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Abstract
Bivariate Lifetime distributions

Hervé Benitah

A thorough investigation of a bivariate Gompertz hazard function for failure time
(z,y) and its joint survival distribution is going to be considered. Interest is centered on
whether a failure of the first type (i.e. person, machine) at X = z increases the hazard
in t 2 z for failure of the second type. This result is then coupled with the Marshall-
Olkin bivariate exponential law to create a general dependent bivariate Makeham law
which allows for simultancous death of the joint lives due to random accidents. Then
a bricf presentation of the general case, where no underlying distribution is assumed,

will be shown.




Introduction

In practice, Actuaries assume independence between the two individual lives, since
the dependence of these time-until-death random variable is very difficult to quantify.
But in many situations involving joint life, there is a desire to obtain a joint life mor-

tality table which exhibits a possible dependent bivariate structure.

For example the lifetimes for husband and wife may be correlated; flight of a

twin-engine plane; if one engine goes dead, does it affect the life of the second engine?

The exponential distribution is considered as a useful statistical model since it is
absoluiely continuous and has constant failure rate everywhere in the univariate case,
With this in mind, we will first develop a bivariate hazard function with the Gompertz
marginal distribution, i.e. u(z) = c; exp (cpx), for z > 0, and then show that the most
general bivariate Gompertz distribution possible has a hazard or force of mortality

function of the form:
p(z,y) = a exp (e;x + cy + cary), x,y > 0.

By piecing together a bivariate Gompertz law with bivariate exponential laws we are
able to obtain a general dependent bivariate Makeham law. This allows for simultanc-
ous failure of the joint lives due to a random accident where we will derive the general
formula for the hazard function of an absolutely continuous bivariate Makcham distri-
bution. We will then finalize this paper by deriving the joint bivariate survival function

where no distribution is assumed.



3. The General Bivariate Gompertz Law

The problem of determining the most general bivariate Gompertz law (ie. a
bivariate law with Gompertz marginals) is of some interest since after about age 35,
individual mortality is well approximated by Gompertz laws. Thus we are lead to the
problem of finding a bivariate distribution F(z,y) such that the univariate marginal

distributions F(z) and F(y) are both Gompertz laws.

Since the Gompertz law has a hazard force of mortality of the form:

p(z) = c; exp (coz) (1)

we wish to find p(z,y) such that the marginal hazard functions are of the Gompertz
type.

We arc aided by the following result:

Lemma 1.

Ifl is a measurable function satisfying
lly—-z) = Eal(:z)b,(y) whenever z,y > 0 (2)
1=1

Then | is necessarily an exponential polynomial with at most n terms, i.e.

n
l(z) = Zmz" exp (c,x) (3)
1=1
for some choice a,,j.,i = 1,2,...,n such that the j,’s are non-negative integers satis-

fying 3-(j. + 1) < n where the summation is over these j, > 0 and the c,’s are complex

constants.

Proof:
For a proof of this result consult Kemperman (1971) or Aczel (1966).

Let us now consider a hazard function which corresponds to a bivariate Gompertz

law (i.e. Gompertz marginals), then the following equation must hold:

u(z,y) = A(z) exp {B(z)y} = C(y) exp {D(y)z}, z,y> 0, (4)
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we see from (4) that

pu(u —v,0) =A(u —v) exp {B(u-v) -0}
=C(0) exp {D(0) - (u - v)}

= A(u — v) =C(0) exp {D(0) - (u - v)}
=C(0) exp {u-D(0) — vD(0)}
=C(0) exp {D(0) - u} - exp {—D(0) - v}

This is precisely the form (3), and thus, by the lemma, the function A(r) is an expo-

nential polynomial with one term
i.e. A(x) =C(0) exp {D(0)x} for >0
By the same way,

#(0.u - v) =A(0) exp {B(0) - (u - v)}
=C(u — v) exp {D(u - v) - 0}

= C(u —v) =A(0) exp {B(0) - (u —v)}
=A(0) exp {uB(0) — vB(0)}
=A(0) exp {B(0ju} - exp {-B(0)v}

