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Abstract 

This paper reports the development of a building energy demand predictive model 

based on the decision tree method. The developed model estimates the building 

energy performance indexes in a rapid and easy way. This method is appropriate to 

classify and predict categorical variables: its competitive advantage over other widely 

used modeling techniques, such as regression method and ANN method, lies in the 

ability to generate accurate predictive models with interpretable flowchart-like tree 

structures that enable users to quickly extract useful information. To demonstrate its 

applicability, the method is applied to estimate residential building energy 

performance indexes by modeling building energy use intensity (EUI) levels (either 

high or low). The results demonstrate that the use of decision tree method can classify 

and predict building energy demand levels accurately (93% for training data and 92% 

for test data), identify and rank significant factors of building EUI automatically. The 

method can provide the combination of significant factors as well as the threshold 

values that will lead to high building energy performance. Moreover, the average EUI 

value of data records in each classified data subsets can be used for reference when 

performing prediction. The outcomes of this methodology could benefit architects, 

building designers and owners greatly in the building design and operation stage. One 

crucial benefit is improving building energy performance and reducing energy 

consumption. Another advantage of this methodology is that it can be utilized by 

users without requiring much computation knowledge. 
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1 Introduction 

There has been a growing concern about the total building energy consumption which 

is a substantial user of energy worldwide. Further, with rising living standards, 

building energy consumption throughout the world has been significantly increased 

over the past few decades. For example, from 1994 to 2004, building energy 

consumption in Europe and North America has increased at a rate of 1.5% and 1.9% 

per annum, respectively [1]. Chinese building energy consumption has increased at 

more than 10% per annum for the past 20 years [2]. The high level of building energy 

consumption and the steady increase in building energy demand necessitate designing 

energy efficient buildings and improving its energy performance. 

In the practice of energy efficient building design, architects and building designers 

often need to identify which parameters will influence future building energy demand 

significantly. Furthermore, based on different combinations of these parameters as 

well as their values, architects and building designers usually expect to find a simple 

and reliable method to estimate building energy performance rapidly so that they can 

optimize their building design plans. Building energy simulation tools have been 

utilized to forecast and analyze building energy consumption and describe building 

energy use patterns, in order to benefit the design and operation of energy efficient 

buildings. In recent years, there have been many studies on building energy demand 

modeling and several methods were employed, such as traditional regression methods 

[3-4], artificial neural networks (ANN) methods [5-7], and building simulation 

methods [8-9], etc. Through statistical methods and regression equations, regression 

models correlate building energy demand with relevant climatic variables and/or 

building physical variables in order to predict energy demand. The main advantage of 

regression models is that they are comparatively simple and efficient. The ANN 

model is also able to predict the thermal performance of building and its foundation is 

based on mimicking the structure and properties of biological neural networks. The 

greatest strength of ANN models in comparison with other models lies in their ability 

to model complex relationships between inputs and outputs. These two methods have 

been successfully applied to predict building energy demand. However, considering 

the regression models are normally complicated equations and ANN models operate 

like a “black box”; therefore, the models developed using these methods are not 

understandable and interpretable especially for common users without advanced 

mathematical knowledge. This makes it difficult to be a common predictive tool. 

Moreover, in these studies, the focuses have been mainly on the energy use prediction 

of existing buildings (e.g. predict hourly heating/cooling load for a certain type of 

building), whereas the energy use prediction of newly designed buildings, which is 

also very important for architects and building designers to make rational decisions at 

the early stage of design and operation, are seldom carried out. 

Building simulation allows the prediction of building energy performance under 

various conditions. However, this method does not perform well in predicting the 

energy use for occupied buildings as compare to non-occupied buildings due to the 

lack of sufficient knowledge about occupants’ behavior. Additionally, the application 



of building simulation programs is normally complicated and the learning process of 

these programs tends to be time-consuming.  

In the past two decades, decision tree method, a novel computational modeling 

technique that uses flowchart-like tree structure, has been widely used for 

classification and prediction in many scientific and medical fields [10-12]. The 

popularity of decision tree method mainly attributes to its ease of use, and abilities to 

generate accurate predictive models with understandable and interpretable structures, 

which, accordingly, provide clear and useful information on corresponding domains. 

Moreover, the decision tree method is able to process both numerical and categorical 

variables, and perform classification and prediction tasks rapidly without requiring 

much computation efforts. However, it should be mentioned that decision tree method 

is more appropriate for predicting categorical variables than for predicting numerical 

variables. The application of decision tree method in building related studies is still 

very sparse. Tso and Yau [13] compared the accuracy of regression method, ANN 

method, and decision tree method in predicting average weekly electricity 

consumption for both summer and winter in Hong Kong. It was found that decision 

tree model and ANN model have a slightly higher accuracy than other models. 

