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Generalized order statistics constitute a unified model for ordered random
variables that includes order statistics and record values among others. Here,
we consider concomitants of generalized order statistics for the Farlie-Gumbel-
Morgenstern bivariate distributions and study recurrence relations between their
moments. We derive the joint distribution of concomitants of two generalized or-
der statistics and obtain their product moments. Application of these results is
seen in establishing some well known results given separately for order statistics
and record values and obtaining some new results.

1. Introduction. The Farlie-Gumbel-Morgenstern (FGM) family of bi-
variate distributions has found extensive use in practice. This family is char-
acterized by the specified marginal distribution functions FX(x) and FY (y)
of random variables X and Y, respectively, and a parameter α, resulting in
the bivariate distribution function (df) given by

(1.1) FX,Y (x, y) = FX(x)FY (y)[1 + α{1− FX(x)}{1− FY (y)}]

with the corresponding probability density function (pdf)

(1.2) fX,Y (x, y) = fX(x)fY (y)[1 + α{2FX(x)− 1}{2FY (y)− 1}].

Here fX(x) and fY (y) are the marginals of fX,Y (x, y). The parameter α is
known as the association paprameter, the two random variables X and Y
are independent when α is zero. Such a model was originally introduced
by Morgenstern (1956) and investigated by Gumbel (1960) for exponential
marginals, the general form in (1.1) is due to Farlie (1960) and Johnson and
Kotz (1975). The admissible range of association paprameter α is −1 ≤ α ≤
1 and the Pearson correlation coefficient ρ between X and Y can never
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exceed 1/3. The conditional distribution function (df) and probability density
function (pdf) of Y, given X, are respectively,

(1.3) FY |X(y|x) = FY (y)[1 + α{1− 2FX(x)}{1− FY (y)}]

and

(1.4) fY |X(x|y) = fY (y)[1 + α{2FX(x)− 1}{2FY (y)− 1}].

Suppose X(1, n, m, k), X(2, n, m, k), . . . , X(n, n, m, k) (k ≥ 1, m is a real
number ≥ −1), are n generalized order statistics from an absolutely contin-
uous (with respect to Lebesgue measure) df F (x) and pdf f(x). Their joint
pdf f1,2,...,n(x1, x2, . . . , xn) can be written as [see Kamps (1995), pp. 50-51]
(1.5)

f1,2,...,n(x1, x2, . . . , xn) =





k
∏n−1

j=1 γj
∏n−1

i=1 (F (xi))
mf(xi)(F (xn))k−1f(xn),

F−1(0) < x1 < x2 < . . . < xn < F−1(1)

0, otherwise

where F (x) = 1− F (x) and γj = k + (n− j)(m + 1), j = 1, 2, · · · , n.
The generalized order statistics were introduced by Kamps (1995) as a uni-
fied model for ordered random variables which includes among others order
statistics, record values and k-record values as special cases. If m = 0 and
k = 1, then X(r, n,m, k) reduces to the r-th order statistic and (1.5) gives
the joint pdf of the n order statistics X1,n ≤ X2,n ≤ . . . ≤ Xn,n. If k = 1 and
m = −1, then (1.5) gives the joint pdf of the first n upper record values from
a sequence of iid random variables with df F (x) and pdf f(x). For details of
order statistics and upper record values, the reader may refer to David and
Nagaraja (2003) and Ahsanullah (2004), respectively.

Integrating out x1, x2, . . . , xr−1, xr+1, . . . , and xn from (1.5), we get the
pdf fr,n,m,k(x) of X(r, n,m, k), 1 ≤ r ≤ n [see Kamps (1995), p. 64] as

(1.6) fr,n,m,k(x) =
cr−1

(r − 1)!
(F (x))γr−1f(x)gr−1

m (F (x)),

where cr−1 =
∏r

j=1 γj,

gm(x) = hm(x)− hm(0) =

{
1

m+1
(1− (1− x)m+1), m 6= −1

−ln(1− x), m = −1, x ∈ [0, 1)
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and

hm(x) =

{ − 1
m+1

(1− x)m+1, m 6= −1

−ln(1− x), m = −1, x ∈ [0, 1).

