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Let X(1, n, m, k), X(2, n, m, k), . . . , X(n, n, m, k) be n generalized order statis-
tics from an absolutely continuous (with respect to Lebesgue measure) distribution.
We give characterizations of distributions by means of E{ψ(X(s, n,m, k))|X(r, n, m, k)
= x} = g(x) and E{ψ(X(r, n, m, k))|X(s, n, m, k) = x} = g(x), s > r under some
mild conditions on ψ(.) and g(.). It is shown that most of the known characteri-
zation results based on conditional expectations are special cases of the results of
this paper.

1. Introduction. Let X1, X2, . . . Xn be a random sample of size n from
an absolutely continuous (with respect to Lebesgue measure) distribution
function (df) F (x) and the corresponding probability distribution function
(pdf) f(x). We will take the support of F (x) = (α, β), where α = inf{x ∈
IR, F (x) > 0} and β = sup{x ∈ IR, F (x) < 1}. Ferguson (1967) introduced
the characterization of distributions based on the linearity of regression of
adjacent order statistics E(Xr+1,n|Xr,n = x) and its dual E(Xr,n|Xr+1,n = x),
where X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the corresponding order statistics.
The characterization of distributions by the regression of non-adjacent order
statistics was obtained by Wesolowski and Ahsanullah (1997). They gave the
characterization of distributions by the following relation

E(Xr+2,n|Xr,n = x) = ax + b.

Dembinska and Wesolowski (1998) gave further generalization by character-
izing distributions by means of the equation

E(Xr+j,n|Xr,n = x) = ax + b.

They used a result of Rao and Shanbhag (1994) dealing with extended version
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of the integrated Cauchy functional equation. The same result was proved
earlier by Lopez-Blazquez and Moreno-Rebollo (1997) by using solution of a
polynomial equation, see also Franco and Ruiz (1997). It may be remarked
that Rao and Shanbhag’s (1994) result is applicable only when the condi-
tional expectation is a linear function.

As for the reverse order, Ferguson (1967) raised the question whether
the linearity of E(Xr,n|Xr+2,n = x) characterize distributions. Pudeg (1990)
solved what Ferguson (1967) pointed out. Dembinska and Wesolowski (2000)
characterized distributions using the relation

E(Xr,n|Xr+j,n = x) = ax + b.

Suppose that {Xi, i ≥ 1} is a sequence of independent and identically
distributed (iid) random variables with absolutely continuous (with respect
to Lebesgue measure) df F (x) and pdf f(x). Let R1 = X1, R2, . . . be the upper
record values of the sequence. Nagaraja (1977) characterized continuous
distributions by using the relation

E(Rr+1|Rr = x) = ax + b.

Wesolowski and Ahsanullah (1997) extended the result of Nagaraja (1977)
to non-adjacent record values. They characterized distributions by using the
relation

E(Rr+2|Rr = x) = ax + b.

Nagaraja (1988) also characterized distributions by means of

E(Rr|Rr+1 = x) = ax + b.

Other characterizations based on conditional expectations of non-adjacent
record values are given in Raqab (2002), Wu (2004) and Wu and Lee (2001).
Lopez-Blazquez and Moreno-Rebollo (1997) and Dembinska and Wesolowski
(2000) characterized distributions by means of the relation

E(Rr+j|Rr = x) = ax + b,

as well as its dual under different set of conditions.

Gupta and Ahsanullah (2004) characterized distributions separately for
order statistics and record values by means of E{ψ(Xr+2,n)|Xr,n = x} = g(x)
and E{ψ(Rr+2)|Rr = x} = g(x), respectively.
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Let X(1, n, m, k), X(2, n, m, k), . . . , X(n, n, m, k) be n generalized order
statistics. Then it is known that many ordered variables including order
statistics, record values and k-record values are special cases of generalized
order statistics. Thus, it will be interesting to characterize distributions
based on generalized order statistics and to deduce the corresponding results
of order statistics and record values as special cases. Keseling (1999) gave
characterization of exponential distribution under the condition

E{ψ(X(r + 1, n, m, k))−X(r, n,m, k)|X(r, n, m, k) = x} = c,

where c is a constant. The general problem is to characterize distributions
by means of

E{ψ(X(r + j, n, m, k))|X(r, n,m, k) = x} = g(x),

under some appropriate conditions on ψ(.) and g(.). Ahsanullah and Raqab
(2004) proved that for j = 2, the above relation uniquely determines the
distributions. The problem of characterization of distributions by means of

E{ψ(X(r + j, n, m, k))|X(r, n,m, k) = x} = g(x),

and its dual

E{ψ(X(r, n,m, k))|X(r + j, n, m, k) = x} = g(x),

for 1 ≤ r ≤ n− j, j ≥ 1, are unsolved.

In this paper we give general solution of these problems under some mild
conditions on ψ(.) and g(.). It is shown that most of the known characteriza-
tion results based on the conditional expectations of order statistics, record
values and generalized order statistics are special cases of the results of this
paper.

