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Application of Genetic Algorithms to Motor
Parameter Determination for Transient

Torque Calculations
Pragasen Pillay,Senior Member, IEEE,Ray Nolan, and Towhidul Haque

Abstract—This paper applies genetic algorithms to the problem
of induction motor parameter determination. Generally available
manufacturers’ published data like starting torque, breakdown
torque, full-load torque, full-load power factor, etc., are used to
determine the motor parameters for subsequent use in studying
machine transients. Results from several versions of the genetic
algorithm are presented, as well as a comparison with the New-
ton–Raphson method.

Index Terms—Genetic algorithms, motor parameter determi-
nation, Newton–Raphson.

I. INTRODUCTION

T HE problem of induction motor parameter estimation
and its use in the prediction of motor performance

has been addressed by several researchers [1]–[8]. Deep-bar
machines were considered in [1], while the estimation of
motor parameters from standstill tests were considered in [2]
and [3]. Particular attention was paid to leakage reactances
in [4] and [5], while in [6], the extended Kalman filter
was used to address the problem of the rotor time constant
for vector-controlled drives. Other techniques were used for
motor parameter estimation in [7] and [8]. The one common
denominator in these papers is the high accuracy demanded
in the parameter determination, especially in vector-controlled
drives.

In the world of relaying and power system protection,
however, extreme accuracy of the order attempted by the
researchers above is not needed [9], [10]. The selection of
breakers, current ratings of current transformers, etc., are not
done to 1% accuracy; typically, 10% or 15% is sufficient. At
the same time, the input data available for the determination of
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the motor parameters is generic at best. That is, the individual
designer’s data is typically not available (especially for an
old motor in a plant). Tests to determine the parameters of
such motors are out of the question for machines running
continuously, which happens quite often in the petrochemical
industry, for example.

This paper addresses the determination of suitable motor
parameters for system-type studies such as these, where the
input data available may be little more than what is available
on the nameplate, like starting torque, breakdown torque, full-
load torque, full-load power factor, full-load efficiency, etc.
It is desirable to be able to extract the motor parameters
from such data, so that torque transients can be calculated,
for example, during autoreclose operation of the distribution
breaker by the power company. The Newton–Raphson method
has been previously used, but with convergence problems
relating to the initial starting points and the requirement for
iteration [11]. In this paper, two different techniques, the
Newton–Raphson and genetic algorithms, are used to extract
the motor parameters from the readily available and, hence,
generic available data. Several different induction machines
are tested, and the results are compared.

II. NEWTON–RAPHSON OPTIMIZATION USING QUATTRO PRO

Quattro Pro uses the Newton–Raphson method to solve
nonlinear equations that may encompass several variables
and constraints. The equivalent circuit (EC) parameters of an
induction machine, which include stator and rotor resistances,
and stator, rotor, and magnetizing reactances, can be obtained
from Quattro Pro using its Newton–Raphson-based optimizer
function. The Quattro Pro spreadsheet can be set up to include
the torque and power factor equations, an initial estimate for
each parameter, and relevant nameplate and performance data.
The relevant performance data consist of full-load, locked-
rotor, and breakdown torque values, full-load power factor,
full-load slip, and supply voltage. Quattro Pro begins by using
the Newton–Raphson optimizer to adjust each parameter and
recalculate the spreadsheet. Based on the new results, the
optimizer continues to make adjustments until a solution is
reached that meets all of the requirements. The optimizer’s
recommended solutions appear in the designated cells, but the
solutions vary depending on the initial estimates of the EC
parameters. In general, the more realistic the starting values
are, the closer the results are to the correct optimal solution.
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The major drawback to the Newton–Raphson method is
that its success depends on the selection of good initial
estimates. Although the optimization process may only take a
few minutes, a considerable amount of time and effort can be
spent selecting the initial estimates, which require familiarity
with the particular machine size and parameters. Even when
the initial solutions appear reasonable, the optimizer still may
not converge to the correct solution.

