Login | Register

Asymptotic Homogenization Method Applied to Linear Viscoelastic Composites. Examples


Asymptotic Homogenization Method Applied to Linear Viscoelastic Composites. Examples

Urrutia-Romaní, I. and Rodríguez-Ramos, R. and Bravo-Castillero, J. and Guinovart-Díaz, R. (2004) Asymptotic Homogenization Method Applied to Linear Viscoelastic Composites. Examples. Technical Report. Concordia University. Department of Mathematics & Statistics, Montreal, Quebec.

PDF - Published Version


In this paper, the Asymptotic Homogenization Method (AHM) is applied to anisotropic viscoelastic composites. The local problems are considered and the effective viscoelastic moduli are explicitly determined. A layer viscoelastic composite with periodic structure is studied. Each layer is isotropic and homogeneous. Analytic expressions for the effective coefficients are derived. Numerical results for predicting the viscoelastic properties of layer composite with periodic structure, in particular, two-layer medium is presented. Some
comparisons with other theories are done.

Divisions:Concordia University > Faculty of Arts and Science > Mathematics and Statistics
Item Type:Monograph (Technical Report)
Authors:Urrutia-Romaní, I. and Rodríguez-Ramos, R. and Bravo-Castillero, J. and Guinovart-Díaz, R.
Series Name:Department of Mathematics & Statistics. Technical Report No. 3/04
Corporate Authors:Concordia University. Department of Mathematics & Statistics
Institution:Concordia University
Date:August 2004
ID Code:6638
Deposited On:03 Jun 2010 19:37
Last Modified:08 Dec 2010 23:26
Bakhvalov N. S., Panasenko G. P., Homogenization: Averaging Process in Periodic Media, Kluwer, Dordrecht, 1989.

Bensoussan A., Lions J. L., Papanicolau G., Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdan, 1978.

Castillero J. B., Otero J. A, Rodríguez R., Bourgeat A., Int. J. Solids Structures Vol. 35. No. 5-6, 527-541, 1998.

Christensen R. M. Wily & Sons J., Mechanics of Composite Materials. Cap I. Some elements of mechanics, Subsection 1.1. Elasticity Theory Results. New York, 1979.

Drozdov A. Mechanics of Viscoelastic Solids. John Wiley & Sons. Chichester, New York, Weinheim, Brisbane, Toronto, Singapore, 1998.

Li J., Dunn M., Viscoelectroelastic behavior of heterogeneous piezoelectric solids. J. of Applied Physics. Vol. 89. No. 5, 2893-2903. 2001.

Liu S., Chen K., Feng X., Prediction of viscoelastic property of layered materials. I. J. Solids and Struct.. Vol. 41, 3675 - 3688, (2004).

Maghous S., Creus G. J., Periodic homogenization in thermoviscoelasticity: case of multilayered media with ageing. I. J. of Solids and Structures. Vol. 40. 851-870, 2003.

Oleinik O. A., Shamaev A. S. and Yosifian G. A.Mathematical problems in elasticity and homogenization, North-Holland, Amsterdan, 1992.

Pobedria, B. E. Mechanics of Composite Materials. Moscow State University Press, Moscow. 1984. (in Russian).

Pobedria, B. E., Ilyushin, A. A., Fundamentos matemáticos de la teoría de Visco- elasticidad. Nauka Pub., Moscú 1970. (in Russian).

Rodríguez R., Otero J. A., Bravo J., Revista Mexicana de Física., Vol. 43, No. 5, 711- 736, 1997.

Sánchez-Palencia E., Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127, Springer-Verlag. Berlin. 1980.

Yeong-Moo,Sang-Hoon Park, Sung-Kie Youn, I. J. Solids Struct., Vol. 53. No.17, 2039-2055, 1998.
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top