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Abstract 

This paper reports the development of a methodology for identifying and improving 

occupant behavior in existing residential buildings. In this study, end-use loads were 

divided into two levels (i.e. main and sub-category), and they were used to deduce 

corresponding two-level user activities (i.e. general and specific occupant behavior) 

indirectly. The proposed method is based on three basic data mining techniques: 

cluster analysis, classification analysis, and association rules mining. Cluster analysis 

and classification analysis are combined to analyze the main end-use loads, so as to 

identify energy-inefficient general occupant behavior. Then, association rules are 

mined to examine end-use loads at both levels, so as to identify energy-inefficient 

specific occupant behavior. In order to demonstrate its applicability, this methodology 

was applied to a group of residential buildings in Japan, and one building with the 

most comprehensive household appliances was selected as the case building. The 

results show that, for the case building, the method was able to identify the behavior 

which needs to be modified, and provide occupants with feasible recommendations so 

that they can make required decisions. Also, a reference building can be identified for 

the case building to evaluate its energy-saving potential due to occupant behavior 

modification. The results obtained could help building occupants to modify their 

behavior, thereby significantly reducing building energy consumption. Moreover, 

given that the proposed method is partly based on the comparison with similar 

buildings, it could motivate building occupants to modify their behavior. 

 

Keywords: Occupant behavior; Building energy consumption; Data mining; 

Evaluation; Identification 

 

 

 

 
 



Nomenclature 

   

SHW Supply hot water load    

LIGHT Lighting load  

KITCH Kitchen load  

REFRI Refrigeration load  

E&I Entertainment & Information load  

H&S Housework & Sanitary load  

OTHER Others load  

T Outdoor temperature (annual average) (°C) 

RH Outdoor relative humidity (annual average) 

V Outdoor air velocity (annual average) (m/s) 

RA Outdoor solar radiation (annual average) (MJ/m
2
) 

NO Number of occupants 

FA Floor area (m
2
) 

HLC Heat loss coefficient (W/m
2
K) 

ELA Equivalent leakage area (cm
2
/m

2
) 

CO Construction 

SH Space heating 

WH Water heating 

KIT Kitchen 

HT House type 

  



1. Introduction 

Currently, residential sector building energy consumption forms a large part of the 

total national energy consumption (TNEC) in both developed and developing 

countries. For example, in the US and Japan, residential building energy consumption 

accounts for 25% and 26% of TNEC, respectively [1]. In China and Thailand, the 

proportion of residential building energy consumption to TNEC is 11.3% and 15.4%, 

respectively [2-3]. Furthermore, with the rapid growth of the economy and rising 

living standards, there is a rapid increase in energy consumption in the residential 

sector worldwide [4-6]. The high energy demand in residential buildings, which is 

also growing rapidly, necessitates a better understanding of its major influence factors. 

At the same time, it is necessary to develop a methodology for reducing energy 

consumption. For instance, to combat this rapid increase in energy use some utility 

companies and government organizations provide building owners with a “booklet” 

which gives tips on reducing the building energy consumption. These tips are general 

in nature and are not specific.  

 

Among various factors influencing residential building energy consumption, occupant 

behavior plays an essential role and is difficult to  investigate analytically due to its 

complicated characteristics [7]. Note that here occupant behavior refers to activities 

that have a direct or indirect impact upon building energy consumption. For example, 

occupants turn on/off lights, TV sets, computers, microwave ovens, and so on. 

Commonly such behavior is associated with various household appliances and thus 

can be deduced indirectly from corresponding end-use loads. For example, the total 

daily (or monthly, annual) lighting energy consumption in a residential building 

qualitatively indicates the duration of lighting usage in this day (or month, year). 

Accordingly, any improvement in the occupant behavior leads to the reduction of the 

residential building energy consumption. 

 

Recently, there has been increasing interest in studying  occupant behavior and 

developing a methodology for identifying the corresponding energy-saving potential. 

Ouyang and Hokao [8] investigated the energy-saving potential by improving user 

behavior in 124 households in China. In this study, these houses were divided into two 

groups: one group received an energy-saving education and was encouraged to put 

energy-conscious behavior into effect, while the other group was required to keep 

behavior intact. Comparisons were made between monthly household electricity uses 

in July 2007 and July 2008 for both groups. It was found that, on average, effective 

promotion of energy-conscious behavior could reduce household electricity 

consumption by more than 10%. Al-Mumin et al. [9] simulated occupant behavior 

improvement (i.e. simulation of occupant behaviour before and after modification) 

and corresponding annual electricity consumption reduction by using the energy 

simulation program ENERWIN. They first collected data and information on 

occupancy patterns and operation schedules of electrical appliances in 30 selected 

residences in Kuwait. This data and information were then used in ENERWIN to 



replace the default value. A house then was selected as a case study and the simulation 

results showed that the annual electricity consumption in this house was increased by 

21%. The results also indicated that the ENERWIN’s default parameters (i.e. 

parameters taken from the software manual) are probably more appropriate for the 

Western living lifestyle. Moreover, it was found that a reduction of energy 

consumption by 39% can be achieved by improving occupant behavior such as 

turning off the lights when rooms were empty and setting the air conditioner 

thermostat to a higher temperature (but still within the comfort level).  

 

Basically, two approaches (i.e., energy-saving education and building simulation), 

were used to improve building occupant behavior and identify the corresponding 

energy-saving potential. These two approaches can help to modify occupant behavior 

and have an immediate effect on building energy consumption reduction. However, 

both of the approaches have certain limitations. With regard to the energy-saving 

education approach, commonly detailed energy-saving measures and tips on efficient 

use of various household appliances should be provided for occupants. Considering 

that a family normally has a number of appliances and that each appliance may have 

various tips (e.g. for the usage of refrigerators, various tips can be given: reduce door 

open times, keep its coils and filters clean, keep it far from other heat sources,etc), 

there could be a large number of energy-saving measures and tips for an individual 

family. For example, one family may have 30 household appliances, with each 

appliance having an average of 8 energy-saving tips. Accordingly, the occupants need 

to understand and remember 240 tips, which may be quite impractical. Although a 

booklet of these tips can be prepared for building occupants, it is very difficult for 

occupants to remember distinctly all these tips and implement them for a long time in  

practice. Furthermore, occupants may not fully understand and have confidence in 

these tips’ effects as they only provide qualitative information. In addition, some 

energy-saving opportunities can only be initiated by building occupants. For example, 

when occupants realize they have consumed too much energy on both computers and 

TVs, they can avoid using both devices simultaneously when they can only focus on 

one of them, or make a conscious effort to reduce usage time.. Therefore, instead of 

simply providing occupants with a number of general energy-saving 

recommendations, it is more rational and efficient to help them modify the behaviour 

in two steps. First, it is necessary to identify the behaviour that needs to be modified. 

This can be achieved by analyzing measured data. Second, feasible recommendations 

to improve the identified behaviour can be presented with the goal of reducing energy 

consumption in the home. With regard to the building simulation approach, current 

simulation tools can only imitate some typical activities such as the control of 

sun-shading devices in a rigid way, while realistic building occupant behavior patterns 

are more complicated. 

 

This paper reports the development of a rational methodology for identifying and 

improving occupant behavior in existing residential buildings, based on an analysis of 

collected data and information. In particular, feasible recommendations are made for 



assisting occupants to modify their behaviour so as to reduce energy consumption.    

 

2. Methodology  

A new methodology is proposed for efficiently improving occupant behavior in 

existing residential buildings, and evaluating the energy-saving potential resulting 

from these modifications. As mentioned previously, end-use loads are used to deduce 

user activities indirectly. Specifically, these loads are used to map onto occupant 

behavior at two levels, as shown in Fig. 1.  

 

End-use loads in residential buildings

Level 1

Main end-use loads

1) water heater...

2) lamp, table lamp...

3) rice cooker, dishwasher...

4) refrigerator

5) television, computer...

6) washing machine, dryer...