III. GENETIC ALGORITHMS

A. Introduction

The genetic algorithm is another method which may be used
to solve a system of nonlinear equations. The genetic algorithm
uses objective functions based on some performance criterion
to calculate an error. However, the genetic algorithm is based
on natural selection using random numbers and does not
require a good initial estimate. That is, solutions to complex
problems could evolve from poor initial estimates in a game of
survival of the fittest. Genetic algorithms manipulate strings of
binary digits and measure each string’s strength with a fitness
value. The stronger strings advance and mate with other strong
strings to produce offspring. Eventually, one string emerges as
the best. One of the most important advantages of the genetic
algorithm over the Newton–Raphson technique is that it is
able to find the global minimum, instead of a local minimum,
and that the initial estimate need not be close to the actual
values. Another advantage is that it does not require the use
of the derivative of the function, which is not always easily
obtainable or may not even exist, for example, when dealing
with real measurements involving noisy data.

B. The Main Operators

The mechanics of the genetic algorithm are elementary,
involving nothing more than copying strings, random num-
ber generation, and swapping partial strings [12]. A simple
genetic algorithm that produces good results in many practical
problems is composed of the following three operators:

1) reproduction;
2) crossover;
3) mutation.

Reproduction is a process in which individual strings are
selected according to their fitness. The fitness is determined
by calculating how well each string fits an objective function.
Copying strings according to their fitness value implies that
strings that fit the objective function well have a higher
probability of contributing one or more offspring in the next
generation. This process of reproduction is, of course, an
artificial version of natural selection. Here, the objective
function is the final arbiter of the string creature’s life or death.

Stochastic sampling with replacement is the name given
to a simple reproduction scheme. This scheme is based on
placing the string probabilities on a weighted roulette wheel
and spinning the wheel to select a string. The probabilities on
the roulette wheel are determined by the string’s fitness as a
percentage of the total population fitness. The roulette wheel
selection scheme utilizes random numbers to simulate a spin

Fig. 1. The crossover operator.

Fig. 2. The mutation operator.

of the wheel. Once a string is selected by the reproduction
operator, the string is copied into a mating pool and waits to
be selected for further genetic operator action. The roulette
wheel scheme does not guarantee that the fittest strings will
be selected, although their probability for selection is high.
Therefore, this method may not produce the best results,
especially for problems with small populations.

Crossover is a two-step process that involves mating and
swapping of partial strings. Each time the crossover operator
takes action, two randomly selected strings from the mating
pool are mated. Then, in the case of simple crossover, a
position along one string is selected at random, and all binary
digits following the position are swapped with the second
string. The result is two entirely new strings that move on
to the next generation. This can be more clearly understood
by the following example, in which string 1 and string 2 have
already been chosen to mate, as shown in Fig. 1.

Mutation follows crossover and protects against the loss of
useful genetic information (1’s and 0’s). The operator works
by randomly selecting one string and one bit location and
changing that string’s bit from a 1 to a 0 or vice versa,
as shown in Fig. 2. The probability for mutation to occur
is usually very small, roughly one mutation per 1000 bit
transfers.

The three genetic operators, reproduction, crossover, and
mutation, provide an effective search technique using natural
selection and random number generation. Advanced operators,
such as dominance, inversion, and segregation exist, but are
generally not essential for good results to many problems. In
some cases, the advanced operators can degrade the perfor-
mance of the genetic algorithm.

C. Implementation of the Genetic Algorithm

The genetic algorithm can be used to calculate the EC
parameters of an induction machine, as shown in Fig. 3. The
locked-rotor, breakdown, and full-load torque equations form
a multiobjective optimization problem, where each equation
is a function of three or more machine parameters. The three
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Fig. 3. Induction motor EC.

Fig. 4. The genetic algorithm string.

torque functions can be written as follows:

(3.1)

(3.2)

(3.3)

where is the error in the full-load torque, is the error
in the locked-rotor torque, is the error in the breakdown
torque, is the rotor resistance, is the stator resistance,

is the rotor reactance, and is the stator reactance,
.

