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Abstract 

Effect of collaboration network structure on knowledge and innovation 

productivity: The case of biotechnology in Canada 

Hamidreza Eslami 

Innovation and new knowledge are vital ingredients in establishing and maintaining 

competitive advantage of companies.  Many of the novel ideas that lead to scientific 

publications or yield innovative output are the result of collaborations among scientists or 

inventors, who cooperate either on individual level or under organizational agreements. 

The collaborations that take place among individuals and organizations create a network 

within which the information exchange occurs. Although various aspects of these 

networks have been examined, the impact of many network characteristics on knowledge 

creation and innovation production remains unclear due to the inconsistency of the 

conclusions from various research studies.  One such network structure, called small 

world, has recently attracted much theoretical attention as it has been suggested that it 

can enhance the information transmission efficiency among the network actors. However, 

the existing empirical studies have failed to provide consistent results regarding the effect 

of small-world network properties on network performance in terms of its scientific and 

innovative productivity. In this thesis, using the data on 36 years of journal publications 

in the field of biotechnology in Canada, the network of scientists’ collaborations has been 

constructed based on their co-authorships in scientific articles. Various structural 

properties of this network have been measured and the level of small-world characteristic 

has been investigated. We found that the network of biotechnology scientists in Canada 

exhibits small-world properties.  Furthermore, the relationships between these properties 
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and knowledge creation, innovative output and quality of the innovations have been 

examined. We conclude that the structure of the co-authorship network of Canadian 

biotechnology scientists has a significant effect on the level of knowledge creation of 

scientists. However, structural properties of the scientific network have produced impact 

on neither the quantity nor the quality of innovations produced by the network actors. 
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Chapter 1: Introduction and Literature 
review 

Introduction 

Although the concept of networks has been known for many years, it is a short time that 

human being has started to study its features and characteristics. The benefits of 

networking have been proven in various fields, and physicians, mathematicians, and 

others have been utilizing them for some time. However, its application in business 

world, especially in enhancing the innovation and creativity, has only recently attracted 

some theoretical attention. 

Networks in which various firms and individuals have relationships with each other are 

of great importance. Especially the relations involving the exchange of knowledge play a 

key role in the survival and the progress of organizations. In fact, the knowledge transfer 

is one of the major factors that bring innovative companies close to each other and shape 

the geographical clusters. The effective flow of knowledge in the networks will result in 

the regional improvement of knowledge level and lead to economic growth. 

The more connections to other firms a company has and the more valuable knowledge it 

gains through these relationships, the more successful it will be in creating innovation 

and developing new products and procedures. In any network, as the population of nodes 

grows, the number of connections increases as well. In the large social networks, as soon 

as some knowledge or information is available, it can spread to all parts of the networks 

due to the presence of direct and indirect links. Hence any distance between the 
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innovative agents can affect the extent of knowledge diffusion strongly. This fact 

eventually influences the performance of the agents in the network and also their 

innovative productivity.  

Therefore, we can realize the importance of studying the structure of social networks and 

the process of knowledge and innovation diffusion. In this thesis, the network structure 

and its properties will be studied and some light will be shed on their effect on innovation 

productivity. 

Since most of the research work carried out in this field is theoretic, there is a vivid lack 

for empirical investigations based on statistical data. The data used in this study are taken 

from the field of biotechnology in Canada. This segment of industry is of great 

importance for Canada, because it is a relatively new sector with a great potential for 

growth. Furthermore, biotechnology provides a significant contribution to science 

advancement and innovation, thousands of jobs, as well as large exports. 

The content of this thesis will provide a deeper understanding of the effect of the 

innovation network’s structure on the knowledge creation and innovation productivity 

level. As such, it can serve as a basis for the design of governmental policies or 

organizational strategies related to knowledge creation and its transmission through the 

networks. It is proposed in this thesis that efficiently structured knowledge networks can 

finally result in the increase of knowledge productivity and innovativeness in Canadian 

biotechnology sector. 
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Literature review 

1.1. Network, innovation and innovation networks 

1.1.1. Network 

Generally, a network consists of nodes or points which are connected to each other by 

links. In industrial societies firms and organizations can be thought of as nodes of the 

network and any type of relationship between them is considered as links that connect the 

network nodes to each other. This fact holds also for individuals in companies, 

universities and other institutions, which means, for example, that we can build a network 

of innovative individuals like scientists and inventors who are related to one another by 

their cooperation and co-authorship ties. 

The connection of the nodes varies in different networks and therefore the networks 

exhibit diverse characteristics. However, according to Wasserman and Faust (1995), in 

the networks of innovators and firms, there are regularities in their relationship which 

shape some patterns. These patterns are known as the structure of the network and will be 

discussed later. 

1.1.2. Innovation 

It is needless to say that in any industry, innovation improves the companies’ value; it 

helps them maintain their competitive advantage and enables them to enter into new 

markets. Besides, innovation enhances the knowledge level in various fields. Not only 

firms and individuals share their knowledge, information and achievements with some 
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other agents through the networks, but also many organizations invest in their own 

research activities and inventive personnel in order to successfully compete with others.  

This becomes a strong motive for them to improve their innovative performance. Now, 

we should define what is called innovation: 

According to Dosi 1998, the procedure of search to find the solutions for problems is 

called innovation. It is believed that the produced knowledge usually is the result of the 

new mixture of existing information and solutions; or it is generated from the new 

composition of knowledge components (Schilling and Phelps 2007). 

1.1.3.  Innovation networks 

In today’s competitive world, organizations prefer to collaborate with each other to take 

advantage of the knowledge trade among themselves. Although some people still believe 

that it is better to work alone and not to share their ideas, recent research has shown that 

most of novel inventions and scientific achievements have been derived from 

collaborations and partnerships. For example, Collins (1999) analyzed the business line 

of many remarkable geniuses among artists, scientists and philosophers, and found that 

majority of famous people (for example Freud and Beethoven) worked in connection 

with others who were in fact often their rivals and competitors. 

There are various kinds of connections among knowledge sources, but in general, we 

recognize direct and indirect collaborative ties. In direct collaborations, two knowledge 

sources (organizations or individuals) have direct connections between each other, which 

are based directly on their physical collaboration. However, in indirect collaborations, 

there are intermediaries between the two (or more) agents that exchange knowledge and 
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information, and knowledge is thus transmitted through the complex net of links and 

relationships. 

It has been shown that this network of agents greatly facilitates the knowledge transfer 

and diffusion (Schilling and Phelps 2007). There could exist a very rich and fruitful 

exchange of knowledge and innovative ideas among the members of such social 

networks. These networks can involve various research fields in which they can 

significantly contribute to the development of new technologies, new medicines or many 

other kinds of innovation (Abrahamson and Rosenkopf 1997). Previous studies show that 

firms’ relationships affect their achievements in innovation and even indirect connections 

increase the agents’ innovative performance (Schilling and Phelps 2007).  

The abovementioned relationships could develop among different sources of knowledge. 

According to Midgley et al. (1992), there are eight categories between which the 

knowledge exchange takes place in organizational level. These are as follows: 

1. Suppliers 

2. Adopting organizations  

3. Adopting organizations and suppliers 

4. Government regulations and adopting organizations 

5. Government regulations and suppliers 

6. Suppliers and adopting organizations 

7. Other third parties and adopting organizations and vice versa 

8. Suppliers and Other third parties and vice versa 
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Allen (1983) believes that the free flow of information among these agents leads to the 

formation of collective inventions. In fact this phenomenon is the result of the sharing of 

knowledge among groups and will not happen due to the attempts of neither individuals 

nor particular organizations. In the case that Allen (1983) has studied, the knowledge 

circulation within the firms in blast furnace industry led to an outstanding advance in the 

performance of blast furnaces in Britain. There are many other instances that confirm the 

positive effects of the disclosure of knowledge within the connected social groups of 

individuals and/or firms that form the networks. According to Schiffauerova and Beaudry 

(2008a), collective invention leads to the rapid growth of knowledge in the network and 

increases the innovation production rate. 

Based on subjects under the study we classify the innovation networks into two main 

categories: the networks of individual innovators, i.e. inventors or scientists, and the 

inter-organizational networks composed of the firms and organizations. 

1.1.3.1. Networks of innovators 

A large number of inventors and scientists cooperate with each other, facilitate thus 

knowledge transfer within their communities, and collectively contribute to the 

generation of new scientific achievements and the production of innovations. Their 

connections form an inter-personal network of researchers and inventors, which we call 

the network of innovators. Although these individuals are frequently cooperating, they 

usually do not have any official contracts evidencing their collaborations. Their 

relationships are often traced through the results of their scientific and innovative efforts 

through scientific articles and patents. Therefore, their association is built on two factors: 
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co-inventorship of a patent and co-authorship of an article. The former can be tracked by 

the patent documents and the latter is evidenced by the scientific journals. According to 

Newman (2001a) the co-authorship networks built in this way belong among the largest 

social networks ever studied. 

1.1.3.2. Inter-firm collaborative networks 

The second type of innovation networks is formed among the firms rather than 

individuals. In fact, the collaborative links of firms with other organizations develop 

knowledge networks whose network structure and properties are different from networks 

of innovators. The evidence of inter-firm partnerships is based on various data, for 

example on officially registered alliances, collaborative research agreements and also 

joint ownership of patents (Schiffauerova, A., Beaudry, C. 2009).  

1.2. Structural properties of networks 

No one can ignore the economic and social importance of networks connecting different 

organizations and individuals. The development and the spread of innovations, their 

success rate and also the innovative potential of the firms are highly affected by the 

structure of the network over which communication takes place (Midgley et al. 1992). It 

has been proposed that the successful spread of knowledge or invention is dependent on 

the structure of the network in which it flows. Even for highly valuable innovations, only 

their introduction to the social network’s section is not sufficient for its successful 

diffusion, and many other factors affect its success (Abrahamson and Rosenkopf 1997). 
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Although the network structure in which the vertices (agents) are connected and 

exchange knowledge, has not been much explored in research literature, the network 

architecture is considered to be a crucial factor that influences the type of transferred 

knowledge as well as its amount and the transfer effectiveness (Cowan and Jonard 

(2004). The information transfer among network members affects the knowledge 

productivity and innovative performance of the network; hence it could be concluded that 

network structure is a significant factor in the improvement of network’s knowledge 

level. 

Much evidence supports the fact that some properties of networks influence the spread of 

knowledge. For example, in the survey done by Abrahamson and Rosenkopf (1997), a 

scientist named Dr. W. Edwards could not spread his new approach (TQM) in the U.S. 

because he was not famous there. Therefore, he went to Ichiro Ichikawa and through this 

well-known scholar in Japan he diffused his approach to many Japanese and then to U.S. 

segments. In the same study, it was also described how James Lancaster and James 

Lind’s findings about lime juice cure property for scurvy was ignored because of their 

little stature in British navy social networks. 

Schiling and Phelps (2007) have also mentioned the important role of the structure of 

networks connecting firms and its significant effect on the flow of knowledge among 

these companies. Many other researchers like Cowan and Jonard (2001), Abrahamon and 

Rosenkopf (1997), Choi et al. (2010) and Granovetter (1973) have emphasized the 

outstanding effect of network topologies on the performance of the system and the 

diffusion of knowledge and innovation. Considering the importance of these effects it is 

recommended to pay great attention to the architecture of innovation networks. The first 
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step in this regard taken in this thesis is to get acquainted with properties of networks 

over which the communication takes place. The network properties that enhance the 

knowledge transfer as well as those which reduce the rate of information diffusion should 

be studied and well understood.  

Generally, each social network is made up of some internal segments which are separated 

based on geographical properties, cultural properties or industry types. These segments 

form boundaries which may prevent innovation to spread to all of the potential adaptors 

by limiting the diffusion process. Therefore, internal segments of networks could greatly 

affect the extent of knowledge diffusion. (Abrahamson and Rosenkopf 1997) 

Some scholars have surveyed the various properties of networks which influence the 

spread of knowledge. For instance, Granovetter (1973) mentions that two main 

constituents that form each social network are “cliquish sub-networks” and “bridges”. 

Cliques, such as family or friend networks, consist of people or firms who widely 

cooperate. He says that the information of such sub-networks will be diffused within a 

few cliques. But bridge connections tie many agents from various cliques. A simple 

example could be international conferences or internet chat rooms. 

