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Abstract  The present review surveys a broad range of findings on the functions of the rodent 

prefrontal cortex (PFC) in the context of the known pathophysiology of attention-

deficit/hyperactivity disorder (ADHD). An overview of clinical findings concludes that 

dysfunction of the right PFC plays a critical role in ADHD and that a number of early 

developmental factors conspire to increase the risk of the disorder. Rodent studies are 

described which go far in explaining how the core processes which are deficient in ADHD are 

mediated by the PFC and that the mesocortical dopamine (DA) system plays a central role in 

modulating these functions. These studies also demonstrate a surprising degree of cerebral 

lateralization of prefrontal function in the rat. Importantly, the PFC is highly vulnerable to a 

wide variety of early developmental insults, which parallel the known risk factors for ADHD. 

It is suggested that the regulation of physiological and behavioral arousal is a fundamental role 

of the PFC, upon which many “higher” prefrontal functions are dependent or at least 

influenced. These right hemispheric arousal systems, of which the mesocortical DA system is a 

component, are greatly affected by early adverse events, both peri- and post-natally. Abnormal 

development, particularly of the right PFC and its DAergic afferents, is suggested to contribute 

directly to the core deficits of ADHD through dysregulation of the right frontostriatal system. 
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1. Introduction 

 The neurodevelopmental disorder known as attention-deficit/hyperactivity disorder or 

ADHD, is the most prominent childhood psychiatric condition and its features or core deficits 

frequently persist well into adulthood. It is increasingly appreciated that functional deficits in 

frontostriatal circuitry contribute substantially to the pathophysiology of ADHD and that the 

right prefrontal cortex (PFC) is especially important in this regard. While genetics play a very 

important role in this condition, intra-uterine, perinatal and postnatal factors have all been 

significantly linked with the development of ADHD. 

 Studies in the rodent have revealed that the PFC is intimately involved in mediating 

numerous neural functions of central relevance to ADHD, not only behavioral inhibition, 

attentional processes and working memory, but also less appreciated aspects of this condition 

such as arousal level, physiological stress responsiveness and emotional self-regulation. Not 

surprisingly, the maturation of these prefrontal circuits is significantly affected by a wide 

variety of early developmental events, both adverse and advantageous. The present review 

examines many of these animal findings and describes the important modulatory role of 

mesocortical dopamine (DA) on PFC function, as well as the extent to which this system may 

be particularly vulnerable to early developmental insults. Many of these findings also highlight 

the important role of cerebral laterality in mediating the above processes, even at the level of 

the rodent. 

 The first section of the paper thus provides a brief overview of the pathophysiology of 

ADHD with particular reference to PFC dysfunction and the proposed nature of altered DA 

function in this condition. The following sections review the rodent literature in terms of how 

the PFC modulates the various processes deemed central to ADHD symptomology. The final 
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sections discuss first the evidence that early adverse events contribute to the development of 

ADHD, and secondly, that in rodents numerous early manipulations modeled upon these types 

of events lead to long-lasting impairments in prefrontal function. It is proposed that early 

adverse events impact negatively on the maturation of prefrontal circuits particularly in the 

right hemisphere, and that deficits in mesocortical DA function in this region contribute 

significantly to ADHD symptomology. 

 

2. Prefrontal Involvement in ADHD Pathophysiology and the Possible Role of DA 

 Numerous reviews have elucidated the behavioral and cognitive characteristics of 

ADHD in great detail, as well as describing the known neuropathological correlates of this 

condition (eg. Barkley, 1997, 1998; Castellanos, 1997; Castellanos and Tannock, 2002; 

Spencer et al., 2002; Swanson et al., 1998). The present paper focuses on the pivotal role that 

the PFC appears to play in mediating the spectrum of ADHD symptomology. 

Heilman et al. (1991) proposed that the pathophysiology of ADHD derives from right-

sided frontal-striatal dysfunction in combination with an impairment of the mesocortical DA 

system. Since this time, brain imaging studies have done much to support this view. Numerous 

structural imaging studies have reported significantly reduced volume of the right frontal 

(particularly prefrontal) cortex in ADHD subjects (Castellanos et al., 1996b; Filipek et al., 

1997; Casey et al., 1997; Pueyo et al., 2000; Mostofsky et al., 2002) in conjunction with right 

caudate abnormalities. Casey et al. (1997) reported that such right frontal volume reductions 

are significantly correlated with impaired performance in response inhibition tasks. 

Neuropsychological and other studies have support the view that ADHD is a disorder of right 

hemispheric function, primarily right-sided attentional and arousal systems (Voeller and 
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Heilman , 1988; Carter et al., 1995; Malone et al., 1988; Campbell et al., 1996; Stefanatos and 

Wasserstein, 2001). For example, Silberstein et al. (1998) employed an electrical brain 

mapping technique during a continuous performance task to demonstrate that normal boys 

show an increased speed of processing during critical periods of the task, specific to right 

prefrontal sites. However, this task-related change in processing ability was not evident in 

ADHD boys. Moreover, functional imaging studies have shown that a normal right prefrontal 

increase in metabolism during response inhibition tasks, is markedly reduced in ADHD 

subjects (Langleben et al., 2001; Rubia et al., 1999; 2001). 