For simplicity, the stator and rotor leakage reactances are
combined into one leakage reactance The stator and
rotor reactances can be extracted after the optimization by
knowing the design class of the machine. The magnetizing
reactance can be calculated using the full-load power
factor equation after and have been calculated,
using the genetic algorithm.

Each parameter is coded as a 14-bit unsigned binary number,
and together they form one 42-bit string, as shown in Fig. 4.
The maximum value each parameter can have, based on an
accuracy of three decimal places, is 16.384.

In this case, the error function is chosen as the sum of the
squares of the torque error functions, while the fitness function
is the inverse of the error. The aim of the genetic algorithm is
to minimize the error or to maximize the fitness:

(3.4)

Fitness (3.5)

IV. RESULTS

A. Steady-State Parameter and Torque Results

Three induction motors (Table I) with known EC param-
eters were used to test four different versions of the genetic
algorithm. Each version uses the same population size, random
number generator, string size, objective functions, and fitness

TABLE I
ACTUAL MACHINE PARAMETERS

function, yet each is slightly different in its approach. A
description of each version follows.

Version 1 (V1) uses stochastic sampling with replacement
(weighted roulette wheel), as described earlier for reproduc-
tion. Simple crossover and mutation are also used, that is,
one randomly selected crossover point and one bit change per
thousand bit transfers for each string. This version is the simple
genetic algorithm.

Version 2 (V2) is identical to V1, except that deterministic
sampling is used, instead of stochastic sampling, for its repro-
duction scheme. The deterministic sampling scheme calculates
the probabilities of selection as usual, i.e., the string fitness
divided by the total fitness. Then, each string is assigned an
expected number based on its probability of selection. The
actual number of times a string is copied into the mating
pool is found from the integer part of the expected number. If
additional strings are needed to fill the new population, then
the fractional parts of the expected number are sorted, and
the strings are selected from the top of the sorted list. This
selection scheme has proved superior to straight roulette-wheel
selection, since it guarantees that fit strings will be copied into
the mating pool.

Version 3 (V3) uses the deterministic sampling scheme with
two-point crossover. The two-point crossover operator swaps
all binary digits between two randomly selected points along
the string.

Version 4 (V4) uses the deterministic sampling selection
scheme with a crossover operator for each parameter. This
means that there is one randomly selected crossover point
for each parameter, or three crossover points along the entire
string. This algorithm is superior to the other three, since it
produces consistently good results.

The results of each version of the genetic algorithm are
given in Tables II–V. Comparisons can be made with Table
I, which shows the actual EC parameters for each induc-
tion machine. In addition, results from Quattro Pro’s New-
ton–Raphson search routine is provided.

The results in using V1 of the genetic algorithm are shown
in Table II. The estimated parameters are compared against
the actual parameters and the errors calculated. Considerable
errors are produced for some parameters, for example, 85%
error in and even larger errors in This version would
be unacceptable. Table III has the parameter results using V2.
Although the parameter errors are not as large as for V1,
they are still considerable. V3 does not produce substantially
better results than V2, as shown in the parameter errors of
Table IV. V4 has the best results with acceptable errors in

and , as shown in Table V. Larger errors were
produced in for small and large motors. However, Table VI
shows that errors in do not affect the torque calculations
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TABLE II
RESULTS OF GENETIC ALGORITHM V1

TABLE III
RESULTS OF GENETIC ALGORITHM V2

significantly. For example, while there were 15% and 24%
errors in for the 5-hp and 500-hp motors, the maximum
error produced in the estimation of any torque is 2%. This
is not unexpected, since the error function was defined to
minimize the torques, not the electrical parameters. Tables
VII and VIII show that acceptable results are obtainable using
Newton–Raphson techniques, provided good initial estimates
of parameters are used. However, Table IX shows that a slight
change in the initial estimate of a parameter can cause the
Newton–Raphson to converge to an entirely wrong solution,
as shown for the leakage and magnetizing reactances. The
genetic algorithm is more robust in this regard.