In the current research literature, two major structural features of networks that are 

recognized to have an important effect on the network performance are called clustering 

(also known as cliquishness) and reach (also known as path length) (Schilling and Phelps 

2007, Watts and Strogatz 1998, Granovetter 1973). These characteristics are described 

below. 
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1.2.1. Clustering 

Clustering coefficient is defined as “the proportion of a firm’s partners that are 

themselves directly linked to each other”. For the whole network, the clustering 

coefficient can be gained by averaging the clustering coefficients of all agents (Schilling 

and Phelps 2007). Watts and Strogatz (1998) introduce clustering coefficient C(p) as the 

local cliquishness
1
 of the network. C(p) is defined as the likelihood that two nodes are 

connected in case that they are both connected to a mutual node. Basically, each three 

people in a network who are connected to each other make a triad. This triad is a sample 

of complete clustering in which C(p)=1. For any network, clustering coefficient is 

calculated by computing the ratio of total number of triads in the network over the 

number of all possible triads (Uzzi 2008).  

According to Schilling and Phelps (2007), clusters could be shaped due to many reasons, 

but commonly, proximity of the organizations and also their similarity lead to high 

clustering. For example firms which are geographically close or firms that have similar 

technologies are more prone to communicate with each other. 

Schilling and Phelps (2007) claim that clustering leads to higher knowledge diffusion 

capacity and network performance. The reason is that with higher clustering there will be 

more alternatives of solutions for existing problems across the entire network, and this 

increases the general insight of the members. Besides, when the network is more 

clustered, there will be more trust among its members. Consequently, enhanced trust 

                                                 
1
 Cliquishness is another term used by many scholars to refer to clustering. (Burt 2001, Uzzi and Spiro 

2005 and Schilling and Phelps 2007, Cowan and Jonard 2003, Fleming et al. 2007) 
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within the dense lattices improves the cooperation among the firms. Along with more 

collaboration and reciprocity, staff of enterprises will be motivated to exchange 

knowledge with other agencies’ personnel. Furthermore, the denser a cluster is the 

quicker will be the transmission of shared knowledge. Moreover, even the number of 

clusters affects knowledge distribution and productivity of the network; when there are 

many clusters, the dispersed information is more probable to contain various fields of 

knowledge. This will enhance the overall knowledge level in the network.  

Nevertheless, there are also some drawbacks associated with higher levels of clustering. 

As an example, when the cluster becomes denser, the amount of information which flows 

among the cluster members will increase. Consequently, even though the level of the 

diversity of transferred knowledge will increase, the extent of information which is 

identical and redundant may increase as well (Burt 1992, Granovetter 1973). The link 

redundancy is characterized by many unneeded links to the same sources of knowledge. 

In agreement with this phenomenon, Cowan and Jonard (2004) have concluded that when 

two agents are in the same clustered clique, obviously there will be many paths by which 

the information and innovative material can be transmitted. Although this will increase 

the innovation productivity of the members, there will be many redundant connections 

which result in the exchange of identical information 

Moreover, Uzzi and Spiro (2005) also suggest that although clustering is considered as an 

important factor in many innovation systems, it may have negative effect if it exceeds an 

acceptable level. They have stated that when the cliquishness passes a certain threshold, 

diffusion properties become weak in the network. Consequently, with a drop in the extent 
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of knowledge spread among network nodes, the innovation and knowledge productivity 

of the network will decrease.  

1.2.2. Path length 

According to Watts and Strogatz (1998), the average number of edges that should be 

traversed in the shortest path between any pair of vertices is called characteristic path 

length L(p) and determines the separation between two vertices in the network. Actually 

it is “the average number of links that separates each pair of firms in a network” 

(Schilling and Phelps 2007).  

Short path length with many knowledge sources makes the access to more information 

possible. The path length between two agents in a network affects the possibility of 

knowledge exchange between these agents and also the speed by which they are able to 

exchange the knowledge. Obviously, the shorter is the average path length between a 

certain individual or firm and other network actors, the more knowledge can reach that 

agent (individual or firm) quickly (Watts 1999, Uzzi and Spiro 2005, Schilling and 

Phelps 2007). 

1.2.3. Interaction of clustering and path length 

Although it was previously assumed that there should be a balance between high 

clustering and many short path lengths in a network (Schilling and Phelps 2007), recently 

it has been proposed that even a few connections among agents can provide them with 

distinct knowledge fields from different clusters (Fleming et al. 2007, Uzzi and Spiro 

2005, Schilling and Phelps 2007). 
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Study results of Schilling and Phelps (2007) show that the interaction of high clustering 

and short path length has positive influence on the productivity of knowledge. In their 

model, a small increase in clustering enhances the positive effects of short path length on 

knowledge creation. 

Simulation results of Choi et al. (2010) demonstrate that the low degrees of cliquishness 

and high randomness
2
 (which is the result of high number of bridges

3
) reduce the 

complete spread of information and innovation throughout the network. In their model, 

when the number of random connections increases, the likelihood of failure in complete 

diffusion will raise in its early stages of the introduction of the new knowledge to the 

network. Whereas when randomness is low, the adoption of new ideas is high in this 

period (The period in which the ideas are newly introduced). 

Consequently, in initial stages of introduction of innovation to the network (especially 

when the innovation is related to new product), a cliquish network shows more diffusion 

than a random one; however, when this stage has passed, random connections make the 

diffusion faster. This fact does not hold for information diffusion, meaning that high 

randomness of the network leads to acceleration of information diffusion speed. For 

product adoption, there should be a balance between high randomness and high 

cliquishness. This could happen using a cliquish network with some random links which 

refers to a special network structure named small-world. 

                                                 
2
 When the randomness increases in a network, its disorderness will be raised. In this case the likelihood 

that two close nodes are connected is much lower than in the regular networks. 

 
3
 Bridge refers to the links that connect different clusters to each other in a network. According to Schilling 

and Phelps (2007) bridges enable the network members to reach many sources of knowledge. Uzzi and 

Spiro (2005) have suggested that the existence of bridges increases the chance of having access to various 

ideas, which leads to the higher likelihood of knowledge recombination and therefore it enhances the 

creativity and the productivity of knowledge. 
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1.3. The notion of small-world and six degrees of separation 

When we find a mutual acquaintance with someone whom we do not know at all, it 

brings a thought to our mind that “the world is really small”. This means that any two 

people around the world who are randomly selected are connected to each other with 

some intermediate links.  

Milgram (1967) was the first one who did a quantitative survey regarding the small-world 

notion. He randomly selected 296 individuals in Nebraska and gave them letters to be 

delivered to a specific person in Boston whom they did not know. They were asked to use 

their acquaintances which would pass the letter further and further, and have it finally 

delivered to the addressee. The results of this survey show that on average only six 

intermediates were needed to reach the person who was completely unknown to those 

individuals sending the letter. This study concluded that each pair of people in the world 

is separated on average by six intermediate acquaintances. 

Later, this phenomenon was named “six degrees of separation” (Gaure 1990). After that, 

Watts and Strogatz (1998) introduced a model of small-world in which there are some 

clusters that contain local ties among agents and also there is a few global links that 

enable connections between any pair of nodes in the network.  

1.3.1. Regular, random and small-world networks 

Generally, all the network connections are believed to be either regular or random. 

However, between these two extremes of networks (completely regular or completely 

random) there could be many social, biological or technological lattices. Small-world 
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network structure, which falls between these two extremes, has resulted from enhanced 

amount of disorder in regular graphs by rewiring them. In small-world networks high 

clustering could coexist with short path lengths (Watts and Strogatz 1998). 

To construct the network structure falling between the two mentioned extremes, Watts 

and Strogatz (1998) rewired each link with probability p. In this case, p=0 makes the 

graph with complete regularity and p=1 leads to a random (disordered) graph. (See Figure 

1) 

 

Figure 1: From a regular network to a random one (Watts and Strogatz 1998) 

In regular networks, the agents are directly connected to their closest neighbors, but the 

paths between the nodes located far from each other involve many indirect links. 

Therefore, in this kind of networks path length is long and also clustering is high. In 

random networks, members of the network are connected randomly to each other. So the 

probability that two close neighbors are connected is much less than in the regular 
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lattices. Consequently, these networks are characterized by short path length and low 

clustering. Between these two extreme kinds of networks, there are small-world graphs in 

which high clustering and short path length exist concurrently. Thus, small-world 

networks have some features of random graphs (short path length) and some of regular 

ones (high clustering) (Fleming et al. 2007). The figure below demonstrates that by 

increasing the number of random links both the clustering coefficient and the average 

path length in the network decreases, but the path length decreases much faster. This 

creates an interval in which high clustering and short path length coexists and in which 

the properties small-world networks are found. 

 

Figure 2: Changes of clustering coefficient and path length by variation of the number of random 

links in the network, Schilling and Phelps (2005) 
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1.4. Effects of network structural properties on its performance 

Many research studies have assessed different aspects of network structural properties 

(and especially small-world characteristics). For example, Travers and Milgram (1969) 

tried to formulate the small-world by calculating the probability of any two randomly 

chosen people knowing each other in a large population. The study was performed in 

America and the observed mean of intermediaries, which is around five, is proved to be 

stable.  

In the work of Choi et al. (2010) which studies the effects of network structure on the 

innovation diffusion, it is proposed that the probability of distribution of a new product is 

higher in random lattices than in the dense ones. They believe that for an innovation in 

early phases, network randomness makes it difficult to take advantage of network effects 

and this will prevent innovation to be diffused completely. However, when the diffusion 

progression reaches a certain step, the randomness of network leads to a faster spread of 

knowledge. 

Latora and Marchiori (2001) have evaluated the efficiency of some specific networks 

(neutral networks, communication networks, and transport networks), by comparing them 

to small-world networks as globally and locally efficient networks. They define the 

efficiency of the networks by the efficiency of information exchange in it.  

The efficiency measure introduced in the survey of Latora and Marchiori (2001) enables 

them to generate a clear physical meaning to small-world, and quantitatively analyze the 

information flow in various networks. They imply that this measure is applicable in both 

un-weighted and weighted networks, and it can be used both in theoretical and empirical 
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cases. Comparing to the real data, they conclude that various existing networks (neural, 

communication, and transport) are similar to small-world networks, and are therefore 

globally and locally efficient.  

Some other aspects of the efficiency of small-world networks have been discussed by 

Cowan and Jonard (2004). They have studied the effect of network architecture on the 

performance of the diffusion. They claim that the level of knowledge is at its maximum 

when the network structure has the small-world properties. They define the small-world 

lattice as the one in which the number of links connecting a vertex to the other vertices 

which are outside of its neighborhood is between 1 to 10 percent of all the existing direct 

links in the network. 

Cowan and Jonard (2004) have developed a model in which knowledge exchange among 

agents occurs only when is it mutually profitable, i.e. when it increases knowledge levels 

of both actors. They have varied the randomness level in the network and measured the 

mean knowledge level over the whole network as the performance measure. Their studies 

show that the networks with “small-world” properties have higher mean knowledge level.  

Some scholars suggest that enough theoretical studies are available about the small-world 

network and it is time to practice these theories through empirical studies. In this regard 

Fleming et al. (2007) have tried to empirically approve or reject some of the hypotheses 

about small-world networks, such as the improvement of innovative creativity in the 

presence of small-world effect, the improvement of collaboration and trust between close 

firms in the networks, and the effect of distant connections between clusters in bringing 
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new knowledge to the clusters. They chose US regions to execute their empirical study 

while using the networks built on the patent co-authorship data. 

Fleming et al. (2007) have tried to shed some light on the effects of small-world on the 

inventor networks and their innovative and managerial approaches within a small-world 

network to remain competitive. Their results support the positive influence of short path 

length on innovative productivity. However, their study failed to show that the small-

world structure have significant positive influence on the innovative performance of the 

network. 

In another study by Sullivan and Tang (2010) the inter-firm network of United States 

venture capital industry has been constructed to evaluate its effects on the firms’ 

performance. They concluded that the productivity of firms is improved by the small-

world properties. However, the various abilities of firms in absorbing new information 

have distinct effects on the productivity improvements associated with small-world 

characteristics. Moreover, Kogut and Walker (2001) conducted a study on the Canadian 

network of investment bank syndicate from 1952 to 1990 to see how small-world 

network emerges and evolves over time. They tested and confirmed the hypothesis that 

the networks formed among firms usually resemble small-world characteristics.  

He and Fallah (2006) performed a case study on the inter-organizational level of 

collaborations in Texas and New Jersey. They built the networks based on the patent co-

authorship relationships to investigate the innovative productivity of the networks. They 

used number of patents as an index for innovativeness of the organizations as a function 

of structural properties of the network. Their main focus of their study was on the 
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connectivity of network and centrality of the nodes. Their comparisons between the 

networks of the two regions suggested that the central companies (like Bell systems) in 

New Jersey play an important role in the innovation network of region; whereas in the 

network of Texas, the role of central companies is much less effective.  

McFadyen et al. (2009) considered the individual level of collaborations in innovation 

networks of the scientists based on article co-authorships of university researchers. They 

evaluated the knowledge creation of scientists as a function of the properties of the 

networks among them. Their study covers eleven years of collaboration data, and 

explored the strength of ties among scientists as well as the structural properties of their 

network. They concluded that both of the aspects they measured for the researchers’ 

network (structural properties and tie strength) affect the knowledge creation of the 

network. They claimed that the scholars, who make strong relationships with other 

individuals who themselves do not have many collaborators, have high knowledge 

creativity. 