7) unclear items

1) Hot water supply

2) Lighting

3) Kitchen

4) Refrigerator

5) Entertainment & Information

6) Housework & Sanitary

7) Others

Level 2

Sub-category end-use loads

General occupant behavior Specific occupant behavior
 

 

Fig.1. Two-level end-use loads 

 

Level 1 loads are divided into seven main end-use loads), , each of which can be 

further divided into various end-users in level 2. The seven end-use loads in level 1 

are assumed to be non-weather-dependent [10], due to the fact that the usage of these 

appliances (i.e. lighting, refrigerators, etc.) is mainly determined by occupants’ 

presence and their behaviour, though it may also be partly impacted by weather 

conditions. At the same time, given that HVAC loads in the investigated buildings are 

primarily determined by weather conditions (especially outdoor air temperature), the 

HVAC load is not taken into consideration in this study though it may also partly be 

impacted by occupant behaviour. It should be mentioned that, the level 2 end-users 

are not fixed in different residential buildings since commonly different families have 

different household appliances. The level 1 and level 2 loads are mapped onto general 

occupant behavior, such as activities associating with lighting and hot water supply, 

and specific occupant behavior, such as the use of computers and washing machines.  



For demonstration purposes, a group of buildings is used to show the practical 

application of this methodology. Recommendations for improving occupant behaviour 

are provided for a selected building (case building) within this group.  

 

The methodology is briefly described as follows.  

(1) Identify energy-inefficient general occupant behavior in the case building.  

(2) Identify a reference building for the case building to evaluate its energy-saving 

potential, and further determine its energy-inefficient general occupant behavior 

by comparison with the reference building.  

(3) Identify energy-inefficient specific occupant behavior in the case building.  

 

The proposed methodology can be demonstrated in a five-step process, as shown in 

Fig. 2.  

Provide recommendations for modifying occupant behavior for the  

case building occupants

 Case building

(data measurement)

Database development

(related buildings)

Clustering-then-classification

Reference building identification

for the case building

Association rule mining in the case building

 
 

Fig.2. Methodology of evaluating and efficiently improving occupant behavior in the 

case building 

 

Each step in this methodology is briefly explained as follows: 

 

(1) First, a database should be developed based on the collection of measured data for 

the case building and other related buildings (e.g. buildings selected in the same city 

or country). The daily (or hourly) level 2 end-use loads should be measured, and the 

level 1 end-use loads can be accumulated based on the level 2 data. The database 



should also contain information about building-related parameters, such as floor area 

and number of occupants.  

 

(2) Through clustering analysis, all the related buildings in the database are clustered 

into different groups in terms of the level 1 loads (for each main end-use load, the 

annual per capita end-use loads is used for comparison).  Accordingly, general 

occupant behavior in different buildings in the same group has a high similarity, but is 

quite different from that in other groups. Specifically, comparing with occupants in 

other clusters, on average each occupant in the same cluster consumes similar 

amounts of energy each year in terms of the seven level 1 end-use loads. Note that 

these seven loads are taken into consideration separately but simultaneously. 

Consequently, by comparing with other clusters, the characteristics of occupant 

behavior in each cluster can be identified. Such information can help building 

occupants to evaluate their own behavior among all the building owners in the 

database, thereby identifying general occupant behaviour which results in inefficient 

use of energy. Then, data classification based on the generated clusters is performed, 

and specifically, a decision tree [11] is developed. By using the generated decision 

tree, a building can be assigned to a specific cluster, provided its level 1 loads are 

available. In particular, once the case building has been assigned to a cluster, its 

general energy-inefficient occupant behaviour can be determined. It should be 

mentioned that, the decision tree was selected and used in this study due to the fact it 

can provide useful information which can help to understand the role of building 

occupant behavior in improving energy saving [12]. 

 

(3) Among the related buildings in the database, a reference building (RB) is 

identified for the case building to evaluate its energy-saving potential due to the 

occupant behavior modification. The RB is selected from the same cluster as the case 

building so that both of them have similar holistic occupant behavior patterns. The 

comparison with the RB also shows the case building occupants which general 

occupant behavior still need to be modified.  

 

(4) After identifying the energy-inefficient general occupant behavior through 

clustering analysis and RB identification, it is necessary for the case building owner 

to know which specific activities and corresponding appliances deserve extra attention. 

Therefore, association rules are mined to identify the associations and correlations 

between various user activities in the case building, in order to highlight 

energy-saving opportunities. 

 

(5) Recommendations for energy-efficient activities are provided for the case building 

occupants, so that they can modify their behavior. 

 

In the following section, various data mining techniques employed in this 

methodology are first introduced. Then the steps in identifying a RB for the case 

building are explained. 



 

2.1. Clustering-then-classification 

2.1.1. Cluster analysis 

Cluster analysis is the process of grouping data objects into clusters so that objects in 

the same cluster have high similarity, while objects in different clusters have low 

similarity. Fig. 3 shows a clustering schema based on a hypothetical residential 

building data table. It contains various end-use loads such as supply hot water and 

lighting.  

 

Attribute 1

(supply hot water)

Unit: MJ per capita per year

...
Attribute m

(lighting)

Unit: MJ per capita per year
Instance 1

…

Instance i

Instance j

...

Instance n

x ... x

... ... ...

x ... x

x ... x

... ... ...

x ... x

Cluster 1

Cluster w

... ... ... ...

Instance

.
.
.

 

Fig.3. Clustering schema  

 

This table consists of m attributes and n instances. Each attribute represents a variable 

and each instance denotes a building. All the instances are grouped into w clusters. 

Accordingly, these w clusters are homogeneous internally and heterogeneous between 

different clusters [11]. Such internal cohesion and external separation are based upon 

the various end-use loads, which can be mapped onto corresponding building 

occupant behavior. It implies that buildings in the same cluster have similar holistic 

occupant behavior patterns; while the patterns are significantly distinct for the 

buildings in different clusters.  

 

The dissimilarity between data objects in the database is calculated using the distance 

between them in the cluster analysis. In this study, the most popular distance measure, 

Euclidean distance, was used [11]: 

 

𝑑(𝑘, 𝑙) = √(𝑥𝑘1 − 𝑥𝑙1)2 + (𝑥𝑘2 − 𝑥𝑙2)2 + ⋯ + (𝑥𝑘𝑛 − 𝑥𝑙𝑛)2 

 

where k = (xk1, xk2, …, xkn) and l = (xl1, xl2, …, xln) are buildings. xk1, …, xkn are n 

parameters of k and xl1, …, xln are n parameters of l.  

 

Commonly used clustering algorithms include K-means, K-medoids, and CLARANS 

[11]. In this study, we employ the K-means, along with the open-source data mining 

program RapidMiner [13], to perform cluster analysis due to its efficiency and wide 



applicability.  

 

The K-means algorithm is one of the simplest partition methods to solve clustering 

problems. Given a dataset (D) containing w objects, the K-means algorithm aims to 

partition these w objects into k clusters with two restraints: 1) the center of each 

cluster is the mean position of all objects in that cluster, 2) each object is assigned to 

the cluster with the closest center. The algorithm consists of five steps: 1) Randomly 

select k observations from D as the initial cluster centers, 2) Calculate the distance 

between each remaining observations and each initially chosen center, 3) Assign each 

remaining observation to the cluster with the closest center, 4) Recalculate the mean 

values, i.e., the cluster centers, of the new clusters, and 5) Repeat Steps 2 to 4 until the 

algorithm converges, meaning that the cluster centers do not change.  

 

In RapidMiner, the performance of clustering algorithms is evaluated by using the 

Davies Bouldin index (DBI) [14]. This index is defined as the ratio of the sum of 

average distance inside clusters to distance between clusters. 

𝐷𝐵𝐼 =
1

𝑛
∑ 𝑚𝑎𝑥

𝑖≠𝑗
[
𝑅𝑖 + 𝑅𝑗

𝑀𝑖,𝑗
]

𝑛

𝑖=1

 

where  

n: number of clusters,  

Ri, Rj: average distance inside cluster i and cluster j by averaging the distance between 

each cluster object and the cluster center,  

Mi,j: distance between cluster centers.  

