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Abstract

We study a Cox risk model that accounts for both, seasonal variations
and random fluctuations in the claims intensity. This occurs with nat-
ural phenomena that evolve in a seasonal environment and affect insurance
claims, such as hurricanes.

More precisely, we define an intensity process, governed by a periodic
function with a random peak level. The periodic intensity function follows
a deterministic pattern in each short–term period, and is illustrated by
a beta–type function. A two–state Markov chain defines the level process,
explaining the random effect due to “high” or “low risk” years. This yields a
regime–switching process, alternating between the two resulting intensities.

The properties of the corresponding claim counting process are discussed
in detail. By properly defining the Lundberg coefficient, Lundberg–type
bounds for finite time ruin probabilities are derived.
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1 Introduction

Consider the risk process

U(t) = u + ct −

N(t)
∑

j=1

Xj , t ≥ 0 , (1)

where u is the initial value, c is the (constant) premium rate, {N(t)}t≥0 is a point
process which models the number of claims arriving within the time interval [0, t)
and Xj is the j-th claim size. When {N(t)}t≥0 is a Poisson process with (constant)
intensity λ and the claim size sequence {Xj}j≥1 are i.i.d. and independent of N ,
then (1) is known as the classical (homogeneous Poisson) risk model, which has
been investigated extensively in the actuarial literature.

The classical risk model is not realistic in some practical situations. Two main
modifications are made here. First, a non–homogeneous Poisson (NHP) process
is used to model “size fluctuations” in the claim intensity of a risk subject to
seasonality. Then, a Cox process, also called doubly stochastic Poisson process
and a natural extension of the NHP process, is used to characterize the underlying
“risk fluctuations” in the claims intensity [see Grandell (1991)].

The risk theory literature gives only a few results when the claim counting process
is a NHP process. Dassios and Embrechts (1989) defines a risk model with periodic
claim intensity and consider the corresponding ruin problems using a martingale
approach. Similar models are also considered by Asmussen and Rolski (1994)
and by Rolski et al. (1999). Two–sided bounds and asymptotic formulae for ruin
probabilities are derived by using an average arrival rate risk model. Berg and
Haberman (1994) uses a non–homogeneous Markov birth process, of which the
NHP process is a special case, to predict trends in life insurance claim occurrences.
Dimitrov et al. (2000) exploits some properties in a NHP risk model with a (single)
periodic claim intensity. Morales (2004) chooses a Gaussian shape for the periodic
claim intensity function. By contrast, Garrido and Lu (2002) considers a more
general double periodic intensity rate. Possible forms of intensity functions, like
the double–beta and the sine–beta, are proposed.

An early reference to Cox risk models is Ammeter (1948). In his model, the inten-
sity λk over time intervals [(k− 1)Λ, kΛ) of (fixed) length Λ, for k ∈ N

+, forms an
i.i.d. sequence {λk}k≥0. This model is generalized by Björk and Grandell (1988),
who consider the intensity as λ(t) = Li if Σi−1 ≤ t < Σi, where Σi = σ1 + · · ·+σi,
with Σ0 = 0 and (Li, σi) a sequence of i.i.d. random vectors. Ammeter’s model is
revisited by Grandell (1995) and more properties of the model are discovered.
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Asmussen (1989) proposes a Cox risk model, called a Markov–modulated Poisson
process, whose intensity process {λ(t)}t≥0 is given by λ(t) = λJ(t). Here the
process {J(t)}t≥0 models the random environment of an insurance business and is
assumed to be an irreducible continuous time Markov chain, with finite state space
{1, 2, . . . , l}. Furthermore, a Cox risk process with a piecewise constant intensity
is considered by Schmidli (1996), where the sequence {Li}i≥1 of successive levels
of the intensity forms a Markov chain.

Ruin probabilities have been studied in these Cox models with a piecewise con-
stant intensity. Lundberg inequalities hold, provided some assumptions are ful-
filled. These may not be practical due to the difficulty in estimating the Lundberg
coefficient and evaluating some constants within the inequalities. Other papers
regarding to this topic are Embrechts et al. (1993) and Schmidli (1997).

There are very few results in the risk theory literature regarding Cox processes
with other than piecewise constant intensities. Recently, Schmidli (2003) consi-
dered a NHP model with doubly stochastic occurrences for the PCS catastrophes
index, based on individual indices for PCS options, where the intensity is of the
form Λλ(t), with Λ is stochastic and λ(t) is a given function.

Some natural phenomena evolve in a seasonal environment subject to random
fluctuations which, in turn, affect insurance claims. For example, tropical storms
and hurricanes periodically affect the coastal US states along the Atlantic and
the Gulf of Mexico. The claim intensity then forms a specific pattern for each
year which can be modeled by a periodic function. Speculation exists regarding
the significance and potential effects of the El Niño phenomenon on hurricane
frequency and the strength attained by tropical cyclones during alternating El
Niño/La Niña years. These are random effects that, in some sense, affect the risk
propensity or the peak level of the seasonal intensity, which can be modeled by a
stochastic process.

