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1 Introduction

Since the middle of the 1970s, equity-linked life insurance contracts have been
studied as an innovative insurance instrument that combines both financial and
insurance risks. This type of mixed contracts allows insurance companies to
be competitive in the modern financial system. Most papers on this topic were
devoted to the pricing of ”pure endowment life insurance contracts with guaran-
tee” (see, for instance, Brennan and Schwartz (1976,1979), Boyle and Schwartz
(1977), Delbaen (1986), Bacinello and Ortu (1993), Aase and Persson (1994),
Boyle and Hardy (1997), Moeller (1998, 2002), Bacinello (2001)). Such con-
tracts held some deterministic guarantees to the insured, and they were priced
by means of perfect and mean variance hedging. A general feature of all papers
was a reduction of a given mixed contract to a call (put) option with the strike
price as the corresponding guarantee. Thus, if the underlying risky asset fol-
lows a geometric Brownian motion, some variants of the Black-Scholes formula
naturally arise in the process of pricing.

We study the contracts in the framework of a two-factor jump-diffusion
model with two risky assets. The first risky asset, S1, is responsible for the size
of possible future gains of the holder of the contract. The second one, S2, is
more reliable. We identify the second asset with a flexible guarantee for the
insured. Then the contract under consideration should have the payoff of the
form max {S1

T , S2
T }, where T is the maturity time. We show how this contract

can be naturally reduced to the option to exchange S1
T for S2

T . This explains
why the formula of Margrabe (1978) and its generalization appears in this paper.
Our approach here is using quantile hedging to price equity-linked life insurance
contracts with flexible guarantees (see Föllmer and Leukert (1999,2000) and also
the books of Föllmer and Schied (2002), Melnikov et al (2002), and Melnikov
(2003))in a framework of a jump-diffusion market. We describe an actuarial
analysis of such contracts for a simplified (diffusion) model to illustrate our
theoretical results. Numerical calculations are given with the help of financial
indices such as the Dow Jones Industrial Average and the Russell 2000.

2 Auxiliary notions and results

The model of the financial market is given by two linear stochastic differential
equations with respect to a Wiener process Wt and a Poisson process Π (with
intensity λ > 0):

dSi
t = Si

t−(µidt + σidWt − νidΠt), i = 1, 2 , (2.1)

where µi ∈ R, σi > 0, νi < 1.
We suppose that all processes are given on a standard stochastic basis (Ω,F , F =
(Ft)t≥0, P ) and are adapted to the filtration F, generated by the independent
processes W and Π, whose paths are right-continuous with finite left limits at
each t > 0 (see, for example, Shiryaev (1999) or Melnikov et al (2002)).
The risky asset Si is defined by its price process Si

t , t ≥ 0, i = 1, 2. For the
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sake of simplicity, we assume that the non-risky asset Bt ≡ 1, hence the interest
rate r = 0.
Every predictable process π = (πt)t≥0 = (βt, γ

1
t , γ2

t )t≥0 is called a trading strat-
egy, or a portfolio. The value (capital) of π at time t equal to

Xπ
t = βt +

2∑
i=1

γi
tS

i
t . (2.2)

The class of portfolios π with a value evolution

Xπ
t = Xπ

0 +
2∑

i=1

∫ t

0

γi
udSi

u. (2.3)

is denoted SF. We call π self financing if π ∈ SF . We consider admissible only
those portfolios π ∈ SF whose capital is nonnegative.

Recall that the market (2.1)-(2.2) is complete if

µ1σ2 − µ2σ1

σ2ν1 − σ1ν2
> 0, σ2ν1 − σ1ν2 6= 0. (2.4)

Denote P ∗ a unique martingale measure which has a local density

Zt =
dP∗

dP

∣∣∣∣
Ft

= exp
(

α∗Wt −
α∗2

2
t + (λ− λ∗)t + (lnλ∗ − lnλ)Πt

)
,

and we find (α∗, λ∗) from the unique solution of the system{
µ1 = −σ1α

∗ + ν1λ
∗

µ2 = −σ2α
∗ + ν2λ

∗ (2.5)

therefore

α∗ =
µ2ν1 − µ1ν2

σ2ν1 − σ1ν2
, λ∗ =

µ1σ2 − µ2σ1

σ2ν1 − σ1ν2
.

The processes W ∗
t = Wt − α∗t and Πt are independent Wiener and Poisson

processes (with another intensity λ∗ > 0) under the measure P ∗.
Let us fix a time horizon T . Any nonnegative FT -measurable random vari-

able H will be called a contingent claim.
Let us take an admissible strategy π and form its value starting from an initial
capital x = Xπ

0 , bounded by X0. We call A(x, π) the set of successful hedging if

A(x, π) = {ω : Xπ
T ≥ H}.

Remark 2.1 It follows from option pricing theory for complete markets that
there exists a strategy π∗ with the property

P (A(E∗[H], π∗)) = 1, (2.6)
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where Xπ
0 = X0 = E∗[H], and π∗ is a perfect hedge.