 

DBI is small if each cluster is comparatively dense; while different clusters are far 

from each other. Consequently, a smaller DBI indicates better performance of the 

clustering algorithm. It should be mentioned that the K-means is quite sensitive to 

initial cluster centers. Therefore, different values should be tried so as to obtain the 

minimum DBI. At the same time, the number of clusters should be specified in 

advance. 

 

2.1.2. Classification analysis 

Among various classification algorithms, decision tree was selected and used in this 

study. The decision tree methodology is one of the most commonly used data mining 

methods [11, 15]. It uses a flowchart-like tree structure to segregate a set of data into 

various predefined classes, thereby providing the description, categorization, and 

generalization of given datasets. As a logical model, decision tree shows how the 

value of a target variable can be predicted by using the values of a set of predictor 

variables.  



Root node

Outdoor air temperature ≤ - 6 °C ?

Leaf node

SHW is HIGH

(60) 

Internal node

Empty room ?

Yes No

Yes No

Leaf node

SHW is LOW

(10)

Leaf node

SHW is HIGH

(30) 
  

Fig.4. Schematic illustration of a simple hypothetical decision tree 

 

Fig. 4 gives a simple decision tree indicating whether the supply hot water load (SHW) 

in a residential building is high or low in winter. For this example, assume 100 data 

records are used to build this decision tree, and that each record has three attributes: 

outdoor air temperature, occupant presence, and the level of SHW. 

 

The target variable for the above decision tree is the level of SHW, with potential 

states being classified as either HIGH or LOW. The predictor variables are outdoor air 

temperature (≤ - 6°C or > - 6°C) and occupant presence (empty or occupied). As 

shown in Fig. 4, the decision tree consists of three kinds of nodes: root node, internal 

node, and leaf node. Root nodes and internal nodes denote a binary split test on an 

attribute while leaf nodes represent an outcome of the classification (i.e. a categorical 

target label). By using this decision tree, the SHW level classification (‘i.e HIGH or 

LOW) can be predicted. For example, if the outdoor air temperature is higher than - 

6 °C and the room is empty, SHW is LOW; otherwise it is HIGH.  

 

Decision tree generation is in general a two-step process, namely learning and 

classification, as shown in Fig. 5. In the learning process, the collected data is split 

into two subsets: a training set and a testing set. Creation of training sets and testing 

sets is an important part of evaluating data mining models. Usually, most of the data 

records in the database are arbitrarily selected for training and the remaining data 

records are used for testing. Note that training sets and testing sets should come from 

the same population but should be disjoint. Then, a decision tree generation algorithm 

takes the training data as an input, with the corresponding output being a decision tree. 

Commonly used decision tree generation algorithms include ID3 [15], classification 

and regression trees (CART) [16], and C4.5 [17]. In this study, we employ C4.5, along 

with the open-source data mining software RapidMiner [13], to build a decision tree. 

This software is selected due to its flexibility and wide applicability to different types 

of data. In the classification process, the accuracy of the obtained decision tree is first 

evaluated by making predictions against test data. The accuracy of a decision tree is 

measured by comparing the predicted target values with the true target values of the 

test data. If the accuracy is considered acceptable, the decision tree can be applied to 

new datasets for classification and prediction; otherwise, the reason for any 



inaccuracies should be identified and corresponding solutions should be adopted to 

address these problems.  

Accuracy is considered acceptable ?

Analyzing training data by a decision tree 

algorithm and generating decision tree

Estimating the accuracy of obtained 

decision tree using test data

Splitting dataset into 

training data and test data

Applying decision tree to future data

Y

N
Identifying  reasons

 and finding  solutions

Learning

Classfication

Fig.5. Procedure of decision tree generation 

 

The procedure of generating a decision tree from the training data is as follows. 

Initially, all records in the training data are grouped together into a single partition. At 

each iteration, the algorithm chooses a predictor attribute that can “best” separate the 

target class values in the partition. The ability of a predictor attribute to separate the 

target class values is measured based on an attribute selection criterion, which was 

introduced in [12]. After a predictor attribute is chosen, the algorithm splits the 

partition into child partitions such that each child partition contains the same value of 

the chosen selected attribute. The decision tree algorithm iteratively splits a partition 

and stops when any one of the following terminating conditions is met: 

 All records in a partition share the same target class value. Thus, the class 

label of the leaf node is the target class value.  

 There are no remaining predictor attributes that can be used to further split a 

partition. In this case, the majority target class values become the label of the 

leaf node. 

 There are no more records for a particular value of a predictor variable. In this 

case, a leaf node is created with the majority class value in the parent partition. 

 

2.1.3. Reference Building (RB) identification  

RB is normally utilized as a benchmark for comparison and the method of defining a 



RB depends on the purpose of study. In this study, the RB was defined to evaluate the 

energy-saving potential due to occupant behavior modification in the case building, 

and identify occupant behavior needing to be improved. Therefore, the definition of 

RB for the case building should comply with the following two rules: 

 

Rule 1: The holistic occupant behavior patterns in RB and the case building should be 

as similar as possible. Different residential building occupants normally have different 

lifestyles and behavior patterns. In general, it is very difficult for building occupants 

to make dramatic lifestyle changes in order to reduce energy consumption. Hence, 

among the related buildings in the database, buildings with more similar occupant 

behavior patterns should be considered when evaluating the energy-saving potential 

for the case building. This implies that potential RB candidates should be chosen from 

buildings in the same cluster as the case building, since occupant behavior in the same 

cluster has a high similarity in comparison to one another, but is quite dissimilar to 

that in the other clusters. 

 

Rule 2: Among all the potential RB candidates, the selected RB should have the 

highest similarity to the case building in terms of building-related parameters, such as 

outdoor temperature and floor area. This can also improve the reliability of 

comparative results between the two buildings. Euclidean distance can be used to 

define the similarity.  

With consideration of the two rules, RB identification for the case building consists of 

the following steps:  

 

Step 1: Assign the ‘case building’ to a cluster according to the level 1 loads  and the 

generated decision tree; 

Step 2: calculate the total energy consumption (i.e. the sum of the seven main end-use 

loads) in the case building and other buildings in the same cluster. Rank the total 

energy consumption in all these buildings;  

Step 3: Identify the RB. Buildings in the same cluster with lower total energy 

consumption than the case building are used as potential RB candidates. Then, based 

on building-related parameters and Euclidean distance, the most similar building to 

the case building among the candidates can be found. This building is identified as 

RB for the case building.  

2.1.4 Association rule mining  

In data mining, association rules are often used to represent patterns of parameters 

that are frequently associated together. An example is given to illustrate the concept of 

association rules. Assume that 100 occupants live in 100 different rooms in the same 

building and each room has both a window and a door. Moreover, 40 occupants open 

the windows and 20 occupants open the doors. If 10 occupants open both the 

windows and doors simultaneously, it can be calculated that these 10 occupants 

account for 10% of all the building occupants (10/100 = 10%), and 25% of the 



occupants who open windows (10/40 = 25%). Then, the information that occupants 

who open windows also tend to open doors at the same time can be represented in the 

following association rule:  

open_windows → open_doors [𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 10%, 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 25%] 

 

In this statement, support and confidence are employed to indicate the validity and 

certainty of this association rule. Different users or domain experts can set different 

thresholds for support and confidence according to their own requirements, in order to 

discover useful knowledge eventually. Accordingly, the association rule mining 

(ARM) can be defined as finding out association rules that satisfy the predefined 

minimum support and confidence from a given database. 

 

Mathematically, support and confidence can be calculated by probability, P(X∪Y), 

and conditional probability, P(Y|X), respectively (X denotes the premise and Y 

denotes the consequence in the sequence). That is, 

 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(X → Y) =  P(X ∪ Y) 

 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(X → Y) =  P(Y|X) 

 

Another concept, lift, which is similar to confidence, is commonly used to 

demonstrate the correlation between the occurrence of X and Y when conducting the 

ARM. Mathematically,  

 

𝑙𝑖𝑓𝑡(X → Y) =
P(X ∪ Y)

P(X)P(Y)
=

P(Y|X)

P(Y)
 

 

Particularly, a lift value greater than 1 represents a positive correlation (the higher this 

value is, the more likely that X coexists with Y, and there is a certain relationship 

between X and Y [18]) while a lift value less than 1 represents a negative correlation. 