Newman (2001a, 2001b, 2001c, 2004) has carried out several research studies examining 

the network among the individual scientists with an aim to analyze different structural 

properties of the network, including small-world effect. He has studied the article co-

authorship network in physics and biology to find the effect of number of common 

collaborators between scientists on the probability of their own collaboration. He also 

explored the probability of having new collaborators for scientists based on their number 

of past collaborations (Newman, 2001c). In another study (Neman 2004), by using the the 

same approach (researcher’s articles co-authorship) he built the networks of three 

scientific fields, biology, mathematics, and physics, and compared some structural 
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properties of these networks, such as the number of publications, distance between 

mutual scientists, and the clustering of scientists’ network to each other. 
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1.5. Filling the research gaps 

Based on the interest and the attention that social networks have received in recent years, 

it is evident that the subject represents an important, interesting and fruitful approach for 

the study of social systems. Moreover, the wide variety of topics in this area and their 

application in different fields create a vast field for conducting future research. 

After the introduction of the first notion related to the small-world networks by Milgram 

(1967), this subject has been investigated by many researchers in various fields. Many 

empirical studies have been performed in different contexts to analyze the small-world 

effect in social networks including German corporate ownership, American corporate 

boards, strategic alliances, Canadian investment bank syndicates, email networks, Italian 

scientific and academic collaboration networks, and invisible scientific colleges. (Kogut 

and Walker 2001, Davis et al. 2003, Verspagen and Duysters 2003, Baum et al. 2003, 

Dodds et al. 2003, Balconi et al. 2004, Goyal et al. 2004). As it is assumed that the level 

of the influence of network properties is different in distinct industries (Felmand and 

Andretsch 1999), more studies elucidating this impact for various industrial sectors are 

needed. The effect of collaboration in Canadian biotechnology has not been considered 

so far and the present thesis is going to fill this research gap.   

The effects of the small-world network structure have already been also investigated in 

the field of innovation. It has been proposed that the small-world network properties can 

have an immense effect on enhancing the knowledge and innovation production (Watts 

1999, Hargadon 2003, Cowan and Jonard 2003, Baum et al. 2003, Schilling and Phelps 

2007, Uzzi and Spiro 2006). However, despite the significance of this area under 
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discussion, as mentioned before, the amount of practical and empirical research 

performed within this theme is still scarce (Fleming et al. 2007). This thesis will 

contribute to the research literature by providing an empirical study on the impacts of the 

network structure effects on network performance in the field of biotechnology. 

Moreover, as for the impact of properties of social network structure on the extent of 

innovativeness and knowledge productivity, the conclusions of various research studies 

are not very consistent. As an example, the results of various articles on the impact of 

clustering on the innovative performance are fairly distinct and often even support quite 

opposite effects. It is thus one of the objectives of this thesis to shed some light on the 

impacts of various network properties on the scientific and innovative productivity of the 

networks. 

Furthermore, all the discussed research work focuses on investigating the network 

structure effects either within the realm of the scientific academic networks or within the 

industrial innovation network. This thesis is, to our knowledge, the first attempt to bring 

those two worlds together and to analyze the effect of the network of scientific 

collaboration on their subsequent innovative productivity.  
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Research questions, contributions and objectives 

Generally, this project addresses five main research questions. First, we will examine to 

what extent the structure of the collaboration network of Canadian biotechnology 

scientists resembles the small-world network structure. Since this type of network 

structure has become of interest of many researchers recently, and its positive effect and 

optimality is still under question, it is important to find out if the network under study 

shows small-world characteristics. 

Second, the effect of the structure of collaboration network of Canadian scientists in the 

field of biotechnology on their research productivity is examined. We are interested to 

test various structural prosperities of the network and see their impact on the creation of 

knowledge by scientists. Some other scholars have asked the same question, but since 

their results are not consistent and the outcome could be different for distinct technology 

sectors, we have tackled this question. 

 Third, we will investigate whether the structure of the Canadian scientists’ co-authorship 

network affects the level of innovation productivity of Canada in the field of 

biotechnology.  In this regard, this study will provide statistical evidence to evaluate the 

role of network structure by quantifying the properties of scientists’ network.  

Four, in this study, we will determine the influence, if there is any, of scientists’ 

collaboration network on the quality of innovative output. The quality of publications has 

not been examined as widely as their quantity, and since we may get dissimilar results 

from different networks, this research question merits more investigation for the 

biotechnology industry in Canada. 
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The last important question we posed is: does the small-world structure (if exists) 

facilitate the knowledge creation and the innovative performance of the inventors? 

Previously, it has been widely accepted by many scholars (For example: Cowan and 

Jonard 2004, Schiling and Phelps 2007, Watts 1999, Hargadon 2003) that the small-

world structure enhances the innovative productivity of the inventors’ network to a great 

extent. The effect of this kind of network structure is investigated on the quality of the 

innovation output of the inventors as well as on the research productivity of scientists in 

the Canadian sector of biotechnology scientists.  

This research represents a longitudinal study on the network of Canadian scientists. 

Compared to previous studies it covers a very long period of time (1966 – 2006). 

Furthermore, most of the prior researchers analyzed only the effect of patent co-

inventorship networks on the innovation productivity of inventors; but this study takes 

one step further by taking into account the important role of scientists’ reciprocal 

knowledge transfers during the creation of their scientific knowledge (represented here 

by the article co-authorships), in promoting the innovativeness of biotechnology 

scientists.  

In summary, this study has several different objectives. First of all, it explores the 

structure of the network of relationships between Canadian scientists in biotechnology by 

measuring many of its properties. It also investigates the extent to which the Canadian 

scientists’ network corresponds to the small-world structure.  

Moreover, this thesis attempts to discover the impact of network structure on the 

innovation productivity, the innovation quality and also on the research productivity of 
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individual scientists and inventors. The results of this study are of great importance 

because all the analyses are based on a real data taken from biotechnology publications 

and patents. 
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Chapter 2: Methodology 

In this chapter, the methodology by which the research questions are examined is 

explained in detail. As mentioned before, this study will evaluate the network of 

Canadian biotechnology scientists. It has been shown (Powell 1990) that the network ties 

existing among the researchers, inventors, universities and companies are among the 

most important factors that move the biotechnology industry forward and that they have a 

significant effect on the knowledge productivity. This also explains the recent interest of 

many scholars attempting to assess different aspects of biotechnology innovation in 

adopting the network analysis point of view. 

Furthermore, one of the major attributes of biotechnology sector is the dominance of 

scientists’ social network (Oliver 1996). The scientists working on the common research 

projects and publishing scientific articles together exchange a great amount of 

biotechnology specific knowledge among themselves (Demirkan 2007). Therefore, the 

collaboration networks of these scientists are considered to be significant drivers of 

research progress. Many of the information exchanges and knowledge transfers take 

place at the individual level (among scientists or inventors) either within the companies, 

universities, governmental laboratories or among the individuals from different 

organizations (Oliver & Liebeskind 1998, Liebeskind 1996, Zucker et. al 1995).  

It is thus rather surprising that the majority of prior research studies considered only the 

inter-organizational relationships and analyzed the networks of the alliances or 

partnerships among the companies, universities and other institutions, while the 

collaboration at the individual level has been neglected. This study focuses on this 
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research gap and performs an empirical analysis of the collaboration network of 

individuals who perform a scientific research in biotechnology and who are affiliated to 

the research institutes, governmental institutes, firms and universities located in Canada. 

2.1. Data 

The abovementioned networks were built based on the existing databases.  These 

databases include the data on the scientific articles extracted from the SCOPUS database 

and the patents extracted from the United States Patents and Trademarks Office database 

(USPTO) database. Various sources of patent data were considered, for example 

Canadian Intellectual Property Office database (CIPO) and European Patent Office 

(EPO). In this study the data from USPTO has been used in which, unlike the other 

databases, the geographical location of the inventors is provided. This may cause a 

certain bias, but according to Schiffauerova and Beaudry (2008a), most of the Canadian 

biotechnology inventors prefer to protect their intellectual properties in US. This is due to 

different reasons. For instance, the biotechnology market of United States is larger; and 

the access to it is much easier than the Canadian market. Besides, due to the long 

development cycles of biotechnology products, the accessibility to a large market is of 

great importance for inventors in order to have satisfactory returns of investment. The 

USPTO database is thus considered as a suitable source of data for assessing the 

innovation of Canadian biotechnology sector.  

To build the network of scientists (article authors) and analyze the impact of its structure 

on knowledge and innovation, we also need the data on all publications related to the 

field of biotechnology in Canada. Here, the SCOPUS database has been selected because 
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it covers a significant amount of articles in biotechnology field and it also includes 

affiliation for each co-author, which is not the case for most of other scientific article 

databases. The affiliations of the authors are of a great importance for this research, 

because the objective is to focus exclusively on Canadian biotechnology innovation. Only 

the articles and patents with at least one author or inventor with a Canadian affiliation 

were extracted and included in the databases, on which this research is based. The data 

covers the publications for the period from 1966 to 2005 which includes a total of 100652 

articles that are related to biotechnology and are written by a total of 94484 scholars. 

They have registered 4893 patents in the period between 1971 and 2006. This amount of 

data results in very large networks which could be analyzed only by certain types of 

software. We utilized the Software named Pajek which is specifically developed for 

analysis of large networks. It is capable of analysis and visualization of networks with 

millions of nodes. 

2.2. Methodology 

The purpose of this study is to explore the network of scientists’ co-authorships and to 

investigate the relationship between the structure of this network and three indicators: 

innovation productivity, innovation quality and research productivity. These three 

measures have been quantified by the number of patents, number of patent claims, and 

the numbers of publications, respectively. 

To reach the mentioned goals, the study has been conducted in two general phases. 

During the first phase (which is explained in this section), the collaboration network of 
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scientists has been constructed and social network analysis has been performed. Many 

network indicators have been measured and collected as input data for the second phase.  

In the second phase, the association of the measured network properties with research 

productivity, innovativeness as well as innovation quality is examined. This phase 

encompasses a quantitative method using statistical analysis based on the data obtained 

from the previous phase. The detailed procedure of the second phase is described in the 

following section of this chapter. 
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2.2.1. Construction of scientists’ co-authorship networks 

In this section, the procedure of building the co-authorship networks of biotechnology 

scientists is explained and different properties of the network structure are examined. 

Being aware of the advantages and disadvantages of the structure of co-authorship 

networks, social network specialists and the owners and managers will be able to set up 

appropriate policies on the relationships and collaborations of their scholars and inventors 

to achieve higher innovative and research productivity.  

Therefore, the networks of co-authorships are constructed based on the scholarly articles 

that have been co-authored by individual scientists. A simple definition of a co-authored 

article is presented by Melin and Persson (1996): co-authorship happens when a scholarly 

document has two or more authors. These co-authorships form connections between 

individuals. The outcome of all of these connections is a network in which knowledge is 

exchanged and the wide spread of information leads to the enhancement of 

innovativeness and research productivity. It is logical to assume that in the course of the 

co-authorship procedure, information trade happens among the scholars to a great extent 

(He 2009). The resulting network is called collaboration network and is usually 

represented by a corresponding graph. The nodes in these graphs represent the individual 

scientists, and when two authors collaborate on writing a publication, a link representing 

their co-authorship will connect them in the network as well.  

When the collaboration ties are created among scientists, it will lead to knowledge 

exchange among them and to the scientific and innovative output. It should be noted that 

these links will last for different periods of time between various individuals. It has been 
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stated that such relationships usually live more than one year (Schilling and Phelps 2007). 

Given that hardly ever the termination date of collaboration ties are recorded, we cannot 

be sure about the duration of existence of ties; for that reason, we should make an 

assumption as to the period that the links persist (Schilling and Phelps 2007). 

In order to do that different approaches have been taken into account. Mostly, this value 

has been assumed to be either three years (by for example McFadyen et al. 2007, 

Schilling and Phelps 2007) or five years (by for example Stuart 2000, Baum et al. 2003, 

Fleming et al. 2007, He 2009). In the current study, the five-year approach has been 

taken, because this assumption has been widely considered by the previous researchers. 

The next section discusses the construction of the networks based on the assumption of 

the five-year life of each link.  

2.2.2. Two-mode and one-mode networks 

The database of articles contains the list of articles and their authors and some other 

information (the year of publication, article ID, article abstract, author affiliations, etc.). 

In the first step, the data have been cleaned and duplicates have been removed.  