2. Main Results. Suppose X(1, n, m, k), X(2, n, m, k), . . . , X(n, n, m, k)
(k ≥ 1, m is a real number ≥ −1), are n generalized order statistics from an
absolutely continuous (with respect to Lebesgue measure) df F (x) and pdf
f(x). Their joint pdf f1,2,...,n(x1, x2, . . . , xn) can be written as (see Kamps
(1995), pp. 50-51)
(2.1)

f1,2,...,n(x1, x2, . . . , xn) =





k
∏n−1

j=1 γj
∏n−1

i=1 (F (xi))
mf(xi)(F (xn))k−1f(xn),

F−1(0) < x1 < x2 < . . . < xn < F−1(1)

0, otherwise
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where F (x) = 1− F (x) and γj = k + (n− j)(m + 1), j = 1, 2, · · · , n.
The generalized order statistics are introduced by Kamps (1995) as a uni-
fied model for ordered random variables which includes among others order
statistics, record values and k-record values as special cases. If m = 0 and
k = 1, then X(r, n, m, k) reduces to the r-th order statistic and (2.1) is the
joint pdf of the n order statistics X1,n ≤ X2,n ≤ . . . ≤ Xn,n. If k = 1 and
m = −1, then (2.1) is the joint pdf of the first n upper record values from
a sequence of iid random variables with df F (x) and pdf f(x). For details of
order statistics and upper record values, see David and Nagaraja (2003) and
Ahsanullah (2004), respectively.

Integrating out x1, x2, . . . , xr−1, xr+1, . . . , and xn from (2.1), we get the
pdf fr,n,m,k(x) of X(r, n,m, k), 1 ≤ r ≤ n (see Kamps (1995), p. 64) as

(2.2) fr,n,m,k(x) =
cr−1

(r − 1)!
(F (x))γr−1f(x)gr−1

m (F (x)),

where cr−1 =
∏r

j=1 γj,

gm(x) = hm(x)− hm(0) =

{
1

m+1
(1− (1− x)m+1), m 6= −1

−ln(1− x), m = −1, x ∈ [0, 1)

and

hm(x) =

{ − 1
m+1

(1− x)m+1, m 6= −1

−ln(1− x), m = −1, x ∈ [0, 1).

Note, since limm→−1[
1

(m+1)
(1 − (1 − x)m+1)] = −ln(1 − x), we will write

gm(x) = [ 1
(m+1)

(1− (1−x)m+1)], for all x ∈ [0, 1) and for all m with g−1(x) =

limm→−1gm(x).

The joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is given
by (see Kamps (1995), p. 68)
(2.3)

fr,s,n,m,k(x, y) = cs−1

(r−1)!(s−r−1)!
(F (x))mf(x)gr−1

m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1(F (y))γs−1f(y), x < y.

Noting, m+1−γr = (m+1)−k−(n−r)(m+1) = −γr+1, the conditional pdf
of X(s, n, m, k) given X(r, n, m, k) = x, 1 ≤ r < s ≤ n, have the following
form

(2.4)
fs|r,n,m,k(y|x) = cs−1

cr−1(s−r−1)!
[hm(F (y))− hm(F (x))]s−r−1

× (F (y))γs−1

(F (x))γr+1
f(y), x < y.
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We first prove a lemma which plays the pivotal role in our main re-
sult. We denote by E{ψ(Y )|X = x}, the conditional expectation of a
function of X(s, n, m, k) given X(r, n, m, k) = x, 1 ≤ r < s ≤ n, i.e.,
E{ψ(X(s, n, m, k))|X(r, n, m, k) = x}, where ψ(.) is an absolutely continu-
ous and strictly monotonic function.

LEMMA 2.1. If for two consecutive values r and r+1, 1 ≤ r < s−1 < n,

gs|r,n,m,k(x) = E{ψ(Y )|X = x}
is finite and differentiable for all real x, then

(2.5)
g′s|r,n,m,k(x)

γr+1[gs|r,n,m,k(x)− gs|r+1,n,m,k(x)]
=

f(x)

F (x)

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}, where
f(x)

F (x)
is the failure rate.

PROOF. We have

E{ψ(Y )|X = x} =
∫ β

x
ψ(y)fs|r,n,m,k(y|x) dy.

Using (2.4), we get
(2.6)

(F (x))γr+1gs|r,n,m,k(x) =
∫ β
x

cs−1ψ(y)
cr−1(s−r−1)!

[hm(F (y))− hm(F (x))]s−r−1

×(F (y))γs−1f(y) dy.

Differentiating both sides of (2.6), with respect to x, we get

(2.7)

γr+1(F (x))γr+1−1gs|r,n,m,k(x)(−f(x)) + (F (x))γr+1g′s|r,n,m,k(x)

=
∫ β
x

cs−1ψ(y)
cr−1(s−r−2)!

[hm(F (y))− hm(F (x))]s−r−2

× d
dx

(−hm(F (x)))(F (y))γs−1f(y) dy.

Observe that −hm(F (x)) = 1
m+1

(1 − F (x))m+1 and hence d
dx

[−hm(F (x))] =

−f(x)(F (x))m. Using relation cr = cr−1γr+1, equation (2.7) becomes

−γr+1(F (x))γr+1−1gs|r,n,m,k(x)f(x) + (F (x))γr+1g′s|r,n,m,k(x)

= −γr+1(F (x))γr+2+mf(x)gs|r+1,n,m,k(x).

Further, using relation γr+2 + m = γr+1 − 1, the above equation gives

γr+1(F (x))γr+1−1f(x)(gs|r,n,m,k(x)− gs|r+1,n,m,k(x)) = (F (x))γr+1g′s|r,n,m,k(x)
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and hence,
g′s|r,n,m,k(x)

γr+1[gs|r,n,m,k(x)− gs|r+1,n,m,k(x)]
=

f(x)

F (x)

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

COROLLARY 2.1. If gs|r,n,m,k(x) = as,r,n,m,k ψ(x) + bs,r,n,m,k,
where as,r,n,m,k > 0 is a real number and bs,r,n,m,k is some constant, then

as,r,n,m,kψ
′(x)

γr+1[(as,r,n,m,k − as,r+1,n,m,k)ψ(x) + (bs,r,n,m,k − bs,r+1,n,m,k)]
=

f(x)

F (x)
.

