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ABSTRACT

Schwarz’s Surface
and the
Theory of Minimal Surfaces

Denis Dalpé

We explore some general properties of minimal surfaces, and their historical ori-
gins. I am particularly interested in the Schwarz surface, which is spanned by
a regular tetrahedral skew quadrilateral. We use the Weierstrass-Enneper repre-
sentation formulas to derive the analytic function R(w) obtained by Schwarz and
use a representation in terms of elliptic integrals to investigate the relation to the

hyperbolic paraboloid.
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PREFACE

My facination with surfaces goes back to the late seventies during my studies
at the McGill School of Architecture. One of my teachers, the late Stuart Wilson,
was a Buckminster Fuller in architect’s clothing. His interest in geometry rubbed
off on me and it was while doing a project with him that I was first introduced to
minimal surfaces.

Several years later, while working as a registered architect, and motivated by a
desire to continue my studies, I initiated a thought process, occupying my evenings
with experiments. I was intrigued by the fact that the octahedron fit inside the
tetrahedron and the tetrahedron fit inside the cube. I reasoned that there must be
a geometry linking these three polyhedra.

After a year of frustration, I gave up on lattices and tried using surfaces. The
hyperbolic paraboloid solved my problem. It contained four of the six vertices of
the octahedron and four of the six edges of the tetrahedron. By composing these
‘hypars’ contained in a cube, I found that they generated a continuous surface,
simply connected, free of self-intersections and extending in all directions. In the
fall of 1987 I constructed a model using piano wire, nylon stockings and fiberglass
resin (see Fig. 1).

I decided that I would base my studies on this geometry. It soon became
apparent, however, that architecture was not the best academic route. Mathematics
seemed a better choice. So in the fall of 1991 I enroled as an independent at
Concordia. It was not until August of 1995, while then a graduate student, that
I finally saw a book that dealt with this kind of surface. It was Schwarz’s surface
discovered in 1865 in the context of minimal surfaces.

This thesis is an expository treatment of the theory of minimal surfaces as it

relates to Schwarz’s surface.
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I. Introduction

1. Historical Outline

The theory of minimal surfaces is one of the most prolific branches of modern
mathematics. For centuries mathematicians have been intrigued by the inherent
properties of the surface with minimum area spanning a given fixed wire frame in
three-dimensional space. The physicist Joseph Antoine Ferdinand Plateau obtained
physical models of such surfaces in his famous experiments with soap films during
the nineteenth century.

The man whose work foreshadowed the study of minimal surfaces was Joseph
Louis Lagrange. In 1762 he introduced a method for the calculus of variations to
find the surface of smallest area bounded by a given closed curve.! That surface

z = z(z,y) was a solution to the Euler-Lagrange differential equation

0 2z 0 2z,

—_— +—
Oz 2 4,2 2
1+ 22+ 22 9y 1+ 22+ 2

An important contribution was then made by Jean Baptiste Marie Meusnier

—0. (1)

who in 1776 discovered that the right helicoid and the catenoid both satisfy the
Euler-Lagrange equation. He also showed that the left-hand side of equation (1) is

twice what today is known as the mean curvature H of the surface z = z(z,y), Le.

o 2z +3 2y
9z 1+ 22+ 22 % \J1+22+ 22

1+ 22)2zz — 2222y Zzy + (1 + 22) zyy
(1+22+22)%

Henceforth, it has been customary to use the term ‘minimal surface’ for any surface

= 2H. ()

of vanishing mean curvature, even though it may not have the least area for the

given contour.

1 YWhat since Henri Léon Lebesgue is referred to as the Plateau problem.
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Equation (2) yields the minimal surface equation
1+ zz)zm — 22,222y + (L + 22) 2,y = 0. (3)

In 1783 Gaspard Monge, Meusnier’s teacher, integrated this equation to derive
representation formulas—soon to be amended by Adrien Marie Legendre—in terms
of analytic functions. Using these formulas, Heinrich Ferdinand Scherk, between
1830 and 1834, derived explicit equations for five additional real minimal surfaces.

Then came the golden age of the theory from 1855 to 1890. New minimal
surfaces were discovered by Catalan, Enneper, Henneberg, and Schwarz. Impor-
tant contributions were also made by Pierre Ossian Bonnet, Joseph Alfred Serret,
Georg Friedrich Bernhard Riemann, Karl Theodor Wilhelm Weierstrass, Johannes

Leonard Gottfried Julius Weingarten, and many others.

2. Lagrange

Given a domain D in R? and a (sufficiently smooth) map z = 2(z,y) defined
on 8D, the boundary of D, we have a fixed closed curve C, the image of 8D in R3.
The problem is to extend z(z,y) to all of D so that the resulting surface in R3 is
minimal.

Lagrange used the calculus of variations developed by Leonhard Euler to min-

imize the area

AS) = [ [VIFTORF oty
D

of the surface z = 2(x,y) = 2(z,y) + €{(x,y) near the solution surface z = 2z(z, y),
defined on D, with the common boundary C. Here ((z,y) is an arbitrary function
satisfying suitable regularity conditions and vanishing on C, while £ can be viewed

as a ‘small’ variable. Thus the integral

I(e) = //,/1+2§+2§d:z:dy,
D

2



considered as a function of £, has a minimum value when I'(0) = 0. In detail

I(e) = / / \/ 1+ 22 + 22 + 2e2,; + 222,Cy + £2¢2 + 3¢ dady,

2

22,0, +2 2¢ i 2=C:
II (\-) — // Z. C + Zy(y + C -+ Cy d:l,‘dy’
\/l + z-

+ 2} + 222z + 2e2,Cy + €22 +7¢;
I') = / / 26e ¥ 2% gy
D

1+ 22+ 22
N
')’ 2
D 1+22+2; \/1-1—25-{-23

) * 0;27<y)dxdy'

Integrating by parts we get

i _ 2 Zy . -
I(O)_[(\/1+zg+zg’\/1+z§+zg) ¢( ,y)}
Zz 2
//C(”y){(ax 3'”).<\/17rz§+zg’\/1+zg+zg>}dxdy’

where the first term vanishes since {(z,y) vanishes on C. Hence,

I'(0) =-//<77y){(01 By) (\/1+z:3+z3’\ﬁ+zjg+zg)}dxdy
//{a"’( 1+z-+z-)+%<\/:%__zg>}§($,y)d$dy=o,

which implies that

9 = + 2 2y =0.2 (1)
Ox \ | f14 22+ 22 O \ \J1+22+ 22

z . dy—

9 2, dz
This implies that 77—:2—; is an exact differential.




3. Monge

Monge first attempted to solve Lagrange’s minimal surface equation
(L4+¢3)r—2pgs+ (L +p*)t =0 (39

in 1775, but only succeeded in doing so ten years later® (here we have used Monge's
notation, replacing 2z, 2y, Zzz, Zzy, Zyy Y P, 4, T, S, respect ively). In his paper enti-
tled Mémoire sur le calcul intégral des équations auz différences partielles, presented
to the Royal Academy of Sciences in Paris the first of February 1786, he outlines a

method for solving a general linear equation of the form
Ar+Bs+Ct+D =0.

Then, beginning in section XXIII, he solves Lagrange’s minimal surface equation
(see §I1.1, equations (4')). His method was flawed,* however, and upon the ob-
jections of Pierre Simon Laplace and others he revised his work, creating at the
same time his theory of characteristics and envelopes—which Legendre and others
described as ‘metaphysical principles’.

These methods, along with the revised solution to Lagrange’s minimal surface
equation, appear in Feuilles d'Analyse appliquée ¢ la Géométrie & l'usage de | 'Ecole
Polytechnique published in 1795.% In ‘feuille XX’ he gives the z, y, and z coordinate

functions of a minimal surface as
z = —®(a) + T'(b),
y = —®(a) +a®'(a) + ¥(b) — b¥'(b), (4)

2= /@”(a)da\/rl-—_a?+/\lf”(b)db\/:_l—"_b?,

3 René Taton, L'euvre Scientifique de Monge (Paris, 1951), p. 292.
4 By a simple change of variables, Legendre corrected the error. Taton, p. 293.
S Taton, p. 300.



where ®, ¥ are constants of (partial) integration and

,_Patv-l1-p-¢
1+4¢? ’
pPI-V-1-9'-¢°
1+g¢° )

4. Weierstrass

In 1830, Scherk used the representation formulas (4), obtained by Monge and
Legendre, to discover two new explicit examples of minimal surfaces.® His prize-
winning essay was published in 1832, at about the same time as Siméon Denis
Poisson published a paper in which he qualified the Monge-Legendre formulas as
practically unusable.” Soon after, in 1834, Scherk submitted another paper in which

he derives equations for three further examples.

Meanwhile, great advances were being made in the theory of functions of a
complex variable by Augustin Louis Cauchy, Carl Friedrich Gauss, Weierstrass,
and others. The stage was set for the application of this new theory to minimal

surfaces.

