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Abstract

We present advances in the software engineering design and implementation of the multi-tier
run-time system for the General Intensional Programming System (GIPSY) by further unifying
the distributed technologies used to implement the Demand Migration Framework (DMF) in
order to streamline distributed execution of hybrid intensional-imperative programs using Java.
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1 Introduction

Intensional programming implies a declarative programming language based on the denotational
semantics [1]. The declarations are evaluated in an inherent multi-dimensional context space [32].
The GIPSY project [22, 13, 16] aims at providing a platform for the investigation on the intensional
and hybrid intensional-imperative programming. The GIPSY’s compiler, GIPC, is based on the
notion of Generic Intensional Programming Language (GIPL) [18, 21, 23, 27], which is the core
run-time language into which all other flavors of the Lucid (a family of intensional programming
languages) language can be translated to. The notion of a generic language also solved the problem
of language-independence of the run-time system by allowing a common representation for all
compiled programs, the Generic Eduction Engine Resources (GEER). A generic distributed run-
time system has been proposed in [19], this paper will present the design and implementation
progress so far and the immediate future work.

1.1 Problem Statement

Due to Lucid’s denotational (prescriptive) semantics, its inventors had mentioned the inherent
parallelism of Lucid programs: “... the whole programs can be understood as producer-consumer
networks computing in parallel. Furthermore, this operational interpretation can be used as the
basis of a distributed implementation ...” [1].

Although a multi-threaded and distributed architecture using Java RMI [36] has been initially
designed [14], it was not fully integrated and many of the detailed working flow needed to be

1

ar
X

iv
:0

90
6.

48
37

v1
  [

cs
.S

E
] 

 2
6 

Ju
n 

20
09

{bin_ha,mokhov,paquet}@cse.concordia.ca


clarified. Furthermore, two more separate branches of distributed computation for GIPSY emerged
– the implementations based on Jini [12] and JMS [29] of the Demand Migration Framework
(DMF), which in themselves are not interoperable and their top interfaces are not exactly the same
complicating the integration and unification effort thereby delaying the true parallel or distributed
execution of Lucid programs in the GIPSY’s implementation of the run-time system – the General
Eduction Engine (GEE).

1.2 Proposed Solution

Our work follows upon and enhances on GLU’s generator-worker architecture [4, 10, 5] extended to
be multi-tier over the course of multiple design iterations with Java. We apply most of the high-level
design work produced by Paquet [19] by constructing wrapper classes for each tier type introduced
in there, specifically DGT (Demand Generator Tier), DST (Demand Store Tier), DWT (Demand
Worker Tier), and the GMT (General Manager Tier). Every single GIPSY node in the said design,
which usually translates to a single physical computer, that has been registered within the current
GIPSY network of nodes participating in computation, can host arbitrary number of instances of
each tier. Since four local and distributed computation prototypes are implemented, which are
multi-threaded and RMI [14, 16], Jini [35], and JMS [26] we decided to integrate them together by
applying the abstract factory, factory method and strategy design patterns [8] following extreme
programming [2] and the test-driven development [7, 16, 32] methodologies aiming at constructing
a framework with high extensibility and maintainability for the further iterations.

1.3 Related Work

The work presented in this paper is an evolution of the original architecture for the run-time
system of the GIPSY, as hinted in [18], and briefly presented in [20]. The architecture proposed in
these works was itself developed following the generator-worker architecture adopted successfully
by GLU [9, 10]. Despite GLU’s successful implementation, the run-time system of GLU was
not as scalable and flexible as the solution that we are designing for and implementing in this
paper. In addition, the communication procedures of the run-time system implemented in GLU
was implemented using RPC. Our solution proposes a much more flexible approach by integrating
demand migration and storage by using the Demand Migration Framework (DMF), which can be
concretely instantiated using various middleware technologies, such as Jini [34, 33] and JMS [24, 25].

1.3.1 Node and Tier Properties

In a GIPSY peer-to-peer computing network of nodes and tiers we aim for the following properties:

• Demands are propagated without knowing where they will be processed or stored.

• Any tier or node can fail without the system to be fatally affected.

• Nodes and tiers can seamlessly be added or removed on the fly as computation is happening.

