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ABSTRACT 

 

Dynamic behavior of microcantilevers subjected to fluid-structure interaction 

using Mode Summation method 

 

Pranav Ashtaputre 

 

Several Microsystems exhibit interaction of flexible structures such as beams, plates, membranes 

with fluid. Some of these systems are micropumps, flow sensors and micro valves. It is crucial to 

consider the effects of fluid parameters such as density, viscosity, velocity and pressure loading 

while designing these systems. The design of these systems demand a numerical model to 

understand the dynamic behavior of various elements involved in these systems. Microcantilever 

is an important structure which exhibits interaction with fluids in various microsystems. The 

present thesis focuses on the numerical modeling of dynamics of a microcantilever vibrating 

under the action of fluid loading. Natural frequencies and mode shapes of cantilever are obtained 

using characteristic orthogonal polynomials in the Rayleigh Ritz method. Numerical model is 

formed by solving Euler Bernoulli Equation of beam using mode summation method with 

normal modes of cantilever. The excitation frequency and fluid pressures are obtained from 

experimental results are explored for modeling and verification purposes. The results are 

obtained for the tip deflection of the beam. The results are validated with the results obtained in 

earlier experiments. The deflection amplitudes from the numerical model and those from 

experiment are found to be in agreement with each other. A parametric study is also presented 

with different sizes of microcantilever. The effect of different lengths and widths of 
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microcantilever on the deflection amplitudes is presented. However, the effect of structural 

deformation due to the changes in fluid pressure is not considered. The model can be further 

extended to explore the dynamics of microplate used in micropumps with the help of precise 

fluid pressure data for a particular dynamic system and mode shapes obtained in free vibration 

analysis. The model provides the first step towards finding a solution to the problems involving 

fluid loading on microsystems.  
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1 Chapter 1: Introduction and thesis objective 

 

The advent of Micro-Electro-Mechanical Systems (MEMS) has led to the development of 

myriad of revolutionary sensors and actuators. Micro-Electro-Mechanical systems involve 

miniature technologies containing mechanical elements, sensors, actuators and Electronics 

integrated on a silicon substrate. Some of these MEMS devices include pressure sensors, force 

sensors, accelerometers, flow sensors etc. Most MEMS sensors are silicon based and are 

fabricated using either surface or bulk micromachining. Surface micromachining creates free 

standing movable structures on top of a substrate using a combination of sacrificial layers and 

structural layers. In bulk micromachining, the mechanical structures are defined using a removal 

process where bulk material, typically silicon is etched away. MEMS sensors are being used in 

vibration and shock monitoring on industrial systems and robotics, guidance and navigation in 

global positioning systems (GPS), seismometers in earthquake prediction, image stabilization in 

digital cameras, and automobile safety and stability. 

Biosensing is one of the largest sectors in MEMS sensing today. A biosensor utilizes biological 

recognition system to target molecules or macromolecules. It converts biological or biochemical 

signal into electrical or optical signal. MEMS biosensors have advantages such as low-cost 

fabrication and fast response times. MEMS biosensors find applications in water and microbial 

contamination analysis, clinical diagnosis, fermentation analysis and control, industrial gases and 

control [53]. The deflection of microcantilever caused by interaction can be utilized to detect 

biomolecules. Figure 1.1 shows some of the MEMS components. 
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Figure 1.1: Examples of Microsystems (a) Microgear (b) Micromirror (c) Micropump (d) 

Microcantilever to detect Bio cell [24]. 

 

Most of the sensors and actuators exhibit deformation of flexible structures such as micro beams, 

micro plates by fluid pressure, electrostatic force or piezoelectric force. The design of these 

systems involves dynamic analysis of these elements under the action of these forces. The 

systems involving structural deformation caused by fluid flows are microflow sensors, micro 

cantilever sensors, micropumps etc.  In each of such systems, fluid flow leads to vibration of 

structure. The dynamic analysis of microstructures is important so as to study the design, 

implementation, maintenance and repair of these systems. The present work deals with the 

numerical modeling of MEMS cantilevers. The model can be useful to understand the dynamics 

of microcantilevers under fluid dynamic loading. 

1.1 Micro-Electro Mechanical Systems (MEMS) 

The advent of miniature sensing devices has been quite rapid since micro fabrication techniques 

were developed. Figure 1.2 [42] gives better understanding of the length scales in meter in 

MEMS. A human hair has a diameter of about 0.1 mm and a nanotube has a diameter of 1 nm.  

(a) (b) (c) (d) 
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Figure 1.2: Comparison of different length scales (in meter) [42]. 

Micro cantilevers, micro pumps, micro viscosity sensors, micro flow sensors, micro valves are 

some of the examples of the micro fluidic devices that involve microfluidic structure interaction. 

The principle of operation and applications of these devices are discussed in this section. The 

performance of all of these devices involves fluid-structure interaction that will be studied in this 

thesis.  

1.1.1 Micro Cantilevers  

The microcantilever is a widely used component in microsystems. Its flexibility and versatility 

make it a popular component in a myriad of applications. MEMS cantilevers are used as sensors, 

transducers, probes, needles, transport mechanisms, resonators, latches, switches and relays.  

Micro cantilevers find diverse applications in sensing mechanisms [1]. They overcome the 

drawbacks incurred by conventional sensors since they need extensive packaging. MEMS 

cantilever sensors can be integrated with whole Electronics on a single chip. The micro-

cantilevers can be used in both static as well as dynamic modes [2, 3]. The response of a micro 

cantilever can be utilized to measure many parameters such as flow rate, fluid pressure, density, 

viscosity etc. There are several methods employed to detect the deflection of the micro cantilever 

such as optical deflection, the interferometry deflection, the optical diffraction grating, the 

charge coupled device, the piezoresistive method etc. Micro cantilever sensors possess high 
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sensitivity, low cost, simple fabrication procedure and quick response. Figure 1.3 [1] explains 

various sensing applications with the help of micro cantilevers. 

SENSING APPLICATIONS OF MICROCANTILEVER 
 

 

 

In Chemistry & Environmental Monitoring 

 Detection of density/viscosity of different 

liquids 

 Detection of humidity 

 Detection of temperature & heat changes 

 Detection of Infrared & & UV radiations 

 Detection of lead & toluene in water 

 Detection of nerve agents namely 

organophosporous compounds 

 Detection of ethanol in water 

 To detect electrochemical decomposition of 

polyaniline 

 Detection of explosives (nose-on-a-chip) 

 To sense mechanical response of living cells 

 To count number of bacteria in air 

 Detection of change in pH or salt concentration 

 Measure analyte vapours in gas phase 

 To detect concentration of herbicides  

 To detect mercury vapour & mercaptane 

 To measure changes in fluid pressure,flow rates 

and sound wave velocities 

 

 

 

                  In Medicine & biology 

 Lab-on-a-chip 

 Blood Glucose monitoring 

 Detection of DNA & protein 

 Detection of PSA 

 Detection of point mutations 

 Detection of single Vaccinia particles 

 Detection of Myoglobin 

 Detection of cells & microorganisms 

 Detecting hybridization of DNA 

 Detection of Escherichia Coli 

 Detection of low-density 

lipoproteins(LDL’s) 
 

 

 

Figure 1.3: Sensing applications of microcantilever 
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The most common properties of a microcantilever used in sensing are its natural frequency and 

its deflection. 

 

Figure 1.4: Optical method to detect micro cantilever deflection[1] 

As shown in the figure, the reflected Laser light from micro cantilever is seen at a different 

position on the PSD. Depending on the distance between the two positions of the Laser beam on 

the PSD, the deflection of the micro cantilever is determined.  

 

1.1.2 Types of micro cantilever based sensors 

A change in the cantilever deflection or its natural frequency can be employed to measure 

various parameters of a fluid. A highly viscous medium as well as an added mass [8] will damp 

the cantilever oscillation and lower its fundamental resonant frequency. Microcantilevers can 

also be excited using piezoelectric actuators and used as sensors [23]. 

Micro cantilevers can also be used as humidity sensors when they are coated with Gelatin [25]. 

Gelatin binds to the water vapors in the atmosphere causing bending of the micro cantilever. Any 

amount of added mass present on the surface of the cantilever would cause change in its 
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deflection and natural frequency. Cantilevers coated with hygroscopic materials such as 

phosporic acid can be used as a sensor for detecting water vapor with pictogram mass resolution 

[26].  

Micro cantilevers with different thermal expansion coefficients can be used to detect changes in 

temperature [26] due to bimetallic effect. They can be used as micro calorimeters to study the 

heat evolution in catalytic chemical reactions and enthalpy changes in phase transitions.  

Micro cantilevers have been used to detect a concentration of 
910

M CrO42- in a flow cell [27]. 

In this device, a self-assembled layer of triethyl-12-mercaptododecyl ammonium bromide on the 

gold-coated microcantilever surface was used. The adsorption of ions causes bending of the 

beam. Microcantilevers could be used for the chemical detection of a number of gaseous 

analytes. A multielement sensor array device employing microcantilevers can be made to detect 

various ions simultaneously. 