In 1866, Weierstrass succeeded in writing the Monge-Legendre formulas (4) in

the very elegant form

iy
1:=:v0+§R/(<I)2—\I!2)d'y’,
0
Y
v =10 +sn/z'(<1>2 +0%)dy, (5)
0

v
z =29 +§R/2<I>\Ifd'y',
0

6 Johannes Nitsche, Lectures on Minimal Surfaces (Cambridge, 1989), p. 10.
™ Taton, p. 292.



where ® and ¥ are single-valued analytic functions of the (complex) variable ¥ with
no common zeros,® the integrals are path-independent line integrals, and (o, yo, 20)
is the point on the surface corresponding to the origin in the y-plane. The Monge-
Legendre formulas were then further simplified by Enneper and Weierstrass to the

form

T=2a9+ §R/(l — W) R(w') du’,
wo

y=yo+R / i(1+w?)R(W) do, ®)

«wo
w

z =z -{-§R/2w’R(w’) dw',
wo

where R(w) is a function which is analytic and R(w) # 0.

5. Schwarz

In 1865, a pupil of Weierstrass, named Hermann Amandus Schwarz, derived the
first successful solution of Plateau’s problem in a concrete case.® He began with the
skew quadrilateral and, using the representation formulas developed by Weierstrass,

determined the analytic function

I
V1—1l4w? + ¥’

Rw) = k>0, (1)

pertaining to this closed contour (see Figure 2).

This surface of Schwarz is remarkable in that it is extremely well approximated
by the hyperbolic paraboloid with the same contour. The ratio of the areas of the
two surfaces is 1.0012.1° We will explore the difference between these two surfaces

and determine their commonality in Chapter IV. By assembling eighteen copies

8 &, U not the same as Monge-Legendre formulas (4).
9 Nitsche, p. 233.
10 Nitsche, p. 241. Also Darboux, p. 440.
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of Schwarz’s surface, we obtain a new minimal surface bounded by four identical
equilateral triangles (see Figure 1).

“Unlimited continuation leads to a complete minimal surface]...]which extends
to infinity in all directions. This surface contains an infinite number of straight
lines and its genus is infinite. Historically, this represents the first example of a
periodic minimal surface. It has no self-intersections and effects a peculiar division
of space into two congruent, disjoint, intertwined labyrinthic domains of infinite
connectivity.” 11

To an architect these forms are especially pleasing. The structural properties
of minimal surfaces are well docurnented,!? and these natural forms, with their
efficient intricate spacial configurations, hold much potential for the architecture of
tomorrow. But more important are the clues, hidden in these shapes, to a four-
dimensional geometry, a parting with the Cartesian tradition, and a new approach
to space. Is there a way to express these periodic surfaces using four variables based
on a tetrahedral coordinate system? Is the Schwarz surface an elementary shape
in four-dimensional geometry, just as the square is in two-dimensional geometry?
These are open questions which are certainly not in the scope of this thesis, but

such questions were the motivation behind it.

11 Nitsche, p. 239.
12 Gee, for example, Frei Otto (ed.), Tensile Structures (Cambridge,1969).
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Figure 2

Schwarz’s Surface



II. The Equations of Weierstrass

1. Overview

Monge was looking for the solution z(z,y) to the differential equation
(L +¢*)r—pgs+ (1 +p°)t =0. (3)

His initial solution

/ Y (b)db ¢'(a)

?

/a¢’(a)da - bwl(b)db (4/)
b H
/zp’(b )dby/—1 = b7 + ¢/ (a)da/—1 — a?
a—b ’

where ¢,y are constants of (partial) integration and

pq+\/—l—p~—q-

1+ g2
po PA—V-1-p?—¢
1+ 4 ’

was soon to be rewritten (see equations (4)), but it became clear that Monge was
dealing with expressions of z, ¥, and z in terms of analytic functions.

In 1797, soon after his Feuilles d’Analyse appliquée & la Géométrie was pub-
lished, Monge introduces the idea of considering the three coordinates z,y,z as
functions of two parameters; u and v.}® The minimal surface equation (3) then

becomes
E(XZyo +Y Yoo+ Z2pp) — 2F (X Tuw + Y Yuv + Z2u0) + G(XTuuw + Y Yuu + Z2uu) =0,

where E, F, G are the first fundamental coefficients (see Appendix A) and X,Y,Z

are the coordinates of the unit normal. Monge notes that ihis equation is satisfied

13 G. Darboux, Legons sur la Théorie Générale des Surfaces (Paris, 1914), p. 274.

9



by E=0,G =0, and Tyy = Yuv = Zuw = 0, which yields
z = fi(u) + g1(v),
y = fo(u) + g2(v),
z = fa(u) +g3(v),
where the f;, g; are complex-valued functions since they must satisfy
dff +dfs +df§ =0,
dg3 + dg3 + dg? = 0.

Enneper and Weierstrass rewrote equations (8) in the form

w

:1:=:z:o+é/(l—w) o dw' + /(1 W) Ry (wh)duwf,

wo

y=yo+;;/(l+u )R(w )dz.u'——/(l-l-(.u1 YRy (w)dw!,

53] w?
w Wy

2= 2+ /w'R(w')dw' + /wile(w;)dwa,
wg wo

1

(8)

9

(10)

but it was Weierstrass who realized the full application of analytic function theory.!*

He showed that, by considering wy,w?, R; as the complex conjugates of w,wp, R

respectively, we can represent all real minimal surfaces in the form

2 =20+ R / (1 — ) R(o')d,

wo

¥y=1o + ‘R/Z(l +wl2)R(w,)dLJ/,

wo

z=2z+ FR/Qw'R(w')dw',

wo

14 Darboux, p. 288.

10
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where the two parameters are the real and imaginary parts of the complex variable

w, and (2g, Yo, 20) is the point on the surface corresponding to wp in the w-plane.

2. A Classical Approach

Following the method of Darboux,!® we show that the sum of the principal
curvatures (see Appendix A) must be zero for a minimal surface and we derive
Weierstrass’s equations (see Appendix E).

Consider a continuous portion of the surface £ bounded by a contour C, and
let us find the variation in area as we pass to a surface ¥’ which is ‘infinitely close
by’. Let z,y, =z be the coordinates of a point of & and X, Y, Z the coordinates of the
unit normal X at this point. We will assume a locally orthogonal parametrization
and let the u- and v-parameter curves be the lines of curvature.

If we designate by R and R’ the two radii of normal curvature at the point

being considered, then the equations of Rodrigues (see Appendix A) give us
Xu + RXu = 0, a.nd Xy + RIXU = O.
Moreover, since RX, = —X, and R'x, = —x,, then
RX,eR'X,=x,0%x, =0,

and so, X, ¢ X, = 0. To simplify, let

C=Xu.Xu, E=xu.xu7

g=X’U.XU) G=X.U.Xv.

Now we consider a surface £’ ‘infinitely close to’ £, where the normal at a point

M of T passes through XL’ at M’. Designate by A the distance MM’. The surface

¥’ is defined if we give ) as a function of u and v, and the coordinates z',y’, 2’ of

a point of ¥/ are determined by the equation

x' =x+ AX.

15 Darboux, p. 281.
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Suppose further that the surface ¥’ shares the same contour C, i.e. A vanishes on
all points of C.
The area of ¥’ will be

A=//\/'E?(1—%) (1—%) \/1+e()\’_\_’2‘R)2 + 6 ’\OR,),, dudv.  (11)

We can approximate the area by using a Taylor series expansion,

[1 " (a(AA—iR)ﬂ 0 i’%ﬂ'v)] P l( (AAQR)" T i'%R')?) ’

and further approximate by

- NN ol e A
2\e(A—R)? " g(A—R)%) "~ T 2er? ¥ 3gR7

for A—0. From (11) the approximate area of ¥’ is thus

1
A,\—/‘/\/ dudv—/ VE A(R R/)dudv
A° A2 Ag
/ / “ [RR' SeRE 2gR"~’] dudv.

If we let A = 0, we get

Ao=/ V EG dudv,

the area of £. If ¥ is a minimal surface, then
1
A,\—Ao——/ vVE A(R R')dudv

el B
// [RR' SeRZ T QQRrQ] dudv > 0.

This means that the negative term must vanish, since we can choose X in such a

way that the positive term vanishes. It follows that

1 1
-E+-§7—0’

12



il.e.

R=-R

Thus, the first condition for the area of ¥ to be as small as possible is that the sum
of the principal curvatures is zero at every point of the surface.

We now proceed to derive Weierstrass’s equations. Let x = x(u,v) be a co-
ordinate patch on a surface of class 2. As did Monge a century earlier (see §I1.1),

6 assumes that z,y, z are complex-valued coordinate functions satisfying

Darboux!
E=G=0, F#0. Thus, for a minimal surface, it follows that

EN+GL-2FM .
2(EG—F’-’) =0 = M=0.

We have M = x,, ¢ X =0, and so x,, = Ax, + Bx,. Also,

H=

EFE=x,ex,=0, and G=x,ex, =0.
Differentiating E with respect to v we get

%(xu ®X,) = 2X, ®Xy, = 2x, ¢ (Ax, + Bx,) =0,

and so Bx, ¢ X, = 0, which means that B = 0 since F = x, ® x,, # 0. Similarly, by

differentiating G with respect to u, we find that A = 0. Thus x,, =0, 1.e.

’x %y 0 &z
' dudv

dudv ' Oudv

0,

and their solutions are
z = fi(u) + g1 (v),

y = fa(u) + g2(v), (&)

z = f3(u) + g3 (v).

But since E = G =0, we must have
P(u) + f7 () + f3*(u) = 0,

91’ (v) + g5°(v) + g5’ (v) = 0.