 Abnormalities in DAergic transmission are well accepted as predisposing factors in 

ADHD, yet the nature of DAergic dysfunction is not well understood. Given the strong genetic 

component in the incidence of ADHD, it is notable that at least four DA-related gene loci have 

been implicated in this condition, including that of the DA transporter or DAT (Cook et al., 

1995; Gill et al., 1997; Kirley et al., 2002; Hawi et al., 2003). While no single gene 

abnormality reliably predicts the occurrence of ADHD, it is quite possible that one or more 

DA-related gene variants contribute to the abnormal development and functioning of certain 

DA circuits, thus predisposing to the development of the disorder. 

The most common treatment for ADHD is methylphenidate or Ritalin, which blocks 

DA reuptake into the cell by the DAT. The resulting elevations in synaptic DA levels are 

presumed to be related to its therapeutic benefits at some level, but the most critical site(s) of 

action for these effects is the subject of debate. Perhaps the most parsimonious theory 

accounting for DA involvement in ADHD was put forward by Castellanos (1997), who 

proposed that a mesocortical DA deficit (related to attentional and executive deficits) coexists 

with a striatal hyperDAergic state (related to behavioral hyperactivity, Castellanos et al., 
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1996a). As such, enhancing prefrontal DA activity would have the greater therapeutic benefit. 

This theory also proposed (based on regional differences in DA autoregulation) that continued 

treatment with methylphenidate would result in a constant facilitation of PFC DA function, but 

would lead to a downregulation of striatal DA function. Recent findings by Ernst et al., (1998) 

suggest prefrontal DAergic deficits in ADHD. In a PET study measuring the uptake of 

[F
18

]fluorodopa to assess DOPA decarboxylase activity (and thus DA synthesis), it was found 

that [F
18

]-DOPA uptake ratios in medial PFC were reduced by approximately half in ADHD 

subjects compared to controls, with no such effect seen in striatum.  

Additional neuropharmacological evidence reinforces the importance of the PFC in 

providing therapeutic benefits in ADHD. The selective norepinephrine uptake inhibitor 

atomoxetine, has been shown in clinical trials to be at least as effective as methylphenidate in 

the treatment of ADHD (Kratochvil et al., 2002). In the rat, elevations of norepinephrine in 

PFC following atomoxetine, independently increase local DA levels as well (Gresch et al., 

1995). While methylphenidate increases extracellular levels of DA 3-fold in both PFC and 

striatum, atomoxetine also increases DA levels 3-fold in PFC, but has no effects in striatum 

(Bymaster et al., 2002). Such findings strongly support the notion that the PFC is the more 

crucial site in the amelioration of ADHD symptoms. Moreover, facilitating PFC DA activity, 

and possibly that of norepinephrine as well, may contribute in large part to the therapeutic 

effects of such drugs. 
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3. Rodent Studies of PFC Function of Relevance to ADHD 

3.1 Prefrontal regulation of subcortical DA systems 

 

 It is well known that the frontal cortex projects massively to basal ganglia as part of a 

series of feedback loops, to regulate a broad spectrum of functions from executive to motor to 

affective (Alexander et al., 1986). It is thus not surprising that frontostriatal circuits are 

implicated in a number of forms of psychopathology. In the case of ADHD, as stated above, a 

prefrontal DA deficit is suggested to coexist with excessive striatal DAergic function. There 

are numerous findings in the rodent literature, which not only suggest that these two conditions 

can coexist, but that a PFC DA deficit can directly induce an upregulation of striatal DA 

activity. 

 Depletion of medial prefrontal DA with 6-hydroxydopamine (6-OHDA) has been 

shown to increase DA turnover in basal ganglia structures (Pycock et al., 1980). It has also 

been reported that DA depletion of the right PFC alone, but not the left, results in bilateral 

increases in striatal DA turnover ratios, at least following exposure to stress (Sullivan and 

Szechtman, 1995). Other studies report that increased DA activity in dorsal or ventral striatum 

following prefrontal DA depletion or receptor blockade, is particularly evident after 

pharmacological challenge, exposure to mild stress or exposure to positively reinforcing 

stimuli (Deutch et al., 1990; Mitchell and Gratton, 1992; Rosin et al., 1992; Banks and 

Gratton, 1995; Doherty and Gratton, 1996). The reciprocal relationship between prefrontal and 

subcortical DA systems is also shown by the fact that injection of the DA agonist apomorphine 

into medial PFC reduces DA metabolism in the caudate nucleus (Jaskiw et al., 1991). This 
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reciprocal relationship between DA systems is also reflected behaviorally in the expression of 

locomotor activity. 

 

3.2 Regulation of motor activity by prefrontal cortex 

Rodent studies have demonstrated a specific role for mesocortical DA in motor 

inhibition. While the systemic or subcortical administration of DAergic agonists or DA-

releasing agents can greatly increase motor activity, the intracortical administration of such 

drugs counteracts this activation. For example, amphetamine injected directly into the medial 

PFC, blocks the locomotor-activating effects of amphetamine injected into the ventral striatum 

(Vezina et al., 1991). Conversely, the same study reported that intracortical injection of DA D1 

receptor antagonists enhances the activating effects of subcortical amphetamine, while drugs 

more selective for other DA receptor subtypes or noradrenergic and serotonergic receptors 

were ineffective in altering motor behavior. In another study, the DA agonist quinpirole, when 

injected into the medial PFC, completely blocked the motor activating effects of acute, 

peripherally administered cocaine (Beyer and Steketee, 2000). In contrast, DA depletion of the 

medial PFC with 6-OHDA increases both the locomotor activating effects and the subcortical 

DA release, induced by the peripheral administration of either amphetamine or cocaine (Banks 

and Gratton, 1995; Beyer and Steketee, 1999).  