Therefore, it is highly desirable to utilize decision tree method to process measured 

data, which has already included the influences of occupant activities, for building 

energy demand modeling.  

The paper reports the development of a procedure to accurately estimate building 

energy performance indexes. The procedure is based on the decision tree method. The 

applicability of the procedure is then demonstrated for residential buildings sectors.  

 

2 Methodology 

2.1 Overview of decision tree 

The decision tree methodology is one of the most commonly used data mining 

methods [14-15]. It uses a flowchart-like tree structure to segregate a set of data into 

various predefined classes, thereby providing the description, categorization, and 

generalization of given datasets. As a logical model, decision tree shows how the 

value of a target variable can be predicted by using the values of a set of predictor 

variables.  
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Leaf node
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Fig.1. Schematic illustration of a simple hypothetical decision tree 

 



Fig. 1 gives a decision tree indicating whether residents turn room air conditioners 

(RAC) on or off in their rooms in the cooling season. Assume 100 data records are 

used to build this decision tree and each record has three attributes: outdoor air 

temperature, room occupancy, and the operating state of RAC. 

The target variable for the above decision tree is RAC operating states, with potential 

states being classified as either turning on or off. The predictor variables are outdoor 

air temperature (≤ 26 °C or > 26°C) and room occupancy (empty or not). As shown in 

Fig. 1, the decision tree consists of three kinds of nodes: root node, internal node, and 

leaf node. Root node and internal node denote a binary split test on an attribute while 

leaf node represents an outcome of the classification and thus holding a categorical 

target label. Moreover, the numbers in the parentheses at the end of each leaf node 

depict the number of data records in this leaf. If some leaves are impure (i.e. some 

records are misclassified into this node), the number of misclassified records will be 

given after a slash. For example, (60/5) in the left most leaf in Fig. 1 means that, 

among the 60 records having outdoor temperature is lower than or equal to 26 °C that 

have been classified to turned off, 5 of them actually have the value turned on. By 

using this decision tree, whether RAC operating states should be classified as being 

‘turned on’ or ‘turned off’ can be predicted. For example, if the outdoor air 

temperature is higher than 26 °C and the room is not empty, occupants will turn RAC 

on; otherwise they will turn it off.  

 

2.2 Decision tree generation 

Decision tree generation is in general a two-step process, namely learning and 

classification, as shown in Fig. 2. In the learning process, the collected data are split 

into two subsets, training set and testing set. Creation of training set and testing set is 

an important part of evaluating data mining models. Usually, most of the data records 

in the database are arbitrarily selected for training and the remained data records are 

used for testing. Note that training set and testing set should come from the same 

population but should be disjoint. Then, a decision tree generation algorithm takes the 

training data as input and outputs a decision tree. Commonly used decision tree 

generation algorithms include ID3 [14], classification and regression trees (CART) 

[16], and C4.5 [17]. In this study, we employ C4.5, along with an open-source data 

mining software WEKA, to build decision tree due to its flexibility and wide 

applicability to different types of data. In the classification process, the accuracy of 

obtained decision tree is first evaluated by making predictions against the test data. 

The accuracy of a decision tree is measured by comparing the predicted target values 

and the true target values of the testing data. If the accuracy is considered acceptable, 

the decision tree can be applied to new dataset for classification and prediction; 

otherwise, the reason should be identified and corresponding solutions should be 

adopted to tackle problems.  



Accuracy is considered acceptable ?

Analyzing training data by a decision tree 

algorithm and generating decision tree

Estimating the accuracy of obtained 

decision tree using test data

Splitting dataset into 

training data and test data

Applying decision tree to future data

Y

N
Identifying  reasons

 and finding  solutions

Learning

Classfication

Fig.2. Procedure of decision tree generation 

 

The procedure of generating a decision tree from the training data is explained as 

follows. Initially, all records in the training data are grouped together into a single 

partition. At each iteration, the algorithm chooses a predictor attribute that can “best” 

separate the target class values in the partition. The ability that a predictor attribute 

can separate the target class values is measured based on an attribute selection 

criterion, which will be discussed in Section 3.3. After a predictor attribute is chosen, 

the algorithm splits the partition into child partitions such that each child partition 

contains the same value of the chosen selected attribute. The decision tree algorithm 

iteratively splits a partition and stops when any one of the following terminating 

conditions is met: 

All records in a partition share the same target class value. Thus, the class label of the 

leaf node is the target class value. 

There are no remaining predictor attributes that can be used to further split a partition. 

In this case, the majority target class values becomes the label of the leaf node. 