16 Darboux, p. 284.

13



Now, if we let
Fi() +ifsw) _
—f3(u) ’

then from (9'),
S () + £ (u) = = 5% (w),

[fi(u) — ifs(W)][fi(u) +ifs(u)] = - f5*(u),
[f{(U) — ifé(ﬂ)] [f{(U) +if§(U)] _1

(@) ~T50)
fit) —ifiw)

75(w) ’

Filw) - i) = B

The relationship between f], f5, and f3 is thus

O OO
l-w?  i(l+4+w?) 2w

If these equations share the common value 1 R(w)%2, then we get

filw) = 5 [ - )R,

falw) = 5 [+ )R,

folw) = [wR(w)do.
Similarly, if we let

g1 (v) — igh(v)
—g3(v)

=uwi,

we will get

1) =5 [0 = ud) Bar)don,
92(v) = =5 [ +0d) R (wr)dor,
g3(’U) = /wlRl(wl)dwl.

14



From equations (8) we now get the equations of Enneper,

T = % /(1 — w?)R(w)dw + ;- /(1 — W Ry (w1 )dwy,
v=3 [Q+oHR@) = § [+ ed)Raw)don (12)

z= /wR(w)dw + /w131(w1)d‘-‘11,

and by considering R(w) and R;(w;) as complex conjugates, as well as w and wj,

we get the equations of Weierstrass,

= §R/(l — w))R(w)dw,
Yy = §R/i(1 +w2)R(w)dw,

z= §R/‘2wR(w)dw.

3. Theorem of Welerstrass

Let # C R? be an open subset, (a, 8) € U. A patch x : U — R3 of class C?
is called isothermal provided there exists a differentiable function x: 4/ — R such
that X, ® Xo = Xg eXg = p° and x, @ X3 = 0. We call x the scaling function of the
isothermal patch. A regular patch is a patch x : U — R3 for which the Jacobian
matrix J(x)(e, 8) has rank 2 for all (a, 8) € U. We say that x is harmonic provided

each of its coordinate functions is harmonic, i.e. Xaa + xgg = 0.

LEMMA: Let x be a regular isothermal patch with scaling function © and mean

curvature H. Then

Xaa T X3 = Q#ZHX.

Proof: We have x, ® x, = xg X3 and x, @ xg = 0. Differentiating we get

Xaa @ Xa = X3a ® X3 and X33 ® Xo = —Xop ®Xg.

15



Therefore, (Xqa + X33) ® Xo = 0. Similarly, (Xaa + X33) ® X3 = 0. It follows that

Xaa +Xgg is collinear with X. Thus,

_EN+GL-2FM _N+1L

H= 2(EG—-F?) — 2u2"°
ie.
(Xaa -i-zzgg) e X ~ I
and

Xoe + X35 = 28 HX.

The theorem of Weierstrass can now be stated as a corollary: A regular isother-
mal patch x : U — R3 is a minimal surface if and only if it is harmonic. Conse-
quently, the coordinates x,v, z as functions of o and 3 are harmonic (and therefore

analytic, as will be shown in the next section). Hence, we can write:

c=Rf(y), y=RAHG), z=Rf(7),

where fi, fa, f3 are analytic functions of the complex variable v = o + 3.

Differentiating we get
fi(?) = za —izp = @1,
f2(7) = Yo — iys = ¢2,
f3(7) = 2o —iz3 = @3,
where @1, ¢2, @3 are again analytic functions of 4. The sum of the squares of these

three functions must vanish since «, 3 are isothermal parameters, 1.e.
&+ i+t =E—-G-2F =0,

when F = G and F = 0. Also, the regularity condition is equivalent to the condition

that ¢, ¢», ¢3 do not vanish simultaneously, i.e.

T8 = (35 b %)
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has rank 2, implies that
E F| __ 2 _ 2
|F G‘—EG—F-—WhXXM £0,
which implies that
:L'i—i-yi +z§ #0, and 'c% +yg + z% # 0,

and so ¢y, ¢2, ¢3 cannot all be zero.

Thus, every minimal surface can be represented locally by equations of the

form

B Y Y
r = §R‘/QSI dlylv y= §R/¢2 d7,7 z= §R‘/‘(753 d7’1 (13)
(o] 0 0

where ¢1, ¢o, ¢3 satisfy (under certain domain restrictions) the two conditions:
L ¢l +¢5+¢3=
2. @1, 2, 3 do not vanish simultaneously.
Conversely, if ¢;, ¢a, ¢3 satisfy these conditions, then the equatibns (13) define a
minimal surface.!”
In his paper!® (see Appendix E) dated June 25, 1866, Weierstrass shows that
every triple ¢, ¢o, @3, satisfying the above conditions, can be represented locally

by the formulas

¢ =% — T,
$r = i(2* + T?),
#3 =297,

where in fact, ®(y) = \/%[4’1(7) —i¢a(7)] , and T(y) = z'\/%[qbl(‘)') +iga(v)] . It

is easy to see that ¢; and ¢ cannot also vanish simultaneously. This means that

17 Tibor Radd, On the problem of Plateau (Berlin, 1933), p. 28.
18 Karl Weierstrass, Mathematische Werke (Berlin, 1903), III, p. 39.
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® and ¥ can be defined to be single-valued functions with no roots in common.!®

Thus, every minimal surface can be represented locally by the equations
¥
T =z9+ §R‘/(<I>2 — ¥%)dy,
0
~
y=yo+ R / i(3? + Tdy, (5)
0

.
z=2zy+ %/2@‘1’(17’.
(o]

He then defines a new variable w by

_U(y) _ d1tig
“Toq) T —¢s (14)

and a function R(w) by?°

22(1)dy = (b1 — ign)dy = R(w)dw.

From equations (5), we now get

[735
z=zo+ R / (1 = W) R(w')d,

«o

y=y0+R / i1 +w?)R(W)d, (6)

«0
w

z=2z+ %/Qw’R(w’)dw',
wo
and Weierstrass notes that the mapping defined by (14) is equivalent to the stere-

ographic projection of the Gauss map onto the w-plane (see Appendix B).

19 Nitsche, p. 146.
20 See Nitsche, p. 147. Weierstrass used s and F(s) (see Appendix E).
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4. A Modern Approach

Following the method of Radé,?! we show that a minimal surface locally admits
isothermal parameters, and that every solution of the minimal surface equation is
analytic.

Let S be a minimal surface given in a parametric representation x = x(u, v),
where (u,v) varies in a region @, and let A(u,v) be a function which vanishes on

the boundary of Q. Then the area of the surface
z =z(u,v) + e, v), y=y(u,v), z==z(u,v),

is a function A(e) which has a minimum when ¢ = 0. The condition A’(0) = 0 gives

_c'?_Ga:u—Fa:,, _*_iExv—Fa:u

ou W v W =0,

where E, F,G are the first fundamental coefficients and W = VEG — F?. Similar

variations of the y and 2 coordinates give

_B_Gyu—Fyv +_8_E‘yv—Fyu

du W w0
0 Gz, — Fz, +_6_Ezv—qu -0
du w A W o
It follows that
Fz,— Fx Gz, - Fz
v u _ u v 15
= du — dv, (15)
Eyv Fyu Gyu - Fyv
16
ppf du I,‘,Y d’v, ( )
Ez,— Fz Gz, - Fz
v U . u v 1.—
w4 W (17)

are exact differentials.

21 Radé, p. 22.
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Suppose now the minimal surface S is given in a nonparametric representation
z = z(x,y), where (x,y) varies in a region P. The expressions (15), (16), and (17)

then reduce to

N 1+p s, + 24 Lir-— Py (18)
1274 W ’ W W W W
where W = /1 + p2 + ¢2 . Choosing the unit normal X = (-3, —7%, 1), we find

that the expressions (18) are identical to
Ydz — Zdy, Zdz— Xdz, Xdy-—Ydx; (19)

the coordinates of X x dx. Hence, expressions (18) and (19) are exact differentials,

which means that the line integrals

(z,)

g ,,, Ll+¢ , ,
=— [ Z=d’' + ——
231 /"V + W d ]
(0,0)
(-'c,y)l+ o
p° .., P9,
— fu 3 2
72 / e + sy, (20)
(0,0)
(zy)
pa= | —ode' - Zady
w Tw
(0,0)

are independent of path, i.e. [X x dx is path-independent.
We now introduce new variables £,7 defined by £ = z + uo(z,y) and n =
y — p1(x,y). It can be shown that the map (z,y) — (§, ) is expanding and hence

one-to-one.?? Also, we have that

1+p? q

=1+ = £1
&= W Sy W’
Pq 1+ q°

77=:=W: Ny =1+ W

22 Nitsche, p. 120.
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SO
de® +dn® = (€2 + n2)da® + 2(&x€y + memy)dady + (€} + n3)dy*
_(1+w)?

3 [(1 +p*)d2® + 2pgdady + (1 + ¢°)dy?] -

It follows that )
ds® = dz> +dy> +dz°

= (1 + p*)da® + 2pgdady + (1 + q°)dy>

W
= Ty ).

Thus, &, 7 are isothermal parameters on S. Therefore, a minimal surface admits
isothermal parameters. That is to say, every minimal surface can be represented,

locally, by equations

z=z(&n), y=y&n), z=z(&n),

with E = G, and F' = 0. According to the theorem of Weierstrass, z(&,7).¥(&, 1),

z(£,mn) are harmonic functions. We can therefore write:

z=RAEC), y=RHE), z=R7(Q),

where fi, f2, f3 are analytic functions.

