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Application of Genetic Algorithms to Motor
Parameter Determination for Transient
Torque Calculations

Pragasen PillaySenior Member, IEEERay Nolan, and Towhidul Haque

Abstract—This paper applies genetic algorithms to the problem the motor parameters is generic at best. That is, the individual
of induction motor parameter determination. Generally available  designer’s data is typically not available (especially for an

manufacturers’ published data like starting torque, breakdown old motor in a plant). Tests to determine the parameters of
torque, full-load torque, full-load power factor, etc., are used to

determine the motor parameters for subsequent use in studyin such motors are out of the question for machines running

machine transients. Results from several versions of the genetic continuously, which happens quite often in the petrochemical
algorithm are presented, as well as a comparison with the New- industry, for example.

ton—Raphson method. This paper addresses the determination of suitable motor
Index Terms—Genetic algorithms, motor parameter determi- Pparameters for system-type studies such as these, where the
nation, Newton—Raphson. input data available may be little more than what is available

on the nameplate, like starting torque, breakdown torque, full-

load torque, full-load power factor, full-load efficiency, etc.

It is desirable to be able to extract the motor parameters
HE problem of induction motor parameter estimatiofrom such data, so that torque transients can be calculated,
and its use in the prediction of motor performanceyr example, during autoreclose operation of the distribution

has been addressed by several researchers [1]-[8]. Deeptpabker by the power company. The Newton—-Raphson method

machines were considered in [1], while the estimation @fas been previously used, but with convergence problems
motor parameters from standstill tests were considered in [&ating to the initial starting points and the requirement for
and [3]. Particular attention was paid to leakage reactangg§ation [11]. In this paper, two different techniques, the
in [4] and [5], while in [6], the extended Kalman filter Newton—Raphson and genetic algorithms, are used to extract
was used to address the problem of the rotor time constgé motor parameters from the readily available and, hence,
for vector-controlled drives. Other techniques were used fgeneric available data. Several different induction machines
motor parameter estimation in [7] and [8]. The one commajte tested, and the results are compared.

denominator in these papers is the high accuracy demanded

in the parameter determination, especially in vector-controlled

drives. [I. NEWTON-RAPHSON OPTIMIZATION USING QUATTRO PRO

In the world of relaying and power system protection, Quattro Pro uses the Newton—Raphson method to solve
however, extreme accuracy of the order attempted by tRgnlinear equations that may encompass several variables
researchers above is not needed [9], [10]. The selection £fd constraints. The equivalent circuit (EC) parameters of an
breakers, current ratings of current transformers, etc., are ffduction machine, which include stator and rotor resistances,
done to 1% accuracy; typically, 10% or 15% is sufficient. Alind stator, rotor, and magnetizing reactances, can be obtained
the same time, the input data available for the determinationf%m Quattro Pro using its Newton_Raphson_based Optimizer

Paper IPCSD 97-48, presented at the 1994 Industry Applications SociQtWCtion' The Quattro Pro SpreadSh_eet can t_)e_ _S€t up_to include
Annual Meeting, Denver, CO, October 2—7, and approved for publication the torque and power factor equations, an initial estimate for

the IEEE TRANSACTIONS ONINDUSTRY APPLICATIONS by the Electric Machines each parameter and relevant nameplate and performance data
Committee of the IEEE Industry Applications Society. This work was su '

ported by the Electric Power Research Institute, Entergy Services, Louisigﬁge relevant performance data consist of full-load, locked-
State University, and Mobil Oil. Manuscript released for publication May 210tor, and breakdown torque values, full-load power factor,

1997. , _ o __ full-load slip, and supply voltage. Quattro Pro begins by using
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The major drawback to the Newton—Raphson method is crossover
that its success depends on the selection of good initial point
estimates. Although the optimization process may only take a String A 1 001 1/00 1

few minutes, a considerable amount of time and effort can be

. . . . String B 1010 1110
spent selecting the initial estimates, which require familiarity
with the particular machine size and parameters. Even when String A’ 1 001 1{1 10
the initial solutions appear reasonable, the optimizer still may String B 1010 1/0 0 1

not converge to the correct solution.
Fig. 1. The crossover operator.
I1l. GENETIC ALGORITHMS

