

SIP servlets-based service provisioning in MANETs

Slimane Bah

A Thesis
in

The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy at

Concordia University
Montreal, Quebec, Canada

January 2010

© Slimane Bah, 2010

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Slimane Bah

Entitled: SIP servlets-based service provisioning in MANETs

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Electrical and Computer Engineering)

Complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

 Dr. Fariborz Haghighat Chair

 Dr. Michel Kadoch External Examiner

 Dr. Juergen Rilling External to Program

 Dr. Mourad Debbabi Examiner

 Dr. Ferhat Khendek Examiner

 Dr. Rachida Dssouli Supervisor

 Dr. Roch Glitho Supervisor

Approved by Dr. William E. Lynch

 Chair, Department of Electrical and Computer Engineering

 Dr. Robin Drew

 Dean, Faculty of Engineering and Computer Science

 iii

ABSTRACT

SIP servlets-based service provisioning in MANETs

Slimane Bah, Ph.D.
Concordia University, 2010

Mobile Ad-hoc NETworks (MANETs) are a part of the fourth generation networks

vision. They are new wireless networks having transient mobile nodes with no need for a

pre-installed infrastructure. They are of utmost interest for the future networks owing to

their flexibility, effortlessness of deployment and related low cost. They come in two

flavours: standalone MANETs and integrated with the conventional 3G network.

Providing value-added services is the core concept of several paradigms and has been

extensively studied in legacy network. However, providing such services in MANETs is

a challenging process. Indeed, MANETs are known for their heterogeneous devices,

limited resources, dynamic topology and frequent disconnections/connections. New SIP

based solutions for signalling and media handling in these networks are emerging.

Furthermore, SIP is the primary protocol for 3G networks. Therefore, SIP servlets

become a promising paradigm for service provisioning in MANETs.

This thesis addresses the service provisioning aspects in both standalone MANETs and

integrated 3G/MANETs. The SIP servlets framework is considered as the starting point

while Multihop Cellular Networks (MCNs), the widely studied networks, are used as an

example of integrated 3G/MANETs.

Background information is provided, architectures requirements are derived and related

work is reviewed. A novel business model is proposed for service provision in standalone

 iv

MANETs. The business model defines the business roles and the relationship and

interfaces between them. We also propose a service invocation and execution architecture

implementing the business model. The solution is based on overlay network and a

distribution scheme of the SIP servlets engine. The overlay network enables self-

organization and self-recovery to take into account MANETs characteristics. As for the

integrated 3G/MANETs we propose high level architectural alternatives for service

provisioning in MCNs. We identify the most interesting alternatives from the network

operator point of view and proposed a detailed and concrete architecture for the

promising alternative. Overall architecture, functional entities and procedures are

presented. During this work, we built prototypes as proof-of-concept and made

preliminary performance measurements, used SPIN as protocol validation tool and

adopted OPNET for simulation. The results show that we can provide services in

MANETs as we do in conventional networks with reasonable performance.

 v

ACKNOWLEDGEMENTS

I would like first and for most to express my sincere gratitude to my supervisors Dr.

Rachida Dssouli and Dr. Roch Glitho for their support, patience, guidance and

motivation. I learned a lot from working with them. I warmly thank Dr. Dssouli for her

continual encouragements, valuable advices and kindness. I sincerely thank Dr. Glitho for

his assistance, help, pertinent suggestions and his availability. This work was possible

thanks to the experience and expertise of my great supervisors.

I would like to extend my thanks to the members of my examining committee for

reviewing my work and for their valuable comments during all my thesis phases.

Special thanks to Concordia University and Ericsson Canada for their financial support. I

thank Ericsson for giving me the opportunity to work in its Research and Development

department.

I am also grateful to all my colleagues at the Telecommunication Service Engineering

laboratory for their help, discussions and experiences we have shared. It is a pleasure to

work with you.

At last but not least, I would like to thank my family: I am greatly thankful to my parents

who unconditionally support me. My regards are addressed to my parents-in-law for their

encouragements. I would like also to express my sincere gratitude to my wife Lamia for

all the sacrifices she has made.

 vi

DEDICATION

To my parents

To my wife Lamia

To my son Aymane

 vii

TABLE OF CONTENT

LIST OF FIGURES ...xiv

LIST OF TABLES ...xviii

ACRONYMS AND ABBREVIATIONS ..xix

CHAPTER 1: INTRODUCTION ..1

1.1. Motivations ..1

1.2. Problem statement and objectives ..4

1.3. Summary of contributions..7

1.4. Thesis organization ..8

CHAPTER 2: BACKGROUND ..10

 2.1. Mobile Ad Hoc Networks ..10

 2.1.1. The evolution of MANETs ..11

 2.1.2. Classification of MANETs ..12

 2.1.3. Multihop Cellular Networks (MCNs) ..15

 2.1.4. MANET characteristics ...17

 2.2. Service architecture ..18

 2.2.1. Service life cycle ..19

 2.2.2. Business model ..21

 2.3. Service provisioning in 3G networks ...22

 2.3.1. IMS architecture...22

 2.3.2. Session Initiation Protocol ...24

 2.3.3. Service provisioning in IMS ..25

 2.3.3.1. Application servers ...26

 2.3.3.2. Service provisioning ...26

 2.3.3.3. Scenario...27

 2.4. SIP servlets framework ..29

 2.4.1. The servlets technology ...29

 2.4.2. SIP servlets...30

 viii

 2.5. Summary ..32

CHAPTER 3: RELATED WORK ...33

 3.1. Requirements ...33

 3.1.1. Overall requirements for service architectures in MANETs34

 3.1.2. Requirements for business models in MANETs and related publication
and discovery mechanism ..35

 3.1.2.1. Requirements of the business model...35

 3.1.2.2. Requirements of the publication/discovery mechanism36

 3.1.3. Requirements for service execution architecture and corresponding
communication mechanism in stand-alone MANETs36

 3.1.3.1. Requirements related to the service execution architecture36

 3.1.3.2. Requirements related to the architecture‟s communication
mechanism ...37

 3.1.4. General and specific requirements for service provisioning architecture
in MCNs ...38

 3.1.4.1. General requirements for service provisioning in MCNs38

 3.1.4.2. Specific requirements for a SIP servlets-based service
provisioning architecture in MCNs ..39

 3.2. Critical review of the state of the art ..40

 3.2.1. Service architectures ..40

 3.2.1.1. Review of the classical service architectures41

 3.2.1.1.1. TINA ...41

 3.2.1.1.2. Intelligent Networks ...42

 3.2.1.1.3. Wireless application protocol ..43

 3.2.1.1.4. Parlay ...44

 3.2.1.1.5. Web services ...45

 3.2.1.1.6. The service architecture of the IP multimedia subsystem47

 3.2.1.2. Review of the emerging service architectures49

 3.2.1.2.1. The emerging 4G model ...49

 3.2.1.2.2. The I-centric Model ..51

 3.2.2. Business model and related publication/discovery mechanism52

 ix

 3.2.2.1. Business models ..53

 3.2.2.1.1. TINA-C business model ..53

 3.2.2.1.2. Web services business model ...55

 3.2.2.1.3. Parlay/OSA business model ...56

 3.2.2.1.4. IMS business model ..57

 3.2.2.2. Publication and discovery mechanisms ..59

 3.2.2.2.1. Routing based solutions ...60

 3.2.2.2.2. Directory-based solutions ..60

 3.2.2.2.3. Directory-less solutions ...61

 3.2.3. Service execution frameworks and corresponding communication
model ..64

 3.2.3.1. Service Logic Execution Environment (SLEE)64

 3.2.3.2. JXTA ...65

 3.3. Summary ..66

CHAPTER 4: BUSINESS MODEL FOR SERVICE PROVISIONING IN STAND-

ALONE MANETS ...68

 4.1. General business model ...68

 4.1.1. Roles of the general business model ..68

 4.1.2. Interactions ...69

 4.1.3. Required functionalities ...71

 4.1.4. Discussion ..72

 4.2. Refined Business model ...73

 4.2.1. Roles of the refined business model ..74

 4.2.2. Interactions and required functionalities ..75

 4.2.3. Discussion ..75

 4.3. Mapping to the SIP servlets framework...76

 4.3.1. Motivation ..76

 4.3.2. Distributing the SIP servlets engine ...78

 4.3.3. SIP servlets-based business model for MANETs80

 4.4. Publication and discovery ..81

 4.4.1. Service description ...81

 x

 4.4.2. Publication and discovery protocol ..83

 4.5. Illustrative scenarios ..84

 4.5.1. Distributed SIP servlets engine interactions ..84

 4.5.2. LIME-based scenario ...86

 4.5.3. PDP-based scenario ...87

 4.6. Summary ..89

CHAPTER 5: AN OVERLAY NETWORK FOR A SIP SERVLETS-BASED SERVICE

EXECUTION ENVIRONEMENT IN MANETS91

 5.1. Introduction ..91

 5.2. Overview of overlay networks ...92

 5.3. The overlay network architecture ..93

 5.3.1. Assumptions and architectural principles ..93

 5.3.2. The overlay network design ...94

 5.3.2.1. A two level overlay network ...94

 5.3.2.2. The overlay network topology ..95

 5.4. The overlay network procedures ..97

 5.4.1. Self-organization ..97

 5.4.2. Self-recovery ..100

 5.4.2.1. Expected failures ...101

 5.4.2.2. Unexpected failures ..102

 5.5. The overlay network protocol ..103

 5.5.1. Data format and protocol messages ...104

 5.5.1.1. Data format ...104

 5.5.1.2. Protocol messages ...105

 5.5.2. State diagrams ..109

 5.5.2.1. The wrapper state diagram ...110

 5.5.2.2. The connector state diagram ...111

 5.5.2.3. The session repository state diagram ..113

 5.5.2.4. The controller state diagram ...115

 5.6. Illustrative scenarios ..122

 5.6.1. Self-organization ..122

 xi

 5.6.2. Self-recovery ..123

 5.7. Summary ..125

CHAPTER 6: A SIP SERVLETS SERVICE PROVISIONING ARCHITECTURE FOR

INTEGRATED 3G/MANETS NETWORKS..127

 6.1. Introduction ..127

 6.2. SIP servlets framework in IMS ..128

 6.3. SIP servlets-base service provisioning in Multihop Cellular Networks: high
level architectural alternatives ...129

 6.3.1. Services executed in the MANET portion ...131

 6.3.1.1. User equipment and service logic are in the 3G131

 6.3.1.2. User equipment is in MANET and service logic hosted in 3G.........132

 6.3.1.3. User equipment is in 3G and service logic is hosted in MANET133

 6.3.2. Services executed in the 3G portion ..134

 6.3.2.1. User equipment and service logic are in the MANET135

 6.3.2.2. User equipment is in MANET and service logic hosted in 3G.........136

 6.3.2.3. User equipment is in 3G and service logic is hosted in MANET137

 6.3.3. Alternatives‟ analysis ...138

 6.4. Provisioning services in MCNs when end-users are in the MANET portion141

 6.4.1. Architectural assumptions ..142

 6.4.2. Architectural principles ..143

 6.4.3. Functional entities ..144

 6.4.4. Procedures ..146

 6.4.4.1. Before service execution ...147

 6.4.4.2. At the service execution runtime ..148

 6.4.4.3. At any given time ..150

 6.4.5. Illustrative scenario ..151

 6.5. Summary ..153

CHAPTER 7: VALIDATION FOR THE CASE OF STAND-ALONE MANETS155

 7.1. Business model proof of concept ...155

 7.1.1. Prototype ..156

 xii

 7.1.1.1. PDP extensions ...157

 7.1.1.2. Prototype architecture and environment ...159

 7.1.2. Results ..161

 7.1.2.1. Scenarios ...161

 7.1.2.2. Results and analysis ..164

 7.2. Overlay network validation..167

 7.2.1. The validation tool ...167

 7.2.2. The modeling process ..168

 7.2.2.1. Validation processes ...169

 7.2.2.2. Communication channels ..170

 7.2.3. The correctness requirements...171

 7.2.4. Conclusion ...173

 7.3. Summary ..175

CHAPTER 8: VALIDATION FOR THE CASE OF INTEGRATED 3G/MANETS176

 8.1. Integrated 3G/MANETs prototype ..176

 8.1.1. Assumptions and mechanisms ...176

 8.1.2. Prototype environment ...177

 8.1.3. The scenario description ..178

 8.2. Performance evaluation of the integrated 3G/MANET architecture179

 8.2.1. Simulation and environment settings ...179

 8.2.2. System design ..181

 8.2.3. Simulation scenarios ..186

 8.2.4. Results and analysis ...189

 8.2.4.1. Metrics ..189

 8.2.4.2. The impact of the number of users ...191

 8.2.4.3. The impact of the number of concurrent services200

 8.3. Summary ..209

CHAPTER 9: CONCLUSION AND FUTURE WORK ...211

 9.1. Summary of contributions..211

 9.2. Future work ..215

 xiii

 9.2.1. Overall architecture ..215

 9.2.2. Overlay network architecture ...216

 9.2.3. Integrated 3G/MANET architecture ..217

 9.2.4. Implementation and performance ..218

REFERENCES ..219

 xiv

LIST OF FIGURES

Figure 2.1: MANETS categories based on their communication coverage.....................12

Figure 2.2: A typical standalone mobile ad-hoc network ..13

Figure 2.3: Overview of the connected mobile ad-hoc network model14

Figure 2.4: General view of the integrated cellular network/MANET model15

Figure 2.5: Overview of the multihop cellular network ..16

Figure 2.6: Simple architecture of IMS ...24

Figure 2.7: An example of service provisioning in IMS: interest-based service28

Figure 2.8: Java Servlets lifecycle ..29

Figure 2.9: Simple view of the SIP servlets framework ..30

Figure 2.10: SIP servlets-based application server in IMS ..31

Figure 3.1: Basic WAP architecture ..43

Figure 3.2: Parlay/OSA logical architecture ..44

Figure 3.3: A proposed model for services and applications in 4G networks50

Figure 3.4: The reference model for I-centric communications 52

Figure 3.5: TINA business model and reference points ..54

Figure 3.6: Web services business model and its primitives ...55

Figure 3.7: Parlay business model ...56

Figure 3.8: IMS business model for 3G networks ..58

Figure 4.1: An overall view of the general business model roles and interactions70

Figure 4.2: The general business model interactions in pull mode..................................71

Figure 4.3: Overview of the refined business model ...74

Figure 4.4: The SIP servlets framework with a distributed SIP servlets engine..............79

Figure 4.5: The SIP servlets-based business model for MANETs80

Figure 4.6: Global view of service features description in MANETs82

Figure 4.7: Abstract view of the distributed SSE handling an initial SIP request84

Figure 4.8: Distributed SSE handling an initial SIP message using LIME85

Figure 4.9: LIME-based scenario for publication and discovery: pull mode86

Figure 4.10: PDP-based scenario for publication and discovery: pull mode88

Figure 4.11: PDP-based scenario for publication and discovery: push mode88

Figure 5.1: An abstract view of the overlay network‟s levels ...94

 xv

Figure 5.2: Topology of level 2 of the overlay network ..96

Figure 5.3: overall view of the SIP servlets overlay network ..96

Figure 5.4: The overall self-organization process..98

Figure 5.5: The controller‟s decision algorithm ..99

Figure 5.6: The overall self-recovery process ..101

Figure 5.7: The abstract state diagram of the global system ..109

Figure 5.8: The wrapper state diagram ..111

Figure 5.9: The connector state diagram..112

Figure 5.10: The session repository state diagram...113

Figure 5.11: The SR full mesh connection algorithm ..115

Figure 5.12: The Joining part of the controller state diagram ...116

Figure 5.13: The Ready part of the controller state diagram ...118

Figure 5.14: The Recovery part of the controller state diagram120

Figure 5.15: Interaction following a connector joining the overlay network122

Figure.5.16: A wrapper voluntarily leaving the overlay network124

Figure 5.17: An unexpected controller failure ..125

Figure 6.1. Simplified view of the SIP servlets service provisioning model in IMS129

Figure 6.2. Service execution in MANET: UE and service logic in 3G132

Figure 6.3. Service execution in MANET: UE in MANET and service logic in 3G133

Figure 6.4. Service execution in MANET: UE in 3G and service logic in MANET134

Figure 6.5. Service execution in 3G: UE and service logic in MANET135

Figure 6.6. Service execution in 3G: UE in MANET and service logic in 3G136

Figure 6.7. Service execution in 3G: UE in 3G and service logic in MANET137

Figure 6.8. An overview of the proposed architecture ...144

Figure 6.9. The AS decision making algorithm ...149

Figure 6.10. Conference establishment between two MANET users in MCN152

Figure 7.1 : XML Service description ...157

Figure 7.2: Business model prototype architecture..159

Figure 7.3: The general pull scenario using PDP ..161

Figure 7.4: Comparison of the pull and hybrid scenario for the service D discovery166

Figure 7.5: Comparison of the pull and hybrid scenario for the service F discovery167

 xvi

Figure 7.6: An example of temporal claims ...172

Figure 7.7: Example of SPIN‟s output during the overlay network simulation173

Figure 8.1: The integrated 3G/MANET prototype settings ...177

Figure 8.2: Interest based conference establishment in MCNs ..178

Figure 8.3: Overview of the integrated 3G/MANET simulation set up 181

Figure 8.4: The node model of the wireless nodes ..182

Figure 8.5: The node model of the 3G nodes...182

Figure 8.6: The SGW agent process model ...183

Figure 8.7: The SSE entity process model ...184

Figure 8.8: The main process model of the AS entity ...185

Figure 8.9: The service invoke packet used for simulation ...186

Figure 8.10: Illustration of the calculated delays ...190

Figure 8.11: The average packets delay for the AS entity ...191

Figure 8.12: The average packets delay for the CIB entity ...192

Figure 8.13: The average packets delay for the HSS entity ...193

Figure 8.14: The average packets delay for the EU entity ...193

Figure 8.15: The average packets delay for the SSE entity ...194

Figure 8.16: The average packets delay for the SGW entity ...194

Figure 8.17: The average end-to-end delay for the service run request195

Figure 8.18: The average end-to-end delay for the service invoke and service join

requests ...196

Figure 8.19: The average end-to-end delay for the SSE register request197

Figure 8.20: Number of packets sent by the main entities ...198

Figure 8.21: Overhead introduced by the main entities ...198

Figure 8.22: Total number of packets exchanged in the network199

Figure 8.23: Total bytes exchanged in the network ...199

Figure 8.24: Impact of the number of services on the average packets delay for the AS

entity ...200

Figure 8.25: Impact of the number of services on the average packets delay for the CIB

entity ...201

 xvii

Figure 8.26: Impact of the number of services on the average packets delay for the HSS

entity ...202

Figure 8.27: Impact of the number of services on the average packets delay for the EU

entity ...202

Figure 8.28: Impact of the number of services on the average packets delay for the SGW

entity ...203

Figure 8.29: Impact of the number of services on the average packets delay for the SSE

entity ...203

Figure 8.30: Impact of number of services on the average end-to-end delay for the service

run request ..204

Figure 8.31: Impact of number of services on the average end-to-end delay for the service

join and service invoke requests ..205

Figure 8.32: Impact of number of services on the average end-to-end delay for the SSE

register request..206

Figure 8.33: Number of packets sent by the different entities ...207

Figure 8.34: Overhead introduced by the different entities ...207

Figure 8.35: Total number of packets exchanged in the network - different services208

Figure 8.36: Total bytes exchanged in the network – different services209

 xviii

LIST OF TABLES

Table 2.1: Meaning of SIP core methods and extensions ..25

Table 3.1: Summary of the shortcomings of the classical service architectures49

Table 3.2: Summary of the review of the main business models59

Table 3.3: Comparison between PDP and LIME...64

Table 3.4: Overview of the JXTA protocols ..66

Table 5.1: Session repositories data table ..104

Table 5.2 : Controllers data table ...105

Table 5.3: Proposed messages for the overlay network organization and recovery

operations ..108

Table 5.4: Proposed messages for data exchange ..109

Table 6.1: All the possible options for hosting the SIP servlets framework in MCNs130

Table 6.2: Summary of the high level architectural alternatives for SIP servlets-based

service provisioning in MCNs ..138

Table 6.3: Advantages of service execution in MANET ...140

Table 6.4: Advantages of service execution in 3G ..140

Table 7.1: Business model roles‟ interactions during the publication/discovery

process...156

Table 7.2: Required features for the scenarios‟ services ...162

Table 7.3: The pull scenarios description ..163

Table 7.4: The hybrid scenarios description ..163

Table 7.5: The average response time for the pull scenarios ...164

Table 7.6: The average response time for the hybrid scenarios165

 xix

ACRONYMS AND ABBREVIATIONS

1G: First Generation Wireless System

2G: Second Generation Wireless System

3G: Third Generation Wireless System

4G: Forth Generation Wireless System

3GPP Third Generation Partnership Project

3GPP2 Third Generation Partnership Project version 2

AODV Ad hoc On-demand Distance Vector

AP Access Point

API Application Programming Interface

ARS Ad hoc Relay Station

AS Application Server

B2BUA Back to Back User Agent

BAN Body Area Network

BS Base Station

CAMEL Customized Applications for Mobile network Enhanced Logic

CGI Common Gateway Interface

CIB Context Information Base

CORBA Common Object Request Broker Architecture

CP Capabilities Provider

CSCF Call Session Control Function

DARPA Defense Advanced Research Projects Agency (United States)

E-AS Extended Application Server

EEP Execution Environment Provider

EESPP Execution Environment Sub Part Provider

E-HSS Extended Home Subscriber Server

EMS Enhanced Messaging Service

E-SSE Extended SIP Servlets Engine

EU End User

FTP File Transfer Protocol

GGSN Gateway GPRS support Node

 xx

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

HSS Home Subscriber Server

HTTP HyperText Transfer Protocol

iCAR Integrated Cellular and Ad Hoc Relaying Systems

I-CSCF Interrogating-Call Session Control Function

IETF Internet Engineering Task Force

IETF Internet Engineering Task Force

IMP IP Multimedia Subsystem

IMS IP Multimedia Subsystem

IM-SSF IP Multimedia Service Switching Function

IN Intelligent Networks

IT Information technology

ITU-T International Telecommunication Union – Telecommunication sector

JAIN Java APIs for Integrated Networks

JSLEE JAIN Service Logic Execution Environment

LIME Linda In a Mobile Environment

LSD Lightweight Service Discovery

MAC Media Access Control (address)

MANET Mobile Ad-hoc NETworks

MCN Multihop Cellular Network

MGCF Media Gateway Control Function

MGW Media Gateway

MH Mobile Host

MRF Media Resource Function

NGN Next Generation Network

OMG Object Management Group

OPNET OPtimized Network Engineering Tools

OSA Open Service Access

OSA-SCS Open Service Access-Service Capability Server

OSLR Optimized Link State Routing

 xxi

PAN Personal Area Network

P-CSCF Proxy-Call Session Control Function

PDA Personal Digitial Assistant

PDP Pervasive Discovery Protocol

PRNET Packet Radio Network

PROMELA PROtocol/PROcess MEta LAnguage

PSTN Public Switched Telephone Network

QoS Quality of Service

RNC Radio Network Controller

SCF Service Capability Feature

SCNs Single-hop Cellular Networks

SCS Service Capability Server

S-CSCF Serving-Call Session Control Function

SE Servlets Engine

SGSN Serving GPRS Support Node

SGW Service Gateway

SIB Service Independent building Blocks

SIP Session Initiation Protocol

SIP Session Initiation Protocol

SLEE Service Logic Execution Environment

SLP Service Location Protocol

SMS Short Messaging Service

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SP Service Provider

SPIN Simple Promela INterpreter

SSE SIP Servlets Engine

SSEP SIP Servlets Engine Provider

SSP SIP Servlets provider.

TCP Transmission Control Protocol

 xxii

TINA Telecommunication Information Network Architecture

TINA-C Telecommunication Information Network Architecture Consortium

TPAL Transport Adaptation Layer

UCAN Unified Cellular and Ad-Hoc network Architecture

UDDI Universal Description Discovery and Integration

UDP User Datagram Protocol

UE User Equipment

UMTS Universal Mobile Telecommunications System

UPnP Universal Plug and Play

URI Universal Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WCDMA Wideband Code Division Multiple Access

WLAN Wireless Local Area Network

WSDL Web Services Description Language

WSDL Web Services Description language

WWAN Wireless Wide Area Network

XML eXtensible Markup Language

ZRP Zone Routing Protocol

 1

CHAPTER 1: Introduction

This chapter starts with the motivations for this subject, and then states the problem, the

thesis objectives and its major contributions, along with the related publications. It ends

with the thesis organization.

1.1 Motivations

Over the last decade the telecommunications domain has gone through historical changes.

In just a few years the evolution of networks, technologies and even the

telecommunications vision has experienced rapid changes. For instance, mobility has

become a necessity in telecommunications. In the mobile context, several network

generations have been studied and experimented upon. The common goal is to provide

better services to consumers. However, the actual services and how they have been

provided have changed dramatically [1], [2] due to advances in standards and

technologies.

The first generation (1G) of mobile telecommunications was released in the early 80s. It

was based on analog cellular systems and was intended primarily to provide voice calls

on the move. The quality of this service was poor, and still the demand was growing.

Then, the second generation (2G) was released in the 90s. The world had moved towards

digital standards. The most widely-used standard was Global System for Mobile

 2

Communications (GSM). With the digital system, a few services were added to the voice

call: small-data transmission, Short Messaging Service (SMS) and Enhanced Messaging

Service (EMS). Despite this evolution, the 2G was still a circuit-switched network, and so

it inherited the drawbacks of those networks. The 2.5G was seen as an enhancement to

the 2G because it moved forward to packet-switched networks for data services. Hence,

new services and opportunities became available: Internet browsing, e-mail, file and data

transfer at higher rates. As the technology advances and consumers demand grows, new

needs appear. In the 2000‟s, the third generation networks (3G) became a reality. 3G

provides a service-oriented network that ensures high service quality, high transfer rates

and that opens the door to a wide range of services such as multimedia services, fast

mobile Internet browsing, and TV direct to a mobile device. Mobile devices are highly

integrated into today‟s lifestyle. Bringing together the Internet Protocol (IP) and

telecommunications under the 3G umbrella has allowed new business opportunities and

different types of networks and architectures to flourish.

In the near future, the main challenge will not come from technology but from

integration. Therefore, the fourth generation networks (4G), also called beyond 3G

networks, are envisioned as the coexistence and cooperation of legacy and new networks

[3].

Mobile Ad-hoc NETworks (MANETs) are an example of such new networks. They have

already made significant contributions to military and disaster relief operations. Efforts to

expand their use to civilian life have been gaining more and more momentum. Recently,

a variety of research has recently been published on MANETs.

 3

MANETs are a collection of mobile nodes with no pre-established configuration or

infrastructure. Owing to their on-the-fly aspect, MANETs provide interesting

opportunities and allow new business models [4], [5]. MANETs are opportunistic, self-

organized and self-managed networks. They form and grow in a much more natural way

than infrastructure-based networks. Their deployment involves no extra costs, since no

new entities are required except for end-user devices. Furthermore, heterogeneous

devices, and thus any user, can take part in a MANET. The dynamic topology of such

networks makes them flexible and fault-resistant.

The military and disaster relief domains have already taken advantage of these networks

for some time. MANETs‟ applications have been designed essentially for battlefield and

emergency situations. However, the wide use of wireless handheld devices, due to the

decreased cost of wireless technology, has allowed MANETs to penetrate the

commercial, educational and personal domains. In fact, several studies to extend the

benefits of MENETs have been successfully conducted in recent years. The

generalization of such networks brings new challenges [6]. Their highly dynamic

topology, situations of unpredictable connections and disconnections, integration with

heterogeneous devices, especially those with limited resources (e.g. bandwidth, battery

power) constitute the main challenges. To date, research has focused on the lower-layer

issues [7], [8], [9]. Thus far, no concrete solution for the application layer has been

proposed and MANETs have stayed at an experimental deployment level.

Service architectures allow new services to be created and brought to users quickly and

reliably. These encompass two aspects: the business model and the service lifecycle. The

former defines the business entities and the interactions between them. The service

 4

lifecycle is a four-phase process: service creation, service deployment, service usage, and

service withdrawal. The most important phase is the service usage, which includes a main

process: service provisioning. Service provisioning allows an entity to advertise the

services it is willing to share with other entities. It also enables these entities to access

and invoke the desired services via the service invocation process. Furthermore, service

provisioning enables service execution, which is a process that runs services and manages

the involved entities during the execution time.

Furthermore, MANETs allow new business opportunities by enabling new services and

applications. Potential services for MANETs are: conferencing such as interest-based

conferencing service we considered in this thesis; gaming such as urban games where the

game area is the street. The players interact with the real world; and entertainment such

as watching stream video clip or TV shows. However, the success of MANETs depends

on a realistic and concrete business model and service provisioning solutions. This

process is very challenging given their particular characteristics. Furthermore, MANETs

may be integrated with legacy networks (e.g. 3G) which introduces different issues

compared to the standard service provisioning process in an infrastructure-based network.

1.2 Problem statement and objectives

As previously mentioned, services are the heart of any network. Several paradigms have

been proposed to provide services to end-users (e.g. mobile agent, web services, Parlay).

However, providing value-added services to 4G network users requires an appropriate

solution. There is a lack of research into the application and service layers of such

networks. Furthermore, MANETs are known for their highly dynamic topology, limited

 5

resources, peer-to-peer communication and fully decentralized management. Providing

services for these networks thus involves several challenges.

The main objective of this thesis is to propose an architecture for service invocation and

execution in MANETs. This work focuses on both standalone MANETs and Multihop

Cellular Networks (MCNs) as an example of the integration of MANETs and 3G

networks. MCNs are in the center of interest for many research groups, especially

telecommunications actors, since they open up new business opportunities. Several

research issues can be derived from the above mentioned global goal.

The first issue is to derive a set of requirements for the service provisioning architecture

in MANETs. Requirements should be proposed for the global architecture, the

subsequent protocols and functional entities for both standalone MANETs and integrated

3G/MANETs. Respecting the requirements will ensure that the proposed solutions are

suitable for the MANET environment.

The second challenge targets the business model for standalone MANETs. Defining a

business model is an important step towards standardization. Indeed, it defines the

players involved in a service provisioning and their interactions. Therefore, it is of utmost

importance to carefully define a business model that takes into account MANETs

characteristics. Basically we need to know what a business model looks like in a

distributed environment with no infrastructure and resource-limited handheld devices.

How many business model entities can be envisioned, and how they will interact must be

included in this business model.

The third issue is related to service execution in standalone MANETs. In other words,

how can the previously defined business model be generalized for service execution?

 6

How different instances coexist and cooperate to run a service and what messages or

protocols are required will need to be elaborated. And, how will the multiple business

entities be organized. Then, how the service is invoked and executed with the resulting

architecture also needs to be specified.

The following challenges target the integrated 3G/MANET systems. Indeed, stand-alone

MANETs have limited applications since they are isolated from external access. By

integrating them to existing 3G networks (e.g. MCNs), MANETs become interesting

networks for applications and services. A large community of users can then take

advantage of them. Therefore, the fourth main issue is to first to identify the different and

possible ways for integrating MANETs and MCNs at the application level. A variety of

alternatives to provide 3G services to MANETs users or provide MANETs services to 3G

subscribers are feasible. Thus, it is essential to know what these alternatives are, their

benefits and the research challenges they involve. Second, the integration, in terms of

interactions and cooperation, should be described with MCN characteristics in mind.

Specifically, how users can invoke and execute a service in these networks.

Consequently, it is fundamental to identify what are the functional entities, procedures

and protocols needed to achieve this goal.

The objectives of the thesis are summarized as follows:

 Derive a set of requirements at different levels for service provisioning in standalone

MANETs.

 Propose a novel business model that enables service provisioning in standalone

MANETs.

 Define a general architecture for service provisioning in standalone MANETs.

 7

 Propose a concrete architecture for provisioning services in integrated 3G/MANET

systems, more precisely, in Multihop Cellular Networks (MCNs).

1.3 Summary of contributions

This section pinpoints the main contributions of the thesis and presents references to the

related publications.

 Critical review of the state of the art and derived requirements: we derived

general requirements for service provisioning architecture in standalone MANETs

and also for integrated 3G/MANETs. Furthermore, we define refined requirements

for related protocols and entities and for a concrete solution in integrated

3G/MANETs systems. Based on these requirements we then present a critical review

of the existing solutions and conclude that none of them are suitable for integrated

3G/MANET systems.

 Business model for service provisioning in standalone MANETs ([10], [11]): we

have proposed a new business model that takes into account MANETs characteristics.

In fact, the new business model does not depend on a permanent central entity --

lightweight functions are offered by each role and the business model is flexible

enough to allow dynamic discovery of the provided functional entities. Furthermore,

the proposed business model not only targets organizations but individuals as well.

Thus, any participant can take part in the business model. Proof–of-concept

prototypes were implemented to demonstrate the solution feasibility.

 An overlay network for service invocation and execution in standalone MANETs

([12]): We have proposed an overlay network that fits the previously introduced

 8

business model. The overlay network was designed to allow service invocation and

execution in a highly dynamic environment such as in MANETs. This network is

composed of different types of nodes that coexist and cooperate to provide a service

execution environment. The solution includes a protocol for self-organization and

self-recovery, making the overlay network fault-tolerant. The protocol validation was

performed.

 Service provisioning architecture for integrated 3G/MANETs ([13], [14], [15]):

we proposed a novel architecture for integrated 3G/MANETs. Different high-level

architectural alternatives [13] for service provisioning in integrated 3G/MANETs

were studied and described. From this, a concrete architecture corresponding to the

most interesting solution from the network operator point of view was detailed [14].

The architecture is based on a new functional entity called Service GateWay (SGW)

and no major upgrades are required for the existing 3G and MANET service

provisioning entities. For the performance evaluation of the proposed architecture, we

opted for simulation using OPNET. The collected results show that the solution is

obviously introducing delays compared to the existing 3G architecture [15]. However,

these delays are acceptable.

1.4 Thesis organization

The rest of this thesis is organized as follows: Chapter 2 presents crucial background

information on Mobile Ad-hoc Networks and Multihop Cellular Networks. It introduces

key concepts of SIP Servlets, since our architecture is based on this paradigm. Existing

service provisioning solutions are then described. In chapter 3, we first derive a set of

 9

requirements for the service provisioning architecture for standalone MANETs, and then

for integrated 3G/MANETs. Requirements regarding the service invocation and

execution architecture are derived as well. Then, we critically review the state of the art

by subjecting the existing solutions to our requirements. Chapter 4 proposes a novel

business model, designed for standalone MANETs. This chapter shows that our

proposition meets the previously mentioned requirements. The different business roles

and their interactions are elaborated. Chapter 5 is devoted to the service invocation and

execution architecture in standalone MANETs. We propose and define an overlay

network with the related overlay protocol. This architecture enables self-organization and

self-recovery. Chapter 6 discusses the architecture for service provisioning in integrated

3G/MANET systems. Multihop cellular networks (MCNs) are considered as an example

of an integrated 3G/MANET system. This chapter gives an exhaustive overview of the

architectural alternatives for integration at the service level. The most interesting

alternative from the network operator point of view is then detailed: assumptions,

functional entities and procedures are discussed. Chapter 7 describes the different proof

of concepts we have implemented for the standalone MANET solution. Chapter 8

elaborates on the OPNET simulation setups and results for the integrated 3G/MANET

architecture. The chapter 9 concludes the work, gives the summary of contributions and

outlines items for future work.

 10

CHAPTER 2: Background

This chapter presents the background information required for the optimal

comprehension of this thesis. We start by introducing mobile ad-hoc networks, their

description, characteristics and evolution, and multihop cellular networks. Next, we

provide an overview of the service architecture concepts including the service lifecycle

and business model notions. Then, we describe the service provisioning architecture of

choice for 3G networks. Finally, we present the SIP Servelts service provisioning

paradigm.

2.1 Mobile Ad Hoc Networks

Mobile ad hoc networks (MANETs) can be defined as a collection of autonomous and

self-configuring nodes or terminals that communicate with each other by forming a

multihop radio network and maintaining connectivity in a decentralized manner [16]. The

term “ad hoc” means that the network is established arbitrarily for a limited period of

time and for a specific objective [17].

The major goal of MANETs is to set up communications where there is no pre-

established infrastructure (e.g. a battlefield), or where the infrastructure has failed (e.g. in

disaster relief), or when a pre-established infrastructure is not adequate for the current

needs (e.g. interconnection of low-energy environmental sensors) [17].

 11

Basically, in a MANET each node plays the role of a client, a server and a router. The

network is based on the wireless 802.11 standard for large scale networks and Bluetooth

specifications for short range communications. Mobile ad hoc devices and nodes can

range from laptops to small handheld gadgets: Palmtop, Personal Digital Assistants

(PDAs), mobile smart phones, pagers, sensors and the like.

2.1.1 The evolution of MANETs

Work on mobile ad hoc networks began in the early 1970s. The project was initiated by

the U.S. Defense Advanced Research Projects Agency (DARPA). In fact, the first step

towards MANETs was the ALOHA project (1970), which showed the feasibility of

packet broadcasting over a single-hop network. Then, in 1979 the DARPA started

experimenting with multihop, multi-access Packet Radio NETwork (i.e. the PRNET

project) [18]. Inspired by the success of PRNET and the wide use of inexpensive 802.11

radio cards for personal computers, many projects led to the development of ad hoc

routing algorithms during the 1990s [16], [18]. Furthermore, the Internet Engineering

Task Force (IETF) created the MANET group, which works mainly on the routing

aspects of MANETs [19].