In this paper we propose a Cox model that accounts for both, the seasonal va-
riations and the random fluctuations in the claims intensity. Beard et al. (1984)
and Daykin et al. (1994) suggest an intensity process λ as a composition of some
factors, such as the normal trend, deviations from it and the short–term variations
in risk propensity. Here we simply consider an intensity process with the following
structure

λ(t) = λS(t)q(t) , t ≥ 0 , (2)

where λS(t) is the short–term intensity function and q(t) is a stochastic (level)
process. The periodicity of the short–term intensity function is also considered,
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which takes into account those insurance claims affected by a periodic environ-
ment, like hurricanes or seasonal storms. A Markov chain with two states, cor-
responding to two different (high and low) levels, is chosen for the level process,
yielding a so called regime–switching process. Under this intensity process, pro-
perties of the claim counting process and its corresponding risk process are studied
in detail. By properly choosing the Lundberg coefficient, Lundberg–type upper
bounds for finite time ruin probabilities are derived.

The paper is organized as follows. The model is defined in Section 2. Section 3
discusses the properties of the claim counting process. This gives a precise descrip-
tion of the model characteristics, such as the probabilities of recording k claims
during the time interval [0, t), for t ≥ 0 and k ∈ N, and the expectation of the
integrated intensities in (2). In Section 4 we derive Lundberg–type upper bounds
for finite time ruin probabilities and illustrate the results by some examples.

2 A Cox model with a regime–switching

periodic intensity

Consider an intensity process {λ(t)}t≥0 governed by a deterministic pattern in
each short–term period, say a year, and a random effect on its peak level, that
is the amplitude of the pattern. This fixed intensity pattern can be seen as the
short-term periodicity, like in the NHP process. Assume we have two different
risk levels; λ0 which represents the risk under “low season” conditions, while the
other, λ1, represents the peak intensity under “high risk” years. In practice, such
conditions can be slippery roads, foggy days, stormy weather, years affected by
the El Niño phenomenon and so on.

Furthermore, assume that the intensity level modulates by an irreducible discrete
time Markov process, κ = {κn}n≥0, with finite state space {0, 1} and the transition
probability matrix P , given by

P =

(

1 − p01 p01

p10 1 − p10

)

. (3)

Without loss of generality, we assume that the short–term period is 1. Let β be a
function defined on [0, 1], such that β(t∗) = 1, where t∗ ∈ [0, 1] is the mode of the
function. Consider the intensity process λ, given by

λ(t) = λκbtc
β(t − btc) , t ≥ 0 . (4)
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This gives λ(n + t∗) = λκn
β(t∗) = λκn

for n ∈ N, that is, the peak of the function
λ(t) within the (n + 1)-th year [i.e. t ∈ [n, n + 1)] is λκn

, which changes according
to the Markov chain κ. As such, we call λκn

the intensity level for year n + 1.

In the sequel, we illustrate the annual common intensity pattern as a beta–type
function with parameters p ≥ 1 and q ≥ 1, given by

β(t) = α∗ tp−1 (1 − t)q−1 , 0 ≤ t ≤ 1 , (5)

where α∗ is a scale factor, given by

α∗ =
1

(t∗)p−1 (1 − t∗)q−1
and t∗ =

p − 1

p + q − 2
(6)

is the mode of β(t), t ∈ [0, 1]. As such, note that at the mode β(t∗) = 1 is the
peak level [see Figure 1]. Also denote the beta function in the usual way

B(p, q) =

∫ 1

0

vp−1(1 − v)q−1dv =
Γ(p)Γ(q)

Γ(p + q)
, p, q ≥ 1,

and the incomplete beta function at p, q ≥ 1 as

B(p, q; t) =

∫ t

0

vp−1 (1 − v)q−1 dv , t ∈ (0, 1) ,

with B(p, q; t) = 0 if t ≤ 0, while B(p, q; t) = btcB(p, q) + B(p, q; t−btc), if t ≥ 1.

Figure 1: β(t) and one realization of intensity process λ.
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Figure 1 illustrates function β(t), when p = 3 and q = 2, as well as a realization
of the intensity process λ, when p = 3, q = 2, λ0 = 0.75, λ1 = 1.2, p01 = 0.25 and
p10 = 0.5.

Consider a special Cox process, the claim counting process {N(t)}t≥0 with an
intensity process as in (4). Due to the periodicity of the function β(t − btc), for
t ≥ 0, and the transitions, from year to year, between levels λ0 and λ1, we call this
risk model a regime–switching periodic non–homogeneous Poisson (NHP) process.