1.1.3 Modes of operation of micro cantilever 

The mode of operation of a cantilever can be divided based upon the measured parameter; 

structural deformation or resonant frequency. It is called as static mode and dynamic mode, 

respectively.  

Static mode is observed in cantilever based molecular sensors in which static deflection is 

utilized to measure the amount of material adsorbed onto the microcantilever surface. The 

difference in adsorption on top and bottom surfaces will cause deflection of the cantilever. Also, 

it leads to changes in the surface stress. If the difference in surface stresses between the two 

cantilever surfaces is ∆σ and the radius of cantilever bending is R [3], then 
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2

1 6(1 )

R Et


   

(1.1) 

In dynamic mode, a cantilever is oscillated (by external actuation including piezooscillators), at 

various excitation frequencies to find out natural frequency. As it is known, the resonant 

frequency changes with the change in spring constant ‘k’ and mass of the cantilever ‘m’. Unlike 

the static mode operation, in dynamic mode operation the cantilever can be functionalized on 

both surfaces. As molecules get adsorbed on the cantilever surface(s) mass or spring constant or 

both can change [3]. Additionally, adsorption induced surface stresses on the cantilever also 

changes the frequency of the cantilever. This results in a change in resonant frequency. However, 

if deflection of only the free end is needed, the motion of an oscillating cantilever can be 

analogous to lumped spring-mass system which can be described by the second order differential 

equation.  

 

1.1.4 Micro Valves 

Micro cantilever based valves are passive one-way valves where a flap over a duct controls the 

flow. The applications of these valves are in micropumps, chemical analysis systems and 

miniaturized chemical reactors. Figure 1.5[50] shows a cantilever based micro valve.  
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Figure 1.5:Micro cantilever based valve [50] 

 

1.1.5 Micro Pump 

Micro pumps are integral part of a micro fluidic system. Following shows a broad classification 

of micropumps reviewed by D. J. Laser and J. G. Santiago [5]. Micropumps are inherent part of 

Microfluidics where flow requirement can be in the range of micro or nano litre. The effect of 

fluid loading on the moving membrane of the pump needs to be considered in the design of these 

pumps. Classification of micropumps is presented in the following section. 

Two main categories of micropumps are displacement and dynamic types. 

1. Displacement micropumps are classified as follows.  

i) Reciprocating: They are classified as diaphragm pumps and piston pumps. 

Further, diaphragm pumps are divided based on method on actuation such as 

piezoelectric, thermopneumatic, electrostatic, pneumatic. Based on the type of 

valves, they are classified as flap valve based or diffuser – nozzle based. Again, 

depending on the number of chambers, they are categorized as single chamber or 

multiple chambers.  
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ii) Aperiodic: These pumps can be classified as pneumatic or thermal or 

electrochemical.  

2. Dynamic micropumps are classified as follows. 

i) Centrifugal 

ii) Electrohydrodynamic which can be injection, induction or conduction type. 

iii) Magnetohydrodynamic (AC or DC) 

Valveless micro pumps have been quite an interesting area of research since they eliminate the 

disadvantages of complex design with valves. Also, the possibility of fluids trapped while 

pumping fluids containing particles into these valves is completely eliminated. During the supply 

mode, the actuator displaces up increasing the total volume of the chamber and thus allowing the 

intake of fluid into the chamber. During the pump mode, the actuator moves down decreasing the 

total volume of the chamber and pumping the fluid out.  

 

Figure 1.6: Principle of operation during supply mode of valveless micropump[6] 
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Figure 1.7: Principle of operation during pump mode of valveless micropump[6] 

 

1.1.6 Micro cantilever flow sensors 

MEMS based flow sensors are extensively used in flow measurement in the fields such as 

medical instrumentation, process control and environmental monitoring. As shown in the Figure 

1.8 [28] the microcantilevers with piezoresistors on them are employed for flow sensing.  

 

Figure 1.8: Flow sensing with microcantilevers [28] 
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The beams get deflected due to the fluid flowing on the cantilevers. The deflection of the beams 

causes change in the cross-sectional area further causing change in the resistance of the 

piezoresistor. The flow velocity and direction are calculated by measuring this change in the 

resistance.  

 

1.2 Literature review  

The literature is divided into vibration modeling of plates and beams under the action of fluid 

loading. It is focused on frequency response of micro cantilevers and micro plates oscillated by 

fluid flows.   

1.2.1 Structures subjected to Fluid-Structure Interaction systems (FSI) 

The interaction of a flexible structure with a flowing fluid in which it is submerged gives rise to a 

variety of physical phenomena with applications in many fields of engineering, such as stability 

and response of aircraft wings, flow of blood through arteries, response of bridges and tall 

buildings to winds, vibration of turbine and compressor blades, and vibration of cantilevers in 

fluid. Fluid-structure interaction takes place when fluid flow causes deformation of the structure 

and deformation of the structure changes boundary conditions of the fluid flow. The cantilever-

based FSI systems include Atomic Scope Microscopes, flow sensors, density and viscosity 

sensors and the frequency response of such systems is an important parameter in order to 

understand the behavior of such physical systems where both fluid and solid domains have to be 

modeled. There are many applications where cantilevers are made to vibrate under the action of 

fluid flow.  
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Many experimental and numerical analyses of micro cantilever and micro plates vibrating in 

fluids have been reported in literature. Most of these models report frequency analysis of objects 

under the action of fluid flows. The interaction can take place due to fluid flow which can be 

perpendicular or parallel to the neutral axis of a cantilever or a plate.   

1.2.2 Fluid-Structure Interaction of a plate  

Most of the Micro-Electro-Mechanical Systems have plate as an integral part. As an example, 

flexible membrane of a micropump is excited by a piezoelectric disk which actuates the fluid 

flow in the pump chamber. In this case, the interaction between fluid and the membrane clamped 

at all ends takes place after the membrane is actuated with the help of piezoelectricity. G Song et 

al [7] performed numerical analysis of piezoelectrically actuated valveless micropump. The 

simulation model used by them is as follows. 

The governing equation of thin clamped membrane used in the simulation is  

2
4

2m d

W
D W h f P

t


   


 

(1.2) 

where f is the periodic actuating force exerted by the piezoelectric disk on the pump membrane.  

Pd is the dynamic pressure exerted by the fluid on the pump membrane. In his model, dynamic 

pressure has been obtained by solving Navier-Stokes equation, described below at each time 

step.  

2

l l

v
g v P

t


    


 
(1.3) 
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 . 0l
lv

t


   


 

(1.4) 

where ρl is the density of the fluid.  

μ is the viscosity of the fluid.  

v is the velocity of the fluid.  

In this work, the authors found the deflection of the pump membrane at various actuation 

frequencies considering the fluid coupling.  

The concept of added mass is also one of the ways of expressing fluid-structure interactions 

when fluid loading causes structural vibration. When a solid structure undergoes fluid loading, 

the fluid around the microstructure constitute to the inertial force on the structure. When a 

structure vibrates in a certain fluid, the inertial effect caused by the fluid changes the dynamic 

behavior of the structure. The fluid surrounding plate creates an added mass effect contributing 

to the kinetic energy of the fluid. 

Yadykin et al. [8] reviewed and presented a numerical analysis of fundamental properties of the 

added mass of a plane flexible plate oscillating in a fluid. The authors presented following 

expression to determine added mass per unit area of the oscillating plate. 

0 0

2

2

0 0

b L

b L

y
P dxdy

t
M

y y
dxdy

t t





 

 

 

 

 

 
(1.5) 

 

where ∆P is the fluid pressure loading caused by the deflections of the oscillating plate. y is the 

deflection of the plate. The authors reviewed various expressions for fluid pressure loadings 
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leadings to deflections of the plate.  
y

t




 and 

2

2

y

t




 are velocity and acceleration of the oscillating 

plate at each time step respectively.  

Lucey and Carpenter [13] have obtained fluid loading on the flexible plate as  

2( , , ) I D S

L
P X Y t F UF U F


       

(1.6) 

where U is the constant velocity of the fluid, t is time.  

Y(X, t) and L are surface displacement and length, respectively, of the plate.  

The terms FI, FD and FS are called as aerodynamic inertia, damping and stiffness, respectively. 

In this work, it was found that the amount of added mass is a function of the mode number.  

From the expression of added mass, it can be seen that its value changes at each time step. Also, 

it was concluded that the amount of added mass decreases in higher modes of vibration. 

 

Figure 1.9: The dependance of added mass coefficient on aspect ratio A and numer of 

natural mode n of the cantilevered plate. 3-D theory:Continuous line (1)A=1.0 

(2)A=0.5 (3)A=0.1 (4)A=0.05 (5)A=0.01. 2-D theory:Dotted line;[8] 
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Also, the authors concluded that the effect of added mass is smaller for plates with low aspect 

ratios.  

Fu and Price [21] studied vibration responses of cantilevered vertical and horizontal square 

plates partially and fully submerged in fluid. The effect of submerged plate length on the 

resonant frequencies of plates has been investigated in their work.  

Sinha et al. [20] studied vibration characteristics of submerged, perforated plates. In their work, a 

formula was suggested for the calculation of added mass for perforated plate structures. Also, it 

was proved that these plates exhibit a decrease in natural frequency when submerged in a fluid. 

