
j=1 support(MPj |Ei)

|WP (Ei)| (1)
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where MP = {MP1, · · · ,MPp} is a set of matched pat-
terns between WP (Ei) and the malicious e-mail µ. The
score is a real number within the range of [0, 1]. The
higher the score means the higher similarity between
the write-print and the malicious e-mail µ. The suspect
having the write-print with the highest score is the au-
thor of the malicious e-mail µ.

Example 4.3. Let the patterns found in the mali-
cious e-mail µ be {A2, B1, C1} and {A1, B1, C2}. Com-
paring them to the write-prints in Example 4.2, we
notice that the first pattern matches to a pattern in
WP (E2) while the second pattern matches to a pat-
tern in WP (E1). The score calculated according to
Equation 1 is higher for WP (E1) because |WP (E1)| <
|WP (E2)|. As a result, the malicious e-mail µ is most
similar to WP (E1), suggesting that S1 is the author.

In an unlikely case where multiple suspects have the
same highest score, we return all of them to the user.

5. EXPERIMENTAL EVALUATION
Our goals in this section are to evaluate the proposed

method, AuthorMiner, in terms of authorship identifi-
cation accuracy and to verify the extracted write-print
exhibits strong evidence for supporting the conclusion
on authorship. We employed the Enron E-mail Dataset1,
which contains 200,399 real-life e-mails from 158 em-
ployees of the Enron corporation after cleaning. As
a pre-processing step, we removed the empty spaces,
special characters, and blank lines and tokenized the e-
mails as described in Section 3.1. Unlike the ordinary
text mining application which aims at extracting the
general trends in the text, our goal is to differentiate
the writing style of different suspects. Therefore, we
keep all the function words and short words.

To evaluate the authorship identification accuracy of
our method, we randomly select n employees from the
Enron E-mail Dataset, representing n suspects {S1, · · · ,
Sn}. For each suspect Si, we choose m of Si’s e-mails,
where 2

3 of the m e-mails are for training and the re-
maining 1

3 of the m e-mails are for testing. We then
applied our method, AuthorMiner, to extract the write-
prints from {S1, · · · , Sn} from the training set and then
determine the author of each e-mail in the testing set.
The authorship identification accuracy is measured by
the percentage of correctly matched authors in the test-
ing set.

Figure 2 depicts the authorship identification accu-
racy for n = 6 and m = 20 (i.e., a total of 120 e-mails)
on different number of discretized intervals. The accu-
racy spans from 86% to 90% at min sup = 0.1, 0.3 and
0.5, suggesting that our proposed method can effectively
identify the author of an e-mail based on the extracted
1http://www.cs.cmu.edu/∼enron/
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Figure 3: Accuracy vs. # of Intervals (n = 6,
m = 20)

write-prints when a reasonable min sup is specified. As
min sup increases, the number of extracted frequent
patterns, i.e. |FP (Ei)|, decreases and the extracted
frequent patterns tend to capture the general writing
style that is common to other suspects, thus, are likely
to be eliminated by the filtering process of our method.
As a result, the write-print becomes less effective for
authorship identification and the accuracy decreases.

Figure 2 illustrates that the accuracy spans from 70%
to 90% for 2 intervals, from 66% to 90% for 4 intervals,
and from 73% to 90% for 6 intervals. Though we are
testing a broad range of min sup, the accuracy is rel-
atively stable. These results suggest that our method
is very robust to different user-specified min sup. In
the effort to study the effect of how the number of dis-
cretized intervals could on the accuracy, we measure
the authorship identification accuracy with respect to
the number of intervals. Figure 3 also suggests that our
method is very robust to different number of intervals.

Figure 4 depicts the authorship identification accu-
racy for n = 10 and m = 10 (i.e., a total of 100 e-mails)
on different number of discretized intervals. The ac-
curacy spans from 80% to 90% at min sup = 0.1 and
0.3, suggesting that our proposed method can effectively
identify the author of an e-mail based on the extracted
write-prints when a reasonable min sup is specified. As
min sup increases, the accuracy decreases as explained
before.

Figure 4 illustrates that the accuracy spans from 66%
to 83% for 2 intervals, from 63% to 83% for 4 intervals,
and from 66% to 90% for 6 intervals. Though we are
testing a broad range of min sup, the accuracy is rel-
atively stable. These results suggest that our method
is very robust to different user-specified min sup. In
the effort to study the effect of how the number of dis-
cretized intervals could on the accuracy, we measure
the authorship identification accuracy with respect to
the number of intervals. Figure 5 also suggests that our
method is very robust to different number of intervals.

Comparing Figures 2 and 4, we notice that the au-
thorship identification accuracy drops from the average
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Figure 2: Accuracy vs. min sup (n = 6, m = 20)
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Figure 4: Accuracy vs. min sup (n = 10, m = 10)

of 80.5% in Figures 2 to the average of 77% in Fig-
ures 4. Though there is a drop in accuracy, the drop
is relatively small compared to the increase of suspects
from 6 to 10. Most of traditional classifiers would have
a very significant drop as the number of target classes
(suspects) increases.

In additional to measuring the quality of write-print
using authorship identification accuracy, we also manu-
ally examined the extracted write-print and found that
frequent patterns can succinctly capture combinations
of features that occur frequently in the suspect’s emails.
Many of those hidden patterns are not obvious. Due to
the fact that all the matched frequent patterns can be
found in the anonymous (malicious) e-mail, the frequent
patterns themselves serve as a strong evidence for sup-
porting the conclusion on authorship.

6. CONCLUSION
In this paper, we formally define the problem of au-

thorship attribution and refine the problem into three
subproblems: (1) To identify the write-print of each
suspect. (2) To determine the author of the malicious

e-mail. (3) To extract evidence for supporting the con-
clusion on authorship. Generally, the same three phased
methodology is applied in the court of law for resolv-
ing the attribution issue. Most previous contributions
focused on improving the classification accuracy of au-
thorship identification, but only very few of them study
how to gather strong evidence for the court of law.

We introduce a novel approach of authorship attri-
bution and formulate a new notion of write-print based
on the concept of frequent patterns. Unlike the write-
prints in previous literature that are a set of prede-
fined features, our notion of write-print is dynamically
extracted from the data as combinations of features
that occur frequently in a suspect’s emails, but not fre-
quently in other suspect’s emails. The experimental
results on real-life e-mail dataset suggest that the iden-
tified write-print does not only help identify the author
of an anonymous e-mail, but also presents intuitive yet
strong evidence for supporting the authorship finding.

This novel approach opens up a new promising direc-
tion of authorship attribution. We will further extend
our tool to adopt different types of stylometric features
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and utilize the concept of frequent pattern to identify
hidden write-print of individuals for the purpose of e-
mail forensics. Similarly, more interesting results can be
obtained by using the proposed approach on real e-mail
traffic containing malicious emails.
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