The performance of the error function when each version
of the genetic algorithm is used is compared in Fig. 5. The
results show that all versions eventually converge, thus pro-
ducing low errors in the torques, but not necessarily low
errors in the parameters. V4, however, converges fastest with
acceptable errors in the parameters, as well as the torques.
Fig. 6 shows the convergence of machine parameters using
the Newton–Raphson method. Two cases are used to test
the convergence of the Newton–Raphson method. In case 1,
the initial guess of machine parameters was good, and the
optimizer converged to the correct machine parameters. In case
2, the parameter was changed from 1.05 to 1.00, while all

TABLE IV
RESULTS OF GENETIC ALGORITHM V3

TABLE V
RESULTS OF GENETIC ALGORITHM V4

TABLE VI
TORQUE ERRORS FORGENETIC ALGORITHM V4

other parameters remained the same, and the optimizer failed
to converge.

B. Transient Torque Results

In order to demonstrate the accuracy during transient oper-
ation, the parameters generated by the genetic algorithm are
used to predict the motor back-EMF waveforms for a 5-hp
induction motor during a power outage. V4 of the genetic
algorithm is used and compared against the results using the
known original parameters, as shown in Figs. 7 and 8. The
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TABLE VII
RESULTS OF NEWTON–RAPHSON SEARCH METHOD

TABLE VIII
TORQUE ERRORS FORNEWTON-RAPHSON METHOD

TABLE IX
DIVERGENCE OF NEWTON-RAPHSON METHOD

waveforms were generated using EMTP [13], [14], and it is
clear that there is little difference between the waveforms.

While the back-EMF waveforms are virtually identical, the
torque–speed curves are slightly dissimilar, mainly due to the
differences in the rotor resistance. This is apparent in Figs. 9
and 10 for the genetic-generated parameters and the actual
parameters, respectively.

C. Effect of Population Size and Bit Length
on the Algorithm Performance

While 14 bits were used for each parameter and a population
size of 250 strings was used in this paper, it is of interest
to examine the effect of different bit lengths and population
numbers on the ability of the algorithm to converge. The
results are presented in Fig. 11, which shows a bit-length
variation from 8 to 18 and the number of string and the
population size from 100 to 500 for V4. The number of

Fig. 5. Convergence of parameters using genetic algorithms.

Fig. 6. Convergence of parameters using Newton–Raphson.

Fig. 7. Back EMF using actual parameters.

generations is basically an indication of the time to converge.
If the number of bits is less than ten, then poor results are
obtained, regardless of the population size. If the population is
less than 150 strings, then poor results are obtained, regardless
of the bit length. Also, if the population is too large, greater
than 450 strings, for example, the performance deteriorates,
regardless of bit size, indicating that, perhaps, other advanced
operators like dominance and segregation may have to be used
to procure reasonable results. The graph shows that the bit
sizes between 10–18 and population sizes between 150–400
would give consistently good results. A smaller bit size and
population size has advantages in computer space requirements
and processing time.

D. Manufacturer Performance Data

Different manufacturers may calculate the performance data
of a machine using a slightly different method. In addition,
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Fig. 8. Back EMF using genetic algorithm V4 parameters.

Fig. 9. Torque–speed curve using actual parameters.

Fig. 10. Torque–speed curve using genetic algorithm V4 parameters.

the designs of different manufacturers can lead to different
errors from using the five-parameter model used in this paper.
Thus, the performance of the genetic algorithm would differ
for different manufacturers, resulting in different errors in
full-load, locked-rotor, and breakdown torque. This section
examines these torque errors when using manufacturers’ data
of starting, full-load, and breakdown torques. Thus, no prior
knowledge of the parameters was available. This section
differs from Section IV-A, in that known parameters were
used there to calculate the starting, full-load, and breakdown
torques using the induction motor EC. Thus, the equivalent
circuit was assumed to be accurate, with the same parameters
being applied to starting, as well as running, conditions.