COROLLARY 2.2. For order statistics (with k = 1 and m = 0), if
gs|r,n,0,1(x) = as,r,n,0,1 ψ(x) + bs,r,n,0,1, then

as,r,n,0,1 ψ′(x)

(n− r)[(as,r,n,0,1 − as,r+1,n,0,1)ψ(x) + (bs,r,n,0,1 − bs,r+1,n,0,1)]
=

f(x)

F (x)

and gs|r,n,0,1(x) = E{ψ(Xs,n)|Xr,n = x}, s > r.

COROLLARY 2.3. For record values (with k = 1 and m = −1), if
gs|r,n,−1,1(x) = as,r,n,−1,1 ψ(x) + bs,r,n,−1,1, then

as,r,n,−1,1 ψ′(x)

[(as,r,n,−1,1 − as,r+1,n,−1,1)ψ(x) + (bs,r,n,−1,1 − bs,r+1,n,−1,1)]
=

f(x)

F (x)

and gs|r,n,−1,1(x) = E{ψ(Rs)|Rr = x}, s > r.

If {X ′
is, i ≥ 1} are iid from the exponential distribution F (x) = 1 −

exp{−x}, x > 0, denoted by E(0, 1), then X(s, n, m, k)
d
=

∑s
j=1

Wj

γj
, where

d
= denotes equal in distribution and W1,W2, . . . , Ws are iid with Wi ∈ E(0, 1).
(see Ahsanullah (2000), p. 86-87). Also,

X(s, n, m, k)|X(r, n, m, k)
d
= X(r, n,m, k) +

s∑

j=r+1

Wj

γj

and hence,

E{X(s, n, m, k)|X(r, n, m, k) = x} = x +
s∑

j=r+1

1

γj

.

If we take ψ(x) = x, then as,r,n,m,k = 1 and bs,r,n,m,k =
∑s

j=r+1
1
γj

.
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For order statistics (with m = 0 and k = 1), γj = n−j+1, X(r, n, 0, 1) =
Xr,n, X(s, n, 0, 1) = Xs,n and

E(Xs,n|Xr,n = x) = x +
s∑

j=r+1

1

n− j + 1
.

If s = r + 1, we get

E(Xr+1,n|Xr,n = x) = x +
1

n− r
.

For record values (with m = −1 and k = 1), γj = 1, X(r, n,−1, 1) =
Rr, X(s, n,−1, 1) = Rs and

E(Rs|Rr = x) = x + (s− r).

If s = r + 1, we get
E(Rr+1|Rr = x) = x + 1.

Suppose X(1, n,m, k), X(2, n, m, k), . . . , X(n, n, m, k) are n generalized
order statistics from a Pareto distribution with df F (x) = 1 − 1

(1+x)α , x >
0, α > 0. It can be shown that

1 + X(s, n, m, k)
d
= (1 + V1)

1/γ1(1 + V2)
1/γ2 · · · (1 + Vs)

1/γs ,

where Vi’s are iid with F (x) = 1− 1
(1+x)α , x > 0, α > 0. Also,

X(s, n, m, k)|X(r, n, m, k)
d
= (1 + X(r, n, m, k))(1 + Vr+1)

1/γr+1

×(1 + Vr+2)
1/γr+2 · · · (1 + Vs)

1/γs − 1

and hence

E{X(s, n, m, k)|X(r, n,m, k) = x} = (1 + x)
∏s

j=r+1
αγj

αγj−1
− 1

= x
∏s

j=r+1
αγj

αγj−1
+

∏s
j=r+1

αγj

αγj
− 1

For order statistics (with m = 0 and k = 1), γj = n− j +1 and for s > r,

E(Xs,n|Xr,n = x) = (1 + x)
∏s

j=r+1
α(n−j+1)

α(n−j+1)−1
− 1

= x
∏s

j=r+1
α(n−j+1)

α(n−j+1)−1
+

∏s
j=r+1

α(n−j+1)
α(n−j+1)

− 1.
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For record values (with m = −1 and k = 1), γj = 1 and for s > r,

E(Rs|Rr = x) = x
∏s

j=r+1
α

α−1
+

∏s
j=r+1

α
α−1

− 1

= x( α
α−1

)s−r + ( α
α−1

)s−r − 1, α > 1.

For power function distribution with cdf F (x) = 1 − (1 − x)α, 0 < x <
1, α > 0,

1−X(s, n, m, k)
d
= (1− U1)

1/γ1(1− U2)
1/γ2 · · · (1− Us)

1/γs ,

where Ui’s are iid with df F (x) = 1− (1− x)α, 0 < x < 1, α > 0. Also,

X(s, n, m, k)|X(r, n,m, k)
d
= 1− (1−X(r, n,m, k))(1− Ur+1)

1/γr+1

×(1− Ur+2)
1/γr+2 · · · (1− Us)

1/γs

and hence

E{X(s, n,m, k)|X(r, n, m, k) = x} = 1− (1− x)
∏s

j=r+1
αγj

αγj+1

= x
∏s

j=r+1
αγj

αγj+1
+ 1−∏s

j=r+1
αγj

αγj+1
.

For order statistics (with m = 0 and k = 1), γj = n− j +1 and for s > r,

E(Xs,n|Xr,n = x) = x
s∏

j=r+1

α(n− j + 1)

α(n− j + 1) + 1
+ 1−

s∏

j=r+1

α(n− j + 1)

α(n− j + 1) + 1
.