Also, it was concluded that the perforated plates undergo more damping than non-perforated 

plates.  

Pan et al. [30] performed numerical simulation of fluid-structure interaction in a MEMS 

diaphragm based drop ejector. Ergin and Ugurlu [9] performed linear vibration analysis and 

found natural frequencies and mode shapes for cantilevered plates partially submerged in fluid.  

1.2.3 Fluid-Structure interaction of a Cantilever 

Micro cantilevers undergoing fluid-structure interaction can be found in several micro-electro-

mechanical systems. G. Rezazadeh et al [10] performed numerical analysis on electrostatically 

actuated microbeam in an incompressible, inviscid and stationary fluid. He used Lucey and 

Carpenter’s theory [13] to express pressure loading on the cantilever beam in order to find non-

dimensional added mass. This added mass has been used into Euler-Bernoulli equation to find 

the frequency response of the beam under fluid loading as shown in Figure 1.10.  



16 

 

 

Figure 1.10: Frequency reponse of microbeam with added mass and without added 

mass by G. Rezazadeh [10] 

 

Sader et al. [51] performed a theoretical analysis of the frequency response of the cantilever 

beam immersed in a viscous fluid and excited by an arbitrary force. The arbitrary force, in this 

case has been assumed to be thermal i.e. Brownian motion of the molecules of the surrounding 

fluid. In this model, the undamped modes of cantilever are considered and deflection of the 

cantilever is assumed to be a sum of these modes where each mode is excited by the Brownian 

motion of fluid particles. They presented numerical results of deflection response of AFM 

cantilevers in his model. The normalized thermal spectra expression presented in Sader’s model 

is as follows. 

 

22 2

1 4 2

0

( ) ( )3( )

( )

n
n nB

i

n n

d xk TW x

x k dx
C d




     
   

   
  




 

(1.7) 
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where W is the deflection function. 

Φ(x) is the undamped mode of a cantilever beam.  

kB is the Bolzmann’s constant. 

k is the spring constant. 

T is the absolute temperature. 

4 4

2sin tan
( )

( ( ))(sin sinh )

n n
n

n n n n

C C
Z

C C B C C
 

  
 

(1.8) 

 

1/4
2

1( ) 1 )
4vac

b
B C

  
    

  
 

(1.9) 

 

for smaller Reynold number flows, 

4
)

Reln( Re)

i

i i


 


 

(1.10) 

 

Reynolds number for the flow is expressed as 

2

Re
4

b



 

(1.11) 

ρ and η are density and viscosity of the fluid.  

c

b
T

h





 
(1.12) 

b and h are width and thickness of the beam respectively. 

ρc is the density of the cantilever material.  
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T gives the ratio of the added mass due to apparent fluid forces to the total mass of the beam.  

Q is the quality factor defined as follows. 

2

4
r

i

b
Q








 (1.13) 

Figure 1.11 shows the normalized thermal spectra H resulted from the numerical model by Sader 

[51].  

 

Wang et al [16] considered flow-induced vibration of cylinders with large aspect ratios. In his 

model, the structural part is solved by Euler-Bernoulli theory using normal modes while fluid 

forces are calculated by finite element method.  

Houston et al. [29] determined vibration characteristics of atomic force microscope cantilever 

operating in liquid. In his work, the behavior of cantilever was simulated simultaneously with the 

time dependent flow field.  The flow field is solved at each time step from the new cantilever 

velocity.  

 

Figure 1.11: Normalized thermal spectra of fundamental mode in Sader's model [51] 
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Similarly, the fluid-structure interaction analysis of micro cantilevers used in Atomic Force 

microscope operating in viscous fluids has also been performed to study the effect on natural 

frequency [34-41]. 

 

1.3 Thesis Objective, Problem Definition and Overview 

1.3.1 Thesis Objective 

The main objective of the thesis is to study and model dynamic deflections of microcantilever 

vibrating under the action of fluid loading. Microcantilevers are being used in several sensing 

applications in which they are oscillated by fluid flows. The design of these microcantilevers 

demands a numerical model to predict deflection amplitudes of cantilever under various fluid 

loading conditions.  

 

1.3.2 Problem Definition 

The dynamics of cantilevers vibrating under the action of fluid loading is important in the design 

of cantilever based sensors. Amplitudes of cantilevers with different excitation frequencies are 

required to be known so as to design sensors from such cantilevers. In order to determine the 

amplitudes of micro cantilever, deflection response problem needs to be solved by considering 

forced vibration under the action of different fluid loading conditions.  

1.3.3 Thesis contribution 

The dynamics of the cantilever vibrating under fluid loading can be exploited in order to make it 

applicable in sensing. Various parameters can be studied with the help of numerical analysis of 
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vibrating cantilevers. The present thesis demonstrates a numerical model to analyze dynamics of 

micro cantilevers vibrating under the action of fluid force. The numerical analysis of vibration is 

presented with the help of normal modes of cantilever. The model will be useful to predict 

performance of microcantilevers with different dimensions vibrating under the action fluid flow.  

1.3.4 Overview 

The present thesis is organized in six chapters.  

Chapter 1: The chapter explains various micro-electro mechanical systems, their applications. It 

includes literature review on numerical models on fluid-structure interaction. The FSI models are 

divided into those of beams and plates. Also, it includes thesis contribution, objective and 

problem definition of the present thesis.  

Chapter 2: This chapter includes free vibration analysis of cantilevers using Rayleigh-Ritz 

method and finding out their natural frequencies. Natural frequencies and mode shapes of Fixed-

Free beam are presented.  

Chapter 3: This chapter includes free vibration analysis of rectangular plates using Rayleigh-Ritz 

method. Also, literature review on numerical models on free vibration analysis of plates is 

included. Natural frequencies and mode shapes of clamped-clamped plate are presented.  

Chapter 4: This chapter includes modeling of Euler-Bernoulli equation using Simulink. The 

mode summation method is explained to solve forced vibration problem using the fluid pressure 

and excitation frequency determined in earlier experiments. The results are obtained in time 

domain using Runge Kutta Fourth Order solver in Simulink.  

Chapter 5: This chapter includes review of the experimental set up. The model explained in 

Chapter 4 is applied to the problem in the experiment. The deflection response of micro 

cantilever is presented in frequency domain. The deflection amplitudes obtained using numerical 
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model, are compared for six cases with those from experiments. Also, a parametric study is 

presented with different widths and lengths of microcantilever. The results are plotted for all 

these sizes at a certain fluid loading. Finally, the deflection amplitudes from these results are non 

dimensionalized with respect to cantilever properties and fluid loading.   

Chapter 6: This chapter presents and conclusion and future work that can be performed with the 

help of presented model.  
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2 Chapter 2: Natural frequency and mode shapes of 

beams 

 

In order to study the fluid-structure interaction problem, it is essential to study vibrations of 

flexible structures. Most of the flexible structures are categorized in the following way. 

Table 2.1: Flexible structures in dynamic systems 

 

 

 

 

 

 

 

In the present study, cantilever beam and rectangular plate are investigated in order to determine 

their fundamental frequencies and mode shapes since they are commonly used elements in 

microstructures. The results of this study will be used in investigating the fluid-microstructure 

interaction phenomenon.  

In the absence of any fluid (i.e. in vacuum), without the action of any external force, analysis of 

natural frequencies of a beam can be solved by solving Euler-Bernoulli equation. Natural 

frequencies are required in order to study the response of microstructures when they are excited 

at its one of their frequencies.    

Beams 

One-Dimensional Strings 

Shafts 

Membranes 

Two-Dimensional 

Plates 

Shell Three Dimensional 
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2.1 Euler-Bernoulli Equation of Motion of beam 

In the following, Euler-Bernoulli beam is analyzed. Euler-Bernoulli theory does not consider the 

effects of rotary inertia and shear deformation.  

Euler-Bernoulli equation of motion of beam in the absence of an external force is expressed as 

4 2

4 2

( , ) ( , )
0

y x t y x t
EI A

x t

 
 

 
 

(2.1) 

 

Let 
EI

p
A




 

4 2
2

4 2

( , ) ( , )
0

y x t y x t
p

x t

 
 

 
 (2.2) 

 

We assume that the solution is in the following form. 

( , ) ( )* ( )y x t Y x T t  (2.3) 

  

where Y(x) is a function of shape and T(t) is a function of time.  

substituting Equation (2.3) into Equation (2.2), we get after separation of variables,  

2 4 2
2

4 2

( ) 1 ( )

( ) ( )

p d Y x d T t

Y x dx T t t
   


 (2.4) 

Equation (2.4)can be written as 

2
4

2

( )
( ) 0

d y x
y x

dx
   (2.5) 

 

where   
4 = A

2 /EI 
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Y(x), can be assumed to be in the form. 

( )Y x = 1 2 3 4

x x i x i xB e B e B e B e        (2.6) 

 

where 
1B ,

2B , 
3B , 

4B  are constants. 

