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ABSTRACT

Shannon's sampling theorem was Introduced several decades ago to address the
reconstructon of a band-limited signal from uniformly spaced samples. However, sam-
ples are not always equally spaced; In such a case exact reconstrucidon Is not possible
by using the uniform sampling theorem. Therefore, a different approach Is essentlal to
reconstruct a band-llmlted signal from unequally spaced samples. There exist
numerous methods of signal reconstruction when a signal Is glven by a sequence of
unequally spaced samples - varfous Interpolation techniques as applled for band
llmlited slgnals, stgnal transformation methods, schemes for conversion of unequally
spaced samples Into their uniformly distributed counterparts, on-line iterative pro-
cedures and methods of mulirate signal processing. From an extensive review of the
Ilterature, 1t Is evident that convenuonal method use speclal composing funcdon
corresponding tc a glven set of unequally spaced samples; the funcdons are different
for different set of unequally spaced samples. Hence for each set, the correspending
composing functdons have 1w be generated and they may not be well generallzed.
Moreover, the exisung methods have not pald much attenton for larger deviation of

samples from thelir synchronous positions.

In the present study, an efff clent simulation methodology for signal reconstrucion
from unequally spaced samples, using an lterative technlque, Is presented. This tera-
tive technique 1s based on the approach of Plotkin and Swamy (1087). A user-friendly
computer code 1s developed by Implemenung the parttloning scheme for the selecdon
of samples. For the conflrmatlon of newly developed code, prillminary simulatdons
are performed for the same input condlidons as that of Plotkln and Swamy (1987).

Nevertheless, the present study is extended for larger deviadon of samples from thelr
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synchronous positions. It has been proved that the deviations can even exceed the

Nyquist interval.

Determinlstic signals, typlcally slnusoidal waveforms, are consldered for restoring
uniformly spaced samples from unequally sampled data at various sublnterval lengths.
Mean Square Errors (MSE) of the reconstrucied signals are computed and they are
found to decrease with incerease In subinterval length. This algorithm Is also applied
for the reconstruction of random processes (Gaussian or unlformly distributed) from
unequally spaced samples. The lterative procedure I1s implemented both for determinis-
tc and random processes, and the calculated MSE levels decrease with increasing
number of lteratlons. In additdon, the present lteratlve procedure Is extended for the
summation of a deterministic slgnal and a random nolse. Reconstructlons are also

performed for various Signal to Nolse Ratio (SNR).

Recently Marvastt and Analoul, 1989 (MA) developed an lerative adaptive
method for the reconstruction of bandlimited signals. To evaluate the efficlency of the
present study (PS), considerable efforts have been made in simulating all the above
cases by using the method of MA. Reconstructed results are analyzed and compared.
From the comparlsons It Is clear that PS performs better than MA 1n all aspects. More-
over, PS can restore samples for larger deviation from the sychronous positon. The
performance of the PS Is further analyzed by measuring the stabllity of the system.
During the analysis, the sum of determinisdc and random nolse are considered by
varylng the two parameters namely the amplitute of the sinusoldal signal and variance
of the random nolse. It 1s found that the system 1s Insensitive to the variadon in the

input parameters and hence stable.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

Research efforts In signal processing continue to grow, as most of the englneer-
Ing processes can be represented by means of slgnals. In general, the slgnals vary with
time and it can be mathematically expressed as f ( t). where "t" represents an indepen-
dent varlable. Thus f (2) represents the Instantaneous value of the waveform as a
function of this varlable. A slgnal whose Fourler spectrum vanishes outside an inter
val can be easlly realized using a physlcal system, namely, a band-limited filter. Then
the realized signal Is called as a band-limited signal. It can be classified as elther ana-
log or discrete slgnal. Analog signals can be represented by a serles of discrete sam-
ples, each of which represents a value of f(t) at a particular sampling point. One of
the slmplest ways of discretizlng an analog slgnal Is by equally spaced sampling.

Such a type of sampling procedure Is usually called as unlform -~mpling.

Shannon Is one of the ploneers to reconstruct a band-limited slgnal from its unl-
form samples and 1t Is called as Shannon's sampling theorem. It has been later
extended by many authors Into varlous generallzed verslons. One of the simplest ver-
ston 1s: "A conunuous ume signal f(t), band-imited to |w | < W can be recon-
structed from Its equally spaced samples, If the sampling frequency ( f s) 15 at least
equal to the Nyqulst frequency”. Thus to recover the slgnal f(#) which is band-

limited to W Hertz, 1t Is necessary that f, 1s greater than or equal to 2 W. A typleal
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practical example Is the volce signal In telephone systems where the highest frequency
Is approximately equal to 3.3kHz. For the above system, f s 1s chosen as 8kHz even
though the theoritical minimum Is only 6.8 kHz. If the minimum sampling rate is not
met, the spectral components will overlap. In this case, the components of the original
spectrum wlll appear with that of the other components and can not be uniquely deter-

mined. This process is called altasing.

Whittaker E.T (1915) and Whittaker JM (1929) are the first to glve a mathemat-
cal expression for the sampling theorem. Whittaker (1915) derlved an analytical
expression for the function f(t) by knowing its values at equidistant points

a,a4+W,--a4nW, and Is given by

o slnl'rW(t -a - nW
fJW)= ¥y fla+nW) (1.1)

n =-00 -%(t—a—nW)

where f(a +nW) are the values of f(t) and @ s a constant at 1ts equidistant

points. The sampling theorem which uses the cardinal serles s sometimes called as

Whittaker sampling theorem.

Kotelnikov (1833) presented the sampling theorem of the form (Equatlon 1.1)
with applications to Communicatlon Theory In Russlan llterature. Later, Shannon
(1949) formally Introduced sampling theorem to Information Theory based on
Whittaker's mathematical derivaton (Equation 1.1) and statement of Kotelnikov,
which In brief Is known as WKS sampling theorem to represent the works of
Whittakers, Kotelnlkov and Shannon respectively. Shannon sampling theorem

allows the replacement of a contlnuous band-l1imited signal by a discrete sequence of
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Its samples without loss of any information. It also specifies the lowest rate necessary
for the reproduction of the original continuous slgnal. The WKS sampling theorem 1s
primarily used for band-limilted deterministic processes and can be extended for band-

limited random processes.

WKS sampling theorem was further extended in 1957 by K ramer and since then
it Is called as WKSK sampling theorem. Kramer consldered the samples at none-
quidistant values Instead of equidistant values. The WKSK sampling theorem has
many extenslons, such as sampling for the case of N dimenslons, for using derivatlives,
for random processes, for nonequally spaced samples, and for known and unknown
distributions of sampling polnts. An excellent tutorial review of the extenslons can be
found from Jerri (1977). These extenslons are also reviewed In the varlous contexts by
Papoulls (1877a. and 1977b.) and Brown (1981). Papoulls (1877a. and 1977b.) studled
the derlvatlve sampling theorem, by formulating an umlfiled framework in terms of
llnear flltering operation. Brown (1981) Interpreted Papoulls work and showed that

the reconstruction of slgnal can be obtained from Its "generalized samples”.

The followlng section discusses the proof of Shannon's sampling theorem for
band-1imited signals. Errors that occur In physical reallzation of band-llmited signals
are classlfled and discussed In the third section. Even though Shannon's sampling
theorem allows the reconstruction of a band-1imited signal by 1ts dlscrete samples, dur~
ing the process of reconstruction, the samples may deviate from thelr uniform posl-
tlons. To accompllsh the reconstruction of a slgnal from nonequally spaced samples,
"nonuniform sampling theorem” Is presented in the fourth sectlon. The lay out of the

thesls 1s discussed.

DRI 3




1.2 SAMPLING THEOREM FOR BAND-LIMITED SIGNALS

The statement of Shannon for WKS theorem Is glven below (Jerr! 1977):
"If a function f(f) contalns no frequencles higher than W cycles per second It is

completely determined by glving Its ordinates at a serles of polnts spaced 1w
seconds apart”

A signal f (1) can be represented by Its Inverse Fourier transform as follows:

o0
[(t) =2 [Fw)ei!duw (1.2)
2T
For a band-limit of (-2TW, 2TW) the above equation can be rewritten as:
1 2rW
[(t) == [ F(w)e’*'dw (1.3)
2m -2nW

where F'(w) 1s the Fourler spectrum of f(¢) and assumed to have zero value outslde

the band (-27W, 27TW). The Fourler serles expansion of F{w) 1s:

Fw) = § C,,e-wzw (1.4)
fl =-00
where
1 2rW

Jw 2W
" =T 2_!r'wl"'(w)e dw

1 1 2rW jw
=T fF(w)e "W (15)

When ¢ == n2W, C,, can be rewritten as:

1

G =5w/ [ 27;V (1.6)

C,, and f(n/2W) represent respectively the Fourler coefficlent and the sample value of
f (). From Equation (1.8), 1t can be observed that C, 1s propotional to f(n2W)

which in turn depends on F(w). Shannon constructed f(t) by substituting Equations




(1.4) and (1.6) in Equation (1.3). The following sampling series 1s obtained by further

representing the integration as summation.

_ ® n | sinm(2Wt - n)
@)= [f 2W] T Wi — 1) (1.7)

fR=-00

Jerrl (1977) gave a physical Interpretation for the above theorem as shown in Fig.
1.1. A band-limited signal f(Z) and Its Fourder transform F'(w) are shown in Fig.
1.1(a), F'(w) has a zero value outslde the reglon (-2mW, 27TW). Fig. 1.1(b) shows

k(t), the impulse response of an 1deal Low Pass Fliter (LPF) which Is expressed as:

k(t) = -S‘—“frlt”-’?- (18)

K(w) 1s the system function of k(1) with its cut off frequency equal to 27TW. The
continuous signal Is sampled at various ttmes n2W, n =0, =1, =+ 2, *** as shown
in Fg. 1.1(c), then these samples are sucessively applled to the LPF. The output of

the filter Is nothing but the original function, f(¢).

A more generallzed representation for WKS sampling theorem has been intro-
duced by Papoulls (1968). A slgnal f(¢) and Its Fourler transform F'(w) are shown

in Fg. 1.2 (a).

F(w) =ff(t)e‘f“"dt (1.9)
If the slgnal is band-limited by W) then

Fw)=0 for |w| 2W, (1.10)

The generalized representation of Equation (1.7) glven by Papoulls Is as follows:

sin Wy(t—nT)
f(t)—n_z_oof(nﬂ Wit < nl)

(1.11)
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Fig. 1.1: A physical interpretation of Shannon’s sampling expansion,
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where

T
W, = [7,] >W, (1.12)
W, 1s an arbitary constant between W, and (2 W~ W,) such that
W, <W, <2W,- W, (1.13)

and f(nT) are the sampled values with a sample spacing T.

To prove Equation (1.11) we conslder the Fourler inversion formula for f (nT):

W,
f(nT) = -21? [ F(w)e"wdw (1.14)
-,

By expanding F'(w) In the interval (- W,, W,) and using Equation (1.12), f (nT) can

be expressed as:

nT) = F(w)e*Wdw 15
f(nD) 2W T f (w) (1.15)
The above equation can also be expressed In terms of the Fourler coefiiclent, f(nT)
as:
F(w)= E Tf (nT)e~ T for |w] <-— (1.18)
1 =-00

In Fig. 1.2(b), F'*(w) 1s nothing but a periodic repetition of F(w) and therefore Equa-

ton (1.18) can be written as:

Frw)= 33 Tf (nT)e~T

f = -0
— 2 F w+-gl]r2- (1.17)
n =-00

It Py (w) represents the Impulse response of the filter, then F(w) can also be

expressed as:
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Fw)= ¥ Tf(nTe TPy (w) (1.18)

n =-00
The terms on the right hand slde of Equatlons (1.18) and (1.11) can be related as fol-

lows:

sinWy(t—nT)
W,(t-nT)
sinWy(t—nT)
TW,(t-nT) (1.10)

Te"’."T“’Pwo(w)«-—-»

l.e. ,e‘J"TWPWO(w)‘___,
Uslng Equaton (1.12):

sin Wy(t-nT)
n(t-nT)

From the above f(£) can be expressed as:

e‘J’nTwPWO(w)*___’

(1.20)

o0 In Wy(t-
0= § menToro

What follows Is Equation (1.11), which Is obtalned agaln by using Equation (1.12).

(1.21)

(1.11)

o sin W(t—nT)
f(t) _"n wa(nn Wz(t_nﬂ

Equation (1.11) can be further generallzed for a relaxed fliter conditton K(w)

such that:

1 —W, <w <W,
K(w) ={o oW, - W, <w <onW, +W,, ns£0 (1.22)

Mg, 1.3 shows the magnitude response for the relaxed fllter condition. It 1s clear from
the figure that the value of K(w) 1s unity for—- W, < w < W, and 1t 1s zero when

n Is substituted as uniy In the above equation.

With the above relaxed filter condition Equation (1.18) can be written as:

]
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F(w) =F*(w)K(w)
= 3 T (nT)e "MK (w) (1.23)

n=-0
Hence f(#) can be reconstructed trom the sample values f(nT) as:

[(t) = § If (nT)K(¢ - nT) (1.24)

1 =-~00
Thus the above equation also represents an extension of the WKS sampling theorem.

1.3 ERROR ANALYSIS

This section will present a review of the varlous errors that arise In the Implementa-
tion of the sampling theorems. It includes truncation error which results when only a
finite number of samples are used Instead of Infinite number of samples In the sam-
pling representation, the )itter error, caused by the sampling at instants different from
the uniformly distributed sample points, and finally, the round-off error due to the

result of uncertalnity in measuring the amplitude of the samples.

1.3.1 Truncation Error

As discussed in section 1.2, uniform sampling theorem can be used to reconstruct
the original signal from lts samples. Equation (1.7) represents an Infinlte series; how-
ever, conventionally the summation s obtalned by truncating and assuming zero value
after a finite Interval. The truncation error can be further explained by recalling equa-
tlon (1.7).

n
sin27 W( t— ?W)

n
27 W( t- —2-—-W)

[(t) = E S 27;1/] (1.25)

fnl = -00
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With 12W == T the above equatlon can be rewritten as:

o sin%,(t-nT)
f(@)= % f(nD) (1.28)
n =00 l(t_nf')
T
Substituting 7/T=w,
) sinw,(t - n
I () =n =-5__)_%]'(117') wl(lt(— nT)T) (1.27)

where f(nT) is the sample value with Infinite number of samples. If a finlte sum Is

used to reconstruct the slgnal, then Equation (1.27) can be rewritten as:

In(d) N i( T)slnwl(t-—nT)
— n 1.28
N n =E-N wl(t_nn ( )
The truncation error can then be calculated by finding the difference,
en(t) =/ (t) - fn(t) (1.29)

Fig. 1.4 compares the truncation error in the reconsiruction of a signal using
cardinal serles. The results from Brown (1968), Yao and Thomas (1966) and Mendelo-
vicz and Sheiman (1975) are presented respectively as three curves. The method of
Mendelovicz and Sherman uses the generallzed approach of Papoulls (1967) for
energy bounded band-limited functlons. However, Papoulls (1867) considered the trun-
cation error performance of the cardinal serles not only for the band-lmilted energy
bounded signals but also for the band-limited random signals. For the former class of
signals, the absolute value of the error Is calculated at every time Instant whereas for

the latter class of signals, mean squared error Is computed.

The horizontal axis of Flg. 1.4 represents the normalized sampling rate (R)

defined as the ratlo of the sampling frequency (f,) to the operating frequencles ( f o),

——_
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Fig. 1.4: Reconstruction of a band-limited signal
using cardinal series, (Mendelovicz and Sherman, 1975)
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whereas the vertical axis represents the number of samples (N) In an observation Inter-
val. For all the three curves, the number of samples decrease for a certaln range of R
before stabllizing. For example, the third curve which Is the most favourable one
amongst the other curves, where for a value of R = 1, at least 100 samples are
necessary to perform the reconstruction of the signal. By applylng the cardinal seres
this Is the minimum value of N necessary to reconstruct the signal, whereas 1t Is even

higher for the other two methods.

1.3.2 Jitter Error

Second kind of sampling error, namely Jitter error, Is discussed here. According
to WKS sampling theorem, the sample Instants are taken at synchronous positions nT.
In some cases the samples may be shifted from thelr synchronous positions by a
devialton 4, such that:

t, =nT +n~, (1.30)
where 7y, are random numbers. Substututing f, Instead of nT In Equation (1.27),

f (%) can be written as:

()~ g 1t sinw,(t-nT)

iy " w,(t-nT)

00 sinw,(t-nT)
=3 oof (nT+4y,) ROy

(1.31)

Balakrishnan (1963) treated the Jitter error assuming a random model for hoth
determinlstic and stochastic signals. The spectrum of Jttered process [ f (nT + 4, )] 1s

calculated and varlous measures of error due to jJitter are evaluated. An optimal result

Sl o
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for the reconstruction of f(t) using Equation (1.31) has also been presented. Brown
(1964) treated two basic types of Jitter, namely, the read-1n Jitter and read-out Jitter.
When these two types of jitters are equal 1t is known as locked Jitter. Jitter spectrums
are also obtalned for read-in, read-out and locked Jitters. If the actual sarapling time
occurs at {nT + z(nT)} instead of the original sampling time, {nT}, then the data
avallable after sampling are represented by a new function ¢ (nT) as follows:

g(nT) = [[{(nT + z(nD))] (1.32)
In the above equation §(nT) equals f(nT) if there Is no Jitter error in the sampling
time. :t:(nT) in this equation deplcis the Jitter and such Jitter I1s termed as read-1n
Jitter. Thus the motlvatlon of the above process 1s that the sampling 1s done In order to
store data. The stored data may be later used to reconstruct the signal f(t) as

denoted by f (2).

oo
S = 3 k(t- nDg(nD) (1.33)
n =-00
where k(1) 1s the impulse response of the filter. To obtaln f(2), the stored samples
g (nT), are read-out of storage sequentially in the form of narrow pulses by passing
through the fiiter. If the pulses are not read-out of storage exactly, there may be a

second type of Jitter coming into plcture. This is ealled read out Jitter.