However, very often X0 < E∗[H], so we cannot provide appropriate financing
for the perfect hedge in the sense of (2.6). In this case, the following criteria
should be used to find an appropriate strategy π∗:

P{A(x, π)} −→ max
π

, (2.7)

under the restriction x ≤ X0 < E∗[H].
According to Föllmer and Leukert (1999) (see also Melnikov et al (2002)), the

set A∗ = A(X0, π
∗) is called a maximal set of successful hedging. The structure

of this set is
A∗ = {Z−1

T ≥ a ·H}, (2.8)

and optimal strategy π∗ becomes a perfect hedge for the modified option

HA∗ = HIA∗ . (2.9)

The maximization problem in (2.7) and the structure of A∗ in (2.8) have a statis-
tical flavor connected with the fundamental Neuman-Pearson lemma. Therefore,
this hedging methodology is called quantile hedging.

It is obvious from previous considerations that the bound on the initial
capital X0 has an important role. We are interested in determining this value
in connection with the contingent claim exercised under some condition. We
introduce such a condition through an insurance factor – mortality of the client.

Following actuarial traditions, we use a random variable T (x) on some prob-
ability space ((Ω̃, F̃ , P̃ )) to represent the remaining lifetime of an insured of age
x. Let us consider a pure endowment contract with the payoff function (see
Bowers et al (1997))

H(T (x)) = H · I{T (x) > T} (2.10)

To find a natural value of X0 we take the expected value in (2.10) w.r.t. P ∗× P̃ :

E∗ × Ẽ[H(T (x))] = E∗[H] · ẼI{T (x)>T}

= E∗[H] · T px, (2.11)

where T px = P̃ (T (x) > T ). In view of (2.11), for this contingent claim a natural
value of the initial capital of the hedging portfolio should be

X0 = E∗[H] ·T px < E∗[H]. (2.12)

The condition (2.12) shows us that in order to provide a hedge with maximal
probability, we should use quantile hedging methodology (2.7)-(2.9).

We finish the section with the generalizaton of the Margrabe formula that
later will be used to price pure endowment life insurance contracts with flexible
guarantees.

Let us represent Si
t , i = 1, 2 in an exponential form:

Si
t = Si

0 exp(σiWt + [µi − 1
2
(σi)2]t + Πt ln(1− νi)]

= Si
0 exp(σiW ∗

t + [νiλ∗ − 1
2
(σi)2]t + Πt ln(1− νi)). (2.13)
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Let’s consider H = (S1
T −S2

T )+ and find its expected value w.r.t. P ∗. Using
(2.13) and the independence of W ∗ and Π under P ∗, we have

E∗(S1
T − S2

T )+ = E∗[E∗ ((S1
T − S2

T )+|ΠT

)
]

=
∞∑

n=0

E∗[(S1
T − S2

T )+|ΠT = n]p∗n,T , (2.14)

where p∗n,T = exp (−λ∗T ) (λ∗T )n

n! are components of a Poisson distribution with
intensity λ∗.

Note that

E∗[(S1
T − S2

T )+|ΠT = n] = E∗[(s1
n,T − s2

n,T )+] , (2.15)

where si
n,T , i = 1, 2, are lognormally distributed random variables under P ∗:

ln si
n,T ∼ N

(
lnSi

0(1− νi)n + [νiλ∗ − 1
2
(σi)2]T, (σi)2T

)
, i = 1, 2.

Assuming σ1 > σ2, we can apply the Margrabe formula in this partial situation
and from (2.14)-(2.15) find, that

E∗(S1
T − S2

T )+ =
∞∑

n=0

CMar(S1
0ϑ1

n,T , S2
0ϑ2

n,T , T )p∗n,T , (2.16)

where CMar denotes a variant of the Margrabe formula: n = 0, 1, 2, . . .
Equality (2.16) gives the price of the option to exchange S1 for S2 (from the

model (2.1)) at time T in through Poisson weighting of the Margrabe formula.

3 Pricing formulas for the pure endowment con-
tract with flexible guarantee

Let us define H as max {S1
T , S2

T }, keeping in mind that the first asset, S1, is
more risky than the second one, S2. Therefore we assume that σ1 > σ2, and S2

will play the role of the flexible guarantee of the pure endowment life insurance
contract with the payoff

max {S1
T , , S2

T } · I{T (x)>T} , (3.1)

where T (x) is the remaining life of the insured of age x, as defined in (2.10).
We observe that

max {S1
T , S2

T } = S2
T + (S1

T − S2
T )+ ,

and under the martingale measure P ∗ we obtain

E∗max{S1
T , S2

T } = E∗S2
T + E∗(S1

T − S2
T )+ = S2

0 + E∗(S1
T − S2

T )+. (3.2)
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Using (3.1)-(3.2) and (2.11) we arrive to the natural initial price T Ux of the
contract (3.1):