And again this is precisely the form (3), and thus, by the lemma, the function ¢(z) is

an exponential polynomial with one term
ie. C(z) = A(0) exp {B(0) -z} for z>0.
Substituting A(z) and c(z) into (4) we get for z,y > 0
u(z,y) =C(0) exp {D(0)z} - exp {B(z)y}

=A(0) exp {B(0)y} - exp {D(y)z}

= p(z,y) =C(0) exp {D(0)z + B(z)y}
=A(0) exp {B(0)y + D(y)r}




let C(0) = exp {InC(0)} and A(0) = exp {InA(0)}

u(z,y) = exp {InA(0) + B(0)y + D(y)z}
= exp {InC(0) + D(0)z + B(z)y}
Thercefore
InC(0) + D(0)z + B(z)y = InA(0) + B(0)y + D(y)x
Assuming that the derivatives with respect to ¥ on both sides exist
= B(z) = B(0) + D'(y)z
=> B(z) is a lincar function of z i.e. B(z) = a + Bz. By the same reasoning, taking
the derivative with respect to z on both sides, we get
= D(0) + B'(z)y = D(y)
= D(y) is a linear function of y i.e. D(y) = o/ + B'y.
Knowing that pu(z,y) = C(0) exp {D(0)z + B(z)y} and substituting the value of D(0)
and B(z) we get
w(z,y) =C(0) exp {a'z + (a + fz)y}
=C(0) exp {a'z + ay + fzy}
Finally
p(z,y) = a; exp {1z + c2y + cazy} (5)

It is the most general bivariate hazard function consistent with the univariate marginal

Gompertz distribution.

The Gompertz bivariate survival function is then given by
s t
Salt,) = Ple> ty>9) = e {= [ [ uedady), st>0  (9)
o Jo

Gompertz only assurned age deterioration. He therefore assumed that P(zx =
y) = 0 which implies that the possibility of a catastrophe (i.e. accident) resulting in
simultaneous failure of both components is ruled out. But this is not realistic, since

simultaneous deaths do occur.

By combining a bivariate Gompertz law with bivariate exponential laws, we are
able to obtain a general dependent bivariate Makeham law allowing for simultaneous
failure of the component lives. In this case, Pr(z = y) # 0.




2.1 Bivariate Gompertz law assuming independence

for the individual components

In practice, whenever we express life table functions in the bivariate Case, We use
an assumption of independence for the individual lives. This simplifics the calculations.

We begin with the assumption that mortality follows Gompertz's law:.
i.e. u(z) = c1 exp (cor) and p(y) = c1’ exp (c2'y).

Since both individual lives are independent

flz,y) = f(z) - f(y)

= S(z,y) =Pr(X > z,Y > y)
=Pr(X > z) - Pr(Y >y)
=S(z) - S(y). (7)

5@ = e (- [ h(oa
~ exp (- /0 “e1 exp (cat)dt)
= exp [~ exp (ezt) [}
= exp [2(1 - exp (cz0))] (8)
Therefore,

S(z,9) = exp (21~ exp (ea2)] - exp [2—2(1 ~ ep (&)

a ¢y ¢ ch
=exp [=+ = -~ 2 exp (coz) — 2L exp (cy)]
Co Co Co Cq

= exp [b—m exp (coz) — m' exp (Clzy)]

where c; #0, ¢, #0,z >0 and y > C.

Since the Gompertz law has an absolutely continuous bivariate survival function

S(x,y) with density function f(z,y),




the bivariate failure rate at (z,y) is given by

_flz,y)

_ f(z,y)
Pr(X >z,Y >y)
i@ f@)
Pr(X >z) Pr(Y >y)
_f=@) - f)
S(z) - S(y)
_I@ 1)
S(z) S(y)
=p(z) - p(y)

=c; exp (cox) - ¢} exp (chy)

=c;c} exp (caz + chy)
=a; exp (c2T + chy) (10)
Comparing the failure rate in both cases, we notice that in the dependent case there is

an extra term that is multiplied (i.e. exp (cazy)), where c3 can represent the degree of

dependence between z and y.