Thomas and Liu (1964) have also elaborately lilustrated the followlng example
for the Jitter error. Fig. 1.5 shows the steps Involved In slgnal reconstruction for a real
wide-sense statlonary random process f(t). f(t) Is first sampled at tmes ¢ =t,
and the resulting f(£,) used to construct an estimate f *(t) of the orginal f(¢). In
the figure, f(2,) and f*(f) are respectively the Input and the output of the filter

whose impulse response 1s h(t). Usually the sampled Instants f, are taken to be

— —— T T
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equally spaced (f, == nT). Then the spectrum of the discrete process [f(nT)] 1s
uniquely related to that of the original continuous process [f (t)], If the latter 1s prop-
erly band-lmited. This Is nothing but recovery from uniform samples. When the
tter Is present at the sampler, the samples are taken at ¢, =nT + 4, nstead of nT.
Thus a different discrete process {f(nT +1,)] 1s obtalned as a result of Jittered

sampling.

Instead of equation (1.30) Thomas and Llu also treated the Jittered sampling

Instants as follows:

t, =nT +7, - « (1.34)
where (¢ Is a parameter denoting the phase of the sampling function S(t) relative to
the signal f (%) (-refer Flg. 1.5). They assumed 7, as a discrete wlde-sense statlonary
random process and ¢ as a random variable, uniformly distributed in the observation
Interval. Due to the inclusion of & In the above equation, the estimate f l'(t) Is con-
structed from the Jittered samples [f(nT + 4, — @)] by using h(%) Instead of
[f (nT44,)]. Therefore f*(2) can be written as:

') = § J(nT +7, — a)h(t - nT -, +a) (1.35)

n ==-00

The expected error of such a reconstruction Is estimated as:

E[(f—f‘)2] =E[f2] +E[f‘2] ~2E'[ff"] (1.36)
where F/ 1s the expectation of the respective process. The error will be zero when

[?(t) and f (1) are equal. On the otherhand, the error wlll occur depending upon

two characterstics. One of the characterstics 1s due to the Jitter In time and the other
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due to the selection of h(1).
Papoulls (1966) consldered the delays 7y,, as random numbers and estmated

J(t) from f(nT 4 7,). The estimated f (%) 1s denoted by f;(?) and 1s expressed

as follows:

@ sinw, (¢t ~ nT)
[i(t) = ) ;"‘_,_oof(nT + ’Yn)w (1.37)
The esimated f;(t) differs from [ {(¢) by "Jitter error™, ;(t) as:
e;(t) == [(t) - [;(t) (1.38)

On the otherhand, the difference between the origlnal sample values, f(nT) and

recorded sample values, f (nT +4,) can be calculated as:

6, =f(nT) - f(nT +1,) (1.39)
Then €,(t) can be expressed In terms of 6, as:
) sinw,(t —= nT)
e;(t) = ) ___53_006" o (t=nT) (1.40)

Followlng a similar procedure, Plotkin et al. (1984) classifled the Jitter error Into
two kinds of partial jitters. The first kind of partial Jitter error s due to the difference

in the amplitudes of samples (equally and unequally spaced) and 1t 1s expressed as:

oo sinw,(t-nT)

eJl(t)= E 5n wl(t_n]*)

n = -0

(1.41)

The second kind of partlal jitter is due to the shifting In the composing functions,
while the values of amplitudes f(nT) are supposed to be equal. 'The synchronous

samples (nT) are shifted by 7, in the “sinc” composing functions and the difference
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between the original function and the shifted function Is ejz(t) and defined as:

cin(t) = 5 [sincu,(t-nT) - sincw,(t-nT-,)]

n =-00

o0
=1- 3 sincw,(t-nT-~,) (1.42)
= -00
The compositions of these two Jitter errors may be considered as a total jitter error. In

spite of the fact that the rule of the compositions can not be explicily determined, 1t
can be observed that it f (nT +7,) Is the same as that of f (nT) then §, Is zero In
Equation (1.41) and total Jitter Is only due to second kind of partial Jitter.

e,-(t) =¢€;y(?) (1.43)
On the contrary, If the composing functions $inc w,(t — nT) are placed uniformly at
nT , the second kind of Jitter does not occur and therefore the total jitter error Is due
to the first kind of error only.

ej(t) = eJ-l(t) (1.44)
The error €;(%) In the above equation Is equlvalent to the round-off error which will

be presented and discussed 1n the followlng subsection.

1.3.3 Round-off Error

The round-off error 1s nothing but an amplitude error and !s caused due to the
uncertainity in measuring the amplitude of the sample values. These uncertalnitles will
occur elther In quantization or fluctuation. If the restored values represent f(nT)
instead of f(nT) In Equation (1.27), then the slgnal recovered will have a round-off

error and 1s given by:

0 - slnw, (¢t - nT)

[;()= % [(n]) (1.45)

iy w,(t-nT)
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The difterence In f (nT) and f(nT) 1s:

€, =f(nT) - f(nT)

The round-off error is:

o sinw,(t - nT)

()= 3 ¢,

g oot wy(t - nD)
In Equation (1.45), f,(%) s band-limited and hence e,(%) Is also band-llmited by w;

(1.47)

the bounds for €,(¢) based on the total energy (F, ) Is as follows:

e.(t)

Further Inherent detalls of the above equation can be found 1n Papoulls (1868).

W, L,
< S .
N (1.48)

1.4 SAMPLING THEOREM FOR UNEQUALLY SPACED SAMPLES

A band-limited function f (t) need not be always equally spaced as defined by
uniform sampling theorem. In such a case the exact reconstruction is obvlously not
posslible through the sampling serles and therefore a different approach 1s necessary
for the reconstruction. The theorem that brings the princlple of unequally spaced sam-

ples disttibution Is categorized as nonuniform sampling theorem.

Nonuniform sampling theorem may find applications In varlous practical situa-

tlons. Some examples are:

(1) In moblle communlcation systems, there are several moving wansmitters. They
may generate a sequence Z(n). It Is then up to the receiver (central fixed recelving

station with sufficlent signal processing facllites) to reconstruct the original (n). For

this 1deal situation, the data-rate reduction technique of nonuniform sampling may be
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applicable (Valdhyanadhan and Liu, 1988).
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(2) Sampling strategy may be random for some physical measurements. For example,
wind varles with time and its veloclty records contalu unequally spaced samples. Then
sampling theorem for unequally spaced samples may be applicable for the reconstruc-
ton of the veloclty signal.

(3) Some of the equally spaced samples may be missilng In an observation Interval.
This leads to a nonuniform sample distribution.

(4) In blomedical engineering, ECG (Electocardiogram) and EMG (Electromyogram)
signals are measured 1n human body. Sampling rate of these signals may vary depend-
Ing upon the stress of the human body.

(5) The sensors of a glven array may be allocated In Irregular fixed polnts, then the

collected data falls under the category of nonuniform samples distribution.

In this sectlon only a general review of some of the ex!sting works on signal
reconstruction procedures using unequally spaced samples 1s discussed. However,
based on this general review flve classifications are made. This will include, recon-
struction of a signal from a finlte set of arbitarlly distributed samples, reconstruction
uslng slgnal transformation method, reconstruction based on conversion method,
reconstruction using adaptive method and finally reconstruction from unequally spaced
samples for sequences using multirate signal processing. All these methods wlll be dis-
cussed In detall with lllustratlve examples In the next chapter. In what follows now 1s

the prevlew of slgnal reconstruction procedure from Its unequally spaced data.

Z4. thorough understanding of nonuniform sampling uslng explicit reconstruction
formulas are glven by Yen (1956). This study examined some speclal nonuniform

sampling processes and the results presented In four generallzed theorems. ‘Three
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theorems deal with nonuniform sample distibutlons which possess simple reconstruc-
ton formulas. Theorem 4 dlscusses "minlmum energy signals”. This class of signal is
more sultable for nonuniform sampling 1nvolving a finlte number of sample polnts.
The complexity and accuracy of the reconstruction procedures as well as some impor
tant properties of bandwidth-limited slgnals are deduced from these four theorems.

Further detalls of theses theorems are presented 1n the next chapter.

Garder (1972) extended Yen's (1856) nonuniform sampling procedure to higher
dimenslons. Sankur and Gerhardt (1973) also consldered varlous methods for recon-
strucing a contnuous signal from 15 nonuniform samples. They employed and com-
pared a number of techniques namely, low pass flitering, Spllne Interpolation and
Yen's Interpolation. They observed that even though Yen's method was difficult to

reallze, 1t Is stll] superior In comparison to other methods.

Beutler (1061) presented an approach to nonuniform sampling for wide-sense sta-
tonary random processes and concluded that the sampling times need not be perlodlc
but may vary from Its true periodicity by over 20 percent If the sinec composing func-
ton Is used. Later, In 1966 he proved what Is called "folk theorem™ In the sense that
a signal f (1) may be represented by any linear comblnation of lrregularly spaced
samples f(%,), provided that the average sampling rate exceeds the Nyquist rate. This
means that the number of samples per unlt Hme exceed (on the average) twice the

highest frequency of the signal.

By following the technique of Beutler (1861), Yao and Thomas (1968) derived

sampling representation for band-1imlted functdons when the sampling instants are not

o Ead e o

Bl o i
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necessarlly uniformly spaced but deviate less than 0.22 from 1ts Nyquist Instant as
required by WKS sampling theorem. They termed this as "seml-uniform” distribution
and used the nonharmonic Fourler serles for its derivations. Fipally they remarked that
sample representation 1s not possible when all the sampling instants are allowed to
space ponuniformly by 25 percent from their corresponding Nyquist Instant, It s
found also that the true reconstruction 1s not possible if sample Instants are placed

arbitarily or If addltional sample Instants are added.

Many procedures are developed based on the signal transformation method, such
as tme-wrapping and amplitude modulation techniques. Papoulis (1868) considered
the time-warping technlque as applied for unequally spaced samples. The positions of
the samples are supposed to devlate by U, from thelr synchronous posltions nT. Then
a new set of sample positions will be formed at nT- K, . This creates the problem of
determining f (%) In terms of f(nT — p.). Instead of the orlglnal sample values
f(nT). In such a case the samples nT — p,, are transformed Into the polnts of nT.

This transformation Is called as the time-warping technlque.

The second transformation method 1s the amplitue modulatdon technique. Plotkin
and coworkers (1982 and 1984) used thls technique for producing a sample whenever
tae Integral of the modulatlng function crosses a threshold level by using a Level
Crossing Detector (LCD) and thus LCD was used as a nonuniform sampler for this
technique. They lllustrated the concept of signal reconstruction by a numerical exam-
ple. 1'wo posslble applications for employlng this technlque are identified namely as

asynchrcnous Pulse Position Modulatiuon (PPM) and signal approximation.
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One of the problems In Yen's reconstruction procedure Is the use of a speclal
composing function. For each set of samples, the composing function may posses
different forms. Hence for each set of sampling polnts, a set of composing function
has to be generated and It may not be well generallzed. To overcome this problem
Dunlop and Phillps (1974) described a conversion method using nonuniform samples.
The uniform samples are obtalned from nonunifrom samples by solving a set of simul-
taneous equations and this technlque is discussed in detall 1n the next chapter. The
method of obtalning uniform samples from nonuniform samples Is called direct recon-
struction procedure and by this procedure perfect reconstruction is not always possi-
ble. To reduce the error an Iteratlve procedure has been suggested by Plotkin and
Swamy (1987). This work forms primary Interest of this thesis and 1t will be 1nvest-

gated 1n depth later.

In 1076, Marvastl and Gerhardt gave a practical treatment for slgnal transmisslon
uslng nonuniform sampling. Thelr recent work (Marvasti and Analoul, 1989) showed
that the iterative procedure can also be implemented based on Sandberg's theorem
(1963) which Is baslcally an extenslon of the work of Wiley (1877 and 1978) and
Marvast! (1986). The above procedure Is also called adaptive method. The Iterative
procedures of Plotkiln and Swamy (1987) and Marvastd and Analoul (1989) are
observed to be the simplest for signal reconstruction using the "slnc” composing func-

tlon.

A speclal class of nonuniform sampling procedure Is related to the so called
multichannel slgnal processing. The derlvative sampling theorem and nonuniform sam-

pling theorem are glven a new lucld interpretation by Papoulls (1977 a). Later Brown
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(1981) relnterpreted the framework of Papoulls and showed the reconstruction of a
slgnal 1s possible from it generalized samples. Recently Valdhyanadhan and Liu
(1988) applled the idea of multichannel sampling to multirate slgnal processing. They
explolted the analogy between sampling theorem framework and multirate fllter bands.
The multirate processing Involved the downsampling of sequences at various stages

and subsequently reconstruction of the signal.

1.5 THESIS ORGANIZATION

The thesls Is divided into seven chapters. Chapter 2 will discuss, In detall, the
various procedures for the reconstruction of a band-limited slgnal from unequally
spaced data. It will also dlscuss the objectives of the present study. In chapter 3, a
simulatlon methodology using an lterative procedure Is presented. A computer code Is
developed for the reconstruction of a band-limited signal and chapter 4 will discuss
the detalls of the computer algorithm. Varlous interesting simulations have been per
formed for the deterministic processes and the results are presented under two subdivi-
sions, one dealing with the reconstruction of slne waves, and the other with the recon-
struction of a deterministic slgnal given by sum of slne waves. The present computer
code Is extended In chapter 5 to verify the reconstruction technique for a random pro-
cess. The results are discussed under four sections namely, generation of a random
process; reconstruction from unequally spaced samples of a random process; recon-
struction of a deterministic signal In the presence of a random nolse; and statistical
analysls of the computed errors. To evaluate the performance of the present lterative

procedure, simulatlons are also carried out for all the above cases by applylng the
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algorithm of Marvastl and Analoul (1989) and the results compared.

Chapter 6 1s dedicated to an examination of ihe stabllity of the system for
changes 1n the Input parameters. The amplitude of the sinusold waveform and the vari-
ance of a random nolse are varied and thelr effects on the system output studled. The

concluding chapter summaries the varlous findings « - .ie present research work.
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CHAPTER 2

SIGNAL RECOVERY FROM UNEQUALLY SPACED SAMPLES

A review of the existing research In slgnal recovery from unequally spaced sam-
ples Is presented In this chapter. Particular emphasls Is given for band-limited signals
as thls forms the basls of the present study. The need for further study Is analyzed
and Justified based on the review of the exlsting works. Thus thls chapter comprises
two sectlons. First section has flve subdivisions. The first subdivislon discusses the
classical theory of Yen (1056) using a finlte set of arbitarlly distibuted sample polnts.
Second subdivision discusses the reconstruction of a slgnal based on slgnal transfor
mation method and contalns two techniques namely, tme modulation technique of
Papoults (19686) and amplitude modulation technique of Plotkin and coworkers (1982
and 1984). The third subdivision deals with the conversilon method of Dunlop and Phi-
Hips (1974). Fourth subdivision discusses the adaptive method of Marvasti and
Analoul (1989) and the final subdivision discusses the mulurate technique of Brown

(1081), and Valdhyanadhan and Liu (1988).

2.1 A REVIEW OF THE EXISTING RESEARCH

As discussed in the previous chapter, the WKS sampling theorem for signal
reconstructlon assumes uniform sample distibution as follows:

f)= 2 f(kat)sincw,,(t-kA) (2.1)

k =-00
However a baslc problem tn many slgnal processing applicatlons is the reconstruction

of a band-limited signal f(t), from its unequally spaced samples {#}. If f(#) Is

employed 1n Equaton (2.1) Instead of f(kAl) the sampling serles Is:
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0= 5 JWsincwn(t =) # IO (22)
=-00

where sincw,;(¢-£) Is called the composing function for the sample polnts #. Note,
that In this expresslon, the composing function becomes nonorthogonal and thus recon-
structed signal, f(¢) will differ from Its original signal, f(t). In otherwords, the distor-
tlons 1n f(¢) wlll depend upon the distribution of the sampling polnts, {t,} for thelr
deviation from the corresponding synchronous posltdons, {kAt}. Thus the nonequally
spaced samples can be convenlently presented as a shifted verslon of the synchronous
positions as follows:

h =kab + 2y (2.3)
where A, 's are random varlables.

Varlous methods have been proposed to avold the distortions In f (). One of the
methods Is to compute a speclal composing function Instead of stncw,,(t — #) and
then perform the reconstruction wlithout aistortions. The computed special composing
function 1s an Infinite product based on the distribution of the sampling points. Yen
(1956) performed a typical reconstruction procedure from a finite set of arbitarlly dis-
tributed samples, using the Lagranges interpolation function. This Is discussed In the

following subdivision.

2.1.1 Reconstruction of Signal from a Finite Set of Arbitarily Distributed Samples
(Interpolation of Band-limited Signals)

One o! the early studles In nonuniform sampling for band-llmited signal 1s cdue to
Yen (1956). He summarized the maln results under four generalized sampling
theorems contalning slmple reconstructicn formulas. One of the simplest methods to
lustrate the sequence of unequally spaced samples s to form the migration of finlte

number of uniformly distributed samples. This Is stated In Theorem 1 as follows:
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Theorem 1: *’If a finlte number of uniform sample points In a uniform distribution are
migrated to new distinct positions thus forming a new distribution then, the band-
width !lmited signal 1s uniquely defined."’

‘When the number of shifted uniform sample polnts Increases without bound, Theorem
1 Is no longer valld. The resulting sample polint disibution may or may not allow the

unique determination of the signal. For such a distribution the following theorem
holds.

Theorem 2: ‘‘It Involves the shifting of half the uniform sample polnts, say all those
with { > 0, by an equal amount with respect to the rest.’’