MANETs have now gained even more momentum -- taking advantage of the maturity of

research in the lower layers, the advances in wireless technology and standards and the

low cost and diversity of small devices. New opportunities and applications have become

very promising. Indeed, the solutions already include: community networks, home

networks, vehicle networks, sensor networks, emergency networks and hotspots.

MANETs have opened up multiple commercial applications such as: entertainment,

education, shopping and collaborative work.

 12

2.1.2 Classification of MANETs

MANETs are considered a subset of wireless networks with the particularity of being

infrastructure-less. Furthermore, sensor networks are viewed as independent subsets of

the MANET family. However, sensor networks are significantly different from MANETs

at the physical, MAC, network and application layers [17]. Thus, the issues of concern in

sensors‟ networks are not the same as those in MANETs. Therefore, they are not

considered in this work.

MANETs are generally classified according to the communication coverage area. In fact,

they include four network types: Body Area Networks (BAN), Personal Area Networks

(PAN), Wireless Local Area Networks (WLAN) and Wireless Wide Area Networks

(WWAN) [4], [16]. Figure 2.1 illustrates this classification.

The ad hoc WWANs have connections that cover a large geographic area. Generally, a

sensors‟ network forms a WWAN. Soldiers in a battlefield usually have access to these

networks. Another example is large-scale games that use sensors. In [20] the authors

present challenges and directions related to the mobile ad hoc wide area networks. The

infrastructure-less WLAN targets medium-size areas such as a campus or an enterprise or

an airport. PANs allow users to establish connections with other entities in the

WLAN

 PAN BAN WWAN

~ 1m ~ 10m ~ 500m Range

Figure 2.1: MANETS categories based on their communication coverage

 13

surrounding area using personal devices (e.g. laptops, PDAs, cellular phones). A BAN is

linked to wearable devices (e.g. microphones, earphones, watches) and provides

connectivity through these gadgets. A BAN can be either interconnected with other

BANs to communicate with other people or connected to a PAN for Internet access.

Furthermore, MANETs are classified into three models: standalone MANETs [21],

connected MANETs [22] and hybrid MANETs [23], [24], also called the integrated

model. In standalone models, the network is completely isolated from any external

connection or infrastructure network. The ad-hoc network is formed by the devices

within the communication range. Standalone MANETs are very useful since they are

easy and cost nothing to set up. Basically, they are temporary networks and are useful

where no infrastructure is available, such as in a battlefield or in a disaster relief area.

Standalone ad-hoc networks address the need for deploying a network immediately.

However, their application is limited since no external access is provided and thus they

cannot make a large number of different users benefit from their services. Figure 2.2

shows a typical standalone mobile ad-hoc network.

Figure 2.2: A typical standalone mobile ad-hoc network

 14

The second model, connected MANETs, are standalone ad-hoc networks with an access

point (AP) to a larger network, in most cases, the Internet. Figure 2.3 gives an overview

of a connected MANET model. This model can be used as an extension to network

coverage. Hotspots are a good example of connected ad-hoc network models. Indeed,

hotspots tend to be deployed in an ad-hoc manner wherever wired Internet access is

available.

The third model is the result of the integration and coexistence of standalone MANETs

with an infrastructure network. Initially the goal of such integration was to improve the

connectivity [25]. Furthermore, this integration is usually achieved with a wireless

cellular network. The resulting network consists of a sparse network of base stations and

ad-hoc nodes. Figure 2.4 illustrates a general view of the integrated model, which

presents a trade-off between classical cellular networks and pure ad-hoc networks. Traffic

can be routed either through ad-hoc nodes or through base stations (BS). Integrated

3G/MANET networks [26] are the most promising and well-known solution for the

hybrid model of MANETs. The most common example of integrated 3G/MANETs is

Multihop Cellular Networks (MCNs), which are elaborated on in the next sub-section.

Internet

AP

MANET

Figure 2.3: Overview of the connected mobile ad-hoc network model

 15

This thesis focuses on standalone MANETs and MCNs.

2.1.3 Multihop Cellular Networks (MCNs)

Several wireless technologies are available today to respond to an increasing demand for

a variety of new brand services. Furthermore, small gadgets have become an integral part

of our everyday life. Therefore, allowing users to seamlessly access various services from

different devices and via heterogeneous networks is an excellent response to this

situation. The integration of these technologies is a fundamental step to provide mobile

users with services “anytime, anywhere, with any device” and with the guaranteed

Quality of Service (QoS). These objectives are also the motivation behind the 4G vision

[27] and [28].

MANETs and Cellular networks are two types of existing wireless technologies. Each of

them has interesting and also complementary features [29]. MANETs provide high

throughput rates while the cost of deploying and accessing the network are low.

Furthermore, they rely on multihop communications. However, their communication

range is limited. Cellular networks can reach a wide area and thus many more mobile

users than a MANET. Additionally, they are more easily controlled with reliable billing

and security systems. However, they use a single hop communication and the bandwidth

Figure 2.4: General view of the integrated cellular network/MANET model

BS

MANET
node

 16

is relatively low. The Third Generation Partnership Project (3GPP) has standardized 3G

cellular networks [30]. Therefore, we can talk about 3G/MANET integration, and

Multihop Cellular networks (MCNs) are a practical example. Figure 2.5 shows an

overview of a MCN.

The integration of a MANET and a cellular network takes advantage of the attributes of

both networks, and therefore has received much attention from academia and industry.

The standardization bodies, 3GPP and 3GPP2, have published several works on the

integration of wireless LANs and cellular networks [31], [32] and [33]. Furthermore,

other works have been carried out to achieve this integration [34], [35] and [36].

Nevertheless, thus far, only wireless infrastructure-based networks, that happen to be

single-hop, have been considered. The integration with MANETs is trickier but has been

studied in [37], [38] and [39]. The architectures proposed in these works accomplish the

integration at the lower-layer level and aim at balancing the load and extending the

BS

BS

BTS

Figure 2.5: Overview of the multihop cellular network

 17

cellular networks‟ coverage. Indeed, the Integrated Cellular and Ad Hoc Relaying

Systems (iCAR) [37] introduces Ad hoc Relay Stations (ARSs) to share channel resources

between cells and then balance the load dynamically. The main goal of the Unified

Cellular and Ad-Hoc Network Architecture (UCAN) [38] is to extend the coverage and

improve the throughput between the BS and the Mobile Host (MH). This architecture

exploits the high throughput of surrounding MHs by using proxy and relay MHs. More

recently, in [39] the authors address MANET/cellular network integration from the

connectivity point of view. They propose different patterns to realize the connectivity

between a MANET and a 3G cellular network. These solutions remain at the lower

layers. Higher layers have received growing attention very recently. In fact, the work in

[40] suggests a cluster-based architecture for signalling in MCNs while the authors in

[41] propose an architecture for media handling for conferencing in MCNs. However, the

above-mentioned solutions do not consider the integration at the service layer.

2.1.4 MANET characteristics

MANETs bring new challenges and add new constraints. Several characteristics

distinguish them from classical networks [17], [42] and [43]:

 Infrastructure-less: basically, ad-hoc networks do not rely on any infrastructure

support. The network must operate independently of pre-established or centralized

entities. Network management and routing, for example, should be done in a

cooperative way. Each node acts as a client, a server and a router in a distributed peer-

to-peer mode.

 Dynamic topology: because of node mobility and membership changes, the network

topology varies continually and frequently. While moving, nodes alter their relation to

 18

their neighbours. Furthermore, new nodes can join at any moment, whereas connected

nodes may leave in an arbitrary fashion. Thus, routes break down and unannounced

disconnections are to be expected frequently in ad-hoc networks.

 Heterogeneous nodes: ad-hoc networks very often consist of a mix of different

devices. Indeed, the network is open to any user holding any wireless gadget. As a

result, nodes may have dissimilar features, may be of diverse size or may be configured

with different software/hardware capabilities. These differences must be taken into

account when designing algorithms or protocols for ad-hoc networks.

 Resource constraints: devices have become smaller and smaller, and with less

resources (e.g. memory, processor speed, battery power). When these limited devices

come into an ad-hoc network they bring issues related to these constraints. Efficient

algorithms and energy management are called for when MANETs are targeted.

2.2 Service architecture

The economy today is becoming more and more service based rather than manufacturing

or even product based [44]. An evolution can be observed in the way functionalities have

been specified, provided and consumed. Indeed, the level of abstraction has continued to

rise. We have thus moved from modules, to objects, to components, and now to services.

The term “service” is used for multiple meanings and can be defined according to various

perspectives [45]. However, a common sense definition for a service is a set of goods or

valuable functions offered by a service provider to a consumer [46]. Examples of services

include conferencing, online gaming; printing; travel booking; weather forecasting; sports

 19

results and so on. In the telecommunications industry, a value-added service is any

service that goes beyond the classical two-party call service.

 A service architecture allows new services and applications to be created and brought to

users quickly and reliably. The telecommunication industry has been using the

Telecommunication Information Network Architecture (TINA) [47], which is the first

service architecture in the domain. TINA was proposed by a worldwide collaborating

group of operators and computer equipment suppliers: the TINA Consortium (TINA-C).

Throughout this thesis a service architecture is a set of concepts, rules and principles to

support the service lifecycle [48]. In addition, the service architecture defines the

business model and how it can be applied to the architecture.

2.2.1 Service lifecycle

The service lifecycle was first introduced by TINA-C [46], [49]. It encompasses four

main phases:

a. Service creation: All the activities related to service logic production are a part of

service creation. Hence, service specification, code design, implementation and testing

are the core activities of this phase.

b. Service deployment: During the deployment phase, the service logic is installed in

the appropriate network nodes. The service is then activated. Therefore, an adequate

deployment strategy has to be prepared.

c. Service usage: services are created and deployed so that they can accessible to and

used by users. Many activities are necessary to achieve satisfactory service usage.

Besides users‟ authentication and authorization, this phase contains [50]:

 20

i. Service description: is responsible for describing a service in a comprehensive and

unambiguous manner. The description uses a clear syntax to specify what the service

does, and how and where it can be reached. The output of this process is the service

profile, which should be machine interpretable and human readable to facilitate both

automation and rapid formulation by users. A good service description language may

help. For example, the well-known WSDL (Web Services Description language) [51]

from the web services world is an XML-based service description language.

ii. Service advertisement: by analogy, we can say that service advertisement is the

deployment of service descriptions. It allows service descriptions to be reachable by

everyone so that users are made aware of the existence of the services. Descriptions

can either be published on a central registry, or directly to the other nodes in the

network.

iii. Service discovery: is an important activity in the service usage phase. By the end of

this process the user knows about existing services and how to bind them. Discovery

of services can be done in a pull, push or hybrid fashion. The pull method is based on

the classical request/reply paradigm. In the push method, the provider does not wait

for a user request. It pushes service descriptions to the network periodically or when

an event occurs (e.g. a user has joined, a new service is added). The hybrid is a

combination of the pull and push methods.

iv. Service invocation: deals with the management of the communication between the

user and the provider to facilitate the use of services. It includes sending commands,

receiving results, maintaining connections, and abstracting details from the user‟s

point of view.

 21

v. Service interaction: when many services must coexist, an interaction problem may

occur. Services working well alone may crash when put together. This is because a

service might modify or influence another service in defining the overall system

behaviour. Service interaction is managed and problems related to the interactions

between services are solved.

vi. Service maintenance: is the same activity as in software engineering. The main

actions are bringing changes to the service logic or/and correcting faulty services.

d. Service withdrawal: is the deactivation of the service at the network level and/or its

removal from the network.

2.2.2 Business Model

The business model concept is not new. Many models are, in fact, used in different

domains. From the perspective of economics, a business model is a framework for

creating value and capturing returns from that value within a value network [52]. A

business model should address four main issues [53]: identify the customer; define the

customer value (i.e. the service); describe the underlying logic that ensures customers‟

value delivery; and explain how money is made within that business. In other words, a

business model covers two generic actions connected to doing business. The first part

encompasses all of the activities related to producing something: design, manufacturing

and so on. The second part contains all the activities related to selling something: finding

and reaching customers, transacting a sale, distributing the product or delivering the

service. From a technical and ITs perspective, a business model describes the different

players or roles involved in service provisioning and their relationship to each other [54].

It is an important part of the service architecture and varies according to the nature of the

 22

architecture and its application. Furthermore, a business model is usually considered as a

staring point for standardization since it identifies the interfaces between the different

roles. In the following section, we present the business model of TINA-C, which has

inspired several recent architectures and business models.

2.3 Service provisioning in 3G networks

Service provisioning is the process by which entities advertise their willingness to offer

specific services, and discover and run other services. It is a keystone to successful

service architectures. The IP Multimedia Subsystem (IMS) [55] is the most important 3G

service architecture today, and it is becoming the architecture of choice for the Next

Generation Networks (NGN). Therefore, we can and should discuss the IMS architecture

from the service provisioning perspective. The objective of IMSs is the convergence of

cellular and IP networks. In other words, IMS aims to offer Internet services anywhere

and at any time via cellular technologies. Furthermore, IMS architecture will permit the

creation of new brand services by allowing operators to provide, combine and integrate

services from third parties.

2.3.1 IMS architecture

The IMS uses several protocols, however its driving force is to be based on one common

session control protocol, namely, the Session Initiation Protocol (SIP) [56]. The IMS

architecture is horizontal and structured in two plans: control and service. These two

plans are overlaid on top of a transport layer. The transport layer contains routers and

switches and allows different devices to access the network via a variety of network

 23

accesses. The control plan contains control servers (SIP servers) for managing the

multimedia sessions. The service plan contains the application servers (AS) hosting and

executing value-added services.

The IMS architecture rests on SIP servers, each hosting central functions. The most

important is the Call Session Control Function (CSCF), which processes SIP signalling

messages. Therefore, all of the traffic should go through one or more CSCF. There are

three types of CSCFs: Proxy-CSCF (P-CSCF), Interrogating-CSCF (I-CSCF) and S-

CSCF (Serving-CSCF). The P-CSCF is the entry point to the IMS network. The P-CSCF

maintains several functions. For instance, it authenticates users, disseminates users‟

identity and verifies the correctness of SIP requests. The I-CSCF is a proxy server used

by SIP servers to find the next hop, as described in the SIP specification [57]. The S-

CSCF is a central node in the IMS architecture. It registers users, controls sessions,

provides billing information, processes routing and translations, and verifies users‟

authorizations and profiles. Besides the CSCFs servers, the HSS is another important

server. It is a database of all IMS subscribers and service data. All of the sensitive data

related to users, their profiles and data describing their service behaviour and providers

are stored in the HSS. The IMS core network contains other media-based functions. The

Media Resource Function (MRF) allows media content to be played and controlled.

Furthermore, different media gateways are also provided in the IMS network: Media

Gateway (MGW) and the Media Gateway Control Function (MGCF). These are

interfaces with the legacy circuit-switched networks (e.g. Public Switched Telephone

Network - PSTN-). The next section introduces the SIP, since it is at the heart of the IMS

network. Figure 2.6 illustrates a simple IMS architecture.

 24

2.3.2 Session Initiation Protocol

The Session Initiation Protocol (SIP) [56] is a widely used signalling protocol for

multimedia conferencing over IP. It is independent of the underlying transport protocol.

SIP allows establishing, maintaining and terminating multimedia sessions between two or

more endpoints. The endpoints in SIP are referred to as SIP User Agents (UA) and act as

a UA Client (UAC) or a UA Server (UAS) to create new requests and generate responses,

respectively. Furthermore, three types of servers are defined: the SIP registrar server, the

SIP proxy server and the SIP redirect server. The SIP registrar server keeps track of

users‟ locations. Users register their location whenever it changes. The SIP proxy server

is a SIP router. It receives messages and then forwards them to one or multiple

destinations based on specific criteria. The SIP redirect server is also a SIP router,

however it has a different behaviour It informs the sender about an alternative location

where the destination can be reached.

Sip phone

SSeerrvviiccee

PPllaann

Parlay application
server

SIP servlets
application server

CCoonnttrrooll

PPllaann

SIP SIP

HSS CSCF Media nodes

TTrraannssppoorrtt

LLaayyeerr
PSTN gateway

PSTN
IP network

DSL Wi-fi SIP GPRS/WCDMA

Traditional Desktop 2.5G/3G

PDA

Figure 2.6: Simple IMS architecture

 25

The SIP is very attractive because of its ease of use and flexibility. It can handle several

operations with only a few messages, called SIP methods. The main SIP messages are

INVITE, CANCEL, ACK, BYE and REFER to initiate a session, cancel a SIP

transaction, acknowledge a successful response, terminate a session and trigger a request

sent to a third party, respectively. Table 2.1 summarizes core SIP methods and extensions

[55].

SIP methods Meaning

INVITE Establishes a session
BYE Terminates a session
ACK Acknowledges the establishment of a session
CANCEL Cancels a pending request
REFER Instructs a server to send a request
REGISTER Maps a public URI with the current location of the user

SUBSCRIBE Requests to be notified about a particular event
NOTIFY Notifies the user agent about a particular event

OPTIONS Queries a server about its capabilities

MESSAGE Carries an instant message
INFO Transports application information with the signalling
PUBLISH Uploads information to a server
UPDATE Modifies some characteristics of a session
PRACK Acknowledges the reception of a provisional response

2.3.3 Service provisioning in IMS

Prior to any message exchange in an IMS network, a user‟s terminal should perform

some operations. The most important is registration. A user is allowed to access a service

if and only if it is registered with that IMS network. In the following sub-sections, we

assume that the registration step has been done.

Table 2.1: Meanings of SIP core methods and extensions

 26

2.3.3.1 Application servers

Application Servers (ASs) are core entities in the service plan. They are responsible for

hosting and executing value-added services. Multiple ASs coexist in an IMS network,

where each AS provides a specific service to end-users. The application servers may

implement different technologies (e.g. SIP servlets, SIP Common Gateway Interface -

CGI- , Java technology). Nevertheless, a common requirement is to provide an SIP

interface to the S-CSCF. Furthermore, an AS may possess additional technologies, such

as HyperText Transfer Protocol (HTTP) [58] or Wireless Application Protocol (WAP)

[59].

Three types of ASs are proposed by the IMS: SIP Application Servers (SIP AS), Open

Service Access-Service Capability Servers (OSA-SCS) and the IP Multimedia Service

Switching Function (IM-SSF). The SIP AS is the instinctive application server of an

IMS. In fact, new 3G services are developed specifically for the SIP AS. The goal of the

OSA-SCS and the IM-SSF is the integration with legacy networks to access existing

services. Indeed, the OSA-SCS is a gateway to the existing services in OSA framework

servers, while the IM-SSF is a gateway to existing Customized Applications for Mobile

network Enhanced Logic (CAMEL) services, as in the GSM environment.

2.3.3.2 Service provisioning

As mentioned above, a user must be registered with the IMS network before accessing

the services. A user profile is available in the HSS for identification, authentication, and

authorization purposes. The user profile also contains information about the services a

user is allowed to access, the criteria for triggering a service, and which ASs are

concerned with that service. This information is called the initial filter criteria. The user

 27

profile contains zero or multiple initial filter criteria. The user profile is retrieved by the

S-CSCF from the HSS at registration time. Therefore, after registration the initial filter

criteria are available in the S-CSCF. When the S-CSCF receives a certain type of SIP

message, it evaluates the initial filter criteria and then decides if an application server is

to be contacted or not. If it does decided to contact an AS, the S-CSCF also decides

which AS to call, based on the initial filter criteria, and that AS executes the service. A

service may involve one or several ASs. The S-CSCF evaluates the initial filter criteria

when it receives SIP messages that are not subsequent requests. In other words, the

evaluation takes place with SIP requests that create a SIP dialog or that are stand-alone

requests (e.g. INVITE, SUBSCRIBE, OPTIONS).

2.3.3.3 Scenario

Concretely, we will see how a service is provided in IMS. We consider an interest-based

conferencing service. The service automatically establishes a conference between online

subscribed users that share the same interests when a quorum is reached. New users can

join the ongoing conference at any time.

Alice, Bob and Carol are three registered 3G users. They all subscribed to the interest-

based service and all share the same interests. The information about their interests can

be updated via HTTP. The initial filter criteria corresponding to their respective profiles

are now in the S-CSCF. In the interest of clarity, we assume that each of the three users is

linked to the same S-CSCF. We also assume that the service quorum is set to three, by

Alice who had initiated the service. Furthermore, we consider a combined AS/MRF

entity to handle media conferencing. The collocation of the AS and the MRF is described

in the 3GPP specifications [60]. In addition, the P-CSCF and the S-CSCF are combined

 28

and referred to as the CSCF. Figure 2.7 illustrates the message flow when the third user

(i.e. Carol) invoked the service.

Alice and Bob have already invoked the service but since the quorum was not yet reached

the conference had not started. Now, Carol sends an INVITE message via the P-CSCF.

When the S-CSCF receives the SIP request, it evaluates Carol‟s initial filter criteria and

then contacts the AS/MRF that executes the interest-based conferencing service. The

AS/MRF checks the interests of Carol and matches them with the interests provided by

Alice (the service initiator). Since the interests correspond and the quorum has been

Check Carol‟s

interests and
service quorum

OK

RTP

OK

CSCF Carol Bob AS/MRF Alice

INVITE (conf. id)

refer to B

Initial filter criteria
evaluation

INVITE

ACK

ACK

ACK

ACK

OK

RTP

RTP

OK

INVITE

Create a
conference

OK

ACK

INVITE (conf. id)

refer to B

INVITE (conf. id)

refer to B

Figure 2.7: An example of service provisioning in IMS: an interest-based service

 29

reached (Carol is the third user to request the service), the AS/MRF creates a conference

and invites the users to join it.

2.4 SIP servlets framework

2.4.1 The servlets technology

A servlet is a Java application that runs on the server side to handle clients‟ requests and

to provide services. Java Servlets can be seen as a layer between the client and the

services. Java Servlets are not tied to a specific protocol. Furthermore, since servlets are

Java-based they are independent of any platform. The servlet technology benefits from

the power of the Java programming language. They have become a popular and

successful paradigm for web development and web-application development [61].

Several characteristics contribute to the current wide adoption of Java servlets‟

technology (e.g. scalability, reusability, industry-wide support). Java Servlets [62] are

managed by a servlets container, also called a servlets engine. Clients invoke services,

implemented by servlets, through the Servlets Engine (SE). The SE is the entity

responsible for maintaining servlets‟ lifecycle: it loads the servlet, initializes it, calls the

appropriate servlet method upon the reception of a message and finally destroys the

servlet. Figure 2.8 illustrates the servlets lifecycle.

New() Init() Destroy()

Service()

Figure 2.8: Java Servlets lifecycle

 30

The SE provides four methods that implement the servlet lifecycle‟s functionalities:

new() to load or create a servlet, init() to initialize its parameters, service() to run the

logic corresponding to the incoming message and destroy() to remove the servlet.

Although, Java servlets are protocol-independent they are commonly used with HTTP,

since all of the servlets‟ engine implementations should support HTTP. Servlets

technology has mainly been used with HTTP for dynamic generation of web content. The

servlet may add new headers, modify existing values or attach content to the response.

2.4.2 SIP servlets

SIP servlets [63] are Java-based applications performing SIP signalling logic. They

congregate both Session Initiation Protocol (SIP) and HTTP servlets concepts. Therefore,

SIP servlets‟ APIs extend the functionalities of SIP servers and allow the new services to

be created easily [64]. Figure 2.9 presents a simple view of the SIP servlets framework.

The SIP servlets have the same core behaviour as HTTP servlets: When the servlet

engine receives an initial SIP message it selects a servlet according to given rules and

invokes its init() method. Then, each time a subsequent SIP message is received the

SIP proxy server

SIP Servlet Engine

SIP
Servlet

SIP
Servlet

Request/response Request/response

Figure 2.9: Simple view of the SIP servlets framework

 31

engine calls the service() method of the servlet. This method contains the logic of the

service and depends on the type of SIP message. Essentially, the engine runs the

doXXX() method where XXX refers to the type of the received SIP message. For

example, if the engine receives an INVITE message, the doINVITE() is called. At the

end, the engine calls the destroy() method to stop the service and release the resources.

However, there are fundamental differences between SIP servlets and HTTP servlets. SIP

servlets have extended features. A SIP servlet is able to respond to an incoming SIP

request with zero, one, or multiple responses. A SIP servlet may also proxy an incoming

request to one or several destinations, or it may generate a new SIP request. In general,

the SIP servlets framework contains three functional entities: applications, SIP servlets

and SIP servlet‟s engine. Applications are the service logic. The SIP servlets are building

blocks for developing applications and the SIP Servlet Engine (SSE) is the execution

environment that runs the servlets.

As mentioned earlier, SIP is the signalling protocol of choice for the NGN. Therefore,

SIP servlets become a promising framework for service provisioning in the networks of

the future. In the remainder of thesis we will consider a SIP application server

implementing the SIP servlet technology. Figure 2.10 shows a SIP servlets-based

application server.

SIP AS

SIP Servlet A

SIP Servlet Engine

Services/applications

SIP interfaces (e.g. ISC, Sh)

Figure 2.10: SIP servlets-based application server in IMS

 32

2.5 Summary

In this chapter we have presented the necessary background information for our research.

Mobile ad-hoc networks have been described, starting from their evolution, the different

types of MANETs and their main characteristics which make them challenging

environments. Both standalone MANETs and integrated 3G/MANETs have been

presented. We have introduced multihop cellular networks (MCNs) as today‟s major

example of integrated 3G/MANET networks.

This chapter then covered the key concepts of service architecture, namely the service

lifecycle and the business model. We have elaborated on the service lifecycle‟s phases

and introduced the business model. One of the most important processes for service

architectures is service provisioning. We described how this process is performed in 3G

networks. The IP Multimedia Subsystem (IMS) was considered, as it is the standard for

3G networks. The IMS architecture was depicted together with its core protocol SIP, and

then a scenario was proposed to illustrate the service provisioning process in IMS.

The chapter ends with the SIP servlets framework as a promising paradigm for service

provisioning in future networks. The servlet technology and the SIP servlets‟ architecture

were described.

 33

CHAPTER 3: Related Work

Providing value-added services in mobile ad hoc networks is not a straightforward task.

The lack of research on the service layer of this environment makes the work more

complex. However, certain approaches do exist, ranging from complex service

architectures to solutions that address a specific aspect of the service provisioning. The

common limitation of these approaches is that they were designed without MANETs

challenges in mind.

Deriving a set of requirements and then evaluating the existing solutions in the context of

these requirements is the focus of this chapter. The various requirements related to the

architecture are presented in the first section, and the second section discusses and

analyses the state of the art according to the derived requirements. Both stand-alone

MANETs and Multihop Cellular Networks (MCNs) are addressed.

3.1 Requirements

This section is organized into four sub-sections. The overall requirements for service

architectures in MANETs are presented first, followed by the requirements specific to

each component of the architecture (i.e. business model and service execution

framework). The requirements related to service execution frameworks in stand-alone

MANETs are detailed in sub-section three. Finally, sub-section four discusses the

requirements for service provisioning in MCNs.

 34

3.1.1 Overall requirements for service architectures in MANETs

From the beginning, the service architecture should obviously consider the complete

service lifecycle. The architecture should support service creation, deployment, usage and

withdrawal. The second requirement is that the service architecture must not rely on any

existing infrastructure or any central entity since pure ad-hoc networks are infrastructure-

less, self-organizing networks., The architecture should also provide adequate

mechanisms for advertisement and discovery. Unannounced and frequent disconnections

are a common phenomenon in ad-hoc networks. The fifth requirement is that the service

architecture should allow an optimal usage of resources. In fact, many ad-hoc network

devices have limited resources (e.g. CPU, power, memory, battery, etc.). Good service

architectures should be based on lightweight protocols and algorithms that require less

processing. For example, advertisement and discovery mechanisms should be

lightweight, and service description language should not engender heavy processing.

Next, the architecture should be able to handle different types of devices with dissimilar

capabilities. Indeed, the heterogeneity of devices (e.g. laptops, PDAs, cell phones) is a

particularity of MANETs. Thus, services should be able to be discovered and run on

different types of gadgets. Finally, the architecture should enable flexible and varied

business models. The dynamicity and temporality of ad-hoc networks requires flexible

and varying business models. Two specific aspects are considered. First, the business

entities may change their roles depending on the context. Second, any individual may

wish to join the network and play a business role.

 35

3.1.2 Requirements for business models in MANETs and related publication and

discovery mechanism

Here we present business models‟ requirements for MANETs, including their motivation.

The related publication and discovery mechanisms‟ requirements are then discussed.

3.1.2.1 Requirements of the business model

The first requirement is that the functional entities provided by the business roles should

not be infrastructure-based nor centralized since MANETs are infrastructure-less and

fully distributed by definition. Second, the business model should be flexible: it should be

possible to dynamically discover not only roles, but also functional entities. This will

address the dynamic aspect of MANETs where nodes can join and leave at any time.

Third, the business model should rely on individuals rather than on organizations. By

individuals we refer to any entity present in a MANET at any given time, and by

organizations we refer to business entities such as network operators that own or have

control over the network. This requirement is a consequence of the infrastructure-less, the

heterogeneity and the dynamic topology characteristics of MANETs. It also opens the

network to new business opportunities. However, the provided functional entities should

be lightweight enough in order to be offered by individuals with small devices.

In addition, communication between business roles should be done in a pure peer-to-peer

fashion because no central entities are allowed in MANETs. Finally, the mechanism for

the publication/discovery of the business roles and the functional entities they provide

must take into account the characteristics of MANETs.

 36

3.1.2.2 Requirements of the publication/discovery mechanism

First, for greater flexibility and interoperability, the mechanism must be independent

from the underlying routing protocols. The mechanism should be fully distributed and it

should adapt to the topology‟s changes. Furthermore, it needs to be lightweight --

introducing minimal overhead. These constraints will ensure that the publication and

discovery mechanism conforms to MANET‟s characteristics. The mechanism should also

allow the publication and the discovery of various types of interfaces. In fact, a business

model is formed by several business roles and eventually different interfaces between

these roles. The last requirement is that the publication and discovery mechanism should

support both push and pull modes. This provides more flexibility to the model and

enables an appropriate usage of the scarce resources of a MANET.

3.1.3 Requirements for service execution architecture and corresponding

communication mechanism in stand-alone MANETs

This sub-section presents two sets of requirements. The first is related to the architecture

for service execution. The second set is associated with the communication mechanism

between the architecture‟s components.

3.1.3.1 Requirements related to the service execution architecture

Since MANETs are open networks where any node offering any functional entity can

enter the network at anytime, the first requirement is that the service execution

architecture should allow one or more service execution environments to coexist and

cooperate in the same network.

 37

Furthermore, the architecture must enable self-organization in order to support the

frequent node mobility (i.e. nodes joining) that is part of the dynamicity of MANETs.

Next, the architecture should enable self-recovery to overcome the changing topology.

Random failures of the service execution environment‟s components (e.g. node crashes,

nodes leaving deliberately, batteries down) are an especially common occurrence. The

architecture should be scalable in terms of the number of the service execution

environments it maintains. Finally, the solution should be simple. It should neither take

too much time to set up nor be resource-demanding, given the resource constraints of

MANETs.

3.1.3.2 Requirements related to the architecture’s communication mechanism

First, the protocol should be distributed for peer-to-peer communication. Basically, all the

MANET nodes are equivalent (i.e. each node plays the role of a client, a server and a

router). Furthermore, centralized control entities are unrealistic for MANETs -- the most

suitable communication paradigm in this environment is distributed peer-to-peer.

Second, the protocol should allow self-organization and self recovery in a systematic

way. Indeed, MANETs are highly dynamic environments where nodes leave and join

frequently --- almost continually changing the topology and the connections between

nodes. Therefore, the protocol should maintain the architecture structure with no effort or

human interaction. Furthermore, nodes may crash suddenly. The protocol should be able

to recover from this situation, making the architecture robust and flexible.

In addition, the protocol should be lightweight. It should be possible for small handheld

devices with limited resources to host the protocol.

 38

Furthermore, it should be simple, so that resources and time are used efficiently.

Complex protocols with complex functionalities and management are too resource-

demanding and introduce long delays. Finally, the protocol should scale to the number of

the architecture‟s nodes, so that the performance should not decrease drastically when the

network becomes large.

3.1.4 General and specific requirements for service provisioning architecture in

MCNs

We first derive general requirements for service provisioning in Multihop Cellular

Networks (MCNs), and then the requirements for a specific and concrete service

provisioning architecture. The specific architecture is based on the SIP servlets

framework for service provisioning. Furthermore, the 3G/MANET integration is done so

that end-users are in the MANET portion and can access services in 3G network.

3.1.4.1 General requirements for service provisioning in MCNs

The first requirement is that the architecture should allow service invocation and service

execution regardless of the location of the end-users. Users in a MANET and users in 3G

should be able to invoke the same service. This will ensure that 3G network services and

services provided in a MANET can be accessed by all subscribers: the overall goal of

integration. Following from the first requirement, the second is that the architecture

should allow users in 3G to discover available services in the MANET, including those

services provided by individuals. These discovered services should then be able to be

executed in a MANET or in a 3G to allow as much flexibility as possible. In fact, the

network operator may prefer to run a service in a MANET rather than in 3G, or vice

 39

versa, depending on the network load or the application type. The architecture should

also scale in terms of the services that can be executed simultaneously, since in the MCN,

both MANET and 3G users can access and run services. The last requirement is that the

service integration should have minimal impacts on MANET and 3G networks. It is

always preferable to have fewer extensions and expend less effort to achieve them in

order to avoid negative impacts on the overall system.

3.1.4.2 Specific requirements for a SIP servlets-based service provisioning

architecture in MCNs

The first requirement is that the architecture should allow the SIP Servelts Engine (SSE),

as a service execution environment, to be provided either by 3G service providers or by

individual end-users who are in the MANET portion. Allowing individual users in

MANET to provide the SSE will open the network to new business opportunities and

potentially increase the network capacity regarding the service execution process.

The second requirement is that several SSEs should be able to coexist in the MANET, for

scalability, higher flexibility, and to enable fault tolerance. Furthermore, the architecture

should allow centralized as well as distributed SSEs. In fact, any entities providing SSE

functionalities should be able to take part in the network.

Another requirement is that the service execution environment configuration (i.e.

centralized or distributed) in the MANET should be as transparent as possible to the 3G

AS in order to keep the AS independent from the MANET configuration. The fifth

requirement is that the architecture should introduce minimal impacts on the 3G and

MANET networks.

 40

The last requirement is that the AS should know the location (i.e. MANET or 3G) of the

end-users in order to decide where to run the service, since the service request can be sent

by users in a MANET or in a 3G and we are in the context where all the end-users

involved in a service execution are in the MANET portion.

3.2 Critical review of the state of the art

We have derived several sets of requirements that target service provisioning process in

MANETs: for both stand-alone MANETs and integrated 3G/MANETs. The existing

solutions will be analyzed and discussed from the perspective of the defined criteria, and

for each category of requirements. To this end, the current services architectures,

business models and service execution frameworks are discussed. There is, however, a

lack of research in the service aspects of Multihop Cellular Networks (MCNs). To our

best knowledge there is no existing solution for integrating 3G networks and MANETs in

order to provide value-added services.

3.2.1 Service architectures

Two categories of service architectures for MANETs can be defined: the classical

solutions and the emerging solutions. In first category we consider architectures designed

without MANETs in mind, such as the service architecture of TINAC-C, Intelligent

Networks (IN), Wireless Application Protocol (WAP), Parlay, web services and the

service architecture of IMS. The second category contains a new model for 4G [65] and

the I-centric model [66]. We will review both categories according to the general

requirements presented in section 3.1.1.

 41

3.2.1.1 Review of the classical service architectures

None of the architectures of the classical solutions meet all our requirements for service

architectures in MANETs.

3.2.1.1.1 TINA

Telecommunication Information Network Architecture (TINA) is the first architecture for

telephony and non-telephony services. It relies on basic concepts that are widely used

(e.g. service lifecycle and business model). TINA is envisioned as a uniform

infrastructure. It is based on four principles: object-oriented analysis and design,

distribution, decoupling of components, and separation of concerns [67].

In relation to our derived requirements, TINA was the first system to introduce the notion

of service lifecycle – it considers the whole phases of the service lifecycle. However,

TINA depends in large part on a centralized architecture and a pre-established

infrastructure. In fact, a telecommunication network, with its centralized servers and

entities, is a prerequisite for TINA service architecture. Consequently, distributing

functional entities is not a priority or even a necessity. Indeed, several servers are

employed by the service architecture (e.g. TINA information repository). Furthermore,

the functional entities are kept centralized (e.g. subscription management). Service

discovery in TINA service architecture is performed in a way that is inadequate for

MANETs. Indeed, the services descriptions are stored in a central server, and, since

TINA service architecture is based on central and powerful entities, there is no need to

limit resource usage. Not surprisingly, the architecture‟s processes are resource-

consuming. In addition, TINA architecture is deployed in a controlled network.

Therefore, it deals with homogeneous devices with the same configuration and platform.

 42

Finally, the TINA business model is not flexible. The business roles are well known and

cannot change their roles dynamically. For example, the broker business role cannot

provide the functionalities of a retailer once the architecture is deployed.