As mentioned previously, the construction of life tables for a bivariate lifetime
distribution is very difficult. So we seck to substitute a single-life status (w) for a

bivariate life status (z,y). To do this, we want the two failure rates to be the same.

u(z,y) = p(w).
As an example, we will assume that the two lifes are independent and each component
follows a Gompertz law (i.e. p(z) = Be).
pu(z,y) =p(w)
#(z) - uly) =u(w)
B exp (cr) - B exp (cy) =B exp (cw)
B exp (cz + cy) = exp (cw)
exp (logB) exp (cz + cy) = exp (cw)
exp (B + cz + cy) = exp (cw)
B +czx+cy=cw
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= w=r+4+y+ B’
where, to be realistic, B” < 0.

This defines the desired w. Therefore the need for a two-dimensional array has been
replaced by the need for a one-dimensional array, but typically w and B” will not be
integer and therefore the determination of its values will require interpolation in the

single array.
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3. Bivariate Makeham law allowing simultaneous failure

We now consider the problem of determining a bivariate Makeham law. It is a
model for which Pr(X = Y) # 0. The hazard function can be split into two parts,
the “deterioration” component which according to Gompertz measures the inability to
opposc destruction or bodily aging, and the “accident” component which is constant
across ages and gives risc to the exponential factor of survival. It was with this addition
of the “accident” component to the Gompertz hazard function that Makeham made his
contribution. He postulated that the survival of an individual depended upon surviving
the statistically independent causes of “deterioration” as measured by Gompertz, and

“accidents” as measured by the exponential law with constant hazard.

We shall couple the bivariate Gompertz hazard function with the appropriate
generalization of the exponential law given by Marshall and Olkin (1967) to develop

the “shock” model.

Random shocks or accidents are assumed to be non-anticipatory and occur ac-

cording to Poisson processes.

The intensity parameter of the process N,(t) of shocks which are fatal only to

person i is d, where i =1, 2.

Due to the simultaneous exposure of the two persons, there is an intensity dz for
random accidents (i.e. automobile crashes) which could be fatal to both individuals
simultaneously: Nj(t) is the third process. N; is a Poisson random variable with
parameter dyz. N is a Poisson random variable with parameter dyy. N3 is a Poisson
random variable with parameter d; max (z,y). We use max (z,y) in N3 since in
practice, two individuals are deemed to have died simultaneously if the second death
occurs within 30 to 60 days of the first. Thus, a single accident can be fatal to both
and death be deemed simultaneous even if one outlives the other by a few hours, days,

or weeks.

By simply looking at the “accident” component we see that the bivariate survival

function is
S(z,y) =Pr(X > z,Y > y)
=P1‘(N1 = 0, N2 = 0,N3 = 0)
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Since Ny, N3, N3 are independent proccsses

S(x,y) =Pr(Ny = 0): Pr(Ny = 0)- Pr(N; =0)
=exp (—diz)- exp (—day) - exp (-dz max (r,y))
S(z,y) = exp [—dix — d2y — d3 max (z, y)) (11)

for z,y > 0 where dy,d; > 0 and d3 > 0.