For record values (with m = −1 and k = 1), γj = 1 and for s > r,

E(Rs|Rr = x) = x
∏s

j=r+1
α

α+1
+ 1−∏s

j=r+1
α

α+1

= x( α
α+1

)s−r + 1− ( α
α+1

)s−r.

THEOREM 2.1. Suppose X(1, n,m, k), X(2, n, m, k), . . . , X(n, n, m, k)
are n generalized order statistics from an absolutely continuous (with respect
to Lebesgue measure) df F (x) and pdf f(x). If for an absolutely continuous
and strictly monotonic function ψ(.),

E{ψ(X(s, n, m, k))|X(r, n, m, k) = x} = gs|r,n,m,k(x)
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for two consecutive values r and r + 1, 1 ≤ r < s− 1 < n and gs|r,n,m,k(x) is
finite and differentiable for all real x, then

F (x) = exp
{
−

∫ x

α
Ms,r,n,m,k(u) du

}

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}, where

Ms,r,n,m,k(x) =
g′s|r,n,m,k(x)

γr+1[gs|r,n,m,k(x)− gs|r+1,n,m,k(x)]
.

PROOF. By Lemma 2.1,

f(x)

F (x)
=

g′s|r,n,m,k(x)

γr+1[gs|r,n,m,k(x)− gs|r+1,n,m,k(x)]
= Ms,r,n,m,k(x), say.

Thus
lnF (x) = −

∫ x

α
Ms,r,n,m,k(u) du

and hence

F (x) = exp
{
−

∫ x

α
Ms,r,n,m,k(u) du

}

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

In case of adjacent generalized order statistics we require only one condi-
tional expectation in Theorem 2.1. For s = r + 1,

gs|r+1,n,m,k(x) = gr+1|r+1,n,m,k(x) = E{ψ(X(r + 1, n, m, k))|X(r + 1, n, m, k) = x}
= ψ(x)

and hence we have the following theorem.

THEOREM 2.2. Suppose X(1, n,m, k), X(2, n, m, k), . . . , X(n, n, m, k)
are n generalized order statistics from an absolutely continuous (with respect
to Lebesgue measure) df F (x) and pdf f(x). If for an absolutely continuous
and strictly monotonic function ψ(.),

E{ψ(X(r + 1, n, m, k))|X(r, n, m, k) = x} = gr+1|r,n,m,k(x),

1 ≤ r ≤ n and gr+1|r,n,m,k(x) is finite and differentiable for all real x, then

F (x) = exp

{
−

∫ x

α

g′r+1|r,n,m,k(x)

γr+1[gr+1|r,n,m,k(x)− ψ(x)]
du

}
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for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

PROOF. We have from (2.6)

gr+1|r,n,m,k(x)(F (x))γr+1 =
∫ β

x
γr+1ψ(y)(F (y))γr+1−1f(y) dy.

Differentiating the above equation with respect to x, we obtain

g′r+1|r,n,m,k(x)(F (x))γr+1 − γr+1gr+1|r,n,m,k(x)(F (x))γr+1−1f(x)

= −γr+1ψ(x)(F (x))γr+1−1f(x)

which gives
g′r+1|r,n,m,k(x)

γr+1[gr+1|r,n,m,k(x)− ψ(x)]
=

f(x)

F (x)

and hence

F (x) = exp

{
−

∫ x

α

g′r+1|r,n,m,k(x)

γr+1[gr+1|r,n,m,k(x)− ψ(x)]
du

}

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

Furthermore, for a gap two also, we can get our characterization result in
terms of only one conditional expectation but we have to assume gs|r,n,m,k(x)
to be twice differentiable not once. We now have the following theorem.

THEOREM 2.3. Suppose X(1, n,m, k), X(2, n, m, k), . . . , X(n, n, m, k)
are n generalized order statistics from an absolutely continuous (with respect
to Lebesgue measure) df F (x) and pdf f(x). If for an absolutely continuous
and strictly monotonic function ψ(.),

E{ψ(X(r + 2, n, m, k))|X(r, n, m, k) = x} = gr+2|r,n,m,k(x),

1 ≤ r ≤ n and gr+2|r,n,m,k(x) is finite and twice differentiable for all real x,
then

F (x) = exp
{
−

∫ x

α
h(u) du

}

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1} and
r(x) = h(x) is the solution of the equation

g′r+2|r,n,m,k(x)
r′(x)

r(x)
− (γr+1 + γr+2)g

′
r+2|r,n,m,k(x)r(x) = g′′r+2|r,n,m,k(x)

− γr+1γr+2(ψ(x)− gr+2|r,n,m,k(x))(r(x))2,
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where r(x) = f(x)

F (x)
.

PROOF. We have from (2.6)

gr+2|r,n,m,k(x)(F (x))γr+1 =
∫ β

x
γr+1γr+2ψ(y)[hm(F (y))− hm(F (x))]

×(F (y))γr+2−1f(y) dy.

Differentiating the above equation with respect to x, we get

g′r+2|r,n,m,k(x)(F (x))γr+1 − γr+1gr+2|r,n,m,k(x)(F (x))γr+1−1f(x)

= −
∫ β

x
γr+1γr+2ψ(y)(F (x))m(F (y))γr+2−1f(x)f(y) dy,

which gives

g′r+2|r,n,m,k(x)(F (x))γr+2(
1

r(x)
)− γr+1gr+2|r,n,m,k(x)(F (x))γr+2

= −
∫ β

x
γr+1γr+2ψ(y)(F (y))γr+2−1f(y) dy.