Rodent studies have also shown that the right frontal cortex is especially important in 

motor inhibition. A variety of lesion techniques including 6-OHDA lesions, of right but not left 

frontal cortex, results in pronounced behavioral hyperactivity and altered subcortical 

catecholamine function (Robinson, 1979; Robinson and Stitt, 1981; Pearlson and Robinson, 

1981; Kubos et al., 1982). Such findings are also in keeping with recent human imaging data. 
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For instance, when subjects were required to withhold a learned motor response, structures 

which were strongly activated included middle and inferior frontal gyri and frontal limbic 

cortex. Moreover, this activation was strongly lateralized to the right hemisphere (Garavan et 

al., 1999). 

It thus appears that right frontal systems play a key role in motor inhibition and that 

mesocortical DA is an important part of this regulation. Any conditions involving 

compromised development or functioning of this system would therefore be expected to 

exhibit varying degrees of behavioral hyperactivity. 

 

3.3 Regulation of executive functions by prefrontal cortex 

 Perhaps the best known role of the prefrontal cortex concerns the realm of “executive” 

functioning, namely the intimately associated processes involved in decision-making, 

attentional control and working memory. Indeed, deficits in these areas are a defining feature 

of ADHD, whether hyperactivity is present or not (eg. Barkley, 1997; 1998; Schweitzer et al., 

2000).  

 An integral aspect of attentional control and working memory (which allows for 

optimal decision-making), is the ability to hold relevant information “on line” for brief periods. 

Much of our knowledge of prefrontal regulation of executive function comes from the 

excellent work in primates employing delayed response tasks, where electrophysiological 

studies have demonstrated that classes of PFC neurons fire specifically during the delay period 

between presentation of a task-relevant stimulus and performance of the required response. 

Importantly, the activity of such neurons is precisely regulated by mesocortical DA, as either 

too much or too little DA D1 receptor stimulation alters the firing pattern of these neurons and 
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impairs task performance (Sawaguchi and Goldman-Rakic, 1991; Williams and Goldman, 

1995; Murphy et al., 1996; Sawaguchi, 2001). 

 In the rodent, possibly the best means of studying attentional control over performance, 

involves a behavioral paradigm known as the 5-choice serial reaction time task (or 5CSRTT), 

which can measure aspects of sustained attention, or selective and divided attention (for 

review, see Robbins, 2002). With this task, low doses of methylphenidate have been shown to 

reduce premature or impulsive responding and also tend to improve accuracy of responding in 

poorly performing animals (Puumala et al., 1996). When DAergic drugs are injected directly 

into the medial PFC, task performance is significantly affected in a manner dependent on 

individual differences in baseline task performance. Intracortical D1 agonists significantly 

enhance performance accuracy in rats with low baseline performance, but not in rats already 

performing at a high or optimal level (Granon et al., 2000). Conversely, local D1 receptor 

blockade impairs choice accuracy, but only in rats already performing at a high level. Intra-

PFC administration of D1 agonists has also been shown to improve memory retrieval in a 

delayed version of the radial maze task, but only after long delays (Floresco and Phillips, 

2001). 

Rodent studies employing the 5CSRTT have even reported hemispheric differences in 

the regulation of task performance. For example, post mortem measures of DA turnover ratios 

(DOPAC/DA) in the right but not left PFC, showed significant positive correlations with 

choice accuracy, while serotonin turnover in the right PFC was related to premature or 

impulsive responding (Puumala and Sirvio, 1998).  

 In general, the role of mesocortical DA in attentional processes has thus been described 

as making the animal focus more effectively on the stimuli currently controlling performance, 
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reflected in performance improvements seen following D1 stimulation in the 5CSRTT 

requiring divided and shifting attention (Robbins, 2000). It is noteworthy that ADHD children 

are particularly impaired in the ability to relocate their attention focus, and to disengage 

attention rapidly from one spatial location to another, due to compromised right hemisphere 

attention systems (McDonald et al., 1999). Such executive functions are known to be improved 

in humans by DA receptor agonists (Muller et al., 1998), and methylphenidate induces similar 

effects in both normal adults (Mehta et al., 2000) and in children with ADHD (Kempton et al., 

1999).  

 Taken together, the animal studies demonstrate a very important role for mesocortical 

DA in the modulation of executive functions and suggest that a critical window of DA activity 

is necessary for optimal cognitive functioning. Indeed, it is reminiscent of the classic inverted 

U relationship, or Yerkes-Dodsen Law, between arousal and performance, as too much or too 

little cortical DA is detrimental to performance. A major factor in determining the amount of 

cortical DA activity is stress, either acutely or chronically, as the mesocortical DA system is 

especially responsive to even acute, mild stressors. Chronic stress in rats has been shown to 

reduce PFC DA transmission in association with impairments in working memory; 

impairments which are ameliorated by intra-PFC infusion of D1 receptor agonists (Mizoguchi 

et al., 2000). It is therefore likely that individual differences in physiological arousal and the 

ability to respond to stress, could account in significant part for variations in executive 

functions mediated by the PFC. 
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3.4 Regulation of physiological arousal, stress responsivity and emotional behavior 

 In humans, the right hemisphere is believed to contribute to the arousal dimension of 

attention, and ADHD, by virtue of right hemispheric dysfunction, has been described as a 

hypovigilant state (Weinberg and Harper, 1993). Not only are deficits in arousal level and 

emotional self-regulation well recognized in ADHD (Barkley, 1997; 1998), but numerous 

studies of ADHD subjects have shown significantly impaired functioning of the stress 

regulatory systems so closely linked with emotion and arousal. Autonomic hypoarousal has 

been demonstrated in ADHD adolescents both at rest and during attention-demanding tasks 

(Lazzaro et al., 1999; Beauchaine et al., 2001). Failure to make normal cardiac adjustments in 

such tasks, was suggested to result from deficient cortical control over relevant visceral 

efferents (Althaus et al., 1999). Neuroendocrine functioning is also impaired in ADHD 

subjects, as reflected in the loss of normal diurnal cortisol rhythms (Kaneko et al., 1993) and 

lower salivary cortisol levels following performance of attention-demanding tasks, particularly 

in subjects with the most pronounced symptoms (Kariyawasam et al., 2002; King et al., 1998).  