If the value is equal to 1, i.e. P(X ∪ Y) = P(X)P(Y) , the occurrence of X is 

independent of the occurrence of Y, and there is no correlation between X and Y.  

 

Commonly used ARM algorithms include the Apriori algorithm and the 

frequent-pattern growth (FP-growth) algorithm [11]. In this study, we employ the 

FP-growth algorithm, along with the open-source data mining software RapidMiner 

[13], to mine association rules due to its high efficiency and wide applicability. For 

the specific algorithm of FP-growth the reader can refer to [11]. 

 

Additionally, in order to perform the ARM, the value of quantitative attributes 

generally needs to be classified into categorical values. Considering that most 

attributes used in the ARM in this study are end-use electricity loads, a two-interval 

scale (i.e., HIGH and LOW) was applied to represent high and low energy 



consumption. Such high and low energy consumption can then be qualitatively 

mapped onto energy-inefficient and energy-efficient occupant behavior. It should be 

mentioned that HIGH and LOW quite possibly, but do not necessarily, correspond to 

energy-inefficient and energy-efficient occupant behaviour in practice. For example, 

less energy efficient appliances will also cause higher energy consumption. However, 

given that energy-inefficient behaviour will waste energy and normally cause high 

energy consumption, such mapping was still used in this study. Consequently, the 

results need to be carefully analyzed and energy-inefficient behaviour should be 

eventually identified based on practical occupant behaviour patterns. Specifically, for 

each quantitative attribute, data ranged from the average of the maximum and 

minimum to the maximum value is ‘HIGH’, and data ranged from the minimum value 

to the average of the maximum and minimum is ‘LOW’.  

 

3. Data collection and pre-processing 

3.1. Data collection 

To evaluate and improve the energy performance of residential buildings, a project 

entitled “Investigation on Energy Consumption of Residents All over Japan” was 

carried out by the Architecture Institute of Japan from December 2002 to November 

2004 [19]. For this project, field surveys on energy-related data and other relevant 

information were carried out in 80 residential buildings located in six different 

districts in Japan: Hokkaido, Tohoku, Hokuriku, Kanto, Kansai, and Kyushu. Table 1 

shows the survey items and corresponding investigation methods. Fig. 6 shows the 

measuring instruments which were used to monitor temperature and consumptions of 

electricity, gas, and/or kerosene. As mentioned previously, the collected data can be 

divided into two levels. However, for the level 2 data, currently only daily data is 

available (instead of data at 1 or 5 minute time steps).  

 

Table 1 

Investigation items and methods 

Method Survey items Measuring time 

Field 

measurement 

Different end-use loads of all 

kinds of fuel   

Electricity  Measured every minute 

Gas Measured every 5 minutes 

Kerosene Measured every 5 minutes 

Indoor air temperature (1.1m above floor)  Measured every 15 minutes 

Questionnaire 

survey 

Lifestyle, Utilization of equipment, Annual 

income, etc. 
Once only 

Inquiring survey Other issues, such as basic building information Once only 

 



 
 

Fig.6. Measuring instruments (from left to right: electricity, gas, kerosene and air 

temperature) 

 

3.2. Data pre-processing 

3.2.1. Data integration and reduction 

Scrutinizing the data from the 80 buildings, it was found that only 67 sets were 

complete, while 13 sets had missing values of energy consumption data. Data 

integration was carried out for the detection and resolution of data value conflicts. For 

example, diverse energy units of different kinds of primary energy sources used by 

the various buildings (including electricity, natural gas, and kerosene) were converted 

to MJ based on conversion coefficients in Table 2. After conversion, they could be 

added directly. Then, data reduction was performed to obtain a smaller representation 

of the original data. For example, readings of each main end-use load at different 

intervals (e.g., 1 or 5 minutes) were averaged over one year. The resulting data was 

stored in a database.  

 

Table 2 

Conversion coefficients of different fuels 

Fuel Conversion coefficient Unit 

Electricity 3.6 MJ/kWh 

City gas (4A-7C) 20.4 MJ/Nm
3
 

City gas (12A-13C) 45.9 MJ/Nm
3
 

Liquefied petroleum gas (LPG) 50.2 MJ/Nm
3
 

Kerosene 36.7 MJ/L 

 

3.2.2 Case building selection  

As mentioned earlier, for demonstration purposes, one building with the most 

comprehensive household appliances should be selected as the case building, and the 

remaining 66 buildings are used for both clustering-then-classification and RB 

identification. Data inspection indicates that a building located in Hokkaido has the 

most appliances, as shown in Table 3. Table 3 also shows some measured 

environmental parameters of this building such as indoor air temperature and 

humidity. These parameters will also be used in the ARM to analyze the associations 

between them and occupant behaviour.  

 

Table 3 

Appliances in the case building and environmental parameters used in ARM 

No. Appliances/ No. Appliances/ No. Appliances/ 



indoor parameters indoor parameters indoor parameters 

1 Heating boiler 16 TV (other rooms) 31 Living room temperature 

2 Hot water boiler 17 TV (standby power) 32 Living room humidity 

3 Kerosene heater 18 Video 33 Bedroom (1F) temperature 

4 Ventilator 19 Phone 34 Master bedroom (2F) temperature 

5 Air cleaner 20 Telephone handset 35 Total energy consumption 

6 Lamp (1Fa*) 21 Iron 36 SHW 

7 Lamp (2Fb*) 22 Vacuum cleaner 37 LIGHT 

8 Table lamp 23 Washing machine (1F) 38 KITCH 

9 IH heater 24 Washing machine (2F) 39 REFRI 

10 Dishwashers  25 Living room outlet 40 E&I 

11 Microwave, toaster, coffee 26 Rest room outlet (1F) 41 H&S 

12 Bidet  27 Rest room outlet (2F) 42 OTHER 

13 Boom box 28 Outdoor air temperature 
  

14 TV (Dining room) 29 Outdoor relative humidity 
  

15 TV (master bedroom 2F) 30 Outdoor air velocity 
  

a* 
first floor, 

b* 
second floor. 

 

Table 4 shows the statistical data of the level 1 loads for the remaining 66 buildings. 

Clearly, it can be seen that each main end-use load is spread over a wide range, which 

implies fairly large energy-saving potential by improving occupant behavior. 

 

Table 4 

Statistical data of the seven main end-use loads for the 66 buildings (unit: MJ per 

capita per year) 

End-use load Min Max Average Standard deviation 

SHW 994.945 11649.175 4695.497 2616.451 

LIGHT 130.372 2938.521 1311.695 846.283 

KITCH 110.761 5321.785 971.773 786.056 

REFRI 390.136 2667.98 883.033 439.375 

E&I 106.254 2301.679 727.136 480.946 

H&S 64.137 2102.968 400.303 385.46 

OTHER 55.259 2374.798 738.422 564.375 

 

3.2.3. Data transformation for cluster analysis 

Before performing the cluster analysis on the level 1 data, it should be noted that the 

loads, which were mapped onto various corresponding user activities, have different 

ranges. Moreover, the activities were considered to be of equal importance in this 

study. In order to prevent the loads with large ranges from outweighing those with 

comparatively smaller ranges, min-max normalization was applied before clustering 

the buildings in terms of the seven main end-use loads. Specifically, the min-max 

normalization [11] can scale the values so that they fall within a predetermined range. 

The main advantage of the min-max normalization lies in its ability to reserve the 



relationships between the initial data, since it carries out a linear normalization. 

Assume that xmax and xmin are the original maximum and minimum values of a 

numerical attribute (i.e. the level_1 end-use loads in this study). By using the 

min-max normalization, a value of this attribute (e.g. x) can be transformed to x’ in 

the new specified range [x’min, x’max] by calculating 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(𝑥′

𝑚𝑎𝑥
− 𝑥′

𝑚𝑖𝑛
) + 𝑥′𝑚𝑖𝑛 

In this study, the new range is defined as [0, 1]. Table 5 shows the statistical data of 

the level 1 loads for the remaining 66 buildings after min-max normalization. 