Let {Ni(t)}t≥0 for i = 0, 1, (with Ni(0) = 0) denote a claim counting NHP process
with intensity function λi β(t − btc) over the time interval [0, t). That is Ni(t)
is Poisson distributed with mean λi

∫ t

0
β(v − bvc) dv = λi α

∗ B(p, q; t). Then the
process {N(t)}t≥0 can be represented as

N(t) =
∑

i=0,1

Yi(btc) Ni(1) + Nκbtc
(t) − Nκbtc

(btc) , t ≥ 0 , (7)

where Yi(btc) =
∑btc−1

n=0 I(κn = i) denotes the number of years in [0, btc) that κ

spends in state i, for i = 0, 1. This implies that, the conditional expected number
of claims in the time interval [0, t), given the environment, is:

E
[

N(t) | κ0, κ1, . . . , κbtc
]

=

btc−1
∑

n=0

∫ 1

0

λκn
β(v) dv + λκbtc

∫ t−btc

0

β(v) dv

= L
(

btc
)

α∗ B(p, q) + λκbtc
α∗ B(p, q; t − btc) , t ≥ 0 ,

where

L
(

btc
)

= Y0(btc) λ0 + Y1(btc) λ1 , t ≥ 0 , (8)

denotes the sum of λ0 and λ1 values in [0, btc). Hence, we have

E[N(t)] ≤ max{λ0, λ1}α∗ B(p, q; t).

The corresponding compound NHP process {S(t)}t≥0 is given by

S(t) =

N(t)
∑

j=1

Xj , t ≥ 0 , (9)

where the Xj’s are the claim sizes with distribution function FX , expected claim
size µ =

∫ ∞
0

v dFX(v) and moment generating function m̂X(s) =
∫ ∞
0

esv dFX(v),
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for some s > 0. These claim severities are assumed independent of the Markov
environment process κ and hence of the claim counting process {N(t)}t≥0. As in
(7) process {S(t)}t≥0 can also be represented as

S(t) =
∑

i=0,1

Yi(btc) Si(1) + Sκbtc
(t) − Sκbtc

(btc) , t ≥ 0 ,

where Si(t) =
∑Ni(t)

j=1 Xj.

Now consider the continuous–time surplus process {U(t)}t≥0, given by

U(t) = u + ct − S(t) , t ≥ 0 , (10)

where u is the initial capital value and c is the constant premium rate. The
aggregate claim process {S(t)}t≥0 is given in (9) and the claim counting process
{N(t)}t≥0 is the regime–switching periodic NHP process in (7).

Since the Markov environment process κ is assumed irreducible, it has a stationary
initial distribution, denoted by π = (π0, π1). Then by the law of large numbers
for irreducible Markov processes, we have:

lim
t→∞

U(t)

t
= c − µ

∑

i=0,1

πi λi α
∗ B(p, q) , (11)

[see Rolski et al. (1999, Chapter 12)].

(11) implies that ruin occurs almost surely if the process has a negative drift, that
is c ≤ µ

∑

i=0,1 πi λi α
∗ B(p, q). Therefore we assume that the net profit condition

c > µ
∑

i=0,1

πi λi α
∗B(p, q) , (12)

holds in the sequel.

3 Properties of the regime–switching periodic

process

For the regime–switching periodic NHP process defined above, the random mea-
sure Λ in this Cox process, given the realization of the environment process κ up

7



to time btc, is:

Λ(t) =

∫ t

0

λ(v) dv = L
(

btc
)

α∗ B(p, q) + λκbtc
α∗ B(p, q; t − btc) , t ≥ 0 ,

(13)

where L
(

btc
)

is given in (8). Then the conditional probability that the number
of claims is k in the time interval [0, t) is obtained as:

P{N(t) = k | κ0, κ1, . . . , κbtc} =
[Λ(t)]k

k!
e−Λ(t) , k ∈ N

+ ,

where Λ(t) is given in (13).

In order to calculate P{N(t) = k}, we need to know how many times λ0 appears
in the sequence {λκ0, λκ1, . . . , λκbtc

} (then the number of λ1 values is fixed). This
is equivalent to finding how many times 0 (say, “failure”) or 1 (“success”) appears
in the corresponding sequence {κ0, κ1, . . . , κbtc}. To do this, we denote Yi(n) to be
the number of times that successive n-length sequences of the time–homogeneous
{0, 1}-valued Markov process κ are in state i, for i = 0, 1.

Many papers discuss formulas or recursions for the distribution of success runs of
several lengths in a two–state Markov chain [for example, see Han and Aki (1998)].
From these, it is not difficult to derive the distribution of the number of successes,
Y1(n), which takes values in {0, 1, . . . , n} and can be obtained as follows.