3.2.1.1.2 Intelligent networks

The key concept of Intelligent Networks (IN) is the standardization of the capabilities for

building services. In fact, IN describes Service Independent building Blocks (SIB) as

capabilities that can be combined in different ways to create a wide range of telephony

services. The IN defines the Service Control Points (SCP) in which Service Logic

Programs (SLP) run. New services are realized using the building blocks. [68].

However, when evaluated according to our requirements, intelligent networks do not

consider the whole service lifecycle. Indeed, service description, service discovery and

service publication are beyond the scoop of IN. Furthermore, IN are based on an existing

infrastructure such as the physical plane. Furthermore, the IN architecture contains

several centralized entities. Obviously, given the central entities, functionalities are not

fully distributed. As in TINA, the users must subscribe to the desired services. Discovery

and publication of services is not incorporated. In addition, IN entities are high

consumers of network resources. IN are based on circuit-switched networks, and so the

optimization of resource consumption was not anticipated. Furthermore, the devices

should have the same configuration and be of the same type. Finally, the IN business

model is not flexible, as roles are defined and deployed initially, and are not subsequently

modified. .

 43

3.2.1.1.3 Wireless application protocol

The Wireless Application Protocol (WAP) arose from an industry specification for

developing applications that can be used over wireless networks. The WAP architecture

includes access points between wireless and wired networks as well as different proxies.

The provisioning framework ensures connectivity and disseminates application

information. However, WAP devices need to know about the architecture‟s components

in order to use the services they provide. Thus this requires a trusted relationship with the

infrastructure [69]. Figure 3.1 presents the basic WAP architecture.

As for our requirements for service architectures, WAP does consider the whole service

lifecycle. However, its architecture rests on an application server and a gateway, which

constitute central entities, and so the functionalities are not fully distributed. It also relies

on a telecommunications infrastructure. Furthermore, WAP architecture assumes that

users know in advance the services they wish to access. There are no service discovery

and publication mechanisms. WAP does meet our requirements for the optimal usage of

resources since it is designed with small devices in mind. However, the architecture is

deployed in a very controlled network where homogeneous devices with the desired

configuration are targeted. In addition, the roles of the WAP business model are fixed, so

that nodes are dedicated to a given role and cannot dynamically change their role.

HTTP request

HTTP reply Decode reply

Encode request

WAP
micro

browser G
at

ew
ay

Application

server

Figure 3.1: Basic WAP architecture

 44

3.2.1.1.4 Parlay

While applications and services have been located in the operator domain, some research

groups such as JAIN [70], [24] and Parlay [71], [25] have worked to open up

telecommunication networks to a large community. The logical architecture of Parlay

identifies four distinct entities [72]: application servers, Service Capability Servers

(SCS), the Parlay/OSA framework, and the core network elements. Figure 3.2 illustrates

an overview of the Parlay/OSA logical architecture.

In Parlay, services refer to network capabilities and not end-user services. Applications

are deployed on the application servers and can use Parlay APIs to access the capabilities

provided by the service capability servers. It should be noted that the framework controls

the access to the service capability features.

Parlay does not meet our requirements for service architecture for MANETs. To begin

with, Parlay does not consider the whole service lifecycle. Furthermore, it is a centralized

architecture, as it relies on the framework and the Service Capability Servers (SCSs).

Theses entities are owned by the network operator and are fixed and centralized nodes.

Furthermore, communication in Parlay is Client/Server-based. All the functionalities are

Application
sever

Parlay
APIs

Service capability
feature

Service
capability sever

Application

Call control

Framework

Server MSC HLR Server Network
elements

Figure 3.2: Parlay/OSA logical architecture

 45

centralized in the framework and the SCSs which contain the Service Capability Features

(SCFs). In addition, because there is no service description in Parlay, there is no means to

advertise services. End-users don‟t handle service advertisements in Parlay – they

subscribe to services.

Parlay architecture assume a reliable network and a continual connection between nodes.

It does not take into account devices with scarce resources. Parlay architecture is heavy,

mainly because it relies on heavy middleware (e.g. CORBA, Java RMI). Furthermore, in

Parlay there is no way to distinguish between devices that constitute the network and

those that use services. It treats them in the same way and so each device must conform

to the architecture‟s requirements. As for the Parlay business model, it was conceived for

fixed environments and so dynamic roles are not allowed. Furthermore, roles can only be

provided by the network operator.

3.2.1.1.5 Web services

The concept of web services [73] stands for a new generation of web applications. It

provides a systematic and extensible framework for application-to-application

interaction, built on top of existing web protocols and based on open XML standards

[74]. A web service is any application that can be published, located and invoked through

the Internet.

Web services architecture is based on three fundamental principles: a coarse-grained

approach, loose coupling, and both synchronous and asynchronous modes of

communication. Put differently, for scalability and efficiency concerns web services

architecture should offer high-level interfaces, applications would have minimal

 46

interdependencies and the communication system should take into account an

application‟s unavailability [75].

The web services‟ architecture is based on three entities: the service registry, the

requester, and the provider. Providers publish service descriptions in the service registry.

Then, requesters can query the registry and get a list of available services that match the

query. Finally, requesters choose a service, bind it to the appropriate provider and start

using the service.

Furthermore, there are three main parts in the web services architecture [74]:

communications protocols, service description and service discovery. These areas are

based on different technologies and standards. The communication is based on the

Simple Object Access Protocol (SOAP) [76]. The Web Services Description Language

(WSDL) [51] is the formal language for web services description and the Universal

Description Discovery and Integration (UDDI) [77] repository hosts the service

descriptions and then implements the service registry entity. Basically, SOAP is an XML-

based protocol for messaging and remote call procedures. It works on top of existing

transport protocols such as HTTP, Simple Mail Transfer Protocol (SMTP) or File

Transfer Protocol (FTP). WSDL defines an abstract description of services. It is an XML

file that contains all the appropriate information for accessing a web service, including

location, protocols, message format, and the operations provided by the web service.

UDDI is a centralized registry that provides requesters a unified and systematic way to

find services.

Web services cannot meet our requirements for service architectures for MANETs. We

should mention that web services architecture covers almost all of the service lifecycle

 47

except for service withdrawal. Furthermore, web services‟ specifications allow

distributed as well as centralized architectures. Consequently, the functionalities may be

distributed. However, there is no mechanism to deal with unforeseen disconnections.

Therefore, web services require continual connections. One of the problems that could

arise is as follows: a requestor discovers a service and identifies its provider as being at

location A. Next, the requestor will try to bind to the provider who perhaps has moved to

location B or is out of communication range. Services can be discovered, but may no

longer be reachable. Therefore, the publication and discovery mechanism is not adequate

for MANETs.

Although there are some solutions for using web services in the wireless world [76] and

[77], with the capabilities and heterogeneity of wireless devices, ad-hoc networks have

not yet been considered. The problem with theses solutions is that they only target small

devices and bring different platforms for these mobile devices. Finally, the same

argument can be made about web services business models as for the previous business

models: they are not flexible and individuals are not allowed to provide a business role

(except for end-users‟ roles).

3.2.1.1.6 The service architecture of the IP Multimedia Subsystem

The IP Multimedia Subsystem (IMS) [80] is a 3GPP/3GPP2 standardized architecture of

the Next Generation Network (NGN). It aims at filling the gap between the cellular and

the Internet worlds. In fact, IMS allows operators to take advantage of the quality and

interoperability of telecoms and the innovative development of the Internet [81]. IMS

defines a service architecture which can be based on Parlay, web services or SIP servlets.

 48

Along with the drawbacks of Parlay and web services mentioned previously, the service

architecture paradigms of IMS share common shortcomings. They cannot meet our

requirements for MANETs.

The whole service lifecycle is not supported by the service architecture of IMS.

Furthermore, the architecture provides no means for service publication and discovery.

End-users must register for given services. It is clear from the architecture that IMS

service architecture rests on centralized nodes and pre-established infrastructure.

Furthermore, in IMS each functional entity is providing multiple functions --

functionalities are not fully distributed. As mentioned before, there is no adequate

mechanism for service publication and discovery. End-users know about off-line services

through traditional commercials from their operator or from service providers. In

addition, IMS architecture is not optimal when it comes to resource consumption. The

core network uses powerful links and data rates, so the processing within the network is

very heavy and there is no need for savings in the current context. However, IMS can be

accessed regardless of the device type, provided it supports SIP. Finally, the IMS

business model does not allow roles to be dynamically provided and discovered.

As shown in this sub-section, the classical service architectures fail to meet the

requirements for a MANET service architecture. Table 3.1 summarizes the shortcomings

of the existing solutions.

 49

Requirements

Architectures TINA IN WAP Parlay Web Services

Consider the whole
service lifecycle Yes No Yes No No

Central entity,
infrastructure Yes Yes Yes Yes Optional

Distributed
functionalities No No No No Optional

Adequate
publication/discovery

mechanisms
No No No No No

Difference between
devices No No No No No

Optimal usage of
resources No No Yes No No (but some

research)

dynamic business
models No No No No No

3.2.1.2 Review of the emerging service architectures

3.2.1.2.1 The emerging 4G model

Fourth generation (4G) networks work with heterogeneous network technologies and try

to seamlessly integrate them. The integration of these technologies is usually done at the

control and connectivity level. The main objective of the proposed model in [65] is the

integration of applications and services in 4G networks.

This model has many interesting characteristics: it is extensible; it allows services and

applications to be of “write once, run anywhere” type, and it targets the Personal level

networks as well as home/local level and cellular level networks. Personal area, body

area and ad-hoc networks are defined at the personal level, Wireless LANs are defined at

Table 3.1: summary of the shortcomings of the classical service architectures

 50

a local level and UMTS and 3G technologies are at the cellular level. Figure 3.3

illustrates the model.

This model relies on two concepts to achieve its goal: the separation between the

application logic and the application execution environment, and the definition of a

service capabilities hierarchy. The separation is necessary to develop device-independent

applications, and the service capabilities hierarchy makes the model extensible and open

to new additions. Two levels of service capabilities are specified within the model, and

inheritance mechanisms can be used to add additional levels to the hierarchy.

The first level defines the common capabilities of all services available in 4G networks,

while the second level captures the common functionalities of technological families

(personal level, home/location level and cellular level networks) inside 4G networks.

Even though this model addresses 4G and MANET networks at the service layer, it

cannot meet our requirements for service architectures. In particular, it focuses on service

Figure 3.3: A proposed model for services and applications in 4G networks

Application logic

Application
execution

environment
…

CORBA or WS middleware

Service
capability

Application
execution

environment

Service
capability

Service
capability

Service
capability

Service
capability

Level 1 &
Level 2
specified

Inheritance
mechanism

 51

creation and service description and thus fails to consider the whole service lifecycle. In

addition, service creation is based on a limited set of basic capabilities. This set may not

be complete and therefore, the model is not suitable for any new type of services. Lastly,

although the model targets various types of networks, ranging from ad-hoc networks to

cellular networks; it is too general to address specific ad-hoc requirements.

3.2.1.2.2 The I-centric model

The authors in [66] propose an I-centric model that puts the individual user in the center

of service provisioning. It is a reference model that addresses various issues. The

objective is to develop a communication service infrastructure that will take into account

each individual‟s environment with his/her preferences and adapt services to different

situations and resources in real-time. The reference model for I-centric communications

is presented in Fig.3.4.

The major concepts behind the I-centric model are: a high level of consideration for

individual users, a flexible and dynamic business model and the adaptation of services

based on ambient awareness and user personalization. Three notions are central to this

model: personalization, ambient awareness and adaptation. The goal of personalization is

to make service usage easier and to enable tailored services. The purpose of ambient

awareness is to gather and use information about the context and the situation around an

entity. Adaptation means the ability of services to change their behaviour when

circumstances in the execution environment change.

 52

The model is very ambitious. However, it is defined at a very high level of abstraction

with no concrete algorithms and protocols to show how it can be implemented in an ad-

hoc network. Thus far, the I-centric model‟s concepts have remained at the theoretical

level.

3.2.2 Business models and related publication/discovery mechanisms

This section describes the major business models in use today. A critical review is

provided for each business model according to the requirements of sub-section

3.1.2.1.Next, the main service publication/discovery mechanisms are discussed based on

the requirements of section 3.1.2.2.

Figure 3.4: The reference model for I-centric communications

 53

3.2.2.1 Business models

In the following sub-section, we present some of the predominant business models:+

TINA-C, web services, parlay/OSA and IMS.

3.2.2.1.1 TINA-C business model

The TINA-C business model is detailed in [54]. The model defines five business roles

and the interfaces between them. Figure 3.5 presents an overview of the TINA-C

business model.

The consumer business role can be either the user of the service or an entity with an

agreement for service usage (a subscriber); this role pays for using the available services

and is the economical base of a TINA system; The retailer is a service provider that has

an agreement with the consumer, it offers its own services or subcontracted ones; the

broker business role has the responsibility of fairly providing all the parties with the

information required to discover each other and to find services in the TINA system. The

third party service provider has a business agreement with the retailer but no direct

communication with the consumers; it supports retailers and other third party providers

with services; and the connectivity provider owns and manages the overall network.

In order to allow these roles to interact, TINA-C describes a collection of reference

points. The Reference Points comprise a set of interfaces describing the interactions

taking place between these roles. For example, the standardized reference point Retailer

(Ret) [82] and [81] describes the relationship between the consumer and the retailer. The

remaining reference points are: Broker reference point (Bkr), Connectivity Service

reference point (ConS), Client-Server Layer Network reference point (CSLN), Layer

Network Federation reference point (LNFed), Retailer-to-Retailer reference point (RtR),

 54

Terminal Connectivity reference point (TCon), and third-Party service reference point

(3Pty). Figure 3.5 presents an overview of the TINA-C business model.

The TINA-C business model does not meet any of our requirements. The retailer, the

broker and the connectivity providers play central roles because their lack or

disconnection causes the overall system to fail. The consumer and the third-party

provider do not affect the functioning of the system when they are not present. TINA

business entities can participate in different roles at the same time but, once established,

they are not allowed to change their role. Furthermore, by adopting the notion of an

administrative business domain that belongs to the enterprise viewpoint, TINA-C makes

some roles dependent on organizations. The communication paradigm used in this model

is the client/server. TINA-C provides a service discovery via the Ret reference point, but

it is a very heavy process. It is part of a complex procedure for service access and usage

[84]. In addition, the discovery mechanism does not take into account mobility,

disconnections or resource constraints. The TINA-C business model is thus not suitable

for ad-hoc networks.

3Pty
Ret

3Pty

LNFed
CSLN

ConS

RtR

TCon

TCon

Bkr

Bkr

Bkr Bkr

Broker

Retailer Third-party
provider

Consumer

Connectivity
provider

Figure 3.5: TINA business model and reference points

 55

3.2.2.1.2 Web services business model

Web services business architecture defines three business roles: the service requester, the

service provider and the service registry. Three types of operations are described to

illustrate the relationship between these roles (publish, find and bind). Figure 3.6 presents

a global picture of the web services business model.

The service requester is the entity interested in using a web service. It uses an agent to

interact with the service registry agent in order to discover services, and interacts with the

service provider agent to make use of the service. The provider is the owner of the web

service and wishes to share that service with other entities. It can either use services from

other providers to construct a new web service or offer entirely local ones. The service

registry or the broker is a standardized database of service descriptions. It allows

providers to publish their web services using the publish operation, and requesters to find

the desired services using the find operation. The bind operation is used after the

reception of the service description to contact the selected service provider and invoke

the preferred service.

3. Bind

1. Publish
2. Find

Service
registry

Service
requester

Service
provider

Service

Service
description

Service
description

Figure 3.6: Web services business model and its primitives

 56

The web services business model has interesting characteristics but it does not meet all

our requirements for ad-hoc networks. The web service architecture can operate in a

centralized way, or have all roles distributed and thus remove the central entity problem.

Still, these roles are predefined and entities are not allowed to change their roles

dynamically. The World Wide Web Consortium (W3C) specifications define a peer-to-

peer approach for web service discovery and usage. As a consequence, organizations are

no longer the only possible domains for business roles. Individuals can form a web

service architecture operating in peer-to-peer mode with no central entity. However, the

underlying publication/discovery mechanism is not suitable for ad-hoc networks. It is

clear that the centralized discovery approach is not adequate in such an environment. On

the other hand, the distributed approach still has some performance and reliability

drawbacks [85]. Furthermore, web services architectures are mostly deployed in their

centralized form. Thus web services business model is unsuitable for MANETs.

3.2.2.1.3 Parlay/OSA business model

The Parlay business model is widely inspired by the TINA-C model and contains three

main roles: the client application, the enterprise operator and the framework operator.

Figure 3.7 illustrates the different business roles and how they are related.

Service
subscription

Service
usage

Service
registration

Client
application

Framework
operator

Entreprise
operator

Figure 3.7: Parlay business model

 57

The client application role is the one that consumes the services (network capabilities). It

is equivalent to the end-user in the TINA-C business model. The enterprise operator is

the entity that subscribes to the services. It has a business agreement with the framework

for service usage. This role is equivalent to that of the subscriber in TINA-C. The

framework operator provides the initial contact point to the client application to discover

the capabilities offered by the network and allows the network‟ operators (the real service

providers) to negotiate with service users and subscribers. The framework operator is

equivalent to the retailer in TINA-C. We note here that the service providers (network

capabilities providers) are not explicitly considered in the Parlay business model.

This business model cannot meet our requirements. It was designed without ad-hoc

network characteristics in mind. Indeed, Parlay rests on a pre-established infrastructure

and central role/node (e.g. the framework operator). This represents a serious drawback

in a temporarily highly dynamic environment such as ad-hoc networks. The Parlay

architecture does not allow entities to switch their role during the execution. In fact, in

order to play more than one role, Parlay nodes need to be configured with these roles in

advance. Furthermore, except for the client application, roles cannot belong to individuals

for security and resource-constraint reasons. The communication between Parlay entities

is performed in a client/server fashion and the broker relies on classical CORBA, which

makes it heavy-weighted for handheld devices. All of these aspects show that the Parlay

business model is unrealistic for ad-hoc networks.

3.2.2.1.4 IMS business model

The IMS business model has three roles: the end-user, the service provider and the

network operator.

 58

The end-user owns User Equipments (UE) -- a UE is a client that implements the

necessary logic to access, invoke and use services. The service provider owns the

application server, as in most deployed IMS systems. The network operator is the owner

of the network infrastructure (IMS control nodes). Basically, end-users invoke services

through the 3G control nodes while the service providers deploy services in the AS.

Later, these can be located either in a third party or in the network operator domain.

Figure 3.8 presents the IMS business model for 3G.

Relevant to our requirements, the IMS Business model relies on central units such as

CSCFs, the MRFC and the AS. It is also based on a well-controlled and pre-established

infrastructure. The locations of the functional entities are known beforehand. No dynamic

discovery of the functional entities or roles is provided for. Furthermore, it is improbable

that an IMS business model could rely on individuals with small devices. First, the

service providers and network operators have no strict resource constraints. Second, the

IMS roles are supplying too many functions that are resource-intensive. For example, the

SIP AS supplied by the service provider contains services/applications, SIP servlets and

the SIP servlets engine. For security reasons, the network operator functional entities

cannot belong to individuals. In addition, the communication between the different roles

is based on the client/server paradigm and the service discovery process is out of the

Figure 3.8: IMS business model for 3G networks

Network operator
(Control nodes)

End-user
(User Equipment)

Service provider
(Application servers)

 59

scoop of IMS. We have clearly shown that none of the main business models is suitable

for MANETs.

Table 3.2 summarizes the review of the abovementioned business models.

3.2.2.2 Publication and discovery mechanisms

The publication mechanism relies on two main functionalities: service description aims

mainly at defining what the service does, how it can be used and from where it can be

invoked. This is done using an unambiguous and well-known syntax; service

advertisement allows service descriptions to be reachable by anyone so that users are

made aware of the existence of the services. Descriptions can be either advertised in a

service directory or directly to the other hosts. The discovery mechanism implies three

key functionalities: request formulation which reflects the user‟s needs and should

conform to the service description; a matching function that maps requests to equivalent

services; and a communication mechanism for the interaction between the requester and

the provider [55]. An appropriate publication and discovery mechanisms is crucial to the

success of the service architecture, especially in a dynamic environment with limited

resources such as MANETs.

Requirements
Business models TINAC Parlay Web services IMS

Central role/infrastructure Yes Yes Optional Yes

Flexibility No No No No

Reliance on individuals No No Optional No

Peer-to-peer communication No No Optional No

Adequate broker No No No No

Table 3.2: Summary of the review of the main business models

 60

From the MANET perspective, the existing service publication and discovery solutions

can be grouped into three categories: routing-based mechanisms, directory-less

mechanisms and directory-based mechanisms.

3.2.2.2.1 Routing-based solutions

These solutions extend and use MANET routing protocols to publish and discover

services. Basically, the service messages are piggybacked onto the routing protocol.

Examples are the Lightweight Service Discovery (LSD) [90] that extends the Optimized

Link State Routing (OLSR) protocol, the Zone Routing Protocol extension [91], anycast

[92] that extends the Ad hoc On-demand Distance Vector (AODV) routing protocol, and

a service discovery architecture [89] based on the Hexell routing protocol. This last

solution uses information from the routing protocol for a service selection that takes into

account the network‟s context.

These solutions cannot meet all of our requirements. Even if they are designed for

MANETs and meet several requirements (e.g. lightweight, low overhead, distributed)

they fail to meet one important criterion. Indeed, the first and most important requirement

is independence from the routing protocol. Without this independence, users and

providers in different MANETs using dissimilar routing protocols cannot talk to each

other. Furthermore, the above-mentioned mechanism does not consider the push and

hybrid means of service discovery.

3.2.2.2.2 Directory-based solutions

The service publication and discovery mechanisms that use a registry belong to the

category of directory-based solutions. Basically, service providers store the services they

 61

are willing to offer in a centralized or a distributed directory. MANET users can query

the directory to discover the available services.

Several standards have been proposed with a centralized directory. The main ones are the

Service Location Protocol (SLP) [90], Salutation [91], Jini [88], Universal Plug and Play

(UPnP) [89] and, from web services, the UDDI [77]. However, these solutions were

designed for fixed and controlled networks and are unrealistic for MANETs. In fact, they

are based on a central registry: Directory agent in SLP, salutation manager in Salutation,

look service directory in Jini, control points in UPnP and UDDI in web services.

Furthermore, most of these mechanisms rely on heavy protocols (e.g. RMI, SOAP) and

only the pull discovery is authorized.

However, mechanisms based on fully distributed directories are interesting solutions for

MANETs. Their main advantages are: scalability, rapid service discovery and load

balancing. Examples of such mechanisms are: Sailhan‟s scalable service discovery (SSD)

[94] and the Distributed Service Discovery Protocol (SDSP) [95]. Neither solution

considers the push mode of discovery, and, very important, maintaining a set or

distributed directory comes at a cost of extra processing and management. Furthermore,

since we are not targeting very large scale MANETs, we believe their cost is not justified

for our task.

3.2.2.2.3 Directory-less solutions

This category regroups the publication and discovery mechanisms that do not rely on a

directory. Providers store their services in a local and logical registry. Users multicast or

broadcast queries and receive responses from providers within the communication range.

 62

This means of service discovery ensures that only services that are available at that

moment can discovered. This is an important advantage in highly dynamic networks.

The major service publication and discovery mechanisms in this category are Konark

[96], DEAPspace [96], Pervasive Discovery Protocol (PDP) [98] and Linda In Mobile

Environment (LIME) [99].

Konark is a middleware package for service discovery and delivery, designed for ad-hoc,

peer-to-peer networks. The service discovery is based on a fully-distributed mechanism

with a cache that allows devices to publish and discover services in the network. Konark

uses an XML-based service description similar to WSDL, and for service delivery

Konark proposes a micro-HTTP server based on SOAP. We could think that Konark

meets all of our requirements. However, its reliance on “mico-HTTP” and SOAP may

threaten its lightweight aspect. Furthermore, Konark allows semantic searches which then

increase the energy consumption, although the responses are more accurate.

DEAPspace targets very short range networks. Indeed, it was designed for single-hop ad-

hoc networks. Basically, DEAPspace is a solution where all the devices keep track of all

known services, called “world view”. Periodically, the devices broadcast their “views” to

their neighbors. DEAPspace does not meet our requirements since it is a pure push

mechanism. It introduces a large overhead by broadcasting the whole list of services to

all of the neighbours and so it is only practical in a very small network.

The Pervasive Discovery Protocol (PDP) is a lightweight protocol designed especially

for ad-hoc networks. PDP does away with the need for any central entity, and supports

the push and pull methods in a straightforward way. One of the main objectives of the

PDP protocol is to reduce traffic in the network by minimizing transmissions.

 63

Consequently, The PDP conserves both network bandwidth and devices‟ resources,

particularly for those devices that are very limited. These are central properties for

protocol efficiency in ad-hoc networks. Each device is assigned an availability time (the

excepted time that the device would remain in the network), a local and a remote memory

cache (where owned and discovered services, respectively, are stored). The PDP is based

on two agents that discover available services and publish owned services, respectively.

The PDP meets all our requirements and is therefore a good candidate for service

publication and discovery.

Linda In a Mobile Environment (LIME) is a middleware that extends the coordination

model of Linda [100]. Linda is a fully distributed, in time and space, programming

language where programs are a collection of ordered tuples. LIME is a coordination

middleware that utilizes logically mobile agents running on physically mobile hosts.

LIME is based on the concept of tuple space. Publication and discovery using LIME is

achieved trough the manipulation of tuple space: writing and reading from the LIME

tuple space. LIME has interesting characteristics. It does not rest on any infrastructure,

data exchange is time and space independent, mobility is addressed, security issues are

dealt with and it allows both pull and push scenarios. Therefore, it meets all of our

requirements and is a good candidate for service publication and discovery.

Thus far, PDP and LIME are both promising solutions for developing an appropriate

service publication and discovery mechanism. However, a close comparison between

PDP and LIME shows that PDP has more advantageous characteristics than LIME. Table

3.3 summarizes this comparison.

 64

characteristics

Discovery mechanism
LIME PDP

Fully distributed ++ ++

Lightweight + (346 Ko) ++ (46 Ko)

Adapts to changes ++ ++

Optimal usage of bandwidth + +++

Security ++ -
Pull and push + ++

Considers differences in business interfaces + ++

3.2.3 Service execution frameworks and corresponding communication model

This section presents the existing service execution frameworks and then reviews them

according to the requirements proposed in 3.1.3.1. The communication model of these

frameworks will be compared to the requirements of sub-section 3.1.3.2.

Service execution for MANETS has not yet been addressed in the literature. However,

mature standards have been successfully developed for wired and infrastructure-based

networks. In the following sub-sections we will review the Service Logic Execution

Environment (SLEE) and JXTA as architectures for service execution.

3.2.3.1 Service Logic Execution Environment (SLEE)

SLEE is a well-known concept in telecommunications. It provides an operation system

for service execution -- managing and coordinating the execution of services. JAIN SLEE

(JSLEE) [101] is the Java standard and component model for SLEE. JSLEE defines four

basic elements: resource adapters, events, activity contexts, and the runtime environment.

Resource adapters are responsible for communication with external resources. They

receive and send events. When an event is received it is forwarded to the activity context

Table 3.3: Comparison between PDP and LIME

 65

as an object, and then forwarded to the runtime environment. This latter contains the

Service Building Blocks (SBB) responsible for processing the events.

However, the SLEE does not meet our requirements, since it is intended for

infrastructure-based networks with fixed and stable connections. The specifications do

allow several instances of the basic elements of the SLEE to co-exist and cooperate.

However, the SLEE does not deal with frequent disconnections and topology changes

since self-organization and self-recovery processes are not provided. It is also resource-

consuming. Finally, given that the SLEE is infrastructure-based it is not simple to set up.

Therefore, it is not feasible to use in a MANET.

The communication between the basic elements consists of event delivery. Nevertheless,

the specifications do not define how events are delivered. It is up to the vendors to decide

which mechanism to implement.

3.2.3.2 JXTA

JXTA [102], short for juxtapose, is an open source platform. It defines a set of protocols

that enable any device in a peer-to-peer network to communicate, collaborate and share

resources. The platform is organized into three layers and comprises six protocols. The

applications layer contains the end-users‟ applications such as instant messaging. The

services layer includes functions commonly required by peer-to-peer environments such

as search and indexing, protocol translation, file sharing and so on. The core layer

encapsulates the essential primitives for peer-to-peer communication (e.g. discovery,

peers, and peer groups). The six protocols are: peer discovery, peer resolver, Rendezvous,

peer information, pipe binding, and, endpoint routing. Table 3.4 gives an overview of the

JXTA protocols.

 66

Protocol name Description

Peer Discovery
Protocol Used to discover and advertise peers‟ resources

Peer Resolver
Protocol Sends a query/response to one or multiple peers

Rendezvous Protocol Subscribes to a multicast group (propagation service)
Peer Information
Protocol Used to obtain the status information of a peer.

Pipe Binding
Protocol Used to establish a communication channel.

Endpoint Routing
Protocol Used to discover routes (sequences of hops).

JXTA does not meet our requirements. Indeed, service invocation in JXTA is not defined

in the specifications. JXTA allows self-organization by arranging peers in groups.

However, this organization is basically for the purpose of routing and not for service

execution. In fact, in order to exchange messages peers must belong to the same group,

which is not realistic in MANETs since it can engender high traffic from so much joining

and leaving groups. In addition, JXTA does not deal with mobility and unstable

connections. In regard to communication, JXTA proposes six protocols which can be too

much for a MANET device. The communication model is complex and therefore

resource-consuming.

3.3 Summary

In this chapter we have derived a set of essential requirements. Several sets of

requirements were presented at different levels: service architectures, business models,

service publication/discovery mechanisms, service execution architectures and service

provisioning in MANETs and MCNs. We then introduced the relevant works for each

Table 3.4: Overview of the JXTA protocols

 67

level and compared it to our requirements. Consequently, we have shown that none of the

existing solutions meets our requirements, except for the service publication and

discovery mechanism. Furthermore, existing service provisioning solutions, as they are

today, do not meet enough requirements to be considered for a qualitative comparison.

Therefore, novel architectures and enhancements to existing frameworks will need to be

proposed.

 68

CHAPTER 4: Business model for service provisioning

in stand-alone MANETs

Service provisioning in stand-alone MANETs requires a new business model. This

chapter presents a novel business model. A general business model is introduced,

followed by a refinement of that business model. Afterwards, the chapter presents a

mapping between the proposed business model and the SIP servlets framework. The

chapter continues by depicting the service description and service discovery mechanism

used within the business model. Finally, it draws scenarios that illustrate how the

proposed business model is applied to provide services in stand-alone MANETs.

4.1 General business model

This section proposes a general business model for service provisioning in MANETs.

First, the different roles of the business model are proposed, followed by a discussion of

the roles‟ interactions. Next, the required functionalities are presented. Finally, the

proposed business model is compared to the requirements derived in chapter 3.

4.1.1 Roles of the general business model

To address ad-hoc network characteristics we propose four roles: end-user, service

provider, capabilities provider and execution environment provider.

 69

In our model, service means any end-user service that goes beyond a two-party voice call.

Capabilities refer to the building blocks required to realize services, and execution

environments are features that may be needed to run a service.

The end-user is the service consumer. It looks for services and invokes those desired. The

end-user role does not deal with communication details and it accesses services in a

transparent fashion.

The service provider owns the service logic. It maintains a list of available services to be

offered to end-users. It may require other resources to build its services and should verify

the availability of these resources.

The capabilities provider owns some service capabilities. It allows service providers to

use them and maintains a list of available service capabilities.

The service execution environment provider offers its execution environments to the

interested entities (i.e. service providers or capabilities providers). It is an important piece

of the business model since it is the entity that runs services.

4.1.2 Interactions

In order to use a service within the proposed business model, the service, the appropriate

capabilities and execution environment should all be available in the network. The end-

user is responsible for discovering service providers and services. The service provider is

responsible for discovering the capabilities providers. Then it has to discover the required

capabilities for building the services it claims to offer. It is also responsible for initiating

the service execution.

Furthermore, a service can be built with specific capabilities. Therefore, the capabilities

provider needs an execution environment compatible with its capabilities. However, two

 70

different means of interaction are possible. The capabilities provider may be responsible

for checking the availability of the appropriate execution environment, or it may delegate

the verification to the service provider. However, we believe that it is more efficient in

terms of interactions that a capabilities provider be responsible for checking the

availability of the adequate execution environment.

Figure 4.1 gives an overall view of the general business model roles and interactions.

In order to execute a service, the roles‟ interactions are performed as follows: the end-

user discovers the service‟s provider and then the services. When the service provider

receives the end-user‟s discovery request, it discovers the corresponding capabilities.

Upon receiving the discovery request, the capabilities provider discovers the adequate

execution environment and replies to the service provider, which in turn sends a reply to

the end-user with a list of available services (i.e. services for which capabilities and

execution environment are available). At this moment, the end-user is able to invoke a

given service. The service execution is then initiated by the service provider and executed

Figure 4.1: An overall view of the general business model roles and interactions

Execution Environment description
Execution Environment publish
Execution Environment discovery

Capabilities description
Capabilities publish
Capabilities discovery

Service
provider

End-user

Service capabilities
provider

Service execution
environment
provider

Services description
Services publish
Services discovery
Services invocation Service execution

 71

by the execution environment provider. Furthermore, the discovery process can be

performed in a pull or push mode.

Obviously, the different providers announce their presence in the network and publish

their features.

As an example, figure 4.2 illustrates the interactions between the business model‟s roles

in pull mode, where EU stands for End-User, SP for Service Provider, CP for Capabilities

Provider, and EEP stands for Execution Environment Provider.

The previous chapter showed that two publication and discovery mechanisms are suitable

for MANETs. We use one of them to achieve the described interactions.

4.1.3 Required functionalities

From the above business model‟s description we can state that each role needs a set of

functionalities in order to interact with the other roles.

EU SP CP

List of services

Discover services

Check required execution environment

Invoke service
Deploy a service

Request capabilities

Load capabilities

Use service

EEP

Discover SPs

Check adequate
capabilities

Discover CPs Discover EEPs

Execution environment response
Capabilities response

Service Runing

Figure 4.2: The general business model interactions in pull mode

 72

In an ad-hoc network the end-user requires a discovery mechanism to discover available

service providers and the services they offer. To ensure transparency, the end-user is not

supposed to know about the other business roles.

The service provider requires a publication mechanism, a mapping function and a

discovery mechanism to publish its services, map them to their needed capabilities and

discover available capabilities providers and appropriate capabilities, respectively. The

service provider publishes only those services for which the required capabilities are

available.

Similarly, the service capabilities provider requires a publication mechanism, a mapping

function and discovery mechanism to publish its capabilities, to map its capabilities to

their execution environment and to discover the available execution environment

providers, respectively. Only those capabilities for which a well-matched execution

environment is available are published.

The execution environment provider requires a publication mechanism to publish the

execution environment descriptions. To run the service, a module must interact with the

service provider.

In order to describe their respective features, the service provider, the capabilities

provider and the execution environment provider need a description language.

4.1.4 Discussion

The proposed business model meets most, but not all of our business model requirements,

described in the previous chapter, for service provisioning in MANETs. In fact, it meets

all of them except the lightweight requirement for all of the functional entities. The

functional entities are distributed and do not rest on a pre-established infrastructure.

 73

Furthermore, each entity can discover not only the features provided by other roles but

also the role itself. For example, a service provider discovers the capabilities‟ providers

and then the capabilities. This brings the flexibility to the business model that is required

in a MANET. Roles can come and leave with minimal or no adverse impacts on service

provisioning. Consequently, any entity can play a role at any time. Communication is

performed in a peer-to-peer mode and the selected publication and discovery mechanisms

are suitable for MANETs, as shown previously. In addition, the roles provide lightweight

functionalities and can easily be provided by individuals, except for the execution

environment provider role. The refined business model in the next section will solve this

remaining issue.

4.2 Refined business model

The general idea behind the refined business model is to allow individuals with small

devices to play any role. The execution environment may constitute a heavy entity. It can,

however, be split into many entities; each of which may be a provider of the part of the

execution environment it owns. A refined business model is then proposed, based on this

possibility. The roles of the refined business model are presented in this section, followed

by an exploration of the interactions between the business model roles and the required

functionalities for each role to achieve its goal. Finally, the proposed refined business

model is discussed according to the requirements from chapter 3.

 74

4.2.1 Roles of the refined business model

The refined business model contains four roles: the End-User (EU), the Service Provider

(SP), the Capabilities Provider (CP) and the Execution Environment Sub-Part Provider

(EESPP). The EU, SP and CP are the same role as described in the general business

model. However, a refined role is introduced -- the Execution Environment Sub-Part

Provider. The EESP is the owner of a part or a component of the execution environment

function. However, the EESP is transparent to the end-user, the capabilities provider and

the service provider. In fact, the different components are offered by different providers,

but the execution environment sub-part providers collaborate to offer the overall

execution service environment. This latter is seen as a unique entity. Figure 4.3 presents

an overview of the refined business model.

The proposed business model assumes that the execution environment is distributed, or

that it can be distributed.