Furthermore, the formulas

7 2
S e
2

dy = '(WI:(-Z %+ W{t; i;ﬁ’ @,
dz = W+1d§+W+1dn’ 0
dp = (W+ 1)z %~ w{v;al-i)g- ar,
dups = %d& + (ﬁfﬁf—l—)—g—dn,
dus = g 96 = T O
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reveal that
Teg = ("#l)m Iy = —(_#I)E,

Ye = (—p2)ny  yn = —(—pale, (21)
ze = (—p3)n, zy = —(—p3)e-
In other words,  and —pu,, y and —ua, z and —us, as functions of £ and 7, satisfy
the Cauchy-Riemann equations. The formulas defining the functions in equations
(21) have continuous partial derivatives of the first order, so —puy, —p2, —i3 are the
harmonic conjugates of ,y, 2z respectively. It follows that x — iu), y — Zp2, and
z — iu3 are analytic functions of the complex variable ( = £ +i7, Le.

(=,9)

f=(f1,f2,f3)=x-—i/Xxdx
(0,0)

is an analytic function of ¢, from (19) and (20).
Moreover, since «, y, z are analytic functions of £ and 7, every solution 2(z,y),

with continuous partial derivatives of the first and second order, of the equation
(1 +¢%)r — 2pgs + (1 +p>)t =0, (3)

is analytic (see Figure 3).

&, n)— (=&, n),y( n), 2(z(& ), y(§ )

is analytic.

(z,y) — (z,y, z(z,y)) is an- "4

alytic, by composition of 2

analytic functions.

g —j:#‘//'
. .
(€,n) — (z(&m),y(€,m)) is analytic and
locally invertible (see Radd, p. 26).

Figure 3
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5. Global Conformal Mapping

Until now we have treated the minimal surface locally, where the minimal
condition has been rendered by a vanishing mean curvature H. It was recognized
early on in the literature, however, that the area of a minimal surface, bounded
by a given Jordan curve, is not necessarily a minimum. To answer the Plateau
problem (see Appendix C) as well as the problem of least area (together known as

the simultaneous problem), we must treat the minimal surface globally.

Let the minimal surface S be represented nonparametrically by {z = z(z,y) :
(z,y) € P}, where P is an open convex domain containing the origin in the (z,)-
plane. Following the method of Nitsche,?3 we show the existence of global isothermal

parameters on S.

As we have seen in §II1.4, the mapping (z,y) — (£,7n) defined by

(z,¥)
1
E=¢(z,y) =z + / W[(l +p%)dz’ + pgdy'],

(0,0)
(22)
(z,y)

1
n=n(z,y) =y + / W[pq dz’' + (1 +¢*) d/),
(0,0)

provides us with local isothermal parameters on §. It can be shown?>? that the
condition for the existence of isothermal parameters £ = &(z,y),n = n(z,y) is an
elliptic system of two first order linear partial differential equations. This system
generalizes the Cauchy-Riemann equations and is called the Beltrami system:

L

L{; [_Gn-’t + F"?y], (23)

1
= W["Fn:z: + E77y]; &y =

where F, F,G are the first fundamental coefficients and W = VEG — F~.

23 Nitsche, p. 126.
24 Dubrovin, Fomenko, Novikov, Modern Geometry (New York, 1984), I, p. 110.
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From equations (23), we get the following theorem: For a pair of functions
a(z,y) and B(z,y) to be solutions of the Beltrami system, it is necessary and suffi-
cient that the complez-valued function a(x(&,n),y(& 1)) + iB(x(&,n),y(E,n)) is an
analytic function of the complez variable ( = § + 7).

Hence, the composite map T, defined by T({) = a + ¢3, is conformal. Fur-
thermore, since the image II of P under (22) is simply connected and P is not
the entire (z,y)-plane, the Riemann mapping theorem shows that the domain II
can be mapped bijectively and conformally onto the open unit disc in the complex
~-plane, where ¥ = a + i3 (see Figure 4). Thus, & and  are admissible isothermal
parameters on S.

We now endow the parameter domain P with the inner product induced by S,
and P becomes a geometric surface (see Appendix A). Thus, the mapping x : P —
R23 defined by x(z,y) = ze1 + yeas + 2(x,y)e3 is an isometry, and a(z,y),B(z,y)
are local isothermal parameters on S. In other words, every point of S has a
neighbourhood (the image of an open subset U in the parameter domain) which
is mapped bijectively and conformally (with respect to the metric on S) onto the
interior of the unit circle in the complex y-plane by the mapping (z,y) — (o, 8)-

It can be proven, using analytic function theory and the Koebe-Poincaré uni-
formization theorem, that there is a single mapping (z,y) +— (o, B) of the entire
surface S onto the open unit disc |y| < 1 in the y-plane which is bijective and

conformal. In particular, @ and 3 are global isothermal parameters on S.
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6. Recapitulation

We assume that the minimal surface S is represented nonparametrically by
{z = z(z,v) : (z,y) € P} where P is an open convex domain containing the origin
in the (x,y)-plane. Again we replace the often recurring quantity \/m by
w.

In general, the parameters  and y for a nonparametric minimal surface z =
z(x,y) are not isothermal. We can obtain isothermal parameters £ and 7 by intro-

ducing the function ¢ = & + 7 where

(z.y)
1
E=E(z,y) =z + /;V-[(l+p2)d~'v'+pqdy'],

(0,0) (22)

(=,v)
n=n(z,y) =y + / %[pqu’ +(1+¢%) dy'].

(0,0)
The mapping (z,y) — (&, 7) is one-to-one® and &, 7 are admissible parameters on S.
Moreover, the inverse map (£, 1) — (z,y) followed by the map (z,y) +— x—i[Xxdx
is an analytic (vector-valued) function of the complex variable { = § + 21).

Using the Riemann mapping theorem, we now introduce new isothermal pa-

rameters o and B, where ¥ = a + i (see Figure 4). There is a global conformal
mapping?® of S onto the normal domain |y| < 1. The minimal surface S can then

be represented parametrically as
-
x = x(e,0) = %0+ R [F()a, (24)
0

where

F(v) = {61(7), $2(7), #3(7)}s

5 Nitsche, p. 120.
6 Nitsche, p. 126.

[ ST (]
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and .
¢1 (7) =Ty — g,

$2(7) =Ya — g,
d3(7) = 24 — iz3.
F(v) is a nonvanishing analytic vector satisfying

F?(7) = ¢1(7) + 63(7) + #3(7) = 0.

Conversely, every such vector generates a unique (up to translation) open, simply

. . 27T
connected minimal surface.*’

Figure 4

27 Nitsche, p. 138.
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Finally, we obtain the Welerstrass-Enneper representation formulas by intro-

ducing the functions

From (24) we get

The mapping w(y) =

3(7) = (516103 — i (I},

W(y) = il5lo0(1) +ida (M

r=z0+R [(®* - T?)dv,
/
.

y=yo+ R [i(®2+ T?)dY, (5)
/

v
z=zo+§R/2<I>lI!d'7'.
0

gg; (which is equivalent to the stereographic projection of

the Gauss image?®®) and the function R(w) defined by ®2(v)dy = R(w)dw then yield

T =uz0+ §R/(1 - w?)R(W')dw,

wo

y=yo+ R / i(1 +w?)R(W ), (6)

wag

z=29+ %/Qw'R(w')dw',

wo

where w = ¢ + i7, (see Figure 5).

28 Nitsche, p. 147. Also, see Appendix B.
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7. Example: R(w) =w.
With the aid of MATHEMATICA, we now generate a minimal surface using

equations (6) for the case R(w) = w.

:1:=§R/(1—t2)tdt=§R/(t—t3)dt
(0] 0

t2 t4 « (-U2 w4
=% [T?IL =% [7—7]

1
= 520" - 27 + 607> — ot — %),

y = §R/z’u+t2)tdt = §Ri/(t+t3)dt
0 0

]

E t41¢ Jw? w?
—ERZ[E--*-Z]O_;RZ[T-*-T]

=07 — 0T — aa'r,

0

37" w®
= —| =R | =
w235, - [35]

3
=2[-‘;——0'7'2],

2

2
x(o,7) = (% [202 - 272 4+ 6072 —o* — 14,071 + o’ — 7‘2], 20 [% - T']) .

We verify that ¢ and 7 are indeed isothermal parameters:
Xo = (o[l —0* +37%),~7[L + 30* — 77, 2[0® — 7)),

xr = (—7[1 = 30% + 7%, =0l + 0% - 37%], —4o7);
E=xa.xa=xr.X1—=G
=0 + 204 + 40272 + 0% + 30472 + 302t + 72 + 277 + 7%, and
F=x,ex,=0.

We can now plot this intricate self-intersecting minimal surface (see Appendix D).
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III. Schwarz’s Surface

1. Schwarz’s Method

Schwarz capitalized on the fact that the complex variable w, of equations (6),

is equivalent to the stereographic projection of the Gauss map (see Figure 6)

%1 C

The sides AB,BC,CD,DA
are four edges of a regular

tetrahedron (with side 1).

Vertex B corresponds to the

point b in the w-plane.

The stereographic projection is

defined by the formulas:?®
X

1-2’
Y
1-Z
where X = (X,Y, Z).

T

Figure 6

29 Nitsche, p. 55.
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He determined that the image of the skew quadrilateral in the w-plane under this

projection was the circular quadrilateral abed (see Figure 7).

a—\/g—l
V2 b

bzﬂ—_l) /\

Z a |,
_l—\/g c 0/ b g
Cc= ﬂ, \

d=Ml 4
7

Figure 7

Using the equations of Welerstrass, he then wrote an expression for the quotient

-ﬁ—%% for each circular arc ca), l;c, c’a, and da.