 In the rodent, many studies have described the role(s) of the medial PFC in regulating 

autonomic, neuroendocrine and emotional states, and in cases where hemispheric differences 

have been examined, the right PFC appears to be especially important in this regard. The 

ventromedial PFC (particularly infralimbic cortex) is regarded as a visceromotor output station, 

which interacts closely with orbitofrontal networks and receives abundant stress and emotion-

related inputs from subcortical and/or limbic structures (Price, 1999; Cechetto and Saper, 

1990). In turn, ventromedial PFC efferents modulate many subcortical and brainstem sites 

controlling autonomic and neuroendocrine activation and emotional expression  (Hurley et 
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al.,1991; Takagishi and Chiba,1991; Terreberry and Neafsey,1987; Jodo et al.,1998, Sesack et 

al., 1989; Bacon and Smith, 1993). 

 The autonomic effects of prefrontal manipulations in rodents and other species have 

been reviewed elsewhere (eg. Cechetto and Saper, 1990; Van Eden and Buijs, 2000). The 

ventromedial PFC appears necessary for full sympathetic activation in times of stress, as 

lesions in this area alter the respiratory and cardiovascular changes associated with conditional 

emotional responses (Frysztak and Neafsey, 1991; 1994). Stimulation of this area elicits 

sympathetic responses, while more dorsal PFC stimulation tends to produce parasympathetic 

profiles (Powell et al., 1994). Excitotoxic lesions of ventromedial PFC also suppress the 

development of (autonomically mediated) gastric stress ulcers, with right-sided PFC lesions 

alone fully accounting for this effect (Sullivan and Gratton, 1999). The same measure of stress 

pathology is aggravated by right-sided PFC DA depletion, suggesting that mesocortical DA in 

this area normally plays an adaptive role in preventing the overactivation of these cortical 

outputs which drive stress-induced sympathetic function (Sullivan and Szechtman, 1995). 

 The medial PFC is also important in hypothalamic-pituitary-adrenal (HPA) axis 

activation, as electrical stimulation in this area increases plasma corticosterone levels (Feldman 

and Conforti, 1985). Excitotoxic lesions which include the ventromedial PFC reduce stress-

induced plasma corticosterone elevations, and again right-sided lesions alone account for this 

effect (Sullivan and Gratton, 1999). Lesions of more dorsal medial PFC sites on the other hand 

(prelimbic or anterior cingulate), have been reported to increase stress-induced plasma 

corticosterone levels (Diorio et al., 1993; Brake et al., 2000a). However, when lesions include 

both dorsal and ventromedial PFC (eg. Sullivan and Gratton, 1999), the ventral effects seem to 
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predominate, perhaps owing to their more direct anatomical links with the relevant subcortical 

control centers.  

 In terms of stress-associated behaviors, mixed results have been reported in medial PFC 

lesion studies. In general, dorsomedial PFC damage tends to result in anxiogenic profiles 

(Holson et al., 1986; Morgan and LeDoux, 1995), while ventromedial damage results in 

anxiolytic effects (Frysztak and Neafsey, 1991; Gonzalez et al., 2000; Lacroix et al., 2000; 

Sullivan and Gratton, 2002b). As well, such anxiolytic effects have been reported following 

unilateral right, but not left, ventromedial damage (Sullivan and Gratton, 2002b). In contrast, 

ventromedial DA depletion enhances measures of anxiety, most likely due to a net reduction in 

inhibitory tone on these cortical outputs (Espejo, 1997). 

 The medial PFC DA system is not only extremely responsive to stress (eg. Thierry et 

al., 1976), but also exhibits many functional hemispheric asymmetries. Specifically, right-

biased mesocortical DA asymmetries have been associated with exposure to novel 

environments (Berridge et al., 1999), reduced anxiety in the elevated plus maze (Anderson and 

Teicher, 1999), protection from stress ulcer pathology (Sullivan and Szechtman, 1995), 

successful escape performance following exposure to uncontrollable shock (Carlson et al., 

1993), performance accuracy in the 5CSRTT (Puumala and Sirvio, 1998) and stress-induced 

HPA activation (Sullivan and Gratton, 1998). It is suggested that these stress-sensitive DA 

afferents represent a high level coping system to optimize the broad range of functions 

subserved by the PFC, particularly in times of high arousal. 

 To summarize, the visceromotor cortex of the ventromedial PFC facilitates or drives 

sympathetic autonomic and neuroendocrine activity, particularly in times of stress, and 

contributes to anxiety-related (or perhaps cautious) behavior. These modes of physiological 
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and behavioral arousal are a perfectly normal, if not essential, part of effective responding and 

coping with challenging situations, provided the degree of activation is appropriate and 

contained within reasonable limits. It is suggested that mesocortical DA contributes to the 

optimal functioning of these „arousal output systems‟, by attempting to prevent their excessive 

activation, in essence by increasing the „signal to noise ratio‟ in times of high stimulation. 