• Nodes and tiers can be affected at run-time to the execution of any GIPSY program, i.e. a
specific node or tier could be computing demands for different programs.

The conceptual design of a GIPSY node is in Figure 1.
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Figure 1: Design of the GIPSY Node

1.3.2 Demand Driven Computation

The central concept to this model of execution is the notion of generation, propagation, and com-
putation of demands and their resulting values. We have demands of several types: intensional,
procedural, resource, and system. Intensional demands are of the form:

{GEERid, programId, context}

where GEERid is a unique identifier for the GEER (i.e. the compiled program) that this demand
was generated for; programId is an identifier declared in this GEER (in this case a Lucid identifier);
and context is the context of evaluation of this demand. Procedural demands are of the form:

{GEERid, programId, Object params[], context, [code]}

where GEERid is a unique identifier for the GEER that this demand was generated for; programId
is an identifier declared in this GEER (in this case a procedure identifier); params[] is an array
of Objects that this procedure takes as arguments, context is the context of evaluation of this
demand, and [code] is the (optional) executable code of the procedure, in cases where we don’t
want to assume that the worker has the code to be executed available. Resource demands are of
the form:

{resourceTypeId, resourceId}

where resourceTypeId is an identifier for a resource type, which is an enumerated type now
containing a GEER and possibly a procedure class. This enumerated type is extensible in order
to allow for new resource types to be added later. The resourceId is the unique identifier for the
specific resource instance being sought for by the demander (e.g. demand generator). Any new
resource type created is provided with a unique identifier scheme to identify each specific resource
instance of this type. System demands are of the form:

{destinationTierId, systemDemandTypeId, Object params[]}

where destinationTierId is the tier unique identifier of the tier to which this demand is addressed,
systemDemandTypeId is an identifier for a system demand type, which is an enumerated type
containing one element for each kind of system demand, and params[] is an array of Objects that
this system demand takes as arguments, if any.
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1.3.3 Demand Identifiers

Universally unique identifier The DispatcherEntry class uses a universally unique identifier
to uniquely identify each demand within a computing GIPSY network. This identifier is local to
the DMS and is invisible from the perspective of GIPSY tiers. Note that this identifier scheme
generates distinct identifiers for absolutely all demands produced in the system.

Demand signature identifier This is the identifier of a demand that is generated from its tuple
elements. Note that all demands generated with the same signature (e.g. {GEER1,A,[d:2]}) will
generate the same demand signature identifier, so that the same demand generated after having
been computed can be queried in the DST and its result can be extracted without recomputation,
following the principles of dynamic programming.

1.3.4 Multi-Threaded and RMI Run-Time

Single-threaded, multi-threaded, and RMI-based run-time architectures with the NetCDF-supported
storage for GIPSY have been explored first [14, 30, 16, 3] and an attempt of unification of them
has been made. The requirement of the new multi-tier architecture states that they must be a
possibility still when needed in addition to the new technologies that were further developed that
are discussed in the following section.

1.3.5 Jini-DMS and JMS-DMS

To overcome GLU’s inflexibility, the GIPSY was designed to include a generic and technology-
independent collection of Demand Migration Systems (DMSs), which implement the Demand Mi-
gration Framework (DMF) for a particular technology or technologies to communicate and store
information. Jini-DMS [35] incorporates a solution based on Jini [12] and JavaSpaces [15, 6],
where Jini has been used for the design and implementation of the Transport Agents (TAs) and
JavaSpaces for the design and implementation of the Demand Store. JMS-DMS [26] applied the
DMF framework based on the Java Messaging Service (JMS) paradigm. The JBoss Application
Server [11] has been used as JMS provider and Hypersonic Database (HSQLDB) [31], which is an
embedded solution inside JBoss provides persistence and caching.

2 Design and Implementation

We present the detailed design decisions so far of our ongoing implementation here.

