Breadcrumb

 
 

Siderophore Transport through Escherichia coli Outer Membrane Receptor FhuA with Disulfide-tethered Cork and Barrel Domains

Title:

Siderophore Transport through Escherichia coli Outer Membrane Receptor FhuA with Disulfide-tethered Cork and Barrel Domains

Eisenhauer, H. Anne and Shames, Sofia and Pawelek, Peter D. and Coulton, James W. (2005) Siderophore Transport through Escherichia coli Outer Membrane Receptor FhuA with Disulfide-tethered Cork and Barrel Domains. Journal of Biological Chemistry, 280 (34). pp. 30574-30580. ISSN 0021-9258

[img]
Preview
PDF (published version)
282Kb

Official URL: http://www.jbc.org/cgi/content/abstract/280/34/305...

Abstract

The hydroxamate siderophore receptor FhuA is a TonB-dependent outer membrane protein of Escherichia coli composed of a C-terminal 22-stranded -barrel occluded by an N-terminal globular cork domain. During siderophore transport into the periplasm, the FhuA cork domain has been proposed to undergo conformational changes that allow transport through the barrel lumen; alternatively, the cork may be completely displaced from the barrel. To probe such changes, site-directed cysteine mutants in the cork domain (L109C and Q112C) and in the barrel domain (S356C and M383C) were created within the putative siderophore transport pathway. Molecular modeling predicted that the double cysteine mutants L109C/S356C and Q112C/M383C would form disulfide bonds, thereby tethering the cork and barrel domains. The double cysteine FhuA mutants were denatured under nonreducing conditions and fluorescently labeled with thiol-specific Oregon Green maleimide. Subsequent SDS-PAGE analysis revealed two distinct species: FhuA containing a disulfide bond and FhuA with free sulfhydryl groups. To address the role of the putative siderophore transport pathway and to evaluate possible rearrangements of the cork domain during ferricrocin transport, disulfide bond formation was enhanced by an oxidative catalyst. Cells containing double cysteine FhuA mutants that were subjected to oxidation during ferricrocin transport exhibited disulfide bond formation to near completion. After disulfide tethering of the cork to the barrel, ferricrocin transport was equivalent to transport by untreated cells. These results demonstrate that blocking the putative siderophore transport pathway does not abrogate ferricrocin uptake. We propose that, during siderophore transport through FhuA, the cork domain remains within the barrel rather than being displaced.

Divisions:Concordia University > Faculty of Arts and Science > Chemistry and Biochemistry
Item Type:Article
Refereed:Yes
Authors:Eisenhauer, H. Anne and Shames, Sofia and Pawelek, Peter D. and Coulton, James W.
Journal or Publication:Journal of Biological Chemistry
Date:August 2005
ID Code:6342
Deposited By:KUMIKO VEZINA
Deposited On:14 Sep 2009 15:30
Last Modified:08 Dec 2010 18:56
References:
Aziz, Q. H., Partridge, C. J., Munsey, T. S., and Sivaprasadarao, A. (2002) J. Biol. Chem. 277, 42719-42725

Bonhivers, M., Desmadril, M., Moeck, G. S., Boulanger, P., Colomer-Pallas, A., and Letellier, L. (2001) Biochemistry 40, 2606-2613

Bös, C., and Braun, V. (1997) FEMS Microbiol. Lett. 153, 311-319

Braun, V., and Braun, M. (2002) FEBS Lett. 529, 78-85

Braun, M., Killmann, H., and Braun, V. (1999) Mol. Microbiol. 33, 1037-1049

Buchanan, S. K., Smith, B. S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., van der Helm, D., and Deisenhofer, J. (1999) Nat. Struct. Biol. 6, 56-63

Cadieux, N., and Kadner, R. J. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 10673-10678

Chervitz, S. A., and Falke, J. J. (1995) J. Biol. Chem. 270, 24043-24053

Chimento, D. P., Mohanty, A. K., Kadner, R. J., and Wiener, M. C. (2003) Nat. Struct. Biol. 10, 394-401

Coulton, J. W., Mason, P., and DuBow, M. S. (1983) J. Bacteriol. 156, 1315-1321

Endriss, F., Braun, M., Killmann, H., and Braun, V. (2003) J. Bacteriol. 185, 4683-4692

Fadrus, H., and Maly, J. (1975) Analyst 100, 549-554

Faraldo-Gomez, J. D., Smith, G. R., and Sansom, M. S. (2003) Biophys. J. 85, 1406-1420

Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K., and Welte, W. (1998) Science 282, 2215-2220 Locher, K. P., Rees, B., Koebnik, R., Mitschler, A., Moulinier, L., Rosenbusch, J. P., and Moras, D. (1998) Cell 95, 771-778

Ferguson, A. D., and Deisenhofer, J. (2004) Cell 116, 15-24

Fu, D., Sarker, R. I., Abe, K., Bolton, E., and Maloney, P. C. (2001) J. Biol. Chem. 276, 8753-8760

Hantke, K. (1981) Mol. Gen. Genet. 182, 288-292

Hazes, B., and Dijkstra, B. W. (1988) Protein Eng. 2, 119-125

Hughson, A. G., and Hazelbauer, G. L. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11546-11551

Klebba, P. E. (2003) Front. Biosci. 8, s1422-s1436

Larsen, R. A., Letain, T. E., and Postle, K. (2003) Mol. Microbiol. 49, 211-218

Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004) J. Biol. Chem. 279, 18232-18238

Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2004) J. Biol. Chem. 279, 7692-7697

Moeck, G. S., Tawa, P., Xiang, H., Ismail, A. A., Turnbull, J. L., and Coulton, J. W. (1996) Mol. Microbiol. 22, 459-471

Moeck, G. S., Ratcliffe, M. J. H., and Coulton, J. W. (1995) J. Bacteriol. 177, 6118-6125M. J. H.

Postle, K., and Kadner, R. J. (2003) Mol. Microbiol. 49, 869-882

Scott, D. C., Cao, Z., Qi, Z., Bauler, M., Igo, J. D., Newton, S. M. C., and Klebba, P. E. (2001) J. Biol. Chem. 276, 13025-13033

Usher, K. C., Özkan, E., Gardner, K. H., and Deisenhofer, J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 10676-10681

Van Gelder, P., Dumas, F., Bartoldus, I., Saint, N., Prilipov, A., Winterhalter, M., Wang, Y., Philippsen, A., Rosenbusch, J. P., and Schirmer, T. (2002) J. Bacteriol. 184, 2994-2999

Ye, L., Jia, Z., Jung, T., and Maloney, P. C. (2001) J. Bacteriol. 183, 2490-2496
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Document Downloads

More statistics for this item...

Concordia University - Footer