Note, since limm→−1[
1

(m+1)
(1 − (1 − x)m+1)] = −ln(1 − x), we will write

gm(x) = [ 1
(m+1)

(1− (1−x)m+1)], for all x ∈ [0, 1) and for all m with g−1(x) =

limm→−1gm(x).

The joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is given
by [see Kamps (1995), p. 68]
(1.7)

fr,s,n,m,k(x, y) = cs−1

(r−1)!(s−r−1)!
(F (x))mf(x)gr−1

m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1(F (y))γs−1f(y), x < y.

For more details of generalized order statistics the reader is reffered to the
monograph of Kamps (1995).

Let (Xi, Yi), i = 1, 2, . . . be a sequence of iid bivariate random variables
(X, Y ) with an absolutely continuous (with respect to Lebesgue measure)
df FX,Y (x, y). Denote by Y[r,n,m,k], 1 ≤ r ≤ n the Y value associated with
X(r, n, m, k). We call Y[r,n,m,k] the concomitant of the r-th generalized order
statistic. The pdf and df of Y[r,n,m,k], 1 ≤ r ≤ n, denoted by g[r,n,m,k](y) and
G[r,n,m,k](y), respectively are given by

(1.8) g[r,n,m,k](y) =
∫ ∞

−∞
fY |X(y|x)fr,n,m,k(x) dx

and

(1.9) G[r,n,m,k](y) =
∫ ∞

−∞
FY |X(y|x)fr,n,m,k(x) dx,

where fr,n,m,k(x) is the pdf of X(r, n, m, k), 1 ≤ r ≤ n. An excellent review
on concomitant of order statistics is given in David and Nagaraja (1998) and
Bhattacharya (1984).

In this paper, we study the properties of Y[r,n,m,k] associated with the
FGM distributions given by (1.1) and obtain recurrence relations between
moments and moment generating functions (mgf) of concomitants. Finally,
we present the joint distribution of concomitants of two generalized order
statistics and their product moments.

2. Concomitants of generalized order statistics. For the FGM
distributions with pdf given by (1.2), utilizing (1.4) and (1.6) in (1.8), one
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obtains the pdf of Y[r,n,m,k]

(2.1)
g[r,n,m,k](y) =

∫∞
−∞ fY (y)[1− α{1− 2FX(x)}{2FY (y)− 1}]
× cr−1

(r−1)!
(FX(x))γr−1

[
1

m+1
(1− (F (x))m+1)

]r−1
fX(x) dx

= fY (y)− α(2FY (y)− 1)fY (y)
[
1− 2cr−1

(r−1)!

∫∞
−∞ FX(x)(F (x))γr−1

×{ 1
m+1

(1− (F (x))m+1)}r−1fX(x) dx
]
.

Consider

I = cr−1

(r−1)!

∫∞
−∞ FX(x)(FX(x))γr−1

[
1

m+1
(1− (FX(x))m+1)

]r−1
fX(x) dx

= 1− cr−1

(r−1)!

∫∞
−∞(FX(x))γr

[
1

m+1
(1− (FX(x))m+1)

]r−1
fX(x) dx.

Making transformation u = FX(x), we get

I = 1− cr−1

(r − 1)!

∫ 1

0
uγr

[
1

m + 1
(1− um+1)

]r−1

du.