In order to obtain the data corresponding to the five-year periods, some queries have been 

run in Microsoft Access to extract the publications in each five-year window starting 

from 1966 to 2005. The first window covers the co-authorships from 1966 to 1970, 

second from 1967 to 1971, and the last one from 2001 to 2005. This approach resulted in 

a total of 36 networks which are all undirected networks, meaning that the connecting 

lines among individuals are simple lines and not arrows. This is because we are only 
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interested in the co-authorships of articles and no other factors (like the person who 

proposed the publication idea first). Besides, we want to test the collaborations’ effect 

and the strength of the relationships is beyond the scope of this project, if there are 

multiple lines between two nodes (meaning that two scientists co-authored more than one 

paper in the five-year period), it is considered as a single link. 

Next, the data should be prepared to a special format so that they can serve as input into 

social network analysis software to be further analyzed. In this study the Pajek software 

has been selected for the network analysis. The main reason is that Pajek is capable of 

performing many calculations on even very large networks with millions of nodes. The 

input data for Pajek had to be in a text file. Before importing the data into a text file, 

articles and authors needed to get a proper ID in order for Pajek to recognize them. First, 

appropriate IDs have been allocated to the authors. Their IDs start from 1 and continue up 

to the number of the last author. Then the IDs have been assigned to the articles. The ID 

for the first article in each network equals the ID of the last author plus one, and increases 

in ascending order for the next articles.  

After the procedure of assigning IDs, the data was imported into a text file to be ready for 

the Pajek software. According to the data, Pajek will create a network in which the nodes 

are representatives of authors and articles; and articles are connected to their authors. 

This way, the network demonstrates the co-authorships (by inter-connecting the 

individuals who co-authored an article). This kind of network is called a two-mode 

network. 
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Two-mode networks consist of two sets of nodes which are called actors and events (De 

Nooy et al. 2005). In this kind of network, affiliations connect the two sets of nodes to 

each other. For example, in our network, the authors are connected to the articles they 

wrote. Therefore, only nodes from different sets are connected to each other and there is 

no connection between nodes of the same set (in our network, for instance, the articles 

are not directly connected to each other).  

Recall that in this study we need to evaluate the properties of the network which is 

constructed based on individuals’ collaborations. But, in the two mode network we have 

nodes of both individuals and articles. Therefore, it would be so difficult to interpret such 

a network, since every parameter measured on this network will incorporate the articles’ 

nodes as well. Consequently, we need to extract a network containing only nodes of 

authors from this network.  

To do this, we converted the current network to two separate ones, one considering only 

actors (authors in this study), and the other one containing events (articles in this study). 

This kind of networks is called one-mode network (De Nooy et al. 2005). By doing this 

conversion the nature of connections will not change. For instance, in the authors’ 

network, individuals who co-authored a scholarly document will be connected to each 

other; hence, we are now able to concentrate on the scientists’ network which is of our 

interest in this study. Examples of both two-mode and one-mode networks and the 

conversion from two-mode to one-mode are illustrated in Figure 3 and Figure 4. Since 

our networks are very large, it is impossible to show their graph in regular size papers. 

However, examples of two-mode and one-mode networks of biotechnology scientists in 

early periods of this study are shown in appendix A.  
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Scientist 2 Scientist 3 Scientist 4 Scientist 5Scientist 1

Article 1 Article 2 Article 3  

Figure 3: Two-mode affiliation network of article co-authorships 

Scientist 1

Scientist 2

Scientist 3

Scientist 4

Scientist 5
 

Figure 4: One-mode network of scientists 

 

The next step is to calculate various properties of the constructed networks to achieve the 

defined objectives of this study that will be described in detail in the next chapter.   
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Chapter 3: Analysis of data 

After the networks were constructed, their structure was analyzed with the help of Pajek.  

The structural network properties that needed to be assessed in order to answer our 

research questions were measured and recorded. It should be mentioned that in order to 

analyze the effect of network structure on the network productivity, first we need to 

quantify these concepts. To measure the productivity of the network, we need to define 

the necessary performance measures which are presented below as the dependent 

variables. In order to quantify the structure of the networks, we need to define indexes 

that represent various properties of network structure; these indicators are presented as 

independent variables. Therefore, we aim to investigate the relationship between 

dependent and independent variables.  

In this chapter, first the necessary variables are defined and explained. Each of the 

variables described below has been computed with the help of Pajek for each of the 

networks built on the five-year moving windows. In the second part of this chapter, 

various statistical analyses which have been performed to the data to address the goals of 

this study will be described.  
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3.1. Variables 

3.1.1. Dependent Variables 

As mentioned before, the aim of this study is to evaluate the impact of structural 

properties of scientists’ collaboration network on three different measures (dependent 

variables). These measures are presented and described below: 

Innovative performance of scholars: The first dependant variable is the individual 

innovative performance of scholars in the field of biotechnology in Canada. The 

patenting activity of the individuals is considered as a proxy of this variable, i.e. the 

number of patents that the inventors have published is a representative indicator showing 

their innovative performance. The variable Pi will be the indicator of number of patents in 

year i; where i ranges from 1971 to 2006. The number of patents is considered to be a 

rational proxy for innovative performance and has been widely used before (Fleming et 

al. 2007, Schilling and Phelps 2007, He 2009, Jaffe et al. 2000, Ahuja 2000).  

Quality of the innovative production: The second dependent variable is the quality of the 

innovative production of individual inventors. This value has been measured by the 

number of patent claims of the patents
4
. It was assumed that the greater the number of 

patents claims, the higher the quality of the patent in terms of its innovation potential. 

According to Tong and Frame (1994), the number of claims associates positively with the 

value of the patent and well predicts its future commercial potential. In the innovation 

                                                 
4
 “Patent claims are a series of numbered expressions describing the invention in technical terms and 

defining the extent of the protection conferred by a patent (the legal scope of the patent). A high number of 

patent claims is an indication that an innovation is broader and has a greater potential profitability” 

(Beaudry, C., & Schiffauerova, A. 2011).  
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research the patent claims have been used previously as an indicator of patent quality. 

This value is noted as PQi and denotes the number of patent claims in year i. 

Research productivity of scholars: Third dependent variable is the research productivity 

of scholars in Canadian biotechnology sector. To measure this variable, the number of the 

articles published by the scholars has been taken into consideration. According to 

Toutkoushian et al. (2003), the number of publications is the most common measure of 

scientists’ research productivity. As an example, the following researchers have used this 

quantity as a measure of research productivity: Centra (1983), Bland and Ruffin (1992), 

Taylor et al. (1984), Kuzhabekova (2011), and Rumsey-Wairepo (2006). The notation 

used for this variable in this study is ARTCi, which reflects the average number of 

articles published by individuals in year i. 

3.1.2. Independent Variables 

The purpose of this study is to measure the impact of the structural properties of the 

Canadian biotechnology network of scientific co-authorships on the scientific and 

innovative performance of the scientists. In this section all the independent variables 

whose effect on the scientific or innovative performance will be studied are described and 

discussed in detail.  

It should be noted that we examine the effect of each structural network variable on the 

scientific and innovative performance in the first year which follows the interval in which 

the network architecture was assessed. For example, we evaluate the impact of the 

structure of collaboration network of scientists between 1966 and 1970 on the innovative 
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or scientific performance of the individuals in 1971. The reason for this is an assumption 

that the fruits of the scientists’ 5-year collaborative period will be gathered only after this 

period has finished. It usually takes time to publish an article or to register a patent. This 

assumption is commonly made by other researchers in similar studies as well (Stuart 

2000, Baum et al. 2003, Fleming et al. 2007, He 2009). As a consequence, having a 

dependent variable calculated on year i, related independent variables are calculated for 

the networks constructed on the five-year snapshot from year i-5 to i-1. For instance, for 

the dependent variable on year 1971, corresponding independent variables are calculated 

for the network of years from 1966 to 1970. 

Independent variables are listed and described below: 

Connectivity of the Network (ConNet): This variable measures the average degree of the 

whole network. For each node (scientist) the degree is defined as the number of ties 

connected to it; in other words, it shows the number of nodes adjacent to the particular 

node (Wasserman and Faust 1994). When the degree of each node is calculated, the 

average of all values returns the overall degree of the whole network. Obviously, when 

the average degree increases, the network will be denser meaning that the nodes have 

more ties, signifying more co-authorship relations between individuals. 

Therefore, the average degree is considered as a proper measure for the structural 

“cohesion”
5
 of the network (De Nooy et al. 2005). Higher values of the average degree 

imply that there are more collaborations in the network; as a result more knowledge 

                                                 
5
 “Cohesion means that a social network contains many ties. More ties between people yield a tighter 

structure, which is, presumably, more cohesive.” De Nooy et al. (2005) 
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exchange will take place. We presume that this will affect the innovativeness and 

research productivity of individuals positively.  

Size of the Largest Component (LC): Largest component of a network is a sub-network 

in which there is no isolated node and all the nodes are directly or indirectly connected to 

each other. In fact, the largest component is the largest fraction of the network where 

information exchange takes place. Since the size of the largest component has a 

numerically large scale, in the present thesis the natural logarithm value is used to 

compress the data scale to be incorporated in the regression model
6
. Therefore this 

variable returns a natural log value. 

Proportion of the Largest Component (PLC): This variable measures the percentage of 

nodes that are in the largest component:  

     
  

                                    
 

Degree Centralization (DC): the concept of centrality refers to the importance of the 

network members in the process of information exchange in the network. When an actor 

is widely involved in the communications with other individuals, we can conclude that 

this actor plays an important role in the knowledge diffusion in the network. According to 

Wasserman and Faust (1994), this kind of involvement is called the centrality of the 

vertex. The centrality of a node could be analyzed from different aspects. One of the 

centrality measures is degree centrality.  

                                                 
6
 The same approach has been utilized for similar situations by various authors such as Ahuja (2000), 

Fleming et al. (2007) and He (2009). 
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Degree centrality of a node measures the number of nodes that are directly connected to 

this node. Clearly, the more a network is connected to other nodes, the more active it will 

be in the sense of information transfer and consequently, it will be more central. This 

value has been reflected in the variable “connectivity of the network” defined before. 

According to He (2009), when the degree centrality of network nodes vary more, the 

network will be more centralized. Therefore, we evaluate the centrality of the network by 

its degree centralization which is calculated by dividing the variation of nodes’ degrees 

by the highest possible variation in a network of the same size: 

    
                                          

                                                                  
 

Betweenness Centralization (BC): Betweenness centrality takes into consideration the 

role of intermediary individuals, i.e. the scientists that lie on the paths connecting two 

nodes (Wasserman and Faust 1994). In other words, this measure evaluates the 

significance of a person as a connector between two other individuals that can enhance 

the knowledge exchange between them. Therefore, the betweenness centrality of a node 

is defined as the proportion of all shortest paths between pairs of other nodes that contain 

this node (De Nooy et al. 2005). This indicator shows the control of a node over the 

relations between the other individuals within the network and its impact on the 

information flow among them. 

The variation in the betweenness centrality of nodes in a network is measured by 

betweenness centralization. It is actually calculated by dividing the variation in the 
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betweenness centrality of vertices by the highest possible betweenness centrality 

variation in a network of the same size (De Nooy et al. 2005): 

    
                                             

                                                                                  
 

Closeness centralization (CloC): Another way to measure the centrality of an individual 

in the network is to evaluate the distance of each node to all the other nodes in the 

network. The indicator that covers this concept measures how close a node is to other 

members of the network and it is called closeness centrality. If a scientist is close to many 

other scientists in the network, he/she will have an easy access to a vast amount of 

information and consequently it is assumed that this will improve the productivity of the 

network. The smaller the distance of a node to all other nodes the higher its closeness 

centrality, and therefore the easier it can reach the flow of knowledge. 

Like degree centralization, we calculate the closeness centralization of network by 

calculating the variation in closeness centrality of vertices and dividing it by the highest 

possible variation in closeness centrality in a network of the same size (De Nooy et al. 

2005): 

      
                                              

                                                                                
 

It should be noted that when a network is disconnected, i.e. there are separate 

components in the network, the distance between nodes of the disconnected components 

cannot be calculated. To resolve this issue in this study, the closeness centralizations have 

been computed only for the largest component of each network. This could be easily 

justified, because the largest components of the most of the networks (especially the ones 
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for the later intervals) cover a large proportion of the entire network (close to the 90% of 

the network). 

Clustering Coefficient (CC): As defined in chapter two, clustering coefficient measures 

the level of clustering in the network. This index evaluates the level of tendency of the 

nodes to cluster together. Watts and Strogatz (1998) introduced a method to measure the 

local clustering coefficient of each node within a network, which is defined as: 

    
                                       

                                    
 

    
   

        
 

In this equation ni is the number of direct neighbor nodes of node i and therefore the term 

        

 
 denotes the total number of possible links between node i’s neighbors. Zi 

represents the total number of existing links between the n direct neighbors of the node i 

(Clements 2008). 