Bit selected
A. Introduction for mutation

The genetic algorithm is another method which may be used
to solve a system of nonlinear equations. The genetic algorithm
uses objective functions based on some performance criterion String A 1000111
to calculate an error. However, the genetic algorithm is bas'gid 2. The mutation operator
on natural selection using random numbers and does not < P ’
require a good initial estimate. That is, solutions to complex
problems could evolve from poor initial estimates in a game of the wheel. Once a string is selected by the reproduction
survival of the fittest. Genetic algorithms manipulate strings operator, the string is copied into a mating pool and waits to
binary digits and measure each string’s strength with a fitné3s selected for further genetic operator action. The roulette
value. The stronger strings advance and mate with other stromgeel scheme does not guarantee that the fittest strings will
strings to produce offspring. Eventually, one string emerges ka8 selected, although their probability for selection is high.
the best. One of the most important advantages of the gendtiwerefore, this method may not produce the best results,
algorithm over the Newton—Raphson technique is that it &specially for problems with small populations.
able to find the global minimum, instead of a local minimum, Crossover is a two-step process that involves mating and
and that the initial estimate need not be close to the actgVapping of partial strings. Each time the crossover operator
values. Another advantage is that it does not require the uskes action, two randomly selected strings from the mating
of the derivative of the function, which is not always easilpool are mated. Then, in the case of simple crossover, a
obtainable or may not even exist, for example, when dealipgsition along one string is selected at random, and all binary

String A 1000110

with real measurements involving noisy data. digits following the position are swapped with the second
string. The result is two entirely new strings that move on
B. The Main Operators to the next generation. This can be more clearly understood

The mechanics of the genetic algorithm are elementiﬁ{ thz folllowmghexamrile, |ntwh|ch sr;mng 1 ar;q stlnng 2 have
involving nothing more than copying strings, random nu ziready been chosen 1o mate, as shown in Fig. 1.

ber generation, and swapping partial strings [12]. A simple l\/:‘u}atlo: i?ll?msrzoﬁs?lvelr, an?}grg,tect_srhagamsi tther I\/?/S‘:‘kOf
genetic algorithm that produces good results in many practi eful genetic information (1's a S). The operator works

problems is composed of the following three operators: y randomly selecting one string and one bit location and
1) reproduction; changing that string’s bit from a 1 to a O or vice versa,

as shown in Fig. 2. The probability for mutation to occur
2) crossover, is usually very small, roughly one mutation per 1000 bit
3) mutation. transfers.

Reproduction is a process in which individual strings are The three genetic operators, reproduction, crossover, and
selected according to their fitness. The fitness is determinggtation, provide an effective search technique using natural
by calculating how well each string fits an objective functiorge|ection and random number generation. Advanced operators,
Copying strings according to their fitness value implies thatich as dominance, inversion, and segregation exist, but are
strings that fit the objective function well have a highegenerally not essential for good results to many problems. In

probability of contributing one or more offspring in the nexome cases, the advanced operators can degrade the perfor-
generation. This process of reproduction is, of course, gfhnce of the genetic algorithm.

artificial version of natural selection. Here, the objective
function is the final arbiter of the string creature’s life or death.

Stochastic sampling with replacement is the name given ) , )
to a simple reproduction scheme. This scheme is based ‘on!MPlementation of the Genetic Algorithm
placing the string probabilities on a weighted roulette wheel The genetic algorithm can be used to calculate the EC
and spinning the wheel to select a string. The probabilities parameters of an induction machine, as shown in Fig. 3. The
the roulette wheel are determined by the string’s fithess asoaked-rotor, breakdown, and full-load torque equations form
percentage of the total population fitness. The roulette wheelmultiobjective optimization problem, where each equation
selection scheme utilizes random numbers to simulate a sgra function of three or more machine parameters. The three
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I. R X I X TABLE |
! ! 1 2 2 ACTUAL MACHINE PARAMETERS

Hp Rpm | Volt Ry R, X X
5 | 1750 230 0.434 0.303 2.511 24.61
50 1705 460 0.087 0.228 0,604 13.08

500 | 1773 2300 0.262 0.187 2.412 (54.02

Fig. 3. Induction motor EC.