Differentiating once again with respect to x, we obtain

g′′r+2|r,n,m,k(x)(F (x))γr+2(
1

r(x)
)− γr+2g

′
r+2|r,n,m,k(x)(F (x))γr+2−1f(x)(

1

r(x)
)

− g′r+2|r,n,m,k(x)(F (x))γr+2r′(x)(
1

r(x)
)2 − γr+1g

′
r+2|r,n,m,k(x)(F (x))γr+2

+ γr+1γr+2gr+2|r,n,m,k(x)(F (x))γr+2−1f(x)

= γr+1γr+2ψ(x)(F (x))γr+2−1f(x),

which gives

(2.8)
g′r+2|r,n,m,k(x) r′(x)

r(x)
+ (γr+1 + γr+2)g

′
r+2|r,n,m,k(x)r(x)

= g′′r+2|r,n,m,k(x)− γr+1γr+2(ψ(x)− gr+2|r,n,m,k(x))(r(x))2.

With known functions ψ(x) and gr+2|r,n,m,k(x), the above equation can be
written as

(2.9) r′(x) = H(x, r(x)).

We assume r(x) and r′(x) are continuous (equivalently, f(x) and f ′(x) are
continuous) in x ∈ (α, β). Then H(x, r(x)) as well as d

dr(x)
H(x, r(x)) are

continuous. Thus, the solution of r(x) = h(x) is unique satisfying given

11



boundary conditions (see Rabenstein (1966), Theorem 1, p.375). Let r(x) =

h(x) be the unique solution of (2.8), then h(x) = f(x)

F (x)
and hence

F (x) = exp
{
−

∫ x

α
h(u) du

}

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}. We will
use the boundary conditions F (α) = 0 and F (β) = 1 to select the particular
solution of h(x).

Suppose ψ(x) = x, gr+2|r,n,m,k(x) = x + bσ, b > 0, then we obtain from
(2.8)

r′(x)

r(x)
+ (γr+1 + γr+2)r(x) = bσγr+1γr+2(r(x))2,

which gives

(2.10) r′(x) = −(γr+1 + γr+2)(r(x))2 + bσγr+1γr+2(r(x))3

and hence r(x) = (γr+1+γr+2)
bσ(γr+1γr+2)

is the unique solution of (2.10).
The above relation gives a characterization of the exponential distribution.
Note, for the exponential distribution F (x) = 1 − exp{−x/σ}, x > 0 we
have r(x) = 1/σ and

E{X(r + 2, n,m, k)|X(r, n,m, k) = x} = x +
σ(γr+1 + γr+2)

γr+1γr+2

.

For the general case (i.e., for a gap more than two), in terms of single
conditional expectation, the problem becomes more complicated because of
the resulting differential equation. Hence, we use Theorem 2.1.

2.1. Applications.

Most of the known characterization results based on conditional expec-
tations of order statistics, record values and generalized order statistics can
easily be deduced as special cases of Theorem 2.1, Theorem 2.2 and Theorem
2.3. We mention few.

1. If we take ψ(x) = x, s = r + 1, gr+1|r,n,m,k(x) = ar+1,r,n,m,k x +
br+1,r,n,m,k with m = 0 and k = 1, then using Theorem 2.2, we get the result
of Ferguson (1967) for order statistics.
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2. If we take ψ(x) = x, s = r + 1, gr+1|r,n,m,k(x) = ar+1,r,n,m,k x +
br+1,r,n,m,k with m = −1 and k = 1, then using Theorem 2.2, we get the
result of Nagaraja (1977) for record values.

3. If we take ψ(x) = x, s = r + 2, gr+2|r,n,m,k(x) = ar+2,r,n,m,k x +
br+2,r,n,m,k with m = 0 and k = 1, then using Theorem 2.1 (or Theorem 2.3),
we get the result of Wesolowski and Ahsanullah (1997) for order statistics.

4. If we take ψ(x) = x, s = r + 2, gr+2|r,n,m,k(x) = ar+2,r,n,m,k x +
br+2,r,n,m,k with m = −1 and k = 1, then using Theorem 2.1 (or Theorem
2.3), we get the result of Ahsanullah and Wesolowski (1998) for record values.

5. If we take ψ(x) = x, gs|r,n,m,k(x) = as,r,n,m,k x + bs,r,n,m,k with m = 0
and k = 1, then using Theorem 2.1, we get the result of Dembinska and
Wesolowski (1998) for order statistics.

6. If we take ψ(x) = x, gs|r,n,m,k(x) = as,r,n,m,k x + bs,r,n,m,k with m = −1
and k = 1, then using Theorem 2.1, we get the result of Dembinska and
Wesolowski (2000) for record values.

7. Gupta and Ahsanullah (2004) gave expression for E{ψ(Xk+s,n)|Xk,n =
x} and E{ψ(Rk+s)|Rk = x}. They were successful in giving unique solutions
for s = 2 by using relation E{ψ(Xk+s,n)|Xk,n = x} = g(x) for order statistics
and by E{ψ(Rk+s)|Rk = x} = g(x) for record values. Their results are
special cases of Theorem 2.1 (or Theorem 2.3) with s = 2 (m = 0, k = 1 for
order statistics and m = −1, k = 1 for record values).

8. In Keseling (1999) the exponential distribution is proved to be the
only continuous distribution with constant regression

E{ψ(X(r + 1, n, m, k))−X(r, n, m, k)|X(r, n, m, k) = x} = c

and ψ(.) is a real monotonic function, using the result of Rao and Shanbhag
(1994) for order statistics. This can be easily deduced from Theorem 2.2 with
s = r + 1 and gr+1|r,n,m,k(x) = x + br+1,r,n,m,k. Keseling considered m 6= −1.