Equation (2.6) can also be expressed as 

( )Y x =
1C (cos βx +cosh βx) + 

2C (cosβx – cosh βx) +
3C (sinβx + sinh βx) +  

4C (sinβx – 

sinh βx) 
(2.7) 

where 1,C 2 ,C 3 ,C 4  are constants in this case.C
 
 

Natural frequency of the beam is given by 

2 2

4
( )

EI EI
l

A Al
  

 
 (2.8) 

 

2.2 Natural Frequencies and Mode shapes of a Cantilever beam 

When a system is given an initial input and then set to vibrate, it is said to be vibrating freely. In 

this case, the system is said to be vibrating at one or more of its natural frequencies. In the 

present model, a beam is considered free at one end and fixed at the other end. Table 2.2 shows 

the boundary conditions of the beam.  

 

Table 2.2: Boundary conditions of cantilever beam. 

 

Fixed End Deflection Y = 0 Slope dY/dx = 0 

Free End 
2

2

( )
0

d Y L

dx
  

3

3

( )
0

d Y L

dx
  
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Figure 2.1 shows a cantilever beam with its dimensions. 

 

 

Applying the first two boundary conditions in Table 2.2 at the fixed end in Equation (2.7) 

C1 = C3 = 0 

By using the boundary conditions at the free end and solving, we get 

cos cosh 1 0l l     (2.9) 

This is the frequency equation of the beam.  

The expression for the deflection of the beam becomes 

(cos cosh )(sin sinh )
( ) (cos cosh )

(sin sinh )

n n n n
n n n

n n

l l x x
Y x x x

l l

     
    

  
 (2.10) 

 

Figure 2.1: Cantilever beam with length L, width w and thickness t. The fixed end is at x=0 and 

free end is at x=L. The motion is along y-axis.  
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2.3 Modal analysis of beams 

Modal analysis is used to study dynamic response behavior of a structure under vibrational 

excitation. There are a few numerical methods which can be found in the literature used to 

perform modal analysis of structures modeled by Euler-Bernoulli beam theory. The Rayleigh-

Ritz method is a popular method used to determine natural frequencies and mode shapes of 

beams and plates due to its simplicity and reasonable accuracy.  

Several modal analysis studies can be found in literature. Evensen [22] showed that, for higher 

modes of vibration, the amplitude-frequency curves of a clamped-clamped beam or a clamped–

supported beam tend to approach that of a simply supported beam. The influence of the boundary 

conditions on the response becomes less pronounced as the mode number increases.  

In the present study, free vibration analysis of beam and plate is performed by using boundary 

characteristic orthogonal polynomials in the Rayleigh-Ritz method. The orthogonal polynomials 

are obtained by using Gram-Schmidt process described in [11]. The polynomials satisfy 

geometric boundary conditions of the beam and plate. Results of a square plate are compared 

with those obtained in [11]. 

 

2.3.1 Rayleigh-Ritz method 

The deflection of the beam is assumed as the sum of several functions multiplied by constants 

1

( ) ( )
N

i i

i

Y x a x


   (2.11) 

 Φi, are functions satisfying the boundary conditions of the beam.  

ai is unknown coefficients.   
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Maximum kinetic and potential energies of the beam are given by 

2
2

2 *

max max

0
2

l
A y

T dx T
t

   
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 
  (2.12) 

 

2
2

max 2

0
2

l
EI y

U dx
x

 
  

 
  (2.13) 

Equating both the energies, 

max maxT U  

Rayleigh quotient is obtained as 

2 max

*

max

U

T
   

Applying the condition of stationarity of the natural frequencies, with respect to the arbitrary 

coefficient ai, 

2

0
ia





 

This equation yields an eigen value problem as follows.  

    2 0K M x    (2.14) 

where stiffness matrix K and Mass matrix M are given by 

max

i

U
K

a





 (2.15) 

 

*
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i

T
M

a





 (2.16) 

where i = 1, 2, 3 ….. N 
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2.3.2 Generation of boundary characteristic orthogonal polynomials 

The boundary characteristic orthogonal polynomials are produced using Gram-Schmidt process 

described in [11].  

The first member (Φ0) of the set of polynomials is chosen such that it satisfies all boundary 

conditions of the beam. The rest of the polynomials are constructed in following way. 

Φ1 = (x – B1) Φ0 
(2.17) 

 

Φn =(x – Bn )Φn-1(x) – CnΦn-2(x) 
(2.18) 

 

1 2

2

2

( ) ( ) ( )

( ) ( )

b

n n

a
n b

n

a

xw x x x dx

C

w x x dx

 



 









 
(2.19) 
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(2.20) 

 

The weight function w (x) is chosen such that 

0   
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The coefficients of the polynomials are chosen such that the polynomials are orthonormal to each 

other as follows. 

1

2

0

( ) 1n x dx   
(2.22) 

2.3.3 Eigen value analysis: Cantilever beam 

The first polynomial for a cantilever beam is chosen such that it satisfies all the boundary 

conditions from Table 2.2. Accordingly, it is obtained as  

2 3 4( ) 6 4X x x x x    
(2.23) 

The polynomial X(x) is normalized as follows.  

2 3 4

0 1/2
1

2

0

(6 4 )
( )

( )

x x x
x

X x dx

 
 

 
 
 


 

(2.24) 

 

2 3 4

0( ) 2.311(6 4 )x x x x     
(2.25) 

 

2.3.4 Results 

Further polynomials are produced using Gram-Schimdt process as explained before. These 

polynomials are used in the Rayleigh-Ritz method and eigen values are obtained for fixed –free 

beam. Table 2.3 shows first five Eigen values.  

 

Table 2.3: Eigen values of fixed-free beam obtained by Rayleigh-Ritz method 
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Figure 2.2-Figure 2.11 show first ten normalized modes plots.  

 

 

Figure 2.2:Mode 1 of cantilever beam using Rayleigh-Ritz method 
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Figure 2.3:Mode 2 of cantilever beam using Rayleigh-Ritz method 

 

 

 

Figure 2.4:Mode 3 of cantilever beam using Rayleigh-Ritz method 
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Figure 2.5: Mode 4 of cantilever beam using Rayleigh-Ritz method 
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Figure 2.6: Mode 5 of cantilever beam using Rayleigh-Ritz method 

 

 

 

Figure 2.7: Mode 6 of cantilever beam using Rayleigh-Ritz method 
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Figure 2.8:Mode 7  of cantilever beam using Rayleigh-Ritz method 

 

Figure 2.9: Mode 8  of cantilever beam using Rayleigh-Ritz method 
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The natural frequency of cantilever at each mode can be calculated by following expression. 

2

2

C EI

l



 (2.26) 

 

Figure 2.10: Mode 9  of cantilever beam using Rayleigh-Ritz method 

 

 

Figure 2.11: Mode 10  of cantilever beam using Rayleigh-Ritz method 
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3 Chapter 3: Natural frequencies and mode shapes of 

a rectangular plates 
 

When the width of a microcantilever is significant, it can be considered as a cantilever plate. 

Plates are used in many micro-electro-mechanical systems such as thin membranes of micro 

pump [5], circular membranes of high temperature pressure sensors [18, 52]. In this chapter, a 

brief literature review is provided on free vibration analysis of plates. Eigen value analysis of a 

square plate, clamped at all edges is presented using Rayleigh Ritz method.  

       

3.1 Free vibration of rectangular plates 

Leissa [45] has given a review of vibration of plates. H.L. Chen et al [14] performed free 

vibration analysis of rectangular plates using Bessel function method.  Chow et al. [43] 

developed a general numerical method for estimation of vibration response of symmetrically 

laminated rectangular composite plates. He used orthogonal polynomials in Rayleigh-Ritz 

method to obtain eigen values and mode shapes of these plates.  

Nair and Rao [44] used finite element method to find natural frequencies of rectangular plates. 

Beam characteristics functions were used to study plate vibration in Rayleigh-Ritz method by 

Leissa [45]. It includes analytical solutions for various shapes of plate. The boundary 

characteristic orthogonal polynomials suggested by Bhat [11] in Rayleigh-Ritz method are used 

in this report. These functions have already been used by several authors [46, 47, 48, 52] and 

found to be providing excellent results. For a rectangular plate, there are eight boundary 

conditions for each case. A plate fully clamped from all sides is considered in the present report.   
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3.2 Equation of motion of plate 

The free vibration equation of motion of a rectangular plate can be expressed as follows.  

2
4

2
0

h
D w h

t


  


 

(3.1) 

where 4 is the biharmonic differential operator.  

4 = 2 . 2  

2 2
2

2 2x y

 
  

 
 

3

212(1 )

Eh
D 


 

 

 

3.2.1 Eigen value analysis: Clamped-Clamped plate 

The assumed deflection of a rectangular plate can be expressed as follows. 

( , ) ( ) ( )mn

m n

Y x y C x y    
(3.2) 

where Φ(x) and φ(y) are functions satisfying boundary conditions in x and y directions 

respectively. 