' rers 12 « function, yet each is slightly different in its approach. A
(NN EASENEREERERSENISEEEEARENNAREEERRERE] descriptionofeachversionfollows.
*t Ra 1 Version 1 (V1) uses stochastic sampling with replacement

Fig. 4. The genetic algorithm string. (weighted roulette wheel), as described earlier for reproduc-
tion. Simple crossover and mutation are also used, that is,
one randomly selected crossover point and one bit change per
thousand bit transfers for each string. This version is the simple
Ry genetic algorithm.

torque functions can be written as follows:

vz s Version 2 (V2) is identical to V1, except that deterministic

F1(Ry, By, K1) = Ro\ 2 —Tn (1) sampling is used, instead of stochastic sampling, for its repro-
W, <R1 + —2> + X} duction scheme. The deterministic sampling scheme calculates

o the probabilities of selection as usual, i.e., the string fitness

V2R, divided by the total fitness. Then, each string is assigned an

PRy, Ry, Xa) = ws[(Ry + Ro)? + X?] — T (3.2) expected number based on its probability of selection. The

V2 actual number of times a string is copied into the mating

F3(R1,Xq) = 5 5 — 1ia (3.3) pool is found from the integer part of the expected number. If
2ws[Ry + /Ri + X7 additional strings are needed to fill the new population, then

the fractional parts of the expected number are sorted, and
the strings are selected from the top of the sorted list. This

torque, R, is the rotor resistance; is the stator resistance selection scheme has proved superior to straight roulette-wheel
X, is ,the rotor reactance. ani. is the stator reactance’selection, since it guarantees that fit strings will be copied into
X12 X, 4 X, ’ ! "the mating pool.

For simplicity, the stator and rotor leakage reactances areversion 3 (V3) uses the deterministic sampling scheme with

combined into one leakage reactar‘(c!él). The stator and two-point crossover. The two-point crossover operator swaps

rotor reactances can be extracted after the optimization Eggblnary digits between two randomly selected points along

knowing the design class of the machine. The magnetizi string.

reactance(X,.) can be calculated using the full-load power Version 4 (V4) uses the deterministic sampling selection
factor equation after;, R,, and X; have been calculated,SCheme with a crossover operator for each parameter. This
using the genetic algo;ithrﬁ means that there is one randomly selected crossover point

Each parameter is coded as a 14-bit unsigned binary numﬂgF each parameter, or three crossover points along the entire

and together they form one 42-bit string, as shown in Fig. ﬁt_ring. This algorithm is superior to the other three, since it

The maximum value each parameter can have, based Onpé%duces consistently good_results. ) ,
accuracy of three decimal places, is 16.384 The results of each version of the genetic algorithm are

In this case, the error function is chosen as the sum of t%’eﬂ_ 'E T?]bles ”;V' ComlpaErléons can be rr}ade W'thh _szle
squares of the torque error functions, while the fithess functignWhic hS OWIS t Zd‘fi?tua lpaframeters or Sac, II\T ues
is the inverse of the error. The aim of the genetic algorithm flon machine. In addition, results from Quattro Pro’s New-

to minimize the error or to maximize the fitness: ton—Raphson _Seaf9h routine Is prowdgd. .
The results in using V1 of the genetic algorithm are shown

where F'1 is the error in the full-load torque;2 is the error
in the locked-rotor torquef'3 is the error in the breakdown

e =F1(:)* + F2(-)* + F3(-)* (3.4) in Table Il. The estimated parameters are compared against
_ 1 the actual parameters and the errors calculated. Considerable
Fitness= - (3.5) errors are produced for some parameters, for example, 85%

error in R; and even larger errors iR,. This version would
be unacceptable. Table Ill has the parameter results using V2.
Although the parameter errors are not as large as for V1,
they are still considerable. V3 does not produce substantially
better results than V2, as shown in the parameter errors of
Three induction motors (Table I) with known EC paramTable IV. V4 has the best results with acceptable errors in
eters were used to test four different versions of the genefiz, X;, and X,,,, as shown in Table V. Larger errors were
algorithm. Each version uses the same population size, randpraduced inRk; for small and large motors. However, Table VI
number generator, string size, objective functions, and fithedsows that errors irR; do not affect the torque calculations