T Ux = S2
0T px + E∗(S1

T − S2
T )+ · T px. (3.3)

The difference T Ux − S2
0T px can be viewed as an upper bound for the initial

value of a hedging strategy for the option (S1
T − S2

T )+.
Taking into account (2.8)-(2.9), from the described above quantile hedging

methodology and from (2.9) and (3.3) we obtain

T px =
E∗(S1

T − S2
T )+ · IA∗

E∗(S1
T − S2

T )+
, (3.4)

where A∗ is the maximal set of successful hedging for (S1
T − S2

T )+.
In our actuarial analysis of the contract (3.1), the equality (3.4) plays a key

role. Let us build A∗ and a hedging strategy π∗ such that the maximization of
the successful hedging is fulfilled for (S1

T − S2
T )+.

To do this, we rewrite the key representation (2.8) for A∗ as follows:

A∗ =
{
Z−1

T ≥ a · (S1
T − S2

T )+
}

=

{
Z−1

T ≥ a · S2
T

(
S1

T

S2
T

− 1
)+
}

=

{
(ZT S2

T )−1 ≥ a ·
(

S1
T

S2
T

− 1
)+
}

, (3.5)

where a is some appropriate constant.
The representation (3.5) shows that we should work with the ratio YT = S1

T

S2
T

.
Using (2.13), we obtain the next exponential form for YT :

YT =
S1

0

S2
0

(
1− ν1

1− ν2

)ΠT

exp
{
(σ1 − σ2)WT +

[
(µ1 − µ2)− (σ2

1 − σ2
2)/2

]
· T
}

=
S1

0

S2
0

(
1− ν1

1− ν2

)ΠT

exp{(σ1 − σ2)W ∗
T +

[
(ν1 − ν2)λ∗ − (σ2

1 − σ2
2)/2

]
· T}.

(3.6)

Taking into account the formula for ZT and (3.5)-(3.6), we want to express A∗

in terms of YT . To do this, let us rewrite WT in the following way:

WT = 2WT −WT = 2σ−1
1 (σ1WT )− σ−1

2 (σ2WT )
= 2σ−1

1

[
σ1WT + (µ1 − σ2

1/2)T
]
− σ−1

2

[
σ2WT + (µ2 − σ2

2/2)T
]

−2σ−1
1 (µ1 − σ2

1/2)T + σ−1
2 (µ2 − σ2

2/2)T .

(3.7)
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Using (3.7), we obtain

ZT S2
T = exp

{
α∗WT −

(α∗)2

2
T + (λ− λ∗)T + ΠT ln

λ

λ∗

}
· S2

T

= (S1
0)

2α∗
σ1 exp

{
2α∗

σ1

[
σ1WT + (µ1 − σ2

1/2)T + ΠT ln (1− ν1)
]}

×(S2
0)

−α∗
σ2 exp

{
−α∗

σ2

[
σ2WT + (µ2 − σ2

2/2)T + ΠT ln (1− ν2)
]}

×S2
T (S1

0)−
2α∗
σ1 (S2

0)
α∗
σ2 exp

{
ΠT ln

[
(1− ν1)

−2α∗
σ1 · (1− ν2)

α∗
σ2

λ∗

λ

]}
× exp

{
−2α∗

σ1
(µ1 − σ2

1/2)T +
α∗

σ2
(µ2 − σ2

2/2)T − (α∗)2

2
T + (λ− λ∗)T

}
= (S1

T )
2α∗
σ1 (S2

T )1−
α∗
σ2 · bΠT · g ,

(3.8)

where

b = (1− ν1)
− 2α∗

σ1 (1− ν2)
α∗
σ2 · λ∗

λ
,

g = (S1
0)−

2α∗
σ1 (S2

0)
α∗
σ2 exp {−2α∗

σ1
(µ1 − σ2

1/2)T +
α∗

σ2
(µ2 − σ2

2/2)T − (α∗)2

σ2
T + (λ− λ∗)T}.

Let us represent (3.8) in the form

ZT S2
T = (YT )α · bΠT · g , (3.9)

where α should be chosen as

2α∗

σ1
= α =

α∗

σ2
− 1.

Hence,
α∗ =

σ1σ2

σ1 − 2σ2
, σ1 6= 2σ2. (3.10)

Taking into account (2.5) and (3.10) we arrive to the following condition on
parameters of the model (2.1) to provide (3.9):

µ2ν1 − µ1ν2

σ2ν1 − σ1ν2
=

σ1σ2

σ1 − 2σ2
, (3.11)

where σ1 > σ2, σ1 6= 2σ2, and σ2ν1 6= σ1ν2.
Relations (3.5) and (3.9) give us

A∗ = {Y
− 2α∗

σ1
T ≥ bΠT · g · a(YT − 1)+}. (3.12)

To analyze A∗ in the form of (3.12), we consider the set {Πt = n}, n = 0, 1, 2, . . . ,
and the following equation

x−
2α∗
σ1 = bn · g · a(x− 1)+. (3.13)
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Assuming (3.11), we distinguish two cases in connection with the equation
(3.13):

case 1 : σ1 > 2σ2 (or − 2α∗

σ1
≤ 1) and case 2 : σ2 < σ1 < 2σ2 (or − 2α∗

σ1
> 1).