Let Ei(n, y) denote the conditional probability of y successes in a (n + 1)-length
sequence, given that the sequence starts from state i, for i = 0, 1. That is,
E0(n, y) = P{Y1(n) = y} and E1(n, y) = P{Y1(n) = y − 1}. For convenience,
define Ei(n, y) = 0 for all y < 0, n ≥ 0 and i = 0, 1. We have the following
recursive formulas for probabilities Ei(n, y).

Ei(0, 0) = 1 , for i = 0, 1,

E0(n, y) = (1 − p01) E0(n − 1, y) +

n−1
∑

m=1

p01 (1 − p10)
m−1p10 E0(n − m − 1, y − m)

+p01 (1 − p10)
n−1 E1(0, y − n) , for 0 ≤ y ≤ n, n ≥ 1 , (14)

E1(n, y) = p10 E0(n − 1, y) +

n−1
∑

m=1

(1 − p10)
mp10 E0(n − m − 1, y − m)

+(1 − p10)
n E1(0, y − n) , for 0 ≤ y ≤ n, n ≥ 1.

Denote by Pn(y), the probability of Y1(n) = y (implying that Y0(n) must be n−y)
in a n-length sequence of the {0, 1}-valued irreducible Markov chain κ. Then
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assuming that this n-length sequence starts κ0, the law of the total probabilities
gives:

Pn(y) =
∑

i=0,1

P{Y1(n) = y | κ0 = i}P{κ0 = i}

= π0 P{Y1(n − 1) = y | κ0 = 0} + π1 P{Y1(n − 1) = y − 1 | κ0 = 1}

= π0 E0(n − 1, y) + π1 E1(n − 1, y − 1)

=
∑

i=0,1

πi Ei(n − 1, y − i) , for 0 ≤ y ≤ n, n ∈ N , (15)

where Ei(n − 1, y − i) can be recursively calculated from (14) and (π0, π1) is the
initial distribution of Markov chain κ.

For example, in a 3-length sequence, the probability that there are no successes
is given by:

P3(0) = π0 E0(2, 0) = π0 (1− p01) E0(1, 0) = π0 (1− p01)
2 E0(0, 0) = π0 (1− p01)

2 ,

since first it has to start from state 0 and then stays at 0 (failure) for the next
two steps. By contrast, the probability that there are 1 success and 2 failures is

P3(1) = π0 E0(2, 1) + π1 E1(2, 0)

= π0

[

(1 − p01) E0(1, 1) + p01 p10 E0(0, 0)
]

+ π1 p10 E0(1, 0)

= π0

[

(1 − p01) p01 E1(0, 0) + p01 p10

]

+ π1 p10 (1 − p01) E0(0, 0)

= π0

[

(1 − p01) p01 + p01 p10

]

+ π1 p10 (1 − p01) ,

since if the sequence starts at 0, it must go to 1 once in the next two steps.
But if the sequence starts at 1, it has to stay at 0 for the next two steps, and
so on. Similarly, we have P3(2) = π0 p01 (1 − p10) + π1 p10 [p01 + (1 − p10)] and
P3(3) = π1(1 − p10)

2.

We introduce the following notation for abbreviation. Denote by Λn(y) the ran-
dom measure under a realization of y periods at level λ1 (and hence n− y periods
at λ0), in the sequence {λκ0, λκ1, . . . , λκn−1}. That is

Λn(y) =
[

(n − y)λ0 + yλ1

]

α∗ B(p, q) , 0 ≤ y ≤ n, n ∈ N . (16)

Then we have the following theorem for the probabilities P{N(t) = k}.

Theorem 1 Let κ = {κn}n≥0 be a {0, 1}-valued irreducible Markov chain with
transition probabilities given by (3) and initial distribution (π0, π1). For the coun-
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ting process {N(t)}t≥0, given by (7), the probabilities that there be k claim oc-
currences during the time interval [0, t), for t ≥ 0 and k ∈ N, is given by

P{N(t) = k} =

btc
∑

y=0

Pbtc(y)

{

∑

i=0,1

(π0 p0i + π1 p1i) e
−
[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

[

Λbtc(y) + λi α
∗ B(p, q; t − btc)

]k

k!

}

, (17)

where Pbtc(y) and Λbtc(y) are obtained from (15) and (16), respectively.

Proof. See the Appendix. 2

Note here that (17) can be re-written as

P{N(t) = k} = E
[

P{N(t) = k
∣

∣ κ0, κ1, . . . , κbtc}
]

= E

[

Λ(t)k

k!
e−Λ(t)

]

,

where Λ(t) is given by (13). It means that this regime–switching periodic NHP
process can also be interpreted as a mixed Poisson process.