Table 3.1 shows boundary conditions for a fully clamped rectangular plate.  
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Table 3.1: Boundary conditions for a fully clamped rectangular plate. 

x=0 Y=0 
2

2
0

d Y

dx
  

x=1 Y=0 
2

2
0

d Y

dx
  

y=0 Y=0 
2

2
0

d Y

dx
  

y=1 Y=0 
2

2
0

d Y

dx
  

 

3.2.2 Kinetic and potential energies of the plate  

1 1

2 2

0 0

1
( , )

2
KE hab y x y dxdy      

(3.3) 

 

1 1

2 4 2 2 2 2

3

0 0

1
[ 2 2(1 ) ]

2
xx yy xx yy xy

D
PE y y y y y dxdy

a
      

  
 

(3.4) 

 

where ρ is density of the plate material, a and b are plate dimensions, h is its thickness, D is 

flexural rigidity of the plate, α is the side ratio a/b, υ is Poisson’s ratio.   

3

212(1 )

Eh
D 


 

(3.5) 

Following functions satisfying boundary conditions for a square plate clamped at all edges are 

considered.  
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2 3 4( ) 2x x x x     
(3.6) 

2 3 4( ) 2y y y y     
(3.7) 

Above polynomials are first made orthonormal using Equation (2.22) and further orthogonal 

polynomials are found by using Gram-Schmidt process described in section 2.3.2. Following are 

the orthogonal polynomials produced from Φ(x) and φ(y).  

 

2 3 4

0( ) 25.09( 2 )x x x x     
(3.8) 

2 3 4

1( ) 499.28( 1/ 2)( 2 )x x x x x      
(3.9) 

2 3 4

0( ) 25.09( 2 )x y y y     
(3.10) 

2 3 4

1( ) 499.28( 1/ 2)( 2 )y y y y y      
(3.11) 

 

Mass and stiffness matrices have been formed in Matlab using above equations of kinetic and 

Potential energies and following modes shapes have been obtained.  

Frequency parameters of a square plate clamped at all edges for first four modes using above 

orthogonal polynomials compared with those from [11] for side ratio 1 are as follows. 
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3.2.3 Results and discussion 

Mode shapes are presented four first four modes of the plate.  

 

Table 3.2: Frequency parameters of clamped square plate using Rayleigh-Ritz and comparison 

with those from [11] 

Mode no(m,n) Present work Analysis [11] 

(1,1) 35.9855 35.9855 

(2,1) 73.3947 73.395 

(1,2) 73.3947 73.395 

(2,2) 108.2179 108.22 

   

Figure 3.1, Figure 3.2, Figure 3.3 and Figure 3.4 show first four modes plotted for clamped-

clamped plate by using Rayleigh-Ritz method.  
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Figure 3.1: Mode (1,1) of clamped square plate using Rayleigh-Ritz method 

 

 

Figure 3.2: Mode (1,2) of clamped square plate using Rayleigh-Ritz method 
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Figure 3.3: Mode (2,1) of clamped square plate using Rayleigh-Ritz method 

 

 

Figure 3.4: Mode (2,2) of clamped square plate using Rayleigh-Ritz method 
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4 Chapter 4: Dynamic modeling of microcantilever 
 

The dynamics of the micro cantilever vibrating under the action of fluid forces can be exploited 

to develop sensors under fluid-structure interaction conditions to measure fluid properties. 

Generally, resonant frequencies of these cantilevers can be related to system parameters. The 

present chapter deals with modeling of Euler-Bernoulli beams in order to solve forced vibration 

problems under fluid-structure interaction problems. 

 

4.1 Forced vibration of beams 

Any external force acting on a flexible object tends to change its response. The external force 

can be electrostatic [10], mechanical force, or fluid pressure as considered in the present study. 

These forces can be harmonic, periodic or random in nature. The solution of these problems 

poses formidable challenges depending on the nature of the force. The force acting on the beam 

can be along the axial or the transverse direction. The present work is limited to forces acting on 

the beam in the transverse direction.  

4.1.1 Governing Equation  

The governing equation of motion of beam [17] with an external force in transverse direction can 

be expressed by Euler-Bernoulli equation as 

4 2

4 2

( , ) ( , )
( , )

y x t y x t
EI A P x t

x t

 
 

 
 

(4.1) 

where P(x,t) is an external force per unit length acting on the beam.  

Above equation is solved using mode-summation method as explained in following section.  
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4.1.2 Mode-summation method 

According to mode-summation method, the solution of the above Equation (4.1) is assumed to be 

a linear combination of the normal modes of the beam as 

1

( , ) ( ) ( )
n

i i

i

y x t Y x q t


  (4.2) 

where Yi(x) are the normal modes of vibration of the beam.  

Replacing y in Equation (4.1) by Equation (4.2) 

''''

1 1

( )* ( ) ( ) ( ) ( , )
n n

i i i i

i i

EI Y x q t A Y x q t P x t
 

    (4.3) 

 

It is assumed that the force is uniform and is sinusoidal, given by 

0( , ) ( )sin( )P x t P x t   (4.4) 

 

From the condition of orthogonality, 

0

( ) ( ) 0

l

i jAY x Y x dx   i j  

(4.5) 

0

( ) ( ) 1

l

i jAY x Y x dx 
 

i j  

 

Using Equation (4.4) in Equation (4.3) and multiplying by Yj(x) on both sides; 

''''

1 10 0

( ( ) ( )) ( ) ( ( ) ( )) ( )

l ln n

i i j i j

i i

EI Y x q t Y x dx A Y x q t Y x dx
 

      0

0

sin( ) ( )

l

jP t Y x dx  (4.6) 

 

Considering the ith mode and removing the summation sign, 
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''''

0 0

( ) ( ) ( ) ( ) ( ) ( )

l l

i i i i i iEIY x Y x q t dx AY x Y x q t dx     sin( t);    i=jiP   (4.7) 

where 0

0

( )

l

i iP PY x dx     is the modal force.  

The first term in Equation (4.7) can be re-written as follows. 

'''' 4( ) ( ) ( )i i iY x Y x 
 

Hence, we have 

4 2 2( ) ( ) sin( )i i i i i iEI q t A q t P t       (4.8) 

 

where 2 2

0

( )

l

i iY x dx    

Adding the damping term into above equation, 

 

4

2

sin( )
( ) ( ) ( ) i

i i i i

i

P t
EI q t Cq t Aq t


   


 (4.9) 

 

4.1.3 Matrix formation of the equation 

Considering first n modes for a beam, the above Equation (4.8) can be expressed in a matrix 

form as follows. 

4

1 1 1 1 11

4

1

2

1

2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

sin( )

sin( )n n n n nn n

n

P

M q q qEI

M q q q PEI

t

C

C t



  
  

  





 
                                                                      

 





 

where 
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4* *K E I   

*M A   

The matrix form can be summarized as follows. 

1 1) 0 ... 0

0 0

0 0

0 0 )n n

A

M

A





 
 
 
 
 

 

 

1 1C 0 0

0 0

0 0

0 0 C n n

C





  
 
 
 
 

  

 

4

1 1

4

0 0

0 0

0 0

0 0 n n

EIw

K

EIw





 
 
 
 
 
  

 

2

1

2

sin( )

sin( )

i

n

n

P

P

t

p

t





 
 
 
 

  
 
 
 
 

 

 

       [ ] [ ] [ ]M q C q K q p    
(4.10) 

The matrix form of the equation consists of mass matrix, damping matrix and stiffness matrix. It 

can be solved for q which is time history of the displacement of the beam. The following section 

explains the method of solution adopted to solve Equation (4.10). 
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          
1 1 1

q p M C q M K q M
  

    
(4.11) 

The q(t) obtained from above equation can be used in Equation (4.2) in order to obtain the 

deflection response of the beam. 

First four modes are considered to obtain the deflection response of micro cantilever.  

The final deflection can be expressed as follows. 

4

1

( , ) i i

i

Y x t q


   
(4.12) 

 

4.1.4 Damping 

In dynamic systems, damping is a phenomenon in which Mechanical energy is dissipated from 

the system. Damping can be present in various forms in a dynamic system. The knowledge of 

these forms and their level is important in order to understand the behavior of the system. 

Despite having a large literature on damping, there is no single universally accepted model for 

total damping present in a system since it is not possible to isolate various types of 

damping(material, structural and fluid) [33]. Damping can be expressed by various quantities 

such as specific damping coefficient, loss factor, Q-factor or damping ratio.  

In the present study, damping matrix is achieved by using an approximate damping model 

reported for microcantilevers in [54]. The linear damping model is described in the following 

section. 

Approximate damping coefficient C for microcantilever with rectangular cross section is defined 

as 
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(1.45 2.06 )C      
(4.13) 

Above expression has been obtained in [54] validating numerical analysis with experimental 

results. The expression has been expressed by carrying out experiments on microcantilevers of 

different sizes at different resonant frequencies tested for damping coefficients.  

In the above equation, γ is a dimensionless parameter defined as 

width
 


 

(4.14) 

where α is a function of beam dimensions and fluid parameters expressed as follows. 

2
 


 

(4.15) 

where μ and ρ are fluid viscosity and fluid density. Further, ω is the resonant frequency of the 

beam.  

The damping matrix is obtained by using above model with the present dimensions of beam and 

fluid parameters.  

4.1.4.1 Fluid dependent damping 

When a structure is vibrating under the action of a flowing fluid, the relative motion between a 

structure and fluid causes energy dissipation called as fluid damping. The damping effect in a 

fluid-structure interaction is produced by the boundary layer effects at the interface of fluid and 

structure. According to the damping model described above, Fluid damping is a function of 

viscosity of fluid, density of fluid and the dimensions of the structure.  