Now adding the deteriorating component: Let W, denote the time of death of
person i due to “deterioration” alone. Then (w;,ws) is a bivariate Gompertz random
variable with parameter c;, c2,c3. It follows that (w;,w;) has a joint hazard function
as follows:

plwy, we) = a exp [cywy + coawq + cawywa] (12)

Since all the random variables (w;,w,), N1, N; and N3 arc assumed to be indepen-
dent, the general bivariate Makeham model, with the deterioration component, has the

following survival function:

Sm{z,y) =Pr(X >z,Y >y)
=Pr{(w,w2) > (z,y), Ni(z) = 0, No(y) = 0, N3(max (x,y)) = 0]
=Pr{(w,wz) > (z,y)] - Pr{Ni(z) = 0]
-Pr(Na(y) = 0] - Pr[N3(max (z,y)) = 0]
Sm(z,y) =Sc(z,y) - exp (—diz) - exp (~d2y) - exp (~ds max (z,y))
Sm(z,y) =Sc(z,y) - exp [~diz — day — d3 max (z,y)] (13)

where Sg(z,y) is the bivariate Gompertz survival function defined in (6). Equation
(13) is the general Makeham bivariate distribution which has a Makcham marginal
distribution and whose accident component has a lack of memory property (becausc of
the exponential distribution), i.e. S(z +¢t,y+t) = S(x,y) 5(t,t). We will now look at
the general case, where we do not assume a distribution and it is absolutely continuous
everywhere.



4. General case: Bivariate model for ordered pairs
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Let S represent the age at failure of the first member of an ordered pair of in-

dividuals, and let T represent the age at failure of the second member. Here f(s,t)

represents the joint age at failure distribution. It is convenient to define the following

functions derived from f(s,t).

(1) The bivariate survival function:

S(s,t) =Pr(S>s,T>t)

=/8°° /too S (u,v)dudv

(2) The hazard function for T given that S survives to s is

he(t)S > ) 2296?{‘ log S(s, )}

— —'a%'S(s, t)
S(s,t)

(3) The hazard function for S given that T survives to ¢ is:

ha(s/T > 1) =~ log 5(5,1)}

— —%S(Sa t)
S(s,t)

(4) The bivariate failure rate.

f(s,t) _ f(s,t)
S(s,t)  1-Pr(S<sorT<t)

h(s1)(s,t) =

getting another expression of h(s 1) (s, t)

s, 1
h(s1(s,t) T1-Pr(S< s) — Pr(J;S < Z) +Pr(S<s,T<t)
) £(s,1)
14 Fis1)(s,t) — Fa(s) — Fp(t)
f(s:t)

=1 + F(S,T)(sa t) - F(S, OO) - F\ooit)

(14)

(15)

(16)

(17)

(18)
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Note:  F(s,00) =[5 [o f(u,v)dudv

Notice that in the case of independence we have that

hism(s,t) = ((s i))
_fs(s)fr(®)
Ss(s)St(t)
_fs(s)  fr(t)
Ss(s) Sr(t)
=hs(s) - hr(t) (19)

where hs(s) and hr(t) are the corresponding univariate failure rates.
Proposition 1:

hs(s/T =t) = — 6 log {- mS(s t)} (20)
Proof:

For any continuous bivariate survivor function S(s, ), the marginal survival func-

tions are:

S(s) = S(s,0) = / ~ /0 " f(u,v)dud
S(t) = S(0,¢) = /0 ~ /t ~ f(w, v)dudy

The conditional survivor function of S given T' > t is
Pr(§>sT2>t)

>t) =
S(s/T > t) T >0
_5(st)
== 50) (21)
and the conditional survivor function of S given T' =1t is
o Pr(§>5,T=t)
S(s/T =1t) = Pr(T = 1) (22)

But

S(t)——aP (T > 1)

Bt/ f(u)du
-y

= f(T=t)=- &S(t)'




By the same way

0

S(s t) = aF’r(S>sT>t)

Bt

=9 / / f(u, v)dvdu
= -—/ fu,t)du

=—PrS’>sT—t)
= Pr(§> s,T=t)=—-55.S'(s,t).