 In humans, it is now known that the ventromedial PFC is essential in regulating 

autonomic adjustments to emotional stimuli, and that the deficits in emotional self-regulation 

resulting from damage to this area, are linked as well to impaired risk assessment, planning and 

decision-making (Damasio, 1994; Damasio et al., 1990). Interestingly, these deficits appear to 

be mediated by right-sided damage alone (Tranel et al., 2002). It has also been proposed that 

right-sided orbital/medial prefrontal systems, under DAergic modulation, are responsible for 

generating stress-regulating coping strategies and optimal emotional self-regulation (Schore, 

1996; 1997). The development of these systems is very much experience-dependent, not only 

on early social (maternal) attachment, but on a number of pre- and perinatal factors as well. 

  

4. Early Adverse Events and ADHD 

 As acknowledged earlier, there is a strong genetic component in the occurrence of 

ADHD, which may well involve the aberrant development of DAergic frontostriatal circuitry. 

In addition however, a number of independent risk factors have been identified for subsequent 

ADHD diagnosis, which may affect the development of these same systems. In general, 

complications associated with pregnancy, delivery or infancy have been linked with increased 

risk of ADHD diagnosis (eg. Sprich-Buckminster et al., 1993; Milberger et al., 1997; King, 

1996; Zappitelli et al., 2001; Rosa Neta et al., 2002). Specifically, factors involving reduced 
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oxygen supply to the fetus or infant appear to be particularly important in this regard, both in 

familial and nonfamilial forms of the disorder. Such hypoxic conditions could be related to 

maternal bleeding, prenatal alcohol or drug abuse, which can affect placental circulation, or 

acute delivery complications (Sprich-Buckminster et al., 1993; Milberger et al., 1997; Ornoy et 

al., 2001; Bandstra et al., 2001; Mick et al., 2002). Toft (1999) has suggested that in neonates 

suffering from asphyxia, tissue hypoxia leads to excess lactate production, which may 

compromise development of frontostriatal circuitry, partially accounting for ADHD 

pathogenesis. 

Hypoxic-ischemic events are especially common in prematurity, which may explain the 

high incidence of ADHD among children born prematurely with very low birth weight (Lou, 

1996; Bhutta et al., 2002). A recent brain imaging study in ADHD adolescents with a history 

of prematurity and low birth weight, showed highly significant correlations between cerebral 

blood flow at the time of birth, symptom severity as adolescents and DA receptor binding, 

especially in the right frontostriatal system (Rosa et al., 2002).  

 In addition, a number of recent studies have highlighted the importance of  the postnatal 

environment in predisposing to ADHD. Biederman et al. (1995) reported a positive association 

between a number of social adversity indicators and the risk for ADHD. It has been reported 

that deficits in the caregiving environment, including early problems in parental attachment 

contribute to ADHD development (Shaw et al., 2001; Halasz and Vance, 2002). In particular, 

less synchronous mother–child interactions were significantly associated with hyperactivity, a 

major predictor of which was maternal coping (Keown and Woodward, 2002). Very high 

levels of ADHD have also been reported among adopted youths, with the most notable 

preadoptive risk factors including early abuse/neglect (Simmel et al., 2001). It has also been 
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found that early institutional rearing, in comparison to stable foster family rearing, predisposes 

to a pattern of hyperactivity/inattention (Roy et al., 2000). Moreover, in adoptees following 

severe early deprivation, the duration of deprivation was significantly associated with measures 

of inattention/overactivity, independent of numerous other risk factors (Kreppner et al., 2001). 

Finally, a PET imaging study has shown cerebral metabolism to be greatly affected by severe 

early deprivation, as a group of Romanian orphans were found to have significantly reduced 

activity in the orbital frontal gyrus and the infralimbic prefrontal 

cortex, as well as some temporal lobe structures (Chugani et al., 2001). Such findings highlight 

the importance of not only prenatal conditions, but the postnatal social environment in the 

optimal maturation of these critical prefrontal and associated circuits.  

 

5. Effects of Early Developmental Manipulations on Rodent PFC Function 

 The developing prefrontal cortex is extremely sensitive to a wide variety of 

perturbations. For example, prenatal stress leads to enhanced anxiety in the offspring, and 

lateralized changes in PFC DA function (Fride and Weinstock, 1988). Such treatments also 

produce lasting changes in both DA and glutamate receptor expression in medial PFC (eg. 

Berger et al., 2002). Similarly, cocaine exposure in utero results in offspring with dramatically 

increased levels of Fos protein expression selectively in the ventral and medial prefrontal 

regions (Morrow et al., 2002), as well as hyperresponsive DA activation in the ventromedial 

PFC in response to mild stress (Elsworth et al., 2001).  The current review will focus on two 

other early developmental manipulations (viz. perinatal anoxia and early social environment) 

that also affect PFC development and produce changes in rat behavior and neurophysiology 

similar to some of those thought to occur in ADHD.  
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5.1 Effects of Perinatal Anoxia on DA Systems 

 Some of the most relevant rodent studies in the context of ADHD concern the induction 

of perinatal hypoxic/anoxic states. Various protocols of anoxia induction have resulted in 

behavioral hyperactivity, which tends to peak during the juvenile period and abate toward the 

time of puberty, although some hyperactivity can persist (eg. Speiser et al., 1983; 1988, Brake 

et al., 2000b; Decker et al., 2003). Such treatments also produce lasting impairments in a 

number of learning and working memory tasks (Dell‟Anna et al., 1991; Longo and Hermans, 

1992; Decker et al., 2003). Increasing duration of anoxia at the time of delivery, leads to 

increasing degrees of postnatal cell death, most prominently in frontal cortex, striatum and 

cerebellum (Dell‟Anna et al., 1997). 