Using (3.10), we can easily check that (3.13) has the only solution c(n, a) in the
first case and two solutions c1(n, a) < c1(n, a) in the second case.
In the first case we shall use c(n, a) to construct the set of successful hedging
in the form {YT ≤ c(n, a)} on each set {ΠT = n}, n = 0, 1, . . .. This form will
depend on a parameter a that can be identified from (3.4), if the corresponding
survival probability T px is given.

We shall calculate the numerator E∗(S1
T − S2

T )+IA∗ of (3.4), since the de-
nominator E∗(S1

T − S2
T )+ is given by (2.16). It is sufficient to compute

E∗[(S1
T − S2

T )+IA∗ |ΠT = n
]

= E∗[(S1
T − S2

T )+I{YT≤c(a,n)}|ΠT = n
]

with further averaging of the Poisson distribution p∗n,T .
As c(n, a) > 1, it is easy to see that

E∗[(S1
T − S2

T )+I{YT≤c(a,n)}|ΠT = n
]

= E∗[(S1
T − S2

T )+|ΠT = n
]
− E∗[S1

T I{YT >c(a,n)}|ΠT = n
]

+ E∗[S2
T I{YT >c(a,n)}|ΠT = n

]
= E∗[(S1

T − S2
T )+|ΠT = n

]
− E∗[(S1

T − S2
T )|ΠT = n

]
− E∗[S1

T I{YT≤c(a,n)}|ΠT = n
]
− E∗[S2

T I{YT≤c(a,n)}|ΠT = n
]

(3.14)

The first term in the last equality of (3.14) is given by (2.15). To find the second
term, we use (2.13) and obtain

E∗[(S1
T − S2

T )|ΠT = n
]

= exp {lnS1
0(1− ν1)n + ν1λ

∗T} − exp {lnS2
0(1− ν2)n + ν2λ

∗T}
= s̃1

0,n − s̃2
0,n. (3.15)

To simulate

E∗[Si
T I{YT≤c(n,a)|ΠT =n}

]
, i = 1, 2 , (3.16)

we rewrite
{YT ≤ c(n, a)} = {lnYT ≤ ln c(n, a)}

and denote ζ = lnYT , Si
T = exp {−ηi} , where the gaussian random variables

ηi = −
[
ln (Si

0(1− νi)n) + σiW
∗
T + (νiλ

∗ − σ2
i /2)T

]
, i = 1, 2 , (3.17)

are defined by (2.13). Under the condition {ΠT = n}, the pairs (ζ, η1) and
(ζ, η2) are two systems of Gaussian random variables. According to the Lemma
on p. 797 of Shiryaev (1999) (see also Lemma 2.4 in Melnikov (2003)), for
i = 1, 2 we get

E∗[exp−ηiI{ζ≤ln c}|ΠT = n] = exp {σ2ηi

2
− µηi

}Φ(
ln(c)− (µζ − cov(ζ, ηi)

σζ
).
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The parameters, mean µ and variance σ2, can be easily recognized from (2.13)
and (3.6):

µζ = µlnYT
= E∗[ln(YT )|ΠT = n]

= ln{S1
0

S2
0

(
1− ν1

1− ν2
)n}+

[
(ν1 − ν2)λ∗ −

σ2
1 − σ2

2

2
]
T ,

σ2
ζ = (σ1 − σ2)2T ,

µηi
= E∗[ηi|ΠT = n] = − lnS1

0(1− ν1)n − [νiλ
∗ − σ2

i

2
]T ,

σ2
ηi

= σ2
i T ,

cov(ζ, ηi) = −σi(σ1 − σ2)T , i = 1, 2.

Putting the values of these parameters into the formula (3.17), we find the value
of (3.16) and also the difference of the last terms of (3.14):

E∗[(S1
T − S2

T )I{YT≤c(a,n)|ΠT =n}] = expσ2
1/2T + lnS1

0(1− ν1)n +
[
ν1λ

∗ − σ2
1/2
]
T}

× Φ

(
(
ln(c(n, a))−

[
ln{S1

0
S2

0
( 1−ν1
1−ν2

)n}+
[
(ν1 − ν2)λ∗ − σ2

1−σ2
2

2

]
T + σ1(σ1 − σ2)T

]
(σ1 − σ2)

√
T

)
− exp {σ2

2/2 · T + lnS2
0(1− ν2)n +

[
ν2λ

∗ − σ2
2/2
]
T}

× Φ

(
ln(c(n, a))−

[
ln{S1

0
S2

0
( 1−ν1
1−ν2

)n}+
[
(ν1 − ν2)λ∗ − σ2

1−σ2
2

2

]
T + σ2(σ1 − σ2)T

]
(σ1 − σ2)