For each node, this index measures the proportion of connections between the neighbor 

nodes of this node over all possible links that could exist among these neighbors. This 

variable returns a value between 0 and 1 and it is zero for the nodes that have 0 or 1 

neighbor. The average of the local clustering coefficients of all the nodes denotes the 

overall clustering coefficient of the entire network: 
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There is another approach to compute the clustering coefficient of a network. In this 

method, unlike the previous one, the global clustering of the network is directly 

measured. To determine this index, the proportion of triangles in the network over the 

number of connected triples is calculated. Connected triples are sets of three nodes in 

which there are at least two connecting links (for example among nodes i, j and k, i is 

connected to j and k, but j and k are not necessarily connected) and triangles consist of 

three nodes all connected to the other two nodes (Schilling and Phelps 2007). 

Therefore, for each of the networks, overall clustering coefficient could be obtained from 

the following formula (Newman et al. 2002): 

                       
                                      

                                          
 

The proportion is multiplied by 3 in the numerator to keep the result in the range between 

zero and one. This is because each triangle includes 3 triples. 

In this study the first method of calculating the clustering coefficient has been utilized. It 

should be noted that since the purpose of measuring the clustering of a network is to 

evaluate the small-world characteristic of it, and due to the restrictions in determining this 

index which will be explained later, the clustering coefficient has been measured over the 

largest connected component of each network. 

Shortest path length (PL): The concept of the shortest path is explained in chapter 2. The 

shortest path between two nodes is the lowest number of nodes that should be traversed 

to reach from one node to the other. This value is also called the geodesic (De Nooy et al. 

2005). The average of path lengths between pairs of vertices is the overall shortest path of 
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the entire network. The shortest path between the nodes returns the distance between 

them and supposedly, when the distance between two individuals in a network is shorter, 

the information can flow easier between them. It is assumed that this will result in a more 

intensive collaboration and a higher performance.  

Similarly as with closeness centralization, there is a limitation on calculating the average 

shortest path of a network. Most of the social networks contain isolated components 

(Fleming et al. 2007) and the distance between nodes of separate components cannot be 

calculated. Therefore, like in similar studies (Fleming et al. 2007, Uzzi and Spiro 2006, 

He 2009, Newman 2000), the shortest path length is measured over the largest connected 

component of each network. 

Another important point is that the increase in the size of the network greatly affects the 

shortest path length of a network. This is because when the number of nodes increases, 

large number of links should be created in the network to keep the distance between 

nodes short. Otherwise, it’s possible that the shortest path of network with lots of nodes 

looks very high comparing with a small network in which nodes are poorly connected 

(Fleming et al. 2007). To account for the change in the number of nodes in the network, 

we normalized this variable by dividing the average shortest path of each network by the 

theoretical path length of a fully connected graph of the same size and average degree. 

The theoretical path lengths have been calculated by the approximation method of 

Fleming et al. (2007). In this method the path length of a regular graph is considered as 
 

  
 

if      and as    
 

   
  if      (N is the size of our largest component and z is its 

average degree). 
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Small-World (SW): As defined in chapter 2, the small-world measure is calculated by 

dividing the clustering coefficient by the average shortest path length of the network. In 

some studies this ratio is stated as the product of clustering coefficient and inverse path 

length: 

   
  

  
                        

Again, there is a limitation on calculating the small-world measure, since the small-world 

ratio cannot be defined on a disconnected graph. In this study, we follow the method used 

by most of the researchers in this area (Fleming et al. 2007, Newman et al. 2001, Uzzi 

and Spiro 2006, Kogut and Walker 2001, Baum et al. 2003) who consider only the largest 

connected component of the network for their analyses. The concept of the largest 

component has been explained before. 

3.1.3. Control variable 

Network size (Ln_Scts): In order to account for other factors that can affect our 

dependent variables, we control for the size of the network. As the new scientists join the 

network of biotechnology in Canada, there will be more chance for collaborations and as 

a result, more potential opportunity of knowledge exchange. This will clearly have an 

impact on the overall scientific and innovative productivity. In order to account for these 

effects the size of the network, i.e. number of scientists in the network, will be introduced 

into the model. The variable Ln_Scts takes natural log values. Like for the size of the 

largest component, since the size of the network has a numerically large scale, the natural 
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logarithm value is used to compress the data scale to be incorporated in the regression 

model. 

3.2. Descriptive data analysis 

The dataset consist of 94484 authors who have published 100652 articles between 1966 

and 2005. Out of these scientists, 5013 cooperated on innovative projects and registered a 

total of 4893 patents from 1971 to 2006. It should be mentioned that there are two dates 

associated with each patent in the database. One is the date of application of the patent 

and the other one shows the date that patent has been granted. In this study the 

application dates of the patents are employed for the patents that have been granted later. 

This date has been taken into account because when the application date is available for a 

patent it shows that the particular innovative activity of the inventors has come to its end; 

and since we know that these patents will be granted later, we are certain about the 

innovativeness of the publication. 

The summary of the data is presented in Table 1.  

Table 1: Data summary 

Variable Observations 

Total number of scientists from 1966 o 2005 94484 

Total number of patents from 1971 to 2006 4893 

Total number of articles from 1971 to 2006 100652 

Total number of patent claim from 1971 to 2006 67750 
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Based on this dataset the values of all independent, dependent and control variables are 

calculated over the networks and their descriptive statistics are shown in Table 2. This 

table is taken from SPSS 19. 
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Table 2: Descriptive statistics of the variables 

 Minimum Maximum Mean Std. Deviation 

ConNet 1.269 9.341 4.829 2.607 

DC 0.003 0.064 0.009 0.012 

CloC 0.055 0.709 0.168 0.137 

BC 0.000 0.075 0.028 0.017 

Ln_Lc 2.079 10.538 8.127 2.600 

PLC 0.015 0.897 0.558 0.324 

PL 0.003 1.249 0.174 0.364 

CC 0.741 0.929 0.787 0.035 

SW 1.950 2422.747 996.147 912.539 

Ln_Scts 4.533 10.647 9.128 1.521 

P 0.000 417.000 135.917 146.371 

PQ 0.000 7245.000 1881.944 2160.874 

ARTC 69.000 28073.000 11449.194 9407.112 

 

 

In order to have a better understanding of the collaboration networks over the period 

under study, in the following section the analytical results of the historical trends for each 

independent and control variable are presented and discussed separately. The historical 

trends are extracted based on the original five-year intervals used for the construction of 

the networks. In the following figures, the values on the historical axis indicate the last 

year in a five-year interval and the vertical axis represents the values of the corresponding 

variable in the five-year based network. The descriptive analysis of each variable is 

presented below: 
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Network size 

The first aspect of the Canadian biotechnology network being observed is its size, i.e. the 

total number of scientists that are engaged in at least one research activity in the 

corresponding period of time. Figure 5 shows the graph of Canadian biotechnology 

network size from 1970 to 2005 based on the count number of scientists. 

 

Figure 5: Historical trend of network size from 1970 to 2005 

 

The growth started relatively slowly in 1970s, but as biotechnology became more popular 

more and more scientists have entered this field in 1980s. The sudden jump in the 

population growth of scientists in 1980s has been explained as the result of popularity of 

internet in different research areas (Munn-Venn and Mitchell 2005).  
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Connectivity of the network (ConNet) 

In graph theory, the degree of a vertex is the total number of lines that are directly 

connected to it. In the Canadian biotechnology network under study, this number denotes 

the total number of collaborators for each scientist who had at least one article co-

authorship during the given period of time. As Wasserman and Faust (1994) discussed, 

the more the number of co-authors in the network, results in a tighter network in which 

the knowledge exchange, and consequently innovative productivity is more prone to 

occur. As Figure 6 shows, the average connectivity of the Canadian biotechnology 

network increases rapidly over time from almost 1 in 1970 to more than 9 in 2005. Since 

the size of the network increases and more scientists enter the Canadian biotechnology 

sector over time, this rise in the network degree is expected. 

 

Figure 6: Historical trend of network connectivity from 1970 to 2005 
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According to the figure, network connectivity increases slowly between 1970 and 1986, 

and then there is a jump after 1987 which corresponds with the sudden growth of network 

size in the same year, as illustrated previously. 

Closeness Centralization (CloC) 

The historical trend of the closeness centralization for the Canadian biotechnology 

networks is illustrated in Figure 7. In the first years, since the components are sparse and 

the largest connected component of the network covers a small proportion of all nodes, 

the closeness centrality will vary greatly among scientists, resulting in a very high 

closeness centralization of the whole network. As more connections occur in the network 

due to the growth of the network population, new collaborations are stimulated among 

existing scientists as well as new ones. 

 

Figure 7: Historical trend of closeness centralization from 1970 to 2005 
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In the first periods, since the size of networks is small and there are few connecting ties 

among them, any new alliance between scientists greatly affects the closeness 

centralization of the network. This decreasing fashion of the closeness centralization 

continues until 1984. After this period, variation in closeness centrality starts to increase. 

This increase in the trend may demonstrate the improvement in the number of scientists 

who work within collaborative groups. Since working in groups could be a result of trust 

and reciprocal relationships among scientists which is sign of cliquishness (Burt 2001), 

this increasing trend could be considered as the indication of increase in the cliquishness 

of the network.  

Size and Proportion of the largest connected component (Ln_LC, PLC) 

The largest component of a network represents the largest number of connected scientists 

who have the potential of access to the same knowledge distributed through the network. 

As the network grows and more connections are created between its nodes from various 

sub-networks, more small components converge together and build a bigger component. 

In figures below, the size of the largest component for each of the intervals, as well as its 

proportion over the total size of the network are represented respectively. The figures 

illustrate that the largest component of the Canadian biotechnology network grows 

gradually in size as the number of scientists increases and their mutual collaborations in 

the network become more frequent. They also demonstrate that isolated nodes and groups 

of scientists gradually join the largest component and increase its proportion over the 

whole network as more research collaborations take place. 
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 Figure 8: Historical trend of the number of scientists in the largest connected component of 

Canadian biotechnology network between 1970 and 2005 

 

Figure 9: Historical trend of the proportion of the scientists in the largest component in Canadian 

biotechnology network between 1970 and 2005 
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Degree Centralization (DC) 

The historical trend of degree centralization of the Canadian biotechnology network is 

illustrated in Figure 10. This variable is an indicator of variation in degree centrality of 

scientists in the network. According to the figure, this variation drops rapidly in the first 

years; this could be the result of few numbers of scientists working on biotechnology 

fields in the first time intervals. Hence entrance of new scientists to the network highly 

affects the degree centralization of the whole network. After this fast drop, the value of 

degree centralization remains below 0.01 during the whole studied period. This means 

that the distribution of the links among scientists is almost the same for the whole 

network, resulting in a homogenous growth of collaborative opportunity for all scientists 

in the network. 

 

Figure 10: Historical trend of degree centralization of Canadian biotechnology network from 1970 to 

2005 
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Betweenness Centralization (BC) 

As mentioned earlier, betweenness centralization of the Canadian biotechnology network 

describes the variation of betweenness centrality of its vertices (scientists). In other 

words, it is an indicator of the position of scientists as intermediaries for the flow of 

knowledge. The historical trend of betweenness centralization of the Canadian 

biotechnology network is presented in Figure 11. The figure suggests no significant trend 

over time. There are some significant fluctuations until 1985, but overall betweenness 

centralization of the network remains almost constant afterwards, implying that the 

variation of betweenness centrality of scientists is not affected by the growth of the 

network size. However, this does not tell us how the average betweenness centrality of 

the individual scientists is affected over time. 

 

Figure 11: Historical trend of betweenness centralization of Canadian biotechnology network 

between 1970 and 2005 
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Shortest path length (PL) 

The shortest path between each pair of nodes in the network indicates their distance and 

thus their potential ability to collaborate with each other. The average shortest path, as it 

was described before, represents the separation degree of the Canadian biotechnology 

scientists in general. The historical changes of the average shortest path for Canadian 

biotechnology network are depicted in Figure 12.  

  

 

Figure 12: Historical trend of actual values of path length of the Canadian biotechnology network 

from 1970 to 2005 
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nodes will become more separated (Albert and Barbasi 2002). The figure also shows that 

after 1983, the shortest path starts to decrease. The declining trend of this measure is 

considered to be one of the main indicators of small-world phenomenon in large 

networks. The shortest path reduction proves that the number of ties between scientists 

has increased and there are more links created both among the scientists already existing 

in the networks and between the new individuals entering the networks and the existing 

ones (Clements 2008).  

The results of path length measurements, reveals an important outcome: interestingly, the 

values of path length converge to 6 in the later periods. This implies that the average 

distance between individuals is around 6, which is in consistent with the results of 

Milgram’s (1967) who first introduced the small-world structure and based on his 

empirical study, to reach a person who is unknown to an individual, on average only six 

intermediates are needed. 