 The brain of the newborn mammal is considered more resistant to anoxic episodes than 

the adult central nervous system (Haddad & Donnelly, 1990; Jilek, 1970; Kabat, 1970). This is, 

in part, because of the low level of differentiation, and reduced metabolic demands, of 

immature neurons (Bickler et al., 1993; Nehlig and Pereira de Vasconselos, 1993) and the rich 

supply of anaerobic energy available to the newborn (Nehlig and Pereira de Vasconselos, 

1993). Furthermore, acidosis occurs less easily due to the lack of a blood-brain barrier 

(Dombrowski et al., 1989; Nehlig & Pereira de Vasconselos, 1993). It has been known for 

some time that this tolerance depends upon the immaturity of brain physiology during the 

perinatal period (Fazekas et al., 1941).  Such conditions may protect immature neurons from 

the adverse effects of acute anoxia.  Such an assumption has lead to the crudely held view that 

neonates are quite resistant to transient periods of anoxia.  However, the resistance of the 
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immature brain against anoxic episodes is a relative phenomenon and subtle damage can have 

pronounced consequences. 

 More subtle aspects of neuron development may be greatly influenced by perinatal 

anoxia.  Although developing neurons may not require as much oxygen to survive they do 

require energy for structural differentiation processes such as axon and dendrite growth or 

synapse formation (Nyakas et al., 1996).  A period of anoxia may interfere with the highly 

increased rate of synthesis of structural proteins and other macromolecules needed for proper 

development. Thus, perinatal anoxia may interfere with neuron differentiation and/or 

organization and as a consequence lead to subtle, albeit critical, changes in brain maturation.   

 Increasing evidence suggests that DA systems may be particularly vulnerable to the 

effects of perinatal anoxia.  The following discussion reviews the long-term effects of perinatal 

anoxia on DA systems and DA-related behaviors.  For a review of the long-term effects of 

neonatal hypoxia on other neurotransmitter systems see Nyakas et al. (1996). 

 It was Bjelke and colleagues (1991) who first developed a method of intra-uterine 

anoxia following C-section delivery in the rat in order to study long-term effects of perinatal 

anoxia.  This model minimizes the influence of surgical procedures and anesthesia inherent to 

most other models (e.g. Coyle, 1982; Pulsinelli & Brierley, 1979).  It also circumvents the 

problem of other hypoxia models of having to perform procedures pre- or post-natally when 

the pregnant dam or newborns, respectively, may be placed in a hypobaric chamber (Nyakas et 

al., 1996).  It also has the advantage of studying the effects of C-section delivery with differing 

amounts of additional anoxia, which may better represent birth complications cited in the 

clinical literature.   
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 It should be noted that periods of anoxia lasting 19 min. or longer cause brain pH levels 

to drop below 7 (Chen et al., 1997), at which point acidosis is sufficiently high to produce 

significant neuronal loss.  Furthermore, periods of perinatal anoxia lasting 15 min or less result 

in a neonate survival rate close to 100% whereas 19-20 min of anoxia results in 50-80% 

survival and periods of anoxia lasting longer than 22 min result in almost no pup survival 

(Chen et al., 1995; 1997; unpublished observations). Consequently, periods of anoxia lasting 

19 min. or longer are more likely to produce more severe effects including massive cell loss 

and neuronal degeneration than shorter anoxic events (viz. 5 or 15 min.).  Perhaps, perinatal 

anoxia periods lasting 15 min. or less are producing a different set of developmental sequelae 

than longer anoxic periods. It has been shown, for example, that perinatal anoxia periods of up 

to 15 min. produce significant increases of subcutaneous glutamate, pyruvate, and aspartate 

levels whereas longer anoxia periods do not (Dell‟Anna et al., 1995).  As such, this discussion 

will address those changes following more subtle periods (up to15 min) of perinatal anoxia.  

Studies employing longer periods of anoxia, which produce different developmental outcomes, 

will not be reviewed here. 

 Bjelke et al. (1991) observed enhanced TH-immunoreactivity in VTA and increased 

apomorphine-induced locomotor activity in rats that received 15 min of anoxia when compared 

to C-section delivered animals.   It has also been shown that 15 min. of perinatal anoxia 

produces an increased locomotor response to acute amphetamine injection in the juvenile, four-

week-old, rat (Chen et al., 1995) and increases sensitization to acute amphetamine 

administration in the adult (Brake et al., 1997a).  These rats also exhibit increased NAcc DA 

transmission in response to stress (Brake et al., 1997b). Increased NAcc DA D1 receptor 

agonist affinity as well as increased D3 receptor binding in the striatum were observed in these 
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animals (Chen et al., 1997); Chen et al., 1997 suggested that an increase in D3 receptor binding 

may be a result of a compensation for enhanced D1 receptor affinity. 

 Thus the most commonly reported changes following perinatal anoxia suggest a net 

upregulation of subcortical DA function (eg. Chen et al., 1997; Seidler and Slotkin, 1990; 

Brake et al., 1997). Employing other protocols, it has also been shown that anoxic rats show a 

30% increase in stimulated dopamine release rate from striatal slices (Gross et al., 1993), and 

increases in striatal vesicular monoamine transporter and D1 receptor proteins (Decker et al., 

2003). 