Another simple spacing of nonunlform samples 1s the recurrent nonuniform dis-
tribution as described In Theorem 3. For the recurrent nonuniform distribution, sample
polnts are divided Into different groups of N polnts. The groups have recurrent period
of N2W seconds, where W cps Is the band-limit of the signal. Yen determined the
signal f(t) unlquely and reconstructed 1t In terms of its values at ¢t =&, + (mV /

2W), p =1,2,+,N and m = -,~1,0,1, as follows:

Theorem 3: **A band-limited signal is uniquely determined by its values at a set of
recurrent sample points t =7,,, =, + (MN2W), p = 1,2, N; m =-,-1,01,".

Theorem 4 addresses the reconstuction of a signal from a finlte set of arbltarly
distibuted samples. A band-limited signal f(t) can be reconstructed from a finlte set
of arbitarlly distributed sample polints { == Ty and p can vary from 1,2,,N under the
condition of minlmum energy slgnal. Then the reconstructon can be deflned as fol-
lows:

N
J(y= 3 f(7,) ¥,(1) (2.4)

p =1
where

v (! N1 sln21rH'(t—r°)
’()——vz;la” 2nWi(t-1,)
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a,, are the coefliclents of the Inverse matrix whose elements are glven by:

99

sin2w W(r,-7,)
a
@ 2r W(r,-7,)

(2.8)

The right hand side of Equation (2.5) Is a product of two sinc functions and
hence become more and more complicated as the sample polnts deviate more and
more from thelr uniform positions. This Is due to the fact that for a nonuniform distrl-
butlon, the composing functions no longer vosses the same form. In otherwords, these
functlons differ for each set of sample points and hence have to be regenerated for

every data-block. Thus the functions are complicated to reallze.

2.1.2 Reconstruction Procedure Based on Signal Transformation Method
(2) Time-warping Technique

Usually In sampling theory, a slgnal f(t) Is sensed from 1ts sampled values f(nT).
But In real applications the sampled numbers are obtalned with some deviatlons, u,.
Problem arises in reconstructing f(t) from the deviated sample values f(nT-u,).
Papoulls (1968) consldered this devlation as Umlng errors In the recovery mechanlsm
and presented some excellent observations using the time warplng technlque which 1s

discussed below.

Assuming the delays p, are known numbers, he developed a method for deter
mining f(t) from f(nT-ux,). To reconstruct the signal f(t), conslder a band-limited
signal 6(7):

0(r) = § Py StNCW g (T—0T) (2.7)

n=-00

where
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#y =0(nT) (2.8)

Flg. 2.1 shows the transformation of X and Y-axes. (¢) Is a nonlinear function
that determlnes the relatlonship between these two axes and can be expressed as:

7 =t) (2.9)

Suppose ~(t) =1, then 7 on the Y-axls Is transformed Into 7 on the X-axis. When

~(t) #1, 7 10 Y-axls Is transformed into ¢ in X-axls which can be mathematically

expressed as:
t =r-0(7) (2.10)

If1=nT then t =nT - §(nT) =nT - p, (2.11)

Implementing the above principle of nonlinear transformation of the axls, f(t) Is

reconstructed from f (nT-pu,). Using Equation (2.10), f(t) can be expressed as:

1w =i[r- o) (12)
Calling f(t) by a new function ¢(7):
g(n=f|r- 0(7)] (2.13)
When 1t Is band-limited by w,,, then by sampling serles:
w .
g(n)= Y, g(nTsincw,(r-nT) (2.14)
n=-0

Using Equation (2.9), the above equation can be rewritlen as:

g[q(t)] = § g(nTsincw,, [*,(t) - nd (2.15)

. =-00
Substituting 7 = nT and using Equation (2.8), Equation (2.13) can be rewritien as:
g(nT)=f(nT - p,) (2.16)

Substtuting this value of g(nT) Into Equatlon (2.15):



(.
c

3NIL 03dVIM

(Papoulis, 19686)

axis,

. 2.1: Non-linear transformation of
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Hl =3 T-p,)sincw, [A(t) - 2.17
o[x0] = £ 11 einew, [x0) - o1 (217)
Since ¢(7) Is nothing but f(t); the reconstructed function Is:

[0 = 8 [T up)sincuop [t) - n1] (2.8)

To derive the boundaries for the Jitter error, conslder F(w) as the Fourler
transform of the signal f(t). Let the first order moment of F'(w) be deflned as:

W

M, = % Jw|P(w)]dw (2.10)
0

According to Papoulls (1962 a.), for any ¢, and ¢, in f(t),

[/(t) = [(t)]| = M|t - t;] (2.20)

Applying the above expression In Equation (1.39), it can be concluded that:

16nl =1/ (rT) = f(nT = pa)| < M, |u, | (2:21)
Let u, be a random variable having zero mean such that:

E{p,} =0 (2.22)
where E corresponds to the mathematical expectation. The variance Is expressed as:

E{y3} =0’ (2.23)

In Equation (2.21), for a glven n, 6, depends only upon u,. Hence, 6, 1s also
Independent and its mean and variance can be expressed respectively as:

E{s?} < Mo (2.24)

Having known the E{é,",’}, Papoulls (1966) derived an expression for the expectation

of e}(t) as follows:

00 2 -
E{C;"U)} — P EeY sin‘w,,(t - nT)

n=-0 W,Qn(t - nT)

This 1s the boundary conditon for e,(t).

IA

M?o? (2.25)



-34-

(b) Amplitude Modulation Technique

Plotkin and coworkers (1882 and 1984) presented a modulation technique to
reconstruct a slgnal from nonequally spaced samples such that the distortions 1n the
reconstructed signal are minimized (Equation 1.37). Conslder a modulated signal z(t)

band-limited to the frequency range |w| <w,, given by:

z(t) =y(t)z(t)

== % z(tk)sincwm(t - tk) (2.26)
k=o0

z(t) is a signal whose values z(f,) are glven at a set of nonequally spaced sample
points, {#;} which are known aprior. The function y(t) In the above equation ls
called a "correction function™ and the problem of reconstructlon of x(t) Is now reduced
to the problem of finding this correction function. Hence the reconstructed s!gnal
becomes:

z(t) =y} (t)2(t) (2.27)
It Is clear from the above equation that y(t) has to be a positive, single valued func-
tlon. Plotkin and coworkers (1982) have presented the steps Involved In finding y(t)

based on a knowledge of the spacing of sample polnts {Z }.

The parameters used for the modulation technique 1s shown 1n Fig. 2.2 which Is
taken from Plotkin et al. (1982). X-ax!s represents a set of nonequally spaced sam-
pling tmes, {¢ }. This set of {¢} may be transformed Into uniformly distributed lev-
els 4, on the Y-axls depending upon the characterstic of modulating functon y(t). v
s the tme-average value of the modulaing function In the Interval (0,T) and Is

deflned as:

T
7 =-}7:fy(t)dt (2.28)
Q

A and Ay are respecively the distance between two ad)acent levels on the X and
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= y(t)

a¥ { ; y(t)=1

)

Fig. 2.2: Geometric illustration of L.CD, operating to derive
nonunif orm sampling points, (Plotkin et al., 1982)



Y-axes. They are expressed as:

An estimate for z(t) Is represented as #(¢) and can be expressed as follows:

2(t) =7 % z( &) sincw,, (t-4) (2.31)
k=0

Thls estimated function, #(i), Is represented In terms of unequally spaced sample

Instants {¢ } and the modulating functon y(t).

Recail that Equation (2.3) for unequally spaced sample Instants #

tk '—_-k At +Ak (2.3)
where kAf and A are respectively the uniform sample position and random value at
kth Instant. Once -, levels and #, instants are known, the function y(¢) can be found
and used for determining £(¢) as follows:

£(t) = y'(i)4(¢) (2.32)
By using Equation (2.31):

3 2(l)sincwnm(t - 4)

- k=0
i(t)y=y
y(t)
In the above equation, "Z"” emphasizes that thls procedure Is obtalned with a certaln

(2.33)

error in the reconstruction due to the approximation in finding the function y(t).

If y(t) =1 In Fig 2.2, then the nonuniform sampling is reduced to uniform sam-
pling and therefore Equation (2.3) reduces to:
tk =’€At (2.34)

Then the Equation (2.31) can be modified as:

i(t) = g‘ r(kAt)sincw,,(t — kat) = z(t) (2.35)
k=0




- 37 -

Note that ¥ =1 when y(¢) = 1. For this case £(¢) Is exactly equal to the original sig-
nal z(t).

A practical Implementation of Equation (2.31) Is shown in Fig. 2.3, which Is also
taken from Plotkin and coworkers (1082). 6(¢ - ;) Is due to the reallzation of the
source modulating function y(t). z(# ) represents the value of unequally spaced
sampling Instants for the set {,}, and w,, Is the cut-off frequency of Low Pass Filter
(LPF). The nonuniform sampler Is basically a Level Crossing Detector (LCD), a dev-
1ce conslsting of a number of uniformly spaced levels. A single sample s taken when-
ever the Input to the LCD crosses a threshold level. The above mentioned procedure
may be defined as an asynchronous Pulse Position Modulation (PPM), because the
sequence §(i-# ) Is due to the reallzation of the source modulating function using
the nonuniform sampling procedure, LCD. An extenslon of the above work has been
published 1n Plotkin et al. (1984). In Equation (2.31), when ¥ takes a value other than
unity, 1t can not be reduced as Equation (2.35) and therefore expressed as:

2(t) ~F-4(t)

y(tyz(t) =y-£(t) (2.38)
Note that In the Equation (2.38), the left hard slde 1s approximately equal to the right

hand side and therefore the above relzdon can be equated by introducing a new factor

Z(t) as:
y(8)2(t) =y-£(t) (2.37)
Thus
——--f-(_t.l 0
£(t) =y ") (2.38)

£(t) In Equation {2.38) can be found by using Fig. 2.4 which lllustrates the vari-
ous Involved steps. An ldeal LPF with Input of unequally spaced samples z(/;) Is

used to get £(t). The bottom branch 1s used to find a distribution function, y(t).
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It consists of a rectifier, a hard llmiter and a soft llmlter. By inputiing y(¢) and £(¢)
into a divider, £(¢) can be obtained. Further detalls consldering the deslgn of the vanl-

ous components can be found 1n Plotkin and coworkers (1984).

The efficlency of th!, amplitude modulation technique depends on the deviation
of the sample polnts {# } from thelr synchronous positions {kAf}. They have shown
that an Increase In sampling ttme deviations from their synchronous positions
decreases the efficlency of the method. However these deviations should not exceed

AL 2.

2.1.3 Reconstructio Procedure NRased on Conversion Method

Yen's (1956) reconstruction procedure uses speclal composing functions In the
Fourler serles expansion (-refer to Equation 2.4); these are dificult to reallze. To
overcome thls problem different methods have been suggested and one of the methods
utilizes the sinc function. This method Is developed by Dunlop and Ph'llps (i274).
Durlng the reconstruction procedure, nonuniforn samples are converted into “mniform
samples based on the 1mpulse response of a fliter and thls approach Is named as the
converslon method. The converslon method Is otherwlse called as direct method,
because nonuniform samples are first used to reconstruct a set of uniform samples and

these samples are then used for reconstruction of the signal itself,

Conslder a slgnal f(!), band-limited to W Hz. It can be recovered from Its
amplitude samples which are spaced at Intervals 1/2W sec. or less. Then the relation

can be expressed as:

J()y= 3 A(n) (2.39)
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where A(1), A(2), - A(n) are the values of the samples. Equation (2.39) shows that
the slgnal f(¢) can be recovered from 1ts samples by multiplylng each sample by a

general sine function and summing these products over all time.

It Is evident from Equation (2.39) that the original function f(¢) can be obtalned
completely from the uniform samples A(n) taken at ime ¢t = n 2W However If the
samples are not taken at equal Intervals of tme, then the nonuniform samples occur.
The knowledge of these nonuniform samples should be sufficlent to calculate the uni-
form samples A(n). Let b(m) represent a sample at ttme 7,,. These samples would

then enable the samples A(n) to be obtalned from the followlng expression:

sln{27rW{rm - —22147 }

b(m) = § A(n) (2.40)
n=me or W r, — _n_)
mooeWw

All the A(n) values then would determine f(t) using Equation (2.39).

The right hand side of Equations (2.9 and 2.40) are Infinite serles. A(n) values
thus persists for all ume and thls must be included In the expression to ind f(¢) In
Equation (2.39). In order to render a feasible calculation 1t 1s necessary to lmit the
number of simultaneous equattons. Conslder a reglon of ume 7,, and suppose f(t¢) has
to be determlned at this reglon of time then A(n) values had 1o be determined first
uslng the nonuniform samples b(m). A finite number of samples A(n) In 7, reglon
determines f(¢). Thls can be easlly lmplemented by truncating "sinw!/ wt' and
assuming zero alter a finlte time. The error 1s well pronounced If the number of equa-

tions 1s small.

If the Infinlte serles on the right hand side of the Equation (2.40) is truncated
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wlith a finlte number say for example five, then 1t can be reconstructed as:

. sln{21rW[rm - -;nv—‘-/l}
b(m)= Y3 A(n) (2.41)
n=t oW, - ——
2W

There are two kinds of errors arising due to the practical implementation of this

scheme. The first kind of error Is the truncation error and the second kind of error
arises due to the lll-conditioning of the matrix that may arise during the conversion.
When the nonuniform samples are converted Into unlform samples, the inverse matrix
may take a value zero and create ill-conditioning. Hence a high degree of preclsion Is
necesssary to avold the occurence of lll-conditioning. These errors l1mit the practical

implementation of the above method.

2.1.4 Iterative Adaptive Method

Marvastl and Analowl (1889) derived an algorithm extending the work of
Wiley(19877). This method uses an Iterative algorithm to reconstruct a band-limited
signal from unequally spaced samples. The recovered uniform samples of the current
Iteration are used for simulating uniform samples In next Iteration and therefore called
fterative adaptive method. The procedure 1s also apolled for other nonuniform sam-

pling like, natural samples and sampled and held version.

Conslder a source function f,(t) as:

fa(t) =Z .’( ti) 6(t - ti) (2‘42)

i
where f(f;) Is the value of the unequally spaced samples at {t;}. Then the following
iterative algorithm Is Implemented such that the original band-limited finite energy sig-

nal f(t)1s recovered from Its nth Iteration value.

B s s o o e e
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J(t) = Lt f,(¢) (2.43)

n~00
where Lt is the 1imit of number of iterations and when 1t tends to oo, the recovered
signal lles very close to the original signal, f(¢). The nth lterative value f,(¢) can be

related with that of (n 4+ 1) Iteration as follows:
Jau(2) =XP,S,[(t) +(Py - A\P,S,)/f,(t) (2.44)

The value of A 1s properly determined depending upon the constant values k, and k,

and deflned as:

A =—% (2.45)
The value of A\ 1s chosen based on the range of convergence satlsfylng some criteria.
These criterla are obtalned from experimental results and can be Inferred from Mar
vast! and Analou! (1989). P, and S, are operators for band-1imitng and 1deal nonuni-
form sampling respectively. P,S,f(t) in Equation (2.44) Is the nonuniform sample
output from a low pass fllter. For example, the 1st and 2nd lteratlon functions are

obtalned as follows:

1) =22P.S S (0

1) == |PrS, 1 (0~ SE2P2SEL )] + 25 (P18, () (2.46)

The Mean Squared Error (MSE) Is calculated durlng each lteration and been used as
the Index of convergence. A significant reduction in error can be obtained only when
an appropriate value for A\ In Equatlon (2.45) Is chosen. The selected value of A

Influences the convergence criterion of the lteratlve process.

Equation (2.44) holds good only for a small range of devallon of nonuniforra
sample points from thelr synchronous posttons. Also from Equatlon (2.45) 1t Is clear
that the constant factor, A, has to be properly chosen 1n order to reduce the MSE level.

In otherwords, proper attention s needed in selecting the value of real posiuve
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constants namely k, and k,. However, 1t Is obvlous that the method does not Involve
00 much computational complexity and also practically easy to lmplement. Moreover,
the present study as well, as this method, implements the lterative scheme using sinc
functions. Hence, various Interesting simulations are also performed by using MA

method and the results compared with that of the present study.

2.1.5 Nonuniform Sampling for Sequences Using Multirate Signal Processing

Muldrate digital signal processing Is basically concerned with problems in which
more than one sampling rate 1s required, and 1t Is especlally an Important criterion In
digital ransmisslon systems where data are transmitted at various sampling rates. The
multirate sampling can occur In the form of decimation or Interpolation of a dlscrete
sequence; the process of lowering the sampling rate 1s called decimation and the pro-
cess of ralsing the sampling rate Is called an interpolation. Thus multirate sampling

can be analogous to the occurence of "nonuniform sampling”.

The derlvative sampling theorem and nonuniform sampling theorem are given a
new lucld Interpretation in the work of Papoulis (1977 a) where a unlfled framework
Is formulated In terms of linear flltering operation prior to sampling. Brown (1981)
relnterpreted the work of Papoulls and showed that reconstruction Is possiblie from its

“generallzed samples”.

Recently, the principle of multirate slgnal processing has been applled by
Valdhyanadhan and Llu (1988 a). Further underlylng steps of this technlque Is also
discussed In Valdhyanadhan (1688 b). A discrete verslon of a band-llmited slgnal

lw [ <2r/3 1s consldered for lustrative purpose. The Fourler transform of thls
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Fig. 2.5: A typical case for data-rate reduction, (Vaidhyanadhan and
Liu, 1988)
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sequence Is shown In Fig. 2.5 (a) and the steps Involved In reconstructing z(n) are
shown in Fig. 2.5 (b). First, the signal rate !s Increased by a factor of 2 and this can
be easlly Implemented by Inserting a zero valued sample between every two adjacent
samples of z(n). Itis then filtered t ensure that the Image created by this zero inser
tion Is ellminated. The resultant of this operation is z,(n) and it is further decimated
by a factor of 3 without causing allaslng. The Fourler transforms as a result of the
first and second operations are shown in Fig. 2.5 (c) respectively as Xl(cj“) and
Xz(ef“’). The Fourler spectrum of z,(n) Is same as that of X(e'¥) except that 1t 1s

streched by a factor of 3/2 due to data-reduction.