 

Table 5 

Statistical data after normalization 

End-use load Min Max Average Standard deviation 

SHW 0 1 0.347 0.246 

LIGHT 0 1 0.421 0.301 

KITCH 0 1 0.165 0.151 

REFRI 0 1 0.216 0.193 

E&I 0 1 0.283 0.219 

H&S 0 1 0.165 0.189 

OTHER 0 1 0.295 0.243 

 

3.2.4. Removal of outliers for conducting ARM in the case building 

Outliers are data objects whose values are grossly different (i.e. much higher or lower) 

from others in the database. Outliers  regularly occur in building energy 

consumption measurement. They are often indicative of measurement errors, and thus 

must be removed. Removal of outliers plays a crucial role in preparing for the ARM, 

since outliers produce a large measure of skewness and have a significant influence on 

the partition of attribute values into different intervals. For example, suppose an 

attribute ranges from 0 to 10, and can be discretized into two intervals, [0, 5) and [5, 

10] (or LOW and HIGH), by using the methods mentioned previously. If there exists 

an outlier (e.g. 30), then the two intervals are [0, 15) and [15, 30] (or LOW and HIGH) 

by using the same method. Accordingly, all the data are defined as LOW except the 

outlier, which is not actually true.  

 

Various methods can be used for effective detection and removal of outliers. In this 

study, a method based on the lower quartile (Q1) and the upper quartile (Q3) of the 

standard boxplot was used due to its simplicity [20]. Specifically, outlying values can 

be distinguished using the following two rules: 

 

Rule 1: data values that are less than Q1 – 1.5 × (Q3 – Q1) are defined as outliers 

Rule 2: data values that are larger than Q3 + 1.5 × (Q3 – Q1) are defined as outliers 

 

With consideration of the seasonality of occupant behavior, the ARM was performed 

http://en.wikipedia.org/wiki/Quartile


based on seasonal data instead of annual data in this study for demonstration purposes. 

Given that the case building is located in Hokkaido, the coldest area in Japan, the 

winter data in 2003 was mined to generate association rules. Fig. 7 shows the 

distribution of two intervals of all the ARM attributes after the removal of outliers. 

Note that the numbers in the abscissa represent the ARM attributes, and correspond to 

the number in Table 3. Clearly, it can be observed that most of the percentages range 

from 30% to 70%, indicating a roughly uniform distribution. 

 

 
Fig.7. Distribution of two intervals of all ARM attributes after the removal of outliers 

 

4. Results and discussion 

4.1. Clustering-then-classification 

4.1.1. Clustering results 

After data pre-processing, the cluster analysis was conducted for the 66 buildings 

using the RapidMiner. With consideration of the size of the database, four clusters 

were determined by the K-means algorithm and the performance vector (Davies 

Bouldin index, DBI). The results of the cluster analysis are given in Table 6. Cluster 

centroid, which represent the mean value for each dimension, were used to 

characterize building occupant behavior in the four clusters. For example, in 

comparison with building occupant behavior in the other clusters, user activities in 

cluster_2 caused medium energy consumption in supply hot water (the cluster 

centroid of SHW in this cluster is 0.440, which is of medium value among the four 

clusters), high energy consumption in lighting, medium energy consumption in 

kitchen, etc. Moreover, cluster_2 has significantly higher energy consumption for 

lighting; this indicates that, in general, building owners in cluster_2 should give 

primary consideration to the activities related to lighting in order to save energy. 

Similarly, other clusters can be explained. It should be noted that nearly half of the 

data records (44%) were grouped into cluster_1, which represents low energy 

consumption in most of the main end-use loads. A possible explanation for this is that 
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a good portion of Japanese families have a high degree of awareness regarding 

energy-savings. In addition, among the seven attributes and four clusters, H&S has 

the largest maximum/minimum ratio (0.509/0.088 = 6.5), while KITCH has the 

lowest maximum/minimum ratio (0.268/0.144 = 1.91). This indicates that occupant 

behavior related to H&S differs significantly between the four clusters; and deserves 

extra attention in occupant behavior improvement; on the contrary, the total energy 

consumption caused by KITCH-related user activities has a narrow gap between 

different clusters, which implies relatively small energy-saving potential for 

modifying such kind of activities. 

Table 6  

Centroid of each cluster and statistics on the number and percentage of instances 

assigned to different clusters 

Attribute Cluster_1 Cluster_2 Cluster_3 Cluster_4 

SHW 0.266  0.440  0.738  0.215  

LIGHT 0.262  0.881  0.291  0.288  

KITCH 0.144  0.181  0.268  0.140  

REFRI 0.119  0.255  0.372  0.296  

E&I 0.218  0.169  0.572  0.403  

H&S 0.088  0.167  0.509  0.150  

OTHER 0.136  0.430  0.231  0.500  

Clustered buildings and proportion 29 (44%) 16 (24%) 7 (11%) 14 (21%) 

 

Table 7 shows the number of buildings in various districts in each cluster. Clearly, the 

distribution of buildings in various districts is roughly even, especially in cluster_1 

and cluster_4. Such a distribution indicates that the attributes in the cluster analysis 

are not dependent on weather (otherwise buildings in the same districts would tend to 

be grouped together), which is consistent with the assumption that the seven main 

end-use loads in clustering analysis are non-weather-dependent components.  

 

Table 7 

The number of buildings in various districts in each cluster  

cluster Hokkaido Tohoku Hokuriku Kanto Kansai Kyusyu 

cluster_1 6 3 7 3 5 5 

cluster_2 0 4 0 8 2 2 

cluster_3 1 2 4 0 0 0 

cluster_4 3 2 1 1 5 2 

 

4.1.2. Classification by decision tree 

4.1.2.1. Generation of decision tree 

After the four clusters were generated, a decision tree was constructed to assign 

buildings to a specific cluster provided their main end-use loads are available, as 

shown in Fig.8. C4.5 algorithm was used in RapidMiner to build the decision tree. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. Decision tree for the prediction of cluster attribution 

 

The decision tree includes a total of 19 nodes among which 10 are leaf nodes. The 

colors in the leaf nodes indicate the purity of classification in the nodes. A pure color 

in a node implies that all the records in this node are correctly classified. Clearly, all 

the data records in the training dataset are correctly classified in this decision tree. 

 

4.1.2.1. Evaluation of the decision tree 

In order to evaluate the accuracy of the generated decision trees, the RapidMiner 

analysis report also provides a confusion matrix for data analysts. In this study, a 

four-dimensional confusion matrix was built since the decision tree has four target 

variables, as shown in Table 8. 

  



Table 8 

Confusion matrix 

    Predicted data records 

    Cluster_1 Cluster_2 Cluster_3 Cluster_4 

Actual  

data  

records  

Cluster_1 7 0 0 0 

Cluster_2 1 4 0 0 

Cluster_3 1 0 1 0 

Cluster_4 2 0 0 4 

 

In this table, the rows indicate the number of actual data records used for testing in 

each cluster; and the columns represent the number of predicted data records 

generated by applying the decision tree to the actual data records. For example, the 

first column shows that 7 records in cluster_1 were correctly classified; while one 

record in cluster_2, one record in cluster_3, and two records in cluster_4 were 

misclassified into cluster_1. Therefore, the accuracy of this decision tree, which is 

also called ‘recall’ in the data mining domain, can be calculated as 

(7+4+1+4)÷(7+4+1+4+1+1+2) = 80%, which is basically acceptable though 

relatively low. This may be partly ascribed to the small size of database. Moreover, 

data records in cluster_2, cluster_3, and cluster_4 are misclassified into cluster_1 (at 

least one record in each cluster and four records totally), while data records in 

cluster_1 are not misclassified into the other clusters. Such information indicates that 

cluster_1 is more prone to be misclassified than the other clusters. This may have 

occurred since nearly half of the data records in the database are in cluster_1, which 

makes the decision tree more sensitive to this cluster. An even distribution among the 

four clusters in the database would possibly improve the accuracy. In addition, the 

sum of values in the matrix corresponds to the number of data records used for model 

testing. Clearly 20 records in the database were randomly selected by RapidMiner for 

testing, which also implies that 46 data records were used to establish the decision 

tree.  