Constrained by these boundary conditions, Schwarz then obtained an expres-
sion for R(w) based on the assumption that this function is analytic in the interior
of the circular quadrilateral abed and on the open boundary arcs, but singular at

the vertices a, b, ¢, and d. However, this expression, namely
R() = f(©)[(w - a)(w = b)(w — ) w ~ )] %,

did not satisfy the boundary conditions. To obtain four more points of singularity,
he then extended the original surface across all four edges by reflection (see Figure
10). The stereographic projection of the unit normal at the eight disjoint outer
vertices then yielded the four singular points a’, b’, ¢, and d’ (see Figure 8). He

could now rewrite the trial function as

1

8
Rw) = ) [l -wi)F,
Jj=1

31



and, substituting the values for the points wj, he found that

R(w) = k>0, (7)

T VI = ot + o
0

which did satisfy the boundary conditions.?

2. Derivation of R(w)

The direction cosines of the unit normal X at vertex B (see Figure 6) are

(0, ;';, —%) . We can calculate the point b by stereographic projection, 1.e.

X .Y _V3-1
T 1-Z )

w

T ZTV A

30 Nitsche, p. 237. Here k~0.84 for side-length 1 (p. 238).
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Similarly, a is the point %—L A point following the straight-line segment from A4

to B then traces the circular arc

) ()

from @ to 5.3! The parametric representation of this arc is

D) .
w=_%—_(1+i)+\/§e‘9, S <0<

-

[}

T
3

The same point moving along the linear segment AB has direction cosines

(_

1)

y =

19—

,—713), and so dz = dy = —4ds (see Figure 9).

Figure 9

Using equations (6) we can write

1+

dr +idy = —*R(w) dw + R(w) d5 = —

and so

dz —idy = R(w) dw — T R(w) d& = —

3l Nitsche, p. 236.



Multiplying equation (25) by ¢ and adding it to equation (26) we get
(1 - iw?)R(w)dw + (i — @*)R(w) dw = 0.
Hence,

Rw) _ (1—iw?)dw — _etif
Rw) (@ - ’

when

l+z 1) i T
—_— 2ée << —.
w ﬁ-i—\/_e, 6_9_3

In the same way, we can derive similar relations for line segments BC, CD, and
DA. These would then be our boundary conditions.
To determine the nature of the singularity at the point a, we expand R(w) in

a neighbourhood of a in the form
R(w) = (e —w)F[1+..1],

where the square brackets contain a power series in (@ —w) and k is determined32
to be —3. By symmetry, the function R(w) must have the same behavior near the

points b, ¢, and d. However, the trial function
R(w) = f()[(w - a)(w = ))(w ~ o) (w — )] *

does not satisfy our boundary conditions.
We obtain four additional singular points by reflecting Schwarz’s surface across
the four linear segments AB, BC, CD, and DA. The stereographic projection of

the Gauss map at the vertices B’ and B” (see Figure 10) is the point ¥’ = ﬁ—‘/%ﬁ

in the w-plane (see Figure 8). Similarly, a’=2, ¢ =1 and d =—1. The new trial

function can now be written

Rw) = f(w)[(w - a)(w — b)(w — )(w — d)(w — &) (w — b')(w ~ ) w — &")] 2.

32 Nitsche, p. 237.
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For reasons of symmetry, f(w) must be constant.3® The resulting function is

= k>0, (7

R = =

where we choose that branch of the square root which takes the value 1 at the point

w = 0. R(w) now satisfies the boundary conditions; for example,

R(w) \/1—1:U4+UB _ V1 — 14wt + w8
Rw) = J1- 14 +3°
—4ie’? \/Q(6) 4i0

= 4i€—2i9m ="¢

for

Figure 10

33 Ibid.



3. Representation

After attempting to plot the Schwarz surface using equations (6) and (7), one
soon discovers that the task is a little overwhelming for the standard personal
computer. Instead, we exploit the fortuitous fact34 that this surface is expressible
in the form f(z) + g(y) + A(z) = 0. The class of minimal surfaces representable
in this form can be expressed in terms of elliptic functions which are the inverses
of certain elliptic integrals of the first kind. We can determine all such minimal
surfaces using a method3® developed by Weingarten and René Maurice Fréchet.
Following Nitsche, we now summarize this method as it applies to the Schwarz
surface.

When dealing with questions of a local nature, surfaces with a regular para-
metrization may be assumed to be represented implicitly by ©(z,y, 2z) = 0, where
O(z,y, z) is twice continuously differentiable and satisfies o2 + @2 +©2 > 0. The
formula for the mean curvature is then

H=1!2 (I =) + 2 o + 2 =)
2 ) oz \:7eg+eg+eg dy 92 +02+0? 9z \ \/o2+02162 ?

and so the vanishing mean curvature is expressed by
O22[02 + 02 + 0, [0 + 0] +0..[0; + 6;] =0,
le.
F'(@)[g @) + B2 (2)] + ¢ @) (=) + K (2)] + B (2 (=) + g° ()] = O,

f(z) + g(y) +h(z) =0.

We now introduce new variables u= f(z),v=g(y), w=nh(2) and the abbreviations

X(w=f?(z),Y (v)=g"*(y), Z(w)=h"(2) to rewrite equations (27) as

27)

XY+2)+Y(X+2)+2Z'(X+Y) =0, 28)
2
u+v+w=0.

34 Nitsche, p. 234.
35 Nitsche, p. 71.
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After some algebaic manipulation we eventually arrive at the system
AX'+ X'Y'Z'X" =0,
AY'+ X'Y'Z'Y" =0, (29)
AZ'+X'Y'Z'Z" =0,

where A = X'Y"Z" + Y'Z"X" + Z'X"Y". If none of the functions X', Y, Z’

vanishes identically, then we have
XIII — nxl7 YIII —_ TLY’, ZIII — TLZ,,

for some real number n. If n # 0, then we get

X(u)=a; + bre*V™ + cre V™,
Y (v) = as + boe®V™ + cre~?V7, (30)
Z(w) =as + b3e¥ V™ + czge~wVR,
where a1, as, a3 are real constants and the pairs (b1, ¢;), (ba, ¢2), (b3, c3) are real for
n > 0.

The functions f(z),g(y), h(z) can now be calculated as inverses of the elliptic

integrals

Y dw

By choosing a;=as=a3=b;=bs=bz=c;=cr=c3=1 and setting n = 4, equations (30)

and (31) give

(31)

X(u) =1+ e +e 2,
Y(v) =1+e*"+e7%7, (32)
Z(w)=1+e* 4 e,

and

w

dw

, _/w Y e*dw _/e dr
T Vitemre™ Jo Vitertew Ji Vit +1m
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We obtain similar expressions for 2 and y1, and the equation of the minimal surface

can be written in the form
InE(z;) + &) +In€(z1) =0, or E(x1)E)E(21) = 1. (33)

However, for a different choice of the sign in equations (31) we would get

/e—u dr
2 = )
1T V14T 474

where &, =22, 1 =Yy, and 2» is merely the reflection of z; with respect to the plane
halfway between them, i.e. £(z2)€(y2) = £(22) = Z'ﬁ

The minimal surface contained in the cube

= po ~ 1.68575, (34)

_x?, 2,22_
Y 0o VI+ T2+ 74

is that part of the extended Schwarz surface (Figure 1) where six copies of the
Schwarz surface meet. This surface is bounded by the six edges emanating from

two opposite corners of a cube with side length po (see Figure 11).36

z |

P

Figure 11

36 Ibid.
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We now substitute 7‘=m and t=2 +1 ,

t=1
Po

2] = .
! t=0 V].+’7"+’T4 /—1 / +§0-°+30—4 2

If we denote the inverse of the second elliptic integral by s = F(z;), then £(z1) =

;2233, and equations (33) transform into
F(y1)F(z1) + F(z1)F (z1) + F(z1)F(y1) +1 =0. (35)
Also, since
/°° do /0 do
po = = :
0 \/% + 302 + S04 —oo\/%+gaz+ 20
then
/s do _ /0 do B /‘% do
0.,/ 48524304 J-o /348024304 J-oo (/245024300
_ /0 do /0 do
—0 343024300 J-1 /3 +30%+ 500
_..5. da‘
= po + ,
o /3 +302+ 30¢
1.e.

(36)

» / do . /% do
0 —

0 ﬁ+%ag+%ﬁ 0 \/§+ 552 + 304
We will need (35) and (36) in the next chapter.

Schwarz’s surface is now defined by the inequalities
Osmlyyl SPO, and —P0_<_21§0-

It lies inside the cube 0 < 1,%1,21 + po < po and is bounded by the four edges of

a regular tetrahedron (see Figure 12).
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Using equations (31) and (32), we obtain a representation for our surface in

the form

If we substitute e¥="2

/e“ de®

T = ,

0 V1i+e* et
e’ de?

y= =,
o VI+eXW+elr

/e"’ de”
Z = .
0 V14 ew fedw

v___ 2w w___1—w? .
€ =S € TS then we get

T = /(1 — w?)R(w)dw,
y = / i1+ w?) R(w)duw, (37)

z= /QwR(w)dw,

where R(w) = mﬁg It is interesting that the minimal surfaces (37) are
Tiie

identical to those defined by equations (6), after a suitable choice of the constants

of integration3” and a rotation of the domain by 7.