The above process Is called "data-rate” reduction technigque and it can not only be
performed this way but also achleved by dropping one out of every three samples of
z(n) which Is stated by Valdhyanadhan and Liu (1688 a) as:

"Let z(n) be a sequence band-limited o |w| < (L /M ) m where L and M are
integers and L < M and consldering that time axls 1s divided Into Intervals of M, It
ought to be able to retaln L out of M samples In each of these Intervals and discard
the rest”.

The followlng procedure Is Implemented to accomplish the result using a polyphase
filter bank framework for the same example (Fig. 2.5). The selected design values are
M =3 and L. =2. They considered a real sequence r(n) of finlte length. Due to thls
finlte length, X(c’“) the Fourler transform of z(n) is band-limited to |w|<2 73. A
lnear phase Low Pass Fliter (LPF) and a llnear phase Finlte Impulse Response (FIR)
filter are used during the reconstruction. By the suggested technique they proved that
the Fourier transform of the reconstructed sequence, that Is X(ej“’), lles very close to

the original Fourler spectrum X ej“’). However 1t s necessary to pay attention In

deslgning filters to reconstruct X(e/“) accurately.
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2.2 JUSTIFICATIONS OF THE PRESENT STUDY

It 1s evident from the existing literature that the main disadvantage of the classl-
cal method Is that a set of speclal composing functions 1s necessary for signal recon-
struction. In otherwords, a new speclal composing function has to be constructed for
every possible pattern of unequally spaced samples. For example, the reconstruction
procedure considered by Yen (1958) uses interpolation technique and 1t Is evident that
this method Incorporates multiplication of two sinc functons. Secondly, most of the
ex!isting methods do not pay much attention for larger deviation of samples from thelr

synchronous positions.

The present study Is malnly focussed to overcome the above two disadvantages.
As a part of the current research a simulation methodology Is presented and dlscussed
for the signal reconstruction from unequally spaced samples uslng Iteratlve technlque.
The study of Plotkin and Swamy (1987) Is used as the basls for this thesls. Thus prel-
Iminary slmulations have been carried out with the same input parameters as those of

Plotkin and Swamy (1987).

The present algorithm s also extended for larger deviatdons of the sampling
Instants {f} from thelr synchronous positions. It s proved that this deviaton could
exceed the Nyqulst space glven by « /wm up to 150 percent. Signals are reconstructed
for varlous subinterval lengths and the calculated errors are found to decrease with

increasing sublinterval length.

Secondly, the present iteralve procedure Is applled to random processes. Ran-
dom uniform and Gaussian distibuldons are taken as the test slgnals under analysls.
By proceeding one step further, the proposed procedure 1s also treated for varfous Sig-

nal to Nolse Ratlo’s (SNR) by consldering the deterministc sinusoldal signal 1n the
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presence of a random nolse. In all cases, SNR's typlcally representing -10 db., O db.,
and 10 db., are consldered and errors are calculated and compared. Since the gen-
erated random pumbers vary from trial to trial, thelr statistical functions namely mean

and standard deviation, are also studied.

In the lterature, many lnnovative techniques have been proposed for slgnal
reconstruction and each technique has its own limitations. It s common to use stablity
as an Index of the performance of the system developed. Sankur and Gerhardt (1873)
defined stabllity as: ‘‘the insensitiveness for the sample migration’’. Present study

also analyzes the stablllty criterlon based on Sankur and Gerhardt's (1973) approach.

The proposed methodology uses lterative techniques to recover signals from
unequally spaced data. As mentloned In the previous sectlon, Marvastl and Analoul
(1089) also use an iterative method for reconstructing a band-limited signal. To evalu-
ate the efiiclency and establish the superiority of the proposed method, considerable
amount of effort has been made In simulating the varlous cases discussed above.
From this study 1t Is clear that the present procedure 1s not only better In mean
squared error performance, but also 1t 1s proved that the current algorithm works for
larger deviatlons of samples In comparison to the method of Marvasti and Analoul

(1988).

e e . - -



CHAPTER 3

SIMULATION METHODOLOGY

In the previous chapter various procedures were reviewed for reconstruciing a
band-limited signal from unequally spaced samples. Althcugh the exlsting technlques
can be applled for various Interesting problems, there 1s still an urgent need for a
method of reconstructing a band-11mited slgnal, when the samples deviate by a larger
range from thelr uniform samples. The purpose of this chapter Is to present a slmula-
ton algorithm which Is developed as a part of thls current research. First section of
this chapter groups the necessary equations for the proposed procedure, and a part-

tloning scheme for the lterative procedure Is presented in the second section.

3.1 GOVERNING EQUATIONS

This section brings out the system of equations necessary for the reconstruction
procedure. As discussed 1n the previous chapter, the present reconstruction methodol-
ogy for a band-limited signal Is baslcally an extension of the work of Plotkin and
Swamy (1987). A signal with unequally spaced instants {{,} can be represented as

follows:

2(t)= 3 z(t)sincwp(t - 4) (3.1)

k=-0
where z(t) 1s a slgnal band-limited © |w| <w,, and 1t has been reconstructed from
1ts sample values z({). When ¢, ==kA&f, Equatlon (3.1) represents uniform sampling
theorem. To reconstruct the equally spaced samples, z(kAt), a system of /N +1 alge-

bralc equations are necessary and It can be written as:
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z(t,) = g‘ z(kA)sincw,,(t, - kAL) (3.2)
k=0

where {f,} I1s the deviation of sampling point from the synchronous position

represented with 1ts value z(¢,) In the observation Interval (0,T) where

T = (N41)At (3.3)
—_—
= (3.4)

The unlformly spaced samples can be éva.luated from thelr unequally spaced
counterparts, z(¢,) In Equation (3.2) based on the principal of conversion (Dunlop and
Philips, 1874). Having known the amplitude of unequally spaced samples, the uniform
samples can be computed, and then further used t reconstruct the signal using
Shannon's theorem:

i(t) = g') £(kat)sincw  (t — kAL) (3.5)
k=0

Assume that z(¢,) In Equation (3.2) are known. This would enable us to estimate
the unlform samples; let them be denoted by £(kAt). The newly calculated samples
are called as "estimated samples” and they can be used 1n Equation (3.5) to reconstruct
£(t). To obtaln £(kAt), 1t Is necessary to process an entlre data-block of unequally

spaced samples. Therefore Equation (3.2) becomes:

z(tp) = % $(kA)sincw (L, — kAL)

k=0
z(t,) = gj 2(kat)sincw,, (8, — kat)
k=0
and so on
N
z(ty) = Y T(kAt)sincw, (ty — k&) (3.8)

k=0
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To obtaln the uniform samples, the above set of equations are transformed into the

matrix form:
C=AB (3.7)
where:
X (to)
x (t,)
C=]| |
()
800 201 . 80N
210 83y - 84N
A = 8 =Sslncwp(t, - k&) (3.8)
[3No0 2N1 © 2NN
n and k represents row and column respectively,
and
r .
X(oa)
X(14)
B = ) (3.9)
Lx‘(NAL)_
From Equation (3.7), B can be computed as:
B=A1!C (3.10)

where A™! 1s the inverse matrix. If the coeficlents of matrix A having
(N 4+1)#(N +1) elements turn out to be zero, then the determinant value of the
inverted matrlx will be influenced and hence most of the Information about the
restored matrix will be lost. It s cleart that the Inverted matrix needs high accuracy

during Its computation even when the coefficlents have a very small value. If this Is
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not so, the determinant value of the matrix A may become zero and then ilI-
conditioning may occur. To avold or minimize the problem of ill-conditloning, a large
slze of the data-block (N) s reduced by short sublnterval lengths. For example, by
consldering a sublnterval length of 3, the coeficlents of the matrices In Equation (3.8)

has thelr values as follows:

[x (to)
C = [x(t,)

X (t2)

200 80; 302
A= a2, 2,

820 B2; B29

(o)
B = |x(1at) (3.11)
¥ (24)

In the above equatlon A Is reduced to a matrlx of dimenslon 3*3 instead of
(N 4+1)#(N +1) (Equation 3.8). Even If one of the coefiiclents In the matrix A Is
zero, not much Information Is lost in the process of computing the uniform samples.
Consldering the matrix dimension as 5x5, It 1s observed that the system may be more
sensitive to the problem of 1ll-conditioning, still not much of the information Is lost as
compared to the matrix dimenslon of (N +1)*(/N +1). Thus, the sensiuvity towards

1ll-conditioing s minimized.

An Important characterstic of the proposed methodology Is the complexity Index.

The complexlty Index s defined by the number of arithmetic operatlons, R, needed for

reconstructing one sample and can be defined as:
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R =-:- (M +1)M +2) +(M +1) (3.12)

M Is the subinterval length used in the partitioning scheme. For M >> 1

R =-§TM2 (3.13)
Thus the arithmetlcal operation Is a charaterstic of the proposed simulation methodol-
ogy. This inturn influenzes the Central Processor Unit (CPU) time. When M = N,
the computational complexity 1s very high. For example, when M Is chosen as 3, the
slmulation takes approximately 27 sec. of CPU time on VAX 8550 under batch mode

operation.

In solving Equation (3.10), the resultant matrlx is of 3*1 dimenslon. In this
matrix, only the centre sample Is consldered and the two boundary samples are
excluded. For each sublnterval of length M, only one uniform sample 1s evaluated and

stored. By repeatlng the procedure, all uniformly spaced samples are revealed.

3.2 PARTITIONING SCHEME AND ITERATIVE PROCEDURE

Plotkln and Swamy (1987) proposed two data-block partitioning schemes for the
recovery of unlform samples, namely, first and second partitionlng scheme 1n which
they used the second partitioning scheme. The scheme Implements M samples In a
sublinterval, It has flxed-length overlapping sublntervals shifted by the constant factor
g =M - p, where p Is the number of mutual samples belonging to any two adja-
cent sublntervals, They consldered a typlcal case of M =8, p =2 and
¢ =M - p =4. Only 4 samples are v wred within every sublnterval and two boun-
dary samples are excluded. The boundary samples of each subinterval become regular

samples of the preceeding and following sublintervals. Thus the complexity of the N-
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order system Is reduced 1n computation of a 6th order system.

A tplcal partitoning scheme with M =3 and p =2 s displayed In Fig. 3.1.
The scheme uses fixed-length overlapplng sublntervals shifted by a constant factor 2.
By this partidoning scheme cnly the centre sample s restored for every subinterval
and the boundary samples are excluded. For M =3, let the centre sample In a subin-
terval ¢ be denoted as %, (kAt), for which the boundary samples are £;, _,(kAt) and
;. +,(k.2). However, the two excluded boundary samples will be restored as centre
samples resp ctlvely In the preceding and followlng subintervals, namely, (¢ - 1)
and (¢ + 1) Interval. Typlcally, considering the first boundary sample %, _ ,(kA?), 1t
will be restored as the centre sample In the sublnterval (1 — 1) where the boundary
samples are respectively £, _,(kAf) and £;. (% At). Consldering the second boundary
sample, Z,. _ ,(kAf), 1t will be treated as the centre sample in the sublnterval (¢ + 1),
and hence the boundary samples of this sublnterval will be ;. (kAf) and £, , o(kAtL).
Thus the two boundary samples are restored in the preceeding and the following
subintervals. However, In the above process, first and the last sample In the sequence

can not be restored and hence discarded.

Recalllng Equation (3.11), C corresponds to the values of unequally spaced sam-
ples z(y), x(¢,) and z(¢,). Z(0At), £(1£') and £(2AL) are the restored values In the
matrlx B. When the partitioning scheme Is implemented, only #{14Af) is recovered
while £(0Af) and #(2Af) are discarded. For such o scheme a minlmum subinterval
length 1s 3 with a overlapping factor of 2. The partitionlng scheme 1s more effectlve
If the sublnterval length Increases, For example, If 5 samples are consldered In a

subinterval, then cerure sample 1s only restored and rest of the 4 samples
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are discarded.

The solved vector £(kAf) differs from Its original samvles, z(kAf). The maln
source of the reconstruction error 1s truncation error and 1t Is due to the short length of
every subinterval. Therefore an Index Is defined as follows:

f’; [z(kAt)— f(kAt)]Q

- k=0
A

% . (3.14)
z

k=0
The above Index is named as Mean Squared Error (MSE) and 1t can be minimized in

an effectlve way during the reconstruction by a repeated processing, called "lterative

procedure”. This can be further explalned In the following paragraph.

‘With respect to the i-th subinterval:

7i(t) = Az (k&) (3.15)
Let all such samples, except the first and the last, be comblned to form a string of unl-

formly spaced samples, {Z,(kAf)} and used for the signal reconstruction as:

£(t) = Ni]l 3, (kat)sincew (8 - kAt) (3.18)

ic =2

The above equatlon can also be written with respect t¢ the t-th sublnterval as follows:

2,(t) = A £, (k&) (317)
The newly calculated £;(¢) differs from Its previous value z;(t) by a correcuon term
which can be written as follows:

Hz(t) =z;(t) - ;(¢)
—z(1) - Adi(kat) (3.18)
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By using Equation (3.15) in Equation (3.18)
&z(t) =A;z;(kal) - A;gi(kat)
=4, [k at) - g0k an)

=A; A z(kAt) (3.19)
In the above equation, A;z(t) depends upon Az(kAf). The difference between

z;(kAt) and #;(kAt) diminishes when the restored samples lle closer to the original
samples. In otherwords, MSE (Equation 3.14) will be minimum. Note that the
coeficlents 1n the matrix A s factorized only once and used for further iteratlon

which Inturn reduces the CPU time.

The estimated A z(kAt) Is added to the £,;(kAf) to obtaln £;(kAf). Thls Is oba-
tined as a result of implementing the iteratlve procedure once and hence Z;(kAf) are
the recovered samples of the "first lteratlon” whereas £,(kAt) are obtalned "without
implementing iteration”. Further, the MSE can be computed by substitung £(kAf) In
Equation (3.14) Instead of £(k Af). When the Iterative procedure s repeated twice, the
restored samples, £ (kA¢) lle closer to z(kAt) and hence the MSE of the "second ltera-
tlon” Is reduced and the lteratlve procedure tends to converge. Thus the above men-
tloned steps emphasise the effect of the lterative procedure by studylng the conver

gence of the MSE levels.

The sublinterval lergth chosen for the partitioning scheme Influenzes the MSE
levels. If the sublnterval Is 3, only the centre sample s restored and the boundary
samples are excluded. However if the sublnterval 1s 5, then 4 boundary samples are
excluded and the centre sample Is restored. Further convergence In MSE can be

observed, If the sublnterval 1s chosen 7, 9, 11, etc. Therefore the restored samples,
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£(k At) lle more and more close to z(kAt) In Equation (3.14) and the MSE level is
reduced; or In otherwords the truncation error Is reduced. Let z(¢) be the original sig-
nal and zp(¢) be the reconstructed signal due to finlte sum of samples, N. Then, the
difference between the origlnal and the reconstructed slgnal can be denoted by epn(?)
and expressed as:

en(t) =z(t) - zN(t) (3.20)
As the sublnterval length Is Increased, zp/(t) lles closer to z(¢) In the above equation.
Thus the MSE level 1s dependent on the selection of finlte number of samples In &

subinterval and can be avolded by choosing a longer subinterval.

As polinted out earller, the first and the last samples are not restored during the
terative procedure. In additlon, durlng the first Iteration, the two boundary samples
namely, second and N — 1 samples of the original sequence are also not restored.
Hence the number of samples 1n the sequence I1s reduced to /N — 4 at the end of first
{teration. Thus the two boundary samples are not restored during each lteration 1n the

origlnal sequence of N samples.

The second kKind of error may also arise durlng the reconstruction procedure, the
Jitter error. The deviatlon of the sampling instants are allowed to vary by the Jitter
parameter(J) 1n s sampling Interval shown In Fig. 3.2, (k-1)Af, k&f, and (k+1)af
represent the synchronous positions of (k-1), k and (k-H)th samples, and Af Is the
average distance between two samples. For J = 1, the unequally spaced samples lle
within the reglonof (- At /2, +At/2 ). When J =0, {; =kA! and therefore the
samples are equally spaced and hence lle exacly at (k-1)Af, kAf and /k+1)Af as can

be seen 1in the Fig. 3.2. Thus the Jitter parameter determines the deviation of the
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unequally spaced samples from thelr unilform positons. The Influence of the jitter
parameter 1Is predicted based on the selectlon of unequally spaced time Instants In the
simulation procedure. If the deviation of the sampling Instants are closer to the syn-
chronous positions {kAt}, then z(kAL +A,) s closer to z(kAt) and therefore the

MSE level computed using Equation (3.14) Is reduced.

The Inherent detalls and philosophy of the present simulation methodology s
cited along with its mathematlcal expresslons. The principal error, namely the trunca-
tlon error, that occurs 1n the simulation procedure 1s studled uslng MSE Index. Further,
an iteratlve procedure is suggested and explalped to minimize the above error. Small
Influence of the second kind of error that may occur due to the deviation of sample

Instants 1s also dlscussed.




CHAPTER 4

PRESENT COMPUTER CODE AND SIMULATED RESULTS
FOR THE DETERMINISTIC PROCESSES

This chapter presents and discusses the computer code that 1s developed for the
reconstruction of signals. To conflrm the simulation results of the developed computer
code, the results are compared with those of Plotkin and Swamy (1987) for the same
Input conditions. In the second section, stmulation results are obtalned by using sine
waves. The simulated results are dlscussed and compared with a recent lteratlve adap-
tive procedure of Further comparisons are also presented for the reconstruction of sig-
nals using sum of sine waves. In all the cases, the effect of sublnterval length and the
variaton of the jitter parameter are studied. The calculated MSE 1s always used as a

measure of comparisons for the different methods of slgnal reconstruction.