 

4.1.2.3. Utilization of the decision tree 

The decision tree can be utilized to predict the cluster attribution of new buildings 

according to the main end-use loads. Such predictions can be easily made by 

traversing a path from the root node to a leaf node. Take the node in the lower left 

corner in Fig. 8 as an example. The prediction can be made as follows: for a building, 

if LIGHT ≤  2115.837 and SHW ≤  8504.939 and H&S ≤  1040.429 and 

OTHER > 903.886 and OTHER > 1591.781 and SHW > 2568.384, then this building 

belongs to cluster_2.  

Besides the prediction of cluster attribution, useful information can also be extracted 

from the decision tree so as to help understand building occupant behavior 

improvement. For example, various attributes are selected by the decision tree 



algorithm to split the nodes; and their degrees of closeness to the root node determines 

the number of records impacted. Therefore, the closer an attribute is to the root node, 

the more significant it affects the cluster attribution. Clearly the attribute significance 

in the decision tree can be ranked as: LIGHT > SHW > H&S > OTHER > E&I > 

REFRI. Such information indicates a general descending order of occupant behavior 

deserving attention when modifying user activities in Japanese residential buildings. 

Moreover, among the seven end-use loads, KITCH does not appear in the decision 

tree. This may have occurred due to the narrow gap between energy consumption 

caused by KITCH-related occupant behavior among the four clusters (see section 

4.1.1), and thus KITCH has the weakest influence on the cluster attribution.  

 

4.2. RB identification 

In order to demonstrate the methodology, a case building with the most 

comprehensive household appliances was selected for case study. Table 9 shows the 

level 1 loads in this case building. 

 

Table 9  

End-use data in the case building (unit: MJ per capita per year) 

SHW LIGHT KITCH REFRI E&I H&S OTHER Sum 

3882.699  582.052  250.600  1541.394  1799.530  621.743  336.592  9014.610  

 

Based on the decision tree, the cluster attribution of the case building can be predicted 

as follows: 

Step 1: Examine the value of LIGHT, i.e., the attribute in the root node. Since LIGHT 

= 582.052, the node test in the right branch LIGHT ≤ 2115.837 is satisfied, then go 

to the right-side child node; 

Step 2: Examine the value of SHW. Since SHW = 3882.699, the node test in the right 

branch SHW ≤ 8504.939 is satisfied, then go to the right-side child node; 

Step 3: Examine the value of H&S. Since H&S = 621.743, the node test in the right 

branch H&S ≤ 1040.429 is satisfied, then go to the right-side child node; 

Step 4: Examine the value of OTHER. Since OTHER = 336.592, the node test in the 

right branch OTHER ≤ 903.886 is satisfied, then go to the right-side child node; 

Step 5: Examine the value of E&I. Since E&I = 1799.530, the node test in the left 

branch E&I ≤ 1589.182 is satisfied, then go to the left-side child node, which is a 

leaf node. As a result, the decision tree in Fig. 8 predicts that the case building 

belongs to cluster_4.  

 

Comparing with the other three clusters, cluster_4, as shown in Table 6, can be 

characterized as the building group with high energy consumption in OTHER, 

medium high energy consumption in REFRI and E&I. Therefore, the case building 

occupants should manage to improve their behavior related to OTHER, REFRI, and 

E&I.  



 

After the prediction of cluster attribution, the sum of the seven main end-use loads in 

the buildings in cluster_4 was calculated and ranked. Table 10 shows these loads and 

their sum in the 14 buildings in cluster_4 in ascending order.  

 

Table 10 

The main end-use loads in the 14 buildings in cluster_4 (Unit: MJ per capita per year) 

No. SHW LIGHT KITCH REFRI E&I H&S OTHER Sum 

1 1691.656  744.428  1141.730  898.208  468.707  83.617  1670.297  6698.644  

2 2757.408  981.880  662.657  645.977  388.737  317.828  1100.376  6854.487  

3 1464.821  287.523  936.880  924.793  1958.911  504.171  845.352  6922.450  

4 2471.123  865.524  1065.978  879.398  608.810  162.782  942.645  6996.259  

5 1782.779  1099.852  322.597  1773.017  2092.484  142.018  556.186  7768.933  

6 3337.796  558.252  411.807  1013.407  1060.430  360.339  1253.659  7995.690  

7 3123.892  1094.065  1418.592  1055.741  803.612  160.549  1288.371  8944.821  

8 2694.449  1758.554  621.970  1170.580  1109.116  503.125  1220.652  9078.446  

9 3348.343  1407.656  1474.419  1046.065  768.032  550.396  739.591  9334.501  

10 5224.677  617.440  724.771  565.889  498.162  186.758  1530.789  9348.487  

11 4801.992  1080.952  994.315  909.184  870.845  202.665  818.539  9678.492  

12 5192.053  982.723  768.211  777.985  363.490  923.699  1129.407  10137.568  

13 5685.900  598.837  752.744  660.163  1007.248  269.102  1526.953  10500.947  

14 2366.639  1089.153  451.300  2585.726  1878.995  817.197  2374.798  11563.808  

 

A RB needs to be identified for the case building for the evaluation of energy-saving 

potential and the improvement of occupant behavior. The buildings with less total 

energy consumption (i.e. the sum of the seven main end-use loads) than the case 

building in cluster_4 were considered to be RB candidates. In order to provide reliable 

information for the case building occupants, the RB was defined as the most similar 

building to the case building in terms of building-related parameters. The Euclidean 

distance was used to determine the similarity. Various building-related parameters 

were captured from the database to calculate the Euclidean distance. Among these 

parameters, five are categorical parameters and are transformed into [0, 1], as shown 

in Table 11.  

 

Table 11 

Transformation of categorical parameters 

Categorical parameters  CO HT 
Energy sources by usage  

(SH, WH, KIT)  

Value wood non-wood apartment detached house Electric non-electric 

  Transformation value   0 1 0 1 0 1 

 

Table 12 shows the building-related parameters of the RB candidate buildings and the 

case building.  

  



Table 12 

Building-related parameters of RB candidate buildings and the case building 

No. NO FA HLC ELA CO HT 
Energy sources by usage 

T V RH RA 
SH WH KIT 

1 4  112  2.04 4.385 1 1 1 0 0 15.1 2.1 73 12.3 

2 4 141.6  1.79 0.77  0 1 0 0 0 12.8 4.3 74 11.7 

3 2 185.9 1.87 0.35 1 1 1 1 1 8.8 3.6 68 12.6 

4 4  115  2.61 6.365 0 1 0 1 1 16.9 2.5 66 12.6 

5 2 87.05 0.83 1.06 1 0 1 1 1 8.8 3.6 68 12.6 

6 2  135  1.7 3.9 1 1 0 0 0 17.2 2.8 66 13.1 

7 4 160.6  1.84 2.20  0 1 1 1 1 11.8 4.2 72 11.8 

8* 2 128.3 1.69 0.6 0 1 0 1 1 8.8 3.6 68 12.6 

* The case building. 

 

Again, the min-max normalization was applied in order to help prevent attributes with 

large ranges from outweighing those with comparatively smaller ranges. After 

normalization, the Euclidean distance between each candidate building and the case 

building was calculated; and the building with the smallest distance, i.e. No.3 building 

in Tables 12 and 10, was identified as the RB. For comparison, Table 13 shows the 

main end-use loads in the case building and the RB. 

 

Table 13 

Comparison of end-use data between the case building and RB (Unit: MJ per capita 

per year) 

Building SHW LIGHT KITCH REFRI E&I H&S OTHER Sum 

Case building 3882.699 582.052 250.6 1541.394 1799.53 621.743 336.592 9014.61 

RB 1464.821 287.523 936.88 924.793 1958.911 504.171 845.352 6922.45 

 

Table 13 shows that the sum of energy consumption in the case building is evidently 

higher than that in the RB. Further, user activities in the case building caused 

significantly higher energy consumption in SHW, LIGHT, REFRI, and H&S than that 

of the RB. This indicates that, in comparison with buildings with similar occupant 

behavior and building-related parameters, energy-saving potential still exists for the 

case building. That means energy consumption may be considerably reduced through 

modifying occupant behavior related to SHW, LIGHT, REFRI, and H&S. It should be 

noted that energy consumption in REFRI in cluster_4 is also medium high when 

comparing with the other three clusters. This implies the energy-saving potential of 

REFRI-related behavior is comparatively higher than the potential of the others, and 

thus deserves extra attention.  