IV. RESULTS

A. Steady-State Parameter and Torque Results
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TABLE 1l TABLE IV
REsuULTS OoF GENETIC ALGORITHM V1 REsuLTs oF GENETIC ALGORITHM V3
Motor 1 Motor 2 Motor 3 Motor 1 Motor 2 Motor 3
S hp $0 hp 500 hp 5 hp 50 hp 500 hp
R, (est) 0.063 0.083 0.666 R, (est) 0.194 0.305 0.297
R, (act) 0.434 0.087 0.262 R, (act) 0.434 0.087 0.262
% error 85.48 4.59 154.19 % error 55.29 250.57 13.36
R, (est) 0.336 1.714 0.180 R, (est) 0.370 0.163 0.179
R, (act) 0.303 0.228 0.187 R, (act) 0.303 0.228 0.187
% error 10.89 651.75 3.74 % error 22.11 28.51 4.27
X, (est) 2.690 0.642 2.046 X (est) 2.529 0.332 2.496
X, (act) 2.511 0.604 2.412 _% (act) 2.511 0.604 2.412
% error 7.13 6.29 15.17 ¥ error 0.717 45.03 3.48
X, (est) | 28.44 71.77 44.31 X, (est) 29.29 7.81 55.05
X, {act) 24.61 13.08 %54.02 Xn {act) 24.61 13.08 54.02
%t error 15.56 448.70 17.97 % error 19.02 40.29 1.91
TABLE 11l TABLE V
RESULTS OF GENETIC ALGORITHM V2 REsuLTs oF GENETIC ALGORITHM V4
Motor 1 Motor 2 Motor 3 Motor 1 Motor 2 Motor 3
5 hp 50 hp 500 hp 5 hp 50 hp 500 hp
R, (est) 0.707 0.245 0.334 R, (est) 0.367 0.087 0.325
R, (act) 0.434 0.087 0.262 R; (act) 0.434 0.087 0.262
% error 62.90 181.61 27.48 A error 15.44 0.00 24.04
R, (est) 0.286 0.184 0.206 R; (est) 0.314 0.239 0.191
R, (act) 0.303 0.228 0.187 R; (act) 0.303 0.228 0.187
% error 5.61 19,29 10.16 3 error J3.63 4.82 2.14
X, (est) 2.038 0.440 2.438 X (est) 2.386 0.641 2.470
X, {act) 2.511 0.604 2.412 X, (act) 2.511 0.604 2.412
% error 18.84 27.15 1.08 % ervror 4.98 6.13 2.40
X, (est) 20.39 9.39 55.18 Xp (est) 25.39 13.73 54.72
X, (act) 24.61 13.08 54.02 X, (act) 24.61 13.08 54.02
% error 17.15 28.21 2.15 3 error 3.17 4.97 1.29

TABLE VI

significantly. For example, while there were 15% and 24% TORQUE ERRORS FORGENETIC ALGORITHM V4

errors in Ry, for the 5-hp and 500-hp motors, the maximum

error produced in the estimation of any torque is 2%. This PSR R R
is not unexpected, since the error function was defined to T, (est) | 22.36 234.17 2023.23
minimize the torques, not the electrical parameters. Tables T, (act) 22.35 234.55 1997.9
VIl and VIII show that acceptable results are obtainable using % error 0.045 0.162 1.267

Newton—-Raphson techniques, provided good initial estimates T, (ast) | 14.31 515.10 841.85
of parameters are used. However, Table IX shows that a slight T, tact) | 14.3 529.708 | 835.57
change in the initial estimate of a parameter can cause the 3 error 0.069 2.00 0.752

Newton—Raphson to converge to an entirely wrong solution, Ty (est) | 5045 765:39 4982.38
as shown for the leakage and magnetizing reactances. The Tog (act) |50.14 773.987 | 5017.68
genetic algorithm is more robust in this regard. 3 error 2:518 ST 0.704