4.1 DESCRIPTION OF THE PRESENT COMPUTER CODE

The present computer code s developed using an Interactive software tool,
MATrix LABoratory abbreviated as MATLAB (Moler et al,1987). MATLAB has
extenslve applicatlons In solving englineering and mathematical problems in research
flelds. Typlcal application Includes numerical computation and solving speclal purpose
matrix problems that arise In the discipline of digital signal processing, automatic con-
trol and statlstcs. The sunwork station Graphics Post Processor (GPP) are used for
obtalning the device Independent MET-flles. These metaflles are transformed into

Image flles which are later used to plot on an APPLE laser.
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Varlous steps involved In the present computer code are shown dlagramatically in
Fig. 4.1. The varlables are Inltiallzed first. Secondly, a set of parameters are glven as
Input. They are respectlvely, the number of samples (N), band-limited frequency
(/) sampling frequency (f,), sublnterval length (M), Jtter parameter (J), number of
Iterations (Iter) and the number of trals (Tral). N determines the number of samples
necessary to process the simulation algorithm. f, 1s the sampling frequency that deter-
mines the sampling time interval of the signal. The number of samples used for the
partiioning scheme Is determined by M. The extent to which the samples are allowed

to migrate 1n the uniform distribution Is established by J.

For example, a particular simulation using determinsitic sinusoidal function takes
the value of N as 100, f,, and f, respectively 1100 Hz. and 2400 Hz. The number of
samples for the partitloning scheme 1s chosen as 3. The unequally spaced time Instants
are distributed uniformly In the range of (-At2, A2 ), with Jequal to unity (refer Flig.
3.2). This typlcal simulation takes approximately 34 sec. of CPU time on Vax /8550

under batch mode operation.

With the above mentloned {nput parameters, the time Instants are selected. A sta-
tistical model for the unequally spaced samples Is developed in the simulation pro-
cedure. The unequally spaced sample Instants are generated by using PRO-MATLAB
random number generator function. The rand('uniform') function 1s used to generate
random numbers that are uniformly distributed In the Interval (0.0,1.0). The samples
are distributed randomly at sampling Interval In respectlve time slot. Having known
the sampling Ilnstants, 1t Is necessary to generate the lnput signal. The Input signal

may be determlnistic or random.
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Fig. 4.1: Flow chart of the present computer code




sincw (4, - kAt) 1s called the composlng function for the sample polnt {¢, } and

1t posseses different forms for different sampling polnts. By uslng Equation (3.8), the
coefliclents @, are calculated and stored in a matrix A. As discussed In section 3.1,
a system of equations are solved using Inversion matrix technique (Equation 3.10) and
the solution represented by a matrlx, B. The restored samples in the matrix, B are
£, (k &) and differ from z(kAt). The restored samples, £,(kAt) are obtalned without
Implementing the iterative procedure. It can be otherwise called "without iteration”.
The varation between the restored and the original samples 1s the maln source of the

reconstruction error and 1t can be computed using the Mean Squared Error.

However, to reduce the error level the lterative procedure Is used. The restored
samples, £, (kAt) are used to reconstruct z(¢) as In Equation (3.18). The reconstructed
Z(t) differs from original z(t) and therefore can be denoted as #(t). The difference
between z(t) and £(¢) I1s computed for every sublnterval. Letv the difference be
represented for the I-th sublnterval as A;z(t). Subsequently, & z(¢) Is used to calculate
the correctlon term &;z(kAf) by using matrix Inversion technlque (Equation 3.10).
The comectlon term, A z(kAf) 1s added to the previously solved Z(kAf) to obtaln
£(k At). This is the result of implementing the lterative procedure once to Z(kAt) and
therefore called first lteratlon. The restored samples, £(kAT) due to the first lteration
Is substituted instead of £(kAf) 1n Equation (3.14) to obtaln the MSE level. During
each process the varlable Iter 1s reduced by one and the lteratlve procedure Is ter

minated based on the number of speclfied terations.

The utlity functlon random number generator rand('uniform’) selects ume

Instants that are dfferent from trlal to trial. Therefore the statisical parameters,
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namely mean and standard deviation, are calculated. During each cycle the number of
Trial 1s reduced by one and the program terminates depending upon the specified tri-
als. ‘The following paragraph brings a brlef description of deterministic and random

process used 1n reconstruction procedeure.

In the present study determinlstic processes, random processes and determinlstic
signal 1n the presence of random nolse for various SNR values are considered. A
deterministic slgnal 1s one that can be represented with instantaneous value as a func-
tion of time. This Includes all signals whose Instantaneous values can be predicted
using mathematical equations. It also Includes functions that do not have describing
equations but can also be representea by graphs. In otherwords the exact value of a
determinsitic signal can be predicted at a given time in advance. An example of a
deterministic signal Is a slne wave. From the viewpolnt of deslgn, analysis, testing
and operation, it 1s both necessary and desirable to use sinusoldal signals for predict-
Ing system performance. Such signals have well deflned propertles and are easy to

deal with. Hence they wlll be employed for the reconstruction procedure.

The computer code Is also modifled for random slgnals such as nolse. A random
signal s one whose instantaneous value cannot be predicted exactly at any given ime.
However, many random slgnals have certaln reasonably well behaved statstical param-
eters. They are useful In predictng the behaviour of random slgnals encountered in
actual systems. Varlous statlstical functions namely, mean, standard devlation, rms and

average value can be determined by statlstical analysls.
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Two types of random distributions are consldered, they are uniform and Gausslan
distibutions, These two random distibutions are obtalned by switching the random
generators In MATLAB. Note that Gausslan distribution have zero mean and unit

varlance. The computer code Is implemented for the above two random distibutions.

A deterministic test signal In the presence of a random nolse is also considered
for analysis and the Signal to Noise Rato at the Input Is defined as:
2
SNR;y =10 log,q—— (4.1)
202

A, represents the amplitude of the determinlstic signal and o2 15 the varlance of the

random nolse.

4.2 SIMULATION RESULTS AND DISCUSSION FOR THE DETERMINISTIC

PROCESSES

4.2.1 Confirmation of the Present Study

The above discussed computer code Is valldated by Inputing the same parameter
as that of Plotkin and Swamy (19087). A sequence of 100 samples at {{ } Instants are
extracted from a sinusoidal waveform and these Instants are taken randomly with unl-
form density function !n the range of - At2 to At2 around the cormresponding synchro-
nous posltlons {kAt}. The average time between any adlacent samples Is glven as
1074 sec. (10 KHz. sampling rate) and a band-llmit frequency of 4.3 KHz Is used In
the simulation. A sublnterval length of 3 1s used In the present study; however, 8

samples have been considered by Plotkin and Swamy (1987) for the partitloning

scheme.
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Fig. 4.2 (a) llustrates the reconstruction of a sinusoldal waveform by using the
present computer code and the one proposed by Plotkln and Swamy (1087) without
implementing the iteratlve procedure, whereas Fig. 4.2 (b) compares the results when
the lterative procedure i1s 1mplemented. It can be observed that the restored signal
obtalned by implementing the lterative procedure lle closer to the original sinusoldal
signal. Generally, the agreement between these two studles are qulte satisfactory even
though variatlons may be attributed due to the difference In the sublntervals used In

the two studies.

4.2.2 Reconstruction Using Sine Wave

In this sectlon the reconstructed results using slne waves are discussed. Conslder
a sequence of 42 samples at {i} !pstants which are extracted from a slnusoldal
waveform using a random generator. The random generator I1s a utllity function In
MATLAB and Is used to select {# } Instants. As dlscussed In Fig. 3.2, the {#}'s are
allowed to migrate 1n uniform diswibution depending upon the Jitter parameter, J,
which Is chosen as 0.5 for thls case. Therefore the sampllng Instants are perturbed
from thelr synchronous positions in the reglon of (-At[4, At/). The slnusoldal
waveform Is generated for the necessary Input parameters. The band-lmlted fre-
quency, f,,, the sampling frequency, f,, are respecively chosen as 1100 Hz. and 2400
Hz. The subinterval length, M 1Is chosen as 3. In the present study for every sublnter
val length only the centre sample s recovered while the boundary samples are
excluded. For the above Input conditdon, the solld line In Fi1g. 4.3 represents the
unequally spaced time Instants, {#} and thelr values z(# ). These values are used for

the signal reconstruction.
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Recalling Equation (3.10):
B=A"1C (3.10)

The unknown matrix B In the left hand slde of the above equation Is calculated by
using the known matrices A and C. The solved matrix, B represents the restored
samples £.(kAt) and thls operation Is without implementing the lterative procedure.
Therefore Z(kAl) represents restored samples "without Iteratlon”. The restored samples
obtalned of without lteration are used to reconstruct £(¢) (Equation 3.16) which inturn
differs from original z(t). The difference between z(t) and £(¢) Is *sed for every
sublnterval to compute the correctdon term. The correction term 1s added to the previ-
ously calculated value £(kA!). As a result, £(kAf) Is obtalned and it corresponds to
the restored samples “after 1 lteration”. When the procedure 1s repeated twice, 1t

represents the restored samples, "after 2 iterations”.

Fig. 4.4 (a) shows the status after reconstruction 1n which the original signal, sig-
nal reconstructed without Iteration and the reconstructed signal after two lterations are
displayed. They are respectively marked by solid, dash and star lines. It is clear that
the star llne Is cioser to the solld line. Recall Equation (3.14) used to compute Mean
Squared Error (MSE):

N 2
b [:z:(kN)— :f(kAt)]

- k=1
el = (3.14)

N
Y 23k At)
k=1
In the above Equation, z(k Atf) and £#(kAf) are respectlvely the orlginal uniform sam-

ples and the restored samples without iteration. Then the calculated c-g represents the

error without lteration. f(kAI) are the restored samples "after two teratlons” and can
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be substituted instead of £(kAf) in Equation (3.14) and thus MSE can be estimated
corresponding to two lterations. From the above Equatlon 1t Is evident that the MSE

value reduces when the restored samples lie very close to the original samples.

For the above reconstruction process the computed MSE are respectvely 9.6%
and 0.12% for the cases of ‘‘without lteration’® and ‘‘after two Iteratons'’. This
implies that the deviation of the reconstructed signal 1s reduced signficantly In Its
second Iteratlon. For the first iteratlon, #(kAf) 1s obtalned by adding £(kAt) with
Ar(k At), Az(kAt) 1s the gradlent of first difference (first derivative), which Is further
used in the second iteratlon. Thus the MSE level Is reduced significantly in the

second iteration.

The same Input condldons are given to the algorithm of Marvasti and Analoul
(1988) (-hereafter abbreviated as MA) and compared with the Present Study (-
hereafter abbreviated as PS) to evaluate the performance. Only the essential features of
MA are discussed here whereas further detalls can be found In section 2.1.4. The
band-1imited finlte energy slgnal z; ,,(¢) can be recovered from Its nonuniform sam-

ples z(t) as follows:
T ,(t) = WP, S,z(t) +(1-AP;S))z, (¢) (4.2)

where z; _,(¢) Is the signal recovered after k + 1 lteratons. ) Is the convergence con-
stant and P,S,z(t) Is the low pass filtered version of the z(¢). For example, the fol-
lowing expresslons are obtalned when k Is glven values O and 1 respectively In the
above Equation.

z,(t) = NP, 8,z(t)
and
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TH(t) = AP, S,z(1) +z,(t) - AP, S,z,(t) (4.3)

The above r,({) and z,(t) are the slgnals recovered after one and two iteratlons,
respectively. When Kk Is as 8 In Equation (4.2), the recovered slgnal z,4(t)

corresponds to the simulated result after 10 lterations.

The simulation results based on MA algorithm are shown 1n Fig. 4.4 (b). The
three curves are respectively the origlnal slgnal, signal reconstructed after one iteration
and ten iterations. Even though the origlna! signal Is the same as before, 1t Is Included
in the figure for the sake of comparison. It I1s evident from the figure that the signal 1s
reconstructed poorly even after 10 lterations. Conslder a typical sampling time 0.01
sec. In X axis, the dashed line devlates much from the solld llne. However, the star
line 1s also not close to the solid line, With the same 1nput conditions in the PS, the
MSE s 0.129 after two lterations whereas 1n MA the error Is reduced to only 109,
after 10 iteradons. Not much reduction In MSE Is evldent even after 10 iterations and

that is why 1t Is decided to present the slmulation results with 10 terations.

The Instant {¢ } Instant Is now allowed to migrate in the uniform distribution for
a longer Interval from its synchronous position such that it ranges from -4&t2 to A2
(Atter parameter = 1.0). Fig. 4.5 shows two curves namely, unequally spaced sam-
ples and the original signal. Conslder a sequence of 42 samples with f, and f, as
1100 Hz. and 2400 Hz. respectively. The unequally spaced data are used to recon-
struct the original signal. It can be observed that the solid llne 1s much distorted In

comparison to Flg. 4.3 due to the Increase in J from 0.5 to 1.0.
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Fig. 4.8 (a) shows the reconstructed signal uslng PS in same format as that of
Fig. 4.4 (a). It!s evident from the flgure that the reconstructed slgnal without iteration
lles farther away from that of the original signal, whereas the reconstructed slgnal after
two Iteratlons lles very close to the original signal. Thus 1t Is seen that the lteratlve
procedure can be very effective In sigaal reconstruction. The MSE are estimated as
48.3% for without Iteration and 0.71% after two Iteratlons for PS. Therefore, the third

curve lles very ciose to the first curve.

Fig. 4.8 (b) 1llustrates the simulation results obtalned for the same Input parame-
ters for the MA method. Two curves, namely the original signal and the reconstructed
signal after 10 lteratlons, are shown In the fligure. It can be observed that the dashed
line lles farther away from the solld line with an estimated MSE of 52%. Since there
Is no signlficant reduction in the error, the iteratlve procedure s terminated end the

results plotted.

From the above discusslon it Is clear that the MSE Is reduced to only 52% even
after 10 iterations when the MA method Is employed. On the otherhand, the recon-
struction using the PS reduces the MSE level significantly to 0.71% within 2 Itera-
tlons. Thus the method of MA Is not feaslble for larger devlatlon of samples and

therefore the analysls Is restricted to the PS only.

To show the superlority of the PS, Jis further Increased to 2.75 and therefore
{%} Instants can devlate In a larger range of (-1.375At/ 1.375A1). A sequence of 100
samples are extracted at {4} Instants from the slnusoldal waveform. These {{}

Instants are taken randomly with unliform denslty functlons for the above range around
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the synchronous positions kat. The f,, (1100 Hz.) and f, (2400 Hz.) are selected to
be the same as before. A subinterval length of 9 Is chosen In order to perform the
partitdoning scheme. Therefore, only the centre sample is recovered and the four boun-

dary samples on elther slde are excluded.

Fig. 4.7 shows the original and the reconstructed slgnals after three Iterations by
solld and dash llnes respectively. Agaln, using Equation (38.14), MSE 1s estimated as
only 1.35% after 3 iteratlons and it can be easlly observed from the flgure that the
reconstructed signal lles very close to the original slgnal. It I1s worth mentloning agaln
that for a larger deviation of {# } Instants, the MA method Is not feasible and there-

fore the simulatlon results are not compared.

To compare the efficlency of the PS with that of the MA method, simulations are
performed for various Jitter parameters. The MSE for the different cases are calculated
and grouped In Fig. 4.8. For all the slmulatons a sequence of 100 samples at {4 }
Instants are exctracted from the slnusoldal waveform and they are randomly distributed
with uniform denslty functlons. The frequencles f,, and f, are chosen as 1100 Hz.

and 2400 Hz respectively.

Filg. 4.8 compares the performance of PS and MA. There Is only one curve
corresponding to MA whereas there are three curves for PS respectlvely for subinter-
val 3, 5 and 7. The range of Y axls Is reduced In order to show clearly the data
polints corresponding to M =5 and 7. The results presented for MNA correspond to 10
lterations; however, only two lterations are used for the PS to recover the slgnal from

Its unequally spaced data. From the figure 1t Is clear that the MSE of the PS 1s always
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lower than the MA method Irrespective of the Jitter value, and the MSE of the PS is
found to decrease with an Increase In the sublnterval length. For example, when
J = 0.5, the MSE of MA Is 109 whereas 1t Is found to be 0.12%, 0.07% and 0.000%
for M = 3,5 and 7 respectively. Thus the errors are reduced significantly when the PS
Is applled. As explalned before, the calculated MSF for the MA method Is found to

be very high when J takes a value more than 1.0 and 1t {s not included 1n the figure.

Reconstruction procedure 1s repeated with J = 1.75, by taking M as & or 7. For
this deviation, MSE are estimated as 2.41% and 2.0% for M =5 and M = 7 respec-
uvely and thus the PS Is found to perform better by Increasing the value of M to 7.
Also from Fig. 4.8, the estimated MSE Is 4.2% when J = 2.5. Frcm the above dls-
cusslon, the requirements of M over a range of J can be formulated as follows:

—-For 0.0 <J <1.00; M =3

~For 10 <J <2.00; M =5

-For 20 <J <2.75; M =7 (4.4)
‘When the above relatlonship 1s employed in the PS, it Is feaslbl: to reconstruct a sig-

nal withln 59 of MSE.

To understand the 1nfl ience of number of iterations performed on the MSE, con-
sider a sequence of 100 samples extracted at {{ } instants from a sinusoldal waveform.
The {# } Instants are randomly chosen with uniform density functions In the range of (
- A2, Atf2). The simulation Is performed only by Implementing the PS. M Is varled
as 3,5,7,9 and 11 for Implementing the partitloning scheme and the MSE are estimated

In % using Equation (3.14).
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Fig. 4.9 shows the Influence of MSE on various sublnterval lengths with different
number of lterations. These curves correspond to the signal reconstructed without any
iteration, after 1 iteratlon and after 2 iteratlons. When A = 3, the MST arc estimated
as 4893, 5.2% and 19, respective!y for the cases of without 1teration, one lteration and
two Iteration. When M Is Increased to 5, the corresponding MSE are computed to be
329%, 1.97% and 0.866%. Further an Increase In M to 7 reduces the MSE to 20%,

0.83%% and 0.075% respectively.

From the above results it Is very clear that an Increase 1n the number of iterations
decreases the MSE. Moreover, the MSE can also be reduced by Increasing the M
value. This unlque characterstic provides two optons for the reconstruction process.
They are respectvely, selecting the sublnterval length or flxing the number of lters-

tons. This can be Implemented depending upon the MSE requirement.