Figure 12

37 Nitsche, p. 77.
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IV. Comparison to the Hyperbolic Paraboloid

1. Outline

We now compare the Schwarz surface with the hyperbolic paraboloid when
these two surfaces share a common contour. To simplify our computations, we
place the coordinate axes at the upper corner of the cube containing both surfaces,

as shown in Figure 12. In this way, the formula for the hyperbolic paraboloid

wep[E)G-)e]

Using the method outlined in §II1.3, we can represent the Schwarz surface as

becomes

S 1 do.
x(s;) = )
0 /2 + 302+ 30%

s2 do
y(s2) = / ) 39
0 \/3+ 302 + 30t (39)

$3 do
2(ss) = 3 .5 .92, 3.4
0 \/z+§0'+204

where the s; € [0,00). Equation (35) now becomes s283 + s351 + 5152 + 1 = 0.

Solving for s3 we get
8182 + 1

Sl+82,

83 =

and the z-coordinate of equations (39) becomes

Sl So+1
do

TS +52
zs(s1, s2) =/
0

Note that, (z,y, zs)=(0,0, —pg) when s1=52=0; 0 < z,y < B when 0 < 51,52 < 15

V2 +302+ 30

and 8 < z,y <po when 1 < 55,8 < oo
To examine the vertical difference between these two surfaces, we define a

function

D(s1,82) = (a:(sl),y(sfg),zs(sl,sfg) -(—EQE)KZ;%:D(sl) _ 1) <1-;2;y(32) _ 1) + 1]) .
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With the aid of MATHEMATICA (see Appendix D), we can now plot the function
D for 0 < z(s1),y(s2) < po and —pg < 2zs(s1,82) < 0. The resulting graph is shown
in Figure 13. It shows that, for the regions 0 < z,y < & and B < a,y < po, the
Schwarz surface is above the hyperbolic paraboloid; and, for the regions x€(&, po),

y€(0,2) and x€(0, &), ye(B,po), the Schwarz surface is below.

Figure 13

By superimposing the two surfaces, we see that this is indeed the case. For the
lower half of the cube, the Schwarz surface is above the hyperbolic paraboloid; and,
for the upper half, it is below (see Figure 14 and Appendix D). The two surfaces

intersect along the contour and along the lines z=5, z=— B and y=8, z=— 2.
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Figure 14
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2. Graphing

In §IV.1, we mentioned three graphs; namely, the hyperbolic paraboloid, the
Schwarz surface, and the difference function D. Plotting the hyperbolic paraboloid

is straightforward, using equation (38) and the nonparametric representation

x(:z:,y) = (.’l?, Y, ZH(:Uv y)),

where z,y€[0, po]. But when we attempt to plot the latter two, we are immediately
confronted with the problem of dividing the parameter interval [0, 00) into n equal

n

parts. The solution is simple. We divide the interval [0, 1] into ¥ equal parts to

2 4

,2,2,..,2} and use the reciprocals of these on the

obtain the values s1,s2 € {0

interval [1,00). For example, if n=10, then
1234 _ 555
81,82 € {Oa 37 51 gr 51 11 Za ga 57 5’ OO}.

In practice, however, it is convenient to divide the graphs of the Schwarz surface
and the difference function into four regions. These correspond to:

(i) 0<s;<1 and 0<s2<1, where we use the formulas:

St do
:z:=/ ,
0 3,552,434
\/4-*-20' +4O’

s2 do

y=/ 3,592, 34
0 \/;+§0'-+;{0'4
S1S9+1

do

——L—‘——'~

S1+352
Z=/ N
0 JE+802+ 30t

ie. z€[0, 8], y€[0, B, and z€[—po, —&];
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(i) 0<s1<1 and 05%31, where we use the formulas:

S1 do_
:c=/ ,
0 \/3-!—%03-%—%0'4

y= PO—/ )
Vi+3 a+%a4

-;};-i—t
TEAE do
z2=-—po — 2 = 3 )

ie. z€l0, 2], ye[B, po], and 2€[-2, 0];
(iif) 0< ;—;51 and 0<s»<1, where we use the formulas:

z=p /a‘lx do
= pg —

o=,
\/ +5c7°+3<74
§-+1

=_p0_/0 " \/7+0'+304

Le. 1176[%9',270], yG[O, %)']7 and ZE[—%L,O];
(iv) 05%51 and OS%SI, where we use the formulas:

/B‘T do
T =pg—
\/4 2

le. me[%,po], yé[%,Po]v and ZE[—PO: _%Q]
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3. The Hyperbolic Paraboloid

We now examine the regular tetrahedral hyperbolic paraboloid. As mentioned

in §IV.2, this surface can be represented nonparametrically by the Monge patch

o= (2o )(r-2) 1)

where £€[0, po), y€[0, po] (see Figure 15).

Figure 15

We first show that the mean curvature H vanishes along the lines a:=%-_°—, z=— %‘-’-

and y=8, 2= — B, i.e along the directrixes.
4 4
= =y~ — —Yy + 2
. 2 ng Poy
xz=1(10,1— —y
po 4 2
F=—=wzy——cz——y+1
2 Do Po Po
xy,=10,1,1——2z|,
Po 4 o 4
G = -~ — —T+ 2,
Po Do



W=VEG-F?= V/I%(:r2+y'-’)—pi(a:+y)+3,
0

(0]

l . .
X=—<iy—l,—2—x—1,l),

W \ po Do
Xz;c:(0,0,0) L=0
2 2
Xy = (0,0, —— M=—-
v = Po) poW

xyy = (0,0,0), N =0.

Thus, the mean curvature

2 2
_GL+EN—2FM _ 2(;%-"3?/‘55"‘53?4“)

H= - 3 = 0’
2(EG — F?) po( EG — F?)%

along the two directrixes.

If we now combine eighteen of these hyperbolic paraboloids in the same manner
as the extended Schwarz surface (Figure 1), then we get the configuration drawn
in Figure 16. At the center of this figure is what appears to be a circle of diameter
equal to the side-length of one surface, and contained in a plane perpendicular to
our point of view. But this is not a circle. In actual fact, this opening bows out
hexangularly and attains its maximum diameter when centered on opposing pairs
of the six constituent surfaces. Since this is where the Schwarz surface ‘fills in’
the hyperbolic paraboloid, it raises the obvious question as to whether or not the
corresponding opening of the extended Schwarz surface is circular. The answer
to this question is not in the scope of this thesis, but an affirmative result would
support the idea that the Schwarz surface is an elementary building block of four-

dimensional geometry.
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V. Conclusion

We have seen how the theory of minimal surfaces has blossomed from its modest
beginnings in the mid-eighteenth century, with the likes of Lagrange and Monge,
through to the end of the nineteenth century, in the hands of Weierstrass and
Schwarz. Of course, the picture presented here is incomplete, since we have followed
that thread of research linked to our main theme, namely, the surface of Schwarz.
For this reason, we have focused on the work surrounding the minimal surface
equation (3). In the beginning, the challenge was an exercise in pure analysis,
in the sense that they were just seeking the solution to this partial differential
equation. But later, after advances in complex analysis, these solutions became
formulas, and using them one could create any, indeed, all minimal surfaces both

real and imaginary.

The breakthrough came with the theorem of Weierstrass, which states that a
necessary and sufficient condition for a surface given in isothermic representation to
be a minimal surface is that the coordinate functions be harmonic. This means that
we can consider each coordinate function as the real part of an analytic function of
a complex variable. The integral equations (6) of Weierstrass follow, with which we
can represent all real minimal surfaces. It is interesting to note that the imaginary
part also represents a minimal surface, the conjugate minimal surface (see Gray, p.
462).

As we have shown, the value of the complex variable w = o +i7 in the Weier-
strass equations is equivalent to the stereographic projection of the Gauss map onto
the equatorial plane, where the z,y axes of R23 are collinear with the o, 7 axes of the
w-plane, respectively. Schwarz used this fact to derive an expression for the analytic
function R(w)— of equations (6)—particular to the minimal surface spanned by the
regular tetrahedral skew quadrilateral. By substituting this function (7) back into

equations (6), he thus had a parametric representation of his surface and the first
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explicit solution to the Plateau problem.

The representation formulas derived by Schwarz involve elliptic integrals over
a complex domain, and we have mentioned that these are unwieldy in practice. We
adopt, instead, the method outlined in §IIL.3, to represent Schwarz’s surface using
elliptic integrals over a real domain. Of particular interest is the difference between
the hyperbolic paraboloid and our surface. Intuitively, since the former is a ruled
surface and, hence, made up of straight lines, one would expect that it have minimal
area. This is not the case, however, and a quick calculation shows that the mean
curvature H=0 only along the two directrixes, where these asymptotic lines bisect

the angle between the lines of curvature.

By superimposing the two surfaces, we have discovered that the two surfaces
intersect along the two directrixes as well as on the contour. The Schwarz surface fills
in slightly where the hyperbolic paraboloid is concave. This brings up an intriguing
question. Is the near-circular opening at the center of Figure 16 now made circular
when we replace these hyperbolic paraboloids with Schwarz surfaces? Perhaps this
will be the topic of a future study, but it is just one question amongst many others.
As in any scientific inquiry, by delving deeper into a subject we naturally expose
new desiderata.