The performance of the error function when each version
of the genetic algorithm is used is compared in Fig. 5. The

results show that all versions eventually converge, thus p%_her parameters remained the same, and the optimizer failed

ducing low errors in the torques, but not necessarily I0\t/9 converge.

errors in the parameters. V4, however, converges fastest with _

acceptable errors in the parameters, as well as the torqU@sIransient Torque Results

Fig. 6 shows the convergence of machine parameters usingn order to demonstrate the accuracy during transient oper-
the Newton—-Raphson method. Two cases are used to ®#tn, the parameters generated by the genetic algorithm are
the convergence of the Newton—Raphson method. In caseuded to predict the motor back-EMF waveforms for a 5-hp
the initial guess of machine parameters was good, and thduction motor during a power outage. V4 of the genetic
optimizer converged to the correct machine parameters. In cafgorithm is used and compared against the results using the
2, the parameteX! was changed from 1.05 to 1.00, while alknown original parameters, as shown in Figs. 7 and 8. The
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TABLE VII 550
ResuLTs oF NEWTON-RAPHSON SEARCH METHOD 498 [
440
Motor 1 Motor 2 Motor 3
5 hp 50 hp 500 hp 385
R, (est) 0.392 0.087 0.262 . o
2 275
R, (act) 0.434 0.087 0.262 g
t error 9.67 0.00 0.00 220
R, (ast) 6.313 0.238 0.195 185
110
R, (act) 0.303 0.228 0.187
55 -
% exror 3.30 4.39 4.28 ok
X (est) 2.375 0.631 2.521
X, (act) 2.511 0.604 2.412 generations
% erro 5.42 4.47 4.52 . . . .
z Fig. 5. Convergence of parameters using genetic algorithms.
X, (est) 24.24 13.73 56.09
X, {act) 24.61 13.08 54.02
t error 1.50 5.35 3.83
TABLE VI
TORQUE ERRORS FORNEWTON-RAPHSON METHOD
Motor 1 Motor 2 Motor 3
S hp 30 hp 500 hp
Ty (est) 22.33 235.16 2001.95%
T, (act) 22.35 234.55 1997.9
% arror 0.089 0.260 0.203
T, (est) 14.31 $30.32 833.66
iteration
T, (act) 14.3 $29,.708 835.57
% error 0.069 0.116 0.229 Fig. 6. Convergence of parameters using Newton—Raphson.
Tyg (@St) 50.13 775.27 5017.5
Tyg (act) 50.14 773.987 5017.68 240
I
% error 0.019 0.166 0.004 186
T o132
S s
TABLE IX §
DIVERGENCE OF NEWTON-RAPHSON METHOD § -30
-84
Actual Caae 1 Case 1 Came 2 Case 2
Machine starting Final Starting Final =138
Parameter Parameter Parameter Parameter Paramater -192
—246
Ry 0.434 0.10 0.391 0.10 1.400
R 0.303 0.10 0.312 0.10 15.550 00 02 03 05 06 08 08 10 1.2 1.3 15
X, 2.511 1.05 2.370 1.00 0.000 time (sec)
X, | 24.610 13.00 24.240 13.00 0.000

Fig. 7. Back EMF using actual parameters.

waveforms were generated using EMTP [13], [14], and it @enerations is basically an indication of the time to converge.
clear that there is little difference between the waveforms. If the number of bits is less than ten, then poor results are
While the back-EMF waveforms are virtually identical, thebtained, regardless of the population size. If the population is
torque—speed curves are slightly dissimilar, mainly due to thess than 150 strings, then poor results are obtained, regardless
differences in the rotor resistance. This is apparent in Figsofthe bit length. Also, if the population is too large, greater
and 10 for the genetic-generated parameters and the actbah 450 strings, for example, the performance deteriorates,

parameters, respectively. regardless of bit size, indicating that, perhaps, other advanced

operators like dominance and segregation may have to be used
C. Effect of Population Size and Bit Length to procure reasonable results. The graph shows that the bit
on the Algorithm Performance sizes between 10-18 and population sizes between 150-400

. . would give consistently good results. A smaller bit size and
While 14 bits were used for each parameter and a population ! ) X .