There are no more records for a particular value of a predictor variable. In this case, a 

lead node is created with the majority class value in the parent partition. 

 

2.3 Attribute selection criterion 

The decision tree generation algorithm is a greedy algorithm. It iteratively splits a 

partition by choosing a split attribute that can best separate the target class values. The 

choice of split attribute determines the quality of the decision tree model and, 



therefore, the classification accuracy on the future data. The concept of entropy [16] 

in information theory is a widely criterion measure for decision tree to characterize 

the purity of a partition in decision tree nodes. Given a decision tree containing only 

binary target variables such as HIGH EUI and LOW EUI, the entropy of the data 

subset, Di, of the ith tree node is defined as 
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where 

nHIGH: the number of HIGH EUI records in Di 

nLOW: the number of LOW EUI records in Di 

T_N: the total number of records in Di and T_N = nHIGH + nLOW 

 

The entropy varies between 0 and 1. Notice that the entropy equals to 0 if Di is pure 

and it is 1 when nHIGH equals to nLOW. At each node of a decision tree, candidate 

splitting test will be used to evaluate all available attributes to select the most suitable 

attribute to split data. Suppose the jth attribute has been selected as node attribute. A 

candidate split test, ST, at the ith tree node is defined as 
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where  

Valj(r): the value of the jth attribute of record r 

T_h: threshold value  

v1, v2: two values of the jth attribute 

 

Next, the algorithm applies ST to Di and partitions Di into two subsets, DS1 and DS2. 

Let r be a record in Di. If the jth attribute is a numerical attribute, then 
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If the jth attribute is a categorical attribute, then 
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Let m and n be the number of records in DS1 and DS2, respectively. The entropy after 

the split test can then be calculated as the weighted sum of the entropies for the 

individual subsets 
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where        (   ) and        (   ) can be calculated by using formula (1). 

 

The selection of node attribute used to split data is very important and a rational 

selection can improve the purity of tree nodes. A widely used attribute selection 

measure is information gain [18], which is defined as the entropy reduction before and 

after a candidate splitting test. Therefore, information gain can be calculated as 
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For each tree node, the attribute with the maximum information gain will be chosen as 

the splitting attribute at this node. The information gain measure, however, has a bias 

to attributes with larger number of domain values. One way to avoid such bias is to 

normalize the information gain by a split information value defined analogously with 

information gain. C4.5 employs this improved measure, gain ratio [15]: 

 

          
        

         
                                             (8) 

where 

           (
 

   
    

 

   
 

 

   
    

 

   
)                          (9) 

The attribute with the highest gain ratio is selected as the splitting attribute.  

 

Additionally, in order to detect whether a node should be a leaf, a minimum threshold 

value of entropy (ENmin) will be predefined and compared with node classification 

entropy (       (  )), if        (  ) is lower than ENmin, then this node is a 

leaf and will be labeled LEAF. Otherwise a further splitting test should be performed. 

However, if no significant effects can be observed on information gain or gain ratio in 

further candidate splitting tests, the test will be also stopped and the node will be 

labeled STOP.   

 

3 Data source and basic analysis 

3.1 Data collection and pre-processing 

To evaluate and improve residential building energy performance in Japan, a project 

was performed by Research Committee on Investigation on Energy Consumption of 

Residential Buildings (2001-2003) and Committee on Energy Consumption of 

Residential and Countermeasures for Global Warming (2004-2005) of the 

Architecture Institute of Japan. This analysis used the data base of Cd-Rom titled 

“Energy Consumption for Residential Buildings in Japan” [19].In this project, field 

surveys on energy related data and other relevant information were carried out in 80 

residential buildings located in six different districts in Japan. The following 

information was collected: 



 Energy end use of all kinds of fuel used by the building at different time intervals; 

 Indoor environment parameters every 15 minutes; 

 Household characteristics; 

 Other issues such as occupant behaviors and energy saving measures; 

Fig. 3 shows the boxplot for monthly average outdoor air temperature in each district 

in 2003 using Japanese meteorological data [19]. The mean value of monthly average 

temperature, i.e., annual average temperature, is also given. Clearly the monthly 

average temperature has a more or less symmetric distribution. The annual average 

temperature is higher than 8 °C in all the six districts and the temperature in Hokkaido 

and Tohoku is comparatively lower than other districts.  