The random measure Λ(t) of this special Cox process is given by (13). Taking
expectations in (13) directly gives

E[Λ(t)] = E

[

L(btc) α∗ B(p, q) + λκbtc
α∗ B(p, q; t − btc)

]

= α∗ B(p, q) E
[

L(btc)
]

+ α∗ B(p, q; t − btc) E
[

λκbtc

]

,

then since E[Y1(btc)] =
∑btc

y=0 y Pbtc(y) and E
[

λκbtc

]

= λ0

[

π0 (1 − p01) + π1 p10

]

+

λ1

[

π0 p01 + π1 (1 − p10)
]

, it follows that

E
[

Λ(t)
]

= α∗ B(p, q)

btc
∑

y=0

Pbtc(y)
[

(btc − y) λ0 + y λ1

]

+α∗ B(p, q; t − btc)
∑

i=0,1

λi (π0 p0i + π1 p1i) , t ≥ 0 . (18)

It is not difficult to see that (18) is equivalent to

E[Λ(t)] =

btc
∑

y=0

Pbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i)
[

Λbtc(y) + λi α
∗ B(p, q; t − btc)

]

,
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then when t ≥ 0 and s < aΛ, the moment generating function of Λ(t), m̂Λ(t)(s) =
E[exp{sΛ(t)}], is given by

m̂Λ(t)(s) =

btc
∑

y=0

Pbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i) e
s

[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

, (19)

where aΛ ∈ R
+ is such that lims↑aΛ

m̂Λ(t)(s) = +∞, while Pbtc(y) can be obtained
from (15).

It is interesting to see that (19) can be re-written as

m̂Λ(t)(s) =

btc
∑

y=0

Pbtc(y) esΛbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i) esλi α∗ B(p,q;t−btc)

= m̂Λ(btc)(s)m̂Λ(t−btc)(s) , s < aΛ ,

showing that Λ(t) = Λ(btc) + Λ(t − btc) and that these are independent.

Theorem 1 and the above results on Λ(t) allow for the derivation of the moments
of N(t). For instance, applying Fubini’s Theorem and simple manipulations to
(17), gives the probability generating function ĝN(t)(s) = E[sN(t)]:

ĝN(t)(s) =

btc
∑

y=0

Pbtc(y)
∑

i=0,1

(π0 p0i + π1 p1i) e(s−1) [Λbtc(y)+λi α∗ B(p,q;t−btc)]

= E[e(s−1) Λ(t)] = m̂Λ(s − 1) , | s |< 1 .

Furthermore, taking the r-th derivative of ĝN(t)(s) with respect to s ∈ (0, 1),

ĝ
(r)
N(t)(s), and its limit as s ↑ 1, yields the following successive factorial moments

of N(t) (that these be finite or not):

E

[

N(t)[N(t) − 1] · · · [N(t) − r + 1]
]

= ĝ
(r)
N(t)(1) = lim

s↑1
ĝ

(r)
N(t)(s)

= lim
s↑1

E[Λ(t)r e(s−1) Λ(t)] = E[Λ(t)r] .

In particular, we have that:

E
[

N(t)
]

= E
[

Λ(t)
]

and V
[

N(t)
]

= V
[

Λ(t)
]

+ E
[

Λ(t)
]

, (20)

which imply that the index of dispersion of N(t) is IN(t) = V[N(t)]
E[N(t)]

= 1 + IΛ(t) > 1,

showing that N(t) is overdispersed, by contrast to the classical Poisson process.
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4 A Lundberg upper bound for finite time ruin

probabilities

This last section discusses the ruin problem for our special Cox process. The risk
(income) process, over the time interval [0, t), with initial value R(0) = 0 and a
constant premium rate c, is given as

R(t) = ct − S(t) = ct −

N(t)
∑

j=1

Xj , t ≥ 0 , (21)

where the claim counting process {N(t)}t≥0 is the regime–switching periodic NHP
process driven by our {0, 1}-valued Markov chain κ and S(t) is as in (9). Further
assume that the moment generating function m̂X(s) =

∫ ∞
0

esx dFX(x) is twice
differentiable on an interval [0, aX), where aX > 0 and lims↑aX

m̂X(s) = +∞.

Denote the Laplace–Stieltjes transform of R(t) by l(r; t) = E[e−r R(t)]. Assuming
it exists, it is given by

l(r; t) = eΛ(t)
[

m̂X(r)−1
]

−r ct , r > aR(t) , t ≥ 0 . (22)

Similarly, for i = 0, 1, let

li(r; t) = E
[

e−r Ri(t)
]

= E
[

e−r (ct−PNi(t)
j=1 Xj)

]

= eλi α∗ B(p,q;t)
[

m̂X(r)−1
]

−r ct , r > aRi(t) , t ≥ 0 . (23)

Let the time to ruin be defined in the usual way:

Tu = inf{t ≥ 0 | u + R(t) < 0} , u ≥ 0 .