In closing, it remains to be stated that in this thesis we have focused exclusively
on the events pertaining to the representation of the Schwarz surface. That 1s to
say, we have concentrated on the period 1762-1890 in the annals of minimal surface
theory when the equations of Weierstrass came into being, and we have selected
those events which had an immediate impact on them. However, in doing so we
have not given due mention to such great geometers as Courant, Douglas, McShane,
Morrey, Morse, Shiffman, Tompkins, Tonelli, and others, all participants in a second
golden age of the theory from about 1930 to 1940. Their work, in the first half of the
twentieth century, brought strong results to the study of two-dimensional surfaces.

The complete solution of the Plateau problem was obtained for surfaces of arbitrary
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topological type, spanning a fixed contour in Euclidean space. Concurrent with the
advent of personal computers has been a third golden age in recent years. To the
trend of ever increasing abstraction has been added a renewed interest in solutions
with explicit representations and the ancient desire to study geometrical objects for

their own sake.
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Appendix A

Key Concepts of Differential Geometry

A1l. We say that the mapping x is of class C™ in Y if all partial derivatives of x
of order m or less are continuous in U. A regular parametric representation of class
C™ (m > 1) of a set of points S (S for surface) in R® is a mapping x = x(u,v) of
an open set U in the (u,v)-plane onto S such that

(i) xis of class C™ in U.

(i) If (e1,e€s,e3) is a basis in R3 and x(u,v) = z(u,v)e; + y(u,v)es + 2(u,v)es,

then for all (u,v) in U, the Jacobian matrix J(x)(u,v) has rank 2.

A2. A regular parametric representation x = x(u,v) is thus a continuous mapping
of a set U (in R?) onto S (in R3). If x is one-to-one, there exists an inverse mapping
x~1 of S back onto . If x~! is continuous, then x is called a topological mapping
or homeomorphism of U onto S. A coordinate patch, or regular patch, is a regular
parametric representation of a part of S, where x is a homeomorphism of 7 C U

onto R C S.

A3. A function of the form x = ue; +ves + f(u,v)e; defines a coordinate patch of
class C™ if f(u,v) is a function of class C™. Such a patch is called a Monge patch

or a nonparametric representation.

A4. If x = x(u,v) is a regular parametric representation of S defined on U, then
the image of the coordinate line v = vg in U is the u-parameter curve X = x(u,vo)
on S. Similarly, the image of the coordinate line u = ug is the v-parameter curve

x = x(up,v) on S.

A5. We write x, (uo, vo) for the partial derivative of x at (uo, vg) in the direction of
the u-axis. Hence, x,(ug,vg) is a vector which is tangent to the u-parameter curve
at x(uo,vo) in the direction of increasing u. Similarly, X, (uo0,v0) is a vector tangent

to the v-parameter curve at x(up,vg) in the direction of v.
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AG. The vectors x, (ug,vo) and X, (ug,vo) are linearly independent, and thus form
a basis for the tangent plane at x(ug,vp). The normal vector to S at x(ug, vo) is

X, X X,, and so the unit normal vector is

Xy X Xy

X = ——.
fIxu x x|

A7. Let x = x(u,v) be a coordinate patch on a surface of class > 1. The function
I = dx e dx = Edu® + 2Fdudv + Gdv® is called the first fundamental form of

x = x(u,v), where
E=x,0%y,, F=x,0x,, G=X,0Xy,

and E, F, G are called the first fundamental coefficients. The area of a region R on

x = x(u,v) is the double integral

A(S) = //\/—E_G-——F—Edudv,

D

where D is the set of points in the parameter plane which maps onto R. Note that

Ixu % %u[|% = EG — F2.

A8. Suppose x = x(u,v) is a patch on a surface of class > 2. The function
II = —dx e dX = Ldu?® + 2M dudv + Ndv? is called the second fundamental form

of x = x(u,v), where
1
L=—x,0X,, M= —§(xu X, +x,0X,), N=-x,0X,,
and L, M, N are called the second fundamental coefficients. Alternatively,

L=x,,¢X, M=x,,¢X, N =x,,X.

A9. Let P be a point on a surface S and X the unit normal at P. Imagine a plane,

containing X, and intersecting the surface along a curve. The normal curvature at
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P is simply the reciprocal of the radius of curvature R of that curve at P. If we now
rotate the intersecting plane around X until we obtain a curve of maximum normal
curvature at P, then this would be a principal curvature of S at P. We then rotate
90° to obtain the minimum normal curvature; the other principal curvature at P.
When the intersecting curve bends toward X, the normal curvature is positive.
When it bends away from X, the normal curvature is negative. On a minimal

surface, the principal curvatures k; and ks are equal but opposite everywhere, i.e.

kl = —Kn.

Thus, the mean curvature, or average curvature,

EN +GL - 2FM
2(EG —F?)

H= %(k]_ + ko) =

is zero at all points on a minimal surface.

A10. Suppose x = x(u,v) is a patch on a surface of class > 2. A curve on
the surface whose tangent at each point is along a principal direction (direction
of principal curvature) is called a line of curvature. The equations of Rodrigues,

namely

dr+pdX =0, dy+pdY =0, dz+pdZ =0,

where x = (z,y,z) and X = (X,Y, Z), completely characterize the lines of curvature
on the surface. The function p is the radius of normal curvature in the direction of

the line of curvature.

A1l. An orthogonal coordinate patch x = x(u,v) is one for which F' =x, ex, =0.
If in addition E=G7#0, then we have an isothermal coordinate patchandx : i — R3

is a conformal mapping. An isometry is a conformal mapping with E=G=1.

A12. An n-dimensional manifold M is a set furnished with a collection P of abstract
patches such that

(i) M is covered by the images of the patches in the collection P.
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(ii) For any two patches X, y in the collection P, the composite functions yx
and x~ !y are Euclidean-differentiable.

A surface is a two-dimensional manifold. A manifold M of arbitrary dimension

furnished with a (differentiable) inner product on each of its tangent spaces is called

a Riemannian manifold. A geometric surface is a two-dimensional Riemannian

manifold.

A13. Let S = {x = x(u,v) : (u,v) € U} have a regular parametric representation
of class C™. A topological mapping (u,v) — (u’,v') from U onto a set U’ in the
(u',v")-plane is called an admissible change of parameters, if the Jacobian determi-
nants 8(u,v)/8(v,v"), 8(xv’,v')/8(u,v) exist and are nonzero, and if the tunctions
u(e/,v'),v(u/,v') and the inverse functions u'(u,v),v'(u,v) are m-times differen-

tiable on the interiors of U’ and U, respectively.

Al14. A Jordan curve is a simple closed curve.



Appendix B

Geometric Interpretation of w

B1. We now examine the relation between a point on the minimal surface and the

S

unit normal at that point. Using the notation of Ahlfors,3® we can rewrite equations

(11) as:

(w,@) = % /(1 — W) R(w)dw + % (1—-a?)R(@)dw,
2
z(w,&) = /wR(w)dw + /@R(&)d&.

The unit normal X = (X, Y, 7Z) is defined by the equations

~

y(w, o) = % / (1 +w?) Rw)dw — & [(1+8°) R@)da, (11)

Xex,=0, Xex;=0 XeX=1,

l.e.
Xz, + Yy, + 22, =0,

Xz +Yys + 225 =0, (40)
X*+Y*+2° =1

Using equations (11’), we can determine the partial derivatives in equations (40),

and substituting we get:3°
5 v — v—1
X=Xty y_XTY g (41)
1+ ww 1+ ww 1 +ww
We now set w = o + iT. We can then rewrite equations (41) as:
2 2T ol +712-1
= 0_0:)_1 Y = 5, .2 1 =5, .93 .1 (42)
o-+7-+1 o>+7-+1 o>+71°+1
The inverse mapping
X Y
o

= T = =———

1-2° 1-2’°
defines a stereographic projection from the north pole of the unit sphere onto its
equatorial (o, 7)-plane®® (see Figure 5).

3% Lars V. Ahlfors, Compler Analysis (New York, 1979), p. 27.
39 Darboux, p. 296.
40 Nitsche, p. 55.




5

B2. We now show that the mapping w = g(,y is equivalent to the stereographic

projection of the Gauss map onto the w-plane (see §I1.3). It can be shown®*! that

X = < oY + 0T (T - dT) |¥|> - |<I>|2>
SRR+ TP P+ e+ ]2/

From B.1,
w = X +1
T 1-Z 1-2Z2
ST+ (P ¥ —-P¥)
_ [ePFE ey [OT7F[¥[2
- [¥]2—|2]2 T|2—|P|?
1_|<1>|+\1:| 1‘}<1>2+\y|2
_ 9T +3T 9% -3V
T 2]9)2 2|®|2

2182 @ &

41 Nitsche, p. 146.
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Appendix C

The Plateau Problem

The Plateau Problem is a fruitful branch of modern mathematics which brings
together many different fields of study to bear on the question of minimal surfaces.
In its simplest form, the problem reads as follows: Find the surface of minimal area
spanning a given fixed wire frame in three-dimentional space. It was Lagrange who
first formulated the problem in 1762, but it gets its name from the famous physi-
cist Plateau (1801-1883), who spent many years conducting soap-film experiments,
solving it for several different contours. It was Lebesgue who first coined the name
in his thesis of 1902. To demonstrate the depth of this problem, we cite Radé (p-
32) for a more recent version which reads: Given, in the zyz-space, a Jordan curve
I'*, determine a minimal surface, of the type of the circular disc [i.e. orientable,
with one contour and Euler characteristic 1], bounded by I'*, such that

(i) the solution admits of a representation S : r = r(u, v), u? +v? < 1, where the
components z(u,v), ¥(u,v), 2(u,v) of r{u,v) are continuous for u? +0? <1,

harmonic for u? + v? < 1, and satisfy for u?> + v < 1 the equations E = G,

F=0;

(ii) the equations z=x(u,v), y=y(u,v), z=2(u,v) carry u>+v? = 1in a topological

way into I'*;

(iii) the functions z(u,v), y(u,v), 2(u,v) admit of a representation of the form
a:=§R/(<D2 - 0?) dw,
y=§R/z’(<I>2+\I‘2)dw,

w
z=§h‘./2<I>\I/dw,

where ® and U denote single-valued analytic functions of w = u+14v in |w| < 1;

(iv) ® and ¥ do not have any common zero in |w| < 1.
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Appendix D

Computer Graphics

D1. Using MATHEMATICA, we can plot the parametric representation derived in
'§II.7. We first show a perspective and front view for o€[—2, 2], 7€[—2, 2]. Following
this, we restrict the parameter domain to o€[—1,1] and 7€[—1,1], to investigate

the behavior of this minimal surface near the origin.