size of 250 strings was used in this paper, it is of intereg?pu'at'on siz€ ha}s advantages in computer space requirements
to examine the effect of different bit lengths and populatio'%nd processing time.

numbers on the ability of the algorithm to converge. The

results are presented in Fig. 11, which shows a bit-lendth Manufacturer Performance Data

variation from 8 to 18 and the number of string and the Different manufacturers may calculate the performance data

population size from 100 to 500 for V4. The number obf a machine using a slightly different method. In addition,
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w0

No. of generotion
Pl 1500

backem( (volts)

-192
—248

PR

i~ b

00 02 03 05 06 08 09 1.0 1.2 1.3 1.5
tima (sec)

Fig. 11. Effect of bit length and population size on generation number.

Fig. 8. Back EMF using genetic algorithm V4 parameters.

18.0 EREERER  Full Lood Torque
16.2 E—— Locked Rotor Torque
. ZzZzZd  Breakdown Torque
N 144
=
g 126
100 ¢ £ ’
80 @ 10.8
o
. 60 5 9.0
E [
é 40 7.2
y 2 5.4
o
5 o 3.6
-20 )
-sof 18
-sor 00—\ M2 M3 M4 M5 M6 M7
~80
~100 N R . R P A . i ; Monufacturers
20 40 60 80 100 120 140 160 180 200
speed (rod/sec) Fig. 12. Genetic performance for 5-hp induction machine.

The performance data from seven different manufacturers
was gathered from MotorMaster, a package developed by the
Washington State Energy Office to collect motor manufactur-
ers’ data. This was used as input for genetic algorithm V4. The
parameters for the simple EC were calculated and the torques
recalculated and the errors determined. Now, the errors are
larger, as shown in Fig. 12 for a commercial 5-hp motor from
seven different manufacturers, as a result of inaccuracies in the
model (constant parameters with five variables). However, in
spite of the simple model, manufacturevsl, M3, M4, M5,
and M7 all produce acceptable results (around 10% error or

e less), whileM 2 and M 6 torque calculations have larger errors.
O 20 40 60 BO 100 120 140 160 180 200 This indicates that either a deep-bar model or a five-parameter
speed (rad/sec) model with variable parameters must be used to reduce the
Fig. 10. Torque—speed curve using genetic algorithm V4 parameters.  €ITOrs in predicting the torques for these two manufacturers.

Fig. 9. Torque-speed curve using actual parameters.

torque {(N—m)

the designs of different manufacturers can lead to differentv‘ DEEP BAR INDUCTION MOTOR MODEL AND RESULTS

errors from using the five-parameter model used in this paper.

Thus, the performance of the genetic algorithm would diffé- Deep-Bar Model

for different manufacturers, resulting in different errors in The genetic algorithm worked well when the single-cage

full-load, locked-rotor, and breakdown torque. This sectiomodel was accurate. That is, if the single-cage model with

examines these torque errors when using manufacturers’ datawn parameters is used to calculate the starting, breakdown
of starting, full-load, and breakdown torques. Thus, no pri@nd full-load torques and, if these torques are fed into the
knowledge of the parameters was available. This sectigenetic algorithm, the algorithm is capable of finding accurate

differs from Section IV-A, in that known parameters weraingle-cage parameters that allow the recalculation of the orig-
used there to calculate the starting, full-load, and breakdowral torques. The algorithm performs less well when the man-

torques using the induction motor EC. Thus, the equivaleatacturer’'s torque data and a single-cage rotor is assumed. An
circuit was assumed to be accurate, with the same parametdrgious extension to the above work is to use a deep-bar ma-
being applied to starting, as well as running, conditions. chine model to allow for parameter variations at different slips.
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I Ra XA Eit 4 i 12 24 z6
p e { t steng [T
| Iy In Porameter Rs kr xw
IM 3 -~
Xy 3 Xp = Fig. 15. The genetic algorithm string.
\4 X i I r
M i) /L\ : é
B g < i'@'\; where full-load torqueT’y;, blocked-rotor torquely,., break-
I down torquel;q, full-load currentiy;, and power factop f
are the performance data used in the program as input from
the user.