Fig. 11. Effect of bit length and population size on generation number.

Fig. 12. Genetic performance for 5-hp induction machine.

The performance data from seven different manufacturers
was gathered from MotorMaster, a package developed by the
Washington State Energy Office to collect motor manufactur-
ers’ data. This was used as input for genetic algorithm V4. The
parameters for the simple EC were calculated and the torques
recalculated and the errors determined. Now, the errors are
larger, as shown in Fig. 12 for a commercial 5-hp motor from
seven different manufacturers, as a result of inaccuracies in the
model (constant parameters with five variables). However, in
spite of the simple model, manufacturers
and all produce acceptable results (around 10% error or
less), while and torque calculations have larger errors.
This indicates that either a deep-bar model or a five-parameter
model with variable parameters must be used to reduce the
errors in predicting the torques for these two manufacturers.

V. DEEP BAR INDUCTION MOTOR MODEL AND RESULTS

A. Deep-Bar Model

The genetic algorithm worked well when the single-cage
model was accurate. That is, if the single-cage model with
known parameters is used to calculate the starting, breakdown
and full-load torques and, if these torques are fed into the
genetic algorithm, the algorithm is capable of finding accurate
single-cage parameters that allow the recalculation of the orig-
inal torques. The algorithm performs less well when the man-
ufacturer’s torque data and a single-cage rotor is assumed. An
obvious extension to the above work is to use a deep-bar ma-
chine model to allow for parameter variations at different slips.
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Fig. 13. Deep-bar induction motor EC.

Fig. 14. EC admittance.

A deep-bar model of an induction motor has two sepa-
rate cages, called the starting and running cage, resulting in
seven electrical parameters. Fig. 13 shows the single-phase
EC of a deep-bar induction motor, whereas Fig. 14 shows
the same with admittance values indicated for each branch.
When using a deep-bar model, all seven electrical parameters,
stator resistance running cage resistance starting cage
resistance stator winding leakage reactance running
cage leakage reactance starting cage leakage reactance,
and magnetizing reactance can be determined simultane-
ously using full-load torque, locked-rotor torque, breakdown
torque, power factor, and full-load current. Motor performance
data are used as inputs to determine the electrical parameters.
These calculated parameters are then compared to the actual
parameters to determine the errors.

The relevant equation used for calculating the deep-bar
parameters are as follows:

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Fig. 15. The genetic algorithm string.

where full-load torque blocked-rotor torque break-
down torque full-load current and power factor
are the performance data used in the program as input from
the user.

Each parameter is coded as a 14-bit unsigned binary number,
and together they form one 42-bit string for a single cage, as
shown in Fig. 15, and a 98-bit string for a deep-bar model.
The maximum value each parameter can have, based on an
accuracy of three decimal places, is 16.384.

For the single-cage motor, the error function is chosen as
the sum of the squares of the torque error functions, while
the fitness function is the inverse of the error. The aim of the
genetic algorithm is to minimize the error or to maximize the
fitness, as shown in (3.4) and (3.5).

Similarly, for the deep-bar model, the error and fitness
functions are given by

(5.6)

(5.7)

B. Breakdown Torque For Deep-Bar Model

An analytical expression for breakdown torque cannot
be easily obtained from differentiation of the torque expres-
sion. When is solved for slip , a polynomial
equation, given in (3.13), of degree six is found:

(5.8)

All the coefficients are in terms of electrical parameters and,
hence, they are all constant for a particular motor.

In this section, two different approaches to determine break-
down torque are proposed and implemented. It is known that
if a torque-versus-slip relationship of an induction motor is
plotted, the breakdown torque is obtained at Hence, one
method of solution uses iteration within the main program to
calculate the different values of torque as slip is varied over a
range where is known to occur. Since the magnitude
of the breakdown torque is of main concern and not the
slip at which breakdown torque occurs, this method gives a
reasonably good result in calculating breakdown torque for
the deep-bar induction motor for a given set of parameters
obtained from the genetic algorithm. This is called the iterative
loop method.