The wuncation error plays a major role In the MSE for various sublinterval
lengths. Recall Fig. 1.4 where the number of samples necessary for a flxed recon-
struction error bound Is studled. For perfect reconstruction, the cardinal series needs at
least 100 samples. If M 1s chosen as 100 for the partitioning scheme, then the matrix
operation becomes more complicated. In otherwords, it s not possible to solve vector
B 1n Equaton (3.10). For R > 2, the number of samples 1s stll greater than 20 and
1t Is agaln complicated to perform matrix multiplication. On the otherhand, even with
a short subinterval length the MSE 1s reduced conslderably when PS 1s used, and thus

computational complexity 1s minimized.
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The number of mathematical operations will directly Influence the required CPU
ume. By consldering a sequence of 100 samples In an observation Interval with
J =1 the effect of M as well as the number of lterations on CPU tme are studled.
Again f and f, are taken as 1100 Hz. and 2400 Hz respectively. The CPU time are

obtained under batch mode operation In Vax 8550 (8.3 MIPS).

For M =3, In the selected observation interval the required CPU tmes are
observed as 24 sec., 28 sec. and 34 sec. respectvely for the three cases without itera-
ton, one iteraton and two iterauons; the CPU tme Increases to 27 sec., 368 sec. and
45 sec.,respectively when Af = 5. Thus it Is clear that elther an Increase In M or the
number of terations increases the CPU tume. However, with the recent advancement
In computer technology, computational cost Is not 8 major citerion. Moreover, con-

sldering the reductdon In MSE due o PS, the addiyonal cost s negligible.

For all the results discussed above, f_ 1s chosen approximately half of the sam-
pling frequency. According to the WKS sampling theon m, this Is the minimum
required sampling frequency for the reconstruction of a band-limited signal. The
Influence of f,, on the PS performance Is also studled. Conslder the factor, R, which

can be mathematcally expressed as:

/
R =2 (4.5)

Im
Sankur and Gerhardt (1975) studled the effect of R on the Signal to Nolse Ratio
(SNR). They consldered a determinisuc slgnal for the analys!s and therefore the SNR
1s the ratlo of original samples to the error In the restored samples. In the PS, a

different terminology Is used. The sum of a determinlstic sinusoldal signal and a ran-
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dom nolse 1s considered for analysis, and therefore SNR Is termed as Reconstruction

ERror (RER) and defined as follows:

N
Y z¥(kAt)
=1

»

(4.8)

RER =10 log,, z
'-(IcAt)—t(cht)]

M=
——

k=1

where

z(k At) 1s the original sample;

£(k At) 1s the restored sample;

Al 1s the sampling Interval; and

N Is the number of samples;

RER 1s used as the Index of performance to evaluate the reconstruction method which

estimates the output In db,

To calculate RER the following data have been used: N =42, M =3 and
J =1. The X and Y ax!s of Fig. 4.10 represents respectvely R and RER. The RER
Is found to Increase with R up to a value of 8.0 and then remaln constant for any
further Increase In R. For example when R Increases from 2 to 4, RER Increases from
18.3 db. to 31 db. However, even when R = 24, RER is estimated only as 36.5 db.
Thus the results indicate that the performance of the PS even at higher sampling rates
Is satlsfactory. The most rapld change In RER occurs only around the Nyquist rate.
More about the applications of the criterion (Equation 4.8) may be found In chapter 6,

which Is devoted to the stabllity problem of the proposed method.
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4.2.3 Reconstruction Using Sum of Sine Waves

Thls secton compares the s!mulation results of the PS and MA using a sum of
two slne waves, which 1s also a determinsitic slgnal. The sequence of unequally

spaced samples are extracted from the summation of slnusolds glven by:

w
z(t) =0.75 sinw,,t 4+0.25 sln—slt (4.7)

where
Wy, =21f, (4.8)

Equatlon (4.7) Is a complex waveform with two operating frequencles, one at f m and

other at f,./ 3.

A sequence of 42 samples at {f; } Instants are extracted from the above equation.
They are distributed with uniform density function In the range of (- &M, At/) or
having J == 0.5. f,, and f, are chosen respectively as 1100 Hz. and 2400 Hz. The
subinterval (M) Is chosen as 3 for the partitioning scheme In reconstructing the unl-
form samples. The solld llne Indicates the unequally spaced samples and the dashed

line the original signal In Flg. 4.11.

The above unequally spaced samples are used for reconstructing the slgnal and
Fig. 4.12 (a) displays the slmulatlon results obtalned by the PS. The three curves
correspond to the origlnal signal, signal reconstructed without Iteratlon and recon-
structed signal after 2 Iterations. Conslider a typlcal sampling time, 0.006 sec. The
reconstructed signal without lteration (dashed Ilne) lles further away from the original

signal (solld line), whereas the signal reconstructed after two lteratlons (star line) lles

e
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very close to the solld llne. Thus It can be observed that the restored signal lles very
close w0 the original one. The iterative adapive method of MA Is also applled for the
same Input condiuon and the simulaton results are shown in Flg. 4.12 (b). The
curves correspond to the original signal, reconstructed signal after 1 iteration and 10
Iteratlons. For example, consider a sampling time of 0.012 sec. Both the dashed llne
and the star llne are far away from the solld llne. This confirms the better performance
of PS compared to MA. The MSE are estimated both for PS and MA to scrutinize the
performance of reconstruction. The MSE are calculated for the reconstruction using
Equation (3.14) as before. They are respectively 1.86295 and 0.099% for without itera-
tlon and after 2 iterations for PS, whereas 8.69% and 1.9% after one and 10 iterations
for MA. For the latter case there 1s no conslderable reduction in MSE even after 10

1terations and therefore, the figure displays only after one and ten 1terations.

From the above discusslon it Is clear that the performance of the PS 1s not only
better than that of MA, but also the MSE 1s reduced considerably In the reconstructed
signal with in two lteradons. However, 1t Is worth mentioning that the above simula-
ton Is performed for J = 0.5 and therefore the efTect of these two reconstructon
methods are further studled by increasing J to 1.0. Now {t*} instants are distibuied
uniformly in the range of (- &N /2, A/2) and the number of samples are kept constant at
42. The above Input conditions are shown In Fig. 4.13 for uncqually spaced samples

and for the original signal.

Fig. 4.14 (a) pmsents the simulation results of tie PS. The curves represent
respectively the original signal, reconstructed signal without Iteraton and after 2 1tera-

tlons. The third curve 1s closer o the int curve and therefore perfect reconstrucdon
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Is feaslble by the PS. Thus 1t Is clear that the PS performs better even with an
increase in J value for the sum of slne waves. The MSE are estimated to be 8% and
4 0.018% respectively for the cases of without lteration and after 2 lterations. The third

curve lles almost exactly on the first curve and therefore perfect reconstruction 1s

obtalned.

e e )

Fig. 4.14 (b) shows the simulation results for MA. The original signal and the
reconstructed signal after 4 1terations are shown In the figure. Calculated MSE after 4

lteratlons are found to be unfavourable and thus the Iterative process Is terminated. As

m e e R P b S T S Y

: discussed above, the MA method falls to reconstruct the original slgnal for Jtter

values more than 0.5.

, To demosnstrate the superlority of the PS, a complex determinsitic signal Is con-

sidered and can be generated as follows:

g

z(t) =0.7551nw,t + 2cosw,t — 0.25sInw,t — 4cosw,t + 3.0 (4.9)

The frequencles f,, f,, f3 and [, are respectlvely 300 Hz., 400 Hz., 500 Hz. and

1100 Hz. J and M are chosen as 1.0 and 3 respectlvely. Flig. 4.15 lllustrates three

tn g e o ——r YR S,

curves with same format as in Fig. 4.14 (a). The reconstructed signal without iteration
ltes farther away from the original slgnal, whereas the slgnal reconstructed after two
1terations lles very close to the original slgnal. The calculated MSE are respectively

10% and 0.309% for the case of without lteration and after two iterations.

-
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4.3 CONCLUSION

A user friendly computer code Is developed by Implementing the lterative tech-
nique. This uses a partitloning scheme for selecting the number of samples in a subin-
terval length. This chapter has presented the simulation results for a deterministic sig-
nal. The superiority of the present study s 1llustrated throughout the chapter by com-
paring 1t to a recent iterative algorithm by Marvast! and Analou! (1989). Based on the
calculated MSE, 1t can be concluded that the present study can be applied not only for
larger deviation of samples but also for various band-limited frequencles. The method
of Marvastl and Analoul (1989) falls to reconstruct the signal when JIs greater than

0.5. This has been found true even for the case of sum of sine waves.

A relationship Is formulated between the Jitter parameter and the sublnterval
length such that It Is always feasible to obtain the MSE level less than 5%. A complex

test signal Is also reconstructed by the present study with minimum MSE level,



CHAPTER 5

RECONSTRUCTION OF RANDOM PROCESSES
FROM UNEQUALLY SPACED SAMPLES

A generalized computer code (-refer Flg. 4.1) for reconstructing a band-limlted
slgnal from unequally spaced samples has been presented In the previous chapter.
Varlous Interesting slmulatlons have also been performed for the deterministc
processes which are analyzed and discussed. Reconstruction of band-limited random
processes from the unequally spaced samples 1s the objective of this chapter and 1t Is
addressed under flve sectlions. TLe first sectlon discusses the detalls Involved In gen-
erating a random process. Its reconstruction procedure from unequally spaced samples
Is presented In the second sectlon. The third section elaborates the reconstruction pro-
cedure for sum of deterministic and random slgnals. Statlstical analysls of the com-
puted results are performed In the fourth section. Two parameters, mean and standard
devlation, are obtalned by calculating "Mean Squared Error” of the repeated procedure
l.e., by studylng an ensemble of randomly taken realizatlons of the same process. The

fifth section bring an overall conclusion of the chapter itself.

5.1 GENERATION OF A RANDOM PROCESS

For generatlng a random process, the MATI.AB utllity funcion "rand” is used.
The random process obtalned is not band-llmited to a given frequency whereas the
simulation can be performed for only band-limlted processes by using the present com-
puter code. To obtaln the band-limited process, a practcal realizable fllter has to be

designed. For the present study, a Low Pass Fllter (LPF) 1s used meet the
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speclfications of 1200 Hz. of cut-off frequency (f,) and 2400 Hz. of sampling fre-
quency (f,). These specifications can be implemented by using either an analog or
digital fiiter. A digital filter namely, Butterworth fllter 1s implemented to obtaln the flat

frequency response within the passband range.

By Inputting a random process (z), a flltered output (y) can be obtalned when the
MATLAB function "fllter” Is used. Then £ and ¥ can be related as follows:

y =/filter(b,a,r) (5.1)

where a and b are the design coefficlents of the fiiter. The deslgn coefiiclents are

related with the Input and output of the filter In both the time and frequency domalns,

which are glven by Equations (5.2) and (5.3) respectively (Rabiner and Gold, 1975).

y(n) =b (1)z(n)++b (nb)z(n-nbH)-a(2)y(n-1)--a(na)y(n-nay) (5.2)

b (1)4b (2)27 4+ 4b (nb )z (-1 X(2) (5.3)
14a (2)z-1++a(na )z—(M—l)

Y(z)

Note that Equation (5.2) 1s In difference form whereas Equation (5.3) Is obtalned by

usilng Z transformation.

To obtaln the coeficlents a and b the MATLAB utility function "Butter (N, w,)"
Is used. This willl design an N-th order low pass Butterworth fliter with filter
coefiiclents for a and b. The input w, Is the cut-off frequency which takes a value
between 0.0 <w, <1.0. The upper llmit 1.0 corresponds to half of the sampling rate.
For the present design specifications the input value of w, and N are respectively

chosen as 0.6391 and 6.
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The transfer function H( z ) defined as:

H(z) = Y(z) _b)+b(2)z~ '+ 4b(nb )z-(nb=1)
X(z) 140(2)7 -+ (ng )z~ (-1
have been determined and the corresponding frequency responses are shown In Fig. 5.1

(5.4)

which displays two curves, namely simulated and theorctical. From the frequency
response plots, 1t Is obvlous that a cut-off frequency of 1200 Hz. 1s met for the
designed fliter. The above discussion provides confirmatlon for the designed filter and
the generated random process can be band-limited by using it. The detalls Involved

for the reconstruction procedure are presented 1n the next section.

5.2 RECONSTRUCTION FROM UNEQUALLY SPACED SAMPLES FOR RAN-

DOM PROCESSES

This sectlon presents the result of reconstruction as applied to unequally spaced
samples of random processes. There are different statistical distributions for a random
process; however, only Gausslan and uniform distributions are consldered In the
present study. The reconstruction of Gaussian process Is discussed first, whereas the
uniform process 1s presented later. To obtaln a band-limited process, flitering 1s per-
formed by using Equation (5.1). The fiitered output Is used for further study. It Is
worth mentioning that the distribution of sample locatons within the observation

interval Is uniform and independent of the Input signal.

For the Gaussian process the following Input parameters are consldered. A
sequence of 42 samples are taken at {t,c} Instants which are In the range of -At2 to
A2 from the corresponding synchronous positions {IcAt}. Therefore the Jitter parame-

ter (J) can be calculated as unity. Note that the sampling frequency Is 2400 Hz. and
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the subinterval length (M) Is chosen as 3 for the partitioning scheme (-refer Fig. 3.1).
As explalned 1n the previous chapter the developed lterative algorithm s implemented

during the reconstruction procedure.

Fig. 5.2 shows the reconstructed Gausslan process from unequally spaced sam-
ples. The figure contains three curves namely the original process, reconstructed pro-
cess without 1ter=tion and with 3 iterations. These three curves are represented respec-
tively by solld, dash and star lines. From the fligure, It Is clear that the dashed lne lles
faither away from the solid llne whereas there Is no significant difference between the
solld and the star llne, The MSE of the reconstructed signals are also calculated as
explained In the section 3.2 by '1sing Equation (3.14). Only 29 of error 1s computed
after the reconstruction and 1t hrs been found to diminish further when the iterative
procedure 1s Implemented. It 1s also evident that the errors are found to be negligible

after 3 iterations and hence the teratlve procedure 1s terminated.

Having the same Input parameters, an uniform random process has been gen-
erated. This process is also fiitered and the reconstruction results are presented in Flig.
5.3. It has three curves namely, the original signal and the reconstructed slgnals
without Iterations and with 2 lteratlons and they are respectively represented by solld,
dash and star 1lnes, Slnce from the prevlous study the MSE after 3 Iterations 1s found

to be negligible, only 2 iteratlons are performed for this case.

There are some deviatlons between the original and the reconstructed process
without any 1teratdon. On the otherhand, the {terative process effectively Improves the

reconstruction and thus the reconstructed signal after 2 iterations lles closer to the
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original signal. The MSE are computed as 1.5% - without iteration and 0.079% - after 2
Iteratlons. These discussions reveal that the computer code 1s capable of reconstructing

a random process from unequally spaced data.

5.3 RECONSTRUCTION FROM UNEQUALLY SPACED SAMPLES FOR THE

SUM OF DETERMINISTIC AND RAND OM PROCESSES

Erom the previous sections, 1t Is evident that a reconstruction of a random process
glven by Its unequally spaced samples can be effectively accomplished by the pro-
posed method. It Is also observed that the error In the reconstruction of a random pro-
cess 1s much less than that of the determlnistic signal, particularly a slnusoidal signal
with operating frequency close to half of the sampling frequency. In this sectlon, the
research Is further extended to perform the reconstruction from nonequally spaced sam-
ples for the summation of determlnistic and random slgnals. The deterministic signal
Is added to a random processes which itself Is classifled as elther Gausslan or uniform.
Before Inlttating the reconstruction procedure, It 1s necessary to generate the necessary

reference slgnals which will be discussed below.

Conslder a band-1lmited deterministic (slnusoidal) slgnal z,(¢) and a random pro-
cess, y(t). As discussed in section 5.1, the z,(t) Is band-limited to 1200 Hz. Then
the summation of z,(¢) and z,(¢) 1s mathematically expressed as:

z(t) =z,(t) +x5(2) (5.5)
The above obtained z(t) Is a band-limited signal with a summation of the determinis-
tic slnusoldal function and a random nolse. Let "A,” and "o 2" be the two parameters

used to denote the amplitude of the sinusoidal function and the varlance of a random
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nolse, respectively. Then z(¢) can be expressed In terms of these two parameters
which can be represented by the Index Signal to Nolse Ratlo (SNR). Since z(t) 1s used
as the Input to the computer code, SNR Is suffixed by the term "IN" (SMRyp;) and
expressed as follows:

2

SM]N =1010g1° (5.6)

20,

As polnted out earller, 7,(¢) in Equation (5.5) can be classifled either as Gausslan
or unlform distribution. Thus this section comprises two subsectlons describing the
reconstruction procedure deallng with Gausslan and uniform distributions. Moreover,
the reconstructions for these cases are also performed by using the lterative procedure
of Marvast! and Analou! (1989). Varlous Interesting comparisons are made for the
simulated results between the Present Study (PS) and those of Marvastt and Analoul

(1989) (MA).

5.3.1 Gaussian Distribution

Under this subsection three different cases are studled by for the SNRj or -10
db., 0 db. and 110 db. The obtalned results are presented and discussed. These three
cases are consldered typlcally to measure the performance of the two iterative methods

(PS and MA).

For SNRjy = -10db., the calculated A, and o, are respectively 0.1 and 0.2236.
A sequence of 42 samples are extracted at {{} Instants In Equation (5.5). The tme

Instants are randomly distributed with uniform denslty functions In the range of -Atf2
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to A2 for Its corresponding synchronous positions {kAt}. Therefore J is calculated as

unity (-refer Fig. 3.2). f,, and f, are chosen as 1100 Hz. and 2400 Hz. respectively.