Figure 4.3: Overview of the refined business model

Download

Publish/discover

Deploy

Invoke

End-user

Service provider

Service 1

Service 2

Capabilities provider

capability A

capability B

Execution Environment provider

Execution environment Sub part 1 provider

Execution environment sub part J provider

Execution environment sub part N provider

Publish/discover

 75

4.2.2 Interactions and required functionalities

The EESPPs cooperate to provide the functions of the overall execution environment in a

transparent way. Therefore, the others roles‟ (i.e. EU, CP, SP) interactions with the new

entities (i.e. EESPPs) can remain the same. To achieve transparency, one of the EESPPs

acts as an entry point to the execution environment. Furthermore, the communication

between the EESPPs respects the MANET constraints. We adopt LIME for intra-EESPP

communication.

The communication and the collaboration between the EESPPs depend on the execution

environment and the distribution scheme of this execution environment. However, certain

common features are required. Basically, each EESPP provides a function to publish the

description of the sub-part of the execution environment that it „owns‟. Therefore,

EESPPs need a discovery mechanism to discover each other. Furthermore, a function to

collaborate with the other EESPPs and a function for service execution are required. The

interfaces with the other roles are the same as those illustrated in figure 4.3.

An execution environment provider is thus available in the network if and only if all its

sub-parts are available, discovered and connected according to an appropriate schema.

4.2.3 Discussion

The refined business model maintains the advantages of the general business model.

Furthermore, it enhances the model by enabling the execution environment role to be

distributed. A new role, the execution environment sub-part provider (EESPP),

substitutes in the execution environment role. Actually, due to resource constraints in

MANETs, the new role will allow MANET nodes to provide a small fraction of the

functionality of the execution environment. Furthermore, it will make the business model

 76

rely not only on organization but on individuals as well. Therefore, the refined model is

now meeting all our requirements from the previous chapter, but there is a cost.

Distribution means collaboration, which incurs overhead and resource consumption.

There is a trade-off to be made between performance and addressing the constraints of

MANETs. Our goal is to provide a suitable (e.g. distributed, flexible and lightweight)

business model for mobile ad hoc networks while keeping the costs as low as possible.

Hence, we believe that using an adequate communication mechanism will limit the

impact on performance.

4.3 Mapping to the SIP servlets framework

The business model proposed in the previous section is attractive for MANETs.

However, it is described at a high level of abstraction. This section demonstrates how the

refined business model is applied in practice. The SIP servlets framework has been

chosen as a framework for service provisioning. However, the SIP Servlet Engine (SSE),

as an execution environment, must be distributed, since the SSE has to respect MANET

constraints. This section first motivates the mapping. Next, it discusses a distribution

scheme for the SIP servlets engine. The SIP servlets-based business model is then

presented as an outcome of the mapping.

4.3.1 Motivation

Thus far, we have defined the abstract business model and the basic interactions between

its roles. A concrete realization of the proposed business model is needed. There are two

strategies to approach the problem [65]: an evolutionary strategy and a revolutionary one.

 77

The first approach starts from existing solutions and paradigms, evolves them by refining

or reworking them, and then integrates the resulting solution with current approaches. An

example of an evolutionary-based solution is Web Services, which reflects new thinking

for service provisioning yet rests on existing technologies and standards. The

revolutionary strategy is simply an approach that is not an evolution of existing solutions.

TINA is a good example of a revolutionary solution. However, TINA gives too little

weight to important current technological developments and does not give enough

consideration to the installed base systems [103].

The work in this thesis will follow the evolutionary strategy for several reasons. First, the

solution will ensure backward compatibility and thus interworking with legacy systems.

Second, it will increase its adoption probability since developers and professionals are

familiar with existing technologies. Finally, it is more reasonable to take advantage of the

current and successful paradigms, especially the mature ones.

The SIP servlets paradigm has proven to be a valuable tool in creating and delivering SIP

services in traditional networks with fixed infrastructures. Furthermore, it has spread

within a large community that has acquired good expertise in it. In addition, SIP servlets

are a mature paradigm based on the SIP, and SIP is the core protocol for next generation

networks. Hence, SIP servlets become the primary candidate for service provisioning in

the future. Indeed, the IP Multimedia Subsystem (IMS) proposes a SIP servlets-based

application server. However, using this paradigm in MANETs for service provisioning

requires a signalling layer. A SIP-based architecture for signalling in MANETs has been

proposed [40], which makes SIP servlets the best choice. For all of these reasons we

 78

chose the SIP servlets paradigm as a basis for implementing the proposed business

model.

4.3.2 Distributing the SIP servlets engine

SIP servlets are of prime importance in current and future service provisioning

architectures. However, bringing them to MANETs leads to new issues. The SIP servlets

framework has a main entity: the SIP Servlets Engine (SSE). This entity may constitute a

central node with heavyweight functions and processing. All the drawbacks related to

such a configuration (e.g. bottleneck, unrealistic for ad-hoc networks) are thus possible.

Even though the proposed business model may deal with central nodes, it is not

recommended for MANETs. Several nodes have limited resources (e.g. memory,

processing) and they may fail in hosting the entire SSE. Therefore, the SIP servlets

framework needs to be extended by distributing the SSE.

We propose a functional distribution scheme for the SIP servlets engine. The SSE is

divided into four functional entities that collaborate to achieve the goal of an entire SIP

servlets engine. Figure 4.4 presents the SIP servlets framework with a distributed SIP

servlets engine.

The components of the distributed SIP servlets engine are:

 Connector: The node that provides connectivity to and from the SSE. All SIP

messages sent to or received from the SSE must traverse this node. The Connector

performs SIP message decoding, parsing and validation. If a message is

determined to be valid it is forwarded to the Controller. Otherwise, the message is

discarded without further action. Likewise, the messages to the SSE‟s external

nodes are parsed, validated and encoded.

 79

 Session Repository: A repository that stores two types of state information: the

overall state of the application represented by SIP application sessions; and the

states for individual SIP dialogs (SIP Sessions).

 Wrapper: The node that deploys SIP applications. The Wrapper extracts the

Uniform Resource Locator (URL) of the SIP application's archive. Then, it

downloads the application's archive from the servlets repository, loads and

instantiates the servlets of the application and manages servlets throughout their

lifecycles.

 Controller: The node that coordinates all of the other nodes of the distributed

SSE. The Controller also handles SIP transactions and performs message routing

to applications. Furthermore, the Controller extracts and stores the rules that

specify the conditions that will trigger an application. Finally, it instructs the

wrapper to download the application's archive.

SIP Servlet A

SIP Servlet Engine

Services/applications

SIP interfaces

Controller Wrapper

Session
Repository Connector

Figure 4.4: The SIP servlets framework with a distributed SIP servlets engine

 80

The distribution scheme described above is the foundation of the subsequent research

results.

4.3.3 SIP servlets-based business model for MANETs

From the SIP servlets framework point of view, SIP servlets are the capabilities required

to build services. The SIP servlets engine is the execution environment where SIP servlet

applications are run. The general business model roles are mapped to the SIP servlets‟

framework as follows: the end-user is the SIP servlet application‟s users. The service

provider provides the SIP servlet applications and the service logic. The capabilities

provider owns the servlets that are offered to the service providers in order to build their

applications, and is mapped to the SIP Servlets Provider (SSP). . Finally, the execution

environment provider is mapped to the SIP Servlets Engine Provider (SSEP) and it owns

the SIP servlets engine provided for the execution of the SIP servlets applications.

However, in the refined business model the execution environment is distributed. Since

the SSEP is divided into four components, four roles are derived and mapped to the

execution environment sub-part provider. Figure 4.5 illustrates the SIP servlets-based

business model for MANETs.

Publish/
Discover

Invoke

SIP servlets engine provider

Controller

provider
Wrapper

provider

Session

Repository

provider

Connector

provider

SP

EU

SSP
Publish/
Discover

Publish/
Discover

Set/get
Push

Set/get

Deploy/push

Figure 4.5: The SIP servlets-based business model for MANETs

 81

The connector provider, the session repository provider, the wrapper provider and the

controller provider are the mapped roles in the SIP servlets context. Each of these roles

collaborates to produce the SSEP. In the rest of the thesis we will consider the refined

business model.

4.4 Publication and discovery

Service description is the starting point for the design of publication/discovery

mechanisms. Publication and discovery protocols are discussed afterwards.

4.4.1 Service description

The proposed business model requires a description scheme that allows not only service

description but capabilities and execution environment descriptions as well. Moreover,

the description language should be machine interpretable to facilitate automation. To

meet these objectives we made use of an XML-based scheme. It is a description scheme

largely inspired by current approaches, such as WSDL from the web services community.

Since this thesis is not focused on description languages design, this solution meets our

goals with simplicity, and allows us to consider relevant details related to services,

capabilities and the execution environment in ad-hoc networks. Figure 4.6 shows how

service features (i.e. end-user service, service capabilities, and execution environment)

can be described while taking into account information relevant to MANETs.

Figure 4.6.a presents a service feature as composed of five elements: parameters, port,

binding, sessions and logic requirement. The port and the logic requirement elements are

expanded in Figures 4.6.b and 4.6.c respectively. The logic requirement‟s utility is to help

 82

to consider an ad-hoc network‟s characteristics (e.g. limited resource and heterogeneity

of devices). The required resources are therefore described in this element (e.g. the

operating system and its version, the minimum memory storage, processing and graphical

characteristics). The port element is similar to the WSDL operation element and contains

the name, the arguments and the type (input/output) of the function to be invoked to run

the service. The binding element maps the port element to a given port number, IP

address and to a supported protocol. Parameters describe the service arguments of the

service feature. Parameters may be of two types: fixed having one value or variable with

a set of possible values. The sessions element illustrates details about the ongoing

sessions.

Service feature

Parameters - Name
- Value

Variable - List of values

Port Bindings Sessions LogicReq

- URI
- Members
- Max_members Port_ref - Name

Bind - Protocol

- Type (service, capability, execution environment)
- Name
- Version
- URL
- URI

Port

Operation - Name

Args - Name
- Type

In Out

- Name
- Operation_ref

- Memory
- Processing
- GraphicReq

LogicReq

Resource

OS

- Name
- Version

Demands

a. Abstract view of service features description scheme

b. Abstract view of the Port element c. Abstract view of the LogicReq element

Figure 4.6: Global view of service features description in MANETs

 83

Furthermore, a service feature is designated by a type that defines if it is a service, a

capability or an execution environment. Obviously, the feature has a name, a version and

a URI/URL so that it can be identified and located.

4.4.2 Publication and discovery protocol

As shown in chapter 3, Linda In a Mobile Environment (LIME) and the Pervasive

Discovery Protocol (PDP) are suitable for MANETs. We have experience using both of

them. LIME, in particular, was used for communication between the entities of the

distributed SIP servlets engine since it is basically designed for distributed and concurrent

process communications. Furthermore, it has a motivating characteristic for MANETs: it

is not necessary for the sender and the receiver to be connected at the same time and their

respective locations are not relevant for exchanging data. Furthermore, LIME introduced

the notion of Reactions. A reaction can be registered or deregistered, and fires when a

tuple matching a given pattern is found in the tuple space. Three basic primitives are

defined: out(t) to add a tuple t to the tuple space, in(p) to read and remove a tuple that

matches the pattern p and rd(p) to read but not remove the tuple matching the pattern p

[104].

PDP is used for publication and discovery. The PDP protocol is simple and has two

mandatory messages: PDP_Service_Request and PDP_Service_Reply, to request services

and to reply and announce services, respectively. A third, optional message

PDP_Service_Deregister is introduced to announce that a service is no longer available.

To discover available services in the network, a device makes use of the PDP User

Agent, and to publish services the PDP Service Agent is used. However, some small

 84

extensions (i.e. new fields in some message headers) have been performed in order to

enable the PDP_Service_Reply message to be used for the push mode.

4.5 Illustrative scenarios

We next present some scenarios to demonstrate how the proposed business model can be

applied for service provisioning in MANETs.

4.5.1 Distributed SIP servlets engine interactions

The interactions between the components of the distributed SIP Servlets Engine (SSE)

are depicted first. Sequence diagrams are presented for an abstract communication flow

and for a LIME-based communication flow.

Figure 4.7 presents the abstract view of the distributed SIP servlets engine handling an

initial request.

Reply

Load_servlet
(request, key)

Encode

Push (Reply)

Get/Set
session_info

Load and
run servlet

Wrapper Controller Connector
Session
Repository

Create session

Push (SIP request)

refer to b

Decode

SIP reply

SIP request

Session Key

Figure 4.7: Abstract view of the distributed SSE handling an initial SIP request

 85

When received by the wrapper, the SIP request is decoded and then forwarded to the

controller. Because it is an initial message, the controller creates an entry in the session

repository and gets the session key. This key is transmitted to the wrapper together with

the SIP request. The wrapper then downloads and runs the appropriate servlet. During the

service execution, the wrapper may retrieve or modify the session information using the

session key. The reply is generated by the servlet and transmitted to the connector

through the controller. The connector encodes the message and sends it to its destination.

Figure 4.8 shows the LIME implementation of the previous scenario.

The communication between SSE components follows the same scenario as shown in

figure 4.7. The LIME primitive out() and the concept of reaction are employed. For

clarity we will model the SIP servlets engine as one box in the remaining scenarios in this

section. However, it may be either a centralized SSE or a distributed one. In the latter

case, the above mentioned scenarios are applied.

SIP reply Out (SIP reply)
Out (SIP reply)

Out (Session Id)

Out (GET Session Id)

Out (request, Session Id)

Out (ADD session Id)
Out (Session Id = null)

Out (Get session Id)

Out (SIP request)
SIP request

Connector Controller Wrapper Session Repository

Fire_reaction

Fire_reaction

Run servlet

Figure 4.8: Distributed SSE handling an initial SIP message using LIME

 86

4.5.2 LIME-based scenario

Figure 4.9 presents the sequence diagram of the pull mode in a LIME-based publication

and discovery scenario. It is a three-phase process. The LIME setup phase prepares the

environment. The publication/discovery phase is where services/features are discovered

and the invocation phase is where services are used.

In the first phase, the SIP Servlet Engine Provider (SSEP), the SIP Servlets Provider

(SSP) and the Service Provider (SP) register LIME reactions. A reaction is a code to be

executed when a tuple matching a given pattern is found in the tuple space. This phase

Use service

EU SP SSP

Out [? service_pattern]

Invoke service

SSEP

Reaction
(servlets_pattern)

Fire_reaction

Reaction
(service_pattern)

Out [servlets_pattern]
Fire_reaction

Out
 [servlet_list] Out [service_list]

In [(servlets, engine)]

Reaction
(engine_pattern)

Out [engine_pattern]

Fire_reaction

Out [engine location]

Figure 4.9: LIME-based scenario for publication and discovery: pull mode

 87

allows the different providers to react to the service discovery messages, and takes the

place of service publication.

The second phase starts when the end-user requests a service. The SP that owns the

matched service fires its reaction. A mapping to the required servlets is performed. Then

the service provider discovers the needed servlets using the out primitive. As a result, the

SSP‟s reaction fires and the SIP servlets engine discovery is initiated. The out primitive is

used for discovery, which fires the reaction of the SSEP so that it sends the location of

the SIP servlets engine to the SSP. Then the SSP returns the address of the requested

servlets to the SP. Finally, the service provider replies to the end-user with the requested

service description.

The third phase begins with service invocation. The service provider then contacts the

SSEP to run the service.

4.5.3 PDP-based scenario

The same scenario described above is illustrated in figure 4.10 using an extended PDP

protocol for publication and discovery.

The PDP request specifies the type of the service feature to be discovered and its name.

Therefore, the end-user discovers services, the service provider discovers servlets and the

SIP servlets provider discovers the SIP servlets engine. When the different features are

discovered, the service provider can send the list of services to the end-user. Each feature

has a Time-To-Live (TTL) to guarantee up-to-date information.

 88

Figure 4.11 shows the push variant of the previous scenario.

Use service

EU SP SSP

Invoke service

SSEP

PDP_Reply(engine)

mapping

mapping PDP_Reply
(service_list, TTL)

Invoke

PDP_Reply
 (servlet_list, TTL)

Figure 4.11: PDP-based scenario for publication and discovery: push mode

Use service

EU SP SSP

PDP_Request(Type:Srv, name)

Invoke service

SSEP

Mapping to
 Servlets

PDP_Request(Type:Cap, name)

Mapping to Engine

PDP_Request (Type: E.E, name)

PDP_Reply(servlet_list, TTL)
PDP_Reply (service_list, TTL)

Invoke

PDP_Reply (engine_list, TTL)

Figure 4.10: PDP-based scenario for publication and discovery: pull mode

 89

In this scenario, the SSEP pushes the type, name, and pointer to detailed description of its

engine to the network. The push is either based on periodicity or events. Upon reception,

SSPs select from the owned servlets those that can be mapped to the described engine.

They then update their list of available servlets and decide to either perform no action or

to push these servlets‟ descriptions to the network. Later, if they decide to react, the

service providers push a list of services that require the received servlets to the end-users.

Service invocation remains the same in all cases.

4.6 Summary

In this chapter we proposed a novel business model for service provisioning in stand-

alone MANETs. Both a refined and a general business model were elaborated. We

described the roles and their interactions. We also demonstrated that the refined business

model meets all our requirements for MANETs. The business model was then mapped to

a concrete service provisioning framework. Based on our criteria, the SIP servlets

paradigm was chosen, and an extension to the framework was presented: a distribution

scheme for the SIP servlet engine.

In addition, publication and discovery were discussed in some detail. First, a description

language inspired by existing approaches was proposed, which takes into consideration

the specific requirements of MANETs. Then, based on the previous chapter‟s results we

selected LIME and PDP as mechanisms for publication and discovery.

The chapter ends by presenting diagrams that demonstrates how all these elements can be

put together. Scenarios are presented to illustrate the communication process between the

 90

distributed SIP servlets engine components and the service publication/discovery using

LIME and PDP.

 91

CHAPTER 5: An overlay network for a SIP servlets-

based service execution environment in MANETs

This chapter proposes an architecture for service execution in stand-alone MANETs. A

brief introduction is followed by an overview of overlay networks. Next, the proposed

overlay network architecture is depicted, with a subsequent discussion of the underlying

procedures of the architecture. Then, an overlay network protocol is proposed and

detailed. The chapter ends with scenarios that illustrate the overlay network architecture.

5.1 Introduction

The architecture we propose in this chapter is based on the extended SIP servlets

framework. The distribution scheme of the SIP servlets engine described in the previous

chapter is the starting point. The service execution environment that uses the extended

SIP servlets framework is an important component for service provisioning in MANETs.

However, in order to become a realistic solution for MANETs, the architecture will be

extended with a method to manage the topology changes. Furthermore, to realize service

execution in MANETs, the proposed architecture enables several SIP servlet engines

(SSEs) and different instances of the same SSE component to coexist. Therefore, many

controllers, connectors, wrappers and session repositories may be part of a MANET.

These multiple instances or nodes form a network of SSEs. The communication between

these nodes should be handled to fulfill the SSE goal. Node coordination, self-

 92

organization and recovery are new issues to solve. Since the underlying network is a

MANET, which adds complexity, an adequate architecture is needed to manage the

distributed SIP servlet engines. Peer-to-peer overlay networks appear to be a promising

solution. Indeed, they are robust, reliable, and enable self-organization and recovery.

5.2 Overview of overlay networks

Peer-to-peer overlay networks [105] are logical structures on top of the physical network.

The logical nodes are mapped to one or more physical nodes. The overlay network comes

with its own protocols to build the desired logical structure. The main advantages of the

overlay networks are: robustness, because the overlay network changes according to

events (e.g. node failure, increasing load), and reliability, because logical links adapt to

the physical network changes and scalability. Furthermore, overlay networks require no

change to the underlying existing technology.

The peer-to-peer overlay networks come in two varieties: structured and unstructured. In

structured overlay networks the data object is placed at well-known locations. The lookup

time, in such networks, may be high and may affect the network performance. In

unstructured overlay networks nodes are randomly organized in a flat or a hierarchical

style. They introduce less overhead than structured networks and they are ad hoc by

nature.

Consequently, unstructured overlay networks are an elegant way to organize the SIP

servlet engines with no changes to the underlying physical network. We chose this

network type to implement the SIP servlet engines for service execution in MANETs.

 93

5.3 The overlay network architecture

We propose an overlay network architecture to manage the distributed SIP servlets

engine and thereby realize service execution in stand-alone MANETs. The proposed

architecture is based on some assumptions and principles. This section presents the

architectural assumptions and principles, and then discusses the overlay network

architecture‟s design.

5.3.1 Assumptions and architectural principles

a. Assumptions: We assume that a SIP servlet engine is available when a controller is

connected to at least one connector, one wrapper and one session repository. In addition,

a controller manages zero, one or multiple connectors, wrappers and/or session

repositories. Wrappers and session repositories connect to one or more controllers, but a

connector serves one and only one controller.

b. Architectural principles: The starting point of the overlay network is the four

components of the distributed SIP servlets engine. The controller, the wrapper, the

session repository and the connector require close collaboration to provide the SIP

servlets engine‟s functionalities. Indeed, these components offer the “service execution

environment” as a service to the rest of the network. Therefore, they are the fundamental

nodes of the overlay network.

Furthermore, to each node in the MANET we assign a type where type  {Connector,

Wrapper, Controller, Session Repository, Null}. Null type is used by nodes that are not

participating in the SIP servlets engine. In other words, the type defines if a node belongs

to the overlay network or not. Basically, each node that hosts an SSE component is an

 94

overlay node. Thus, by overlay nodes we refer to nodes of type* where type* 

{Connector, Wrapper, Controller, Session Repository}. Moreover, we define nodes of

type*
+ as overlay nodes, excluding the controller: type*

+  {Connector, Wrapper,

Session Repository}.

In addition, each controller has a well-known capacity. The capacity refers to the number

of nodes a controller is able to mange while incurring limited impacts on performance.

The controllers‟ capacity is pre-configured and is a property of the controller node.

Nodes discover each others‟ type when they join the network. This discovery is a part of

the overlay network protocol.

5.3.2 The overlay network design

We describe the structure of the overlay network and then present the overall topology.

5.3.2.1 A two-level overlay network

Regarding the nature of the nodes that compose the SSE, we separate the overlay network

into two levels. The first contains repository nodes, whose role is limited to data storage

and management, and the second level includes execution nodes which perform the

necessary processing for service execution. Repository nodes are the session repositories

while execution nodes are controllers, wrappers or connectors. Figure 5.1 presents an

abstract view of the two levels of the overlay network.

Figure 5.1: An abstract view of the overlay network’s levels.

Level 2: Execution

Level 1: Storage

 95

The nodes in level 1 and in level 2 are both overlay nodes. They are distinct entities

which are directly mapped to the real ad hoc network. Furthermore, nodes that belong to

level 1 of the overlay network should obviously have storage capabilities, be able to

comprehend messages from the overlay nodes, and have publication/discovery

capabilities.

The second level is made up of three types of overlay nodes: wrappers, connectors and

controllers. The common functionalities for these nodes are to understand overlay

messages and to publish and discover overlay nodes‟ types.

In addition, wrappers should be able to communicate with the SIP servlets provider, and

to load and run servlets. The connectors should be able to understand, manage and

process commands from end-users, and encode and decode SIP messages. Controllers

should be able to understand and process commands from service providers, route SIP

messages to the wrapper and handle SIP protocol transactions.

5.3.2.2 The overlay network topology

Repository nodes are fully meshed so as to exchange the data related to the ongoing

applications and sessions. The motivation behind full-mesh topology is to simplify failure

recovery by enabling data replication. In level 2, the controllers are fully meshed to

facilitate the exchange of information about the nodes they manage, and to speed the

recovery mechanism when a controller leaves or crashes. Furthermore, each controller is

a root of a tree whose leaf nodes are connectors, wrappers and session repositories. The

depth of the tree is 1.

 96

Figure 5.2 illustrates the level 2 topology.

Figure 5.3 presents the overall picture of the proposed overlay network. The two levels

correspond to the distributed SIP servlets execution environment, which is presented as a

value-added service provided to the real MANET‟s entities. Each node of the overlay

network can be mapped to an appropriate SIP servlets sub-part provider.

Thus far we have described the overlay network from the conceptual point of view.

However, since we are considering infrastructure-less environments (i.e. mobile ad-hoc

networks) we need suitable procedures for the overlay network management.

Controller Type*+ nodes (i.e. Overlay node except controller)

Figure 5.2: Topology of level 2 of the overlay network

Figure 5.3: Overall view of the SIP servlets overlay network

Level 2

Level 1

Wrapper

Session

repository

Connector

Controller

Real network
EU

SP

SSP

SIP servlets
engines overlay
network

 97

5.4 The overlay network procedures

The dynamic nature and the unreliable connection links of MANETs require appropriate

processes. To address these specific needs of ad-hoc networks, we propose procedures for

self-organization and for self-recovery.

5.4.1 Self-organization

By self-organization we mean the ability of nodes to be structured in the overlay network

architecture defined in the previous section, and their ability to maintain this structure

automatically. First, we discuss the self-organization procedure, and then illustrate it

through scenarios.

When a node comes into a MANET it publishes its type and discovers the other nodes‟

types. The process of self-organization depends on the node joining the network. The

goal is to connect nodes of a certain type*+ (i.e. connectors, wrappers, session

repositories) to a given controller. This is motivated by the fact that a SIP servlets engine

is defined when a controller is connected to a connector, a wrapper and a session

repository. Furthermore, self-organization should ensure that session repositories are

fully meshed, as well as the controllers are. The procedure is as follows:

 If the joining node is a controller: if it is the first one (i.e. no other controller is in the

network): it informs the overlay nodes (i.e. nodes of type*+), if any, to join its logical

control area. The joining node is then the controller of each node in its logical control

area. Next, the controller notifies the session repositories of each others‟ location in

order to get a full mesh connection between them. However, if it is not the first

controller (there is at least one controller in the network), it establishes a full mesh

 98

connection with the existing controller(s), and then gets the list of the managed overlay

nodes from each of them.

 If the joining node is of type*+: If there is no controller in the network, it does nothing.

If there is at least one controller, the joining overlay node randomly chooses one

controller and joins it. The chosen controller will decide either to accept the joiner or to

redirect it to another controller, based on the information it has about the controllers.

The decision algorithm should consider the controllers‟ capacity and the need to

balance the nodes among the controllers. For example, to try to ensure that all

controllers have at least one connector, one session repository and one connector.

Furthermore, if the joining node is a session repository then the controller sends it the

list of the existing session repositories so that a full mesh connection can be established

between them.

Figure 5.4 presents the overall self-organization process for the proposed overlay

network, in which SR is the Session Repository and the Ctr is the controller.

Figure 5.4: The overall self-organization process

An overlay node comes in

Ctr ? Yes

First one? No Yes Takes control of existing
overlay nodes

Informs SR of each
others location Joins the controllers &

gets related information

Is there any
Ctr?

No

Do nothing Choose one,
join it

Yes

Accept / redirect = Controller‟s decision algorithm

Is it a SR?

End

Yes
Join the other SRs

No

No

 99

A controller therefore should implement a decision algorithm. The algorithm checks the

nodes‟ balancing and guarantees that the capacity of the selected controller is not

exceeded. The algorithm‟s input is an overlay node of type*+ and the output is a

controller to which the overlay node will be connected. Figure 5.5 shows the controller

decision algorithm.

All the information required to run the algorithm is available locally, so no extra message

exchange is required. The algorithm starts by identifying, for each controller, the number

Let :
L_Ctr: set of controllers
N_Ctr: the number of controllers in the network

ONet: an overlay node  type*+
Ltype_Ctr(i): the list of nodes’ types of the ith controller
Ctr(i): the ith Controller – Ctr(0) = this controller
C_Ctr(i): the capacity of the ith controller
N_m_Ctr(i): the number of managed nodes by the ith controller
S_Ctr: the selected controller

Input = ONet ; Output = S_Ctr

Start
 S_Ctr = Null
 T = new Table(N_Ctr,2)
 For i = 0  N_Ctr
 occ= occurrence(type(ONet), Ltype_Ctr(i))
 if C_Ctr(i) > N_m_Ctr(i) + 1 then

T[i,0]=occ
T[i,1]=Ctr(i)

 End For
 Sort_occ (T)
 If T[0,0] = occurrence(type(ONet), Ltype_Ctr(0))
 AND C_Ctr(0) > N_m_Ctr(0) + 1
 Then
 S_Ctr=Ctr(0)
 else
 S_Ctr = T[0,1]

End

Figure 5.5: The controller’s decision algorithm

 100

of nodes it has in its control area. The algorithm counts only the nodes that are the same

type as the input node. The occurrences and the corresponding controller‟s addresses are

stored in a two-dimensional table. Next, the table is sorted according to the occurrences,

from lowest to highest. Only controllers with adequate capacity are kept, which permits

balancing of the nodes among the controllers. Indeed, controllers with a small set of

nodes of the same type as the input node have a greater chance to be connected to the

input node. Finally, the selected controller is the one in the first line of the table.

However, to avoid unnecessary message exchanges over the network, the algorithm

makes sure that the current controller (i.e. the controller running the decision algorithm)

does not have the same occurrences as the selected controller. In such a case the selected

controller is the current controller.

5.4.2 Self-recovery

This section proposes a procedure to deal with network failures. Basically, this procedure

allows the overlay network to re-organize automatically upon a failure. Failure can occur

when an overlay node becomes unreachable or unavailable. Some sources of failure are:

nodes deliberately leave, nodes crash, nodes go out of the network‟s range, and a node‟s

battery goes down.

Here we need to distinguish between two major cases: expected failures (i.e. nodes

deliberately leaving the network by announcing their departure) and unexpected failures

(e.g. a node‟s sudden crash).

Self-recovery depends on the node that fails and the nodes present in the network when

the failure happens. Let‟s re-state that a wrapper or a session repository may be

connected to more than one controller. However, a default controller is identified for

 101

each node. Figure 5.6 illustrates the overall self-recovery process, where Ctr refers to the

controller and a busy node means that the node is involved in a service session.

5.4.2.1 Expected failures

As far as expected failures are considered, the process of recovery is as follows: If the

leaving node is a wrapper or a session repository, it informs its default controller, which

then notifies the other controllers to update their entries. If the leaving node is involved

in a service session, the controller will ask the other controllers for a node of the same

type as the leaving node. Furthermore, if the leaving node is a connector, the end-user is

notified with an alternative access point.

When the leaving node is a controller, it informs the existing controllers in the network

and assigns them the nodes it manages.

An overlay node failure

Expected?
Yes Ctr?

No

Yes Assign its nodes to the
other controllers (if any)

Leaves. update Ctr‟s data

Ctr? No

Detected by Ctr

Temporary Ctr head election
Yes

Assign nodes to Ctrs
Update data

End Inform the default Ctr

Ctr request
node

Busy? No

Yes

Switch to the new node

No

Figure 5.6: The overall self-recovery process

 102

5.4.2.2 Unexpected failures

With unexpected failures, a procedure for failure detection is needed. Any heartbeat

protocol can be used to achieve this goal. A heartbeat protocol has been proposed for

failure detection in MANETs [106].

With the failure detection protocol, unexpected failures, in general, are handled in the

same way as expected failures, with slight but pertinent adjustments. For wrappers and

session repositories failures, the only difference is that the default controller of the failed

node is responsible for the failure detection. After that, the process remains the same as

for expected failures.

When the connector goes down suddenly, the failure is detected both by the default

controller and by the end-user. From the default controller’s perspective, it notifies the

other controllers about the failure and requests a connector if the crashed node was

involved in a service.

It is more complicated from the end-user‟s point of view, since this connector was the

access point to the execution environment. To solve this problem, when an alternative

connector is found by the default controller, the service provider is informed. The service

provider then sends the new access point address to the end-user.

The most complex case is when the controller crashes. In this situation, the controllers

should elect a temporary head to handle this situation. The head organizes the network

and assigns the unattached overlay nodes to the remaining controllers.

In order to limit message exchanges and therefore reduce the network overhead, the

controller head election is based on a simple algorithm. Indeed, the head is the controller

 103

that has the highest IP address. Since all the controllers know each others‟ address the

election is done automatically following the failure detection.

In the self-recovery process the nodes managed by the failed controller should be

assigned to other controllers. The controller decision algorithm discussed previously is

then used. However, some of these nodes may be connected to more than one controller.

Therefore, to avoid overloading the network, these kinds of nodes are not assigned since

they will still be connected to at least one controller.

5.5 The overlay network protocol

In order to make the recovery problem easy to solve, the session repositories should

exchange their information about ongoing sessions and applications. Furthermore, the

controllers should have a global view of the overlay network. They especially need to

know the types of the nodes controlled by each controller and their status (are they

involved in a session or not). The status is very important in the case of connectors

because a connector can only be connected to one controller at a time.

The overlay network should have redundancy at the first level (i.e. the session

repositories level) and a collaboration of controllers at the second level. The self-

organization and self-recovery processes require a protocol in order to be realized. In this

section we first present the data format and protocol messages, followed by the state

diagrams.

 104

5.5.1 Data format and protocol messages

Messages are required for two different purposes. Messages are necessary for the data

exchange between session repositories and between controllers as explained above. Also,

a consistent set of messages is required to perform self-organization and for self-recovery

operations. The self-organization and self-recovery processes make use of both sets of

messages.

5.5.1.1 Data format

Each session repository maintains a table where each row refers to the information

managed by another session repository. The table of the session repository j (SRj) is

illustrated in Table 5.1 where n is the number of session repositories in the network at a

given time.

This table should be updated when the other session repositories send new information.

For example, the SRj multicasts the line j of its table to session repositories in the network

Node ID Session info Application info

SR1 session1,1(…), session1,2(…),… Appli1,1(…), appli1,2(…),…

SR2 Session2,1(…), session2,2(…),… Appli2,1(…), appli2,2(…),…

… … …

SRj Sessionj,1(…), sessionj,2(…),… Applij,1(…), applij,2(…),…

… … …

SRn Sessionn,1(…), sessionn,2(…),… Applin,1(…), applin,2(…),…

Table 5.1: Session repositories data table

 105

whenever entries are added, deleted or modified. Other techniques can be used to reduce

the load, such as using clusters or only updating neighbours.

Regarding the controllers, each one should maintain the list of the controllers and their

capacity, and of the nodes in their logical control area. Each controller should inform any

joining controller about the nodes it controls. Furthermore, controllers need to exchange

their related information for a data update. This is done by sending the line that

corresponds to their managed nodes. For example, Ctri should send the line i when

required. The data table of the controller i (Ctri) is shown in Table 5.2 where p is the

number of available controllers in the network at a given time. The data is stored in the

form: node_type(IP,status).

5.5.1.2 Protocol messages

We propose a set of messages that can either be a part of a new protocol or become an

extension for existing protocols.

For the data exchange between session repositories and controllers, the proposed

messages are: add_entry(), remove_entry(), update_entry() and get_entry().

Table 5.2: Controllers’ data table

Node ID Capacity Controlled nodes

Ctr1
α connector1,1(@,free), connector1,2(@, busy)…

… … …

Ctri β connectori,1(@,free), SRi,1(@,free)…

… … …

Ctrn δ SRn,1(@,free), wrappern,1(@,busy)

 106

 Add_entry(): is used to add an entry for a session repository or a controller that has

recently joined the overlay network.

 Remove_entry(): to delete the entry of a leaving or unavailable session repository or

controller.

 Update_entry(): to update the information related to a given session repository or a

controller.

 Get_entry(): is used by a session repository or a controller that has just joined, in

order to get information from the other session repositories.

Regarding the self-organization and self-recovery operations, the proposed messages are:

info(x), Join(src, dest, type), Refers(y), Add(x,type), Bye(), Request_node(type),

Node_reply(x), Disconnect(), Ok().

 Info(x) is sent by the controller to the connector, the wrapper or the session

repository. It is an invitation to join node x, which is necessarily a controller. This

message is also sent by a session repository to another session repository and has the

same meaning. It allows session repositories to establish full mesh connections.

 Join(src, dest, type) is sent by any overlay node to the controller. It can also be sent

by a session repository to another session repository. It means that the source src

having the type type wants to join (i.e. establish a link) with the destination dest. This

message is usually sent following the reception of the info(x) message.

 Refers(y) is sent by a controller to nodes of type*+ (i.e. non-controller overlay nodes).

The destination is informed that it is redirected. The destination is invited to join node

y (necessarily a controller). The message is sent as a result of the controller‟s decision

algorithm execution. A Refers(y) message is also sent by a leaving connector to the

 107

end-user, which is thereby informed about an alternative connector (i.e. y) to use to

access the SSE.

 Add(x,type) is sent by a controller to another controller. The sender requests that the

destination controller adds the node x of type type to its managed nodes list (i.e. its

logical control area).

 Bye() is sent by any overlay node to its default controller to announce its departure.

 Request_node(type) is sent by a controller to another controller to request a node of

type type.

 Node_reply(x) is the reply to the previous message with the node x matching the

requested type.

 Disconnect() is a message sent by a controller to a node of type*+ or by a connector to

the controller to remove the sender‟s related information from the receiver‟s list. It is

an update message for overlay nodes. In fact, each node of type*+ keeps a list of

controllers it is connected to and identifies the default controller. This list needs to be

updated in some cases (e.g. the default controller leaves). Furthermore, since the

connector is connected to one and only one controller, this message is required when

the connector has to change its controller following a re-organization process.

 Ok() is used to acknowledge Bye, Add, Join and Refers.