Another simplified approach for determining the breakdown
torque for the deep-bar model can be used. The deep-bar model
has two cages, a starting cage and a running cage. It has been
found that the starting cage contributes a negligible amount of
torque during the running condition. Since breakdown torque
occurs near the high-speed running region, the starting cage
can be neglected in calculating the breakdown torque. With
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TABLE X
COMPARISON OF DIFFERENT METHODS OF DETERMINING Tbd

TABLE XI
COMPARISON OF PERFORMANCE USING TWO DIFFERENT

METHODS FORCALCULATING BREAKDOWN TORQUE

this simplification, the seven-parameter or deep-bar model
reduces to a five-parameter model when determining the
breakdown torque. This is called the simplified model method.

A comparison of different methods for determining the
breakdown torque for the deep-bar motor is given in Table X.
For small motors, the simplified five-parameter model gives
almost the same result for breakdown torque as the seven-
parameter model. The iterative loop method produces the most
accurate result. In both methods, the slip at which breakdown
torque occurs is approximately equal.

Table XI shows the comparison in the performance of
genetic algorithms using the iterative loop and simplified
model methods in determining parameters for the deep-bar
model. For both motors, the simplified model method produces
higher errors in full-load torque blocked-rotor torque
and breakdown torque than those produced by the iterative
loop method. However, all the errors in torque in the simplified
model method are within an acceptable range.

C. Manufacturer Performance Data

This section examines the ability of the genetic algorithm
to determine motor parameters for the calculation of torque
from the readily available manufacturer’s data. Thus, no prior
knowledge of the parameters was available. This section
differs from Section V-B, in that known parameters were used
there to calculate the starting torque, locked-rotor torque, and
breakdown torque of the motor using single-cage and deep-bar
EC models.

The performance data of six different-sized motors from
seven different manufacturers were gathered from MotorMas-
ter, a package developed by the Washington State Energy
Office to collect motor manufacturers’ data. Out of these six
motors, initially, the performance data of the 5-, 50-, and
100-hp motors were used as input to the genetic algorithm

Fig. 16. Genetic performance using single-cage model for 5-hp motor.

Fig. 17. Genetic performance using single-cage model for 50-hp motor.

Fig. 18. Genetic performance using single-cage model for 100-hp motor.

using the single-cage model and deep-bar model. The param-
eters for the single-cage and deep-bar EC were calculated
and the torques recalculated and the errors determined. The
results are shown in Figs. 16–21. The highest errors in 5-, 50-,
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Fig. 19. Genetic performance using deep-bar model for 5-hp motor.

Fig. 20. Genetic performance using deep-bar model for 50-hp motor.

and 100-hp motors using the single-cage model are 12.0%,
13.8%, and 17.0%, while for the deep-bar model, the errors
are 4.0%, 6.6%, and 9.4%, respectively. The seven-parameter
model produces lower errors in torques than those of the
five-parameter model, and all the errors are within 10%.

VI. CONCLUSION

This paper has applied the genetic algorithm to the problem
of motor parameter determination to allow the calculation
of torque transients. The input data set is generic in nature,
and the parameters obtained are suitable for system-type
studies, for protection, for example, but may not be suitable
for precise applications like vector-controlled drives. Several
different versions of the genetic algorithm were examined by
calculating the parameters for a small (5-hp), medium (50-hp),
and a large (500-hp) induction motor. V4 produces extremely
good results when the torques were generated from the EC
with known parameters. Larger errors were produced when
using the single-cage model and the actual data from several
manufacturers, due to the neglect of parameter variations and

Fig. 21. Genetic performance using deep-bar model for 100-hp motor.

deep-bar effects in the model. A deep-bar model was then
used with improved ability to predict the parameters. The use
of the Newton–Raphson method was also demonstrated, and
its sensitivity to the initial starting values was highlighted.
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