 Changes in prefrontal function have not been as frequently reported, perhaps owing in 

part to the limitations of some post mortem neurochemical studies and the less dense PFC DA 

innervation. For instance i) such measures may reflect the basal state of these systems rather 

than detecting changes seen when these systems are challenged ii) tissue samples may be too 

large to detect a discrete area of change and iii) samples of left and right cortex are normally 

pooled, eliminating the chance to detect hemisphere-specific effects. These limitations were 

overcome in a study by Brake et al. (2000b), employing in vivo voltammetric recordings of 

changes in extracellular DA levels in response to repeated mild stress, in rats which had 

received a 15 min intrauterine anoxia treatment in conjunction with Caesarean section birth. In 

comparison to vaginally born controls, anoxic rats not only displayed locomotor hyperactivity, 

but strikingly lateralized changes in mesocortical DA activation in ventromedial (infralimbic) 

PFC. While the left PFC DA response was unaffected by perinatal anoxia, the right PFC 

response was dramatically suppressed across all five days of testing. Moreover, it was shown 

in separate animals that DAT levels were elevated selectively in the right PFC, perhaps 

contributing to the reduced levels of extracellular DA. In keeping with the reciprocal nature of 
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cortical/subcortical DA systems described earlier, Brake et al. (1997b) used the same technique 

to demonstrate that ventral striatal DA release is progressively enhanced or sensitized by 

repeated mild stress in anoxic animals. Taken together it was suggested that the 15 min anoxic 

episode induced a right mesocortical DA deficit, leading to a disinhibition of subcortical DA 

activity and subsequent behavioral hyperactivity; a scenario not unlike that proposed to explain 

ADHD pathophysiology (Castellanos, 1997). 

 

5.2 Effects of Postnatal Maternal Environment 

 In addition to the developmental perturbations resulting from perinatal anoxia, the PFC 

is also sensitive to events occurring during the postnatal period.  An extensive literature 

demonstrating the PFC sensitivity to postnatal manipulations within discrete developmental 

windows, especially in the context of recovery from PFC lesion, has been reviewed elsewhere 

(see Kolb et al., 2000 for a recent review). The postnatal social environment, particularly 

changes in maternal care, can also have significant effects on PFC development in the rat as 

well as in other species.  Studies that have manipulated the postnatal social environment have 

reported significant changes in the development of prefrontal as well as DAergic systems. Two 

such examples, which can induce opposite changes in development, are neonatal handling (H) 

and maternal separation (MS). 

 H involves a brief period (15 min) of daily separation of the rat dam from her pups, 

normally for the first two weeks of life, and is known to stimulate maternal behaviors (Liu et 

al., 1997) and impart numerous lasting benefits (Levine, 1975; Smotherman, 1983, Liu et al., 

1997), in particular increased feedback regulation of stress and emotion regulatory systems. 

This enhanced feedback may be a consequence of the increased expression of glucocorticoid 
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receptors (GR) in frontal cortex and hippocampus (Meaney et al., 1985; 1996; Diorio et al., 

1993). H also affects cognition and prevents cognitive decline late in life (Meaney et al., 1991). 

Additionally, H reduces synaptic density in the stress-responsive infralimbic cortex 

(Ovtscharoff and Braun, 2001). Importantly for this discussion, H stimulates the normal right 

hemispheric lateralization of emotional regulation (Denenberg, 1981). Concomitantly, H 

appears to enhance the inhibitory capacity within the right PFC and hippocampus, in part by 

causing a rightward shift in benzodiazepine/GABA-A receptor binding in these structures, 

possibly preventing excessive emotional reactivity (Sullivan and Gratton, 2003). Moreover, the 

inhibitory modulatory role of mesocortical DA on stress-induced HPA activity is lateralized to 

the right PFC following H, but is nonlateralized in NH rats (manuscript in preparation).  

In contrast, MS involves longer daily separations in the first two to three weeks of life 

(normally in the range of 3 - 4.5 hrs in rats) and results in hyperresponsive stress and emotion 

regulatory systems and enhanced fearfulness (Plotsky and Meaney, 1993; Meaney et al., 1996; 

Caldji et al., 2000; Ogawa et al., 1994).  In addition to the behavioral effects, male offspring 

that received early MS show greater HPA activity as adults, both basally and in response to 

acute stress (Ladd et al., 2000; Liu et al., 2000; Plotsky and Meaney, 1993).  Other studies in 

male rats show that MS decreases frontal cortex and hippocampal GR mRNA, reducing the 

capacity for HPA feedback regulation (Avishai-Eliner et al., 1999). Early postnatal MS and 

social isolation result in abnormally high synaptic density within the infralimbic cortex 

(Ovtscharoff and Braun, 2001), and altered densities of DAergic and serotonergic fibers 

throughout the medial PFC (Braun et al., 2000). Early social isolation also leads to decreased 

basal DA turnover, selectively in infralimbic cortex (Heidbreder et al., 2000). 
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As was the case with perinatal anoxia, subcortical DA function appears to be 

upregulated by MS. Recent studies have shown that adult male MS rats are hyperactive and 

exhibit an exaggerated ventral striatal DA response to stress relative to H rats (Brake et al., 

submitted). MS rats also exhibit lower levels of DAT binding in dorsal and ventral striatum 

and are behaviorally hypersensitive to the locomotor-activating effects of cocaine (Meaney et 

al., 2002).  These data clearly suggest that MS is capable of affecting the development of 

central DA systems thought to be involved in ADHD.   