The proposed messages for self-organization and self-recovery operations are

summarized in Table 5.3, in which CTR refers to the controller, CONN refers to the

connector, SR refers to the session repository and WR refers to the wrapper. CTR →

{CONN, WR} means that the message is sent by a controller to either a connector or a

 108

wrapper. {CONN, WR}→ CTR means that the message is sent either by a connector or by

a wrapper to a controller.

As mentioned earlier, these messages can either be part of a new protocol or extend an

existing one. Next, we propose a possible mapping between the proposed messages and

SIP messages. Headers should be extended to reflect message meanings.

Info() can be implemented using the SIP REFER message. Join() can be implemented

using SIP INVITE. This latter may also implement the Refers() overlay network message.

Add() may be implemented as a SIP REGISTER message. Request_node() and

Node_reply() can be implemented by the SIP INFO and SIP OK messages, respectively.

Disconnect() and Bye() may best be mapped to SIP BYE, and Ok() to SIP OK.

Table 5.3: Proposed messages for overlay network organization and recovery operations

Messages From → to meaning

 Info(x) CTR → {CONN, WR, SR};
SR→SR

 Its an invitation to join the
node x

Join(src,dest, type) {CONN,WR,SR,CTR}→CTR ;
SR→SR

src wants to join dest; type is
the src type.

Refers(y) CTR → {CONN, WR, SR };
CONN→EU

1- Destination is informed that
he is redirected to join y.

 2- Informs the end-user about
the new connector x

Add(x,type) CTR→CTR Add node x to the receiver‟s list

of controlled nodes.

Bye() {CONN, WR, SR, CTR}→ CTR I am leaving

Request_node(type) CTR → CTR Request a node of type type

Node_reply(x) CTR→ CTR Reply with the address of the
requested node.

Disconnect()
 CONN→CTR ;

CTR→{CONN, WR, SR}
Remove the sender from the
receiver‟s list.

 109

Table 5.4 presents the messages for data exchange.

5.5.2 State diagrams

In this section we present the state diagrams that illustrate the behaviour of the proposed

overlay network. Each entity in the overlay network behaves differently according to the

protocol. However, at an abstract level the different entities composing the global system

go through the same abstract states. Figure 5.7 presents the abstract state diagram of the

global system behaviour.

Initially, the overlay nodes explore the networks to discover the existing nodes and

publish their type. Then a process is started to either join an existing controller or to wait

for an invitation to join a controller. The various data are updated accordingly.

messages meaning

Add_entry() Add an entry in a session repository or a controller table.

Remove_entry() Delete the entry of a leaving or unavailable session repository
or controller

Update_entry() Update the information related to a given session repository or
a controller

Get_entry() Retrieve information from a remote session repositories or
controller

Table 5.4: Proposed messages for data exchange

Joining Ready

Reorganize
Leaving

Figure 5.7: The abstract state diagram of the global system

 110

Afterwards, the nodes reach the Ready state where they contribute to service executions.

If any change (e.g. a node leaving, a node joining) occurs, certain nodes (e.g. controllers)

start the reorganize process to maintain the logical structure of the overlay network and

return to the steady state Ready. Other nodes of a different type may be involved in the

reorganization process. The node that wishes to quit moves to the leaving state and then

disconnects. The Leaving state also deals with unexpected failures.

To illustrate this behaviour more clearly, we present the complete state diagrams of the

overlay network entities (i.e. wrapper, connector, session repository and controller).

Conditions are between brackets, question marks indicate message reception and

exclamation marks indicate outgoing messages.

5.5.2.1 The wrapper state diagram

Figure 5.8 presents the state diagram of the wrapper, where ControllerExist equals 1 if a

controller is present in the network at that moment, and 0 if not.

First the node gets the list of existing nodes in the MANET. If there is no controller in

the network then the wrapper moves to an idle state waiting for a message from a joining

controller. If it finds a controller A in the network it sends out a join message, waits for a

reply and updates its data. The reply may be either an ok, meaning that controller A

accepts the join, or a Refers, meaning that controller A redirects the node to another

controller. Now the wrapper is ready to participate in the service execution. The wrapper

can receive a Refers, an Info or a Disconnect message for reorganization purposes. The

wrapper receives the Refers message when it is in the logical control area of a failed

controller (i.e. a leaving or a crashed controller). The Info message is received from a

controller when that controller gets the wrapper‟s address as a reply to a Request_Node

 111

message. A Disconnect is received from the last controller. When this controller leaves,

it sends a Disconnect to its managed nodes.

Upon reception of these messages in the Ready state, the wrapper updates its data, replies

and eventually returns to the Ready state. The service execution, if any, is resumed.

To leave the network properly, the wrapper sends a bye message to its controllers and

waits for the reply from its default controller before it disconnects.

5.5.2.2 The connector state diagram

The connector state diagram is similar to the wrapper state diagram. However, there are

some fundamental differences. Actually, a connector can be managed by one and only

one controller at a given time. Thus, a connector can only accept one join invitation. It

has to verify if it is already connected to a controller before it accepts. Furthermore, for

any reorganization purpose it should disconnect from its current controller, if possible

? Ok

! Bye

? Disconnect

? Refers(newController)

! Ok

? Info

! Join

? Ok

? Info

! Join

? Ok

? Refers(newController)
! Ok

 {ControllerExist == 1}
 ! Join

{ControllerExist == 0}

Initial
Idle

Ready
Waiting
reply

Waiting Ok

Waiting
disconnect

? Disconnect

Waiting Ok to
Bye End

Figure 5.8: The wrapper state diagram

 112

(i.e. it is not involved in a service session), before it connects to another controller.

Figure 5.9 shows the connector state diagram.

Another fundamental difference between a wrapper and a connector is the leaving

process. Indeed, when a connector decides to leave it sends a Bye to its controller. If a

connector is free (i.e. is not involved in a service session) then it receives an Ok and quits.

However, if a connector is involved in a service session, it receives the address of an

alternative connector via the Refers message. The leaving connector then informs the

end-user of the alternative using Refers, waits for an acknowledgement (i.e. Ok message),

sends an Ok to the received Refers and then quits.

Figure 5.9: The connector state diagram

? Ok
{Stauts == free}

! Bye

? Disconnect

? Refers(newController)

! Ok

? Info & {status==free}
! Join; !disconnect

? Ok

? Info

! Join

? Ok

? Refers(newController)
! Ok

 {ControllerExist == 1}
 ! Join

{ControllerExist == 0}

Initial
Idle

Ready
Waiting
reply

Waiting Ok

Waiting
disconnect

? Disconnect

Waiting Bye
reply

End
? Refers(newConnector)
{Status == busy}
! Refers(newConnector)

Waiting EU reply Wait Ok to Bye

? Ok

? Ok (from EU)
! Ok (to Controller Refers)

 113

5.5.2.3 The session repository state diagram

Figure 5.9 presents the state diagram of the session repository entity. Some parameters

are needed to express the conditional transitions. Therefore, SR refers to Session

Repository, Ctr refers to Controller, N_SRs refers to the number of SRs in the overlay

network at that moment, list_SRs refers to a list of addresses of SRs and k is a counter.

Session Repositories (SRs) have to establish a full mesh connection in order to exchange

their sessions and applications information. Therefore, when an SR joins the overlay

network, if controllers (Ctr) are founded it randomly joins one of them. The chosen Ctr

? Info
! Join

? Info
! Join

? Ok (list_SRs)
{list_SRs≠ø}; !join to SRs

? Refers(newCtr, list_SRs)
 {list_SRs≠ø}; !Ok ; !join

 {ControllerExist == 1}
 ! Join

{ControllerExist == 0}

Initial
Idle

Wait ACKs Waiting
reply

Waiting Ok

Ready

? Ok (list_SRs)
{list_SRs≠ø}; !join to SRs

?Ok
{k < N_SRs} ?Ok

{k==N_SRs} ? Ok (list_SRs)
{list_SRs=ø}

? Refers(newCtr, list_SRs)
 {list_SRs=ø}; !Ok

? Ok (list_SRs)
{list_SRs=ø}

?Disconnect

! Bye

End

Wait Ok to Bye

? Ok
!Disconnect(list_SRs)

?join (list_SRs)
{list_SRs=ø}
!ok

? Disconnect

? Refers(newCtr)
! Ok

Waiting
disconnect

?join (list_SRs)
{list_SRs≠ø}; !ok
!join (list_SRs – 1)

Figure 5.10: The session repository state diagram

 114

replies/accepts using the Ok message, or it redirects the SR to a new controller (newCtr)

using the Refers message. However, in both cases the reply also contains the list of SRs

available in the network. The SR then sends a join to all the SRs on the list and moves to

the Wait ACKs state. There, it waits for acknowledgements (i.e. Ok messages). When all

of these have been received, the SR moves to the Ready state. If no SR existed before in

the joining session repository, the list is empty. In that case, the behaviour is similar to

that for the wrapper and the connector.

The joining SR moves to an Idle state when no controller is found. Then the SR waits for

a first controller to arrive. When this first controller replies to a join message it should

include a list of the existing SRs. Since no connection has yet been established, the

controller sends an empty list to all the SRs except for a chosen one (e.g. the one with the

highest IP). The selected SR runs an algorithm to establish a full-mesh link. The

motivation for this procedure is to avoid duplicate messages between SRs when

establishing full-mesh links.

The algorithm is executed by the SR when it is in the Waiting Ok state or in the Ready

state and it receives a non-empty list (L) of SRs. In these cases, the SR that runs the

algorithm chooses a session repository, say SR1, from the list L (e.g. the one with the

highest IP) and removes that one from the list. The resulting list is L’. It then sends a join

message with an empty list to all the SRs on the list L’, and sends to SR1 a join message

with the L’ list (i.e. the initial list except for the chosen SR). The initial SR then moves to

the Waiting ACKs state. This is the full mesh connection algorithm. At a given round of

this algorithm, the list will be empty and each SR will have a link with all the other SRs.

 115

Figure 5.11 shows the SR full mesh connection algorithm.

In the Ready state, Refers, Bye, Disconnect and Info messages are handled the same way

as for the wrapper state. The Disconnect may be received from either the last leaving

controller or from a leaving session repository. Information is updated accordingly.

When a join is received from an SR, the associated list of SRs is checked. If the list is

empty then the message is acknowledged and the SR remains in the Ready state.

However, if the list is not empty, the SR uses the full mesh connection algorithm to send

the corresponding join messages and moves to the state Wait ACKs.

5.5.2.4 The controller state diagram

The controller is the entity responsible for managing the overlay network nodes (i.e.

nodes of type*+). Therefore, it has a complex state diagram. For clarity, we present the

controller state diagram in three separate parts: Joining, Ready and Recovery. Joining

illustrates the controller‟s behaviour when it first comes into the MANET. The Ready

Let :

L_SR: List of session repositories

SR(i): the ith session repository ; SR(0) = this session repository

S_SR: the selected session repository

Empty_L: empty list

Input = L_SR ; Output = none

Start

 Remove SR(0) from L_SR

 S_SR = highest_IP (L_SR)

 Remove S_SR from L_SR

 For i in L_SR

Send join(Empty_L) to SR(i)

 End For

 Send join(L_SR) to S_SR

End

Figure 5.11: The SR full-mesh connection algorithm

 116

part presents the controller‟s behaviour in response to events (e.g. nodes joining, nodes

leaving). The Joining and Ready parts illustrate the self-organization aspect of the

overlay network. The Recovery portion shows how the controller acts prior to its

departure or when it detects unexpected node failures. This part illustrates the self-

recovery aspect of the overlay network.

The global controller state diagram is obtained by sequentially combining the three parts.

States with the same name refer to the same state.

Figures 5.12, 5.13 and 5.14 illustrate the different parts, where: N_Nodes is the number of

overlay nodes in the network at a given time, N_Ctrs is the number of existing controllers

in the network at a given time, L_SRs is the list of existing session repositories and k is a

counter.

 The controller’s Joining part

Figure 5.12 presents the state diagrams of the controller Joining part.

Initial

Wait_Ctr_Oks Ready

Wait_joins {N_Nodes > 0 ; ControllerExist==0}

!info (to all nodes)

{k<N_Nodes}
?join
!Ok (L_SRs)

{k=N_Nodes
or time out}

{N_Nodes == 0}
{N_Nodes > 0 ;
ControllerExist==1}

!join (to controllers)

{k<N_Ctrs}
?Ok(Ctr_entry)

{k=N_Ctrs or time out}

Figure 5.12: The Joining part of the controller state diagram

 117

When a controller comes in it may be the first node in the overlay network, in which case

it moves directly into the Ready state. However, some overlay nodes may already be in

the network. In this case, if the existing nodes are all of type*+ (i.e. no controller has

joined before) then the controller invites those nodes, waits for the corresponding join

message, acknowledges them and moves to the Ready state. The controller includes the

list of existing Session Repositories (SRs), if any, in only one acknowledgement to a

chosen SR, which will execute the SR full mesh algorithm, as explained previously.

If a joining controller is not the first one in the MANET, it joins the existing controllers

and waits for the replies before it moves to the Ready state. The controllers’ replies

contain entries that constitute the controller’s data table, as shown in Table 5.2.

 The controller Ready part

The Ready part is illustrated in Figure 5.13. For clarity reasons we split the figure into

two pieces, Figures 5.13.a and 5.13.b. The former basically presents the controller

handling joining nodes, while the latter mainly shows the controller handling leaving

nodes. In these figures, accept equals 1 if the controller decides to accept a joining node,

equals 0 if it decides to redirect it, and reply is true if the controller can reply, but false if

not. Indeed, in Figure 5.13.a the controller‟s behaviour depends on the type of the joining

node. If controller A receives a join from another controller then it sends an Ok to that

node with the information about the nodes associated with controller A.

If controller A receives a join from a node of type*+ and accepts to add it to its logical

control area, then it sends an Ok and informs the other controllers in order to update their

tables. The Ok message is sent with the list of existing session repositories when the

joining node is a session repository. However, if controller A decides to redirect the join

 118

message to another controller, then it informs that controller using the Add message.

After receiving the Add acknowledgement, controller A informs the joining node about

its new controller using Refers. The Refers message contains the list of existing SRs

when the node considered is an SR.

Figure 5.13: The Ready part of the controller state diagram

Ready

Wait_n_join

Wait_node

?xxx_entry
{xxx=add or
remove or update
or get}

?Ok (to Refers)
! Ok (to Bye)

?Bye (from X)
{ type(X)=type*+ ;
 Z in my list with
 type(Z)=type(X)}
!Ok
!update_entry

?Bye from X
{type(X)=type*+ ; no Z in my list
 with type(Z)=type(X)}
!request_node

?join (from Y)
{type(Y)≠connector}
!Ok (to join)
!Ok (to Bye)
!update_entry

?Bye(from X)
{type(X)=controller}
!Ok

{time out}
!update_entry

 !Ok (to Bye)

?Node_reply
!info

Wait_n_ok_ref

?join (from Y)
{type(Y)==connector}
!Ok
!update_entry
!Refers(Y) to X

Figure 5.13.b: The Ready part state diagram: piece 2

Ready

Wait_Ok_Ref

Wait_ok_add

?join (from X)
{ type(X)=type*+ ;accept==1}
!Ok(L_SRs)
!add_entry

?Ok
! Refers(L_SRs) ?join (from X)

{ type(X)=controller}
!Ok(Ctr_entry)

?join (from X)
{ type(X)=type*+ ;accept==0}

!add(newCtr)

?Ok ?add
!Ok
!update_entry

?Request_Node(X)
{reply=true}
!Node_Reply

?Request_Node(X)
{reply=false}

Figure 5.13.a: The Ready part state diagram: piece 1

 119

Upon receipt of an Add, the controller sends an Ok and asks the other controllers to

update their tables accordingly. Finally, a controller may or may not reply to a

Request_Node message. If the controller has the requested node in its logical control area

it responds, otherwise it ignores the message.

In Figure 5.13.b, the controller manages the expected failures of nodes (i.e. when nodes

depart voluntarily). The simple cases are when controller A receives a Bye from another

controller or from an overlay node X of type*+ such that there is a node of the same type

as node X in the logical control area of controller A. In this situation controller A does

not need to request a node and simply acknowledges the Bye. When the leaving node is

of type*+ it sends an update message to the other controllers.

In the other cases, the controller should request a node of the same type as the one that is

leaving. Since a SIP servlets engine cannot exist unless a controller is connected to at

least one connector, one wrapper and one session repository, requesting a node has two

advantages. First, it ensures service continuity and second, it allows a controller to form a

distributed SIP servlets engine.

After requesting a node, the controller either receives a reply or times out. A reply is only

received when a node of the same type is available in the network. That node is then

invited to join the controller which sent the request. At that level, if the leaving node is a

connector C, the controller also sends a Refers message with an alternative connector

(i.e. the one received in the reply) to connector C. This latter then forwards this message

to the end-users as an alternative access point to the SIP servlets engine. Finally, the

Controllers’ data tables are updated.

 120

 The controller Recovery part

This part handles the volunteer departure of a controller. Furthermore, it illustrates how

the controller acts upon unexpected failure detection. Figure 5.14 shows the recovery part

of the controller state diagram, where: last_Ctr is true if the controller is the only

controller in the network when it decides to leave and false if not; and Card(X) is the

number of controllers the node X is linked to. Card(X)=1 means that the node X is

connected to only one controller. L_Card_1 is the list of nodes Y such that Card(Y) = 1,

while L_Card_n is the list of nodes Y such that Card(Y) > 1. N_S_Ctrs refers to the

number of selected controllers. A controller is selected through the decision algorithm

for assigning nodes. Finally, the parameter Crash = 1 means that we are in the case where

the controller is handling another controller‟s crash (i.e. an unexpected failure).

Ready

End

{Last_Ctr = true}
!disconnect()

{k==N_Ctrs or
time out}

{Last_Ctr = false ;
 L_Card_1≠ ø ;

 L_Card_n = ø }
!Bye (to Ctrs)

!remove_entry
!disconnect(to L_Card_1)

{Last_Ctr = false ;
 L_Card_n ≠ ø }
! add(to S_Ctrs)
!disconnect(to L_Card_n)

{Last_Ctr = false ;
 L_Card_1= ø ;
 L_Card_n = ø }
 !Bye(to Ctrs)

Wait_Oks_Bye

Wait_add_Ok

?Ok
{k<N_Ctrs}

Wait_Ref_Ok

{k=N_S_Ctrs}
! Refers(to L_Card_1)

?Ok
{k<N_S_Ctrs}

 ?Ok
!disconnect

{k<size(L_Card_1)}

{k==size(L_Card_1);
 Crash==1}
!remove_entry()

{k==size(L_Card_1);
 Crash==0}
!Bye (to Ctrs)

Figure 5.14: The Recovery part of the controller state diagram

 121

A controller that decides to leave has to assign its nodes to the existing controllers.

However, if there is no other controller in the network at the moment of its departure the

controller informs its managed nodes via a Disconnect message and quits. Furthermore,

not all managed nodes are assigned. Actually, nodes that have the leaving controller as a

unique controller (i.e. no other controller is managing that node) are the only ones to be

assigned. Therefore, the remaining nodes (i.e. nodes with more than one controller) will

be informed using the Disconnect message so they can update their table.

When no node reorganization is required, the leaving controller sends a Bye to the

existing controllers and waits for the acknowledgement. However, when some nodes

need to be assigned, the controller runs the decision algorithm to select the target

controllers. It then sends Add messages and waits for responses. Afterwards, it informs

each node about its new controller using the Refers message. When the acknowledgment

is received the controller is allowed to send Bye to the other controllers. Data tables are

updated accordingly.

For crash detection, the controller detects not only its nodes‟ crashes, but also the other

controllers’ crashes. When a node of type*+ crashes, its controllers detect it. Therefore,

they act as if they have received a Bye from that node (see figure 5.13). If another

controller crashes it is detected by all the other controllers. However, it is the one with

the highest IP address (i.e. a temporary head) that initiates the recovery. Basically, the

procedure is similar to a controller leaving procedure (figure 5.14). Indeed, the concerned

states are Ready, Wait_add_Ok and wait_ref_Ok. The temporary head plays the role of

the crashed controller that decides to leave. At the wait_ref_Ok state the temporary head

goes back to the Ready state instead of sending a Bye.

 122

The three Figures, 5.12, 5.13 and 5.14, present the behaviour of the controller. Compared

to the global system behaviour (Figure 5.7), the Joining part corresponds to the Joining

state, Ready part matches Ready and Reorganize states and Recovery details the Leaving

state.

5.6 Illustrative scenarios

This section presents examples of flow diagrams illustrating some of the cases discussed

above. A scenario for self-organization and two scenarios for expected and unexpected

failures are presented.

5.6.1 Self-organization

Figure 5.15 shows the interactions between the overlay nodes when a node of type*+ (in

this case a connector) joins the network.

Figure 5.15: Interaction following a connector joining the overlay network

Ok

Ok
Refers (Ctr2)

Add (conn2, connector)

Join (conn2, Ctr1, connector)

Discover type

Controller (1) Connector (1) Wrapper (1) Controller (2) Connector (2)

add_entry()

Decision = forward

 123

In this scenario we assume that Connector(1) and Wrapper(1) are under the control of

Controller(1) (Ctr1), while Controller(2) (Ctr2) has no overlay nodes attached to it.

When Connector(2) (conn2) joins the overlay network, it discovers the list of overlay

nodes (Connector(1), Wrapper(1), Controller(1), Controller(2)) and then chooses

randomly to join Ctr1.

Upon the reception of the join request, Controller(1)(Ctr1) acts temporarily as a head for

the group of controllers. It then verifies the list and the type of the overlay nodes attached

to each existing controller. In this example, Ctr1 can see that it already controls a

connector while Controller(2) has no overlay node under its control. Therefore, to give

every controller the opportunity to play its role and form a SIP servlets engine,

Controller(1) decides to redirect the join request to Controller(2). It sends an add request

to the chosen controller and informs Connector(2) of this operation using Refers. At the

end, Controller(2) takes control of Connector(2). The other controllers are informed to

update their data table.

5.6.2 Self-recovery

First let us consider a voluntary departure. In this scenario, Controller(1) controls

Wrapper(1), and Controller(2) controls Wrapper(2).

Wrapper(1) decides to leave. Therefore, it sends the Bye request to its controller.

Controller(1) then multicasts a request for a free wrapper to the community of controllers

and receives a reply with the address of the available wrapper.

Controller(1) invites Wrapper(2) to join it via the info request. Wrapper(2) then joins

Controller(1), which multicasts an update_entry() to the other controllers to update their

tables.

 124

Figure 5.16 presents the corresponding flow diagram.

Figure 5.17 illustrates an unexpected controller failure. In this example, Controller(1)

controls Wrapper(1), Controller(3) controls Wrapper(2) and controller(2) has no node.

Controller(1) crashes suddenly.

Since all the controllers know each other‟s address, the head election is done

automatically after the failure is detected. The temporary head, say Controller(3) in this

example, decides to which controller(s) each node of the failed controller will be

assigned. Controller(3) runs the decision algorithm to balance nodes among controllers.

As a result and taking the controllers’ capacity into account, Wrapper(1) has only one

controller that crashes. Then, it must be assigned to an alternative controller.

Figure.5.16: A wrapper voluntarily leaving the overlay network.

Node_reply (wrapper2)

Use

Update_entry ()

Join (Wrapper2,Ctr1, Ctr)

Bye

Controller (1) Wrapper(1) Controller (2) Wrapper (2)

Ok
Ok

Request_node (wrapper)

Info (Ctr1)

 125

Controller(3) assigns Wrapper(1) to Controller(2) and informs Wrapper(1) that its new

controller is Controller(2). The temporary head also instructs Wrapper(1) to disconnect

from Controller(1) since it is no longer available. This is done by updating Wrapper(1)‟s

table. The controllers then update their tables accordingly.

5.7 Summary

In this chapter we have proposed an overlay network for service execution environment

in MANETs. It is based on a distributed SIP servlets engine. The motivations behind the

Figure 5.17: An unexpected controller failure.

Remove_entry (Ctr1)

Refers (Ctr2)

Auto-election of a
temporary head

Detection
Failure

Update_entry ()

Controller(1) Wrapper(1) Controller(2) Controller(3)

Ok

Detection

Wrapper(2)

Decision
Add (wrapper1,wrapper)

Ok

Disconnect (Ctr1)

 126

proposed architecture have been discussed and an introduction to overlay networks was

provided.

The overlay architecture has been depicted in detail. The architectural principles and

assumptions were presented and the architecture design discussed. Furthermore, the

overlay nodes have been described and procedures to construct, maintain and re-organize

the overlay architecture elaborated. A protocol for the overlay network operations has

been proposed. The data format of the exchanged information and the protocol messages

were discussed. The corresponding state diagram for each overlay node has been

elaborated. Finally, scenarios illustrating some examples of the flow diagram were

described.

 127

CHAPTER 6: A SIP servlets service provisioning

architecture for integrated 3G/MANET networks

Integrated 3G/MANET networks have been explored with great interest thanks to their

numerous benefits. However, the service aspects of these networks remain unexplored.

This chapter proposes an architecture that is based on the SIP servlets paradigm for

service provisioning in Multihop Cellular Networks (MCNs). The chapter starts with an

introduction to the integrated 3G/MANET service provisioning, followed by a

description of the SIP servlets framework in IMS. Then, it presents an exhaustive view of

high-level architectural alternatives for service integration based on SIP servlets. The

alternatives are discussed and the most interesting ones are identified. A detailed

architecture is then proposed to realize one of the most promising alternatives.

6.1 Introduction

The integration of 3G and MANET networks is an important application of the 4G

vision. The main goal behind this integration is to create a new network that has the

advantages of both MANET and 3G networks. Indeed, MANETs are known for their

ease of deployment, low cost, high bandwidth and multi-hop routing, while 3G are

infrastructure-based, easy to manage, have a billing system and take security issues into

account. Therefore, there has been more than enough justification for professionals to

elaborate solutions for this integration. Indeed, MCNs enable new business opportunities

 128

by opening the 3G network to MANET users and vice versa. Furthermore, potential

performance gains are expected by taking advantage of the high throughput of MCNs,

and service execution times may be enhanced with an appropriate integration solution.

3G/MANET integration for service provisioning entails the choice of the 3G architecture

and the service provisioning framework. The IMS network is considered since it is a 3G

standard based on SIP and its deployment is growing. It is a promising architecture for

next generation services. Furthermore, we propose an integrated architecture based on a

SIP servlets framework for service provisioning, since SIP and SIP-based protocols are

the prime signalling protocols for 3G, MANETs and integrated 3G/MANETs. In

addition, SIP servlets are a part of IMS service provisioning, and we have already

proposed a SIP servlets-based architecture for providing services in MANETs.

6.2 SIP servlets framework in IMS

The SIP servlets service provisioning framework in MANETs was discussed in chapters

4 and 5. This section details the framework usage in IMS architecture.

Service provision in IMS involves three main entities: the HSS, the CSCF and the SIP

AS. The main data stored in the HSS is composed of user identities, registration

information and security information. However, the user profile is the most important

part because it determines the services that will be provided to each user and states the

rules for service triggering. A user profile contains a set of information related to a

particular user. The initial filter criteria is the most important element for service

provisioning because it describes when and which services are to be invoked, under

which conditions and in which order. The S-CSCF downloads the user profile or part of it

 129

(i.e. the initial filter criteria) from the HSS when the user registers for the first time with

that S-CSCF. This same S-CSCF evaluates the initial filter criteria and contacts the

proper application server. The communication between the HSS, the S-CSCF and the AS

is accomplished through standardized IMS interfaces. Figure 6.1 shows a simplified view

of the SIP servlets service provisioning model in IMS.

6.3 SIP servlets-based service provisioning in Multihop Cellular

Networks: high-level architectural alternatives

The SIP servlets-based service provisioning process requires four key entities: a service,

a party interested in that service (i.e. the user equipment), SIP servlets and a SIP servlet

engine. Any of these entities can be hosted either in the MANET or in the 3G portion of

the MCN.

Figure 6.1. Simplified view of the SIP servlets service provisioning model in IMS

3G core network
SIP AS

(services, SIP servlets, SIP
servlets engine, SIP intefaces)

BTS
BTS

BTS

HSS
S-CSCF

ISC

Cx

Sh

Ut

 130

The architectural alternatives are defined by the different possibilities for hosting these

entities. Table 6.2 presents all the possible options.

Entities MCN sub-network type

Service 3G MANET 3G MANET MANET 3G

User equipment 3G 3G 3G MANET MANET MANET

SIP servlets 3G 3G MANET MANET 3G MANET

SIP Servlets engine MANET MANET MANET 3G 3G 3G

However, the SIP servlets‟ location has no significant impact on service provisioning.

Indeed, they are loaded at run time from their respective locations. Any file transfer

protocol can be used. Therefore, we will focus on the service, user equipment and SIP

servlets engine locations.

We classify the alternatives according to where the service is executed (i.e. where the SIP

servlets engine is hosted). This gives us two categories. In the first category the SIP

servlets engine is hosted in the MANET while in the second category it is hosted in the

3G. In each category three alternatives can be considered; these refer to the allowed

options for hosting the remaining entities. For instance, when the service is executed in

3G, the alternatives are: user equipment and service logic hosted in the MANET; user

equipment in the MANET and service logic in 3G; and user equipment in 3G and service

logic in the MANET.

Table 6.1. All the possible options for hosting the SIP servlets framework in MCNs

 131

We assume in each case that all of the interactions between the 3G and the MANET sub-

networks are done via a new entity we call the Service Gateway (SGW). The alternatives

are described and discussed next.

6.3.1 Services executed in the MANET portion

In this category, all the invoked services are executed in the MANET sub-network. In

other words, the execution of the services provided by MANET service providers or by

3G service provider is performed in the MANET portion.

The MANET is seen as an execution environment, which is especially interesting for a

network operator anticipating a performance. In fact, running a service in a MANET

instead of in a 3G can speed up the service execution time: remote S-CSCFs and AS

communications are avoided while peer-to-peer connections are promoted. Furthermore,

this option can be used for load balancing when the 3G network nodes and particularly

the ASs are overloaded.

Another impetus to run services in a MANET is when the connection to the 3G network

is not reliable or it cannot be maintained for a long time. In battlefields or emergency

situations, for example, it would be better to run a service in the MANET since the

connection to the 3G cannot be guaranteed throughout the service execution time. This is

practical when all the involved users are in a MANET. The different alternatives for this

category are described below.

6.3.1.1 User equipment and service logic are in the 3G portion

This alternative is a remote service execution. A user in 3G can access his or her 3G

services, but a service provider decides to run its service in a MANET. Therefore, the

 132

application server may contain the service logic only. The execution environment (i.e. the

SIP servlets engine) is provided by a user in the MANET (i.e. SSEP). The service

execution can be routed to a MANET via the service gateway. Figure 6.2 illustrates this

alternative.

The end-user is in the 3G sub-network and invokes a service from its user equipment

(UE). Then the service provider redirects the execution to the MANET. Several criteria

can be defined and implemented in the AS to redirect a service execution to the MANET.

6.3.1.2 User equipment is in MANET and service logic is hosted in 3G

In this alternative, end-users in the MANET sub-network access and run 3G services. The

services are hosted in the 3G network. This alternative is an interesting option for 3G

operators to extend their network coverage using MANETs. Indeed, 3G users that are out

of the network coverage can use the MANET sub-network to access their services and

run them in the MANET. Furthermore, this option helps to achieve service continuity.

Service continuity happens when a user moves from a 3G home network to a 3G visited

3G

End-user

AS (Service A)

Service Gateway

 SSEP

IMS core network UE

SP (service B)

Figure 6.2. Service execution in MANET: UE and service logic in 3G

 133

network but the only connectivity between these two networks is ensured by a MANET.

Figure 6.3 illustrates this alternative.

The end-user in the MANET sub-network accesses its 3G services using the application

server (AS) hosted in the 3G. This access is done through the service gateway. The AS

checks the criteria for service execution and decides to redirect the execution to the

MANET. The SIP Servlets Engine Provider (SSEP) is then reached and the execution

initiated. The service gateway hides the nature of the SIP Servlets Engine (SSE), which

may be centralized or distributed.

6.3.1.3 User equipment is in 3G and service logic is hosted in MANET

In this alternative the user is in the 3G network and the service is hosted in a MANET.

MANET services can be provided either by the network operator or by individuals. This

option is economically promising since it opens the 3G network to totally new services

by allowing individuals in the MANET portion to provide a range of new services.

The 3G users discover the MANET services through the service gateway, which also

plays the role of an application server providing all the services from the MANET.

Figure 6.3. Service execution in MANET: UE in MANET and service logic in 3G

3G

End-user

AS (Service A)

Service Gateway

 SSEP

IMS core network UE

SP (service B)

 134

When a MANET service is invoked, the S-CSCF redirects the request to the service

gateway that forwards it to the appropriate MANET service provider.

Furthermore, users that move from the MANET portion to the 3G portion can access and

run the services they have discovered in the MANET. This is achieved transparently

thanks to the qualities of this alternative, illustrated in Figure 6.4.

Using its user equipment (UE), the end-user in the 3G discovers and accesses the service

B hosted in the MANET via the service gateway. The service is provided by a Service

Provider (SP) in the MANET. The SP then contacts the SIP Servlet Engine Provider

(SSEP), which executes the service.

6.3.2 Services executed in the 3G portion

In this category the services provided by MANET or 3G service providers are executed in

the 3G sub-network. The network operators may decide to run a service in the 3G portion

in order to save the MANET resources (i.e. bandwidth, devices‟ memory, processing and

battery). By running services in the 3G portion, an operator ensures: better security,

Figure 6.4. Service execution in MANET: UE in 3G and service logic in MANET

3G

End-user

AS

Service Gateway

 SSEP

IMS core network UE

SP (service B)

 135

reliability, control over the service provision process, and frees the MANET resources

from heavy processing. In particular, this category is attractive for services that require a

high level of security. In such cases, it is better to run the service in a secure environment

(i.e. a 3G sub-network) but at the same time the service can be provided by any user (e.g.

a MANET service provider) which guarantees openness and service diversity. The

possible alternatives under this category are described below.

6.3.2.1 User equipment and service logic are in the MANET

 The service logic and the user equipment are in the MANET portion while the service is

executed in the 3G network. Given that the service provisioning process starts in the

MANET, the appropriate service publication and discovery mechanism is used to obtain

the list of available services. The MANET is then considered as a service creation

environment while the 3G is considered as a service execution environment. Figure 6.5

illustrates this alternative.

This alternative allows individuals in the MANET to provide innovative services without

concern for execution environment issues (e.g. security, billing). The MANET will play

3G AS (SIP servlets engine)

Service Gateway

End-user

IMS core network

SP (service A)

UE

Figure 6.5. Service execution in 3G: UE and service logic in MANET

 136

the role of a service creation environment: an open environment for interested parties,

while services are executed safely and with the required performance in the 3G.

The service provisioning starts in the MANET sub-network as described in chapters 4

and 5. When the service provider is reached it decides to run the service in the 3G sub-

network. The service gateway ensures transparency and plays the role of an application

server calling another application server (i.e. the one with the SIP servlets engine). A 3G

service provider may also wish to provide an SSE as a service through its AS.

6.3.2.2 User equipment in MANET and service logic hosted in 3G

Users in the MANET sub-network access and run the services hosted in the 3G sub-

network. Typically, this alternative allows users that are out of the 3G sub-network

coverage to access and run their 3G services. It also permits service continuity since users

in the MANET still have access to their 3G services. Figure 6.6 illustrates this scenario.

3G AS (SIP servlets engine +
service A)

Service Gateway

End-user

IMS core network

UE

Figure 6.6. Service execution in 3G: UE in MANET and service logic in 3G

 137

The MANET end-user accesses the 3G services it subscribed to via its user equipment

(UE). The MANET sub-network ensures the connectivity while the service gateway plays

the role of user equipment for the requested service. The AS evaluates the criteria to

determine where to execute the service. Another option is to pre-configure the AS with a

given location (i.e. 3G in this case). The AS runs the service locally, which may involve

users in the MANET and/or in the 3G sub-network.

6.3.2.3 User equipment is in 3G and service logic is hosted in MANET

In this alternative the service is hosted in a MANET but accessed from 3G user

equipment and executed in the 3G sub-network.

With this alternative, users in the MANET portion with very limited resources are

allowed to provide services to users in 3G. The networks are thus opened to services

developed by individuals with no special consideration for the execution environment

(i.e. the SIP servlets engine). The execution is performed in the 3G portion, which

preserves the limited resources of the MANET. This alternative is illustrated in figure

6.7.

3G AS (SIP servlets engine)

Service Gateway

IMS core network

SP (service A)

UE

Figure 6.7. Service execution in 3G: UE in 3G and service logic in MANET

 138

The 3G end-user discovers the services provided in the MANET sub-network using its

user equipment. The discovery is done through the service gateway, which plays the role

of an AS providing the MANET services. Another situation is when the end-user has

moved from the MANET to the 3G and kept its list of discovered services in the

MANET. Therefore, the service provider in MANET redirects the service execution to

the 3G AS, based on specific criteria.

6.3.3 Alternatives analysis

As we have seen, each alternative responds to various needs. The network operator is free

to configure the network with the desired alternatives according to its needs and the

expected benefits. Table 6.2 summarizes the different alternatives.

 Alternative 1 Alternative 2 Alternative 3

Service execution in
MANET

UE and service logic
in 3G

UE in MANET and
service logic in 3G

UE in 3G and service
logic in MANET

Service execution in
3G

UE and service logic
in MANET

UE in MANET and
service logic in 3G

UE in 3G and service
logic in MANET

MCNs were traditionally deployed for coverage extension and throughput improvement.