√
T

)

= S̃1
0,nΦ

(
ln c(n, a)

(σ1 − σ2)
√

T
− b+(S̃1

0,n, S̃2
0,n, T )

)
− S̃2

0,nΦ
(

ln c(n, a)
(σ1 − σ2)

√
T
− b−(S̃1

0,n, S̃2
0,n, T )

)
= S̃1

0,nΦ
(
−b+(S̃1

0,n, cS̃2
0,n, T )

)
− S̃2

0,nΦ
(
−b−(S̃1

0,n, cS̃2
0,n, T )

)
= (S̃1

0,n − S̃2
0,n)−

[
S̃1

0,nΦ
(
b+(S̃1

0,n, cS̃2
0,n, T )

)
− S̃2

0,nΦ
(
b−(S̃1

0,n, cS̃2
0,n, T )

)]
.

(3.18)

Combining (3.14), (3.15) and (3.18) with (3.4), we finally derive

T px = 1−
∑∞

0 p∗n,T

[
S̃1

0,nΦ
(
b+(S̃1

0,n, cS̃2
0,n, T )

)
− S̃2

0,nΦ
(
b−(S̃1

0,n, cS̃2
0,n, T )

)]∑∞
0 p∗n,T

[
S̃1

0,nΦ
(
b+(S̃1

0,n, S̃2
0,n, T )

)
− S̃2

0,nΦ
(
b−(S̃1

0,n, S̃2
0,n, T )

)] .

(3.19)

The second case, where σ2 < σ1 < 2σ2 or − 2α∗

σ1
> 1, can be treated in

a similar fashion. The set of successful hedging A∗ (again on {Πt = n};n =
0, 1, . . .) consists of two parts: {YT ≤ c1(a, n)} and {YT > c2(a, n)}, where the
parameter a should be identified from the condition (3.4) for a given survival
probability T px. Hence we have

IA∗ = I{YT≤c1(a,n)}∪{YT >c2(a,n)}. (3.20)
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Using the inequalities 1 ≤ c1 ≤ c2 and (3.19), we obtain

(3.21)
E∗[IA∗(S1

T − S2
T )+|ΠT = n] = E∗[(S1

T − S2
T )|ΠT = n] + E∗[IYT≤c1(S

1
T − S2

T )|ΠT = n]
− E∗[IYT≤c2(S

1
T − S2

T )|ΠT = n].

The first term in the right hand side of (3.22) is simulated with the help of
(2.15). The other two terms in (3.22) are calculated as in (3.16)-(3.17) with
evident changes. All these manipulations lead us to a concrete form of (3.4) for
the second case:

(3.22)

T px = 1−
∑∞

0 p∗n,T

[
S̃1

0,nΦ
(
b+(S̃1

0,n, c1S̃
2
0,n, T )

)
− S̃2

0,nΦ
(
b−(S̃1

0,n, c1S̃
2
0,n, T )

)]∑∞
0 p∗n,T

[
S̃1

0,nΦ
(
b+(S̃1

0,n, S̃2
0,n, T )

)
− S̃2

0,nΦ
(
b−(S̃1

0,n, S̃2
0,n, T )

)]
+

∑∞
0 p∗n,T

[
S̃1

0,nΦ
(
b+(S̃1

0,n, c2S̃
2
0,n, T )

)
− S̃2

0,nΦ
(
b−(S̃1

0,n, c2S̃
2
0,n, T )

)]∑∞
0 p∗n,T

[
S̃1

0,nΦ
(
b+(S̃1

0,n, S̃2
0,n, T )

)
− S̃2

0,nΦ
(
b−(S̃1

0,n, S̃2
0,n, T )

)]
In conclusion, we give the following remarks regarding our actuarial analysis.

Remark 3.1 Under known probabilities T px, formulas (3.18), (??) give us
a possibility to determine a∗ of the maximal set of successful hedging A∗. The
corresponding hedge π∗ will be a perfect hedge for the modified claim (2.9). The
capital C(t, S1

t , S2
t ) of π∗ can be computed in a similar way as the initial price

of the option. The components (β∗, γ∗1 , γ∗2 ) of π∗ satisfy a system of stochastic
differential equations (see for instance Krutchenko and Melnikov (2001)).

Remark 3.2 We can fix the probability of the set of successful hedging as
1− ε, ε ∈ (0, 1), and determine the optimal value a∗ε from this condition. Then,
applying (3.18), we can find the survival probabilities T px and use Life Tables
(see Bowers et al (1997)) to choose an appropriate group of insured for a given
contract.
Further for the group of size lx of insureds of age x, one can consider the
following cumulative claim lx+T ·H. Let us define a constant nα by the condition
that the event {lx+T ≤ nα} has a probability 1 − α, where α ∈ (0, 1) can be
interpreted as a mortality risk level. This probability has binomial distribution
with probability of success T px. If a strategy with initial price H0(ε) hedges
H with risk level ε then, the same strategy hedges with the same risk level the
claim nα

lx
H starting at nα

lx
H0(ε). All these considerations lead to the conclusion

that the above cumulative claim can be hedged with probability greater or equal
to 1− (α + ε).