Further, making transformation t = 1− um+1, we get

I = 1− cr−1

(r − 1)!(m + 1)r

∫ 1

0
tr−1(1− t)

γr−m
m+1 dt

= 1− cr−1

(r − 1)!(m + 1)r
B

(
r,

γr −m

m + 1
+ 1

)

= 1− cr−1

(r − 1)!(m + 1)r
B

(
r,

γr−1 −m

m + 1

)
, using, γr = γr−1 − (m + 1)

= 1− cr−1

(r − 1)!(m + 1)r

Γ(r)Γ(γr−1−m
m+1

)

Γ(r + γr−1−m
m+1

)

= 1− cr−1

(r − 1)!(m + 1)r

(r − 1)!Γ(γr−1−m
m+1

)

(r + γr−1−m
m+1

− 1)(r + γr−1−m
m+1

− 2) · · · (γr−1−m
m+1

)Γ(γr−1−m
m+1

)

= 1− cr−1

(γ1 + 1)(γ2 + 1) · · · (γr + 1)

= 1− C(r, n, m, k), say

Hence, from (2.1), we get
(2.2)

g[r,n,m,k](y) = fY (y)− α(2FY (y)− 1)fY (y)[1− 2(1− C(r, n,m, k))]

= fY (y) + α(2FY (y)− 1)fY (y)C∗(r, n, m, k),
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where C∗(r, n, m, k) = 1−2C(r, n, m, k). The above expression of g[r,n,m,k](y)
does not depend on FX(x) at all! Observing that 2FY (y)fY (y) is the pdf of
Y2,2, the second order statistic of a random sample of size two of Y variate,
We find that the distribution of the r-th concomitant depends only on the
marginal distribution of Y and the distribution of Y2,2. From (2.2) we now
have

(2.3) g[r,n,m,k](y) = fY1,1(y) + αC∗(r, n, m, k)[fY2,2(y)− fY1,1(y)].

Writing 2FY (y)− 1 = FY (y) + FY (y)− 1, in (2.2), we obtain

(2.4) g[r,n,m,k](y) = fY1,1(y)− α

2
C∗(r, n, m, k)[fY1,2(y)− fY2,2(y)].

3. Moments and moment generating function of concomitants.
Using the results of the previous section, we derive the moments and mgf of
Y[r,n,m,k] as follows.

From (2.3), the l-th moment of Y[r,n,m,k] is

(3.1)
µ

(l)
[r,n,m,k] = E{Y l

[r,n,m,k]} =
∫∞
−∞ ylg[r,n,m,k](y) dy

= (1− αC∗(r, n, m, k))µ
(l)
1,1 + αC∗(r, n, m, k)µ

(l)
2,2,

where µ
(l)
1,1 = E{Y l} and µ

(l)
2,2 = E{Y l

2,2}. Thus µ
(l)
[r,n,m,k] is known for all r, n, m

and k if we know µ
(l)
1,1 and µ

(l)
2,2. In general, if h(y) is a measurable function

of y, then
(3.2)
E{h(Y[r,n,m,k]} = (1−αC∗(r, n, m, k))E{h(Y1,1)}+αC∗(r, n, m, k)E{h(Y2,2)},

provided the expectations exist.
In particular, the mgf of Y[r,n,m,k] is given by

(3.3) M[r,n,m,k](t) = (1− αC∗(r, n, m, k))M1,1(t) + αC∗(r, n,m, k)M2,2(t),

where M1,1(t) = E{exp(tY )} and M2,2(t) = E{exp(tY2,2)}.

4. Recurrence relation between moments of concomitants. In
this section we shall present several recurrence relations between pdf’s, mo-
ments and mgf’s of concomitants. From (2.34), we have

(4.1) g[r,n−1,m,k](y) = fY1,1(y) + αC∗(r, n− 1,m, k)[fY2,2(y)− fY1,1(y)].
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Evidently
(4.2)

g[r,n,m,k](y)− g[r,n−1,m,k](y) = α[C∗(r, n, m, k)− C∗(r, n− 1,m, k)]

×[fY2,2(y)− fY1,1(y)].

It follows from (2.4) that

(4.3) g[r−1,n,m,k](y) = fY1,1(y) + αC∗(r − 1, n, m, k)[fY2,2(y)− fY1,1(y)].