 

Additionally, energy-saving potential in the case building can be identified as the 

energy consumption difference between the two buildings, i.e. 9014.610 – 6922.450 = 



2092.161 MJ per capita per year.  

 

4. 3. Association rule mining (ARM) in the case building  

Based on the information obtained from cluster-then-classification and RB 

identification, the ARM was then performed to find all the associations among the 

end-use loads at both levels. Accordingly, energy-inefficient specific occupant 

behavior will be determined and then energy-saving recommendations for modifying 

activities can be provided for the case building occupants.  

 

After experimenting with various combinations of support and confidence values, a 

support of 50% and a confidence of 80% were set as minimum thresholds. Such 

thresholds mean that, for each generated association rule, at least 50% of all the data 

records under analysis contain both premise and conclusion; and the probability that a 

premise’s emergence leads to a conclusion’s occurrence is 80% or more. In addition, 

the minimum threshold of lift value was set 1 to find positive correlations. Such 

mining generated 756 rules, many of which are obvious and uninteresting; and truly 

interesting rules need to be further identified based on domain knowledge. Fifteen 

association rules between household appliances were selected for demonstration 

purposes, as shown in Table 14. It should be mentioned that most obtained 

associations are between attributes in the LOW range (i.e. low energy consumption), 

while clearly the associations in the HIGH range (i.e. high energy consumption) may 

provide more useful information on energy conservation. This also indicates that the 

attributes involved in the obtained rules have a skewed distribution toward the LOW 

range, and may be ascribed to the high degree of building occupants’ energy-saving 

consciousness. Moreover, due to the availability of the data source, daily data was 

used for ARM instead of hourly data; and thus the obtained rules do not necessarily 

indicate that user activities in the premises and conclusions occur simultaneously. 

Therefore, the actual occupant behavior patterns should also be taken into 

consideration when using these rules in practice.  

 

Table 14 

Selected association rules (min_sup
a*

 = 50%, min_conf 
b*

= 80%, min_lift
c*

=1) 

No. Premise Conclusion Sup. Conf. Lift 

Rule 1 Living room outlet [LOW] OTHER [LOW] 54% 98% 1.49  

Rule 2 Heating boiler [HIGH] REFRI [HIGH] 51% 94% 1.12  

Rule 3 Lamp 1F [LOW] LIGHT [LOW] 59% 96% 1.33  

Rule 4 Washing machine 2F [LOW] H&S [LOW] 76% 97% 1.25  

Rule 5 Dishwasher [LOW] KITCH [LOW] 74% 99% 1.26  

Rule 6 Vacuum cleaner [LOW] H&S [LOW] 67% 84% 1.07  

Rule 7 Microwave, toaster, coffee [LOW] KITCH [LOW] 66% 81% 1.04  

Rule 8 TV (master bedroom 2F) [LOW] Lamp 2F [LOW] 66% 87% 1.10  

Rule 9 TV (other rooms) [LOW] LIGHT [LOW] 51% 81% 1.11  



Rule 10 Video [LOW] Table lamp [LOW] 52% 84% 1.02  

Rule 11 Lamp 1F [LOW] Table lamp [LOW] 52% 84% 1.02  

Rule 12 TV (Standby Power) [HIGH] Ventilator [HIGH] 55% 100% 1.82  

Rule 13 Phone [LOW] Boom box [LOW] 57% 90% 1.06  

Rule 14 TV (dining room) [LOW] Boom box [LOW] 51% 85% 1.01  

Rule 15 TV (other rooms) [LOW] Boom box [LOW] 54% 86% 1.02  

a* Minimum support, b* Minimum confidence, and c* Minimum lift. 

 

The results of the cluster analysis show that the case building was grouped into 

cluster_4, which was characterized as the building group with high energy 

consumption in OTHER, medium high energy consumption in REFRI and E&I. 

Hence, association rules involving OTHER, REFRI and E&I are the most important 

and deserve more attention. Accordingly, two rules, i.e. Rule 1 and Rule 2 in Table 14, 

were found among all the obtained rules and discussed as follows: 

  

Rule 1 shows that living room outlet and OTHER have a strong positive association 

with a confidence of 98% and a lift of 1.49. From this rule, it can be inferred that, in 

this building, the electricity load increase in living room outlet would quite possibly 

lead to the increase in OTHER. This indicates that, among all the unclear items 

included in OTHER, removable electrically-operated devices connecting to the 

living-room power plugs deserve more attention than other devices. Therefore, 

building owners could easily identify these devices and then manage to modify their 

usage to reduce energy consumption. 

 

Rule 2 shows that heating boiler has a strong positive association with REFRI with a 

confidence of 94% and a lift of 1.12. Given that the daily energy consumption of the 

heating boiler is mainly impacted by occupant presence and outdoor air temperature, 

this rule implies that, two factors (i.e. both a longer stay time of occupants and a 

lower outdoor air temperature) possibly cause a higher energy consumption of 

refrigerators. With regard to the first factor, it sounds reasonable since a longer stay 

time of occupants tends to increase the refrigerator usage, thereby increasing the 

energy consumption. With regard to the second factor, it seems unreasonable since a 

low outdoor air temperature normally causes a relatively low indoor air temperature in 

a detached house without central HVAC systems, thereby decreasing the energy 

consumption of refrigerators. A possible explanation for this is that the building 

occupants had high thermal comfort requirements in cold days; and preferred to a 

high indoor air temperature by increasing the boiler thermostat setting or using 

kerosene space-heaters. In order to justify the assumption, the pattern relating mean 

daily kitchen air temperature
1
 to mean daily outdoor air temperature was plotted, as 

shown in Fig. 9. A trend line was then drawn to find out whether the kitchen air 

                                                 
1In this building, both the kitchen and the living room are in the first floor, and there are no partitions between 

them. Hence, they have the same indoor air temperature and the living room air temperature was used in this 

figure.  



temperature increased or decreased in relation to outdoor air temperature. Clearly, a 

downward trend in mean daily kitchen air temperature following the increase of mean 

daily outdoor air temperature can be observed, which is in accordance with the 

assumption.  

 
Fig.9. Mean daily air temperature in kitchen vs. mean daily outdoor air temperature 

(winter, 2003) 

Therefore, a trade-off between human thermal comfort and building energy 

consumption is necessary for the owners, since an appropriate decrease of indoor 

thermostat settings in cold days results in an energy-consumption reduction in both 

space heating and refrigerators.  

 

Further, the comparison between the RB and the case building shows that user 

activities in the case building caused significantly higher energy consumption in SHW, 

LIGHT, REFRI, and H&S than those in the RB. Hence, rules associating with these 

four attributes also deserve extra attention. At the same time, in order to provide more 

comprehensive recommendations for energy-efficient behavior, rules associating with 

other end-use loads were also analyzed in this study. Eventually, thirteen interesting 

rules (i.e. Rules 3 to 15 in Table 14) were selected and discussed as follows.  

 

Similar to Rule 1, Rules 3, 4, and 5 show that lamp 1F, washing machine 2F and 

dishwasher have a strong positive association with LIGHT, H&S, and KITCH, 

respectively. Rules 6 and 7 show that vacuum cleaner, and microwave, toaster, coffee 

have a positive association with H&S and KITCH, respectively. Therefore, comparing 

with other appliances associating with LIGHT, H&S, and KITCH, the building 

occupants should pay more attention to the use of lamps in the first floor, washing 

machines in the second floor, and dishwashers, since activities related to these 

appliances could have a major influence on the corresponding main end-use loads. At 

the same time, the use of vacuum cleaners, microwave ovens, toasters, and coffee 

machines also deserve some attention, though their associations with H&S and 

KITCH are weaker than washing machine 2F and dishwasher. 