However, the proposed alternatives introduce new benefits for the MCNs. Indeed, from

the network operator point of view, the benefits expected from the different alternatives

include:

Table 6.2. Summary of the high-level architectural alternatives for SIP

servlets-based service provisioning in MCNs

 139

 3G services invocation by end-users that are out of coverage: The user equipment in

MANET and service logic in 3G alternative is a 3G coverage extension using MANETs.

This alternative allows end-users that are out of the 3G network coverage to access and

invoke their 3G services. When the service is executed in a MANET, this scenario

combines coverage extension with the advantages listed above regarding service

execution in MANETs (i.e. ,more rapid service execution, load balancing, overcoming

3G/MANET link failures). Furthermore, the network operator maintains control over the

service provisioning process.

 Individuals offering services in 3G settings: The user equipment in 3G and service logic

in MANET alternative opens the 3G networks to a new brand of services and a new

business model. Individual users can make services available in a 3G setting where new

business opportunities are promoted. MCNs then become very interesting economically.

However, the users in 3G should already know about the existing services in MANETs.

 Speeding up the service execution process: The end-user and service provider in 3G

alternative with execution in a MANET is advantageous when performance is important.

Indeed, remote S-CSCFs and application servers‟ communications are saved while peer-

to-peer connections are promoted. This can avoid both bottlenecks and overloaded

application servers.

 Providing a reliable execution environment for users and service providers that are in

the MANET: The end-user and service provider in MANET alternative with execution in

3G allows individuals in a MANET to provide innovative services with no consideration

for the execution environment issues. Therefore, executing services provided by users in

 140

a MANET becomes secure and reliable. Furthermore, the scarce resources of the

MANET are conserved.

Tables 6.3 and 6.4 review the advantages of service execution in MANET and in 3G,

respectively. The relevant MCN configuration is shown with its corresponding benefits.

 Advantages Relevant configuration

C
ov

er
ag

e
ex

te
ns

io
n Service execution Speed

up

All or most of users are in the
MANET

Avoid 3G-MANET

connectivity problems
All the users are in the MANET

Load balancing Any 3G/MANET combination : users
any where

 Advantages Relevant configuration

C
ov

er
ag

e
ex

te
ns

io
n Security Any 3G/MANET combination : users
any where

Save MANET resources Any 3G/MANET combination : users
any where

However, the different alternatives introduce several issues. The issue common to all the

scenarios is the need to extend the application servers. In fact, services may be executed

either in 3G or in MANET. Therefore, the network operator has to establish the criteria

for service execution for each service or category of services and then choose to run them

either in MANET or in 3G depending on the desired objective. For example, if the ASs

are overloaded for a period of time, the network operator may decide to switch execution

to the MANET as long as the situation continues. Similarly, if a given security level is

required for a category of services then the execution may be routed to the 3G.

Table 6.3. Advantages of service execution in MANET

Table 6.4. Advantages of service execution in 3G

 141

In certain scenarios the application servers do not need to use or even implement all of

the SIP servlets functionalities. For instance, when the services are executed in the

MANET, the AS does not need to use the SIP servlet engine functionalities and so it

should be able to activate or deactivate some of its functions.

From the above discussion and from the network operator point of view, the most

interesting category is when services are executed in the MANET portion. Furthermore,

the MCN configuration that takes the maximum advantage of this category is when all or

most of the users are in the MANET. Finally, the scenario where the services are offered

by 3G service providers results in only small impacts on the existing 3G and MANET

networks. In fact, all the security and reliability problems are avoided.

6.4 Provisioning services in MCNs when the end-users are in the

MANET portion

We will focus on the alternative where the end-users are in the MANET and the services

are hosted in the 3G but are executed in MANET. This section proposes a detailed

architecture for this alternative.

This solution has to deal with several issues. The first issue is the application server

criteria required to redirect the service execution to the MANET. The architecture has to

define this criteria and the process by which the AS makes a decision. The second issue is

related to load balancing. The solution should describe how to get load information and

from which entities to get it. The third issue concerns the users‟ location. The solution

should ensure that all users are in the MANET portion. However, where can this

 142

information be found? Furthermore, since the execution is done in the MANET, a

distributed SIP servlets engine should be able to be used, as well as a centralized engine.

The proposed architecture is detailed next. Architectural assumptions and principles are

discussed along with the architecture‟s functional entities and procedures. Furthermore, a

scenario is proposed as illustration.

6.4.1 Architectural assumptions

Some assumptions must be made to keep the solution clear and simple, and to produce a

sketch for a more complex and complete architecture. Therefore, we assume that the

decision of running a service in MANET or in 3G is made by the 3G application server.

This latter should have enough information to make the right decision for each service.

Furthermore, since we are in the scenario where all the end-users are in the MANET, we

assume that users‟ locations are stored in the 3G Home Subscriber Server (HSS).

Actually, in terms of user location, the current 3G HSS contains, among other data, the

location information data type. However, this information is related to the GSM/GPRS

users‟ location and it does not consider MANET users‟ locations. Basically, this

information indicates if a user is in the Circuit Service (CS) domain or in the Packet

Service (PS) domain. By analogy we assume that the HSS contains information that

mentions if a user is in the MANET portion of the MCN or in the 3G portion.

There are several ways to use SIP in MANETs: using clusters [40][107], full-mesh [107],

using the underlying routing protocol [108] or using a distributed SIP [111]. Therefore,

we assume that end-users in a MANET establish SIP sessions directly with other

MANET users in a full mesh or by using clusters, since the full mesh is more suitable for

 143

small MANETs and the clusters approach has proven its efficiency and has been

proposed for the integrated 3G/MANET.

The last assumption is that at any given time at least one SIP servlets engine is in the

MANET. This assumption is of utmost importance since the services are executed in the

MANET by the SIP servlets engine. Otherwise, the service execution cannot be

processed in the MANET.

6.4.2 Architectural principles

The proposed architecture relies on several principles. Indeed, the architecture is based on

a Service GateWay (SGW). An SGW is a functional entity that plays the role of a proxy

when used by MANET end-users to access the 3G sub-network. For better flexibility, the

SGW can be hosted either in the 3G or in the MANET portion. Furthermore, the 3G S-

CSCF and the MANET SIP Servlets Engine (SSE) are connected to the SGW. This latter

is treated as the entry point to the execution environment in MANET (i.e. the SSE). The

SGW, therefore, should be involved in the service execution process when the SSE in the

MANET will be used. In addition, for improved performance, several instances of the

service gateway may be available in the MCN. The 3G S-CSCF can either discover the

existing service gateways or be pre-configured with one or multiple gateways. In this

work we assume the pre-configuration option. The different SGWs, when they are

available, do not need to communicate with each other.

The service execution environment hosted in the MANET, namely, the SIP servlets

engine, is to be provided either by MANET end-users which make it available for 3G

use, or it is pre-installed by the network operator in a dedicated MANET node. The

second option will ensure the availability of the SSE at any given time while allowing

 144

individuals to provide their own SSE. Finally, in order to introduce minimal impacts on

3G and MANET sub-networks, and since SIP is the major signalling protocol in these

networks, the communication between the different functional entities of the proposed

architecture is performed using SIP-based interfaces.

6.4.3 Functional entities

Six functional entities are involved in the proposed architecture: the End-User Agent

(EUA), the S-CSCF, the Enhanced SIP Application Server (E-SIP AS), the Enhanced SIP

Servlets Engine (E-SSE), the Enhanced Home Subscriber Server (E-HSS), and the

Service Gateway (SGW). Figure 6.8 gives an overview of the architecture.

The EUAs are 3G subscribers that implement the application portion of the User

Equipment defined in the 3GPP standard [60]. They are located in the MANET portion of

the MCN.

The S-CSCF is the main entity in the 3G network defined in the 3GPP standard. No

changes are required at the S-CSCF level since the interface to the service gateway is

based on the SIP.

E-3GPP
SIP AS

Service
Gateway
(SGW)

EUA1

EUA2 3GPP
SIP AS

3G network
MANET

E-HSS

S-CSCF
E-SEE

Figure 6.8. An overview of the proposed architecture

 145

The 3G SIP application server, as defined by the 3GPP, hosts services, SIP servlets and

the SIP Servlets Engine (SSE). However, in the alternative studied here, the service is

executed in MANET. Hence, the SIP ASs may not use the SSE they own but instead use

the SSE hosted in the MANET portion.

In our architecture we propose an enhanced 3G SIP AS (E-3GPP SIP AS) which can

decide to run a service in the MANET portion even though it has a SIP servlets engine.

Therefore, the enhanced AS implements decision making logic described in the next sub-

section. This logic will allow the E-AS to dynamically choose to run a service locally or

in the MANET. Furthermore, the E-AS requires a mechanism to collect the network load,

which is considered as a criterion that affects the AS service execution decision.

In addition, the enhanced AS is also implementing an interface and a server-side software

to allow an SSE hosted in the MANET to download the required SIP servlets for service

execution.

The SIP Servlets Engine (SSE) is the entity described in [63] and is responsible for

service execution, which is provided by a SIP Servlets Engine Provider (SSEP). The

SSEP is either a MANET user or the 3G network operator. We extended the standard

SSE with new functions. Indeed, the Enhanced SSE (E-SSE) implements several

mechanisms. First, it provides a mechanism to register its SSE function with the SGW. In

fact, since the SGW is the entry point to the MANET execution environment (i.e. the

SSE) it should be identified by available E-SSEs. Then, these E-SSEs register with the

service gateway. Therefore, the E-SSE should implement a SGW discovery function

which is used prior to the registration process. Furthermore, in some cases the service

gateway may need to discover the E-SSEs hosted in the MANET portion, and so the E-

 146

SSE provides a publication function to make the E-SSE available for the SGW. An

additional function provided by the E-SSE is a client-side software for downloading SIP

servlets. Finally, since we are in a dynamic environment, a function to inform the SGW

when the E-SSE gracefully leaves the network is also required.

The HSS is the 3G subscribers‟ database as defined in the 3GPP standard [60],

augmented with the end-users location (i.e. 3G or MANET) as per our assumption, thus

becoming an enhanced HSS (E-HSS).

The architecture introduces a new entity in the middle. This entity makes the service

execution in MANET transparent to 3G users by hiding the SSE details. We call this

entity the Service Gateway (SGW). The SGW is used to manage the SSEs, especially

when multiple SSEs are offered. The mobility, availability and the addresses are

maintained transparently. The SSE configuration, distributed or centralized, is handled

and kept transparent by the SGW. Each SGW implements SIP to communicate with the

S-CSCF and the SSE. The SGW is seen as an AS from the S-CSCF where services are

executed or as 3G end-users that request 3G access. Furthermore, it implements

publication and discovery functions to allow SSEs in MANET discover the service

gateway and to discover the available SSEs in MANET, respectively. Finally, the SGW

processes registrations and de-registrations from SIP servlets engines and periodically

checks their availability.

6.4.4 Procedures

A SIP based interface is used between the different functional entities. However, two

more protocols are required for publication/discovery and for file transfer to download

SIP servlets files. Since we use the publication/discovery protocol in the MANET portion

 147

only, the protocol should take into account MANET constraints, especially resource

limitation. Therefore, any discovery protocol suitable for MANET can be used. We chose

the Pervasive Discovery Protocol (PDP) [98], a light-weight protocol designed especially

for ad-hoc networks and to preserve bandwidth. As for SIP servlets downloading, we can

reuse any relevant file transfer protocol. We opted for HTTP since it is already supported

by 3G ASs.

The procedures related to our architecture for service provisioning take place at three

different levels: before service execution, at the service execution runtime and at any

given time.

6.4.4.1 Before service execution

The service gateway uses the publication and discovery protocol (e.g. PDP) to publish its

presence in the MANET. When a SIP servlets engine provider comes in to the MANET

or when the pre-installed SSE is activated by the 3G network provider, it uses the same

protocol (i.e. PDP) to discover the SGW and registers the SSE with it. The SSE capacity

and approximate Time To Live (TTL) are provided to the SGW. The TTL indicates the

estimated time an SSE is willing to stay in the MANET. TTL is used as a guideline only.

The SSE can update the TTL parameter in the SGW at any time via the push mechanism

of PDP. The SIP REGISTER method can be used for SSE registration with the SGW.

The capacity and the TTL are added to the REGISTER message. Furthermore,

unregistered SIP Servlets Engine Providers (SSEP) can also be present in the MANET

(i.e. an SSE with expired TTL that has not re-registered, any inactive SSE). These SSEs

publish their function, capacity and TTL in order to be discovered by the SGW when

needed. The SSEP can provide either a centralized SSE or a distributed SSE. With a

 148

distributed SSE, the SSEP is responsible for the managing the SSE, as described in the

previous chapter.

Two other possibilities can be envisaged for the communication between SSEs and

SGWs. One is to remove the registration step. Indeed, the SGW will discover the SSE at

the appropriate time. The other is to only use the registration framework. We believe that

the approach we chose (i.e. a combination of these two approaches) combines their

respective advantages: fault tolerance, time saving and controlled management.

6.4.4.2 At the service execution runtime

When an end-user invokes a service via the service gateway, the S-CSCF forwards it to

the appropriate application server. The AS evaluates certain criteria and then dynamically

decides where to run the service (i.e. in the MANET or in the 3G portion). We fix the

criteria as follows: the users‟ location, the preferences of the service provider, the

network load and the reliability of the link between the 3G and the MANET sub-

networks.

The AS retrieves the end-user‟s location (i.e. 3G or MANET) from the HSS through an

extended Sh interface as per our assumption. This information is relevant to the current

alternative where all end-users are in the MANET portion.

The service provider preferences are defined in the AS while the network load can be

obtained using context information that has been included in extensions to the IMS

architecture [111]. The context information is stored in a Context Information Base (CIB)

and collected from context sources. Any IMS entity can subscribe or request the context

information. The architecture offers the current network load and the current network

status (i.e. regular or crisis) as context information. The AS in our architecture can

 149

subscribe to the network status information (the SIP event notification framework is used

here) and uses it for load balancing decisions.

Basically, the decision to run a service in the MANET addresses three main objectives:

speeding service execution, improving load balancing and 3G/MANET link reliability.

The first criterion depends on the Service Provider (SP) preferences. The SP chooses a

service, or all services, or a category of services to run in the MANET. The load

balancing criterion is variable and depends on the network traffic. Finally, the last

criterion is pre-defined. Indeed, the reliability of the link between 3G and MANET is an

MCN property.

The decision making process starts when all the end-users involved in the service

execution are in the MANET. Figure 6.9 shows the decision making algorithm at the AS

level.

- SvcA: the service to run

- NetLoad: the network load

- 3G_MANET_Link: the link property between the 3G and MANET.

- SP_pref(X): the preference of the Service provider regarding execution of the service X

If all users are in MANET

then If SP_pref(SvcA) <> “in MANET”

 then If NetLoad == “Empty”

 then NetLoad = request load information from the CIB.

 If NetLoad == “regular”

 then If 3G_MANET_Link == “reliable”

 then run the service in 3G

 Else run the service in MANET

 Else run the service in MANET

 Else run the service in MANET

Figure 6.9. The AS decision making algorithm

 150

The algorithm can be described as follows: The SP preferences regarding a service A are

checked first. If the SP has no preference regarding running the service in MANET then

the AS looks at the network load obtained from the CIB. If the current network load is

regular, for example (i.e. load balancing is not required), then the link property between

3G and MANET is checked. If this is deemed weak, then the AS will decide to run the

service in MANET; otherwise the service is executed in the 3G sub-network.

When the service is executed locally in the 3G, the execution process is handled as usual,

with the current 3G settings. However, when the AS decides to run the service in the

MANET portion, it adds the SIP servlets‟ location address to the SIP request and

forwards it to the SGW, which then selects an SSEP from the list of registered servlets

engine providers, providing an SSE with the longer TTL and greater capacity. If the list is

empty (i.e. no SSEP has registered or all the SSE‟s TTLs have expired), the SGW

discovers available inactive SSEPs in the MANET. The SGW then sends the SIP request

to the selected SSEP. The SSE then runs the service as described in the previous chapter.

6.4.4.3 At any given time

In order to keep the service execution environment in MANET transparent to 3G users,

the service gateway manages the SSEPs. It receives PDP update messages pushed by the

SSE. In fact, when a given parameter is updated at the SSE level (e.g. an extended TTL, a

critical level of battery power, a change in capacity), the SSE informs the SGW.

Furthermore, the service gateway maintains the list of registered SSEPs and ensures that

they are available. Any heartbeat message can be used. However, the message frequency

should be as low as possible since this is only a preventive measure.

 151

When the SIP servlets engine provider wants to leave the MANET, its SSE pushes a PDP

message with a TTL value equal to zero. Then the SSEP providing this SSE is removed

from the SGW list and considered to be unavailable. If an SSE fails abruptly, the

MANET self-recovery procedure takes place, as depicted in the previous chapter. The

SGW is then informed about the new SSE address.

6.4.5 Illustrative scenario

The interest-based conferencing service is chosen to illustrate the SIP servlets-based

service provisioning process in the MCN. This service establishes a conference with

participants that share the same interests. The service is implemented using the SIP

servlets framework. Participants register their interests with the service provider. The

registration specifies the minimum number of participants required to start the

conference. The service provider manages the fields of interest and requests the initiation

of a conference between participants that share the same theme. The SIP servlets location

is transmitted within the invitation message to the SGW, which forwards it to the

registered SIP servlets engine. The SSE downloads the required SIP servlets and runs the

logic that establishes the conference. New parties can join later when invited by the

service provider. The conference participants can leave at any given time.

Figure 6.10 shows the message flow between the different entities in the MCN when the

service runs in the MANET, based on the application server‟s decision. We assume that

the publication/discovery and registration processes have finished and that the conference

is fully meshed. Media handling issues in MCN are beyond the scope of this work.

Following the registration phase, the extended AS (E-AS) finds that EUA1 and EUA2

have matching interests, gets their locations from the extended HSS (E-HSS) and decides

 152

to run the service in the MANET. The E-AS uses an SIP extension (i.e. DIAMETER) to

communicate with the E-HSS. In this example, the decision is based on the fact that both

users are in the MANET, and on the service provider‟s preference. The E-AS sends the

conference creation request with the address of the SIP servlets to the SGW via the S-

CSCF. This service gateway transmits the request, together with the network address of

the participants, to the extended SSE (E-SSE) that downloads the servlets and runs the

service.

Create conf.
(EUA1, EUA2, servlets)

Create conf.
(EUA1. EUA2,servlets)

Decision =
Run service
 in Manet

Create conf.
(EUA1, EUA2, servlets)

Servlets download

Session request

S-CSCF EUA2 SGW E-AS EUA1

Create session with EUA1

E-SSE

Select a SSEP

Interests match

Register (TTL, capacity)

Ok

E-HSS

User-Data-Request (location_information)

User-Data-Answer (MANET)

Figure 6.10. Conference establishment between two MANET users in MCN

 153

Since the SSE is in the MANET, as are all the users, it can reach the MANET

participants directly and thus save time and bandwidth.

We assume in this scenario that the SIP servlets are hosted in the E-AS, but they may be

located anywhere. Furthermore, in this example the required minimum number of

participants sharing the same interests to start a conference is two.

6.5 Summary

In this chapter we have presented and motivated the service provisioning issue in

integrated 3G/MANET networks. Multihop Cellular Networks (MCNs) were considered

as an example of such integration.

We have described and discussed an exhaustive set of high-level architectural alternatives

for providing services in MCNs. The alternatives were grouped into two categories:

service execution in MANET and service execution in 3G. The advantages of each

alternative were elaborated.

Furthermore, the chapter presented a concrete and detailed architecture for service

provisioning in MCNs. The architecture is tailored to the alternative where all end-users

are in the MANET and the services are provided by 3G service providers and executed in

the MANET. This alternative is the one most interesting from the network operator

viewpoint. The assumptions, principles, functional entities and procedures have been

discussed.

The proposed architecture allows the service to be executed either in the MANET or in

the 3G network. The SIP servlets engine can be provided by individuals, since any end-

user in MANET with this functionality can register with the SGW. With the proposed

 154

architecture, it is also possible that many SSEs coexist in the MANET, managed by the

SGW. Furthermore, the architecture allows either centralized or distributed SSE, since

the SIP servlets provider can provide a centralized or a distributed engine. The SGW

makes the service execution environment transparent to 3G and therefore to the AS.

Furthermore, the extensions are minimal and not difficult to achieve.

 155

CHAPTER 7 : Validation for the case of stand-alone

MANETs

This chapter presents a validation stack for the architectures and solutions proposed

earlier in this thesis for stand-alone MANETs. Both a proof of concept prototype and a

formal validation are discussed. The prototype was implemented to demonstrate the

feasibility of the business model solution. The overlay network protocol was formally

verified. The organization of this chapter is as follows: first it describes and discusses the

business model prototype, and then it analyses the overlay network protocol validation

using SPIN.

7.1 Business model proof of concept

This section discusses the prototype implemented as a proof of concept for the business

model and the related publication and discovery mechanism. The results these scenarios

are then analysed. The main goal of this prototype is to show that the novel business

model proposed in chapter 4 is practical and feasible in a stand-alone mobile ad-hoc

network.

Four roles have been implemented, those of end-user, service provider, capabilities

provider and service execution environment provider. Each role publishes and/or

discovers the features provided by the other roles. Both push and pull scenarios were

 156

implemented. Table 7.1 show the roles and their possible interactions during the service

publication and discovery process.

The following prototype subsection focuses on the publication and discovery process.

7.1.1 Prototype

The Pervasive Discovery Protocol (PDP) was chosen, as discussed earlier, as the service

publication and discovery protocol. Some extensions were added to the PDP to allow the

push scenario and to permit the publication and discovery of different features (i.e.

services, capabilities, execution environments). The features‟ descriptions are stored in

XML files. The information related to service invocation and execution is not entered

into the description file. We focus on the required resources in term of capabilities and

the execution environment. In fact, a service is published with its required service

capabilities. Furthermore, the capabilities are published together with the required

execution environment. The execution environment can be published with no extra

features required. Figure 7.1 shows the XML description with the focus on the relevant

data for the service publication and discovery processes. The figure presents a service

description. The capabilities and execution environment description are similar to those

for service execution.

Roles Publishes Discovers Pushes

End-user - services -

Service provider Services Capabilities services

Capabilities provider Capabilities Execution
environment

Capabilities

Service execution
environment provider

Execution
environment - Execution

environment

Table 7.1: Business model roles’ interactions during the publication/discovery process

 157

The type tag specifies the nature of the service feature being described (i.e. a service, a

capability or an execution environment). The Resource tag may contain one or multiple

Capabilities tags. However, when the describe feature is a capability, this tag becomes an

Exec.Env tag which specifies the required execution environment for that capability.

7.1.1.1 PDP and extensions

The Pervasive Discovery Protocol (PDP) has been selected for the feature publication and

discovery protocols. The PDP does away with the need for any central entity.

Furthermore, one of the main objectives of the PDP is to reduce traffic in the network by

<Service_feature Type=’Service’ name=' ' version=' ' URI = ' ' >

 <Parameters name=' ' value = ' '>

 <Variable> </Variable>

 </Parameters>

 <Port name=''>

 <Operation name=' '>

 <Args type=' '> </Args>

</Operation>

 <In > OperatioInName </In>

 <Out> OperationOutName </Out>

 </Port>

<Binding PortRef=’ ’>

<Bind >IP_Port </Bind>

 <BindProtocol> </BindProtocol>

 </Binding>

 <Sessions URI=' ' Members=' ' Max_Members='' />

 <LogicReq>

 <Resource>

 <OS>

 <Name> </Name>

 <Version> </Version>

 </OS>

 <Memory> </Memory>

 <Processing> </Processing>

 <GraphicReq> </GraphicReq>

 <Capabilities>

 <Name> </Name>

 <Exec.Env.> </Exec.Env>

 </Capabilitities>
 </Resource>

 </LogicReq>

</Service_feature>

Figure 7.1: XML service description

 158

minimizing transmissions. Consequently, the PDP saves network bandwidth and devices‟

resources, particularly for those with very limited resources. Indeed, the PDP prioritizes

the most powerful devices to reply to the requests, allowing the others to abort their

replies. These are central properties for a protocol‟s efficiency in ad-hoc networks.

As mentioned earlier in this thesis, the PDP has two mandatory messages

PDP_Service_Request and PDP_Service_Reply, to request services and reply/publish

services, respectively. An optional message, PDP_Service_Deregister, is sent to inform

about a service withdrawal.

Each device is assigned an availability time, a local and a remote memory cache. The

availability time represents the excepted time a device will remain in the network. The

local memory cache stores the services the entity is willing to share. The remote memory

cache stores the discovered services. The PDP makes use of two agents: to discover

available services in the network a device uses the PDP User Agent, and to publish

services a device uses the PDP Service Agent.

We have added some extensions to the protocol so that it can better fit our architecture.

First, we add a new field in the PDP messages to distinguish between services,

capabilities and execution environments. The field Category is inserted into request (i.e.

reply and deregister messages) which gives PDP the possibility to publish and discover

different features. Second, in order to enable the push scenario we modify the

PDP_Service_Reply message header by adding a new field flag. When set this field

informs the receiver that the protocol is operating in the push mode. Furthermore, a

message notification for pushed services was implemented -- after notification, the

services are added to the remote memory cache.

 159

The PDP protocol was also augmented with a lightweight XML parser (e.g. NanoXML)

to handle the features‟ descriptions. Some extra functions were implemented that can

remove services from the local memory cache, deregister an individual service that was

removed and automatically refresh the content of the remote memory cache.

7.1.1.2 Prototype architecture and environment

a. Prototype architecture

The prototype is made of four main modules. The same modules run in the end-user, the

service provider, the capabilities provider and the execution environment provider

devices. Figure 7.2 shows the prototype architecture.

The User interface module offers users (i.e. end-users and providers) the possibility to

select the features they wish to offer or to discover. The providers can choose, via the

user interface, to push the selected features to the network using a multicast address.

Furthermore, this module allows the lifetime for each feature to be set and to display the

discovered features along with their lifetime (i.e. Time To Live).

The description processor module (Desc. Processor) manages the features‟ descriptions

and processes the XML files. The description is transformed into a PDP message. The

Extended PDP is the protocol for publication and discovery with the extensions

User interface

Desc. processor Req. processor

Extended PDP

Figure 7.2: Business model prototype architecture

 160

mentioned in the previous sub-section. The Extended PDP is also responsible for network

communication. Finally, the request processor (iReq. processor) module processes the

incoming requests (i.e. features push or discovery requests). It checks the messages and

decides to reply immediately, do nothing or initiate another request before replying. The

module replies immediately if the requested feature is available and does not require

additional features (i.e. capabilities or execution environments). It decides to do nothing

if the requested feature is not available or if other nodes have already replied. Finally, the

module may initiate a series of requests to discover the features that correspond to the

specific requested feature. For example, if a service is requested the module will request

its corresponding capabilities before replying with that service.

b. Prototype environment

Three laptops with IEEE 802.11g adaptive cards were used to create an ad-hoc network.

These machines are Pentium 4s or mobile Pentium 4s models with 512 MB RAMs

running Windows XP Professional. Java was chosen as the programming language. We

also used NanoXML (version 2.2.3) as a lightweight XML parser. The parser is

employed to map a service to its required capabilities and the capabilities to the required

execution environment.

Since any functional entity can be supplied by any business role at any time, all of the

machines can play any business model role.

However, we dedicate a laptop to the service provider agent role, since it has direct

communication with all the other roles. The remaining two machines host a combination

of the capabilities provider agent, the execution environment provider agent and the end-

user agent, depending on the scenario. Several scenarios were implemented.

 161

7.1.2 Results

In this sub-section the implemented scenarios are described and then results are analyzed.

7.1.2.1 Scenarios

Figure 7.3 presents the general pull scenario.

When the service provider (SP) receives a request for a service, it gets the list of services

from its memory cache. For each service, it gets the corresponding capabilities and

execution environment from a local XML file. Then, the service provider sends a request

for each capability and its corresponding execution environment to the SIP servlets

provider (SSP) and the SIP servlets execution environment provider (SSEEP),

respectively. If for a given service, all the capabilities and execution environments are

available, the service provider returns this service to the end user.

E.U SP SSP

Request
(Type: Srv, name)

SSEEP

Mapping to
 capabilities

Request (Type: Cap, name)

Mapping to
 Exec. Env.

Request (Type: Exec.Env, name)

Reply (Cap_list, TTL)

Reply (service_list, TTL)
Reply (Exec.Env_list, TTL)

Figure 7.3: The general pull scenario using PDP

 162

However, different scenarios can be derived from the one described above. Any

combination of push and pull constitutes a hybrid scenario. We have implemented seven

scenarios in a pull fashion and three in a hybrid fashion. All of the pull scenarios are

based on Figure 7.3. The difference between the seven scenarios is mainly in the number

of capabilities and the number of execution environments required for a service. Table

7.2 describes the service requirements used in our scenarios.

We should mention that we use empty services, since we focus on the publication and

discovery process. Six services are used. Each has different requirements in terms of

capabilities and execution environment. The services range from simple ones that require

one capability and one execution environment to services requiring several capabilities

and multiple execution environments. However, the most common scenario requires

multiple capabilities and the same execution environment.

Table 7.2: Required features for the scenarios’ services

Services Required features

A
Required capabilities Cap1

Required execution environment Exec1

B
Required capabilities Cap1 Cap2

Required execution environment Exec1 Exec1

C
Required capabilities Cap1 Cap2 Cap3

Required execution environment Exec1 Exec1 Exec1

D
Required capabilities Cap1 Cap2 Cap3 Cap4

Required execution environment Exec1 Exec1 Exec1 Exec1

E
Required capabilities Cap1 Cap2

Required execution environment Exec1 Exec2

F
Required capabilities Cap1 Cap2 Cap3

Required execution environment Exec1 Exec2 Exec3

 163

The pull scenarios are described in table 7.3.

The first scenario is set at the service provider level. It gives an idea about capabilities

and the corresponding execution environment discovery process. The remaining

scenarios are at the end-user level. In these scenarios, the services described in table 7.2

are discovered according to the pull mode.

We also define hybrid scenarios. We chose three of the pull scenarios and ran them in a

hybrid manner. Indeed, instead of discovering all the capabilities and all the execution

environments required, we push some of these features in the network. Table 7.4

describes the hybrid scenarios.

Pull scenarios that require several capabilities and execution environments are chosen for

the hybrid scenario. The goal is to measure the impact of the push mode on the discovery

process. In hybrid scenario 1, two of four capabilities are pushed while the execution

Scenarios Description

Scenario 1 The service provider discovers
capabilities and execution environment

Scenario 2 End-user discovers service A
Scenario 3 End-user discovers service B
Scenario 4 End-user discovers service C
Scenario 5 End-user discovers service D
Scenario 6 End-user discovers service E
Scenario 7 End-user discovers service F

Table 7.3: The pull scenarios description

Scenarios Description

Scenario 1 Cap1 and Cap2 are pushed, then end-user discovers service D

Scenario 2 Exec1, Exec2 and Exec3 are pushed, then end-user discovers service F

Scenario 3 Same as scenario 2 but Cap2 is also pushed

Table 7.4: The hybrid scenarios description

 164

environment is discovered in a pull mode. In hybrid scenario 2, the execution

environments are pushed while the capabilities are discovered. Finally, in hybrid scenario

3 both capability and execution environment are pushed.

The services E and F are a variant of services B and C, respectively. In the former, each

capability needs a different execution environment. Hence, scenarios 6 and 7 are an

extension of scenarios 3 and 4. Similarly, the hybrid scenarios 1 and 2 are related to the

pull scenarios 5 and 7, respectively, where some features are pushed and others are

discovered.

7.1.2.2 Results and analysis

Each scenario was executed several times and an average response time was calculated.

We ran each scenario five times as a trade-off between achieving realistic results and the

time constraints. A comparison between the pull and the hybrid scenarios are presented.

Table 7.5 presents the average response time of the pull scenarios.

It is clearly shown that the response time increases with the number of capabilities to be

checked and discovered. The response time also increases when the capabilities require

different execution environments. For example, the response times are higher in scenarios

6 and 7 than in their comparable scenarios, 3 and 4. In fact, scenarios 3 and 4 are the

Pull

scenarios

Average response time

(sec)

Standard deviation

Scenario 1 0.178 0.07
Scenario 2 0.554 0.07
Scenario 3 0.732 0.08
Scenario 4 0.904 0.02
Scenario 5 1.044 0.04
Scenario 6 0.898 0.03
Scenario 7 1.258 0.04

Table 7.5: The average response time for the pull scenarios

 165

same as scenarios 6 and 7 but with different execution environments to discover. As we

can see, the response time exceeds 1 second for services that require 4 different types of

capabilities (e.g. service D in scenario 5) and for services that require 3 different types of

execution environments (e.g. service F in scenario 7). We could consider these service

features‟ requirements as a threshold for better service provisioning performance.

However, meticulous performance evaluation should be elaborated before any

conclusion.

For all the validation runs, the standard deviation remained relatively low, showing that

the results are coherent. In fact, during several runs the response time remained stable.

Table 7.6 presents the results of the average response time of the hybrid scenarios.

The hybrid scenarios showed better response times compared to the pull scenarios. Some

features are pushed, and then the service provider does not need to discover them. In

scenario 1, two of the four capabilities required by service D are pushed. In scenario 2 the

three execution environments required for service F are pushed, while in scenario 3, in

addition to the execution environments, one capability is also pushed, which explains the

lower response time. The standard deviation shows that the intermediate results are not

very different from the average response time.

To compare the hybrid scenario and the pull scenario, hybrid scenario 1 needs to be

compared to pull scenario 5, and hybrid scenarios 2 and 3 compared with pull scenario 7.

Hybrid

scenarios

Average response time

(sec)

Standard deviation

Scenario 1 0.78 0.19
Scenario 2 0.77 0.06
Scenario 3 0.5 0.01

Table 7.6: The average response time for the hybrid scenarios

 166

Figure 7.4 illustrates the differences between the hybrid and the pull scenarios. The

response times from pull scenario 5 and hybrid scenario 1 are plotted. We can see clearly

that the hybrid scenario can improve the response time during service discovery in our

model.

At trial 5 the hybrid scenario response time is higher than in the pull scenario. However,

since the trials are very similar, this may due to implementation, network or device load

issues.

Figure 7.5 shows the difference between the hybrid and pull scenarios for the F service

discovery. The response times from pull scenario 7 and hybrid scenarios 2 and 3 are

plotted. In hybrid scenario 3 more of the features required by service F are pushed than in

the hybrid scenario 2.

The graph in Figure 7.5 illustrates again that with an adequate mechanism for pushing

service features, the providers can significantly improve the response time perceived by

the end-user.

Figure 7.4: Comparison of the pull and hybrid scenario for the service D discovery

Hybrid Vs Pull : service D

0

0.2

0.4

0.6

0.8

1

1.2

trial 1 trial 2 trial 3 trial 4 trial 5

test runs

resp. time (sec)

Pull scenario

Hybrid scenario

 167

7.2 Overlay network validation

This section presents the formal validation of the overlay network protocol for self-

organization and recovery. The validation tool is introduced first, followed by the

modeling details. Next, the section analyzes the different validation parameters and then

concludes.

7.2.1 The validation tool

The validation was performed using PROMELA and SPIN [111]. PROMELA

(PROtocol/PROcess MEta LAnguage) is a high-level specification language that allows

the dynamic creation of concurrent processes. These processes communicate via message

channels. PROMELA is employed to model finite state-distributed systems. PROMELA

programs are called validation models. They focus on process interaction and abstract

unrelated protocol or distributed system details.

Figure 7.5: Comparison of the pull and hybrid scenario for discovery of service F

Push Vs Pull : Service F

0

0.2

0.4

0.6

0.8

1

1.2

1.4

trial 1 trial 2 trial 3 trial 4 trial 5

Test runs

resp. time (sec)

Pull scenario

Hybrid

scenario (2)

Hybrid

scenario (3)

 168

SPIN (Simple PROMELA INterpreter) takes PROMELA‟s validation models as input

and simulates the interactions between the processes. SPIN also performs a formal

validation by checking the correctness of the model. This is done using assertions within

the PROMELA program, or by expressing correctness properties with the Linear

Temporal Logic formula at runtime. The correctness criteria are checked in PROMELA

by expressing them as invalid behaviours or properties in a particular state. Therefore,

SPIN acts as a simulator and as a validator.

Furthermore, SPIN can perform this validation using the exhaustive search method,

which is the best option since all the paths of the validation model of the system to be

checked are explored. If the exhaustive search method does not report a given violation,

then there cannot be an execution sequence with that violation. Systems of less than 100

000 states can use this method with limited impact on device performance.

SPIN can also perform the validation using a partial search method based on the bitstate

algorithm. Indeed, for large to very large systems the exhaustive search method is not

feasible due to memory and time constraints. The partial search or bitstate method solves

this problem by using a hash function that stores a state using one bit. It is a partial search

because the algorithm counts all the newly inserted states that have the same hash value

as having been visited.

7.2.2 The modeling process

 In PROMELA, both processes and communication channels are modeled. These are

discussed in the following subsections.