Also, different types of damping associated with fluid flow can be found in literature. Pettigrew 

and Knowles [33] included an additional two phase damping term in fluid damping in flow 
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induced vibration in case of heat exchanger tubes. In his model, following relation can be found 

to determine total damping in a fluid-induced vibrating system. 

s v fd tp       
(4.16) 

where  is the total damping ratio, ζs, ζv,  ζfd,  ζtp are damping ratios associated with structural 

damping which is friction damping at the joints, viscous damping which is present at the contact 

of tube to fluid, fluid damping and two phase damping, respectively.  

4.1.5 Modeling in Simulink 

Simulink offers a great variety of tools to solve problems involving dynamic systems. Different 

types of solvers are offered by Simulink based on the complexity of the problem and the type of 

numerical method. ode4 is a commonly used solver which is based on Runge Kutta Fourth 

Order. This Method has been chosen for the present problem to solve Euler-Bernoulli equation in 

time domain.  

4.1.6 Fourth Order Runge-Kutta Solver 

Runge-Kutta solver has been used to solve the differential equation. Theoretical approach of this 

method is presented below.  

Consider a general Initial Value Problem on an Ordinary Differential Equation 

' ( , )f f t y  
(4.17) 

 

0 0( )f t f  
(4.18) 
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Runge Kutta Fourth Order method for solving f for the next step tn+1 is expressed by following 

equation.  

1 1 2 3 4

1
( 2 2 )

6
n nf f g g g g       

(4.19) 

where 

1 ( , )n ng zf t f  
(4.20) 

 

2 1

1 1
,

2 2
n ng zf t h f g

 
  

 
 

(4.21) 

 

3 2

1 1
,

2 2
n ng zf t z f g

 
   

 
 

(4.22) 

 

 4 3,n ng zf t z f g    
(4.23) 

where z = 1nt t   

The value of 1ny  is calculated at each time step using value of f from previous step.  

The fixed step solver has been chosen for this particular problem since it offers the advantage of 

choosing desired time step as well as saving computation time [49]. On the other hand, variable 

time step solver takes more computation time since it automatically keeps on varying the size of 

the time step based on the rate of the change of the state and tolerance provided to achieve a 

specified level of accuracy over the course of simulation.  
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4.1.7 Discrete Fourier Transform 

The results obtained in time domain are converted to frequency domain using the Discrete 

Fourier Transform. Fast Fourier Transform algorithm is used for this purpose. It is an efficient 

way to decompose a time domain response into different frequencies and their respective 

amplitudes.  

 

The Fourier transform is defined as 

2( ) ( ) i ftF f f t e dt



 



   
(4.24) 

Above expression resolves the function f(t) into harmonic components F(f).  

Numerical computation of Fourier transform requires discrete sample values of data in time 

domain, which is f (t). Numerically, the transform F(f) can only be computed at discrete values 

of s, which means, it can only provide discrete samples of the transform, Fr. If f (kT) and F(rs0) 

are the kth and rth samples of f(t) and F(f), respectively, and N0 is the number of samples in the 

signal in a period T0, then, 

  

0

0

( ) ( )k

T
f Tf kT f kT

N
   

(4.25) 

and  

0( )rF F rs  
(4.26) 

where 

0 0

0

2
2s F

F


    
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Discrete Fourier Transform is given by 

0

1

n
ir k

r k

i

F f e
 



  
(4.27) 

where  

0

0

2

N


   

 

4.1.8 Fast Fourier Transform 

The Fast Fourier Transform is a DFT algorithm developed by Tuckey and Cooley in 1965 which 

reduces the number of computations from the order of 2

0N to 0 0logN N . 
0N is the chosen to be 

the power of 2 in this algorithm.  

4.1.9 Summary 

This chapter describes theoretical modeling of Euler-Bernoulli equation using mode summation 

method. Further, it explains a method to solve it using Simulink.  
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5 Chapter 5: Validation and results 
 

Several experiments on fluid-structure interaction of beams and plates can be found in literature.  

Shakhawat [19] performed an experiment on micro cantilever vibrating under the action of fluid. 

The fluid pressure and excitation frequencies of the fluid loading on the micro cantilever are 

obtained from this experiment. The following section describes briefly about the experimental 

set up and properties of micro cantilever [19].  

One such application of flow induced vibration is sensing density of fluids with the help of 

frequency response of the cantilevers [1]. Density is one of the fundamental physical quantities 

required when the property or composition of a liquid sample is required to be determined in 

industrial processes. Density measurement can be a crucial parameter where gas leak is to be 

detected such as in automobiles and airplanes. Also, the detection and characterization of 

chemicals in liquid and gaseous state can be carried out using density measurement [1]. 

 

5.1 Experimental Set up: Review 

The experiment [19] was performed to understand fluid-structure interaction of micro cantilevers 

under different flow rates and fluid pressures. The results included deflection response of micro 

cantilevers under the action of different fluid flows within micro chips. 

Figure 5.1 shows the micro channel used in the experimental set up [19]. The micro cantilever 

was excited by fluid flow through the two inlets as shown. The size of the inlet of microchannel 

is 2.32.3   mm.  
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Figure 5.1: Micro cantilever assembled in a micro channel[19][Dimensions are in 

mm] 

 

In the experimental set up, a peristaltic pump was employed for the fluid flow to take place 

through two inlets and pressure across two inlets were measured by using two pressure sensors 

across inlets. The data through the pressure sensors were obtained through a data acquisition 

board. The oscillatory flow produced by the pump acts as the dynamic loading on the micro 

cantilever.  

 

5.1.1 Flow through the pump 

Flow through a peristaltic pump takes due to the squeezing action of the tubes by rollers centrally 

distributed around a central disc. In the experiment, it was found that the flow through the pump 

takes place due to frequencies contributed by speed of the central disc as well as that due to the 

rollers. The experiment was performed with the help of Fluid XP. The density and viscosity of 

the fluid are 
31029 /kg m  and 

34.5 10  Pa.s  respectively. Figure 5.2 shows the frequency 

spectrum of the flow variation at 6 rpm speed of the pump. The frequency spectrums of pressure 
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loadings that were obtained experimentally by Shakhawat [19] are reviewed and used for the 

present study.  

 

 

Figure 5.2:Frequency variation of the flow through the peristaltic pump [19] 

 

The flow through the pump was found to be periodic consisting of two harmonic frequencies. 

These frequencies were corresponding to the angular velocities of the discs inside the pumps and 

to those of the rollers. Frequency of the flow is related to the angular velocity of the disc as 

follows. 

1
2 60

N
f


 


 

2 110f f  

where f = frequency of fluctuation 

 ω= angular velocity of the disc in rad/s  

 N= RPM of the disc 



56 

 

 
2f = Passing frequency of rollers 

Thus, the pressure loading on the beam was found to be consisting of two pressure amplitudes 

associated with two harmonic frequencies.  

 

1 1 2 2sin sinP P t P t    
 

(5.1) 

where P1 and P2 are the pressure amplitudes corresponding to two harmonic frequencies.  

The force acting on the cantilever can be assumed to be of the same form and can be expressed 

as follows. 

1 1 2 2sin sinF f t f t     
(5.2) 

In the present work, the values of pressure are taken from the experiment and used in the Euler-

Bernoulli beam model in order to find the time history of the displacement of the tip of the 

cantilever.  

5.2 Material and Dimensions of micro cantilever 

The material of the micro cantilever used in the experiment was PVDF (Polyvinyl Fluoride). The 

material was chosen based on its availability in different sizes [19]. Micro cantilevers can be 

easily fabricated with PVDF. Also, it is light weight and flexible material. The micro channel 

was fabricated from PDMS using soft lithography [19]. The properties of PVDF material and 

microcantilever dimensions are summarized in Table 5.1 and Table 5.2.  
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Table 5.1: Mechanical Properties of PVDF material 

 

 

 

 

 

 

 

 

 

Table 5.2: Dimensions of micro cantilever 

 

 

 

 

 

In the present work, above dimensions of the micro cantilever are used in the numerical model.  

The deflection response has been obtained for the six different cases of frequency and pressure 

taken from the experiment.  

 

5.3 Results and Discussion 

The deflection of the tip of micro cantilever under the action of two pressure components is 

presented in frequency domain. The results are compared for six different combinations of 

frequency and pressure that were experimentally determined by Shakhawat[19]. 

 Figure 5.3, Figure 5.5, Figure 5.7, Figure 5.9, Figure 5.11 and Figure 5.13 show fluid pressure 

variation with respect to frequency in six different cases of the pump speed used during the 

Property Value 

Young’s modulus 9 24 10  N/m  

Poisson’s ratio 0.35 

Density 
31780 kg/m  

Dimension Value (m) 

Length 37.0 10  

Width 32.1 10  

Thickness 628 10  
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experiment. The variation of pressure has been obtained for the 3.2 mm hydraulic diameter of the 

microchannel. The fluid pressure and excitation frequency data are obtained from these figures 

for a particular fluid.     