The ultimate ruin probability Ψ(u) is then given by:

Ψ(u) = P{Tu < ∞} , u ≥ 0 .

Using the martingale approach to Cox models discussed in Grandell (1991) we
can prove the following result.

Theorem 2 The following Lundberg–type upper bound holds for the finite time
ruin probability in model (21):

P
{

Tu ≤ t0
}

≤ e−ru
E

[

sup
0≤t≤to

l(r; t)

]

, 0 ≤ t0 < ∞ . (24)
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A tighter upper bound can also be obtained for 0 ≤ t0 < ∞, as:

P
{

Tu ≤ t0
}

≤ e−ru
E

[

sup
0≤t≤to

l(r; t)

]

sup
y≥0

{

ery F̄X(y)
∫ ∞

y
erx dFX(x)

}

, (25)

where F̄X = 1 − FX is the tail of the distribution function of X.

Proof. For details see the Appendix. 2

The upper bound given in (25) is difficult to use in practice. To derive a corres-
ponding useful bound for our regime–switching periodic NHP model, first define
the average risk level, given by

λ̄ = π0λ0 + π1λ1 , (26)

and consider, for r ≥ 0, the equation

θ(r) = λ̄ α∗ B(p, q)
[

m̂X(r) − 1
]

− r c = 0 . (27)

The solution, γ > 0, to (27) satisfies:

λ̄ α∗ B(p, q)
[

m̂X(γ) − 1
]

= γc . (28)

Here γ is an adjustment coefficient for the average risk level λ̄ in (26), where λ1,
the peak intensity under “high risk” years, is assumed larger than that in the “low
season” (i.e. λ0 < λ1). It follows from (28) that

λi α
∗ B(p, q)

[

m̂X(γ) − 1
]

=
λi

λ̄
γ c , i = 0, 1 . (29)

The existence and unicity of γ in [0, aX) is guaranteed because θ(0) = 0 and
θ′(0) = λ̄ α∗ B(p, q) µ − c < 0, provided that the net profit condition (12) holds,
and hence the convexity of θ(r) ensures that θ′(γ) > 0.

Assume that t0 is an integer. Then with probabilities Pt0(y), given by (15), Λ(t0)
takes the following realizations:

Λt0(y) =
[

(t0 − y) λ0 + y λ1

]

α∗ B(p, q) , 0 ≤ y ≤ t0 , t0 ∈ N .

When 0 ≤ t ≤ t0, we have two possibilities for Λ(t), depending on the value of
λκbtc

. One is

Λ(t) =
[

(btc − z) λ0 + z λ1

]

α∗ B(p, q) + λ0 α∗ B(p, q; t − btc) , 0 ≤ t ≤ t0 ,

(30)

13



where 0 ≤ z ≤ min{btc, y} and btc−z+1 ≤ t0−y, or equivalently, z ∈ C(t+1, y) =
[

max{0, btc + 1 − (t0 − y)}, min{btc, y}
]

. While the other is

Λ(t) =
[

(btc − z) λ0 + z λ1

]

α∗ B(p, q) + λ1 α∗ B(p, q; t − btc) , 0 ≤ t ≤ t0 ,

(31)

where similarly, 0 ≤ z ≤ min{btc, y − 1} and btc − z ≤ t0 − y, or equivalently,
z ∈ C(t, y − 1) =

[

max{0, btc − (t0 − y)}, min{btc, y − 1}
]

.

When Λ(t) is given by (30), then (28) and (29) imply that:

Λ(t)
[

m̂X(γ) − 1
]

− γ ct = (btc − z)
[

λ0 α∗ B(p, q) (m̂X(γ) − 1) − γ c
]

+z
[

λ1 α∗ B(p, q) (m̂X(γ) − 1) − γ c
]

+λ0 α∗ B(p, q; t − btc) (m̂X(γ) − 1) − γ c(t − btc)

= −btc
( λ̄ − λ0

λ̄

)

γ c + z
(λ1 − λ0

λ̄

)

γ c

+λ0 α∗ B(p, q; t − btc)
[

m̂X(γ) − 1
]

− γ c(t − btc).