 169

7.2.2.1 Validation processes

All of the processes of the overlay network were modeled in PROMELA. We modeled

the controller, the wrapper, the connector and the session repository entities. The

different validation models were sketched according to the final state machine models

discussed in chapter 5. Furthermore, a main process was created that initiates the overlay

network protocol. The main process specifies, for each process type, the number of

instances that the simulation/validation will contain.

A simulation is successful when the appropriate links are established between the

processes. The processes‟ relationships should reflect the overlay network organization

described in chapter 5.

Each node is defined by a unique Id, a type and a status. The Id is used to send/receive

messages. The type defines the entities‟ type (i.e. controller, connector, session

repository, or wrapper) and the status informs if a node is free or busy (i.e. already

involved in service provisioning). Furthermore, each controller is assigned a data table

that contains information about the nodes it manages. We also assign a data table to the

session repositories in order to store the session information and the list of the existing

session repositories.

In addition, we use certain probability functions to initiate the node departure. Nodes can

leave by sending a BYE message to the appropriate node (e.g. the controller). However,

this assumes that there is a controller in the network at that time. To fulfill this constraint,

we add the following condition:

 170

if

 :: (defaultCtrId!=0) -> toCtr[defaultCtrId] ! Bye();

 goto wait_ok_to_Bye;

 :: else -> goto end;

 fi;

This condition checks if the default controller of the leaving node is in the network. If

yes, it sends a BYE message to that controller; if no, then it simply leaves.

7.2.2.2 Communication channels

The different processes require a mechanism for communication. PROMELA provides

point-to-point channels. We defined several channels for message exchanges. We assume

that the publication/discovery is done by using a global repository.

We defined four main channels: ToCtr, ToSR, ToNodes and varExchange. ToCtr is used

by any node to send messages to the controllers. The ToSR channel is used by session

repositories and controllers to send messages to session repositories. ToNodes is used by

controllers to send messages to any node, and varExchange is used by the connector to

contact the end-user. This is necessary because the end-user must be informed of an

alternative access point prior to connector departure.

During the protocol processing, the controllers and the session repositories need to

multicast their messages to the other controllers and session repositories, respectively.

However, PROMELA does not allow point-to-multipoint communication. To solve this

problem, the above channels are treated as variables declared as an array of channels. For

instance, ToCtr is declared as follows:

chan ToCtr[max_Controllers] = [QSZ] of {byte,byte,byte}

 171

[QSZ] refers to the maximum size of each channel. Each message has three parameters:

the request type (e.g. Refers), the node‟s Id and the node‟s type. Furthermore, each

channel is indexed by the Id of the concerned node. For example, the messages addressed

to the controller with Id equal to 1 are written/read to/from ToCtr[1].

7.2.3 The correctness requirements

PROMELA only provides a global timeout, which fires when there is no executable

process in the system (i.e. a deadlock). The PROMELA timeout is used to escape from

deadlock states or to recover from message loss. SPIN allows checking for several

properties: deadlocks (i.e. invalid end-states), livelocks (i.e. cyclic executions) and

improper terminations (i.e. execution completion with a violation of the termination

conditions).

Consequently, our first correctness requirement is to ensure that our overlay protocol is

free of deadlocks and livelocks. To this end, we use the end and accept predefined labels

of PROMELA. For each entity we identify the valid end-states and the operations that

should not be repeated indefinitely, prefixing them with the labels end and accept,

respectively.

A second requirement is to verify the different data tables‟ consistency. We defined

global variables for the controller and the session repositories entities. SPIN allows the

data to be traced and ensures that the values reflect the protocol‟s progress. Furthermore,

assertions are employed to express conditions related to certain data values.

The third correctness requirement that we checked is the association between the overlay

network organization and the protocol result. Indeed, each controller should manage the

 172

nodes it is supposed to manage, and there should not be any free node in the network.

This is checked by looking at the controller‟s and the node‟s tables.

The messages sequence was also verified. We guarantee that no unexpected messages are

received by a given entity and that the correct reply is sent upon reception of a valid

request. PROMELA‟s temporal claims, which are prefixed by the keyword never, were

used to achieve this goal. Figure 7.6 shows an example of a temporal claim specifying

that a session repository entity can never receive a Request_node() message.

Furthermore, if the session repository entity receives that message, it should ignore it and

not reply.

In addition, we also verify via SPIN/PROMELA that the process ends correctly, meaning

that nodes departures are well handled well. The data tables are checked to verify that the

updates are made appropriately, and that the new links are created properly.

Furthermore, the SPIN simulator has a graphical output that shows the protocol progress.

This helps to detect any error in the message order or in the protocol behaviour. Figure

never {
do

::!ToSR[1]?[Request_Node]
:: ToSR[1]?[Request_Node]-> goto accept

od;

accept:
do

::!ToCtr?[Node_Reply]
od;
}

Figure 7.6: An example of a temporal claim

 173

7.7 illustrates SPIN‟s output during protocol simulation. The messages and the process

are identified by numeric Ids.

7.2.4 Conclusion

We simulated and validated the overlay network protocol on a Pentium 4.3 GHz desktop

with 512 MB of RAM and running Windows XP. The simulation was performed using

SPIN 4.2.7 and XSPIN 4.2.7. The simulation environment was set up for a 1 000 000

Figure 7.7: Example of SPIN’s output during the overlay network simulation

 174

depth search boundary and a memory limit of 512 MB. We used the partial (i.e.

supertrace or bitstate) method to search, which offers good coverage in SPIN. Saving on

the memory requirements motivated this choice of search method.

Several scenarios were simulated and the correctness requirements were checked for each

scenario. The scenarios reflect the different situations that may occur. Three families of

scenarios were defined: the first is the node of type+* (i.e. a connector, a wrapper, or a

session repository) joins. The second family is for a controller join situation, and the third

family is for overlay nodes‟ leaving.

For each family we define two or more sub-scenarios. The first family contains the

following two scenarios: nodes of type+* join and find a controller in the network, and

nodes of type+* join and do not find a controller. The second family contains the

following two scenarios: the first controller in the network joins, and a controller joins

and finds existing controllers The third family includes three scenarios: departure of

nodes of type+*, a controller leaving, and the last controller in the network leaves.

Furthermore, we use several instances of each entity for each scenario. The number of

instances is from one to five for each entity.

For each simulation, the data tables and assertions, the temporal claims and the message

flow are checked. The data generated after the simulations were coherent with the

executed scenario. The validation process established that the protocol was free of

deadlocks and that the assertions and temporal claims were not violated, thereby proving

the validity of this protocol.

 175

7.3 Summary

In this chapter we presented the proof of concepts related to our proposed architecture

from the pure MANET point of view. The business model prototype and its results were

discussed. We then elaborated on the overlay network protocol validation. The protocol

was simulated using SPIN.

The business model prototype demonstrated two main ideas. First, that the proposed

business model architecture is feasible and that the different roles can collaborate for

service provisioning. Furthermore, using the appropriate mechanism for publication and

discovery and inter-role communication makes the solution realistic for MANETs.

Second, the prototype‟s results revealed that the performance is improved with a hybrid

scenario of push and pull modes.

Regarding the overlay network protocol, the formal validation demonstrated that the

protocol is free of deadlocks, livelocks and unreached states. It also showed, through the

correctness criteria, that the protocol is correct and that it constructs the desired overlay

network structure.

 176

CHAPTER 8 : Validation for the case of integrated

3G/MANETs

This chapter presents a proof of concept for the integrated 3G/MANET architecture for

service provisioning. It also discusses the performance evaluation of this architecture.

The organization of this chapter is as follows: first it describes and discusses the

implemented prototype as a proof of concept. Then, it presents and analyses the

simulation results as a performance evaluation. The performance analysis is done using

the OPtimized Network Engineering Tool (OPNET). Furthermore, it is for the precise

case of the Interest-based conferencing service.

8.1 Integrated 3G/MANET prototype

8.1.1 Assumptions and mechanisms

Signalling issues in Multi-hop Cellular Networks (MCNs) have been solved [40] and are

out of the scope of our work. Furthermore, the prototype is based on three assumptions:

that one instance of the Service Gateway (SGW) is used in the prototype; that the S-

CSCF is pre-configured to know that SGW; and that the SIP servlets are hosted in the

Application Server (AS). In addition, the implementation makes use of different existing

technologies. For gateway discovery -- in the MANET portion, the Pervasive Discovery

Protocol (PDP) is employed. Furthermore, HTTP is used to download the SIP servlets

from their location. Indeed, the SIP Servlets Engine (SSE) implements the HTTP client

 177

side while the AS implements the server side. Furthermore, a MANET end-user agent

with SIP capabilities was implemented as a UE.

8.1.2 Prototype environment

Figure 8.1 shows the prototype settings. The S-CSCF is collocated with the AS.

JAVA was our programming language. Three laptops make up our MANET: two host the

user equipment and the other hosts the SIP Servlets Engine Provider (SSEP). Two

desktops form our 3G network. One machine hosts the SGW and the other one hosts the

AS and the S-CSCF.

The laptops are Windows XP with 802.11g adapting cards configured in the ad-hoc mode

and using the EODV routing protocol. The machines are mobile Pentium 4‟s with 512

MB of RAM. Furthermore, the desktops are Windows XP with a 3 GHz Pentium 4 and

1Gig of RAM. The Service Gateway (SGW) has a dual interface: an ad-hoc interface for

MANET communication and an infrastructure link to the wired network.

Since we cannot have multiple end-users in our environment, the scenario chosen is the

establishment of a conference between two end-users based on their interests. The

minimum number of users required is obviously fixed to two end-users. The conference

service is hosted in the 3G while the execution is done by the SSE hosted in the MANET.

SIP

SGW

UE 2

UE 1

SSE

S-CSCF

+ AS

Figure 8.1: The integrated 3G/MANET prototype settings

 178

8.1.3 The scenario description

The interest-based conferencing service introduced in chapter 2 is implemented for the

proof of concept. Figure 8.2 shows the SIP implementation of the conference

establishment. For clarity, only the main SIP messages are shown and the discovery

process is skipped.

A simple prototype has been built as a proof-of-concept. We implemented a simplified S-

CSCF and AS, a simple UE, the SGW and the extended SSE functional entities. In fact, it

is impossible for us to create a complete IMS infrastructure in our lab. Therefore, we

used a dummy S-CSCF that only forwards the service requests to the AS and exchanges

SIP messages with a pre-configured SGW. The HSS was not implemented but the end-

Decision
making

HTTP: POST (servlet)

 INVITE (EUA1,EUA2,@servlets)

INVITE (EUA1. EUA2,@servlets)

DoInvite()

HTTP: GET (servlet)

INVITE

S-CSCF EUA2 SGW AS1 EUA1

REFER (To EUA1)

INVITE (EUA1,EUA2,@servlets)

SSE

Interests match

Select a SSEP

Figure 8.2: Interest-based conference establishment in MCNs

 179

user location was stored in a plain text file and checked by the AS. The interest-based

service was implemented as per the AS. An HTTP server was also added to the AS.

However, the Context Information Base (CIB) and context information parts were not

considered. Instead, a local function randomly generates the current network situation.

Furthermore, the UE was configured to send service requests to the preconfigured SGW.

Another functional entity we extended is the SIP servlet engine. The JAIN SIP SE

reference implementation was extended with the PDP publication and discovery protocol

and a registration/deregistration module. An HTTP client was also added to the SSE.

Finally, our SGW was implemented with the following functions: SIP stack, PDP

publication and discovery protocol and a registration/deregistration handler.

Overall, the prototype shows that it is possible to provide SIP servlets-based 3G services

to MANET users and execute these services in the MANET, instead of running them in

3G, thus demonstrating the feasibility of our architecture.

8.2 Performance evaluation of the integrated 3G/MANET architecture

In this part we describe the simulation environment and then we present the system

design. The simulation scenarios we used are then described followed by an analysis of

the performance results.

8.2.1 Simulation environment and settings

The simulation was performed using OPNET V.11.5.A which is a high-quality

commercial tool for the rigorous study of different types of networks. It provides an

environment for the modeling and simulation of communications networks, distributed

 180

systems, devices and protocols [112]. The user development environment of OPNET is

based on the finite state machine. Furthermore, the programming language is Proto-C - a

combination of C, C++ and OPNET event simulation APIs.

OPNET provides several models and modules with which to build customized networks.

For our integrated 3G/MANET simulation we used the standard MANET and UMTS

modules to respectively model the MANET and 3G sub-networks.

We built our integrated 3G/MANET with a one-cell UMTS system and a group of mobile

wireless nodes. A gateway between the two sub-networks was simulated. The UMTS part

contains the following core nodes: a node-B (i.e. the WCDMA base transceiver station), a

Radio Network Controller (RNC), a Serving GPRS Support Node (SGSN) and a

Gateway GPRS Support Node (GGSN). The MANET nodes are based on the IEEE

802.11 standard and configured with the AODV routing protocol.

Furthermore, the gateway is connected to the node-B using a wireless connection. The

Application Server (AS), the Context Information Base (CIB), the HSS and the S-CSCF

are connected to the UMTS via a hub. Figure 8.3 gives an overview of the simulation

setup.

 181

8.2.2 System design

In OPNET we first design the network, then for each node we specify a node model and

one or more process models. The packets‟ format should also be declared so that it can be

recognized by the tool‟s environment.

Node models:

The node model of the mobile wireless nodes is shown in figure 8.4, while figure 8.5

shows the node model of the 3G nodes (i.e. S-CSCF, AS, HSS and CIB). The difference

between the two node models is at the application level. Indeed, we implement the

application layer that corresponds to each type of entity, and so we developed different

process models.

Figure 8.3: Overview of the integrated 3G/MANET simulation setup

 182

Figure 8.4: Node model of the wireless nodes

Figure 8.5: Node model of the 3G nodes

Packet
stream

Module

 183

The application layer is on top of the Transport Adaptation Layer (TPAL). The TPAL

module provides uniform access to the transport layer. Furthermore, nodes are identified

using symbolic names. In our case we configure TPAL to use the TCP protocol.

Process models:

The functionalities of each entity are described in chapter 6. In the following section we

illustrate the most relevant of the implemented processes. The service gateway (SGW) is

essentially responsible for managing the SIP servlet engines‟ registration and for making

the 3G structure transparent to the MANET users. The process model of the SGW is

composed of an SGW manager and an SGW agent. The SGW agent process model is

presented in figure 8.6.

Figure 8.7 presents the process model of the SIP Servlets Engine (SSE) agent that is

responsible for service execution. It has been extended to register with a pre-configured

or a discovered SGW and to download the SIP servlets from remote locations prior to

service execution.

Figure 8.6: The SGW agent process model

 184

Three process models define the AS process model: the AS Manager (ASM) process

model, the AS Agent (ASA) process model and the Remote Information AS (RIAS)

process model.

The ASM is the root process, responsible for listening to the incoming connections and

managing the collected statistics. The ASA is the main application server process. It

implements the behaviour of the AS entity as described in the chapter 7. Furthermore, it

creates the RIAS process, on demand, in order to get the location information from the

HSS or to obtain the context information from the CIB. Figure 8.8 illustrates the main

process model of the application server entity.

Figure 8.7: The SSE entity process model

 185

Packet format:

We have defined several packet formats for the communication between the different

entities. Register, service-invoke, service-run, location/load and http get/post are the main

packets.

The register packet is used by the SSE to register, deregister or to update the registration

information (i.e. capacity, TTL) with the service gateway. A service-invoke packet is

used by MANET end-users to initiate the interest-based conference service. The service-

run packet is sent from the AS to the SGW to start the service in the MANET network.

The location/load packet is used to get the end-users‟ location from the HSS and the

context information from the CIB. Finally, the http get/post is a simple implementation of

the http protocol to download the servlets from their location. Figure 8.9 illustrates the

service-invoke packet.

Figure 8.8: The main process model of the AS entity

 186

The packet type is Serv_Inv_Pkt. The possible values for the packet sub-type field are:

serv_inv_pkt_req, serv_inv_pkt_resp, serv_join_pkt_req and serv_join_pkt_resp. These

are request-response pairs for invoking and joining a service.

The service ID identifies the name of the service. The interest field specifies the interests

that should be shared between the conference participants. Min_users is the minimum

number of users required to start the conference. Call info contain the information related

to the call (e.g. source address, destination address, connection status, client connection

time). Net ID From and Net ID To are added to help the SGW to route the packet

between the MANET and 3G systems.

8.2.3 Simulation scenarios

We have defined two major scenarios to evaluate the performance evolution of the

integrated 3G/MANET architecture. We focus on conference establishment with new

users and different services.

In the first scenario, we evaluate the impact of a growing number of users on a given

service. The conference is started when the min_users is reached and new users

subsequently join this conference. We stopped at 50 MANET end-users participating in

the same conference, which we consider a very large conference.

Packet type Packet sub-type

Service ID Interest Min_users

Call info

Net ID From Net ID To

Figure 8.9: The service-invoke packet used for simulation

 187

The second scenario measures the impact of the number of concurrent services on

network performance. Multiple services with different interests and min-user parameters

were defined. The number of simultaneously-running services in the MANET range from

5 to 50. In that context, a small MANET service network is one running 5 services, while

50 services is considered to be a very large MANET service network.

The processes of service invocation and join are the same in both scenarios. Since

OPENET does not allow user interaction during our simulation, we have defined two

parameters for the MANET end-user entities: Initiator and Joiner. The Initiator will

initiate the service (i.e. send a service invoke message) and the Joiner will join the

service with the pre-configured interest.

The Initiator sends a service-invoke message, with the interest and minimum number of

users required to start the conference, to the service gateway. The service gateway

(SGW) forwards the packet to the S-CSCF which in turn forwards it to the application

server (AS). The AS then starts a process to receive the request to join the conference and

verifies the interests and the minimum number of users. When this objective is reached,

the AS starts a process to check the users‟ location and the network load, and then

decides to run the service in the MANET or not. If the service is to be run in the

MANET, the AS sends a service-run message to the SGW via the S-CSCF. The SGW

then selects, from the list of registered SSEs, the SIP servlet engine that has the highest

capacity and TTL. The service-run request is then sent to the selected SSE, which in turn

starts the conference.

 188

From the description above, some stochastic phenomena have to be modeled. In fact,

probability models are required to define the number of SSEs that should be present in

the network, the capacity of each SSE, and the traffic load generated by the CIB.

Therefore, the first question to answer is: how many SSEs are present in the network

while the MANET is growing, and in both scenarios? We generate this number using the

binomial low, since the phenomena to model is about choosing x entities with the SSE

characteristics among n entities. This statistic law has two parameters: n -- the size of the

sample (i.e. the number of nodes), and p -- the frequency of the SSE in the network. In

our stochastic model, the parameter n ranges from 10 to 50. In the MANET system we

can have three different types of nodes: end-users, SSEs, and eventually, service

gateways. It is obvious that end-users are more likely to join the MANET than the SSEs

and service gateways. Therefore, the parameter p of the binomial law was fixed to 0.3.

The second question is: what is the value of the capacity for each SSE? The value in both

scenarios is generated following the uniform law since each SSE has equal probability to

have a given value for its capacity. The outputs of the uniform law are chosen to belong

to the interval [5, 20]. Thus, the minimum capacity allowed for an SSE is 5 and the

maximum is 20.

Finally, the traffic load is simulated rather than calculated. In fact, four values are

possible as a response from the Context Information Base (CIB): low load, regular load,

heavy load and crisis situation. We use a uniform law to generate the responses, with a

35% chance to get a low or regular load, a 20% chance to get a heavy load, and a 10%

chance to get a crisis situation.

 189

Each scenario is executed five times and the averages are calculated when the executions

end correctly.

8.2.4 Results and analysis

For the performance evaluation we focus on the scalability of the integrated architecture

in terms of the number of users and the number of services. This sub-section describes

the metrics we measured during the simulation. Then, it presents and discusses the results

of the first scenario where the impact of the number of users is evaluated. Finally, it

presents and analyses the results of the second scenario, which evaluates the impact of

the number of concurrent services on the architecture‟s performance.

8.2.4.1 Metrics

We have considered the following metrics for the architecture evaluation:

 Delay: the delay is calculated in seconds. Two types of delays are calculated: end-to-

end and packet delay. The end-to-end delay refers to the time elapsed between when

the request is sent and its corresponding response reception. The following requests

are considered: SSE registration, EU join, EU service invocation and AS service-run.

The delay is calculated when the OK response is received by the sending entity. The

AS service-run request contains two delays: one includes the load and location

transactions, and the other is the delay after the load and location request finishes.

Furthermore, the delays include the internal processing, such as the AS‟s decision

making and the SGW‟s SSE selection. Figure 8.10 illustrates the different end-to-end

delays. Only the major messages are shown in the figure.

 190

The second type of delay that we measure is the packet delay. This is the average

propagation time of all of the packets received by the SIP Servlets Engine (SSE), the

Service Gateway (SGW), the End-User (EU), the Context Information Base (CIB), the

Application Server (AS) and the Home Subscriber Server (HSS). It is the difference

between the time a packet is created and the time that packet is received by any of the

previous entities.

E.U SSE SGW

Load

CSCF

Register
delay

Register

Ok to run

Location

Join/invoke

Get servlets

Service run

AS CIB

OK

OK

OK

Join
/invoke
delay

ACK

Service
run
delay

Figure 8.10: Illustration of the calculated delays

HSS

 191

 Network load: the load represents the number of messages received by all the network

entities. The number of messages each node receives are calculated for each scenario.

This load figure gives an idea of the network load. Furthermore, we calculated, in

bytes, the load generated at all the entities (i.e. EU, SSE, SGW, AS, CIB and HSS).

The load generated by all of the packets (received or sent) that involve a given entity

is calculated, which provides a good estimation of the workload at a given network

node.

8.2.4.2 The impact of the number of users

In this scenario we use one service, and all users have the same interest. The minimum

number of users required to start the service is fixed at 2. Users may join at anytime. Next

we present the packets‟ delay, the end-to-end delay and the load results.

a. Packets’ delay

Figures 8.11, 8.12, 8.13, 8.14, 8.15 and 8.16 show the average delay of all of the packets

sent by the AS, the CIB, the HSS, the EU, the SSE and the SGW, respectively.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

D
el

ay
 (

se
c)

 o

Figure 8.11: The average packet delay for the AS entity

 192

The delay grows linearly with the number of users. It remains under 1 second from 2 to

35 end-users involved in the same service. It starts at 0.07 second and ends at 1.2

seconds. At 40 end-users, the delay starts to exceed 1 second. It is about 1.02 seconds and

it appears that the curve is increasing at a greater rate after 45 end-users.

The CIB is requested for context information (i.e. network load) before service execution.

The delay at the CIB is very low and virtually stable at 0.15 milliseconds. At 35 and at 45

end-users a variation is noticed. The delay jumps, but remains under 1.17 milliseconds.

This may be due to local network rush or the machine being slow, or due to our

implementation, since the CIB packet delay is most likely to be steady around 0.15

milliseconds.

0.00014

0.00015

0.00016

0.00017

0.00018

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

d
e
la

y
 (

s
e
c
)

 l

Figure 8.12: The average packet delay for the CIB entity

 193

The HSS is requested to check the end-users location. The delay varies from 0.15 to 0.19

milliseconds, which is an insignificant delay. The curve grows slowly (the variation is

about 0.01 millisecond) until 40 end-users, when the slope of the curve becomes greater.

At the end-user entity, the delay varies from 0.027 to 0.092 seconds. This is a very

reasonable delay. Furthermore, the delay grows rapidly at the beginning (i.e. from 2 to 10

end-users), and then it stabilizes at 0.07 second with very low deviation. The variation

0.00014

0.00015

0.00016

0.00017

0.00018

0.00019

0.00020

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

D
e
la

y
 (

s
e
c
)

k

Figure 8.13: The average packets delay for the HSS entity

Figure 8.14: The average packet delay for the EU entity

0.00

0.02

0.04

0.06

0.08

0.10

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

d
e
la

y
 (

s
e
c
)

e

 194

increases after 40 end-users join the same service. However, the end-user perception is

not affected, since the delays are still low and many other users can join the same service.

Figure 8.15 shows the average packet delays sent by the SIP Servlets Engine (SSE). With

from 2 to 40 end-users, the delays increase by less than 1 millisecond. This shows that the

impact of the number of end-users on the SSE delay is limited. After 40 end-users the

curves grow more quickly but the average delay remains low (13 milliseconds for 50 end-

users).

Figure 8.16 presents the results related to the average delay at the service gateway entity

(SGW).

Figure 8.15: The average packet delay for the SSE entity

0.0100

0.0110

0.0120

0.0130

0.0140

2 5 10 15 20 25 30 35 40 45 50

Number of End-users

D
e
la

y
 (

s
e
c
)

 f

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

D
el

ay
 (s

ec
)

 j

Figure 8.16: The average packet delay for the SGW entity

 195

The delay at the SGW starts at 0.08 seconds and grows almost linearly with the number

of end-users until this number reaches 30. This can be explained by the fact that the SGW

is the bridge between the MANET network and the 3G network. Therefore, all the

messages pass through the SGW. However, after 30 end-users, the delay varies less and

seems to stabilize at around 0.5 seconds, thanks to the network and system stability. The

curve‟s slope then increases at 50 end-users, but the delay remains under 0.07 seconds.

b. End-to-end delay

In this sub-section the end-to-end delays‟ results are presented. Five main requests are

considered: the service-run request before and after the location and context information

requests, the service-invoke request, the service-join request and the SIP servlets engine

register request. The end-to-end delay is observable by the end-users and therefore, it is

important to evaluate and minimize.

Figure 8.17 presents the evolution of the end-to-end delay of the service-run request, as

shown in figure 8.10.

The average end-to-end delay is calculated at two different moments: before the

application server requests the users‟ location from the HSS and the context information

0.0

0.2

0.4

0.6

0.8

1.0

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

D
e
la

y
 (

s
e
c
)

f

before HSS/CIB After HSS/CIB

Figure 8.17: The average end-to-end delay for the service run request

 196

from the CIB, and after requesting this location and context information. However, since

the packet delays for users‟ location and context information (i.e. network load) are very

low, as shown in figures 8.12 and 8.13, the average end-to-end delays for the service-run

requests are similar. Indeed, there is no observable difference, from the end-user‟s point

of view, between a service-run request delay that includes the users‟ location and load

transactions‟ delay and the one that excludes these transactions.

Furthermore, the end-to-end delay is growing slightly with the increasing number of end-

users. The delay remains under 1 second for 50 end-users, which we consider a large

service network. The delay at 50 end-users is about 2.6 times the delay with 2 end-users.

Figure 8.18 presents the average end-to-end delay for the End-User (EU) service-invoke

and service-join requests.

We notice that the service-invoke request does not significantly change with the number

of end-users. It remains almost stable at around 0.16 seconds. At 50 end-users, the delay

jumps to 0.25 but remains low. However, for the service-join request, the end-to-end

delay grows quickly as the number of end-users increases. The delay becomes more than

Figure 8.18: The average end-to-end delay for the service-invoke and service-join requests

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

D
e
la

y
(s

e
c
)

f

end-to-end delay : EU invoke

end-to-end delay: EU join

 197

1 second at 30 end-users and is under 1.4 seconds at 50 end-users. The difference

between the two requests is the processing time required by the application server and the

SGW upon the reception of the join message (e.g. check the location, match the interest

and reply to the SGW).

Figure 8.19 shows the end-to-end delay from the SSE provider‟s perspective. It presents

the average end-to-end delay for the SSE register request.

The SSE register end-to-end delay varies from 0.05 to 0.07 seconds, but most of the time

the delay is below 0.06 seconds. The variation is very low and we can consider the delay

to be stable. The curve is irregular and could be because the number of SSEs in the

network follows a stochastic low then the average end-to-end delay variation is affected.

Furthermore, the highest value is recorded for 2 end-users, which is explained by the fact

that the network is not yet stable at the beginning of the experiment.

c. Network load

This sub-section presents the results related to the network load in terms of the number of

packets and bytes sent. The Application Server (AS), the Service GateWay (SGW) and

the CSCF are considered. The total number of packets and bytes exchanged in the

Figure 8.19: The average end-to-end delay for the SSE register request

0.0050

0.0055

0.0060

0.0065

0.0070

0.0075

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

D
e
la

y
 (

s
e
c
)

f

 198

network are also presented. The load considered is introduced by the service provisioning

process only.

Figure 8.20 illustrates the total packets sent by the main entities: the AS, the SGW and

the CSCF, while figure 8.21 shows the overhead in term of the bytes introduced by these

entities. The number of end-users grows from 2 to 50.

0

100

200

300

400

500

600

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

L
o

a
d

 (
B

y
te

s
)

 f

AS CSCF SGW

The AS is the entity that introduced the least overhead and that sent fewer packets over

the network. The SGW and the CSCF have similar results, with higher values for the

0

20

40

60

80

100

120

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

N
b

r
o

f
p

a
c
k
e
ts

f

AS CSCF SGW

Figure 8.20: Number of packets sent by the main entities

Figure 8.21: Overhead introduced by the main entities

 199

SGW entity. This is comprehensible since the CSCF only forwards the SGW messages to

the 3G network.

The maximum number of packets sent by the AS when 50 end-users are involved is 54,

while this maximum is 103 and 106 for the CSCF and the SGW, respectively.

Furthermore, the overhead introduced by each entity is low. In fact, for 50 end-users the

AS generates 263 bytes, the CSCF 516 bytes and the SGW 526 bytes.

Figures 8.22 and 8.23 show the total load injected into the network by the service

provisioning process.

0

50

100

150

200

250

300

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

N
b

r.
 o

f
p

a
c
k
e
ts

 f

Figure 8.22: Total number of packets exchanged in the network

0

200

400

600

800

1000

1200

1400

1600

1800

2 5 10 15 20 25 30 35 40 45 50

Number of end-users

L
o

a
d

 (
B

y
te

s
)

 f

Figure 8.23: Total bytes exchanged in the network

 200

Obviously the load (i.e. number of packets and bytes) is growing linearly with the

number of end-users. However, it remains reasonable since the total number of packets

introduced by the service provisioning process does not exceed 280 packets. On average,

six packets are generated per end-user, which does not affect the global performance of

the network. Furthermore, the corresponding overhead in bytes does not exceed 1600

bytes for 50 end-users since the packets are light-weight.

8.2.4.3 The impact of the number of concurrent services

In this scenario we vary the number of services from 2 to 50. Each service has different

interest fields as its parameters. The minimum number of users required to start the

service is fixed at 2. Basically, several concurrent services run simultaneously, where

each service involved two different end-users. We present here the packet delay, the end-

to-end delay and the load results.

c. Packet delay

Figures 8.24, 8.25, 8.26, 8.27, 8.28 and 8.29 illustrate the average delay of all the packets

sent by the AS, the CIB, the HSS, the EU, the SSE and the SGW, respectively.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
 (

s
e
c
)

f

Figure 8.24: Impact of the number of services on the average packet delay for the AS entity

 201

The packet delay at the application server starts at 0.05 seconds for 2 concurrent services

and ends at around 1.1 seconds for 50 parallel services. This is a significant delay

evolution, and is mainly because the AS is responsible for processing the service

requests. Thus, the more services that are invoked, the more the delays are observed.

However, the average delay stays under 0.9 seconds up to 40 concurrent services. It then

jumps to 1.2 seconds for 45 services, which is considered to be a large service network.

Figure 8.25 shows the impact of the number of parallel services on the average packet

delay. The packets considered are those traversing the CIB entity.

The average delay at the CIB entity is very low and stabilizes at around 0.15

milliseconds. We can conclude that the number of services does not have a significant

effect on the delay at the context information base.

In figure 8.26, the results related to the average delay at the HSS entity due to the number

of services are presented. Although the average delay is very low and does not go beyond

0.18 milliseconds, we can clearly see that the number of services has an impact on the

delay. Indeed, the curve‟s slope is growing with the number of parallel services. We also

notice that after 45 services, the slope of the curve become significantly high. However,

0.000145

0.000150

0.000155

0.000160

0.000165

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
(s

e
c
)

 f

Figure 8.25: Impact of the number of services on the average packet delay

for the CIB entity

 202

the variation between the lowest and the highest value of the delay is 0.2 milliseconds.

Therefore, the impact remains unimportant.

Figure 8.27 illustrates the evolution of the average delay at the end-user (EU) entity while

the number of services is increased.

The average delay at the EU entity is stable at about 0.03 seconds. The delay jumps to

0.44 seconds 40 services, but it is an isolated point. The EU perception of the delay is not

altered by the number of concurrent services in the network, as the EU receives packets

with reasonable delays.

0.000155

0.000160

0.000165

0.000170

0.000175

0.000180

0.000185

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
 (

s
e
c
)

 f

Figure 8.26: Impact of the number of services on the average packet delay

for the HSS entity

0.00

0.01

0.02

0.03

0.04

0.05

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
 (

s
e
c
)

f

Figure 8.27: Impact of the number of services on the average packet delay for the EU entity

 203

Figure 8.28 presents the impact of the number of services on the packet delay at the

service gateway entity.

The delay curve grows linearly. The SGW is the entity in the middle between the 3G and

the MANET, so the number of services involved in the network has an impact on the

registered delays at the SGW entity. However, the simulation shows that for the service

provisioning process, the delays are less than 1 second, even for 50 concurrent services.

We also want to mention that even though the delay at 50 services is 9 times greater than

it is at 2 services, the average packet delay increase is remains brief.

Finally, figure 8.29 illustrates the results related to the packet delay for the SSE entity.

0.0

0.2

0.4

0.6

0.8

1.0

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
 (

s
e
c
)

 f

Figure 8.28: Impact of the number of services on the average packet delay for the SGW

entity

0.010

0.015

0.020

0.025

0.030

0.035

0.040

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
 (

s
e
c
)

 f

Figure 8.29: Impact of the number of services on the average packet delay for the SSE entity

 204

The average packet delay at the SSE is relatively low. It varies from 13 to 34

milliseconds, which translates to a ratio of 2.5 between the delay at 2 services and the

delay at 50 services. Therefore, the number of parallel services does make the average

delay increase but the variation remains low, and the performance of the SSE is not

greatly affected.

b. End-to-end delay

In this sub-section the end-to-end delays‟ results are presented. The main requests are

considered: the service-run request before and after location and context information

requests, the service-invoke request, the service-join request and the SIP servlets engine

register request.

Figure 8.30 presents the end-to-end delay‟s evolution of the service run request,

according to the number of concurrent services. The graph shows the request delay before

and after the AS requests the location from the HSS and the context information from the

CIB.

0

1

2

3

4

5

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e

la
y

 (
s

e
c

)

f

end-to-end delay After CIB/HSS

end-to-end-delay before CIB/HSS

Figure 8.30: Impact of number of services on the average end-to-end delay for the service

run request

 205

The difference is marginal between the end-to-end delay before and after the location and

context information requests. As the simulation showed (figures 8.25 and 8.26) these

requests‟ delays are very low and are not influenced by the number of parallel services.

However, the end-to-end delay of the service run request starts at 0.3 seconds for 2

services and ends at 4.5 seconds for 50 services. This variation is high and the delay

increases fast. The delay is basically due to the processing time of the application server.

In our configuration only one application server was considered, meaning one service

provider serving hundred users with 50 different services. Therefore, the performance can

be enhanced when different service providers are considered.

Figure 8.31 illustrates the impact of multiple services on the service- join and the service-

invoke requests.

In general, the average end-to-end delay for the service-join request is slightly higher

than for the service-invoke request, except for the cases of 25 and 35 services, but we

consider these values as exceptions. Thus, the number of concurrent services has an

impact on both requests, unlike the number of end-users. Furthermore, the average delay

0.0

0.5

1.0

1.5

2.0

2.5

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
 (

s
e
c
)

 f

end-to-end delay: invoke request end-to-end delay:join request

Figure 8.31: Impact of number of services on the average end-to-end delay for the service-

join and service-invoke requests

 206

is as low as 0.19 seconds for 2 services and reaches 1.9 seconds for 50 services. It is then

about 10 times higher at the end of this simulation than at its beginning. However, the

delay does remain under 1.5 seconds until 40 services is reached.

Figure 8.32 presents the results related to the end-to-end delay for the SSE register

request.

The average end-to-end delay is lower for the SSE register than for the previous requests.

However, it is higher compared to the impact of the number of end-users (see figure

8.19). Furthermore, the delay remains under 0.053 seconds for all of the simulation times.

We notice an exception at 25 services but we do not consider it to be significant. At 2

services the delay is as low as 0.003 seconds. The SSE register end-to-end delay grows

linearly with the number of services until 15 services, and then the curve‟s slope becomes

greater. The end-to-end delay at 15 services is four times higher than it is at 2 services.

However, it is 2 times higher at 50 services than at 20 services.

c. Network load

0.00

0.01

0.02

0.03

0.04

0.05

0.06

2 5 10 15 20 25 30 35 40 45 50

Number of services

D
e
la

y
 (

s
e
c
)

f

Figure 8.32: Impact of number of services on the average end-to-end delay for the SSE

register request

 207

This sub-section presents the results related to the network load in term of the number of

packets and bytes sent. The Application Server (AS), the Service GateWay (SGW) and

the CSCF are considered, and the total number of packets and bytes exchanged in the

network are presented. The load considered is only introduced by the service

provisioning process.

Figure 8.33 illustrates the total packets sent by the entities AS, SGW, CSCF, SSE, CIB

and HSS, while figure 8.34 shows the overhead in term of bytes introduced by these

entities. The HSS and the CIB receive almost the same type of requests and they have the

same number of packets and overhead.