 

 

Figure 5.3: Variation of pressure with frequency at 4 RPM speed of the pump[19] 

 

Deflection response of microcantilever provides an idea about its dynamic behavior to a 

particular frequency. Figure 5.4 shows deflection response in frequency domain obtained using 

Fast Fourier Transform. It shows two deflection amplitudes corresponding to two excitation 

frequencies. It can be seen that the deflection amplitude at f2 is higher than that f1. In Figure 5.3, 

[f1, P1] and [f2, P2] represent [frequency of excitation, amplitude] of fluid loading. The lower 

frequency is attributed to the angular motion of the central disc while the higher component of 

frequency can be attributed to the passing frequency of the rollers. The pressure of fluid 

downstream the cantilever has been measured using two pressure sensors at the inlet of the 

channel [19]. 
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Figure 5.4: Deflection response of tip of microcantilever obtained using Numerical model at 

speed of the pump 4 RPM 

 

Figure 5.4 shows tip deflection amplitudes of PVDF microcantilever obtained using Mode-

Summation method. It shows deflections of the cantilever corresponding to the excitation 

frequencies f1 and f2 shown in Figure 5.3. Two excitation frequencies are 0.066 Hz and 0.66 Hz. 

The excitation frequencies obtained in Figure 5.3 correspond to 4 RPM speed of the pump used 

in the experiment. The result shows slightly higher deflection at higher frequency than that at 

lower frequency component.  
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Figure 5.5: Variation of pressure with frequency at speed of the pump 5 RPM[19] 

  

Figure 5.5 shows fluid pressure loading and excitation frequencies corresponding to speed of the 

pump 5 RPM. A slightly higher pressure loading can be observed in this case as compared to the 

previous one.  

 

Figure 5.6: Deflection response of tip of micro cantilever using Numerical model at speed of the 

pump 5 RPM 
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Figure 5.6 shows that a little increase in the pressure loading and excitation frequency show 

increase in both the amplitudes of the beam. The excitation frequencies correspond to speed of 

the pump 5 RPM.  

 

 

Figure 5.7: Variation of pressure with frequency corresponding to speed of the pump 6 RPM[19] 

The fluid loading and excitation frequencies in Figure 5.7 correspond to 6 RPM speed of the 

pump.  

 

Figure 5.8: Deflection response of tip of micro cantilever using Numerical model at speed of the 

pump 6 RPM 
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Figure 5.8 shows deflection amplitudes at the pressure loading P1 and P2 shown in Figure 5.7.  

 

 

Figure 5.9: Variation of pressure with frequency corresponding to speed of the pump 7 RPM[19] 

The excitation frequencies in Figure 5.9 correspond to 7 RPM speed of the pump.  

 

 

Figure 5.10: Deflection response of tip of micro cantilever using Numerical model at speed of 

the pump 7 RPM 
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Figure 5.11: Variation of pressure with frequency corresponding to speed of the pump 8 

RPM[19] 

The pressure loading and excitation frequencies in Figure 5.11 correspond to 8 RPM speed of the 

pump.  

 

 

 

Figure 5.12: Deflection response of tip of micro cantilever using Numerical model at speed of 

the pump 8 RPM 
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Figure 5.12 shows tip displacement of the microcantilever beam corresponding to the pressure 

loading shown in Figure 5.11.  

 

 

 

Figure 5.13: Variation of pressure with frequency corresponding to speed of the pump 9 

RPM[19] 

The pressure loading and excitation frequencies in Figure 5.13 correspond to speed of the pump 

9 RPM.   

 

Figure 5.14: Deflection response of tip of micro cantilever using Numerical model at speed of 

the pump 9 RPM 

 

0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

7

8

9

10

x 10
-6

Frequency of excitation (Hz)

T
ip

 D
is

p
la

ce
m

en
t 

(m
)

 

 

Beam Tip Deflection



65 

 

The predicted amplitudes of these six cases are compared with those found from the experiment 

[19]. The pressure of the fluid depends on the frequency of operation of the peristaltic pump. 

Amplitudes A1 correspond to the frequency f1 and amplitudes A2 correpsond to the frequency f2.  

Figure 5.15 shows variation of fluid pressure with frequency as well as variation of amplitudes 

A1 with frequency.  It can be seen that the fluid pressure increases with the increase in the 

excitation frequency. The excitation frequency is a function of speed of the pump.   

 

 

Figure 5.15:Comparison of deflection amplitudes A1 from numerical model and experiment and 

variation of pressure with frequency 

 

Deflection amplitudes A1 from the numerical model and those from the experiment are compared 

in Figure 5.15.  One can notice a close agreement between values predicted from the numerial 

model and the experimental values.  
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Figure 5.16: Variation of deflection amplitudes A1 from numerical model and experiment with 

pressure P1 

 

Deflection amplitudes are plotted against pressure laoding in order to observe the effect of 

loading. Figure 5.16 shows variation of amplitude A1 found from the numerical model with the 

fluid pressure from the experiment. It can be observed that the deflection amplitudes increase 

with increase in loading on the microantilever.  
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Figure 5.17: Comparison of deflection amplitudes A2 from numerical model and experiment and 

variation of pressure P2 with frequency 

 

Similarly, deflection amplitudes A2 are compared with those from the experiment.  Also, Figure 
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Hence, considering four modes, the accuracy of the first mode is quite good while the other three 

modes may not be as accurate, is believed to be reasonable.   

 

Figure 5.18: Variation of deflection amplitudes A2 from numerical model and 

experiment with pressure 

 

Figure 5.18 shows variation of amplitude A2 found from the numerical model with the fluid 

pressure from the experiment. The deflection amplitudes can be seen to be increasing with the 

pressure loading as in the previous case.  
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5.4 Parametric Study on the Dynamics of microcantilever  

Dynamics of a microcantilever can predominantly depend upon its shape and size. It can have 

various shapes such as rectangular, double legged or triangular with different aspect ratios. 

Different sizes of the micro cantilevers can have different sensitivities to the fluid loading while 

using them in sensing applications.  

In this section, a parametric study is presented with different aspect ratios of rectangular 

micrcantilevers made of PVDF, subjected to a certain set of fluid loading and excitation 

frequency obtained using the experimental set up described in section 5.1. In a similar way, two 

deflection amplitudes are obtained using numerical model in order to analyze the effect of aspect 

ratio on the dynamic deflection of the microcantilever subjected to two harmonic frequencies of 

fluid loading. Table 5.3 shows widths and lengths chosen for the parametric study and 

corresponding aspect ratios. Thickness of the beam is 28 micron in all the cases.  

 

Table 5.3: Geometrical parameters chosen for parametric study 

 

 

 

 

 

 

 

 

 

 

Width (mm) 

w 

Length (mm) L 

2.5 5 7.5 10 

 Aspect ratio (L/w) 

0.5 5 10 15 20 

1 2.5 5 7.5 10 

2 1.25 2.5 3.75 5 

4 0.625 1.25 1.875 2.5 
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Table 5.4 shows values of pressure loading and excitation frequencies chosen for the paraemtric 

study.  

Table 5.4: Pressure loading and excitation frequencies used in parametric study 

 

 

 

 

 

5.4.1 Results and Discussion 

The results are obtained for the tip displacement of the microcantilever having different widths 

and lengths. The idea of presenting parametric study is to determine the deflection amplitudes for 

different dimensions of microcantilever. Deflection response results are presented for each 

combination of width and length of the beam shown in Table 5.3. The results are obtained using 

the numerical model described in Chapter 4.  

Figure 5.19 - Figure 5.22 show frequency repsonse of microcantilevers with width 0.5 mm under 

the action of fluid loading. The lengths of the beam chosen are 2.5 mm, 5 mm, 7.5 mm and 10 

mm. Two peaks can be observed corresponding to excitation freqiencies 0.15 Hz and 1.5 Hz in 

each figure. The increase in deflection amplitudes can be seen with longer beams.  

 

 

 

 

 

 

 Pressure (kPa) Frequency (Hz) 

1 0.01625 0.15 

2 0.0192 1.5 
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Figure 5.19: Tip deflection response of microcantilever 0.5 mm width X 2.5 mm length 

 

Figure 5.20: Tip deflection response of microcantilever 0.5 mm width X 5 mm length 
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Figure 5.21: Tip deflection response of microcantilever 0.5 mm width X 7.5 mm length 

 

Figure 5.22: Tip deflection response of microcantilever 0.5 mm width X 10 mm length 
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Figure 5.23 - Figure 5.26 show deflection amplitudes of microcantilever having width 1 mm 

under the action of fluid loading. 

 

Figure 5.23: Tip deflection response of microcantilever 1 mm width X 2.5 mm length 

 

Figure 5.24: Tip deflection response of microcantilever 1 mm width X 5 mm length 
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Figure 5.25: Tip deflection response of microcantilever 1 mm width X 7.5 mm length 

 

Figure 5.26: Tip deflection response of microcantilever 1 mm width X 10 mm length 
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Figure 5.27 - Figure 5.30 show frequency response of microcantilever with width 2 mm.  

Similar trend can be observed as deflection amplitudes are found to be higher with longer beams. 