4 Actuarial analysis in a simplified model and
numerical example

The goal of this section is to present a package of actuarial calculations regarding
a concrete life insurance contract with a flexible guarantee. A simplified model

10



will be considered, since the corresponding simulations in the framework of the
model (2.1) are much more complicated and may demand a special numerical
technique. Let us concentrate on a limiting variant of (2.1) without its jump
component:

dSi
t = Si

t−(µidt + σidWt), i = 1, 2, t ≤ T. (4.1)

Remark 4.1 The case S1 and S2 generated by different Wiener processes de-
mands some special considerations. It is realized in a forthcoming paper.
The model (4.1) can be viewed as a complete, one risky asset (for example S1)
model of such a market. The second risky asset, S2, can be expressed through
S1 with the help of (2.13):

S2
T = S2

0 exp {σ2WT + [µ2 −
1
2
(σi)2]T}.

S2
T = S2

0 exp {σ2

σ1

(
σ1WT + [µ1 −

1
2
(σ1)2]T

)
− σ2

σ1
[µ1 −

1
2
(σ1)2]T + [µ2 −

1
2
(σ2)2]T}

= (S1
0)

σ2
σ1 (S1

T )
σ2
σ1 (S2

0) exp {−σ2

σ1
[µ1 −

1
2
(σ1)2]T + [µ2 −

1
2
(σ2)2]T}

= (S1
0)−

σ2
σ1 (S2

0) exp {[µ2 −
σ2

σ1
µ1 +

σ2

2
(σ1 − σ2)]T}(S1

T )
σ2
σ1 .

(4.2)

It is well known (see Shiryaev (1999) or Melnikov et al (2002)) that the unique
martingale measure P ∗ is given here by the density

ZT = exp {−µ1

σ1
WT −

1
2

(
µ1

σ1

)2

T}. (4.3)

Consider the contract (3.1). According to (3.2)-(3.5), it is reduced to the pricing
of another contract:

(S1
T − S2

T )+ · I{T (x)>T}

with a key equality (3.4) depending on a maximal set of successful hedging of
the option (S1

T − S2
T )+.

Our leading idea lies in determining the set A∗ in terms of the ratio YT = S1
T

S2
T

based on (3.5). Let us reproduce the same analysis as in Section 3, using another
representation of WT in place of (3.7): for some positive γ,

WT = (1 + γ)WT − γWT

=
1 + γ

σ1
[σ1WT + (µ1 − σ2

1/2)T ]− γ

σ2
[σ2WT + (µ2 − σ2

2/2)T ]

− 1 + γ

σ1
[µ1 −

σ2
1

2
T ] +

γ

σ2
[µ2 − σ2

2/2] · T.

(4.4)

Using (4.3)-(4.4), we rewrite ZT S2
T in (3.4) as follows:

ZT · S2
T = (S1

T )−
(1+γ)µ1
(σ1)2 (S2

T )1+
γµ1

σ1σ2 ·G
= Y α

T ·G, (4.5)

11



where

G ≡ G(γ)

= (S1
0)

(1+γ)µ1
(σ1)2 (S2

0)
γµ1

σ1σ2 exp {− (1 + γ)
σ1

[µ1 −
1
2
(σ1)2]T − γµ1

σ1σ2
[µ2 −

1
2
(σ2)2]T − 1

2
(
µ1

σ1
)2T},

α = − (1 + γ)µ1

(σ1)2
= − γµ1

σ1σ2
− 1.

The last equality for α can be utilized to find additional conditions on the
parameters of the model (4.1).

Assuming 0 < σ1 − σ2 << σ1 and σ2, we take γ = (σ1 − σ2)n, n ≥ 1 and
obtain

µ1 =
σ2

1σ2

σ2
− (σ1 − σ2)n+1. (4.6)

Now we consider the equation

x−α = G · a · (x− 1)+, (4.7)

where G = G((σ1 − σ2)n) and a is an unknown parameter in (3.5). This is
similar to the equation (3.13).

In section 3 we distinguished two cases for (3.13), −α ≤ 1 and −α > 1, to
reconstruct A∗ = A∗

a. But here, due to (4.6), the parameter −α is close to 1:

−α =
1 + (σ1 − σ2)n

σ2
1

· σ2
1σ2

σ2 − (σ1 − σ2)n+1
=

σ2 + (σ1 − σ2)n · σ2

σ2 − (σ1 − σ2)n+1 · σ2
' 1.