Clustering Coefficient (CC) 

Clustering coefficient measures the fraction of collaborators of a node who also 

collaborate with each other. In clustering coefficient formula, the fraction of triangles 

connected to a node over the number of triples centered to this node is computed. This 

fraction returns a value between 0 and 1. Networks with higher interconnectivity between 

their nodes have clustering coefficient closer to 1. For instance, the clustering coefficient 

of the network built on the 2000-2005 period shows a clustering coefficient of 0.78. This 

implies that in such network, overall, two individuals who have a common collaborator 
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are 78 times more prone to work together in partnership than those who do not have this 

mutual partner.  

The historical trend of this variable measured for the network under study is depicted in 

Figure 13. Clustering coefficient drops greatly at first, then increases and remains 

relatively constant in final periods.  

 

Figure 13: Historical trend of clustering coefficient of the Canadian biotechnology network from 

1970 to 2005 
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Small-World (SW) 

The small-world ratio, as mentioned before, is calculated by dividing the clustering 

coefficient of the network by its average shortest path length. Generally, a network which 

shows the small-world characteristic demonstrates high clustering as well as short path 

length between vertices. According to Albert and Barnasi (2002), the small-world 

networks are often large in size, but despite their size they still exhibit fairly short path 

lengths and high cliquishness. In order to measure to what extent the structure of our 

network resembles the structure of a small-world network, we follow the approach of 

Watts (1999) in which the path length and clustering coefficient are modified first to be 

used in the small-world equation. 

Therefore, in order to incorporate the path length into small-world ratio equation, Watts 

(1999) presented an approach which has been frequently followed by many other 

researchers. In this approach the average path length of each network is divided by the 

average path length of a random network of the same size (n) and the mean degree of the 

network (z). However, since this index cannot be precisely calculated for a random graph, 

Watts (1999) approximated it by the following formula: 

         
     

     
 

Therefore, the path length of a network is reflected in small-world ratio in the form of the 

actual value of the path length divided by the approximated path length of the 

corresponding random graph.  
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The same method is utilized for the clustering coefficient. The clustering coefficient of 

each network is divided by the one approximated for a random graph of similar size and 

average degree. The approximation presented by Watts (1999) is as follows: 

         
 

 
 

In order to be a small-world, a network should exhibit a path length relatively equal to the 

path length of the random graph and also a clustering coefficient much greater than that 

of the random network (Kogut and Walker 2001). In other words, supposing that the 

actual clustering coefficient and path length of the network are respectively shown by 

CCa and PLa, and the corresponding values for the random network are CCr and PLr, a 

network is small-world when CCa>CCr and PLa~PLr. 

The historical trends of the path length and clustering coefficient ratios divided by their 

values of the corresponding random graphs are illustrated in Figure 14 and Figure 15 

respectively.  As the graphs show, overall, path length ratio becomes closer to the path 

length of the random graph (the curve goes to 1) and the clustering coefficient ratio 

increases with a great rate so that it becomes much larger than that of the random 

network. Therefore, we can expect that the structure of the collaboration network of 

Canadian biotechnology resembles the small-world network structure. However, in order 

to determine this we need to calculate and assess the values of small-world ratio. 
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Figure 14: Path length ratio of Canadian biotechnology number (based on the Watts method) 

 

Figure 15: Clustering coefficient ratio of Canadian biotechnology number (based on the Watts 

method)  
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In order to gain the value of small-world characteristic for each network we follow the 

method employed in several previous studies (Davis et al. 2003, Kogut and Walker 2001, 

Baum et al. 2003), which uses the following ratio: 

   
    

   

   
    

   

   

 

The results of the calculations of this formula are presented in Table 3. In this table 

column 1 shows the five-year period on which the network is constructed. Column 2 

gives the number of nodes in the largest connected component of the networks (n). 

Columns 3 and 4 represent the values of path length for actual and random networks. 

Columns 5 and 6 denote the values of clustering coefficient for actual and random 

graphs; and the last column gives the values of small-world ratio. 

There is no critical index for the small-world measure. Besides, it is implied that when 

the size of the network increases, the critical value for the small-world should increase 

(Baum et al. 2003). Therefore, the common procedure (Albert and Barbasi 2002, Davis et 

al. 2003, Kogut and Walker 2001, Baum et al. 2003) to find out whether the networks 

exhibit small-world properties or not consists in comparing their small-world values to 

the networks previously studied in the literature. The list of corresponding values of some 

of the previously identified small-world networks are summarized in Table 4. The values 

are taken from the lists gathered by Kogut and Walker (2001) and Albert and Barbasi 

(2002). By comparing the SW values measured on the networks of this study with the 

values measured on the networks of similar sizes in the prior research, it can be 
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concluded that the Canadian biotechnology network vividly represents the small-world 

properties with respect to its high SW values. 

Table 3: Small-World characteristics for the Canadian biotechnology networks 

Time intervals Number of nodes Path Length Clustering Coefficient SW 

PLa PLr CCa CCr 

1966 - 1970 8 1.43 1.50 0.929 0.5000 1.95 

1967 - 1971 12 1.61 1.61 0.837 0.3889 2.16 

1968 - 1972 12 1.61 1.61 0.837 0.3889 2.16 

1969 - 1973 19 2.75 2.49 0.843 0.1717 4.44 

1970 - 1974 38 3.92 3.03 0.744 0.0873 6.60 

1971 - 1975 98 5.89 3.70 0.802 0.0352 14.33 

1972 - 1976 267 8.37 4.47 0.751 0.0131 30.69 

1973 - 1977 1169 16.11 5.61 0.741 0.0030 85.66 

1974 - 1978 1970 14.59 6.01 0.743 0.0018 170.86 

1975 - 1979 2407 15.68 6.12 0.753 0.0015 198.47 

1976 - 1980 2645 14.20 6.13 0.763 0.0014 240.92 

1977 - 1981 2808 15.38 6.19 0.758 0.0013 237.94 
1978 - 1982 3089 16.09 6.26 0.757 0.0012 252.19 
1979 - 1983 3541 17.13 6.35 0.764 0.0010 277.34 
1980 - 1984 3891 15.10 6.42 0.758 0.0009 346.63 
1981 - 1985 4831 14.25 6.57 0.762 0.0008 466.88 
1982 - 1986 5206 12.82 6.56 0.759 0.0007 547.92 
1983 - 1987 5915 11.72 6.21 0.769 0.0007 595.59 
1984 - 1988 7922 10.02 5.61 0.789 0.0006 704.93 
1985 - 1989 9909 8.75 5.35 0.796 0.0006 862.24 
1986 - 1990 11760 8.04 5.17 0.800 0.0005 988.64 
1987 - 1991 14131 7.63 5.08 0.802 0.0005 1150.79 
1988 - 1992 16804 7.17 5.02 0.803 0.0004 1358.08 
1989 - 1993 18980 6.97 4.99 0.802 0.0004 1514.06 
1990 - 1994 21297 6.73 5.00 0.801 0.0003 1726.10 
1991 - 1995 23229 6.57 4.97 0.801 0.0003 1860.51 
1992 - 1996 25954 6.43 4.98 0.794 0.0003 2077.63 
1993 - 1997 27980 6.29 5.00 0.789 0.0003 2260.65 
1994 - 1998 29266 6.14 4.88 0.785 0.0003 2222.68 
1995 - 1999 30250 6.03 4.86 0.779 0.0003 2275.84 
1996 - 2000 30772 5.93 4.73 0.777 0.0003 2146.59 
1997 - 2001 32087 5.81 4.68 0.782 0.0003 2202.37 
1998 - 2002 33466 5.71 4.55 0.792 0.0003 2130.35 
1999 - 2003 34541 5.67 4.56 0.791 0.0003 2226.03 
2000 - 2004 35640 5.59 4.52 0.792 0.0003 2248.34 
2001 - 2005 37730 5.47 4.54 0.790 0.0003 2422.75 
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Table 4: A comparison of previously studied small-world networks 

Network CCa/CCr PLa/PLr SW Network size Reference 

Ythan estuary food web 3.67 1.08 3.4 134 Montoya and Sole 2000 

E.coli substrate graph 12.31 0.96 12.83 282 Wagner and Fell 2000 

E. coli, reaction graph 6.55 1.32 4.96 315 Wagner and Fell 2000 

Power grid 16 1.51 10.6 4941 Watts and Strogatz 1998 

NCSTRL co-authorship 1653.34 1.16 1425.3 11994 Newman 2001 

Words, synonyms 1166.7 1.18 988.73 22311 Yook et al. 2001 

LANL co-authorship  2388.9 1.23 1942.2 52909 Newman 2001 

SPIRES co-authorship 242 1.89 128.05 56627 Newman 2001 

Math co-authorship 10925.93 1.16 9418.91 70975 Barabasi et al. 2001 

MEDLINE co-authorship 6000 0.94 6382.98 1520251 Newman 2001 

 

As some examples of the comparisons of our result to the ones of other researchers, we 

can observe a small-world measure of 12.83 for the network of E.coli substrate graph 

studied by Wagner and Fell (2000), whereas the network of our study with similar size 

shows the value of 30.69 for this variable; or the network of SPIRES co-authorship 

analyzed by Newman (2001) demonstrates a SW value of 1942.2, whereas the network of 

similar size in our study has the value of 2422.75 for this variable. These comparisons 

and the increasing trend of the SW values for our networks remain no doubt that they 

have small-world characteristics (Albert and Barbasi 2002, Davis et al. 2003, Kogut and 

Walker 2001, Baum et al. 2003). 
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Chapter 4: Statistical Analysis 

The purpose of this study is to explore the empirical data gained from Canadian 

biotechnology network in order to analyze the relationship between research productivity 

and structural properties of the network. For this purpose the regression technique has 

been utilized to measure the significance of various structural factors of the network in 

overall network productivity. First, the correlation analysis between variables is presented 

to show the association between variables. Then the regression results are presented for 

each of the dependent variables i.e. the number of articles, number of patents and number 

of patent claims.  

4.1. Correlation Analysis 

In order to determine the association between dependent and independent variables, a 

correlation analysis is performed. The results of correlations calculated with the help of 

SPSS 19 are illustrated in the table of correlations below.  

The corresponding correlations for the dependent variables are highlighted in Table 5. As 

for the number of patents (P), the table demonstrates positive correlations with network 

connectivity (ConNet), size of the largest component (Ln_LC), proportion of the largest 

component (PLC), and small-world (SW) characteristic of the network. It is also shown 

that there is a negative correlation between number of patents and path length (PL). 

However, the table does not display any significant correlation between the number of 

patents and the rest of independent variables i.e. degree centralization (DC), closeness 

centralization (CloC), betweenness centralization (BC) and clustering coefficient (CC). 
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Table 5: Correlation analysis of Canadian biotechnology network 

  ConNet DC CloC BC Ln_Lc PLC PL CC SW Ln_Scts P PQ ARTC 

ConNet Correlation 1 -0.297 -0.21 0.227 .812
*
 .907

*
 -.554

*
 -0.012 .981

*
 .810

*
 .931

*
 .918

*
 .971

*
 

DC Correlation -0.297 1 .919
*
 -.486

*
 -.622

*
 -.388 .760

*
 .804

*
 -0.244 -.762

*
 -0.192 -0.176 -0.285 

CloC Correlation -0.21 .919
*
 1 -.646

*
 -.675

*
 -.403 .864

*
 .846

*
 -0.155 -.728

*
 -0.086 -0.062 -0.191 

BC Correlation 0.227 -.486
*
 -.646

*
 1 .622

*
 .469

*
 -.693

*
 -.469

*
 0.194 .514

*
 0.127 0.155 0.247 

Ln_Lc Correlation .812
*
 -.622

*
 -.675

*
 .622

*
 1 .938

*
 -.910

*
 -.391 .792

*
 .956

*
 .698

*
 .665

*
 .786

*
 

PLC Correlation .907
*
 -.388 -.403 .469

*
 .938

*
 1 -.726

*
 -0.091 .909

*
 .865

*
 .812

*
 .766

*
 .863

*
 

PL Correlation -.554
*
 .760

*
 .864

*
 -.693

*
 -.910

*
 -.726

*
 1 .607

*
 -.515

*
 -.901

*
 -.430

*
 -.404 -.538

*
 

CC Correlation -0.012 .804
*
 .846

*
 -.469

*
 -.391 -0.091 .607

*
 1 0.034 -.490

*
 0.049 0.025 -0.066 

SW Correlation .981
*
 -0.244 -0.155 0.194 .792

*
 .909

*
 -.515

*
 0.034 1 .778

*
 .949

*
 .921

*
 .974

*
 

Ln_Scts Correlation .810
*
 -.762

*
 -.728

*
 .514

*
 .956

*
 .865

*
 -.901

*
 -.490

*
 .778

*
 1 .701

*
 .673

*
 .786

*
 

P Correlation .931
*
 -0.192 -0.086 0.127 .698

*
 .812

*
 -.430

*
 0.049 .949

*
 .701

*
 1 .934

*
 .934

*
 

PQ Correlation .918
*
 -0.176 -0.062 0.155 .665

*
 .766

*
 -.404

*
 0.025 .921

*
 .673

*
 .934

*
 1 .939

*
 

ARTC Correlation .971
*
 -0.285 -0.191 0.247 .786

*
 .863

*
 -.538

*
 -0.066 .974

*
 .786

*
 .934

*
 .939

*
 1 

*. Correlation is significant at the 0.01 level (2-tailed). 