Consider the difference
(4.4)

g[r,n,m,k](y)− g[r−1,n,m,k](y) = α[C∗(r, n, m, k)− C∗(r − 1, n, m, k)]

×[fY2,2(y)− fY1,1(y)].

Analogously, one can write for 1 ≤ i1 ≤ n− r
(4.5)

g[r,n,m,k](y)− g[r,n−i1,m,k](y) = α[C∗(r, n,m, k)− C∗(r, n− i1,m, k)]

×[fY2,2(y)− fY1,1(y)]

and for 1 ≤ j1 ≤ r − 1
(4.6)

g[r,n,m,k](y)− g[r−j1,n,m,k](y) = α[C∗(r, n, m, k)− C∗(r − j1, n, m, k)]

×[fY2,2(y)− fY1,1(y)].

For 1 ≤ i1 ≤ i2 ≤ n− r and 1 ≤ j1 ≤ j2 ≤ r − 1 one has
(4.7)
g[r,n,m,k](y)− g[r−j1,n−i1,m,k](y) = α[C∗(r, n, m, k)− C∗(r − j1, n− i1,m, k)]

×[fY2,2(y)− fY1,1(y)]

and

(4.8)
g[r−j1,n−i1,m,k](y) − g[r−j2,n−i2,m,k](y) = α[C∗(r − j1, n− i1, m, k)

− C∗(r − j2, n− i2,m, k)][fY2,2(y)− fY1,1(y)].

Utilizing equations (4.5)-(4.8), we have the following theorems.

THEOREM 4.1. Let 1 ≤ i1 ≤ i2 ≤ n− r and 1 ≤ j1 ≤ j2 ≤ r − 1. For a
bivariate random variable (X, Y ) having pdf (1.2), the following recurrence
relations between moments of concomitants are valid:

(4.9)
µ

(l)
[r,n,m,k] − µ

(l)
[r,n−i1,m,k] = α[C∗(r, n,m, k)− C∗(r, n− i1,m, k)]

×[µ
(l)
2,2 − µ

(l)
1,1]
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(4.10)
µ

(l)
[r,n,m,k] − µ

(l)
[r−j1,n,m,k] = α[C∗(r, n,m, k)− C∗(r − j1, n,m, k)]

×[µ
(l)
2,2 − µ

(l)
1,1]

and
(4.11)

µ
(l)
[r,n,m,k] − µ

(l)
[r−j1,n−i1,m,k] = α[C∗(r, n,m, k)− C∗(r − j1, n− i1,m, k)]

×[µ
(l)
2,2 − µ

(l)
1,1].

In general it is true that

(4.12)
µ

(l)
[r−j1,n−i1,m,k] − µ

(l)
[r−j2,n−i2,m,k] = α[C∗(r − j1, n− i1,m, k)

− C∗(r − j2, n− i2, m, k)][µ
(l)
2,2 − µ

(l)
1,1].

THEOREM 4.2. Under the conditions of Theorem 4.1, the relation between
mgf’s of concomitants are
(4.13)

M[r,n,m,k](t)−M[r,n−i1,m,k](t) = α[C∗(r, n,m, k)− C∗(r, n− i1,m, k)]

×[M2,2(t)−M1,1(t)]

(4.14)
M[r,n,m,k](t)−M[r−j1,n,m,k](t) = α[C∗(r, n, m, k)− C∗(r − j1, n, m, k)]

×[M2,2(t)−M1,1(t)]

and
(4.15)
M[r,n,m,k](t)−M[r−j1,n−i1,m,k](t) = α[C∗(r, n,m, k)− C∗(r − j1, n− i1,m, k)]

×[M2,2(t)−M1,1(t)].

In general
(4.16)

M[r−j1,n−i1,m,k](t) − M[r−j2,n−i2,m,k](t) = α[C∗(r − j1, n− i1,m, k)

− C∗(r − j2, n− i2,m, k)][M2,2(t)−M1,1(t)].