 

Rule 8 shows that TV (master bedroom 2F) has a positive association with lamp 2F 
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with a confidence of 87% and a lift of 1.10. From this rule, it can be inferred that the 

usage of TV (master bedroom 2F) would quite possibly lead to the usage of lamp 2F. 

This may have occurred since the building occupants always turned the lights on 

when they were watching TV. An effective way of reducing energy consumption in 

this building is to watch TV with dim light. 

  

Rules 9 to 11 can be explained in the same way as Rule 8 and similar 

recommendations can be provided.  

 

An unexpected result was that TV (Standby Power) and Ventilator have a strong 

positive association with a confidence of 100% and a lift of 1.82, as shown in Rule 12. 

Clearly the standby power of TVs and ventilators have the same trend of variation. 

This may have occurred since the building occupants would turn off the TVs and 

switch off the ventilators when the building was empty. However, standby power is 

commonly unnecessary and still accounts for energy cost. Therefore, TVs should be 

completely turned off or unplugged when they are not used. Furthermore, the wasted 

standby power of TVs is very small, but the sum of standby use consumed by all 

house appliances, such as microwave ovens, air conditioners, power adapters for 

laptop computers and other electronic devices, becomes significant. Standby power 

accounts for around 5-10% of residential electrical energy use in most developed 

countries; and continues to increase in developing countries [21]. Hence, it is 

meaningful to help building owners to realize the importance of reducing standby 

power consumption, and feasible recommendations should also be provided for them. 

For example, a switchable power strip can be used for multiple devices, such as VCRs, 

DVD players, TVs, and computers, so that these appliances can be unplugged 

conveniently with one action. 

 

Rules 13 to 15 show that phone, TV (dining room) and TV (other rooms) have a 

positive association with boom box. This indicates that, among all the appliances 

included in E&I, boom boxes was used in comparatively high frequency and deserve 

extra attention. 

 

Moreover, indoor and outdoor parameters were also included in this ARM model. 

Associations between indoor/outdoor parameters and household appliances can assist 

in understanding the factors influencing  occupant behavior. In order to demonstrate 

such associations, six rules were selected and shown in Table 15.  

 

Table 15 

Selected association rules between indoor/outdoor parameters and household 

appliances (min_sup = 50%, min_conf = 80%, min_lift=1)  

No. Premise Conclusion Sup. Conf. Lift. 

Rule 1 Master bedroom (2F) temperature [HIGH]  Microwave, toaster, coffee [LOW] 58% 83% 1.02  

Rule 2 Living room humidity [LOW] Microwave, toaster, coffee [LOW] 55% 86% 1.06  



Rule 3 Outdoor relative humidity [LOW] Microwave, toaster, coffee [LOW] 57% 87% 1.07  

Rule 4 Outdoor air temperature [LOW] H&S [LOW] 54% 88% 1.12  

Rule 5 Outdoor air velocity [LOW] H&S [LOW] 59% 82% 1.05  

Rule 6 Living room humidity [LOW] H&S [LOW] 57% 90% 1.15  

 

Rules 1 to 3 show that master bedroom (2F) temperature (HIGH), living room 

humidity, and outdoor relative humidity have a positive association with microwave, 

toaster and coffee. This indicates that a high master bedroom temperature, as well as a 

low living room or outdoor relative humidity, tends to decrease the usage of 

microwave ovens, toasters, and coffee machines. A possible explanation for this is 

that the increase in indoor air temperature, or the decrease in indoor/outdoor relative 

humidity, causes the occupants to lose their appetite to some extent.  

 

Rules 4 to 6 show that outdoor air temperature, outdoor air velocity, and living room 

humidity have a positive association with H&S. This indicates that the decrease in 

outdoor air temperature/velocity, and living room humidity tends to reduce the 

likelihood that occupants do housework such as cleaning and washing. It can be 

inferred that both local climatic conditions and indoor microclimate may have an 

impact on occupant behavior relating to housework. For example, the increase of 

outdoor air velocity may deteriorate indoor sanitary conditions (dust accumulation), 

thereby increasing the usage of vacuum cleaners and other sanitary appliances.  

 

In addition, based on all the generated rules, it was found that six attributes, as shown 

in Table 16, have no association with the remaining attributes.  

  

Table 16 

Attributes without associations with the remaining attributes 

No. Appliances Indoor parameters 

1 Total energy consumption Living room temperature 

2 I&E Bedroom (1F) temperature 

3 Bidet  
 

4 IH heater 
 

 

The fact that these attributes have no association with the other attributes implies that, 

in this building, they are independent. There are two possible reasons for these 

attributes’ independence: for total energy consumption and I&E, they may be decided 

by the holistic effects of various user activities, instead of associating with some 

certain activity. For the other four attributes, their values may be purely random or 

remain relatively stable in the whole winter and thus no association with other 

attributes can be found. Such information can help building owners to make 

intelligent decisions when modifying their behavior.  

 



5. Conclusions 

A methodology for identifying and improving occupant behavior in existing 

residential buildings is developed. End-use loads of various household appliances 

were mapped onto corresponding occupant behavior, and were used to deduce user 

activities indirectly in this study. Specifically, these end-use loads were divided into 

two levels (main and sub-category), and thus correspond to two-level activities, i.e. 

general and specific occupant behavior.  

In order to demonstrate its applicability, this methodology was applied to a group of 

residential buildings located in six different districts of Japan. Field surveys on 

energy-related data and other relevant information were carried out, and then a 

database was developed. A building with the most comprehensive household 

appliances was selected as the case building and the remaining buildings were used as 

related buildings. Data pre-processing was performed for the related buildings and 

they were grouped into four clusters by using K-means algorithm. The characteristic 

of occupant behavior in each cluster was analyzed. Base on these clusters, a decision 

tree was generated and its accuracy was evaluated as 80%. In terms of the decision 

tree, the case building was predicted to belong to cluster_4. A reference building was 

identified in the same cluster as the case building. Consequently, the case building 

was compared with buildings in the other clusters and the reference building to 

determine energy-inefficient general behavior. Also, its energy-saving potential was 

identified as 2092.161 MJ per capita per year. Moreover, association rules were mined 

based on the data of the case building in winter in 2003, given the seasonality of 

occupant behavior. A number of interesting rules were found, and associations and 

correlations between different user activities were discovered. According to these 

rules, specific recommendations for highlighting energy-saving opportunities were 

provided for the building occupants. 

 

Considering the diversity of specific occupant behavior, the determination of 

energy-inefficient general occupant behavior can narrow down the scope of 

identification of energy-inefficient specific occupant behavior, and thus can help 

occupants to quickly find the generated association rules, as well as specific behavior, 

which deserve more attention. Also, such information is extracted from the real 

measured data and covers almost all energy-related behavior. With such information, 

building occupants can then clearly understand their actual behavior patterns, and 

easily focus on the energy-inefficient behavior needing to be modified. Therefore, the 

main advantage of the proposed methodology lies in its high efficiency of occupant 

behavior improvement. Moreover, the identification of energy-inefficient general 

behavior in this study is mainly based on the comparison with other similar buildings; 

this can help building owners to be aware of avoidable energy waste caused by their 

behavior, and motivate them to modify their activities accordingly. 

 

 

The application of this proposed methodology to Japanese residential buildings in this 



paper has clearly proved that this methodology is more efficient and rational than the 

traditional methods, i.e. energy saving education method and building simulation 

method. However, further study is still necessary and the main focus of future 

research should be placed on identifying appropriate database sizes and the number of 

clusters, improving the accuracy of generated decision tree. These measures have a 

strong influence on characterizing the occupant behavior in all the investigated 

buildings and cluster attribution of the case building. In addition, it is noted that using 

daily end-use loads in the case building to mine associaton rules and provide 

recommendations for occupants is not sufficient. This is because user activities in the 

premises and conclusions of association rules may not occur simultaneously. In order 

to overcome this limitation, hourly (or less than one hour, such as 15 minutes) end-use 

loads of various household appliances should be measured and used in association 

rule mining.  
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