Each parameter is coded as a 14-bit unsigned binary number,
and together they form one 42-bit string for a single cage, as
shown in Fig. 15, and a 98-bit string for a deep-bar model.
The maximum value each parameter can have, based on an
accuracy of three decimal places, is 16.384

For the single-cage motor, the error function is chosen as
the sum of the squares of the torque error functions, while
the fitness function is the inverse of the error. The aim of the
genetic algorithm is to minimize the error or to maximize the
fithess, as shown in (3.4) and (3.5).

Similarly, for the deep-bar model, the error and fitness

Fig. 14. EC admittance. functions are given by

A deep-bar model of an induction motor has two sepa- e =(f1")" + (f2")" + (f3") + (f4)* + (5")°
rate cages, called the starting and running cage, resulting in (5.6)
seven electrical parametgrs. Fig. 13 shows the_ single-phasFitneSS :l' (5.7)
EC of a deep-bar induction motor, whereas Fig. 14 shows
the same with admittance values indicated for each branch.
When using a deep-bar model, all seven electrical paramet&tsBréakdown Torque For Deep-Bar Model
stator resistancé&,, running cage resistandg,, starting cage  An analytical expression for breakdown torgiig; cannot
resistanceli,, stator winding leakage reactanéé,, running be easily obtained from differentiation of the torque expres-
cage leakage reactand&g, starting cage leakage reactad€g sion. WhendT/ds = 0 is solved for slips, a polynomial
and magnetizing reactancé,, can be determined simultane-equation, given in (3.13), of degree six is found:
ously using full-load torque, locked-rotor torque, breakdown 6 4 5
torque, power factor, and full-load current. Motor performance Ms*+Ns*+Qs”+ R=0. (5.8)

data are used as inputs to determine the electrical parameteryy) yhe coefficients are in terms of electrical parameters and,
These calculated parameters are then compared to the aqtllé?]lce they are all constant for a particular motor

Fig. 13. Deep-bar induction motor EC.

parameters to determ|.ne the errors. ) In this section, two different approaches to determine break-
The relevant equation used for calculating the deep-bgg,n torque are proposed and implemented. It is known that
parameters are as follows: if a torque-versus-slip relationship of an induction motor is
J1"(Ra, X4,R1, X1, Ro, X2, X 1) plotted, the breakdown torque is obtainedat.. Hence, one
(T|s=rated speed — T11)100 method of solution uses iteration within the main program to

= Th (5.1) calculate the different values of torque as slip is varied over a
1 range wheres,,, IS known to occur. Since the magnitude
P2 R, Xy, By, Xy, By, X, Xy of the breakdown torque is of main concern and not the

— (T]s=1 — T3-)100 (5.2) slip at which breakdown torque occurs, this method gives a

e reasonably good result in calculating breakdown torque for
f3"(Ra, X4, Ry, Xy, Ry, Xoy Xop) the deep-bar induction motor for a given set of parameters
_ (T]s=max — 134)100 (5.3) obtained from the genetic algorithm. This is called the iterative
o Toa | loop method.
f4"(R4, X4, Ry, X1, Ro, Xo, X1) Another simplified approach for determining the breakdown
(cos 6 — pf)100 torque for the deep-bar model can be used. The deep-bar model

= —pf (5.4) has two cages, a starting cage and a running cage. It has been
found that the starting cage contributes a negligible amount of
<
15 (RA’XA’Rl’Xl’R?’XQ’XM) torque during the running condition. Since breakdown torque
(I|ratedspe?d — 1;1)100 (5.5) occurs near the high-speed running region, the starting cage
trt can be neglected in calculating the breakdown torque. With
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TABLE X
COMPARISON OF DIFFERENT METHODS OF DETERMINING T34 120
. 108 ¢
Motors Methods Calcul Actual $lip | %Error
a-ted Ty: Nm in T, u
T,y Nm : 9.6
ok
4700 HP,6.6KV Iterative 31943 31982 0.034 0.12 -
Loop (]
o
2970 rpm,50Hz | Simplifi- | 30100 31982 | 0.033 5.6 e
ed Model =z
5 HP,1745 rpm Iterative 50.93 50.57 0.136 0.71 o
Loop 8
x
230 v, 60 Hz Simplifi- 49.73 50.57 0.135 1.66 &
ed Model L
TABLE XI
COMPARISON OF PERFORMANCE USING TwO DIFFERENT
METHODS FOR CALCULATING BREAKDOWN TORQUE
Motors Metheds %Error %Error ZError Fi
Ty T, Tou I
4700 HP,6.6KV | Iterative 1.8 2.0 3.0
Loop
2970 rpm,50Hz Simplifi— 2.6 3.1 4.8
ed Model
5 HP,1745 rpm Iterative 1.1 0.9 1.3 150
Loop
. cex 13.5
230 v, 60 Hz Simplifi- 1.7 2.7 3.8
ed Model 12.0