We have from (4.4),
(4.17)

g[r,n,m,k](y) − g[r−1,n,m,k](y) = α[C∗(r, n,m, k)− C∗(r − 1, n,m, k)]

×[fY2,2(y)− fY1,1(y)]
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= α[{1− 2 γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
} − {1− 2 γ1γ2···γr−1

(γ1+1)(γ2+1)···(γr−1+1)
}]

×[fY2,2(y)− fY1,1(y)]

= α[2{ γ1γ2···γr−1

(γ1+1)(γ2+1)···(γr−1+1)
− γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
}]

×[fY2,2(y)− fY1,1(y)]

= 2α[ γ1γ2···γr−1

(γ1+1)(γ2+1)···(γr−1+1)(γr+1)
][fY2,2(y)− fY1,1(y)].

If h(y) is a measurable function of y, then
(4.18)

E{h(Y[r,n,m,k])} − E{h(Y[r−1,n,m,k])} = 2α[ γ1γ2···γr−1

(γ1+1)(γ2+1)···(γr−1+1)(γr+1)
]

×[E{h(Y2,2)} − E{h(Y1,1)}].
Hence, if we know E{h(Y[1,n,m,k])}, E{h(Y2,2)} and E{h(Y1,1)}, then we can
recursively calculate E{h(Y[2,n,m,k])}, E{h(Y[3,n,m,k])}, · · · , E{h(Y[n,n,m,k])}.

Furthermore, we have from (4.5) with i1 = 1,
(4.19)

g[r,n,m,k](y)− g[r,n−1,m,k](y) = α[C∗(r, n, m, k)− C∗(r, n− 1,m, k)]

×[fY2,2(y)− fY1,1(y)].

Consider

C∗(r, n, m, k)− C∗(r, n− 1,m, k) = [1− 2 γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
]

− [1− 2
γ∗1γ∗2 ···γ∗r

(γ∗1+1)(γ∗2+1)···(γ∗r +1)
]

= 2[
γ∗1γ∗2 ···γ∗r

(γ∗1+1)(γ∗2+1)···(γ∗r +1)
− γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
].

Note that, γr = k+(n−r)(m+1) and hence, γ∗r = k+(n−1−r)(m+1) = γr+1.
We now have

C∗(r, n, m, k)− C∗(r, n− 1,m, k) = 2[ γ2γ3···γr+1

(γ2+1)(γ3+1)···(γr+1+1)
− γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
]

= 2[ γ2γ3···γr(γr+1−γ1)
(γ1+1)(γ2+1)···(γr+1)(γr+1+1)

]

= −2r(m + 1)[ γ2γ3···γr

(γ1+1)(γ2+1)···(γr+1)(γr+1+1)
].

Hence, from (4.19), we get
(4.20)

g[r,n,m,k](y)− g[r,n−1,m,k](y) = α[−2r(m + 1){ γ2γ3···γr

(γ1+1)(γ2+1)···(γr+1)(γr+1+1)
}]

×[fY2,2(y)− fY1,1(y)].

5. Applications. The corresponding results for order statistics (with
m = 0 and k = 1) and record values (with m = −1 and k = −1) for the
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bivariate FGM distributions (1.1) can easily be deduced as special cases of
the results in Sections 2, 3 and 4.

5.1. Order Statistics.

Consider a random sample (Xi, Yi), i = 1, . . . , n from a bivariate distribu-
tion. If the pairs are ordered by their X variates, then the Y variate associ-
ated with the r-th order statistic Xr,n of X will be denoted by Y[r,n], 1 ≤ r ≤ n
and called the concomitant of the r-th order statistic. The pdf of Y[r,n], de-
noted by g[r,n](y), is given by [David and Nagaraja (1983)]

g[r,n](y) =
∫ ∞

−∞
fY |X(y|x)fr,n(x) dx,

where fr,n(x) is the pdf of Xr,n. Concomitants of order statistics have found
a wide variety of applications in different fields. The most important use of
concomitants arises in selection procedures when k (1 ≤ k ≤ n) individuals
are chosen on the basis of their X values. Then the corresponding Y values
represent performance on an associated characteristic. For example, X might
be the score of a candidate on a screening test and Y the score on a later
test.