The PS Is applled for a sublnterval length (M) of 3 samples and iterative pro-
cedure Is repeated twice durlng the reconstruction. Flg. 5.4 (a) displays three curves
namely, the original signal, reconstructed slgnal withoat iteration and signal recon-
structed after 2 Iterations, which are respectlvely represented by solld, dash and star
llnes. It 1s clear from the flgure that the dashed .lne lles farther away from the solld
line whereas the star llne lles very close to 1t. The MSE of the reconstructed slgnals
are also computed using Equation (3.14) and they are respectively 5% and 0.1% for
without and with 2 iteratlons. Thus a substandal reduction of about 4.5% in MSE level

Is obtalned when the terative procedure s used.

By Inputtlng the same parameters, the lterative adaptive algorithm of MA 1s used
for reconstruction. Fig. 5.4 (b) shows three curves of MA, in the same format as that
of Fig. 5.4 (a). However 1t 1s worth mentioning that the dashed and the star llnes are
respectively obtalned as a result of 3 and 10 iterations. Flgure shows much deviation
between the dashed line and the original signal. Only little Improvement s observed
even after 10 lteratlions as shown by the star line of the figiue. For the MA procedure,
the MSE are also computed and they are respectively 10.4% ana 7% for 3 and 10
Iterations. Even by repeating the procedure for 10 iterations, the MSE 1s stlll found to
be high and only a reduction of approximately 3% Is obtalned for the additlonal itera-

tiomns.
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Comparing these M§E levels with those of the previous figure, 1t Is evident that
the PS method performs considerably better than the MA method. Since there is no

signlficant reduction obtalned after 2 iterations for the MA method, 1t has been declded

3

P!
Re
i
|
0,
4

3

to continue up to 10 Iterations. The above observatlons reveal that the PS can perform
better taan MA with limited number of iterations. Comparisons between these two

methods are further extended by Increasing SNRpy from - 10 db. to O db.

Fig. 5.5 (2) and Fig. 5.5 (b) illustrate the results obtalned by using the PS and

NP G R RTINS M 8y v ST

MA for the case of SNR;y = 0db.. These two figures are plotted In the same fashion

—ry gt

&s before, however with a different range of the amplitude. The Increase In amplitude
Is not surprising because there Is an Increase in SNRpy. As shown 1n Equation (5.8),
SNE;y 1s directly related to A, and Inversely proportional to o,. Thus elther an

Increase In A, or reduction In o, will increase the SNRyy.

For both figures the dashed lines are totally distorted and Ne farther away from
the solld line when { = 0.004sec. It Is worth mentioning that the number of terations
for the PS Is only limlted to 2 whereas up to 10 iterations are performed for MA. By
applying the Iteratlve procedure In the PS remarkable improvements are obtained,
while for the MA method stll significant difference of the reconstructed signal from
the original signal is observed. Reconstructed signals with and without 1terciions are
also obtalned by Increasing the SNR;y == +10db., and Fig 5.8 (a) and (b) respectively
1llustrate the results obtalned by applylng the PS and MA methods. The observations
of Flg. 5.5 are also equally applicable for these figures. The MSE for the above three
cases are also calculated and compared to derive some observations wlith regard to the

Increase In SANRjy.
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Fig. 5.7 compares the performance of the two methods PS and MA for all the
three cases studled. X and Y axes corresponds to SNRjy and the calculated MSE. It
has four curves representing two curves for each method. It Is evident from this study
that for an Increase In SRy causes an Increase in MSE. For a weak slgnal to nolse
ratlo (SNR;y = -10db.), all the four curves have a MSE value below 10% and this
trend breaks down when the SNR;y ratio Is Increased to O db. and 10 db. When the
lterative algorithm s implemented, Irrespective of the SNRy ratio, MSE Is reduced for
the PS method. Flig. 5.7 also shows that for MA, the MSE after 10 iterations 1s approx-
imately the same as that without lteration. Typlcally consldering SNRjy == 0db., the
MSE are respecuvely calculated as 30% and 0.5%% for without and with 2 1terations by
applying the PS, whereas they are respectlvely 39897 and 30%% for 3 and 10 iterations
by Implementing the iterative scheme of MA. From these discussion it Is clear that the
MSE of the PS decreases rapldly from 309% to 0.5%% while the rate of decrease of MSE

is very low for the MA method.

From the above analysls 1t 1s evident that the reconstruction of a deterministic
signal 1n the presence of random nolse, can not only be performed by tae present com-
puter code, but also the performance Is found to be better than the MA method. It
should be noted that even by Increasing the number of iterations for the MA method,
the reduction in error 1s not well pronounced, whereas the PS performs better with llm-
ited computational efforts. It can be concluded that the performance of PS is superior

to that of MA.
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5.3.2 Uniform Distibution

In order to shed some further light on the stabllity of the reconstruction pro-
cedure, the results are repeated for the case of uniformly distributed background noise.
Conslder a sequence of 42 samples that are extracted at {¢, } Instants using Equation
(5.5). These time 1pstants are distributed with uniform denslty function In the range of
-Af2 to Ap2 around Its corresponding synchronous positions {kAt}. [, and f, are
respectlively chosen as 1100 Hz. and 2400 Hz. For the PS, M Is chosen as 3 and the

iterative procedure Is repeated twice.

Refer Fig. 5.8 (a) and (b), where the simulated results are plotted by applying PS
and MA respectively. Flg. 5.8 (a) emphaslzes that the amplitude of the reconstructed
signal, without 1teration (dash line) differs from the original signal (solld llne) whereas
the agreements are Improved after 2 iteratlons. In contrast, Fig. 5.8 (b) reveals that
there is no conslderable Improvement even after 10 lterations. Note the departure In
the reconstructed signals from the solid line for both 0.004 sec. and 0.012 sec. The
above figures correspond to SNRjy = 0db. and the same arguments are also found to
be valld when the SNRpy Is Increased to 10 db., for which the results are displayed In
Fig. 5.9 (a) and (b) respectively for PS and MA. From Flg. 5.9, 1t Is found that the
reconstructed signals (dash llnes) are more distorted than the previous case (Fig. 5.8).
In the PS method, one milght attaln better results even wlith llmited number of Itera-

tions.

For both PS and MA the MSE are calculated and found to be less than the Gaus-

slan distribution. In fact the MSE levels for the PS are only 7.5% and 0.04% when
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SNR;y = +10db.. They are reduced further to 1.7% and 0.03%, when SNR;; con-
sldered 1s 0 db. By uslng MA method also the MSE (3.8% and 2.8% for
SNR;y = 0db.; 13% and 10% for SNRjy = +10db.) are calculated. In the case of
random distribution (-ref: Flz. 5.2 and Fig. 5.3), the calculated MSE level Is low In
comparison to the deterministic sinusoldal wave (-ref: Fig. 4.3), for the same power.
From this 1t Is evident that an Increase In nolse or when the signal Is weak, 1t wlill
reduce the MSE level, In all the above discussion the performance of the PS Is found

to be better than that of the MA method.

5.4 STATISTICAL ANALYSIS OF THE COMPUTED ERRORS

All the results discussed In the above sectlon as well as In the previous chapter
are obtalned by fixIng the number of trial as 1(-refer the computer code Fig. 4.1). Dur-
Ing this trlal, 42 samples are extracted at {f; } 1nstants. These Instants are uniformly
distributed within the range of -A2 to A2 from thelr corresponding synchronous
positions {kAt}, If "NT" trilals are performed then one should calculate, "NT" number
of MSE values. The results and observations were presented for a stochastic signal,
under the assumption of a stationary ergodlc process and MSE were computed for the
consldered tlal. However to valldate the assumption of the stationarlty and ergodiclty
of the process, for the considered observation Interval, the MSE are also computed for
different reallzations of the same process. This sectlon conslsts of three subsections
discussing two statlstical parameters, mean and standard deviatlon. First Investigation
.ol the above parameters 1s on the reconstruction of a sinusoldal function with unl-
formly distributed inltlal phase from Its unequally spaced samples. Secondly, the unl-

formly distributed random process will be considered as a signal under analysls. The
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summation of a sinusoldal function and a random uniformly distributed process s con-

sldered 1n the third subdivision.

The MSE are computed for without iteration, with 1 and 2 terations for a particu-
lar reallzation, say, at the first uial. During the second trlal also a set of MSE are

computed. By performing "INT” trials the mean of MSE can be estimated as:

NT
3 MSE;;
oD i =1
MSE == (5.7)

Note that "NT” is the number of trials and for the present study 1t s 100. Similar cal-
culation for the mean values of MSE for without, with 1 and 2 lterations can be per

formed and they are respectively denoted by MSE,, MSE; and MSE,.

The second statistical parameter, ‘standard deviation’, is calculated as follows. Let
the standard deviatlon of MSE for the case without iteration be denoted as "G,". It can

be mathematically expressed as follows:

[o—

NT —
SIMSE? - MSE,
60 = NT - 1 (5.8)

where MSE, Is already computed using Equatlon (5.7). By following the same steps,
7, and &, are computed based on the previously calculated MSE, and MSE, values
respectively. Effect of the trlals on these two parameters for varlous cases wlll be dls-

cussed 1n the followlng subsections.
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5.4.1 Sinusoidal Function With Uniformly Distributed Initial Phase

Conslder a sequence of 42 samples are extracted at {¢, } Instants. They are unl-
formly distributed 1n the specifled range of thelr corresponding synchronous positions
{kAt}. The other input conditions remaln the same as before namely, f,, == 1100Hz.,

Js =2400Hz and M =3, Jter =2 and NT =100 and 0 <J <2.0.

The slnusoldal function with uniformly distributed initial phase can be obtalned as
follows. Let z,(¢) be the generated function for the first trial.

z,(t) =A;sin(w,t +¥,) (5.9)
where A, and ¥, are the amplitude and the phase of the sinusoldal function respec-
tively and w, = 27f,,. During the m-th trial, the random realization of the process
will be different and as a result, the generated z,,(¢) can be expressed as:

z,(t) =A,sin(w,t +¥,,) (5.10)
The ampliitude and the band-1imiting frequency remain the same for the two trials l.e.,

A=A, w,=w,
while the initdal phase ¥,, 1s uniformly distributed

0 <\I’,' <27
within the range (0, 2 ).

Fig. 5.10 (a) ustrates the variauon of Jitter by considering a slnusoldal function
with uniformly distiibuted Initlal phase. It displays three curves corresponding to
without, with 1 and 2 lteradons. The X and Y ax!s are respectively the Jitter parame-
ter (J) and the mean of Mean Squared Error (WE). When the iteratve procedure 1s
impiemented, the second and the third curves lle very close 0 each other. In order

show clearly the data points for these curves, they are also displayed in the same
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figure by selecting a different scale for the vertical axis. It s worth mentioning that
the results for this figure 1s obtalned after running the program for 400 trials, on the
basis of 100 trlals for each Jtter. For each trial a set of MSE are calculated respec-
tively for without, with 1 and 2 iterations and then the mean value of the errors are

obtained by using the Equation (5.7).

It Is evident from Fig. 5.10 (a) that the value of Jitter error (e;(¢)) Increases
with an Increase In J, which In turns causes an Increase In the MSE levels. This has
been found to be true for the all three curves. For J = 0.5, the computed H§Eo and
m2 are 8% and 0.2% respectlvely. Recall that for Fig. 4.3 (a) which shows the
results of the first realization, the respective MSE levels are 9.6% and 0.12%. Similarly
conslder J =1, the MSE,, and MSE, are estimated to be 50% and 1% respectively
which compares with its counterpart 48.39% and 0.71% for without and with 2 itera-
tlons respectively (-refer Fig. 4.5 a ). Thus irrespective of the variation of J, the MSE

(mean of MSE) after 100 trlals lies closer to the first reallzation.

The standard deviatlon is also computed using Equation (5.8), and Flg. 5.10 (b)
shows the three curves for without, with 1 and 2 iteratlons respectvely. The X and Y
axls are respectlvely J and the standard deviatlon of MSE. It 1s evident that the stan-
dard devlations G,, 0, and G, all Increase with J. In Equaton (5.8), G, Is directly pro-
portional to the difference between MSE, and MSE,,. If MSE, lles closer to MSE, then
T, !s minimum; that Is the standard deviation of MSE Is minimum. For J = 0.5, 5,
and &, are 1.52 and 0.05 respectvely. Similarly, when J = 1.0, @, and 5, are 9 and
0.9. From the presented discusslon three features are evident. First feature 1s that the

calculated MSE's and &'s are minimum, and the second Is that when the lteratdve




- 120 -

(& = W) oseqd renrun pynqrasp Auopun g
UOROUNy [EPIOSNUIS J0J FSIA] JO UOHBIASD piepure)s

H313NvHYd H3ALLIP
| SL°0

:(q) or'g Sy

e

suoijes9)) g )y Yo
uoliesa) | 1oy V
uoniess)) Inoyum O

1 1
- o
3SW 40 NOILVIAIQ Q3VANV LS

o1




- 130 -

procedure Is Implemented the differences due to trials are further reduced. Thirdly, the
assumption of stationary ergodicity Is found to be true when the process Is repeated for

many trlals, by studylng the random realization of the samples In an observation Inter-

val.

In the above figures mentioned, J1s varled from 0.25 to 1.0 and thus the value of
M for partitioning scheme Is 3. Jis further increased and statistical parameters are also
compared. When J Is Increased, M has to be Increased in accordance with the parti-

tloning scheme. Recalling Equation (4.4) which provides the requirement of M for the

ranges of J, we have

00 <J <1.0; M =3
1.0 <J <20; M =5 (4.4)
The value of M chosen to study the effect of J variation from 1.25 0 2.0 1s 5.

Having the same Input conditions as: N =42, f, = 1100/z., [, = 2400/ 2.,
Iter = 2 and NT = 100, simulations are performed and Flg. 5.11 (a) lllustrates the
results In the same fashion as Fig. 5.10 (a), however with a different scale for Y axis.
For this range of J the number of trials does not affect the mean of the MSE and thus
the MSE of the first trlal Is approximately the same as that of the mcan of the NSE
from 100 trials. Fig. 5.11 (b) shows the analysls of standard deviadon. It 1s found that
the standard deviadon has a very small value, implying MSE wlll vary only marginally
from MSE. An Increase In the value of the standard deviation Is also observed with

an Increase In J.

From the above analysls 1t 1s clear that an Increase In J causes a direct Increise
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both In the mean and the standard deviation values. It Is also equally clear that the
MSE for the first trial and the mean value from 100 trials has the same trend. It MSE
Is almost same as that of MSE of the first trlal, 1t means that the consldered process
may be a first order stationary ergodic process. This can be further confirmed from
the analysis of the standard devlation which 1tself has only a small variation from the
first reallzation to the 100th. Thus It can be formulated that the present code can
reconstruct a sinusoldal function with uniformly distributed phase and the slmulated

results are not affected due to the number of trials performed.

5.4.2 Uniformly Distributed Random Processes

In this subsection the statistical parameters are analyzed wlth respect to a unl-
formly distributed random process. The reconstruction for the first trlal 1s presented In
the sectlon 5.2 by consldering a set of 42 samples which are extractzd at {f } Instants
and these Instants are uniformly distributed In range of - A2 to A2 over thelr
corresponding synchronous positions. The time Instants are generated as elther a Gaus-
slan or uniform distribution by using Equation (5.5). These tlme instants may vary
from trial to trial, and thus 1t may change the generated random signal. To ldentfy
these changes on the slmulated results, the MSE's are calculated and analyzed. As
before, 100 such MSE's are obtalned and the mean of the MSE ( MSE ) and 1ts stan-
dard deviation ( & ) are presented In the followlng discusslon. The other input param-

eters are f,, = 1100Hz., f, = 2400Hz. and M = 3.

The calculated MSE are displayed In Fig. 5.12 (a). This figure clearly demon-
strates a sufficlent reduction 1n the mean error levels once the lterattve procedure Is

\mplemented. An Increase in the J value causes a conslderable Increase in MSE
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values. Analysing a typlcal point J = 0.5, the computed MSE, and MSE, are respec-
tively 0.5% and close to 0%. When comparing these values by Increasing J == 1.0 the
respectdve Increase In values are 2% and 0.1% It Is Interesting to reallze that these
computed MSE values agree well with these computed based on the first reallzation
and discussed In Fig. 5.3. The mean for 100 trials are calculated as only 0.3% and
0.02% respectively for without and with 2 Iterations. When J = 0.5, it Is found that
the number of trials do not Influence the calculated MSE levels. Moreover, 1t Is also
clear that the differnece in value diminishes, when the Iterative procedure 1s imple-

mented.

The standard devlation of the random uniform distribution for 100 trlals Is also
studled. Fig. 5.12 (b) shows the observations In the same fashion as before. Since the
standard deviatlon is very small after 1terations compared to the without iteration
values, they are displayed by using a different scale In the same figure. From this It Is
clear that the Iteratlve procedure not only decreases the error but also minlmizes the
uncertainity Involved In the generation of time Instants. The above observation Is true
for the case of unlform distribution having a subinterval length M = 3 and the perfor-

mance is further studled by Increasing the subinterval length to 5.

The analysed results are presented In Fig. 5.13 (a) and (b) respectively for mean
and standard deviation. The iterative procedure Is repeated and and MSE are computed
for 1, 2 and 3 lterations. From the figure 1t Is clear that MSE 1s Increased almost
ltnearly with respect to J. When J =2.0, ml 1s relatlvely high. This Is due to the
selected M value for the partitioning scheme and the error can be easlly reduced If one

Increases M from 5 to 7. Smaller magnitude values for the standard devlatlon are
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shown In the Fig. 5.13 (b). This shows the varation on the MSE to be small. Thus 1t
can be concluded that the MSE computed based on the first realization 1s about the

same as MSE obtalned after 100 trials.