9. Ahsanullah and Raqab (2004) proved that

E{ψ(X(r + 2, n, m, k))|X(r, n,m, k) = x} = g(x)

uniquely determines the distributions. Their result is a special case of The-
orem 2.1 (or Theorem 2.3) with s = r + 2.
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3. Characterizations by reverse ordering. In this section we will
characterize distributions by means of

(3.1) E{ψ(X(r, n, m, k))|X(s, n, m, k) = x} = gr|s,n,m,k(x), 1 ≤ r < s ≤ n.

From (2.2) and (2.3), the conditional pdf of X(r, n,m, k) given X(s, n, m, k), 1 ≤
r < s ≤ n is given by

(3.2)
fr|s,n,m,k(y|x) = (s−1)!

(r−1)!(s−r−1)!
(F (y))m

[
1−(F (y))m+1

(m+1)

]r−1

×
[

(F (y))m+1−(F (x))m+1

(m+1)

]s−r−1 [
(m+1)

1−(F (x))m+1

]s−1

f(y), y < x.

Note that

limm→−1

[
1− (F (y))m+1

(m + 1)

]
= −lnF (y)

and

limm→−1

[
(F (y))m+1 − (F (x))m+1

(m + 1)

]
= lnF (y)− lnF (x).

We will use (3.2) for all values of m and take the limiting values for m = −1.
We now have the following lemma.

LEMMA 3.1. If for two consecutive values s−1 and s, 1 ≤ r < s−1 < n,

gr|s,n,m,k(x) = E{ψ(Y )|X = x}

is finite and differentiable for all real x, then

(3.3)
g′r|s,n,m,k(x)

(s− 1)[gr|s−1,n,m,k(x)− gr|s,n,m,k(x)]
=

(m + 1)(F (x))mf(x)

[1− (F (x))m+1]

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

PROOF. We have

E{ψ(Y )|X = x} =
∫ x

α
ψ(y)fr|s,n,m,k(y|x) dy.

Utilizing (3.2), we get

(3.4)

[
1−(F (x))m+1

(m+1)

]s−1

gr|s,n,m,k(x) =
∫ x
α ψ(y) (s−1)!

(r−1)!(s−r−1)!

×(F (y))m

[
1−(F (y))m+1

(m+1)

]r−1 [
(F (y))m+1−(F (x))m+1

(m+1)

]s−r−1

f(y) dy
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Let φ(x) = [1−(F (x))m+1

(m+1)
]s−1, then differentiating both sides of (3.4) with re-

spect to x, we get

(3.5)

g′r|s,n,m,k(x)φ(x) + gr|s,n,m,k(x)φ′(x) = (s− 1)gr|s−1,n,m,k(x)

×
[

1−(F (x))m+1

(m+1)

]s−2

(F (x))mf(x)

On simplification , we get from (3.5)

g′r|s,n,m,k(x) + gr|s,n,m,k(x)
[

φ′(x)
φ(x)

]
=

[
(s−1)
φ(x)

]
gr|s−1,n,m,k(x)

×
[

1−(F (x))m+1

(m+1)

]s−2

(F (x))mf(x)

and hence

g′r|s,n,m,k(x)

(s− 1)[gr|s−1,n,m,k(x)− gr|s,n,m,k(x)]
=

(m + 1)(F (x))mf(x)

[1− (F (x))m+1]

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

COROLLARY 3.1. If gr|s,n,m,k(x) = ar,s,n,m,k ψ(x) + br,s,n,m,k,
where ar,s,n,m,k > 0 is a real number and br,s,n,m,k is some constant, then

ar,s,n,m,k ψ′(x)

(s− 1)[(ar,s−1,n,m,k − ar,s,n,m,k)ψ(x) + (br,s−1,n,m,k − br,s,n,m,k)]

=
(m + 1)(F (x))mf(x)

[1− (F (x))m+1]
.

COROLLARY 3.2. For order statistics (with k = 1 and m = 0), if
gr|s,n,0,1(x) = ar,s,n,0,1 ψ(x) + br,s,n,0,1, then

ar,s,n,0,1 ψ′(x)

(s− 1)[(ar,s−1,n,0,1 − ar,s,n,0,1)ψ(x) + (br,s−1,n,0,1 − br,s,n,0,1)]
=

f(x)

F (x)
,

which is the retro-hazard function and gr|s,n,0,1(x) = E{ψ(Xr,n)|Xs,n =
x}, s > r.

COROLLARY 3.3. For record values (with k = 1 and m = −1), if
gr|s,n,−1,1(x) = ar,s,n,−1,1 ψ(x) + br,s,n,−1,1, then

ar,s,n,−1,1 ψ′(x)

(s− 1)[(ar,s−1,n,−1,1 − ar,s,n,−1,1)ψ(x) + (br,s−1,n,−1,1 − br,s,n,−1,1)]
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=
f(x)

F (x)
[− 1

lnF (x)
]

and gr|s,n,−1,1(x) = E{ψ(Rr)|Rs = x}, s > r.