%

W10.5
9.0
7.5

&)
this simplification, the seven-parameter or deep-bar modé
reduces to a five-parameter model when determining thé
breakdown torque. This is called the simplified model methodg 6.0

A comparison of different methods for determining thefs 4.5
breakdown torque for the deep-bar motor is given in Table X. 3.0
For small motors, the simplified five-parameter model gives 15
almost the same result for breakdown torque as the seven- 44
parameter model. The iterative loop method produces the most
accurate result. In both methods, the slip at which breakdown
torque occurs is approximately equal.

Table XI shows the comparison in the performance of
genetic algorithms using the iterative loop and simplified
model methods in determining parameters for the deep-bar
model. For both motors, the simplified model method produces
higher errors in full-load torqué’;, blocked-rotor torqué,., 18.0
and breakdown torqué,,; than those produced by the iterative 6.2
loop method. However, all the errors in torque in the simplified 14.4
model method are within an acceptable range. Qmﬁ
10.8
9.0

This section examines the ability of the genetic algorithrr% 7.2
to determine motor parameters for the calculation of torquE 5.4
from the readily available manufacturer’'s data. Thus, no prlor 3.6
knowledge of the parameters was available. This section ;| 4
differs from Section V-B, in that known parameters were used
there to calculate the starting torque, locked-rotor torque, and
breakdown torque of the motor using single-cage and deep-bar
EC models.

The performance data of six different-sized motors from
seven different manufacturers were gathered from MotorMas-

IN TORQ

C. Manufacturer Performance Data

0.0

M3

M4

3
N
N

M5

MANUFACTURERS

M1

M4

M5

MANUFACTURERS

M3

M4

M5

MANUFACTURERS

C— 7tfl
Ztir
B Vtbd

§ o

M7

g. 16. Genetic performance using single-cage model for 5-hp motor.

- 7t
Ztr
B tbd

Fig. 17. Genetic performance using single-cage model for 50-hp motor.

) 7Hfl
Ztr
B Vibd

ME M7

Fig. 18. Genetic performance using single-cage model for 100-hp motor.

ter, a package developed by the Washington State Enekging the single-cage model and deep-bar model. The param-
Office to collect motor manufacturers’ data. Out of these siters for the single-cage and deep-bar EC were calculated
motors, initially, the performance data of the 5-, 50-, anand the torques recalculated and the errors determined. The
100-hp motors were used as input to the genetic algoritimesults are shown in Figs. 16—21. The highest errors in 5-, 50-,
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33 7t
i 100 HP MOTOR
pr— C—J 7tfl
palls
40 101 r EEEm 7ibd
36l 9.3}
<ol 85}
2 Q 7.7} N
5287 ) §
920 §\ = oif §
=z L.
= \ S 53t § \
1.6 \ N o \ §
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: N N L N N
¥ \ \ 37 \ \
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0.0 N N:: EIEN M1 M2 M3 M4 M5 M6 M7

M1 M2 M3 M4 M5 M6 MANUFACTURERS

MANUFACTURERS Fig. 21. Genetic performance using deep-bar model for 100-hp motor.

Fig. 19. Genetic performance using deep-bar model for 5-hp motor.

deep-bar effects in the model. A deep-bar model was then
— 7 used with improved ability to predict the parameters. The use
Zlr of the Newton—Raphson method was also demonstrated, and

7.0
= 7tbd its sensitivity to the initial starting values was highlighted.
8.4 | ]
58F
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