5.4.3 Sinusoidal Function in the Presence of Uniformly Distributed Random Pro-

cess

This subsection carrles a slgnal of nonstationary nature. The process consldered Is
efther a Gausslan or uniform distribution and they are reconstructed from thelr
unequally spaced samples for different SNR;y values. From section 5.3.2 1t Is found
that the MSE varlations for a uniform process behaves similar to that of a Gausslon
distribution and thus the later Is excluded from the present discussion of analyzing the
effect of trials. Note that SNRjy of Equation (5.8) Is dependent on A, and o ,. Sample
varlance (0,) of the random nolse may vary from tial to trial. In otherwords one
should expect a slight variation 1n SNRjy from one reallzation to another due to the
variation In cr,f. A, 1s always kept constant 8s unity and not varied with realizations.
The two statistical parameters are stuaed for SNRyy of 20 db. The sublnterval length

(M) consldered Is 3 or 5 based on the range of J.

Conslder a sequence of 42 samples extracted at {¢, } Instants with J ranging from
O to 1.0. The other Input condtions are A4, =1 N =42, f, =1100Hz,
J, = 2400Hz., Iter = 2 and NT =100. As polnted out earller, the Inltlal phase 1s
varled from trlal to trlal. The reconstruction Is performed and the average values of
the MSE are computed. The three curves namely without, 1 and 2 lterations are plotted

In Fig. 5.14 (a). The second and third curves are displayed seperately 1n order to
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Increase the clarity between the data points. The X and Y axls are respectively J and
MSE. MSE of 1 and 2 tterations are close t© 0.19 when J Is 0.25 and 0.5. Conslder
Ing J =0.5, the MSE,, MSE, and MSE, are computed as 7%, 0.3% and 0.08%
respectively; however when J = 1.0 they are respectively 419, 4.5% and 1%. Thus

the mean of the error Is Increased when Jis Increased.

Fig. 5.14 (b) displays the corresponding analysls for the standard deviation. It
has the same format as Fig. 5.13 (a). 04, 0, and 7, are computed using equation (5.8)
and they are 2, 0.2 and 0.04 for J = 0.5, whereas when J Is Increased to 1.0, they are
respectively, 16, 3 and 0.8. Moreover, no abnormal changes are observed wuen the
number of iteratlons are increased. Thus based on the mean and standard deviation it
can be concluded that the simulated results hold good for the sum of a deterministic

sinusoidal function and a random proces-.

Fig. 5.15 (a) and (b) llustrate the varlation of mean and standard deviatlon for
1 <J < 2.0, by chooslng M as 5. Fig. 5.15 (a) displays three curves corresponding to
MSE,, MSE, and MSE,. The format is the same as Flg. 5.14 (a), however It has a
different scale for the vertical axls. When J = 2.0, MSE Is found to be high. To
reduce the MSE without. Iteration one should Increase the value of M from 5 to 7.
Further, the second statlstical functlon, standard deviatlon, 1s also computed and com-
pared in Fig. 5.15 (b). Comparing the values of the second and third teratlons, 1t 1s
seen that the varlation In the error Is minilmum. But when J = 1.75 and 2.0 1t can be
noted that the standard devlatlon Is Increased and thls shows the deviatlon from ASE

1s also high.
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5.5 CONCLUSION

In this chapter various interesting simulations have been performed and the results
presented. A random process has been generated and flltered to obtaln a band-limited
signal, which is further used for reconstruction. For reconstruction two types of ran-
dom distributions were consldered, narnely, Gausslan and uniform distribution. In all
cases the Mean Squared Error (MSE) was computed and Its eflects on the iteratlve
procedure was also studled. Simulations for the case of a deterministic signal in the
presence of a random noise was studled by consldering different Slgnal to Nolse
Ratios (SNRjy) during the reconstruction. Througout the chapter the simulation results
of the Present Study (PS) was compared with that of the "only one known on-line
reconstruction procedure” from unequally spaced samples based on the slne-composing
functlons (Marvast! and Analoul, 1989). At the end of the chapter, two statistical
parameters (mean and standard devlation) for the MSE were calculated and compared.
The effect of these parameters was also observed by varying the bounds of J which

can be easlly performed by sultably selecting M.

Based on the above discusslon, the following can be concluded:
(1) The iterative algorithm presented Is extended for reconstructing a random distribu-
tlon from unequally spaced data where the distribution can be elther Gausslan or unl-
form.
(2) The performance of the new algorithm was compared with Marvastl and Analoul’s
(1989) method for the reconstruction of a determlnlstic signal In the presence of
nolse. These results show that the present method performs better in all respects com-

pared to that of Marvastl and Analoul (1989) one.
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(3) The effect of trials on the MSE and & for the ensemble of realizations Is small,
further reduction In thelr values are observed when the lterative procedure Is lmple-
mented. This has been found to be true for the reconstruction of a sinusoldal signal
with uniformy distributed initial phase, uniformly distributed random process and for
a deterministic signal In the presence of a random process.

(4) From the calculated values of the standard deviatlons, only small variations

between MSE and MSE are observed.



A e M W At D £ah €

CHAPTER 6
STABILITY

6.1 INTRODUCTION

In signal processing llterature, many technlques such as lowpass flltering, polyno-
mial holds, Yen's and Spline Interpolation have been presented to reconstruct a signal
from It5 unequally spaced samples. These simulation technlques were analyzed and
thelr performance were evaluated by Sankur and Gerhardt (1873). They compared the
performance of these techniques by measuring the stablllty of the system. An Index
was defined using migration parameters of the deterministic slgnal. The extent to
which the samples were allowed to migrate was also established by using unlform and
Gausslan distributions.

N
Y z3(kAt)
k=0

N 2
» (z(kat) - #(kat))

k=0

SNR =

(6.1)

where z(kAt) and £(kAt) are respectively the original and the reconstructed samples
respectively. In the above equation, the denominator expresses the error In the recon-
struction procedure, In otherwords, the nolse Incorporated In the procedure. In the
present study, the same principle Is used to measure the Index of performance not for
its migration parameters but for variation In the Input parameters. In the present study
the sum of a deterministc slnusoldal signal and a random nolse 1s considered for
analysls instead of a deterministic signal. Therefore SNR is termed differently as
Reconstruction ERror (RER). Thus we deflne the term stabllity here as the system's

insensitvity to RER for variations In the 1nput parameters. The Input parameters con-
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sldered are the amplitude of the slne signal and the varlance of the nolse. The reasons
for choosing these two parameters for sensitlvity 1s explalned in the following para-

graph.

In section 5.3, the reconstruction of the sum of a deterministic (sinusoldal) func-
tlon and a random process was conslidered for various SNRyy. The varlous SNRyy can
be obtalned by varylng the two parameters: the amplitude of the slnusoldal function
and the variance of the random nolse, these are denoted respectively by A, and o2.
Let us recall Equation (5.8):

2
SARIN = 10log,q

2 (5.8)

From the above Equation it Is clear that SNRpy Is directly and Inversely proportional to
A, and o2, Changes In these parameters affect the system performance. Recall the
definition of RER used 1n Equation (4.8):

N
Y z?(kat)
k=0

RER = 10log,o— =
v (z(kat) - #kat))

k=0

(4.8)

z(k At) and £(k At) are the original and the recovered samples. The recovered samples

are obtalned as a result of two lterations and 1s denoted by £(kAt). It Implles that the
lteratlve procedure 1s repeated twice (Iler = 2) for a sequence of N samples. It is
declded to terminate the process after 2 lterations, since the simulated results as dis-
cussed In Chapters 4 and 5 have shown that the MSE levels are minimum even with 2
iterations. Flrst, the effect of the amplitude variatlons in the simulated results are dis-

cussed and later the Influence of the variance.
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6.2 EFFECT OF AMPLITUDE ON THE STABILITY OF THE SYSTEM

The purpose of this section Is to examine the sensitivity of the system perfor-
mance by varylng A, in Equation (5.12). The variation In A, under the assumption that
n(t) 1s a Gausslan process Is consldered as the first, and the variation in A, using uni-

form nolse Is consldered next.

Following are the Input parameters consldered for the stablility criterlon. A
sequence of 42 samples are extracted at {f; } Instants and these instants are randomly
distributed with 2 uniform density function in the reglon of - A8 to At/8. The average
distance between the samples are 1/2400 sec. (2400 Hz. Is the sampling rate). For
every sublnterval length, three samples are selected for the partitioning scheme. In
Equation (5.8), A, Is varled as 10, 20, ~+,100, with 02 remaining constant. A random
Gausslan process having zero mean and unlty varlance (a,f) Is consldered. For exam-
ple, using A, = 10, In Equation (5.8), SNR;y 1s calculated approximately as 17 db.
and when A, s Increased to 20, SNRyy Is Increased to 23 db. The effect on RER due

to a variation In SNR;y Is studled using the Equation (8.1). To evaluate the effect of

J , 1t s increased from 0.25 to 1.5.

Flg. 6.1 summarizes the effect on RER due to variations In the J value, The four
curves represent the RER varlations for different Jitter's namely, J = 0.25, 0.5, 1.0
and 1.5. Itis clear from the figure that for an incease in SM?,N, there is only a margl-
nal varlation In RER. The figure also demonstrates the Insensitivity of A, ( SNRpy
from 17 db. to 37 db.) on the system performance. The other factor observed from the

figure 1s that there Is a reduction In RER for an Increase in J and 1t can be explalned

as follows.
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Referring to Flg. 3.2, Increase In J Increases the deviations of time Instants from
thelr corresponding synchronous positions and this Increase influences the iterative pro-
cedure. Hence the recovered uniformly spaced samples, £(kAt), 1n the denom!nator of
Equation (6.1) deviates away from the original samples, z(kAt). This Increase In the
denominator directly affects the RER and thus there is a reduction In the value of
RER. For example when J = 0.25, for a value of 17 db. In SNRpy, RER 1s approx!-
mately 1s 24.4 db. When SNR;y Is increased to 37 db., RER 1s 24.3 db. Thus for an
Increa = of 20 db. In SNRpy, there Is only a change of approximately .1 db. In RER.
Conslder J = 1.0 (larger time instants deviation), only 0.2 db. change 1s found when
SNRyy 1s Increased from 17 db. to 37 db. Thus for the two curves (J = 0.25 and
1.0), when SNRp; = 17db., RER are respectively 24.4 and 9.9 db. The reduction In
RER s approximately 14.5 db., from J = 0.25 to J =1.0. As polnted out earller,
this reduction In RER is due to the larger deviaton of the tirme Instants from thelr

corresponding synchronous positions {kat}.

The above observations reveal that the present method 1s Insensitve to variations
In SNR;y. In otherwords, the marg'nal variation In the reconstructlon error for an
increase In the Input, SNRpy;, confirms that the system Is stable. The discusslon
presented confirms the stabllity of the system performance for a slnusoldal slgnal In
the presence of a Gausslan process. The analysls can be fwther extended to study the
system performance In the presence of a sinusoldal signal with a random uniform pro-

cess.

A random uniform process can be generated lnstead of a Gausslan process by

initlalizing the random generator function to uniform distribution. The I1nput
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parameters remaln the same as before and they are, N =42, f,, =1100Hz,
fs =2400Hz., M = 3 and Jter = 2. J1s also varled from 0.25 to 1.0. As before, 4,
Is varied from 10 to 100 in steps of 10 and a,": 1s chosen as 0.06. In Equation (5.8),
for A, =10 and 02 =0.08, the SNRpy Is found to be 41 db. The lterative procedure
is Implemented and the valform samples are recovered after 2 Iterations which are
used to compute the RER. By following the same procedure, when A, Is equal to 20,

the SNRpy 1s computed as 47 db and its corresponding RER also measured.

Fig. 6.2 shows three curves corresponding to J =0.25 , 0.5 and 1.0. These
curves follow the same trend as those In Fig. 6.1 and therefore the arguments of Fig.
6.1 are equally valld Ivre. Consldering typically two sample polnts on the X axls,
namely 41 db. and 61 db., the RER 1s observed to be approx!mately constant. It s
also clear from the figure that for an increase of 20 db. In SNR;y;, only a deviation of
J.1 db. !s found. Thus the system is found to be stable even when a uniform process

1s consldered.

6.3 INFLUENCE OF THE VARIANCE ON THE STABILITY OF THE SYSTEM

It Is observed from above studies that the system {s stable for variations 1n the
Input parameter, A,. The above observation also holds for various values of J. How-
ever, the stabllity of tlhe system has to be studied by varylng the second Input parame-

ter namely, o 2. Hence, A, is kept constant as unlty and o2 varied.

As before, a sequence of 42 samples at {{} Instants are randomly distributed

with uniform density function In the reglon of - A8 to AR, thus J = 0.25. M Is
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chosen 3, for the partittoning scheme. When 02 = 1.0, SNRpy can be calculated as -3
db. by using Equation 5.8). The present iterative procedure is applied for this signal
to nolse ratio and uniform samples recovered after 2 iterations. :f(kAt) so obtalned Is

further used to compute the RER.

Flg. 6.3 shows four curves corresponding to J = 0.25, 0.5, 1.0 and 1.5. X and
Y axls are respectively SNRjy and RER. The range of the X axis Is from -5 db. to oo
db. According to Eq (4.8), when 02 — 0,the value of SNR;y — oo From the figure
1t Is also clear that the RER decreases when SNR;y Increases. This trend 1s well pro-
nounced for the reglon of -3 db. to 10 db. and stabillzed when SNRjy is further
Increased. For example for the curve of J =0.25, for SNRpy =-3db. and 9 db,,
RER are observed to be 25.8 db. and 23.2 db. respectively. There Is a difference of
approxlmately 2.6 db. In RER value for an Increase of 12 db. in SNR;y value. How-
ever when SNRjy =35 db., RER s only 243 db. From SNR;y =9db. to
SNR;y = 35db., there Is only a marginal variation In RER value. Thus changes are
significant only In the reglon of -3 db. to 10 db. of SNR;y and found to be Insensitive
there after. Comparing Fig. 6.1 and Fig. 6.3 for a typlcal sample polnt, say
SNRpy = 35db., for J = 0.25, we see that the RER values are 24.3 db. and 24.4 db.
respectively. Both have refer almost the same value for RER for the same SNRpy
value. This ensures the performance of the lteratlve procedure remalns constant for the

same SNR;y value.

Let us now study the effect of the variation In o} for the cases of the reconstruc-
tion of a random unifrom process. The Input conditions are the same as before. Fig.

8.4 shows the Influence of variance on the stabllity of a random uniform process and 1t
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can be observed that the system is more Insensitlve to the variations In SNRy than
the previous case. The analysls of these two cases confirm the stabllity of the system.
Moreover 1t Is clear that using a random unlform proccess, the system Is more Insensi-
tive to varlations In the 1nput parameter, a,?, than In the presence of a Gaussian pro-
cess. The analysls presented Is restricted upto J = 1.5; however, It can also be further
extended to J = 2.0 or 2.5. For J =20, one has to select M as 5, In order to per

form the parttionlng scheme.

8.4 CONCLUSION

Based on the above discusslon, the followlng findings are formulated:
(1) In the present study, RER 1s used as an index of performance to study the
Influence of the variation In the Input parameters, namely, amplitude and variance.
(2) Only marginal varlation In the output of the system 1s noticed when there Is an
Increase In the amplitude of the sinusoldal signal and this Is found to be true both for
the Gausslan and unlform processes.
(3) The influence of the varlance of a randomn process on the system stabllity Is also
studled. The results presented confirm that RER decreases when the Input Increases.
This trend 1s observed only for a particular region of SNR;y outside of which RER 1s
constant.
(4) These findings confirm that the present method Is not only found to be efficlent for

reconstruction, but also the system is stable for variations In the Input parameters.




- 158 -

CHAPTER 7
CONCLUSIONS

An lterative procedure for the reconstructlon of a bandiimited signal from
unequally spaced samples was presented. A Partitioning scheme was used for selecting
the number of samples 1n a sublnterval length. For the deterministc process, sine
waves and sums of slne waves are reconstructed from the unequally spaced data
polnts. The eflect of the subinterval length and the Jitter parameter on the recon-
structed slgnal have also been studied. During the second part of the stmulation a sys-
tematic approach for the reconstruction of a random process from unequally spaced
samples was attempted. This has been performed by generating a random process and
filtering 1t by using a Butterworth lowpass fiiter. Two types of random distributions,
namely, Gaussion and Uniform were consldered for the analysls. The lteratlve pro-
cedure has been further extended for the sum of a deterministic slgnal and a random
nolse by consldering the Slgnal Nolse Ratlo (SNR) as the index. For each of the
above cases, the value of the Mean Square Error (MSE) has been computed to evalu-

ate the performance of the {terative procedure.

Based on the discussion of the results, the following findings can be formulated:
1) An Increase either In the number of Iterations or the sublnterval length decreases
the MSE level. This unlque characterstic provides two optlons for the reconstruction
procedure. One can elther select the sublinterval length or fix the number of lterations

based on the MSE requirement.
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2) A relationshlp has been formulated between the Jitter parameter and the sublinterval
length such that It Is always possible to obtaln a less than 5% MSE level.

3) An Increase elther In the sublnterval length or the number of lterations Increases the
CPU time of computation.

4) The calculated MSE for the reconstruction of a random process Is much less than
that of a determinlstc signal, particularly for a slnusoldal signal with an operating fre-
quency close to half the sampling frequency.

5) An Increase In SNR Increases the MSE level, which itself decreases when the

Iterative procedure Is used.

Recentdy, Marvast! and Analoul (1988) developed an Iterative adaptive method
for reconstructing bandlimited signals. To evaluate the eficiency and show the
superiority of the present study, considerable amount of effort has been made 1n
slmulaing all the different cases discussed In the thesls. The MSE for both the
methods were computed and compared. From these studles i1t Is clear that the proposed
method Is not only better In MSE performance, but also can work for larger devia-

tlons of samples In comparlson to Marvastl and Analoul (1989).

The above findings are applicable for a stochastlc signal under the assumption of
a stationary ergodic process. To valldate thls assumption, signals were also recon-
structed for different realizations. The effect of trlals on the average value of the MSE
and standard devlation of the error were found to be minimum, further they decrease,
when the lterative procedure Is Implemented. The stability of the system was also stu-
dled for varlations In the Input parameters, namely amplitude and varlence, by using

an Index termed as Reconstruction ERror (RER).
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