In turn

sup
0≤t≤t0

l(γ; t) = sup
0≤t≤t0

eΛ(t)
[

m̂X (γ)−1
]

−γ ct

≤ sup
0≤t≤t0

z∈C(t+1,y)

ez

(

λ1−λ0
λ̄

)

γ c+λ0 α∗ B(p,q;t−btc)
[

m̂X (γ)−1
]

−γ c(t−btc)

= max
0≤t≤t0

z∈C(t+1,y)

e
z

(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l0(γ; v)

≤ e
y

(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l0(γ; v) . (32)

Similarly, when Λ(t) is given by (31), then

sup
0≤t≤t0

l(γ; t) ≤ e
(y−1)

(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l1(γ; v) ≤ e
y

(

λ1−λ0
λ̄

)

γ c max
0≤v<1

l1(γ; v) ,

which has the same form as (32). Taking expectations gives

E

[

sup
0≤t≤to

l(r; t)

]

=
t0

∑

y=0

Pt0(y) ey

(

λ1−λ0
λ̄

)

γ c .
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Finally, setting r = γ, gives a Lundberg–type upper bound for the finite time ruin
probability in (25), for t0 ∈ N, that is:

P
{

Tu ≤ t0
}

≤ e−γ u

[

t0
∑

y=0

Pt0(y) ey

(

λ1−λ0
λ̄

)

γ c

]

max
0≤v<1
i=0,1

li(γ; v) sup
y≥0

{

ery F̄X(y)
∫ ∞

y
erx dFX(x)

}

,

(33)

where γ satisfies (28) and Pt0(y) is given in (15).

Obviously, the simpler bound for P{Tu ≤ t0} given by (24) can also be derived
here:

P
{

Tu ≤ t0
}

≤ e−γ u

[

t0
∑

y=0

Pt0(y) ey

(

λ1−λ0
λ̄

)

γ c

]

max
0≤v<1
i=0,1

li(γ; v) , (34)

but (33) is tighter than (34), as shown in the following examples.

Example 1 Consider claim sizes that are exponentially distributed with mean
µ. Their moment generating function m̂X(s) = 1

1−µs
, for s < aX = 1

µ
. The

adjustment coefficient for parameter λ0, is then given by

γ =
c − λ0 α∗ B(p, q) µ

c µ
=

1

µ
−

λ̄ α∗B(p, q)

c
, (35)

which is the positive solution to equation (28). The corresponding li(γ; v), given
in (23), takes the form

li(γ; v) = e

(

λi
λ̄

B(p,q;v)
B(p,q)

−v

)

γ c
, 0 ≤ v < 1 , i = 0, 1 . (36)

Figure 2 illustrates the upper bounds in this exponential case, as a function of u

(left graph), when t0 = 20, and as a function of t0 (right graph), when u = 10.
The other parameters are chosen to be λ0 = 1, λ1 = 1.2, p = 3, q = 2, p01 = 0.25,
p10 = 0.5, c = 1.5, µ = 1.5 and γ = 0.267, which is obtained from (35). Clearly,
the upper bounds (a), given by (33) are sharper than those in (b), given by (34).

Example 2 Consider the case of inverse Gaussian distributed claims, with mean
µ, variance µ β and density function

fX(x) =
µ

√

2πβx3
e
− (x−µ)2

2βx , x > 0 .

15



Figure 2: Upper bounds for exponential claims vs u (t0 = 20) and t0 (u = 10).

Their moment generating function m̂X(s) = e
µ
β

(1−
√

1−2βs) exists for s < 1
2β

. The

adjustment coefficient γ with respect to parameter λ̄ is the positive solution to
the equation

λ̄ α∗ B(p, q)

[

e
µ
β

(

1−
√

1−2β γ

)

− 1

]

= γ c , (37)

and li(v; γ), for i = 0, 1, is of the same form as in (36).

Figure 3 illustrates the upper bounds in this inverse Gaussian case, again as a
function of u (left graph), when t0 = 20, and as a function of t0 (right graph),
when u = 10. The other parameters are chosen as for Figure 2 and β = 8

3
, which

gives a variance of 4. Here γ = 0.155 is obtained from (37). Again the upper
bounds in (a), given by (33) are sharper than those in (b), given by (34).

Conclusions

Regime–switching periodic NHP processes can be useful in modeling risk processes
under periodic and random environments. A beta–type short–term intensity func-
tion is proposed with a two–state Markov process to model the peak level in the
intensity of this Cox risk process. This generalizes the periodic NHP model. It can
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Figure 3: Upper bounds for inverse Gaussian claims vs t0 (u = 10) and u (t0 = 20).

also provide more realistic descriptions than Cox models with piecewise constant
intensities.

The flexible shape of the beta function and the explicit results obtained for the
Cox risk process should make these regime–switching period NHP models more
practical than Cox processes with piecewise constant intensities, or than the usual
NHP process. However, this work can be extended to other reasonable short–term
intensity functions or regime–switching level processes with multi–state spaces.
Furthermore, statistical methods to estimate from real data set the beta parame-
ters and level parameters of the model are readily available and shall be illustrated
in subsequent work.