0

50

100

150

200

250

300

350

400

450

2 5 10 15 20 25 30 35 40 45 50

Number of services

N
b

r.
 o

f
p

a
c
k
e
ts

 f

HSS/CIB SSE AS CSCF SGW

Figure 8.33: Number of packets sent by the different entities

Figure 8.34: Overhead introduced by the different entities

0

500

1000

1500

2000

2 5 10 15 20 25 30 35 40 45 50

Number of services

L
o

a
d

 (
B

y
te

s
)

f HSS/CIB SSE AS CSCF SGW

 208

The CIB and the HSS are the entities that introduce the least overhead and exchange the

fewest packets. The SSE, the AS, the CSCF and the SGW, are then represented in the

order of their overhead and number of packet exchanges. The SGW sends less than 400

messages during the service provisioning process when 50 parallel services are invoked.

The CSCF sends around 350, the AS 300 packets and the SSE sends 261 messages. The

corresponding load figure is similar. However, the SSE and the AS seem to have the

same evolution and generate almost the same load in terms of bytes. This is also true for

the SGW and the CSCF. There is a significant difference between the load generated by

the SGW and the AS. Indeed, at 50 parallel services the SGW introduces 1848 bytes into

the network while the AS introduces 1150 bytes. In terms of the total load in the network,

figures 8.35 and 8.36 illustrate the curves that describe the network workload.

The curves describing the total number of packet in the network and the total load in

bytes introduced in the network are both linear. The values increase quickly. With 2

services the total number of packets is 31, while with 50 services the number of packets

in the network jumps to 1400. Similarly, the load in bytes with 2 services is 145 while it

0

200

400

600

800

1000

1200

1400

1600

2 5 10 15 20 25 30 35 40 45 50

Number of services

N
b

r.
 o

f
p

a
c
k
e
ts

 f

Figure 8.35: Total number of packets exchanged in the network - different services

 209

becomes 7146 with 50 concurrent services. However, the load remains reasonable and

may be reduced using different techniques (i.e. cross layer design, clustering).

8.3 Summary

In this chapter we have presented a proof-of-concept prototype and a performance

evaluation for the integrated 3G/MANET architecture. The prototype was described and

the performance results based on using the OPNET simulation tool have been presented

and analyzed.

The main goal of the prototype is to show the feasibility of the solution using the existing

mechanisms (e.g. PDP, HTTP and SIP). Since it is impossible for us the build a realistic

3G network in our laboratory, the prototype results have no significant importance.

Therefore, we have decided to make a simulation as a thorough validation.

OPNET was our simulation tool of choice. Different scenarios were considered and the

impact of the number of end-users and the number of parallel services on the system

performance was studied.

0

1000

2000

3000

4000

5000

6000

7000

8000

2 5 10 15 20 25 30 35 40 45 50

Number of services

L
o

a
d

 (
B

y
te

s
)

 f

Figure 8.36: Total bytes exchanged in the network – different services

 210

Regarding the impact of the number of end-users on the performance, the simulation

results show that the individual packet delay is not affected by the number of users. In

fact, for each entity the average delay of the received packets remains acceptable overall,

even when the number of end-users reaches 50. We noticed that at the application server

entity the average delay is over 1 second after 45 end-users.

Furthermore, the average end-to-end delay of the main packets (i.e. service-run, EU-join,

EU-invoke, and SSE-register) is also acceptable, except for the EU join. After 40 end-

users the delay becomes higher than 1.2 seconds for EU-join. Finally, the network load

obviously increases linearly with the number of end-users. However, it does not get very

high: less than 300 packets exchanged with 50 end-users.

As for the impact of the number of parallel services, the delays are a little bit higher than

in the previous scenario. This is due to the fact that more packets are exchanged and more

management is required. However, at each entity, the average packet delay remains

reasonable. It only exceeds 1 second at the application server entity when there are more

than 40 services in parallel. For the end-to-end delays, the performance was not as good

as for the previous scenario. Indeed, the delays were usually more than 2 seconds.

Furthermore, the load introduced in the network is higher when the number of parallel

services increases: 1600 packets exchanged at a 50 service-level.

However, the performance results can be used as a guideline to enhance the architecture

and improve the performance. For instance, clustering can easily improve the

performance. Using different, SGWs will also have a positive impact on the delays. The

presence of multiple ASs that can provide services will bring down the delays and

provide better performance.

 211

CHAPTER 9: Conclusions and future work

This chapter starts with a summary of the main contributions of our work. Then, it

pinpoints and discusses the remaining issues and directions for future work.

9.1 Summary of contributions

Many research communities have made MANETs their central area. Fundamentally, the

key element of a network is the services provided over it. Service provisioning in

MANETs is very challenging because of these networks‟ characteristics. We have

addressed the service provisioning aspects at the application level. The SIP servlets

framework was our starting point. Furthermore, we have investigated service

provisioning issues in two different MANET environments: standalone MANETs and

Multihop Cellular Networks (MCNs). MCNs are an example of integrated 3G/MANET

networks.

However, our solutions have their limitations. In fact, the business model has several

roles therefore an instance of each role should be available in the network for service

provisioning. Furthermore, the stand alone MANET overlay network solution has the

limitation of relying on a given scheme of the distributed SSE and the performance

evaluation does not consider different type of services and different instances of the IMS

entities.

 212

The main contributions of this thesis are that it has:

 Identified issues related to service provisioning in MANETs: We have compared

the characteristics and constraints of MANET environments to the service

provisioning process. Indeed, it is difficult to build a service provisioning architecture

for networks where no pre-established infrastructure is permitted. Service

provisioning becomes very challenging due to node mobility and topology changes.

Furthermore, the service provisioning framework and related mechanisms and

protocols should take into account the limited resources of MANET devices and the

wireless links properties. Finally, the service provisioning solution for integrated

3G/MANET systems should be advantageous for network operators. Each of these

aspects contributes to making our work a very stimulating and fruitful research area.

 Derived requirements and contributed a critical review of related work: We have

derived the requirements for the different solution proposed in this thesis. We

subsequently reviewed the related work accordingly. The requirements for the overall

architecture for stand alone MANETs were elaborated first, followed by the

requirements for each component of the architecture: the business model and the

related publication and discovery mechanism and service execution architecture, and

the corresponding communication mechanism. Furthermore, the general and specific

requirements for service provisioning architecture for integrated 3G/MANET

networks were derived.

The related work was reviewed and we concluded that none of the existing solutions

meets all our requirements. However, we opt for an evolutionary strategy and so we

 213

have considered the SIP servlets framework as a starting point to build an adequate

service provisioning architecture for MANETs.

 Proposed a business model for service provisioning in standalone MANETs: We

proposed a novel business model that we have refined to take into account all of the

characteristics of MANETs. The proposed business model has been designed

specifically for MANETs, with no central entity and with lightweight roles. The

business model roles offer lightweight functions which can be provided by

individuals using small devices, so that individuals as well as organizations can take

part in the proposed business model. Furthermore, the roles and the functions they

provide can be discovered dynamically as needed, which makes the business model

flexible and well-adapted to MANETs.

 Proposed an overlay network for service invocation and execution in standalone

MANETs: Based on the business model and a distributed scheme of the SIP servlets

engine we have proposed an overlay network. The overlay nodes are the SIP servlets‟

engine components. The overlay network‟s main function is to address the highly

dynamic aspect of MANETs. Several nodes coexist and cooperate to provide a

service invocation and execution environment. The overlay network is autonomous

and fault-tolerant. Indeed, it comes with a proposed protocol and procedures for self-

organization and self-recovery.

 Proposed service provisioning architecture for integrated 3G/MANETs: We have

proposed a novel architecture for service provisioning for Multihop Cellular

Networks (MCNs). An exhaustive set of solutions were investigated, and high-level

architectural alternatives for MCNs were discussed. Each alternative proposes a

 214

solution for providing services by 3G and/or MANET service providers to 3G and/or

MANET users. The advantages and drawbacks of each solution were analyzed. The

most interesting alternative, from the network operator point of view, was then

selected and a concrete architecture proposed. The architecture allows MANET users

to access 3G services but the services are executed in the MANET network. A new

functional entity was proposed, the Service GateWay (SGW), that operates in the

middle. Furthermore, minimal enhancements are proposed for some existing 3G and

MANET entities.

 Implemented proof of concepts, formal validation and simulation: We have

implemented two prototypes as proof of concepts for the proposed business model

and for the integrated 3G/MANET architecture. The prototypes demonstrate the

feasibility of the solution. The results of the business model prototype show that the

delays are acceptable and that they can be enhanced. We modeled the overlay

network protocol and defined its correctness requirements using the

PROMELA/SPIN tool. We were able to simulate the protocol behaviour using SPIN

and checked its correctness via PROMELA. Finally, we used OPNET, a powerful

simulation tool, to measure the performance of the integrated 3G/MANET

architecture. Metrics were presented, different scenarios defined and the performance

results have been discussed. Globally, the architecture performance is acceptable.

Furthermore, the architecture scales well in terms of the number of end-users and the

number of parallel provided services.

 215

9.2 Future work

In this section we present some directions for future work. Indeed, several issues are still

unsolved and constitute a good opportunity for future research. We have classified some

of them into four work categories: future directions related to the overall architecture,

future work related to the overlay network architecture, research directions related to the

integrated 3G/MANET architecture, and potential work in the areas of implementation

and performance.

9.2.1 Overall architecture

We have based our architecture on the SIP servlets framework. It will be interesting to

investigate different service provisioning frameworks to evaluate how they can be used in

developing new architectures. Parlay or web services are attractive candidates for

building a service provisioning architecture. Indeed, both Parlay and web services are

variants of the IMS application servers, and therefore could be used as design

frameworks for an integrated 3G/MANET architecture. Stand-alone MANETs and MCNs

could be targeted. A second consequent direction would be to identify, measure and

compare the cost, performance and constraints of different architectures. Obviously, a

basis for comparison would need to be established for the corresponding architectural

alternatives.

Our work is based on a distributed SIP servlet engine. We have chosen a functional

distribution of this engine. Other distribution schemes could be proposed, evaluated and

compared. We believe that the overlay network can adapt to the new SIP servlets‟ engine

distribution scheme. Two major criteria should be taken into consideration for the

 216

distribution. First, there must be loose coupling between the components to reduce the

number of exchanged messages. Second, the engine should be broken into a few

components to increase the probability of having all of them at the same moment in the

MANET. Furthermore, since nodes move and leave frequently, the probability that one of

the engine components will leave can be reduced. Therefore, the first goal is to design a

new solution for the SIP servlet engine distribution. The second would then be to adjust

the existing overlay network to the new distribution scheme. The new architecture could

then be compared with our proposed one.

Finally, security is of the utmost importance for the overall architecture, as well as for

each part of it, both for standalone and integrated architectures.

9.2.2 Overlay network architecture

In the proposed overlay network we have some nodes that are fully meshed (i.e.

controllers and session repositories). This full-mesh connection has a cost in terms of

resources and performance. Therefore, a potential research direction would be the use of

clustering. For small networks, a flat cluster may be used while hierarchical clustering

should be investigated for large networks.

Furthermore, in our solution, the same information is stored in several nodes. In fact, all

the controllers store the information about the nodes in their areas of control and in the

nodes of the other controllers. It is important that controllers get access to this

information for recovery reasons. The same analysis is true for the session repositories

that store sensitive data related to the ongoing sessions. One possible solution to release

the storage resources would be to use some optimization techniques such as replication.

 217

A survey of the replication techniques for MANETs is presented in [113]. A clustering

replication [113] or a distributed shared memory [115] appear to be likely candidates.

In addition, the controllers‟ decision algorithm is based on certain characteristics: time to

live and capacity. However, this can lead to a performance problem, since proximity is

not considered. Indeed, a message may traverse several nodes before it reaches the

selected controllers with the highest capacity and time to live, which is not the best use of

resources. Therefore, another criterion should be added: proximity. A formula that makes

a trade-off between these three criteria needs to be elaborated.

9.2.3 Integrated 3G/MANET architecture

One of the biggest challenges in an integrated 3G/MANET is the billing and charging

system. Since in our proposal the service execution is done in the MANET portion, the

question is, how is the charging performed? This is a central issue for the network

operator. Offline charging systems could be used, for instance.

Another issue is related to service continuity. The proposed architecture brings a solution

when all the users are in the MANET. However, what happens if the service has started

and then a MANET user moves to the 3G portion? This user is not out of range and not

disconnected but still cannot be reached by the MANET service execution environment.

A possible solution is to have a process to frequently check end-users‟ locations. When

the location changes from MANET to 3G, the service gateway will play the role of a

relay between the end-user and the service execution environment.

Another potential research direction is to study and propose concrete architecture

schemes for the other high-level architectural alternatives. A performance comparison

could then be done. We strongly believe that each alternative should target a given

 218

network configuration and operator need. Therefore, a network operator may have

several alternatives implemented in different sites. Switching from one alternative to

another should also be investigated.

9.2.4 Implementation and performance

The first step, from the implementation point of view, is to integrate all the complete

solution components and build the overall architecture. It will be interesting to see how

the different solutions interact and what the performance of the global solution is. The

integration of the MANET prototype with the overlay network and the integrated

3G/MANET may require some adjustments or enhancements. Therefore, code

optimization is another issue to address. Indeed, implementing the solution using

optimized code and calculations will improve the performance.

In addition, an important item is implementing and testing our architecture in larger

networks. We used a one-cell 3G network, but it is essential to conduct an

implementation with several cells and different configurations. Furthermore, the

integrated 3G/MANET system we used is based on one service gateway, which would

lead to problems with performance and scalability. Having multiple service gateways and

multiple SIP servlet engines will be key to working with large-scale networks. The inter-

communication in these contexts will need to be detailed.

 219

References

[1]. Wakefield, Tony, Dave McNally, David Bowler, and Alan Mayne. Introduction to

Mobile Communications: Technology, Services, Markets. Auerbach Publications. ©

2007.

[2]. Karmakar, Gour, and Laurence S. Dooley (eds). Mobile Multimedia

Communications: Concepts, Applications, and Challenges. IGI Publishing 2008.

[3]. WWRF, Technologies for the Wireless Future, R. Tafazolli (Ed.), Hoboken, NJ:

Wiley, 2004.

[4]. George Aggelou, “Mobile Ad Hoc Networks – From Wireless LANs to 4G

Networks”, a book published by McGraw-Hill Companies, Inc., 2005.

[5]. Webb, William. Wireless Communications: The Future. John Wiley & Sons. ©

2007.

[6]. Marco conti and silvia Giordano, “Multihop ad-hoc networking: the theory”, IEEE

Communications Magazine, April 2007, Volume 45, Issue 4, Page(s):78-86.

[7]. Ram Ramanathan, “Antenna Beamforming and Power Control for Ad Hoc

Networks”, Mobile Ad Hoc Networking, Wiley-IEEE Press, July 2004.

[8]. Sunil Kumar, Vineet S. Raghavan and Jing Deng, “Medium Access Control

protocols” Issue 3, May 2006, Pages 326-358.

[9]. Elizabeth M. Belding-Royer, “Routing Approaches in Mobile Ad Hoc Networks”,

Mobile Ad Hoc Networking, Wiley-IEEE Press, July 2004.

[10]. S. Bah, R. Glitho and R. Dssouli, “A business model with LINDA- based broker for

service provisioning in Mobile Ad Hoc Networks”, 10th International Conference on

Intelligence in Networks (ICIN 06), 29 May – 1st june 2006, Bordeaux, France.

[11]. S. Bah, A. Basel, R. Glitho, F. Khendek, R. Dssouli, “A SIP servlets framework for

service provisioning in stand-alone Mobile Ad Hoc Networks”, ICIN 2008, October

2008, Bordeaux, France.

[12]. S. Bah, R. Glitho and R. Dssouli, “An Overlay Network for a SIP Servlet-Based

Service Execution Environment in Stand Alone MANETs”, Second IFIP International

Conference on New Technologies, Mobile and Security, NTMS‟2008, November

2008, Tangier, Morocco.

 220

[13]. S. Bah, R. Glitho and R. Dssouli, “SIP Servlets for Service Provisioning in

Multihop Cellular Networks: High-Level Architectural Alternatives”, IEEE

Consumer Communications & Networking Conference (CCNC 2008), Las Vegas.

10-12 January, 2008.

[14]. S. Bah, R. Glitho and R. Dssouli, “Provisioning Services in Multihop Cellular

Networks When the End-Users are in the Mobile Ad-hoc Network portion”, IEEE

International Workshop on Broadband Convergence Networks (BcN 2008) at IEEE

Network Operations and Management Symposium (NOMS 2008), 7-11 April 2008,

Salvador – Bahia, Brazil.

[15]. S. Bah, R. Glitho and R. Dssouli, “Service provisioning in Multihop Cellular

Networks” submitted to IEEE Wireless communications magazine.

[16]. Xiang-Yang Li, Wireless Ad Hoc and Sensor networks: Theory and Applications,

Cambridge University Press, 2008.

[17]. Mohapatra, P. and Krishnamurthy, S. AD HOC Networks: Technologies and

Protocols. Springer-Verlag New York, Inc. 2005.

[18]. Prasad, Ramjee, and Luc Deneire, From WPANs to Personal Networks:

Technologies and Applications, Artech House. © 2006.

[19]. Corson, M. S., and J. Macker, Mobile Ad hoc Networking (MANET), "Routing

Protocol Performance Issues and Evaluation Considerations," Request For

Comments 2501, Internet Engineering Task Force, January 1999.

[20]. J. Hubaux, J. Boudec, S. Giordano, and M. Hamdi, “The terminode project: Toward

mobile ad-hoc WANs,” in Proc. MOMUC'99 San Diego, CA, 1999.

[21]. Jennifer J. –N. Liu and Imrich Chlamtac, “Mobile Ad hoc Networking with a view

of 4G Wireless: Imperatives and Challenges”, Mobile Ad Hoc Networking, Wiley-

IEEE press, July 2004.

[22]. J. Blau, “Wi-Fi Hotspot Networks Sprout Like Mushrooms,” IEEE Spectrum,

pp.18-20. Sept. 2002.

[23]. R-S. Chang, W-Y. Chen, and Y-F. Wen. “Hybrid wireless network protocols”,

IEEE Trans-actions on Vehicular Technology, 52(4):1099–1109, July 2003.

 221

[24]. B. Liu, Z. Liu, and D. Towsley. “On the capacity of hybrid wireless networks”, In

Proc. IEEE INFOCOM, volume 2, pages 1543–1552, San Francisco, CA, April,

2003.

[25]. P. T. Olivier Dousse and M. Hasler, “Connectivity in ad-hoc and hybrid networks,”

in Proc. IEEE Infocom, 2002.

[26]. Bin Xie, Anup Kumar and D. P. Agrawal, “ Security Issues in an Integrated

Cellular Network –WLAN and MANET,” Edited book entitled, Wireless Ad Hoc

Networking: Personal-Area, Local-Area, and Sensory-Area Networks, CRC Press,

Dec. 2006.

[27]. A. Bria, F. Gessler, O. Queseth, R. Stridh, M. Unbehaun, J. Wu, J. Zander, and M.

Flament,“4th-Generation Wireless Infrastructures: Scenarios and Research

Challenges,” IEEE Personal Communications, December 2001.

[28]. C. Polits, T. Oda, S. Dixit, A. Sieder, H. Lanch, M. Smirnov, S. Uskela, and R.

Tafazolli, “Cooperative Networks for the Future Wireless World,” IEEE

Communications Magazine, September 2004.

[29]. Bing (ed), Benny, Emerging Technologies in Wireless LANs: Theory, Design, and

Deployment, Cambridge University Press, 2008.

[30]. 3GPP TS 23.002, “Network architecture” October 2005.

[31]. R. Pichna, “Interworking Architecture Between 3GPP and WLAN System,” IEEE

Communication Magazine, Nov. 2003.

[32]. F. G. Marquez, M. G. Rodriguez, T. R. Valladates, T. De Miguel and L. A.

Galindo, “Interworking of IP Multimedia Core Networks between 3GPP and

WLAN,” IEEE Wireless Communications, June 2005.

[33]. 3GPP TS 23.234, “3GPP system to WLAN Interworking” V.6.5.0 Jun 2005.

[34]. M. Buddhikot, G. Chandranmenon, S. Han, Y. Lee, S. Miller, and L. Salgarelli,

“Integration of 802.11 and Third-Generation Wireless Data Networks,” in Proc. of

IEEE Conference on Computer Communications (INFOCOM‟03), San Francisco,

CA, April 2003.

[35]. M. Lott, M. Siebert, S. Bonjour, D. von Hugo, and M. Weckerle, “Interworking of

WLAN and 3G systems,” IEE Proc. of Communications, vol. 151, no. 5, pp. 507-

513, October 2004.

 222

[36]. A. Salkintzis, “Interworking Techniques and Architectures for WLAN/3G

Integration Toward 4G Mobile Data Networks,” IEEE Wireless Communications,

vol. 11, no. 3, pp. 50-61, June 2004.

[37]. H. Wu, C. Qiao, S. De, and O. Tonguz, “Integrated Cellular and Ad Hoc Relaying

Systems: iCAR”, IEEE JSAC, vol.19, 2001, pp. 2105-15.

[38]. H.Luo et al., “UCAN: A Unified Cellular and Ad-Hoc network Architecture”, proc.

ACM Mobicom, Sept. 2003.

[39]. D. Cavalcanti, C. M. Cordeiro, D. P. Agrawal, B. Xie, and A. Kumar, “Issues in

Integrating Cellular Networks, WLANs, and MANETs: A Futuristic Heterogeneous

Wireless Network,” in IEEE Wireless Communications Magazine, Special Issue on

Toward Seamless Internetworking of Wireless LAN and Cellular Networks, June

2005.

[40]. C. Fu, F.Khendek, R. Glitho, , “Signaling for multimedia conferencing in 4G: the

case of integrated 3G/MANETs”, IEEE Communications Magazine, Aug. 2006.

[41]. D. Ben Khedher, R. Glitho and R. Dssouli , Media Handling for Multimedia

Conferencing in Multihop Cellular Networks, IEEE Network Magazine,

Forthcoming, 2009.

[42]. I. Chlamtac, M. Conti, and J. Liu, "Mobile Ad Hoc Networking: Imperatives and

Challenges," Elsevier Ad Hoc Networks Journal, vol. 1, no. 1, pp. 13-64, July 2003.

[43]. R. Shollmeier, I. Gruber and M. Finkenzeller, “Routing in Mobile Ad-Hoc

networks and Peer-to-Peer Networks, a Comparison”, Inter. Workshop on Peer-to-

Peer Computing, Pisa, Italy, May 2002.

[44]. Juneja, Girish, Blake Dournaee, Joe Natoli, and Steve Birkel, Service Oriented

Architecture Demystified, Intel Press. © 2007.

[45]. Randall Perrey , Mark Lycett, Service-Oriented Architecture, Proceedings of the

2003 Symposium on Applications and the Internet Workshops (SAINT'03

Workshops), p.116, January 27-31, 2003.

[46]. C. Abarca et al., TINA Consortium, service architecture specifications, version 5.0,

1997, available from www.tinac.org

[47]. Berndt, H., Hamada, T., Graubmann, P., TINA: Its Achievements and its Future

Directions, IEEE Communications Surveys & Tutorials, Vol. 1, 2000.

http://portal.acm.org/citation.cfm?id=829329&dl=GUIDE&coll=GUIDE&CFID=25310010&CFTOKEN=10776365
http://portal.acm.org/citation.cfm?id=829329&dl=GUIDE&coll=GUIDE&CFID=25310010&CFTOKEN=10776365
http://portal.acm.org/citation.cfm?id=829329&dl=GUIDE&coll=GUIDE&CFID=25310010&CFTOKEN=10776365
http://www.tinac.org/

 223

[48]. Roch H. Glitho, A Mobile Agent Based-Service Architecture for Internet

Telephony, PhD dissertation, The Royal Institute of Technology, Stockholm, 2002.

[49]. Berndt, H., Graubmann, P., and Wakano, M., Service Specification Concepts in

TINA-C. In Proceedings of the Second international Conference on intelligence in

Broadband Services and Networks: Towards A Pan-European Telecommunication

Service infrastructure, September 1994.

[50]. Rohan Sen, Radu Handorean, Gruia-Catalian Roman, and Christopher Gill,

“Service Oriented Computing Imperatives in Ad Hoc Wireless Settings,” Technical

Report WU-CSE-2004-05, Washington University, Department of Computer

Science, St. Louis, Missouri.

[51]. Erik Christensen et al., Web Services Description Language (WSDL) 1.1

specification, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl.

[52]. Shafer, S.M., Smith, H.J., Linder, J.C., The power of business models, Business

Horizons 48, pp 199–207. 2005.

[53]. Magretta, J., Why business models matter, Harvard business review, Cambridge,

MA: Harvard Business School Publishing Corporation, 2002.

[54]. TINA-C 4.0 business model Specification, “TINA business model and reference

points”, 1997. http://www.tinac.com

[55]. Gonzalo Camarillo, Miguel-Angel Garcia-Martin, the 3G IP Multimedia Subsystem

(IMS): Merging the Internet and the Cellular Worlds, Second Edition, John Wiley

& Sons, 2006.

[56]. J. Rosenberg et al., “SIP: Session Initiation Protocol,” IETF RFC 3261, June 2002.

[57]. J. Rosenberg and H. Schulzrinne, Session Initiation Protocol (SIP): Locating SIP

Servers. RFC 3263, Internet Engineering Task Force, June 2002.

[58]. R.Fielding et al. Hypertext Transfer Protocol HTTP/1.1. RFC 2616, Internet

Engineering Task Force, June 1999.

[59]. WAP Forum. WAP architecture, Recommendation WAP architecture, Wireless

Application Protocol Forum, July 2001.

[60]. 3rd Generation Partenership Project, Technical Specification Group Core Network

and Terminals; “Conferencing Using the IP Multimedia (IM); Core Network (CN)

Subsystem”; 3GPPP TS 24.147 v7.2.0; Sept. 2006.

http://www.w3.org/TR/wsdl
http://www.tinac.com/

 224

[61]. Rajagopalan, Suresh, Java Servlet Programming Bible, John Wiley & Sons, 2002.

[62]. Dany Coward, Yutaka Yushida, “Java Servlet Specification, Version 2.4”; Release:

November 24, 2003.

[63]. A. Kristensen, “The SIP Servlet API specifications, Version 1.0”, February. 2003.

[64]. José S. Lucas, SIP servlets, White paper, GEMINI Consortium, September 2003.

[65]. M. Munoz and C. Garcıa-Rubio, “A New Model for Service and Application

Convergence in B3G/4G Networks”, IEEE Wireless Communications, 11(5):6–12,

Oct. 2004.

[66]. S. Arbanowski et al. “I-centric Communications: Personalization, Ambient

Awareness, and Adaptability for Future Mobile Services”, IEEE Communications

Magazine, September 2004, pp. 63-69.

[67]. TINA Consortium web site: http://www.tinac.com/about/principles_of_tinac.htm,

last accessed on April 2009.

[68]. Yu, C.-F., "Customer service provisioning in intelligent networks," Network, IEEE,

vol.4, no.1, pp.25-28, Jan 1990.

[69]. Wireless Application Protocol Architecture Specification, version 12 July, 2001.

[70]. Sun MicroSystems, JAIN and Open Networks, white paper describing the

positioning of the JAIN Application Programming Interfaces (APIs) within open

network architectures, August 2003.

http://java.sun.com/products/jain/JainAndOpenNetworks01.pdf. Last accessed on

April 2009.

[71]. Parlay 6.0 Specification, Open Service Access (OSA); Application Programming

Interface (API); Part 1: Overview (Parlay 6), 2007. http://www.parlay.org

[72]. A.J. Moerdijk and L. Klostermann, “Opening the Networks with Parlay/OSA:

Standards and Aspects Behind the APIs”, IEEE Network, pp. 58-64, May/June

2003.

[73]. H. Kreger, “Web Services Conceptual Architectures (WSCA 1.0)”, IBM Software

Group, White Paper, May 2001.

[74]. F.Curbera et al., “Unraveling the Web services Web: An Introduction to SOAP,

WSDL and UDDI”, IEEE Internet Computing, Vol. 6, No2, March-April 2002, pp.

86-93.

http://java.sun.com/products/jain/JainAndOpenNetworks01.pdf
http://www.parlay.org/

 225

[75]. Adam Bosworth, “A Conversation with Adam Bosworth”, ACM Queue vol. 1, no.

1 - March 2003.

[76]. SOAP specifications, http://www.w3.org/TR/soap last accessed on April 2009.

[77]. UDDI specifications, http://www.uddi.org last accessed on April 2009.

[78]. Hao-hua Chu, Chuang-wen You, Chao-ming Teng, Challenges: wireless Web

service, Parallel and Distributed Systems, 2004. ICPADS 2004. Proceedings. Tenth

International Conference on, 7-9 July 2004.

[79]. Satish Narayana S., Matthias Jarke , Wolfgang Prinz, Mobile Web Service

Provisioning, Proceedings of the Advanced Int'l Conference on

Telecommunications and Int'l Conference on Internet and Web Applications and

Services, February 19-25, 2006.

[80]. 3rd Generation Partnership Project, Technical Specifications Group; Services &

Systems Aspects, IP Multimedia Subsystem (IMS), Stage 2, 3GPP TS 23.228

v8.7.0, December 2008.

[81]. Ericsson white paper, Introduction to IMS, 284 23-8123 Uen Rev A., March 2007.

http://www.ericsson.com/technology/whitepapers/8123_Intro_to_ims_a.pdf last

accessed on April 2009.

[82]. Y. Inoue, D. Guha, and H. Berndt, “The TINA consortium,” IEEE Commun. Mag.,

vol. 36, Sept. 1998.

[83]. M. Mampaey and A. Couturier, “Using TINA Concepts for IN Evolution,” IEEE

Commun. Mag., June 2000.

[84]. Mang Li; Schieferdecker, I.; Rennoch, A., "Testing the TINA retailer reference

point," Autonomous Decentralized Systems, 1999. Integration of Heterogeneous

Systems. Proceedings. The Fourth International Symposium on , vol., no., pp.268-

275, 1999.

[85]. W3C working group, “Web Services Architecture”, W3C working group note,

February 2004. http://www.w3.org/TR/ws-arch/#discovery_approaches. Last

accessed on April 2009.

[86]. Li Li and Louise Lamont, “A Lightweight Service Discovery Mechanism for

Mobile Ad Hoc Pervasive Environment Using Cross-layer Design”, IEEE

http://www.w3.org/TR/soap
http://www.uddi.org/
http://portal.acm.org/citation.cfm?id=1116287&dl=GUIDE&coll=GUIDE&CFID=28824796&CFTOKEN=95265906
http://portal.acm.org/citation.cfm?id=1116287&dl=GUIDE&coll=GUIDE&CFID=28824796&CFTOKEN=95265906
http://portal.acm.org/citation.cfm?id=1116287&dl=GUIDE&coll=GUIDE&CFID=28824796&CFTOKEN=95265906
http://portal.acm.org/citation.cfm?id=1116287&dl=GUIDE&coll=GUIDE&CFID=28824796&CFTOKEN=95265906
http://www.ericsson.com/technology/whitepapers/8123_Intro_to_ims_a.pdf
http://www.w3.org/TR/ws-arch/#discovery_approaches

 226

Proceedings of the 3rd Int‟l Conf. on Pervasive Computing and Communications

Workshops (PerCom 2005 Workshops).

[87]. Christopher N. Ververidis and George C. Polyzos, “Routing Layer Support for

Service Discovery in Mobile Ad Hoc Networks”, IEEE Proceedings of the 3rd Int‟l

Conf. on Pervasive Computing and Communications Workshops (PerCom 2005

Workshops) 2005.

[88]. V. Park and J., “Macker. Anycast routing for mobile services”, Proc. of Conference

on Information Sciences and Systems (CISS), March 1999.

[89]. Tyan, J.; Mahmoud, Q.H., “A network layer based architecture for service

discovery in mobile ad hoc networks”, IEEE Electrical and Computer Engineering,

2004. Canadian Conference on volume 3, 2-5 May 2004 Page(s):1379 - 1384

Vol.3.

[90]. Erik Guttman, "Service Location Protocol: Automatic Discovery of IP Network

Services," IEEE Internet Computing, vol. 3, no. 4, pp. 71-80, July/Aug. 1999.

[91]. Salutation Consortium, Salutation Architecture Specification Version 2.0 Part 2“,

June 1999.

[92]. Sun Microsystems Jini Specification, ” DJ- Jini discovery and join specification”,

version 3.0, 2005.

[93]. B. Miller, Home Networking with Universal Plug and Play, lEEE Communication.

Mag., vol. 39, no. 12, Dec. 2001.

[94]. F. Sailhan, V. Issarny: Scalable Service Discovery for MANET, Proceedings of the

3rd IEEE Int'l Conf.on Pervasive Computing and Communications (2005).

[95]. U. C. Kozat, L. Tassiulas: Service discovery in mobile ad hoc networks: an overall

perspective on architectural choices and network layer support issues, Ad Hoc

Networks, 2, (2004).

[96]. Sumi Helal, Nitin Desai, Varum Verma and Choonhwa Lee, “Konark – A Service

Discovery and Delivery Protocol for Ad-hoc Networks”, Proceedings of the Third

IEEE Conference on Wireless Communication Networks (WCNC), New Orleans,

March 2003.

[97]. M. Nidd, “Service Discovery in DEAPspace,” IEEE Personal Communications,

August 2001.

 227

[98]. C. Campo et al. “PDP and GSDL: A New Service Discovery Middleware to

Support Spontaneous Interactions in Pervasive Systems”, In IEEE Middleware

Support for Pervasive Computing (PerWare 2005) at the 3rd IEEE Conference on

Pervasive Computing (PerCom 2005) (March 8, 2005).

[99]. Radu Handorean and Gruia-Catalin Roman, “Secure service provision in ad-hoc

networks,” in Proceedings of The First International Conference on Service

Oriented Computing (ICSOC 03), Springer Verlag, Ed., 2003.

[100]. David Gelernter, “Generative communication in Linda”, ACM Transactions on

Programming Languages and Systems, 7(1):80{112}, January 1985.

[101]. Sun Microsystems, JAIN SLEE (JSLEE) 1.1 Specification, Final Release. 2008.

[102]. Sun Microsystems, JXTA v2.0 protocols specifications, 2007. https://jxta-

spec.dev.java.net/JXTAProtocols.pdf. Last accessed on April 2009.

[103]. Roch H. Glitho, “Engineering Value Added Services in Next Generation

Networks: Issues, Concepts and Principles”, Full day tutorial at IEEE Global

Communications Conference, San Francisco, USA, 2003.

[104]. Amy L. Murphy and Gruia-Catalin Roman, Lime: A Middleware for Physical

and Logical Mobility, Technical Report WUCS-00-05, Washington University in

St Louis, MO, USA February 2000.

[105]. E. K. Lua et al, “A survey and comparison of peer-to-peer overlay network

schemes”, IEEE Communication Surveys & Tutorials, Second Quarter 2005,

volume 7, N.2.

[106]. Dhafer Ben Kheder, Roch Glitho, and Rachida Dssouli, A Novel Overlay-Based

Failure Detection Architecture for MANET Applications, In the Proceedings of

the IEEE International Conference on Networks (ICON2007), Adelaide, South

Australia, 19th - 21st November 2007.

[107]. Khlifi, H., Agarwal, A., Gregoire, J.-C., “A framework to use SIP in ad-hoc

networks”, Proceedings of IEEE CCECE 2003, 4-7 May, 2003.

[108]. N. Banerjee, A. Acharya, and S. K. Das. “Peer-to-peer sip-based services over

wireless ad hoc networks”, In BROADWIM: Broadband Wireless Multimedia

Workshop, Oct. 2004.

https://jxta-spec.dev.java.net/JXTAProtocols.pdf
https://jxta-spec.dev.java.net/JXTAProtocols.pdf

 228

[109]. S. Leggio, J. Manner, A. Hulkkonen, and K. Raatikainen. “Session initiation

protocol deployment in ad-hoc networks: a decentralized approach”, In 2nd

IWWAN, May, 2005.

[110]. M. El Barachi, R. Glitho, R. Dssouli, “Context-aware signaling for call

differentiation in IMS-based 3G networks”, Proceedings of IEEE Symposium on

Computers and Communications(ISCC‟07), Aveiro Portugal 1st – 4th July 2007.

[111]. G. J. Holzmann, Design and Validation of Computer Protocols. New Jersey:

Prentice-Hall, Inc. 1991.

[112]. OPNET Simulator. OPNET Technologies, Inc., http://www.opnet.com.

[113]. Padmanabhan, P., Gruenwald, L., Vallur, A., and Atiquzzaman, M., “A survey of

data replication techniques for mobile ad hoc network databases”. The

International Journal on Very Large Data Bases.Aug. 2008.

[114]. Takahiro Hara, Sanjay K. Madria, "Data Replication for Improving Data

Accessibility in Ad Hoc Networks," IEEE Transactions on Mobile Computing,

vol. 5, no. 11, Nov. 2006.

[115]. Duong, H. H. and Demeure, I. 2008, “Data sharing over mobile ad hoc networks”,

In Proceedings of the 8th international Conference on New Technologies in

Distributed Systems (Lyon, France, June 23 - 27, 2008). NOTERE '08. ACM,

New York, NY.

http://www.opnet.com/