 
 

 

 



68 

 

Small-world, proportion of the largest connected component and connectivity of the network 

variables express the highest correlations (more than 0.9). However, since these three indicators 

also have mutual high correlations with each other, it is not possible to decide which one acts as 

the main predictor for the total number of patents at this stage. Further regression analysis is 

required to measure the importance of each indicator and its effect on the growth of network 

patenting productivity. The negative sign of correlation between path length and the number of 

patents was expected, as any decrease in separation degree between inventors, results in higher 

knowledge exchange among them. 

The table of correlations displays positive significant correlation between patent quality (PQ) as 

the dependent variable, and network connectivity (ConNet), size of the largest component 

(Ln_LC), proportion of the largest component (PLC), and small-world (SW) indicators of the 

network. Besides, the results show that the path length (PL) of the network has a negative 

significant correlation on subsequent patent quality of the network. Again, these indicators of the 

network show significant mutual correlations with each, but to determine their effect and the 

magnitude of this effect on the performance of innovation network we will need to perform 

regression analysis. 

Finally, the table of correlations shows significant positive correlations between the dependent 

variable of total number of articles (ARTC) and network connectivity (ConNet), size of the 

largest component (Ln_LC), proportion of the largest component (PLC) and small-world (SW) 

indicators of the network.  Also, like the previous dependent variables, the path length variable 

(PL) shows significant negative correlation.  
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Note that the independent variables with strong correlation to all the dependent variables are very 

similar in both sign and quantity. This suggests that regardless of the type of the measure of 

innovativeness, the innovative performance of the network might be affected by the same 

indicators. In other words, as various network measures vary, the total number of patents and 

their quality as well as total number of articles change in the same direction. This fact is also 

statistically confirmed by the very high positive correlations between the three dependent 

variables. 

4.2. Regression Analysis 

The multiple regression analysis is done using STATA 11 in order to examine the association 

between Canadian biotechnology network structure and its productivity in terms of the number 

of articles, patents and their quality. Beside the correlation analysis which only gives an insight 

to the relationships between pairs of variables in simple binary term, i.e. whether relationship 

exists or does not exist, the multiple regression analysis will also determine the power of each 

independent indicator mathematically.  

In this section three separate regression models are developed (one for each of the dependent 

variables) and the results are presented below.  

According to Hausman et al (1984), in order to provide a natural baseline for a count measure, 

the regression model of choice is a Poisson model. Since our three dependent variables, i.e. the 

total number of articles, patents and patent claims (patent quality), are count measures, the best 

matching regression model would be Poisson. However, the primary assumption for Poisson 

model is that it accepts no heterogeneity in the data, which means that variance and mean of the 

sample should be the same (Coleman 1981).  
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In reality, however, it is rare to satisfy the Poisson assumption on the actual distribution of a 

natural phenomenon, because most of the time an overdispersion or underdispersion is detected 

in the sample data. This causes the Poisson model to underestimate or overestimate the standard 

errors and thus results in misleading estimates for the statistical significance of variables 

(Coleman 1981). Hausman et al. (1984) suggest correcting the estimates by using negative 

binomial regression models instead of Poisson in order to obtain robust standard errors. 

According to the descriptive statistics of the data Table 2 all of our three dependent variables 

show overdispersion, i.e. their unconditional variances are larger than their sample means. 

Therefore, a likelihood ratio test is conducted for each of the variables to confirm the 

overdispersion issue using STATA 11. The test outcomes are reported in Appendix B. According 

to the likelihood ratio test we observe that the overdispersion coefficient (α) for total number of 

patents and total number of articles report a small value close to zero, by which we accept the 

null hypothesis that Poisson is a better estimation model in their cases. However, the 

overdispersion coefficient (α) value for patent quality is relatively significant, which suggests 

that the negative binomial regression model is a better estimator in this case. 

The regression results for each of the three dependent variables are then extracted according to 

their best matching model (Poisson or negative binomial) using STATA 11 and are presented 

below. 
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4.2.1. Regression results for Total number of articles model 

The observation of the regression coefficients for the impact of the Canadian biotechnology 

network structural properties on the network’s research performance in terms of number of 

articles published is presented in Table 6. Since the p values reported for all the independent 

variables (except for the number of scientists in largest component, Ln_LC) are less than 0.01, 

they are considered as significant predictors in the knowledge productivity of the following year. 

Table 6: Poisson regression results for total number of articles model 

 

 

The first predictor variable, the overall network connectivity of the scientists (ConNet), has a 

small positive influence in the model of articles. This suggests that the higher number of 

collaborators per each scientist in the network can lead to the increased research productivity of 

the network. However, since the value of the corresponding coefficient is small, the effect of this 

variable is not noticeable. 

                                                                              
       _cons     10.87768   .8413502    12.93   0.000     9.228667     12.5267
     Ln_Scts      .170365   .0704438     2.42   0.016     .0322976    .3084324
          SW     .0003519   .0000321    10.96   0.000      .000289    .0004148
          CC    -4.737143   .3117638   -15.19   0.000    -5.348189   -4.126098
          PL    -1.857256   .2211598    -8.40   0.000    -2.290721   -1.423791
         PLC     .5802114   .1674226     3.47   0.001     .2520691    .9083537
       Ln_LC    -.0825834    .038537    -2.14   0.032    -.1581145   -.0070523
          BC    -1.061163    .275935    -3.85   0.000    -1.601986   -.5203404
        CloC     1.552135   .2546849     6.09   0.000     1.052962    2.051308
          DC    -41.65348   3.142961   -13.25   0.000    -47.81357   -35.49339
      ConNet     .0948536   .0122168     7.76   0.000     .0709092    .1187981
                                                                              
        ARTC        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
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The table reports a very strong negative influence of the degree centralization (DC) on the 

productivity. We can conclude that the central structure of the network reduces the overall 

knowledge spillover among the scientists, resulting in less productivity in the upcoming year. 

Considering the closeness centralization (CloC) and betweenness centralization (BC) regressors 

in the model, we can conclude that the Canadian biotechnology scientists’ network takes 

advantage of the variation in closeness centrality of the individual scientists, but not from the 

variation in their betweenness centrality. As mentioned before when closeness centralization 

increases, it might imply that many scientists are working in groups which are the results of trust 

and their reciprocal relationships (Burt 2001) which could be in favor of knowledge exchange 

and research productivity of the network, according to the positive sign of its coefficient. 

On the other hand, the negative sign of the betweenness centralization coefficient suggests that 

the more homogeneous the intermediary roles of the individuals are, the better knowledge 

diffuses among the scientists, which results in higher knowledge productivity. 

The positive coefficient of the proportion of the largest component implies that the relative size 

of the largest component has a significant effect on publishing articles in Canadian 

biotechnology network. In other words, the integration of disconnected components into one 

larger component enhances the publishing rate of research articles. As the new entrants join the 

main component of the network, their chance of absorbing knowledge spillovers significantly 

improves, which positively affects their research performance. 

The results for the small-world measure suggest a negative influence of path length (PL) and 

clustering coefficient (CC) on the research productivity of the subsequent year. For path length, 

this result was expected since a decreased average path length among scientists will obviously 
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result in faster and easier exchange of knowledge, which is in accordance with the major 

conclusions of other researchers (like Watts 1999, Uzzi and Spiro 2005, Schilling and Phelps 

2007). 

Although the increase in clustering coefficient affects network productivity negatively, the 

combined effect of path length and clustering coefficient results in a positive small-work 

measure that improves the network productivity of the following year. However, the very small 

effect of small-world (0.00035) does not make a strong support for the impact of small-world 

characteristic on the research performance in innovation networks. 

4.2.2. Regression results for the Total number of patents model 

The results of the regression analysis performed using STATA 11 for the model built on the 

innovation productivity of individuals (total number of patents) is shown in Table 7. Unlike the 

results of the articles model, only a few of independent variables demonstrate significant effect 

based on their p values less than 0.01. Among all of the independent variables in this model, 

connectivity of the network (ConNet), degree centralization (DC) and average path length (PL) 

seem to impact the patenting of the subsequent year.  
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Table 7: Poisson regression results for total number of patents model 

 

Although it is not possible to make a robust decision for the patenting behavior of the network 

based on only three significant indicators, it could be inferred that the scientists who are involved 

in patenting activities do not commonly participate in article co-authorship relationships. In other 

words, scientists who tend to take advantage of their innovation commercially have fewer 

tendencies to get involved in the knowledge exchange and spillover process in the network. This 

conclusion is specifically inspired by the very high positive coefficient of the degree 

centralization suggesting that the high variation in the number of links among the scientists in the 

network favors the patenting of the network. Besides, since the coefficient for the path length is 

positive and relatively high, our conclusion is strengthened. However, further research is 

required to elucidate this issue.   

4.2.3. Regression results for the Total number of patent claims model 

The negative binomial regression model developed for evaluation of the effect of the network 

structure on the patent quality (measured by the total number of patent claims) shows no 

significant impact of the network indicators, since all the calculated p values are very much 

                                                                              
       _cons    -44.45991   8.990824    -4.95   0.000     -62.0816   -26.83822
     Ln_Scts       4.1847   .7829731     5.34   0.000     2.650101      5.7193
          SW    -.0007947   .0003594    -2.21   0.027     -.001499   -.0000903
          CC      6.48096   3.520791     1.84   0.066    -.4196639    13.38158
          PL     8.285182   2.454711     3.38   0.001     3.474037    13.09633
         PLC    -3.939541   1.849105    -2.13   0.033    -7.563721   -.3153616
       Ln_LC     1.026701   .4424148     2.32   0.020     .1595842    1.893818
          BC    -1.364631   3.547213    -0.38   0.700     -8.31704    5.587778
        CloC     1.592235   2.708528     0.59   0.557    -3.716382    6.900852
          DC     128.8326   33.03199     3.90   0.000     64.09108    193.5741
      ConNet    -.6307118   .1313661    -4.80   0.000    -.8881846    -.373239
                                                                              
           P        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
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larger than the critical value of 0.01. This fact strongly implies that the network of article co-

authorships does not give us enough evidence to assess the impact the network structure of 

scientists’ relationship on the quality of registered patents in Canadian biotechnology sector. 

Table 8 illustrates the results of the regression analysis taken from STATA. 

Table 8: Negative binomial regression results for the total number of patent claims model 

   

  

                                                                              
       _cons      6.57206   24.20172     0.27   0.786    -40.86244    54.00656
     Ln_Scts     1.119249   2.024268     0.55   0.580    -2.848243    5.086741
          SW     .0002464   .0010402     0.24   0.813    -.0017924    .0022852
          CC    -8.018557   5.569834    -1.44   0.150    -18.93523    2.898117
          PL     -5.40012   4.759875    -1.13   0.257     -14.7293    3.929064
         PLC     5.314466   4.169893     1.27   0.202    -2.858373    13.48731
       Ln_LC    -.9246334    .893048    -1.04   0.300    -2.674975    .8257086
          BC     9.282727   7.128996     1.30   0.193    -4.689848     23.2553
        CloC     13.72718   5.903019     2.33   0.020     2.157477    25.29689
          DC    -49.32449   81.82136    -0.60   0.547    -209.6914    111.0424
      ConNet    -.1768547   .3748458    -0.47   0.637    -.9115391    .5578296
                                                                              
          PQ        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
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Chapter 5: Conclusions, Limitations and 
Future Study 

5.1. Conclusions 

This study explores the network of biotechnology scientists and inventors in Canada. 

Specifically, the purpose was to examine the relationship between the structural properties of the 

network (particularly small-world properties) and the research and innovative performance of 

scientists and inventors within the network. 

This study contributed to the literature from different aspects. Although previous studies have 

explored the networks of firms or individuals in biotechnology, the Canadian biotechnology 

network was not their area of interest and this study is one of the first ones investigating this 

sector in Canada over a very long period of time.  

Moreover, some of the studies have examined the research collaboration effect on the knowledge 

productivity of the networks; also the patent co-inventorship relationships have been studied to 

explore their influence on the patenting productivity of the inventors’ network. But, to my 

knowledge, this is the first study that examined the impact of knowledge exchanges occurring 

during article co-authorship collaboration on the patenting productivity of inventors. 