Hence we can replace (4.7) by its approximation

x = G · a · (x− 1)+. (4.8)

Denote c(a) = −G·a
1−G·a a solution to (4.8) and consider the set A∗

a = {YT ≤
c(a)} as an approximation for A∗. To identify the parameter a, we can fix P (A∗)
to be 1− ε, ε > 0. It follows from (3.6) that in the case of the model (4.1), the
structure of YT is

YT =
S1

0

S2
0

exp {(σ1 − σ2)WT +
[
(µ1 − µ2)−

σ2
1 − σ2

2

2

]
T}

=
S1

0

S2
0

exp {(σ1 − σ2)W ∗
T −

(σ1 − σ2)2T
2

+
µ1σ2 − µ2σ1 − σ1σ2(σ1 − σ2)

σ1
T} ,

(4.9)

where W ∗
t = Wt + µ1

σ1
t is a new Wiener process with respect to P ∗.

Looking at the representations of YT in (4.9), we conclude that ln(YT ) is
given by

N

(
ln

S1
0

S2
0

− (σ1 − σ2)2T
2

+
µ1σ2 − µ2σ1 − σ1σ2(σ1 − σ2)

σ1
T, (σ1 − σ2)2T

)
=

N
(
µln YT ,σ2

ln YT

)
12



with respect to P ∗ ,, and

N

(
ln

S1
0

S2
0

+
(

µ1 − µ2 −
σ2

1 − σ2
2

2

)
T, (σ1 − σ2)2T

)
with respect to P .

So we have an equation to identify a = a∗ε and c = c(a∗ε ):

1− ε = P (A∗
a∗ε

) = P{lnYT ≤ ln c(a∗ε )} = Φµ,σ2(ln c(a∗ε )) (4.10)

Now we consider the equality (3.4). The denominator of (3.4) is given by the
Margrabe formula

CMar(S1
0 , S2

0 , T ) = S1
0Φ(b+(S1

0 , S2
0 , T ))− S2

0Φ(b−(S1
0 , S2

0 , T )). (4.11)

We shall determine the denominator of (3.4) as

E∗[(S1
T − S2

T )+IA∗
a∗ε

].

Using the same reasoning as in (3.4), we get

E∗[(S1
T − S2

T )+IA∗
a∗ε

] = E∗[(S1
T − S2

T )+I{YT≤c(a∗ε )}]

= E∗[(S1
T − S2

T )+]− E∗[S1
T I{YT >c(a∗ε )}] + E∗[S2

T I{YT >c(a∗ε )}]

= E∗[(S1
T − S2

T )+]− E∗[S1
T ]− E∗[S2

T ] + E∗[(S1
T − S2

T )I{YT≤c(a∗ε )}].
(4.12)

Due to the martingale property of S1 w.r.t. P ∗, we find that E∗[S1
T ] = S1

0 .
Another expected value E∗S2

T is calculated simply as

E∗[S2
T ] = EZT S2

T = S2
0 exp {σ1µ2 − σ2µ1

σ1
T} = S2

0 exp {µ2T − µ1
σ2

σ1
T}.

(4.13)

To determine E∗Si
T I{YT≤c}, i = 1, 2, in (4.12), we use the same approach as in

(3.16)-(3.18). Applying (4.11)-(4.13) and the new denotations

S̃1
0 = S1

0 exp {µ1
σ2

σ1
T} and S̃2

0 = S2
0 exp {µ2T}

we find that

E∗[(S1
T − S2

T )+I{YT≤c(a∗ε )}] = S1
0Φ(−b+(S̃1

0 , cS̃2
0 , T ))−

−S̃2
0 exp {−µ1

σ2

σ1
T}Φ(−b−(S̃1

0 , cS̃2
0 , T ))

= exp {µ1
σ2

σ1
T}[(S̃1

0 − S̃2
0)−

−(S̃1
0Φ(b+(S̃1

0 , cS̃2
0 , T ))− S̃2

0Φ(b−(S̃1
0 , cS̃2

0 , T )))] ,
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and finally

T px = 1−
exp {−µ1

σ2
σ1

T}[S̃1
0Φ(b+(S̃1

0 , cS̃2
0 , T ))− S̃2

0Φ(b−(S̃1
0 , cS̃2

0 , T ))]
[S1

0Φ(b+(S1
0 , S2

0 , T ))− S2
0Φ(b−(S1

0 , S2
0 , T ))]

.

Now we give a numerical example to illustrate this methodology.
Consider the financial indices Russell 2000 (RUT-I) and Dow Jones Indus-

trial Average (DJIA) as risky assets S1 and S2. Russell 2000 is the index of
small US companies’ stocks, whereas Dow Jones is based on the portfolio con-
sisting of 30 blue-chip stocks in the USA. The first index, RUT-I, is supposed
to be more risky than DJIA.