THEOREM 3.1. Suppose X(1, n,m, k), X(2, n, m, k), . . . , X(n, n, m, k)
are n generalized order statistics from an absolutely continuous (with respect
to Lebesgue measure) df F (x) and pdf f(x). If for an absolutely continuous
and strictly monotonic function ψ(.),

E{ψ(X(r, n, m, k))|X(s, n, m, k) = x} = gr|s,n,m,k(x)

for two consecutive values s− 1 and s, 1 ≤ r < s− 1 < n and gr|s,n,m,k(x) is
finite and differentiable for all real x, then

F (x) =

[
1− exp

{∫ β

x
Mr,s,n,m,k(u) du

}]1/(m+1)

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}, where

Mr,s,n,m,k(x) =
g′r|s,n,m,k(x)

(s− 1)[gr|s−1,n,m,k(x)− gr|s,n,m,k(x)]
.

PROOF. By Lemma 3.1,

(m + 1)(F (x))mf(x)

[1− (F (x))m+1]
=

g′r|s,n,m,k(x)

(s− 1)[gr|s−1,n,m,k(x)− gr|s,n,m,k(x)]
= Mr,s,n,m,k(x), say.

Thus

ln[1− (F (x))m+1] =
∫ β

x
Mr,s,n,m,k(u) du

and hence

F (x) =

[
1− exp

{∫ β

x
Mr,s,n,m,k(u) du

}]1/(m+1)

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

In reverse order case also, for adjacent generalized order statistics, we
require only one conditional expectation in Theorem 3.1. For s = r + 1,

gr|s−1,n,m,k(x) = gr|r,n,m,k(x) = E{ψ(X(r, n, m, k))|X(r, n, m, k) = x}
= ψ(x)
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and hence we have the following theorem.

THEOREM 3.2. Suppose X(1, n,m, k), X(2, n, m, k), . . . , X(n, n, m, k)
are n generalized order statistics from an absolutely continuous (with respect
to Lebesgue measure) df F (x) and pdf f(x). If for an absolutely continuous
and strictly monotonic function ψ(.),

E{ψ(X(r, n,m, k))|X(r + 1, n,m, k) = x} = gr|r+1,n,m,k(x),

1 ≤ r ≤ n and gr|r+1,n,m,k(x) is finite and differentiable for all real x, then

F (x) =

[
1− exp

{∫ β

x

g′r|r+1,n,m,k(x)

r[ψ(x)− gr|r+1,n,m,k(x)]
du

}]1/(m+1)

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

PROOF. We have from (3.4)

gr|r+1,n,m,k(x)

[
1− (F (x))m+1

m + 1

]r

=
∫ x

α
rψ(y)(F (y))m

[
1− (F (y))m+1

m + 1

]r−1

f(y) dy.

For m = −1, we will take the limiting values (see p.11). Differentiating the
above equation with respect to x, we obtain

g′r|r+1,n,m,k(x)

[
1− (F (x))m+1

m + 1

]r

+ gr|r+1,n,m,k(x)r

[
1− (F (x))m+1

m + 1

]r−1

×(F (x))mf(x) = rψ(x)(F (x))m

[
1− (F (x))m+1

m + 1

]r−1

f(x),

which gives

(m + 1)(F (x))mf(x)

[1− (F (x))m+1]
=

g′r|r+1,n,m,k(x)

r[ψ(x)− gr|r+1,n,m,k(x)]

and hence

F (x) =

[
1− exp

{∫ β

x

g′r|r+1,n,m,k(u)

r[ψ(u)− gr|r+1,n,m,k(u)]
du

}]1/(m+1)

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}.

Furthermore, for a gap two in reverse order case also, we can get our
characterization result in terms of only one conditional expectation but we
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have to assume gr|s,n,m,k(x) to be twice differentiable not once. We now have
the following theorem.

THEOREM 3.3. Suppose X(1, n,m, k), X(2, n, m, k), . . . , X(n, n, m, k)
are n generalized order statistics from an absolutely continuous (with respect
to Lebesgue measure) df F (x) and pdf f(x). If for an absolutely continuous
and strictly monotonic function ψ(.),

E{ψ(X(r, n,m, k))|X(r + 2, n,m, k) = x} = gr|r+2,n,m,k(x),

1 ≤ r ≤ n and gr|r+2,n,m,k(x) is finite and twice differentiable for all real x,
then

F (x) =

[
1− exp

{∫ β

x
h(u) du

}]1/(m+1)

for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1} and
v(x) = h(x) is the solution of the equation

g′′r|r+2,n,m,k(x)
1

v(x)
+ 2(r + 1)g′r|r+2,n,m,k(x)− g′r|r+2,n,m,k(x)

[
1 +

v′(x)

v2(x)

]

+ r(r + 1)gr|r+2,n,m,k(x)v(x) = r(r + 1)ψ(x)v(x),

where v(x) = (m+1)(F (x))mf(x)

[1−(F (x))m+1]
.

PROOF. We have from (3.4)

gr|r+2,n,m,k(x)

[
1− (F (x))m+1

m + 1

]r+1

=
∫ x

α
r(r + 1)ψ(y)(F (y))m

×
[
1− (F (y))m+1

m + 1

]r−1 [
(F (y))m+1 − (F (x))m+1

m + 1

]
f(y) dy.

Let ϕ(x) = 1−(F (x))m+1

m+1
, then the above equation becomes

(3.6)

gr|r+2,n,m,k(x)(ϕ(x))r+1 =
∫ x

α
r(r+1)ψ(y)(F (y))m(ϕ(y))r−1(ϕ(x)−ϕ(y))f(y) dy.