 

 

Fig. 3. Boxplot for monthly average outdoor air temperature in the six regions in 2003 

 

Scrutinizing the data from the 80 buildings it was found that only 67 sets were 

complete while the other 13 had missing values of energy consumption data. Fig. 4 

shows the percentage breakdown of available residential buildings in each district. It 

can be seen that the distribution is roughly uniform.  
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Fig. 4. Percentage breakdown 

 

Data reduction and aggregation was also performed as a preprocessing step of 

preparing the data for a database. For example, the primary energy sources in the 

investigated families include electricity, natural gas, and kerosene. All these energy 

sources are converted into an equivalent energy value based on conversion 

coefficients in Table 1. 

 

Table 1 Conversion coefficients of different fuels 

Fuel Conversion coefficient Unit 

Electricity 3.6 MJ/kWh 

City gas (4A-7C) 20.4 MJ/Nm
3
 

City gas (12A-13C) 45.9 MJ/Nm
3
 

Liquefied petroleum gas (LPG) 50.2 MJ/Nm
3
 

Kerosene 36.7 MJ/L 

 

Moreover, energy end use is classified into eight categories and the three major 

categories include the space heating/cooling, hot water supply, and kitchen. Each end 

use data with interval of 5 minutes was aggregated so as to compute hourly, daily, 

monthly, and annual total amounts. And thus total energy use can also be calculated 

as the sum of the energy content of all the fuel used by the building in a year. Based 

on above work, a database was created. 

 

3.2 Model target variable 

In order to demonstrate building energy performance, model target variable is 

expressed in energy use intensity (EUI), defined as the ratio of annual total energy use 

to total floor area (the annual total energy use is calculated as the sum of the energy 

content of all fuel used by the building in 2003). As mentioned previously, decision 

tree method is more appropriate for predicting categorical variables. Therefore, a 

concept hierarchy for building EUI is formed before classification and prediction are 

carried out. Due to the small database size, a two grade descending scale, i.e. high 
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level and low level, corresponding to low energy performance and high energy 

performance, are considered applicable and understandable. Building EUI ranges 

from 176 MJ/m
2
 to 707 MJ/m

2
 in the database and thus data ranged from the average 

of the maximum and minimum to the maximum value, i.e. [441.5, 707], is considered 

‘HIGH’. And data from the minimum value to the average of the maximum and 

minimum, i.e. [176, 441.5] is considered ‘LOW’.  

It should be mentioned that, decision tree can also be used to classify and predict 

multiple EUI levels rather than just two. For example, instead of ‘HIGH’ and ‘LOW’, 

a concept hierarchy of EUI may map real EUI values into four conceptual levels such 

as EXCELLENT, GOOD, FAIR, and COMMON, thereby resulting in a smaller data 

range of each level and providing a more detailed description. However, more 

conceptual levels require a larger database and may be prone to higher 

misclassification rate of data records and thus reduce the accuracy of decision tree 

models.  

 

3.3 Model input variables  

Ten parameters (or attributes) are selected from the database to be model input 

variables and the summary of these parameters is given in Table 2.  

 

Table 2 Summary of model inputs 

Number Variable Type Value Variable label (unit) 

1 TEMP Categorical High/Low Annual average air temperature 

2 HOUS Categorical Detached/Apartment House type 

3 CONS Categorical Wood/Non-wood Construction type 

4 AREA Numerical [70, 240] Floor area (m
2
) 

5 HLC
a*

 Numerical [1.01, 4.35] Heat loss coefficient (W/m
2
K) 

6 ELA
b*

 Numerical [0.35, 13.30] Equivalent leakage area (cm
2
/m

2
) 

7 NUM Numerical [2, 6] Number of occupants 

8 HEAT Categorical Electric/Non-electric Space heating  

9 HWS Categorical Electric/Non-electric Hot water supply  

10 KITC Categorical Electric/Gas Kitchen 

a
*
 Calculated based on building design plans. 

b
*
 Measured by the fan pressurization method. 

 



 

Fig. 5. Categorical distribution of the six categorical parameters 

 

These ten parameters are grouped into four categories that are important determinants 

of household energy demand. 

(1) Climatic conditions (TEMP). The range of annual average outdoor air temperature 

in the six districts is discretized into two intervals based on the same concept 

hierarchy as the EUI mentioned earlier: the high interval (8.8 °C, 13.1 °C], and the 

low interval (14.3 °C, 17.4 °C]. According to this discretization criterion, the low 

temperature districts include Hokkaido and Tohoku while the other four districts 

belong to high temperature districts, 

(2) Building characteristics (HOUS, CONS, AREA, HLC, ELA). For building 

construction type, the non-wood type includes steel reinforced concrete (SRC), 

reinforced concrete (RC), and steel structure (S),  

(3) Household characteristics (NUM), and 

(4) Household appliance energy sources (HEAT, HWS, KITC). Energy sources are 

divided into energy generated from electricity consumption and energy generated 

from other fuels such as kerosene and natural gas. 