 Interestingly, sex differences have been reported in the effects of MS, as this treatment 

does not appear to adversely affect females as much as males.  For instance, female rats that 

were maternally separated as neonates, have been reported not to show the increase in fear-

related behaviors typical in males (Boccia and Pedersen, 2001; Wigger and Neumann, 1999).  

Furthermore, unlike males, female rats that have experienced MS do not show a heightened 

endocrine response to stress (Wigger and Neumann, 1999).  Thus it appears that there is a sex-

specific effect of the deleterious consequences from MS, which is preferentially male. Indeed, 

in mice, MS decreases indices of anxiety in adult female offspring while increasing it in males 

(Romeo et al., 2003) Although the mechanisms for such sex differences in MS rodents haven‟t 

been elucidated, they may have important ramifications for the higher incidence of 

neurodevelopmental disorders like ADHD observed in males compared to females. 

Finally, a recent magnetic resonance imaging study in the non-human primate has 

demonstrated that MS results in a significant enlargement of the ventromedial PFC, specific to 

the right hemisphere (Lyons et al., 2002). Together with the above increases in synaptic 

density of this region, such findings may help explain the greatly heightened stress sensitivity 

and excessive arousal level of such animals. To conclude, it is clear that many factors affect the 
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development of prefrontal systems, both in terms of the intrinsic structures within the PFC and 

their important afferent inputs, particularly the mesocortical DA system.  

 

6. Summary: Towards a better understanding prefrontal dysfunction in ADHD 

 ADHD undoubtedly involves the abnormal development and functioning of entire 

networks of structures, not only prefrontal, but certainly striatal and even cerebellar (see 

Castellanos et al., 1996b; Castellanos and Tannock, 2002). What is presently proposed, is that 

right prefrontal cortex may play the most critical role in the expression of ADHD, by virtue of 

its direct role in mediating the core deficits of this condition, and by its regulation of striatal 

and other subcortical functions. The right PFC also appears to be particularly sensitive to early 

adverse events.  

One of the most fundamental roles of the PFC appears to be the regulation of 

physiological and behavioral arousal levels, and the functional nature of these prefrontal 

arousal systems is greatly influenced by early environmental events. From optimal and 

situation-appropriate arousal regulation, follows the optimization of many interdependent 

functions mediated by the PFC, including responding to stress, emotional self-regulation, 

attentional control, working memory, temporal processing, planning, decision-making, and 

behavioral inhibition. Any developmental perturbations to the right PFC, due to genetic 

predisposition, early adverse events, or combinations thereof, would be expected to result in 

the suboptimal maturation and functioning of this region.  

Either excessive, diminished or abnormally lateralized prefrontal activity can lead to a 

variety of forms of psychopathology (Sullivan and Gratton, 2002a). In the case of ADHD, the 

predominantly right lateralized nature of the pathology may derive from the inherent 
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specialization of right hemispheric systems for arousal and stress regulation. Right brain 

mechanisms, particularly at the brainstem level, are more intimately linked with basic life-

sustaining functions (e.g. autonomic regulation) and mature more rapidly than their left brain 

counterparts (Porges et al., 1995; Geschwind and Galaburda, 1987). However, the cortical 

representation or extension of these asymmetrical arousal networks is much slower to mature 

and vulnerable to insult for a much longer period. As such, early adverse events such as the 

metabolic stress of intrauterine hypoxia would be expected to impact preferentially on the 

development of these right-sided, physiology-regulating systems. Adverse or stressful events in 

later development or the early postnatal period would also be likely to alter the continued 

maturation of the right-sided prefrontal systems.  

In the rat, cortical DA afferents start reaching their cortical targets earlier (final 

trimester of gestation) and achieve their adult innervation pattern later (roughly 2 months or 

puberty) than other major cortical afferent systems (fig. 1), giving this key regulatory system a 

particularly long window of vulnerability to insult (Berger-Sweeney and Hohmann, 1997). 

This system is also said to be slower maturing in males than females, perhaps partially 

accounting for the higher incidence of ADHD in boys. Even if developmental anomalies in 

mesocortical DA systems were entirely related to genetic predisposition, the long-term 

pathology would still be expected to be asymmetrical, since central DA systems in the normal 

rat are known to be functionally asymmetrical at least from the time of birth if not sooner 

(Afonso et al., 1993; Rodriguez et al., 1994; Varlinskaya et al., 1995). 

 While many questions remain unanswered regarding ADHD, it is clear that rodent 

studies, particularly on the nature of PFC function, have and will continue to shed considerable 

light on many of the clinical observations reported in ADHD. It is hoped that future animal 
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studies which attempt to model at least aspects of ADHD, whether they involve the knock-out 

of candidate genes, effects of intrauterine hypoxia, neuropharmacological or other approaches, 

will include the careful examination of the effects of their manipulations on prefrontal 

function, particularly that of the right hemisphere. There is still a great deal to be learned 

concerning the development of these critical prefrontal systems, not the least of which is the 

potential means of reversing, or best compensating for, their suboptimal development. 
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Figure Captions 

 

 

Figure 1: Schematic diagram demonstrating the relatively extended period of development of 

cortical dopamine afferents and concomitant risk factors for ADHD.  It is proposed here that 

such a lengthy window of development is one reason why the mesocortical pathway may be 

vulnerable to early adverse experiences resulting in behavioral and neurochemical outcomes 

similar to some of those thought to occur in ADHD. 
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