Appendix

Proof of Theorem 1: By the law of the total probabilities, it is easily seen that

P{N(t) = k} = P{N(btc) + [N(t) − N(btc)] = k}

=
k

∑

l=0

P{N(btc) = l}P{N(t) − N(btc) = k − l} .

17



Furthermore, since

P{N(btc) = l} =

btc
∑

y=0

P{N(btc) = l
∣

∣ Y1btc) = y}P{Y1(btc) = y}

=

btc
∑

y=0

[

Λbtc(y)
]l

l!
e−Λbtc(y) Pbtc(y) ,

and

P{N(t) − N(btc) = k − l}

=
∑

i=0,1

P{N(t) − N(btc) = k − l
∣

∣ κbtc−1 = i}P{κbtc−1 = i}

=
∑

i=0,1

[

∑

j=0,1

P{N(t) − N(btc) = k − l
∣

∣ κbtc−1 = i, κbtc = j}

P{κbtc = j
∣

∣κbtc−1 = i}
]

πi

=
∑

i=0,1

(π0 p0i + π1 p1i)

[

λi α
∗ B(p, q; t − btc)

]k−l

(k − l)!
e−λi α∗ B(p,q;t−btc) ,

we now can write

P{N(t) = k} =

btc
∑

y=0

Pbtc(y)

{

∑

i=0,1

(π0 p0i + π1 p1i) e−
[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

k
∑

l=0

[

Λbtc(y)
]l

l! (k − l)!

[

λi α
∗ B(p, q; t − btc)

]k−l

}

=

btc
∑

y=0

Pbtc(y)

{

∑

i=0,1

(π0 p0i + π1 p1i) e
−
[

Λbtc(y)+λi α∗ B(p,q;t−btc)
]

[

Λbtc(y) + λi α
∗ B(p, q; t − btc)

]k

k!

}

,

which completes the proof. 2

Proof of Theorem 2: Consider the martingale approach to Cox models discussed
in Grandell (1991). Let F be a suitable filtration, M be a positive F-martingale
(or a positive F-supermartingale) and T be an F-stopping time. Choose t0 < ∞
and consider t0 ∧ T , a bounded F-stopping time.
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By the optional stopping theorem, we have that

M(0) ≥ E
F0 [M(t0 ∧ T )] ≥ E

F0 [M(T ) | t ≤ t0] P
F0{T ≤ t0} ,

and therefore

PF0{T ≤ t0} ≤
M(0)

EF0 [M(T ) | T ≤ t0]
, t0 < ∞ .

Let the risk process R be adapted to F, that is Ft ⊇ FR
t for all t ≥ 0. Then the

ultimate ruin probability Ψ(u) is seen to be:

Ψ(u) = P{Tu < ∞} = E
[

PF0{Tu < ∞}
]

, u ≥ 0 .

Now consider N to be a Cox process with intensity process {λ(t)}t≥0 and random

intensity measure Λ, given by Λ(t) =
∫ t

0
λ(v) dv. A suitable filtration F is defined

as Ft = FΛ
∞∨FR

t and thus F0 = FΛ
∞. Consider the following choice of process M :

M(t) =
e−r [u+R(t)]

l(r; t)
=

e−r [u+R(t)]

eΛ(t) [m̂X(r)−1]−r ct
, t ≥ 0 ,

where R(t) is given in (21).

It can be shown that M is an F-martingale where the filtration is given by Ft =
FΛ

∞ ∨ FR
t . A lower bound is obtained when 0 ≤ t0 < ∞ as

E
F0

[

M(Tu)
∣

∣Tu ≤ t0
]

≥ E
F0

[

e−Λ(Tu) [m̂X(r)−1]+r cTu
∣

∣ Tu ≤ t0
]

≥ inf
0≤t≤to

e−Λ(t) [m̂X(r)−1]+r ct . (38)

More precisely,

E
F0

[

M(Tu)
∣

∣Tu ≤ t0
]

= E
F0

[

e−r [u+R(Tu)] e−Λ(Tu) [m̂X(r)−1]+r cTu
∣

∣ Tu ≤ t0
]

≥ inf
0≤t≤to

{

e−Λ(t) [m̂X(r)−1]+r ct
}

E
F0

[

e−r [u+R(Tu)]
∣

∣ Tu ≤ t0
]

≥ inf
0≤t≤to

{

e−Λ(t) [m̂X(r)−1]+r ct
}

inf
y≥0

{

1 − FX(y)
∫ ∞

y
e−r(y−x) dFX(x)

}

. (39)

Then we get, from (38), that

PF0
{

Tu ≤ t0
}

≤
M(0)

EF0
[

M(Tu)
∣

∣Tu ≤ t0
] ≤ e−ru sup

0≤t≤to

l(r; t) . (40)

Taking expectations proves (24). Using (39) in (40) yields (25). 2
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