Fig. 5 shows the distribution of all the categorical parameters. It can be observed that 

all the percentages range from 30% to 70%, indicating a fairly uniform distribution. 

 

4 Results and discussion 

C4.5 algorithm was used for training data set (55 records were arbitrarily selected 

from the database) and test data set (i.e. the remained12 records that are independent 

of training set) by using WEKA to build a decision tree for predicting whether the 

EUI of residential buildings should be classified as being ‘HIGH’ or ‘LOW’.  

 

4.1 Generation of decision tree 

Fig. 6 shows the decision tree for the classification of building EUI levels. This 

decision tree is built on the basis of the training data set of 55 data records with the 

ten attributes list of Table 2. It can be seen that this tree includes a total of 21nodes 
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among which 11 are leaf nodes, including 8 LEAFs and 3 STOPs: this represents 11 

classes (either EUI = HIGH or EUI = LOW). The explanatory note of three kinds of 

nodes, namely root node, internal node, and leaf node in this decision tree is shown in 

Fig. 7. Note that entropy is also calculated and given in each node to characterize the 

purity of the sub dataset in that node. Moreover, the average EUI value of data 

records in each class is given and used for reference when performing prediction. 

Specifically, this reference value can be viewed as predictive numerical EUI value of 

the new data records that fall into that class. 

The WEKA analysis report also provides the information on the classification 

accuracy of the decision tree. The report indicates that 51 records which accounts for 

93% of all the training records are correctly classified: this indicates a good accuracy. 

Also, confusion matrix reports how many data records are correctly classified and 

misclassified in the class of HIGH EUI and LOW EUI separately, as below: 

a    b   <-- classified as 

35    1   |  a = 'LOW EUI' 

3    16   |  b = 'HIGH EUI' 

In this matrix, the number of correctly classified records is given in the main diagonal, 

i.e. upper-left to lower-right diagonal; the others are incorrectly classified. Clearly, 

class "LOW EUI" was misclassified as "HIGH EUI" only one time and class "HIGH 

EUI" was misclassified as "LOW EUI" three times. Such information indicates that 

high EUI is more prone to be misclassified than low EUI. This may have occurred due 

to the fact that most of the data records are in LOW EUI so the tree is made more 

sensitive to this class. An even distribution between HIGH EUI class and LOW EUI 

class in database would possibly help obtain sufficient accuracy and sensitivity in the 

desired classes. 
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Fig. 6. Decision tree for the prediction of building EUI level 
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Fig. 7. Explanatory note of decision tree nodes 

The major strength of decision tree lies in its interpretability and ease of use, 

particularly when decision rules are created. Based on a decision tree, decision rules 

can be easily generated by traversing a path from the root node to a leaf node. For 

example, a decision rule can be generated from Node 1 to Node 5 in above decision 

tree as follows: If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is electric 

then EUI is LOW. Since each leaf node produces a decision rule, the complete set of 

decision rules, which is equivalent to the decision tree, can be derived after all the leaf 

nodes have been included. Accordingly, above decision tree is converted to a set of 

decision rules, as show in Table 3.  

 

Table 3 Decision rules derived from the obtained decision tree 

 
Node Decision rules 

1 5 If TEMP is high and HLC > 3.89 then EUI is HIGH 

2 6 If TEMP is low and HEAT is electric then EUI is HIGH 

3 9 If TEMP is high and HLC ≤ 3.89 and ELA > 4.41 then EUI is LOW 

4 10 If TEMP is low and HEAT is non-electric and NUM ≤ 2 then EUI is LOW 

5 12 
If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is electric then EUI is 

LOW 

6 15 
If TEMP is low and HEAT is non-electric and NUM > 2 and HOUS is apartment then 

EUI is HIGH 

7 16 
If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is non-electric and KITC is 

electric then EUI is HIGH 

8 18 
If TEMP is low and HEAT is non-electric and NUM > 2 and HOUS is detached and 

HLC ≤ 1.70 then EUI is LOW 

9 19 
If TEMP is low and HEAT is non-electric and NUM > 2 and HOUS is detached and 

HLC > 1.70 then EUI is HIGH 

10 20 If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is non-electric and KITC is 



non-electric and HLC ≤ 2.93 then EUI is LOW 

11 21 
If TEMP is high and HLC ≤ 3.89 and ELA ≤ 4.41 and HWS is non-electric and KITC is 

non-electric and HLC > 2.93 then EUI is HIGH 

 

4.2 Evaluation of the decision tree 

As mentioned previously, the decision tree accuracy should be evaluated to estimate 

how accurately it can predict building EUI levels before applying it to new residential 

buildings. Accordingly, the obtained decision tree was applied to the test dataset and 

the results are given in Table 4.  