If we take m = 0 and k = 1, then

C∗(r, n,m, k) = 1− 2C(r, n, m, k) = 1− 2

[
γ1γ2 · · · γr

(γ1 + 1)(γ2 + 1) · · · (γr + 1)

]
,

where γr = k + (n− r)(m + 1) = n− r + 1, reduces to

(5.1) C∗(r, n, 0, 1) = 1− 2C(r, n, 0, 1) = −
(

n− 2r + 1

n + 1

)
.

Hence, from (2.34), the pdf of the concomitant of the r-th order statistic
Y[r,n] is given by [Nair and Scaria (1999)]

(5.2) g[r,n](y) = fY1,1(y)− α
(

n− 2r + 1

n + 1

)
[fY2,2(y)− fY1,1(y)],

which does not depend on FX(x). The l-th moment and mgf of Y[r,n,m,k] can
be deduced from (3.1) and (3.3), respectively

(5.3) µ
(l)
[r,n] =

[
1 + α

(
n− 2r + 1

n + 1

)]
µ

(l)
1,1 − α

(
n− 2r + 1

n + 1

)
µ

(l)
2,2
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and

(5.4) M[r,n](t) =
[
1 + α

(
n− 2r + 1

n + 1

)]
M1,1(t)− α

(
n− 2r + 1

n + 1

)
M2,2(t),

where µ
(l)
[i,m] = E{Y l

[i,m]} is the l-th moment of Y[i,m] and M[i,m](t) = E{exp(tY[i,m])}
is the mgf of Y[i,m]. Thus µ

(l)
[r,n] (M[r,n](t)) is known for all r and n if we know

µ
(l)
1,1 and µ

(l)
2,2 (M1,1(t) and M2,2(t)).

Furthermore, we can deduce several recurrence relations between pdf’s,
moments and mgf’s of concomitants of order statistics from the results of
Section 4. We have the following theorems.

THEOREM 5.1. Let 1 ≤ i1 ≤ i2 ≤ n− r and 1 ≤ j1 ≤ j2 ≤ r − 1. For a
bivariate random variable (X, Y ) having pdf (1.2), the following recurrence
relations between pdf’s of concomitants of order statistics (with m = 0 and
k = 1) can be deduced using equations (3.9)-(3.12).

(5.5)
g[r,n](y)− g[r,n−i1](y) = α[C∗(r, n, 0, 1)− C∗(r, n− i1, 0, 1)]

×[fY2,2(y)− fY1,1(y)],

(5.6)
g[r,n](y)− g[r−j1,n](y) = α[C∗(r, n, 0, 1)− C∗(r − j1, n, 0, 1)]

×[fY2,2(y)− fY1,1(y)]

and
(5.7)

g[r,n](y)− g[r−j1,n−i1](y) = α[C∗(r, n, 0, 1)− C∗(r − j1, n− i1, 0, 1)]

×[fY2,2(y)− fY1,1(y)].

In general it is true that

(5.8)
g[r−j1,n−i1](y) − g[r−j2,n−i2](y) = α[C∗(r − j1, n− i1, 0, 1)

− C∗(r − j2, n− i2, 0, 1)][fY2,2(y)− fY1,1(y)].

In particular with i1 = 1, (5.5) reduces to

(5.9) g[r,n](y)− g[r,n−1](y) = α

[
2r

n(n + 1)

]
[fY2,2(y)− fY1,1(y)].
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Moreover, from (5.9) by induction we get the following identity

(5.10) g[r,n](y)− g[r,r](y) = α

[
2r(n− r)

(r + 1)(n + 1)

]
[fY2,2(y)− fY1,1(y)].