Example 4.1. Using daily observations of prices from August 1, 1997,
until July 31, 2003. We estimate (µ1, σ1) and (µ2, σ2), the rate of return, and
volatility for RUT-I and DJIA empirically, We get the following numbers:

µ1 = 0.0481, σ1 = 0.2232,

µ2 = 0.0417, σ2 = 0.2089.

We observe that the condition (4.6) with γ = σ1− σ2 is approximately fulfilled,
as the right-hand side of (4.6) equals 0.0499.

The initial prices of these indices are 414.21 and 8194.04. Therefore, we use
8194.04
414.21 · S1

t as the value of the first asset to make initial values of both assets
the same.

Utilizing the formulas (4.10) and (4.14) with T = 1, 3, 5, 10 and ε = 0.01,
0.025, 0.05, we obtain the values of the corresponding survival probabilities T px

(see Table 1).
Now we can find an age of the insured using Life Tables (see, for instance,

Bowers et al (1997)). The data is displayed in Table 2.

When the level of financial risk ε (the probability that the insurance com-
pany cannot hedge (S1

T − S2
T )+ or, equivalently, max{S1

T , S2
T }) increases, the

company should restrict the group of insured by attracting older clients. As a
result, the company diminishes the insurance component of risk to compensate
for the increasing financial risk.

Issuing contracts for a longer term T allows the insurance company to di-
minish insurance risk with fixed ε. Therefore, the company can afford to work
with younger groups of clients.

We also do the same for the contract with fixed guarantee, taking into
account that it is a particular case of the contract with flexible guarantee
(µ2 = σ2 = 0).
Taking K = 1.1, 0.8194 as the fixed guarantee, we calculate survival probability
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and ages of the insured using the same procedure (see Table 3 and Table 4).
Comparing the ages in Table 2 and Table 4, we conclude that the company
should attract older clients for the contract with flexible guarantee to compen-
sate for the riskier characteristic of this contract relatively to the contract with
a fixed guarantee.
Let us pay more attention in our methodology to mortality risk. We consider
the cumulative claim lx+T (S1

T − S2
T )+, where lx+T is the number of insureds at

the end of the contract from the group of size lx (see Remark 3.2).
Denote π = πε a quantile hedge of the risk level ε with initial (quantile) price
Cε and terminal value Xπ

T so that

P
(
Xπ

T ≥ (S1
T − S2

T )+
)

= 1− ε . (4.14)

The maximal set of successful hedging is invariant with respect to multiplication
by a positive constant δ. Hence, the claim δ(S1

T − S2
T )+ can be hedged at the

same risk level ε with the initial price δCε. Take δ = nα

lx
, where the number nα

is determined from the equality

P (lx+T ≤ nα) = 1− α . (4.15)

The parameter α ∈ (0, 1) characterizes the level of mortality risk of the company,
and the probability in (4.15) can be computed with the help of the binomial
distribution with parameter T px.
Using independence of lx+T and the market we derive that

P
(
lxXπ

T ≥ lx+T (S1
T − S2

T )+
)

≥ P

(
Xπ

T ≥
lx+T

lx
(S1

T − S2
T )+

)
≥ P

(
Xπ

T ≥
nα

lx
(S1

T − S2
T )+

)
P (lx+T ≤ nα)

≥ (1− ε)(1− α)
≥ 1− (ε + α) . (4.16)

Inequalities in (4.16) give the following. Let us take T = 1, 5 , 10, fix both risk
levels ε = α = 0.025, and consider the contract for the group of size lx = 100.
We find nα = 94; 95; 96, and the modified quantile prices Cε,α = 50.44; 156.56;
274.44.
These results show us that under the combined risk level ε + α = 5% the
initial prices can be reduced by 12 − 18% in comparison with the fair prices
Cmar = 61.15; 183.33; 313.84. At the same time the corresponding quantile
prices Cε = C0.025 reduce Cmar by 9− 12%
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5 Tables

ε = 0.01 ε = 0.025 ε = 0.05
T = 1 0.9447 0.8774 0.7811
T = 3 0.9511 0.8910 0.8041
T = 5 0.9549 0.8989 0.8174
T = 10 0.9605 0.9108 0.8378

Table 1: Survival probabilities (Flexible Guarantee)
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ε = 0.01 ε = 0.025 ε = 0.05
T = 1 78 87 94
T = 3 61 71 79
T = 5 53 63 71
T = 10 41 50 58

Table 2: Age of Insured (Flexible Guarantee)

17



ε = 0.01 ε = 0.025 ε = 0.05
T = 1 0.9733 0.9306 0.8585
T = 3 0.9700 0.9247 0.8510
T = 5 0.9706 0.9266 0.8553
T = 10 0.9732 0.9332 0.8679

Table 3: Survival probabilities (Fixed Guarantee)
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ε = 0.01 ε = 0.025 ε = 0.05
T = 1 68 80 88
T = 3 55 67 76
T = 5 48 59 68
T = 10 36 47 56

Table 4: Age of Insured (Fixed Guarantee)
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