Table 4 shows that among twelve data records included in the testing set eleven 

records, accounting for 92%, are correctly classified. Given that the size of testing set 

is relatively small and only one record is misclassified, this accuracy is basically 

acceptable. At the same time, WEKA analysis report also provides confidence level 

for the classification of each data record. The confidence level determines how likely 

the test data record falls into that class and, it is equal to the ratio of the number of 

correctly classified data records to total record number in that class in the training set. 

It can be seen from Table 4 that generally the confidence level for the classification is 

higher than 80%, indicating that most of the prediction is reliable. Further, by using a 

pre-specified threshold, e.g. 80%, confidence level could improve estimated accuracy 

of classification. In particular, if the confidence level of a data record classification 

exceeds the threshold, this classification will be accepted; otherwise it will be refused. 

For example, if the threshold in this evaluation is set to be 80%, then all the records, 

except the record 2 that is misclassified, will be accepted. Similarly, the threshold is 

very useful when applying decision rules to the prediction of new data sets. In 

addition, the error rate between the actual EUI value and the reference EUI value are 

also given in this table for the reliability test of reference value. It can be seen that, 

among 11 correctly classified data records, five have an error rate lower than 5% 

while the other 6 have an error rate between 20% and 35%, which indicates that a 

higher concept hierarchy for building EUI need to be formed to improve the 

prediction performance of reference value. However, this is limited by the size of 

database in this study. 

 

Table 4 Results of decision tree accuracy evaluation 

 
Actual 

level 

Predicted 

level 

Correct or 

incorrect 

Confidence 

level 

Actual 

EUI 

Reference 

EUI 
Error 

1 HIGH HIGH Correct 100% 449 450 0.2% 

2 LOW HIGH Incorrect 75% 258 624 141.9% 

3 HIGH HIGH Correct 100% 581 584 0.5% 

4 LOW LOW Correct 100% 327 322 1.5% 

5 HIGH HIGH Correct 100% 707 552 22.0% 

6 LOW LOW Correct 81.80% 303 316 4.3% 

7 LOW LOW Correct 81.80% 238 316 32.8% 

8 LOW LOW Correct 88.90% 258 315 22.1% 

9 HIGH HIGH Correct 100% 507 488 3.7% 



10 HIGH HIGH Correct 100% 495 601 21.4% 

11 LOW LOW Correct 81.80% 427 316 26.0% 

12 HIGH HIGH Correct 100% 458 601 31.2% 

 

4.3 Utilization of decision tree  

4.3.1 Using decision tree for prediction 

Based on predictor variables, decision tree and decision rules can be utilized to predict 

target variables. Assume the EUI level of a new residential building in Japan must be 

predicted by using the decision tree in Fig. 6. The threshold of confidence level is set 

to be 85%. The typical building parameters are shown in Table 5. 

Specifically, the building EUI level is predicted as follows: 

 

Step 1: the root node, i.e. node 1 in this decision tree, is the starting point of 

prediction. From node 1, it can be seen the value of TEMP should be first examined. 

Since TEMP is high, the node 1 test TEMP is high is satisfied, then go to node 2; 

 

Step 2: examine the value of HLC. Since HLC = 2, the node 2 test HLC ≤ 3.89 is 

satisfied, then go to node 4; 

 

Step 3: examine the value of ELA. Since ELA = 3, the node 4 test ELA ≤ 4.41 is 

satisfied, then go to node 8; 

 

Step 4: examine the value of HWS. Since HWS is non-elec., the node 8 test HWS is 

elec. is not satisfied, then go to node 13; 

 

Step 5: examine the value of KITC. Since KITC is gas, the node 13 test KITC is elec. 

is not satisfied, then go to node 17; 

 

Step 6: examine the value of HLC. Since HLC = 2, the node 17 test HLC ≤ 2.93 is 

satisfied, then go to node 20; 

 

Step 7: node 20 is a leaf node. As a result, the decision tree in Fig. 6 predicts that the 

EUI level of the residential building is LOW. In this node, the correctly classified data 

records account for 89% and thus the confidence level of prediction is 89% that is 

larger than the predetermined threshold (85%). Therefore, the prediction is accepted. 

Furthermore, the value of correctly classified records in this node ranges from 242 

MJ/m
2 
to 389 MJ/m

2
 and the average value is calculated at 315 MJ/m

2
. These values 

can be used as reference values for the prediction, as mentioned previously.  