2.1 Multi-tier Package

Classes and interfaces for the implementation under the gipsy.GEE.multitier package. The
corresponding wrappers are located in their respective subdirectories (sub packages). To summarize,
we have a root multitier package:

gipsy.GEE.multitier

In there there are subpackages for each of the tier types and the corresponding wrapper classes
among other things:
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gipsy.GEE.multitier.DGT.DGTWrapper
gipsy.GEE.multitier.DST.DSTWrapper
gipsy.GEE.multitier.DWT.DWTWrapper
gipsy.GEE.multitier.GMT.GMTWrapper

2.2 Wrappers, API and Classes

Regarding the core design of the Multi-Tier Architecture and the developers’ implementation effi-
ciency, we decided to define the four aforementioned wrapper classes: DGTWrapper (Demand Gen-
erator Tier Wrapper), DSTWrapper (Demand Store Tier Wrapper), DWTWrapper (Demand Worker
Tier Wrapper), and the GMTWrapper (General Manager Tier Wrapper), such that they all inherit
from the same abstract class called GenericTierWrapper that implements the most common func-
tionality of the interface IMultiTierWrapper.

The interface is to be used by any invoking application, e.g. the main class GEE or even some
eventual external applications. We defined the preliminary API of the interface, and we will provide
the code for it and adjust the tier wrapper stubs to adhere to the interface.

The interface we designed, is placed into the same package gipsy.GEE.multitier and is called
IMultiTierWrapper. It is used by the GEE main class or the tier controller classes to hold a reference
to a given tier type in a generic manner. The initial content of the interface is in Figure 1 (trimmed)
that the above actual wrapper classes implement. Thus, we define the actual Java syntax interface
and its implementation within the concrete wrapper classes.

import g ipsy . Conf igurat ion ;

public interface IMultiTierWrapper
extends Runnable
{

. . .
s t a r tT i e r ( ) ;
s topTie r ( ) ;
s e tCon f i gu ra t i on ( Conf igurat ion ) ;
Conf igurat ion ge tCon f i gura t i on ( ) ;
. . .

}

Listing 1: Primary API of the IMultiTierWrapper Interface.

2.3 Generic Wrapper

Two GIPSY objects included as data members in the GenericTierWrapper adhere to the APIs
of Configuration and ITransportAgent, and are described further. All wrappers are to have a
configuration instance and potentially communicate through a given transport agent (TA) imple-
mentation.

• Configuration contains a Serializable configuration of this GIPSY instance and its com-
ponents, for static and run-time configuration management.

• A TA reference abstracted by the ITransportAgent unification interface for all transport
agents (TAs) implemented in the extended DMF (Demand Migration Framework) and DMS
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(Demand Migration System) and beyond. All TAs must implement this interface. This is
a super-interface for the use by the engine and the multi-tier architecture. The original
implementations based on Jini and JMS did not have a common super-interface, which we
had to define and provide ourselves during the course of this work. After defining a family
of interfaces, we can encapsulate each implementation and make them interchangeable. The
strategy pattern lets the implementation technique vary independently from clients that use
it.

2.4 DGT and DWT Wrappers

Both DGTWrapper and DWTWrapper classes have the common oGEERPool data member, which is a
collection of objects of type GIPSYProgram, which act like local caches of the downloaded programs
from the DST for execution. These are the brief descriptions of the contained components:

• GIPSYProgram: A dictionary of identifiers and the abstract syntax tree (AST) compiled from
the program by the compiler, GIPC, also mentioned as a GEER (General Eduction Engine
Resources).

• GEERPool: Maintains a collection of GEERs, serving as a cache in each DWT and DGT.
Whenever a demand is needed pertaining to an identifier embedded in a particular GEER,
DWT and DGT will search for this GEER in the local GEER pool, and if it’s not cached, a
resource demand is made in order to get the required GEER from elsewhere.

2.5 DST Wrapper

The DSTWrapper is similar to the two earlier described classes, except when it inherits from the
base class GenericTierWrapper, the DSTWrapper encapsulates oStorageSubsystem, which is an
object of type IVWInterface.

• IVWInterface is an integrated Intensional Value Warehouse, that now we refer to as a demand
store (DS), specifically, if the Demand Migration System used by the DST is implemented
by JMS [29], IVWInterface represents JBoss [11]; if implemented by Jini, represents JavaS-
paces [15], if locally or by RMI, then represents NetCDF [3].