Thercfore the conditional survival probability S(s/T = t) is

Pr(S>sT=t)
Pr(T =1t)

_ —--S(s t)

~Z50)

Si/T=t)=

Thus we have that

0 S(s,t)
=— —] ot
s ¢ —%S(t) ]

log [— 52 S(s,t)]+0

Clayton postulated in his 1978 paper a relation of the form

hs(s/T = t) = (1 + ¢)hs(s/T 2 t)

og [— 0 S(s t)] QE.D.
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(23)

where the parameter ¢ measures the degree of association between s and t, indepen-

dence being implied by ¢ = 0. Here ¢ represents a positive association (i.e. ¢ > 0)
between the hazard functicn of the conditional distribution of S,givenT =tand S

given T > ¢
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Theorem 1:

From Clayton’s postulation (23) the bivariate survival function has the form:

505,02 =l + (o)~ 73 (24

Proof:
Substituting (16) and (20) intc Clayton’s relation (23) we get:

~ 55 108 [= 5,505, 0] = 1+ )= log 5(s.0)

Integrating over (0, s) both sides:
/ % log [——S(s t)lds =(1 + ¢)[/ log S(s,t)ds]
323/0 log [——S(s,t)]ds =(1+ ¢)[$/0 log S(s,)ds]

= log[—a%S(s,t)] — log (;?t SS(O( t))] =(1+ ¢)[log S(s,t) — 'LS;(’](‘)(’:))]
= log ﬁ 5(s,t) S(s, t))1+¢]

a7t A w7y

taking the exponential on both sides

§5@¢)=[sw¢%H¢
25r@t) ' Sr(t)
25(s,t) 2.57(t)

[S(s,t)]*+¢ — [S(t)]'+e
Now integrating both sides over (0, t)

t 2.6(s 1) t 2.60(h)
at - Bt
o B e /o Sree

u = S(s,t) u = Sr(t)

8 0
du = = S(s, )dt du = = Sr(t)dt
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L d
= u1+¢ Tty

> 555 t)r* =l

Lo 1 gy 1 1
= [S(s ey ) s
1
¢ _ é _ 1
+ 555 = 5 * o)
So that the bivariate survival functlon takes the form of;

S(s,1) = [( Ssl(s) )® 4+ <s—T1(7))‘” ~ 1

QE.D.

Thercfore, if G(s) = Pr(S > s) and H(t) = Pr(T > t) are continuous univariate
survival functions with G(0) = H(0) = 1 and ¢ > 0 (i.c. positive association between

them), the bivariate survival function is given by

S(s,8) = [(z75)° + ()~

This is a bivariate survival function with G and H as Marginals.

(25)

Corollary:

As ¢ — 0 then S(s,t) = G(s) - H(t), which corresponds to the independence
between S and T.

Proof:
log S(s,t) = —% log [exp (~¢ log G) + exp (¢ log H) - 1].

Using I'Hopital’s rule:

e e C(_ Jog G) +e ¢t H(_log H) 1
e-¢|ogG+e—¢logH_1 -:I]

=~ 1[- log G - log H]
=logG+ log H
= log GH

qlsl_l..l}) log S(s,t) =}’1_%[

therefore
éi_x‘% S(s,t) = exp (log GH)
=G(s) - H(t)
S and T are independent Q.E.D.
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Conclusion

We developed, with the help of Gompertz Marginal distribution, the most general
bivariate Gompertz survival function possible. We showed that the force of Mortality

function has the form:

p(z,y) = a exp (c1T + oy + c3TY)

We then obtained the general dependent bivariate Makeham survival function which
allows for simultaneous failures by combining the Gompertz survival function with an

“accident” component:
Sm(z,y) = Sglz,y) exp [~d1z — doy — d3 max (z,y)]

We then finalized the paper by displaying the survival function in the general case
where no underlying distribution is assumed.

More research can be done on this subject since in the Gompertz case, the con-
stants c;,cz and ¢3 can be estimated and then we will be able to construct a two

dimensional life table for this distribution.

We can also estimate ¢ by finding the maximum likelihood estimator when the
marginal survivor functions are parametcrized, say as exponential distributions with

parameters p; and p,.
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