 

Table 5 Building parameters for the prediction of building EUI levels 

Number Variable Attribute value Unit 

1 TEMP High  

2 HOUS Detached house  

3 CONS Wood  



4 NUM 4  

5 AREA 100 m
2
 

6 HLC 2 W/m
2
K 

7 ELA 3 cm
2
/m

2
 

8 HEAT Electricity  

9 HWS Non-electricity  

10 KITC Gas  

 

 

4.3.2 Model interpretation and useful information extraction 

Useful information can be extracted from the decision tree based model so as to help 

understand energy consumption patterns and optimize a building design plan. For 

example, various parameters are automatically selected as predictor variables by the 

decision tree algorithm for the classification of EUI levels. These parameters are used 

to split the nodes of the decision tree and their degrees of closeness to the root node 

indicate the strength of the influence and the number of records impacted. Therefore, 

by examining the decision tree nodes, the significant factors, as well as their ranks, 

that determine the building energy demand profiles can be identified. In particular, the 

variable importance of this decision tree model can be analyzed as follows: first, the 

root node, i.e. TEMP, indicates that outside air temperature is the most important 

determinant of energy demand among all these factors. Then, for clarity, the 

significant factors for the high temperature districts (i.e. Hokuriku, Kanto, Kansai and 

Kyusyu) and low temperature districts (i.e. Hokkaido and Tohoku) are identified 

separately and summarized in Table 6.  

 

Table 6 Summary of significant factors 

Potential factors 
High temperature districts Low temperature districts 

Significant factors Rank Significant factors Rank 

House type   √ 3 

Number of occupants   √ 2 

Floor area     

Heat loss coefficient  √ 1 √ 4 

Equivalent leakage area √ 2   

Construction type     

Space heating mode   √ 1 

Hot water supply mode √ 3   

Kitchen energy mode √ 4   

 

Clearly, four significant factors are identified for each district and the only parameter 

found to be significant for the both districts is heat loss coefficient. This implies that 

the significance of these factors, except building heat loss coefficient, is dependent on 

outside air temperature. Moreover, among the three household appliance energy 

source parameters, space heating plays a role in low temperature districts while hot 

water supply and kitchen are significant in high temperature districts. Note that floor 



area and construction types do not appear in the decision tree. This is reasonable since 

the target variable, i.e. EUI level, is a measure of annual total energy normalized for 

floor area and building heat loss coefficient embodies the effect of construction type. 

At the same time, these significant factors are ranked in terms of the degree of 

closeness to the root node. It can be found that heat loss coefficient and space heating 

mode rank the first in the two districts respectively, and thus deserve extra attention 

when designing energy efficient buildings. 

The decision tree can provide the combination of significant factors as well as the 

threshold values that will lead to high building energy performance. Based on such 

combination and threshold values, some hidden yet useful information can also be 

extracted to help understand building energy consumption patterns. For example, it 

can be seen that, in high temperature districts, a higher building heat loss coefficient 

than 3.89 W/m
2
K will normally cause a high EUI. Meanwhile, for a residential 

building with heat loss coefficient lower than 3.89 W/m
2
K, a high equivalent leakage 

area (> 4.41 cm
2
/m

2
) will benefit energy conservation. This seems perhaps 

unreasonable and one possible explanation is that the high temperature districts locate 

in moderate climate and have a moderate outside air temperature range. Accordingly, 

in summer infiltration can serve as cooling source to remove the excess heat 

generated indoor, thereby reducing overall energy consumption. This indicates that a 

rational combination of heat loss coefficient and equivalent leakage area of residential 

buildings in high temperature districts is important to improve building energy 

performance. Also, a further study on the range selection of equivalent leakage area 

may provide deeper insights into its impact on building energy demand. Additionally, 

from the node 8 and 13 in Fig.6, it can be observed that the change of the energy 

source of hot water supply and kitchen will bring about a substantial increase or 

decrease in EUI. Clearly electrical water heaters, instead of non-electric water heaters 

such as natural gas heaters, should be used to save energy. Moreover, electrical water 

heaters can take full advantage of cheap nighttime electricity and thus help users save 

money spent on energy.  

 



Fig. 8. Comparison of EUI between electric HWS and non-electric HWS 

 

The EUI values in the node 8 are plotted in Fig.8 in order to make a comparison 

between buildings with electric HWS and buildings with non-electric HWS. The two 

significant factors with higher ranks than HWS, i.e. HLC and ELA, are also taken into 

consideration (HLC at abscissa, ELA at ordinate). The abscissa-ordinate plane is 

divided into various grids so that EUI values can be compared based on similar HLC 

and ELA values, thereby removing the impact of these two factors. It is apparent from 

Fig.8 that, in a same grid or adjacent grids, red points, which denote EUI values with 

non-electric HWS, are generally higher than blue points, which denote EUI values 

with electric HWS. This is in accordance with the above conclusion drawn from the 

decision tree.  