2.6 Supporting Classes

Throughout our design and development effort we further introduce a data structure, a factory
method class for tiers, and the controller class to satisfy the high-level design presented earlier.

• EDMFImplemenation – EDMFImplemenation is an enumerated type containing options for
multi-threaded, RMI, Jini and JMS-based communications middleware so far. It acts as an
identifier for the techniques used in the implementation. In the future, others may add other
types representing the new DMSs they might develop.

• TierFactory – TierFactory is an instance of the abstract factory pattern. Each tier con-
troller (see below) maintains a reference to the subclass of TierFactory, which creates objects
of its respective tier type. Each concrete tier factory, e.g. DGTFactory, provides its controller,
e.g. DGTController, an interface to create families of DGT without specifying their concrete
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implementation transport agent strategies, which enhances the flexibility and maintainability
of the system.

• NodeController – NodeController is an abstract class for each tier controller. Its subclasses
decide, which tier type to instantiate. Its existence facilitates further implementation and
addition of any new tier types to the multi-tier architecture as needed. If necessary, there will
be one controller for each tier that implements GenericTierWrapper running on every node,
which is a physical computer. It takes responsibility of adding to (through TierFactory) or
removing any tier instances from the node. The singleton pattern is applied here to ensure
only one controller is created for each tier on each node, and the factory method pattern lets
the subclasses to specify the tier objects it controls.

2.7 Design Summary

In Figure 2 is the UML diagram describing the relationships between different tier types, the
configuration, TAs, the engine, and other modules we just described. This overall class diagram
was abbreviate to remove the usual routine details most classes have, focusing only on the core
aspects of this work.

Figure 2: The Initial Multi-tier Architecture Design and Implementation

2.8 Integration with the GEE

The primary integration of the invocation of the multitier services via the main entry point of
the engine, the main class GEE, has to be re-designed to accommodate these new developments.
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The adjustments include option processing, service start-up and handling the control over the a
particular tier via its controller or directly for preliminary testing purposes.

For the immediate support of the wrapper invocation we provide the means through options of
GEE.java (the main class) to invoke a particular tier or tiers. We also create the wrapper Linux,
MacOS X, and Windows shell and batch scripts to start up the tiers, and the GNU Make [28]’s
Makefiles to build the new multitier code in Linux.

In order to start the GEE (that roughly corresponds to a GIPSY node instance) we do:

./gee --option

e.g. to start up a DGT, it is:

./gee --dgt[=N]

(where N is the optional number of instances) and the corresponding wrapper scripts, such that
one can start any tier, like:

./dgt N

./dst N

...

GEE uses the newly created API in the previous section of IMultiTierWrapper. Based on the
options, gee employs the factory method to instantiate the desired tier types of arbitrary number
of instances, and then starts them or stops them as directed using the API of IMultiTierWrapper.
Some of this first build interaction is under the process of migration to the NodeController class
described earlier, i.e. GEE will delegate the start up activities and others to the node controller,
which will in turn will use the factory pattern to manage the tiers. After having started the
tiers, GEE proceeds to the execution of the program if there is one to execute, encapsulated into
a GIPSYProgram instance, the GEER. As execution progresses, the demands are generated and
handed off to the tiers responsible for the delivery and results computation and return along with
the warehouse store caching principles described earlier.

3 Conclusion

We believe that the ongoing design and implementation presented in this work provides a feasible
solution for the eductive evaluation of hybrid intensional-imperative programs and tier management.
Especially, the multi-tier infrastructure, once fully implemented and tested, will offer the GIPSY
run-time system high scalability and flexibility that was pending integration effort from various
developers for a long time.

We had to add some extra layers of abstraction in terms of the interfaces and APIs of interfaces
IMultiTierWrapper, ITransportAgent, and class GEERPool in order to remain extensible and
flexible to accommodate any future changes to the design and implementation. We defined a new
package for the multitier implementation, and described the details and the relationship of the core
classes used in the design.
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4 Future Work

We have listed the following short-term immediate and longer term future work items:

• Further integration of the multi-tier run-time with the rest of GEE.

• Extensive unit testing and integration testing.

• Performance testing on a hybrid network and cluster environments.

• Security layer integration and testing [17].
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