The first objective of this research was to quantify the small-worldliness of Canadian 

biotechnology network of scientists and to observe whether its structure resembles the small-

world network structure or not. According to the results, the network under study showed 

significant small-world properties in any aspect i.e. the path length of the networks are very close 

to the ones of random networks; clustering coefficients of the networks are much larger than the 
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corresponding values of clustering coefficients approximated for the random networks; and 

finally, the small-world ratios are great or even larger than the corresponding values of 

previously studied networks. 

The other interesting finding of this study deals with the Milgram’s (1967) claim regarding the 

notion of six degrees of separation. According to his study on average only six intermediates are 

needed to reach a person who is unknown to an individual. Our results strongly support 

Milgram’s finding; according to this study, the separation degree between scientists converge to 

six in the networks built on the later time periods. Therefore, as our networks demonstrate more 

small-world characteristics, the number of intermediaries between individuals become closer to 

six. 

Another research question of this study was related to the relationship between structural 

properties of co-authorship network of Canadian biotechnology scientists and their knowledge 

output. Our results proved that there is a significant association between the way the scientists 

are interconnected among themselves when collaborating on their research papers and the 

number of publications arising from these collaborations.  

Next research questions investigated the relationship between the structure of the scientific 

network and the innovative performance in terms of both the quantity and the quality of the 

innovations generated by the inventors in this network. Based on the results we conclude that 

there is no great association between the pattern of knowledge exchange among the collaborating 

scientists in the network and the network’s innovation productivity, whether assessed by the 

quantity or by the quality of the patents.  
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It should be mentioned that the model developed for analyzing the patent productivity supported 

a previously stated hypothesis that says the inventors who produce patents do not widely 

participate in co-authorship relationships. This could be a result of policies of firm owners and 

managers for security purposes and for maintaining their superiority advantages. 

The last research question addressed in this study examined the possible effect of small-world 

structure of the network under study on the knowledge productivity and innovativeness of the 

whole network. Although our second and third models (patents and patent claims) demonstrated 

no effect on our dependent variables, the articles model outcomes were in accordance with the 

findings of some previous studies. The common hypothesis, which states that small-world 

properties enhance the knowledge creation, is partially supported in this study. The results show 

positive impact of small-world on the knowledge productivity of Canadian biotechnology sector. 

The small-world effect was decomposed into the effect of shortest path length and the effect of 

cliquishness, where their impacts on the knowledge creation were studied separately. As 

expected, it was found that the shortest path length demonstrates positive effect on the scientific 

knowledge productivity. This is in consistence with the widely accepted findings that the short 

path length improves the information transfer in the network by enabling easier flow of 

knowledge among different network members. On the other hand, our results show that 

clustering coefficient has a negative impact on the research performance of the network. The role 

of clustering in networks has been analyzed by many researchers, whose conclusions are not 

consistent, because both positive and negative effects have been reported.  Our work supports the 

finding that the high clustering of the network limits the knowledge creation due to the large 

amount of redundant information in that network, which  is consistent with the outcomes of for 

example Fleming (2007), Gilsinget et al. (2008) and He (2009). Finally, we examined the 
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magnitude of the effect for both small-world variables, and we conclude that the research 

productivity increase caused by shorter path length is greater than the decline in scientific 

performance resulting from the increased clustering coefficient. 

5.2. Limitations of the study 

We were exposed to some limitations in our analysis which are listed in this section. 

First limitation is that the small-world factors (PL, CC) and the closeness centralization could be 

calculated on the largest connected component of the network, and not on the full network 

containing all the nodes. As a result, these measures may be biased. However, the greater is the 

proportion of the largest component, the lesser bias is involved.  The largest components in our 

networks have outstanding increasing trend over the years, and in the last time intervals they 

cover almost 90% of the nodes in the network. Still, a certain level of noise in the models may 

persist. Although there have been some recommendations as to how to resolve this issue, the 

solutions are not usually applicable when the special purpose software for social network 

analysis is used. A solution proposed by Schilling and Phelps (2009) is further discussed in the 

following section. , 

Next, we were not able to assess the relationship between the structural properties of the articles 

co-authorship network and the quality of publications produced by the network members. The 

most commonly accepted measure for the quality of the research articles is the number of 

citations which each individual article receives from other citing research papers. However, since 

our data did not include this information, we could not examine this relationship. 

The other limitation we faced is that many important factors that affect our dependent variables 

under study could not be incorporated in the models. For example, even though our methodology 
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is able to detect and analyze the research collaborations leading to some tangible output (article, 

patent), the informal relationships that exist among scientists were completely neglected. These 

types of connections are never recorded and as a result could not be quantified, but there are 

certainly some knowledge exchanges occurring during such associations that could affect the 

network performance. 

5.3. Future study 

In this section of the thesis, some recommendations for future research are proposed. The first 

part of suggestions is related to the possible solutions of the current limitations explained in 

previous section. After that some other theoretical and methodological recommendations are 

proposed. 

The most important limitation explained above is the inability to compute the small-world 

properties for the whole network, while considering only the largest connected component 

instead. An interesting solution for this problem was proposed by Schilling and Phelps (2009) 

i.e. considering the inverse of path length instead of the actual path length value. In the previous 

methods, the distance of two nodes from separate components would be infinite, but in their 

method the ratio will be zero. They called it the distance weighted reach and described it for a 

firm in a network as: “A firm’s distance-weighted reach is the sum of the reciprocal distances to 

every firm that is reachable from a given firm, i.e.  
 

   
  , where dij is defined as the minimum 

distance (geodesic), d, from a focal firm i to partner j , where i ≠ j. A network’s average distance-

weighted reach is this measure averaged across all firms in the network, (  
 

   
       , where n 

is the number of firms in the network.” 



81 

 

Using this method, the small-world ratio could be calculated over the whole network. The same 

approach could be applied to the closeness centralization. However, it should be noticed that this 

method is not available in the current social network analysis software and needs specialized 

programming. 

Another interesting factor to be considered in the analysis is the strength of the association 

between scientists. So far, multiple connections between individuals were considered as a single 

link in our networks. It is thus proposed here to consider the number of articles coauthored by the 

scientists during each time interval as a measure of the strength of their relationship. Hence, 

further research is needed to investigate the change in the model outcome after the inclusion of 

the strength of the relationships. Some light will also be shed on the change in the impact of 

other structural indicators on the network performance.  

Moreover, we also propose to include international scientific relationships in the analysis. 

Current study takes into account only Canadian scientists, but we also detected numerous 

connections between them and other biotechnology scientists outside Canada. The connections to 

these international researchers create important channels for knowledge originating in highly 

research intensive areas (especially in the USA), through which the knowledge is transmitted and 

finally received here, in Canada. This knowledge is very valuable for Canadian researchers, since 

it involves new and fresh information and ideas that can significantly enhance the creativity of 

the Canadian scholars and inventors. Furthermore, since we assume that the number of 

connections between local scientists and the ones from more distant organizations is lower than 

the number of the links within Canada, it is expected that the long range links will act as bridges 

and the small-world properties will be intensified. 
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In addition, it is suggested to include the research collaboration relationships at the firm level as 

well. In our analysis, only the connections among individuals have been assessed, while most of 

the literature evaluated only the firm level networks. By taking into account the affiliations of the 

scientists, the inter-firm collaboration networks could be constructed and considered in the 

analysis together with our existing networks of individual scientists. Analyzing both networks at 

the same time may bring further insights into the problem and can achieve a great contribution in 

this field. Finally, we also propose to analyze the effect of network structure on the performance 

of the network while employing various time lags. In the current study, the dependent variables 

are taken from the subsequent years of the time intervals, as it was assumed that this is when the 

final outcome of the collaboration is realized. It can be expanded to more models by considering 

the productivity of the network in two or three-year lag perspectives. 

Finally, since our findings demonstrates no significant impact of the article co-authorships 

network on the patenting performance and the quality of patents,  it is recommended that future 

researchers focus more on the patent co-authorship networks instead of article collaboration 

relationships to analyze and improve its affect on the innovativeness of the network. 
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Appendix A: Examples of two-mode and one-mode networks of Canadian biotechnology scientists 

In this figure the red nodes represent the scientists and green nodes denote the articles. Lines connect articles to their authors. 

 

Figure 16: Two-mode affiliation network of Canadian biotechnology scientists from 1969 to 1973 
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In this figure scientists are connected to their collaborators. Therefore each link represents one (or more) article co-authorship.  

 

Figure 17: One-mode network of Canadian biotechnology scientists from 1969 to 1973 
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Appendix B: Results of the likelihood-ratio test for the over dispersion coefficient 

(Alpha) 

Table 9: Likelihood-ratio test for over dispersion coefficient of articles model 

 

Table 10: Likelihood-ratio test for over dispersion coefficient of patents model 

 

  

Likelihood-ratio test of alpha=0:  chibar2(01) =  304.22 Prob>=chibar2 = 0.000
                                                                              
       alpha     .0009642   .0002664                       .000561    .0016572
                                                                              
    /lnalpha    -6.944179   .2763095                     -7.485736   -6.402623
                                                                              
       _cons     6.083844   2.445049     2.49   0.013     1.291636    10.87605
     Ln_Scts     .4161176   .2059963     2.02   0.043     .0123723    .8198629
          SW     .0003269   .0001018     3.21   0.001     .0001273    .0005264
          CC    -2.142378   .6282228    -3.41   0.001    -3.373672   -.9110842
          PL    -1.333065   .5130039    -2.60   0.009    -2.338534   -.3275956
         PLC    -.4026344   .4257402    -0.95   0.344     -1.23707    .4318011
       Ln_LC       .05364    .093327     0.57   0.565    -.1292776    .2365575
          BC    -.1110232   .7544474    -0.15   0.883    -1.589713    1.367667
        CloC     1.549786   .6898726     2.25   0.025     .1976603    2.901911
          DC    -25.57747   8.641421    -2.96   0.003    -42.51434   -8.640595
      ConNet     .0402313   .0383244     1.05   0.294    -.0348832    .1153458
                                                                              
        ARTC        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Likelihood-ratio test of alpha=0:  chibar2(01) =  151.16 Prob>=chibar2 = 0.000
                                                                              
       alpha     .0476706   .0157448                      .0249525    .0910726
                                                                              
    /lnalpha     -3.04344   .3302822                     -3.690781   -2.396099
                                                                              
       _cons     -22.0999   20.97403    -1.05   0.292    -63.20824    19.00844
     Ln_Scts     2.819212    1.77759     1.59   0.113    -.6647999    6.303224
          SW    -.0001459   .0008243    -0.18   0.859    -.0017616    .0014698
          CC     1.439614   5.604236     0.26   0.797    -9.544487    12.42371
          PL     1.790201   4.513377     0.40   0.692    -7.055855    10.63626
         PLC     1.472398   3.727974     0.39   0.693    -5.834297    8.779094
       Ln_LC    -.1332366   .8067274    -0.17   0.869    -1.714393     1.44792
          BC     4.089766   6.543241     0.63   0.532    -8.734752    16.91428
        CloC     5.115553    5.37177     0.95   0.341    -5.412923    15.64403
          DC     56.10588   77.70414     0.72   0.470    -96.19144    208.4032
      ConNet    -.4542267   .3229803    -1.41   0.160    -1.087256    .1788031
                                                                              
           P        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
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Table 11: Likelihood-ratio test for over dispersion coefficient of patent quality model 

 

  

 

Likelihood-ratio test of alpha=0:  chibar2(01) = 2756.05 Prob>=chibar2 = 0.000
                                                                              
       alpha     .1040536   .0264865                       .063181    .1713672
                                                                              
    /lnalpha    -2.262849   .2545469                     -2.761752   -1.763947
                                                                              
       _cons      6.57206   24.20172     0.27   0.786    -40.86244    54.00656
     Ln_Scts     1.119249   2.024268     0.55   0.580    -2.848243    5.086741
          SW     .0002464   .0010402     0.24   0.813    -.0017924    .0022852
          CC    -8.018557   5.569834    -1.44   0.150    -18.93523    2.898117
          PL     -5.40012   4.759875    -1.13   0.257     -14.7293    3.929064
         PLC     5.314466   4.169893     1.27   0.202    -2.858373    13.48731
       Ln_LC    -.9246334    .893048    -1.04   0.300    -2.674975    .8257086
          BC     9.282727   7.128996     1.30   0.193    -4.689848     23.2553
        CloC     13.72718   5.903019     2.33   0.020     2.157477    25.29689
          DC    -49.32449   81.82136    -0.60   0.547    -209.6914    111.0424
      ConNet    -.1768547   .3748458    -0.47   0.637    -.9115391    .5578296
                                                                              
          PQ        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              