With regard to kitchen energy source, electrical appliances, however, tend to consume 

more energy than the appliances using natural gas. This may have occurred since the 

power of many kitchen electrical appliances, such as rice cooker, is comparatively 

high and the use of these appliances is routine. Further, compared to hot water supply 

energy source, kitchen energy source has a smaller contribution to building energy 

demand and even though non-electric appliances is adopted in kitchen, an extra 

requirement on heat loss coefficient (≤ 2.93 W/m
2
K) still need to be met in order to 

achieve low EUI levels.  

In low temperature districts, from an energy saving point of view, building owners 

and designers should give a prior consideration to space heating energy source that 

plays a significant role in influencing EUI. The node 3 in Fig.6 shows that 

non-electric fuel, particularly kerosene and natural gas, should be used as primary 

source of residential space heating since the use of electric space heating tends to 

bring about a high EUI. This may be partly ascribed to the high efficiency of 

non-electric space heating devices such as kerosene space heaters. Moreover, 

non-electric heating devices are more applicable than electric space heaters, such as 

air conditioners, in real life due to the high electricity rate in Japan. Similar to Fig.8, 

EUI values in the node 3, together with EUI values in low temperature districts in the 

test dataset, are plotted in Fig.9. HLC and NUM are used as abscissa and ordinate. 

The red and blue points represent EUI values with electric and non-electric space 

heating respectively. It can be observed that red points are generally higher than blue 

points, which is in accordance with above conclusion.  

 



 

Fig. 9. Comparison of EUI between electric HEAT and non-electric HEAT 

 

Family size, i.e. the number of occupants, is another important determinant of EUI in 

low temperature districts. As can be seen, families with more than two occupants will 

have significantly higher EUI than those with two occupants. This may have occurred 

since a larger family size will cause more complicated occupant behavior patterns 

thereby resulting in an increase in EUI. With regard to house type, it can be seen that 

detached houses with low heat loss coefficients (≤ 1.70 W/m
2
K) tend to have a better 

energy performance than apartments, which can occur for at least two reasons. First, a 

small HLC contributes greatly to reduce energy consumption on space heating and 

cooling; second, detached houses normally have larger areas than apartments while 

both of them have approximately same family size, which also lowers EUI values.  

Such information can help building designers and owners make intelligent decisions 

to improve building energy performance and reduce building energy consumption. 

For example, based on above information, architects and building designers can 

identify the parameter that deserves more attention as well as its value range at the 

early design stage. Also, they can perform a fast performance estimation of newly 

constructed residential buildings. Moreover, building owners will easily determine 

which energy source should be used for space heating, hot water supply, and kitchen 

to save energy. It should be mentioned that heat loss coefficient and equivalent 

leakage area cannot be determined directly by architects and building designers. 

However, their value can be adjusted through some indirect measures such as 

improving construction material and building air tightness. 

 

5 Conclusions 

In this paper, a decision tree method is proposed for building energy demand 

modeling. This method is applied to Japanese residential buildings for predicting and 

classifying building EUI levels and its basic steps, such as the generation of decision 

tree based on training data and the evaluation of decision tree based on test data are 



presented. The results have demonstrated that the use of decision tree method can 

classify and predict building energy demand levels accurately (93% for training data 

and 92% for test data), identify and rank significant factors of building EUI levels 

automatically, and provide the combination of significant factors as well as the 

threshold values that will lead to high building energy performance. Such method 

along with derived information could benefit building owners and designers greatly 

and one crucial benefit is improving building energy performance and reducing 

energy consumption and the money spent on energy. Although the decision tree 

method is mainly employed to predict categorical variables (the number of the 

predetermined target intervals depends on the size of database while too many 

intervals may result in errors in classification) and reference value (i.e. average value 

of EUI in each class in this study) instead of the precise value of target variables, as a 

modeling technique, the utilization of decision tree method is very simple and its 

result can be interpreted more easily compared to other widely used modeling 

techniques, such as regression method and ANN method.  

The application of decision tree method to Japanese residential buildings in this paper 

has clearly demonstrated that this method is feasible, having many advantages over 

other modeling techniques. However, further study still need to be carried out to 

provide deeper insights into the utilization of this method to modeling building energy 

demand. The main focus of future research should be placed on selecting appropriate 

interval number and reference value of target variables without reducing estimation 

accuracy, since these measures will provide more precise and valuable information to 

users. In addition, more case studies in different sectors, such as commercial buildings 

and office buildings, should be conducted to further benefit energy conservation and 

policy formulation. 
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