ParametricPlot3D[{(28°-2t2+687 t3-8'-t') /4, sti-st-8’t, 25°/3 -2s¢?},
{8, -2, 2}, (t, -2, 2}]

« Graphics3D -
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Show([%, ViewPoint -> {0,

-20,

0}1]

10 r

- Graphics3D -
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Show([%1l, Shading -> False]
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Show([%1, ViewPoint -> (0, O, 20}]

- Graphics3D -
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D2. Using MATHEMATICA, we can plot the difference function D defined in
§IV.l. We graph the four regions; 0 < z,y < B; z€[B, po}, ¥€[0, B1; z€0, &),

y€[B,po); and B < z,y < po.

1

3+ 3
EL2 [u_ :=J ds
[\} \/%-&5&'—:-4»3*%‘-

HAiff{v_, w_] = ( N[EL2[v]], N[EL2[w]], N[EL2[(-1-v+W) / (Vv+wW)]] +
(1.68575/2) + (((2/ 1.68575) « N[EL2[v]] -1) « ((2/ 1.68575) « N[EL2[w]] - 1) +1)}

{-(1.15471+V1.+0.333333v? V1. +3. v? EllipticF(1l. TArcSinh[1.73205v], 0.111111}) /
(V3. +10.v3+3.v4),
-(1.1547T V1. +0.333333w? V1. +3.w? EllipticF[1. IArcSinh(1.73205w], 0.111111]) /
(\/3.+10.w2+3.w‘):
0.842875 (1+ (-1 - (1.36995I V1. +0.333333+v2 V1. +3.v2
EllipticF[l. I AxcSinh[1.73205v], 0.111111]) / (V3. +10.v3+3.v4))
(-1-(2.36995T V1. +0.333333w? V1. +3. w?
EllipticF[l. I ArcSinh(1.73205w], 0.111111]) / (V3. +10.w?+3.wé))) -

2 -1.-1. 2
{0.5666671\/71.+3.v2+8.vw+3.w2+v w2 3.(-1.-1.vw)

/

(V+W)2 (v+w)2

1.73205 (-1. - 1.
V+w

EllipticF[1. I ArcSinh| Y% 1, 0.111111]

{\/ 0. (-1. -1.vw)?2 3. (-1.-1.vw)* ]
3.+ -+ }

(V+W)2 (v+w)‘

D1 = ParametricPlot3D[Hdiff[e, £],

{e, .001, 1}, (£, .001, 1}, {PlotPoints -> 30}, BoxRatios -> {1, 1, 2}]
D2 = ParametricPlot3D[HAiff[1l/ e, f],

{e, .001, 1}, (£, .001, 1}, {PlotPoints -> 30}, BoxRatios -> {1, 1, 2}]
D3 = ParametricPlot3D[HAdiff[e, 1/ £},

{e, .001, 1}, {£, .001, 1}, {PlotPoints -> 30}, BoxRatios -> {1, 1, 2}]
D4 = ParametricPlot3D[HAdiff([l/e, 1/ £],

(e, .001, 1}, {£, .001, 1}, {PlotPoints -> 30}, BoxRatios -> (1, 1, 2}]
Show[D1, D2, D3, D4, BoxRatios -»> {1, 1, 1}}
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- Graphics3D - - Graphics3D .

- Graphics3D ~ - Graphics3D -
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D3. Using MATHEMATICA, we plot pieces of the Schwarz surface under the four
regions; 0 < z,y < B; 2€[8, po], y€[0, B]; z€[0, B], ye[B,po]; and B < x,y <
po- We then compose these four parts to graph Schwarz’s minimal surface. Finally,
we plot the hyperbolic paraboloid for the same contour, and superimpose it with

the Schwarz surface.

3¢ 3
1
EL2 [u_] :=J ds
0 -2—4-5*1:-«&3*-'{-

H[v_,w_]={ N[EL2[v]],N[EL2([w]] , N[EL2[(-1-v*wW)/(v+w)]1]}

ParametricPlot3D(H[e, £], {e, .001,1}, (£, .001,1}, {PlotPoints->30}, BoxRatios->{1,1,2}]

Bh2=ParametricPlot3D{H[1l/e, £f], (e, .001,1},(£, .001,1}, (PlotPoints->30},PoxRatios->{1,1
+2}1

- Graphics3D -
- Graphics3D -

Bhl=%
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.1}, (PlotPoints->30},BoxRatios->(1,1

BhizParametricPlot3D[H([e,1/£f], {e, .001,1}, (£, .001

+2}]

.001, 1), (£, 0.001, 1},

0

(e,

ts -> 30), BoxRatios -> (1,

Bhd = ParametricPlot3D{H[l/e, 1/f£].

2}1

1,

in

{PlotPo

- Graphics3D -

- Graphics3D -
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Show[Bh1l, Bh2, Bh3, Bh4, BoxRatios->{1,1,1}]

- Graphics3D -
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Show[Bh1,Bh2, Bh3, Bhd, Bhp, BoxRatios->{1,1, 1}1

- Graphics3D -
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Appendix E

The Equations of Weierstrass

Darboux derived Weierstass’s equations by using the notion of “curves of zero
length”. These are in fact asymptotic directions—directions along which the normal
curvature, and hence also the second fundamental form, vanishes. By iatroducing
an appropriate complex coordinate system one has E=G=0, F #0 along such curves.
Darboux then proceeded to derive Weierstass’s equations from this point of depar-
ture.

The following derivation, which was presented by Weierstrass in 1866 to the
Akademie der Wissenschaften, is more straightforward. He begins by introducing

local isothermal coordinates z(p, ¢),y(p, q), 2(p, q) satisfying

ox\2 [oy\®> [08z\> [oz\’ 6y2<32>2
— = =) =({= == =) =k
(f)p) +(3p> +<6p> <3q) +(3q) * dq ’
T L
dpdq ' dpdg Opdg

Letting H be the mean curvature of the surface at (z,y, z) we have

3_1_ _3_17_ 82.’5 + 821‘

L |2 % g%
H=1=\5 % o5fTo
bz 38z 8%z + 9%z

dp 9q Op* ' 9q7

The conditions E=G=k, F’=0 imply that the three minors %%%% - %;;%%, %:—,—g%—

8z 9z 2z 8y _ 9ydz i i i
5 e’ Op 95 — Op Oe cannot vanish simultaneously, since the sum of the squares of

these three minors is A2. 'Thus the two column vectors on the left are linearly
independent. Moreover, the third column vector is normal to the tangent plane.

Therefore the condition H=0 implies

9%z 92 9% By 9z &z _
3p2 + 3q2 - 8p2 aqz - 31,2 + aq'z =0.
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This means the coordinate functions are harmonic. If we put u=p + ig, the

above equations become
r=Rf(u), y=Rg(u), z=Rh(u),
where f, g, and h are entire functions satisfying the equation

(f (@) + (¢'(w)* + (A (u))* = 0.

This last condition can be expressed as follows for arbitrary entire functions

P, P:
fl(u) = (DQ - \1,2)

g'(u) = i(®* + T?),
B (u) = 20.

From the equation

(37 -3i7) (-3 - 519 ) = 30"

it is clear that one of the factors on the left-hand side can vanish at a point a only
when k' vanishes, and only that factor whose power series expansion in powers of
u — a begins with an even power. This is only possible if ®, ¥ are functions that
never vanish simultaneously. One can now write the above equations as follows
(using the notation w0 for a fixed value of u and g, yo, 20 the corresponding point

of the surface):

T =zo+ §R/O(<I>?'(u) - U%(u))du,
y=yo+ -‘R/O (@2 (u) + T (u))du,

z=2z0+ §R/o 2&(u)¥(u)du.

Finally, in place of u we define

\P ! « !
s = @EZ; = fjhjg , which means that
1 _ fl —Zgl
s K



By shrinking the domain, if necessary, so that s is a 1-1 function of u (and thus also

u is a 1-1 function of s) we conclude that the function

2? () 2 = 2 (/' ~ ig) 2t = F(5)

is also 1-1, and we have
z =z +§R/ (1= $)F(s)ds,
Fi
¥y =yo+ ER/ i(1 + s%)F(s)ds,
FLY

z=2z0+ §R/ 2sF(s)ds.
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