Differentiating (3.6) with respect to x, we get

g′r|r+2,n,m,k(x)

[
(ϕ(x))r+1

ϕ′(x)

]
+ (r + 1)gr|r+2,n,m,k(x)(ϕ(x))r

=
∫ x

α
r(r + 1)ψ(y)(F (y))m(ϕ(y))r−1f(y) dy.
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Differentiating the above equation with respect to x, we obtain

g′′r|r+2,n,m,k(x)

[
(ϕ(x))r+1

ϕ′(x)

]
+ (r + 1)g′r|r+2,n,m,k(x)(ϕ(x))r

− g′r|r+2,n,m,k(x)

[
(ϕ(x))r+1

(ϕ′(x))2

]
ϕ′′(x) + (r + 1)g′r|r+2,n,m,k(x)(ϕ(x))r

+ r(r + 1)gr|r+2,n,m,k(x)(ϕ(x))r−1(ϕ′(x))

= r(r + 1)ψ(x)(F (x))m(ϕ(x))r−1f(x),

which gives

g′′r|r+2,n,m,k(x)

[
(ϕ(x))

ϕ′(x)

]
+ 2(r + 1)g′r|r+2,n,m,k(x)

− g′r|r+2,n,m,k(x)

[
(ϕ(x))

(ϕ′(x))2

]
ϕ′′(x) + r(r + 1)gr|r+2,n,m,k(x)

[
ϕ′(x)

ϕ(x)

]

= r(r + 1)ψ(x)

[
ϕ′(x)

ϕ(x)

]
.

Let v(x) = ϕ′(x)
ϕ(x)

, then v′(x) = ϕ′′(x)
ϕ(x)

−
[

ϕ′(x)
ϕ(x)

]2
and we obtain from the above

equation
(3.7)

g′′r|r+2,n,m,k(x) 1
v(x)

+ 2(r + 1)g′r|r+2,n,m,k(x)− g′r|r+2,n,m,k(x)
[
1 + v′(x)

v2(x)

]

+ r(r + 1)gr|r+2,n,m,k(x)v(x) = r(r + 1)ψ(x)v(x).

With known functions ψ(x) and gr|r+2,n,m,k(x), the above equation can be
written as

(3.8) v′(x) = G(x, v(x)), v(x) =
ϕ′(x)

ϕ(x)
=

(m + 1)(F (x))mf(x)

[1− (F (x))m+1]
.

We assume that v(x) and v′(x) are continuous (equivalently, f(x) and f ′(x)
are continuous) in x ∈ (α, β). Then G(x, v(x)) as well as d

dv(x)
G(x, v(x))

are continuous. Thus, we have an unique solution for v(x) satisfying given
boundary conditions (see Rabenstein (1966), Theorem 1, p.375.). Suppose
v(x) = h(x) is the unique solution of (3.7), then

h(x) =
(m + 1)(F (x))mf(x)

[1− (F (x))m+1]

and hence

F (x) =

[
1− exp

{∫ β

x
h(u) du

}]1/(m+1)
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for all x ∈ (α, β), α = inf{x : F (x) > 0}, β = sup{x : F (x) < 1}. We will
use the boundary conditions F (α) = 0 and F (β) = 1 to select the particular
solution of h(x).

Suppose ψ(x) = x, gr|r+2,n,m,k(x) = x − b, b > 0, then from (3.7) we
obtain

2(r + 1)−
[
1 +

v′(x)

v2(x)

]
+ r(r + 1)(x− b)v(x) = r(r + 1)xv(x),

which gives

(3.9)
v′(x)

v2(x)
= 2r + 1− r(r + 1)bv(x).

Under the assumption that v(x) and v′(x) are continuous for all x ∈ (α, β),
we have v(x) = 2r+1

r(r+1)b
, the unique solution of (3.9). Hence,

(m + 1)(F (x))mf(x)

[1− (F (x))m+1]
=

2r + 1

r(r + 1)b
, b > 0. (3.10)

In case of order statistics for a gap two with m = 0, we get

F (x) = c exp

{
(2r + 1)x

r(r + 1)b

}
.

Since F (α) = 0 and F (β) = 1, we must have

F (x) = exp

{
(2r + 1)(x− β)

r(r + 1)b

}
, x ∈ (α, β); α = −∞, β < ∞.

For the general case (i.e., for a gap more than two) in reverse order case
also, in terms of single conditional expectation, the problem becomes more
complicated because of the resulting differential equation. Hence, we use
Theorem 3.1.

3.1. Applications.

In reverse order, most of the known results based on conditional expec-
tations of order statistics, record values and generalized order statistics are
special cases of Theorem 3.1, Theorem 3.2 and Theorem 3.3. We mention
few.

20



1. If we take ψ(x) = x, s = r + 1, gr|r+1,n,m,k(x) = ar,r+1,n,m,k x +
br,r+1,n,m,k with m = 0 and k = 1, then using Theorem 3.2, we get the result
of Ferguson (1967) for order statistics.

2. If we take ψ(x) = x, s = r + 1, gr|r+1,n,m,k(x) = ar,r+1,n,m,k x +
br,r+1,n,m,k with m = −1 and k = 1, then using Theorem 3.2, we get the
result of Nagaraja (1988) for record values.

3. If we take ψ(x) = x, gr|s,n,m,k(x) = ar,s,n,m,k x + br,s,n,m,k with m = 0
and k = 1 (with m = −1 and k = 1), then using Theorem 3.1, we get
the result of Dembinska and Wesolowski (2000) for order statistics (record
values).

4. If we take ψ(x) = x, s = r + 1, gr|r+1,n,m,k(x) = ar,r+1,n,m,k x +
br,r+1,n,m,k, then using Theorem 3.2, we get the result of Keseling (1999) for
generalized order statistics. Keseling considered m 6= −1.
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