 

Figure 5.27: Tip deflection response of microcantilever 2 mm width X 2.5 mm length 

 

 

Figure 5.28: Tip deflection response of microcantilever 2 mm width X 5 mm length  
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Figure 5.29: Tip deflection response of microcantilever 2 mm X 7.5 mm length 

 

 

Figure 5.30: Tip deflection response of microcantilever 2 mm width X 10 mm length  
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Figure 5.31 - Figure 5.34 show frequency response of cantilevers having width 4 mm. Smallest 

amplitudes are observed with smaller lengths while amplitudes increase for longer beams.

 

Figure 5.31: Tip deflection response of microcantilever 4 mm width X 2.5 mm length 

 

 

Figure 5.32: Tip deflection response of microcantilever 4 mm width X 5 mm length 
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Figure 5.33: Tip deflection response of microcantilever 4 mm width X 7.5 length  

 

 

Figure 5.34: Tip deflection response of microcantilever 4 mm width X 10 mm length 
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As seen from above results, the increase in amplitudes is quite significant for lengths higher than 

2.5 mm length.  

Deflection amplitudes are tabulated for their respective lengths and widths.  

 

Table 5.5: Deflection Amplitudes A1 from Parametric study 

 

Table 5.6: Deflection Amplitudes A2 from Parametric study 

 

 

 

Width (mm) Length (mm) 

 2.5 5 7.5 10 

 Amplitude A1 (micron) 

0.5 0.1211 3.877 15.51 65.39 

1 0.1037 2.047 15.55 65.51 

2 0.06397 2.047 15.55 65.51 

4 0.06397 2.047 15.55 65.51 

Width (mm) Length (mm) 

 2.5 5 7.5 10 

 Amplitude A2 (micron) 

0.5 0.1989 6.365 19.38 81.74 

1 0.1376 2.57 19.52 82.32 

2 0.0803 2.57 19.52 82.32 

4 0.0803 2.57 19.52 82.32 
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All above results are  plotted against respective lengths and widths and presented below.  

Two deflection amplitudes are plotted seperately against all the combinations of lengths and 

widths of microcantilever as shown in Figure 5.35- Figure 5.36.  

 

 

 

Figure 5.35: Deflection Amplitude A1 plotted for various combinations of lengths and widths of 

microcantilever  

 

Figure 5.35 shows tip deflection amplitudes A1 for PVDF microcantilever plotted for 16 

combinations of lengths and widths for a certain pressure loading and excitation frequency.  It is 

observed that the amplitudes increase for higher lengths L of microcantielver for a certain width 

w. On the other hand, little variation is observed with the increase in widths of microcantilevers 

at a certain length.  
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Figure 5.36: Deflection Amplitude A2 plotted for various combinations of lengths and widths of 

microcantilever  

 

Similarly, deflection amplitudes A2 are plotted for the combinations of lengths and widths of   

microcantilever in Figure 5.36. Higher deflections can be observed with longer beams.Also, at a 

certain width, the variation of both amplitudes A1 and A2 against the aspect ratio is presented. 

Aspect ratio is defined as the ratio of length to width (L/w) of microcantilever.  

Figure 5.37 shows variation of deflection amplitude A1 with different aspect ratios for different 

widths of microcantilever. Amplitudes are plotted for each aspect ratio corresponding to each 

width. Higher amplitudes are observed for higher aspect ratios.  
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Figure 5.37: Deflection Amplitudes A1 plotted for various aspect ratios for different widths 
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Figure 5.38: Deflection Amplitudes A2 plotted for various aspect ratios for different widths 

 

Similarly, Figure 5.38 shows variation of deflection amplitude A2 with different aspect ratios 
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5.4.2 Non Dimensionalized Amplitudes 

Deflection amplitudes determined in parametric study are non-dimensionalized against 

corresponding fluid pressure loading and stiffness of the beam. Non dimensional parameter X 

has been obtained for each amplitude by dividing it by the ratio of force to respective stiffness. 

Non dimensional amplitudes of A1 and A2 are plotted against aspect ratio for a given width in 

Figure 5.39 - Figure 5.40.  

 Non-Dimensional parameter X is obtained as follows. 

1
1

( / )

A
X

F k


 

2
2

( / )

A
X

F k


 

where A1 and A2 is the deflection amplitudes at ω1 and ω2.  

F is the force due to fluid pressure loading. 

k is the stiffness of the beam. 

3

3EI
k

L


 

Figure 5.39 (a – d) and Figure 5.40 (a – d) show non-dimensionalized amplitudes X1 and X2 

respectively for various aspect ratios at given widths. It provides data on the static and dynamic 

deflection amplitudes of microcantilevers of different aspect ratios vibrating under the action of 

two sets of fluid loading and excitation frequency.  
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Figure 5.39: Non dimensional Amplitudes X1 plotted for various aspect ratios (a)Width=0.5 mm 

(b)Width=1 mm (c)Width=2 mm (d)Width=4 mm 
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Figure 5.40: Non dimensional Amplitudes A2 plotted for various aspect ratios (a)Width=0.5 mm 

(b)Width=1 mm (c)Width=2 mm (d)Width=4 mm 

5 10 15 20
0

0.5

1

1.5

2

2.5

Aspect ratio

N
on

 d
im

en
si

on
al

iz
ed

 A
m

pl
it

ud
e 

X
2

2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Aspect ratio

N
on

 d
im

en
si

on
al

iz
ed

 A
m

pl
it

ud
e 

X
2

1 2 3 4 5
0

0.005

0.01

0.015

0.02

0.025

0.03

Aspect ratio

N
o

n
 d

im
en

si
o

n
al

iz
ed

 A
m

p
li

tu
d

e 
X

2

0.5 1 1.5 2 2.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Aspect ratio

N
on

 d
im

en
si

on
al

iz
ed

 A
m

pl
it

ud
e 

X
2

(c) (d) 

(a) (b) 



87 

 

6 Chapter 6 Conclusion and future work 
 

This chapter concludes the thesis by summarizing the preceding chapters. It also discusses 

applications and future work. The modeling of deflection response of a micro cantilever beam 

has been carried out for the fluid pressure loading and excitation frequency conditions in earlier 

experiments.  

 

6.1 Conclusion 

The main objective of this thesis is to present a numerical model of micro cantilever vibrating 

under the action of fluid loading. The dynamics of the micro cantilever is explored in order to 

understand its behavior under the action of fluid pressure loading. Following is the summary of 

preceding chapters.  

1. Orthogonal polynomials have been created using Gram-Schmidt process and their use has 

been verified to find natural frequencies and mode shapes of cantilever beam and 

clamped plate.  

2. A numerical model is presented using Mode Summation method to determine dynamic 

response of the micro cantilever using Euler Bernoulli equation of motion of beam.  

3. Use of Simulink is presented to solve Euler Bernoulli equation of beam in time domain. 

4. Deflection amplitudes of the beam are determined using Fast Fourier Transform and 

compared with those from earlier experiments.  

5. Parametric study is performed to obtain dynamic deflections of microcantilevers of 

different lengths and widths. Deflections are plotted for different aspect ratios of 
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microcantilevers. Finally, deflection amplitudes are non-dimensionalized with respect to 

cantilever properties and fluid loading.  

Following conclusions can be drawn from the present work.  

1. The thesis describes the method to obtain deflection response of microcantilevers under 

the action of fluid loading. Fluid pressure loading is one of the parameters which affect 

the motion of flexible structures in fluid structure interaction system. It is a complicated 

process to obtain pressure loading in a numerical way for a particular dynamic system.  

The numerical method presented in this thesis serves as a start to the problems involving 

flexible systems encountering different types of fluid pressure loadings. The deflection 

amplitudes of PVDF microcantilever obtained from the numerical method presented in 

this work are compared with those from earlier experiment and they are found in 

agreement with each other.  

2. The results from parametric study reveal that, the deflection amplitudes with longer 

microcantilever are higher as compared to those with shorter ones. On the other hand, the 

deflection amplitudes are slightly reduced for the wider microcantilevers than those with 

shorter widths.  

6.2 Recommendations for future work 

The numerical model offeres flexibility in determining the response of micro cantilever with 

considering added mass and added damping of fluid. The added mass calculated using one of the 

theories can be implemented in the matrix form of the equation and the equation can be solved to 

obtain deflection response using new mass.  
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     [ ] [ ] [ ] [ ]aM M q q K q P      
(6.1) 

 

The model can be extended to explore dynamics of plate. The characteristic orthogonal 

polynomials generated in Chapter 3 can be used to obtain deflection response of plates under the 

action of fluid flow using Mode Summation method. The equation of motion of plate can be 

modeled in a similar way and solved using Simulink.  

Fluid Pressure loading acting on a flexible structure is a crucial parameter for various systems 

while calculating its dynamic response. The kind of loading changes from one system to another.    

In the case of certain dynamic systems such as micropumps, the structural deformation may 

change the boundary conditions of the fluid. This change in fluid pressure is not considered in 

the present work. These changes can be determined with the help of modeling fluid equations 

such as Navier-Stokes equation. This equation has to be solved alongwith structural equation in 

order to obtain changes in fluid pressure in the vicinity of the structure.  
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