Furthermore, with j1 = 1, (5.6) reduces to

(5.11) g[r,n](y)− g[r−1,n](y) =
(

2α

n + 1

)
[fY2,2(y)− fY1,1(y)],

which is independent of r.

If we change n to 2n+1 and r to 2r, then (n−2r+1
n+1

) becomes (2n+1−4r+1
2n+2

) =

(n−2r+1
n+1

) and hence from (5.2)

g[r,n](y) = g[2r,2n+1](y)

which in turn implies

g[r,n](y) = g[2r,2n+1](y) = g[4r,4n+3](y) = g[8r,8n+7](y) = etc.

(5.12) = g[2kr,2kn+2k−1](y), for k = 0, 1, 2, ...

In general if λ is a rational number such that rλ and (n + 1)λ are integers,
then

(5.13) g[rλ,(n+1)λ−1](y) = g[r,n](y).

This covers the previous result (5.12).

THEOREM 5.2. Under the conditions of Theorem 5.1, the relation be-
tween moments of concomitants of order statistics are given by

(5.14)
µ

(l)
[r,n] − µ

(l)
[r,n−i1]

= α[C∗(r, n, 0, 1)− C∗(r, n− i1, 0, 1)]

×[µ
(l)
2,2 − µ

(l)
1,1],

(5.15)
µ

(l)
[r,n] − µ

(l)
[r−j1,n] = α[C∗(r, n, 0, 1)− C∗(r − j1, n, 0, 1)]

×[µ
(l)
2,2 − µ

(l)
1,1]

and

(5.16)
µ

(l)
[r,n] − µ

(l)
[r−j1,n−i1] = α[C∗(r, n, 0, 1)− C∗(r − j1, n− i1, 0, 1)]

×[µ
(l)
2,2 − µ

(y)
1,1].
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In general

(5.17)
µ

(l)
[r−j1,n−i1] − µ

(l)
[r−j2,n−i2] = α[C∗(r − j1, n− i1, 0, 1)

− C∗(r − j2, n− i2, 0, 1)][µ
(l)
2,2 − µ

(l)
1,1].

In particular with i1 = 1, (5.14) reduces to

(5.18) µ
(l)
[r,n] − µ

(l)
[r,n−1] = α

[
2r

n(n + 1)

]
[µ

(l)
2,2 − µ

(l)
1,1].

Moreover, from (5.18) by induction we get the following identity

(5.19) µ
(l)
[r,n] − µ

(l)
[r,r] = α

[
2r(n− r)

(r + 1)(n + 1)

]
[µ

(l)
2,2 − µ

(l)
1,1].

Furthermore, if h(y) is a measurable function of y, then from (5.11) we get

(5.20) E{h(Y[r,n])} − E{h(Y[r−1,n])} =
(

2α

n + 1

)
[E{h(Y2,2)} − E{h(Y1,1)}],

which does not depend on r. Hence, if we know E{h(Y[1,n])}, E{h(Y2,2)} and
E{h(Y1,1)}, then we can recursively calculate E{h(Y[2,n])}, E{h(Y[3,n])}, . . . ,
E{h(Y[n,:n])}.

THEOREM 5.3. Under conditions of Theorem 5.1, the relation between
mgf of concomitants of order statistics are given by

(5.21)
M[r,n](t)−M[r,n−i1](t) = α[C∗(r, n, 0, 1)− C∗(r, n− i1, 0, 1)]

×[M2,2(t)−M1,1(t)],

(5.22)
M[r,n](t)−M[r−j1,n](t) = α[C∗(r, n, 0, 1)− C∗(r − j1, n, 0, 1)]

×[M2,2(t)−M1,1(t)]

and
(5.23)

M[r,n](t)−M[r−j1,n−i1](t) = α[C∗(r, n, 0, 1)− C∗(r − j1, n− i1, 0, 1)]

×[M2,2(t)−M1,1(t)].

In general

(5.24)
M[r−j1,n−i1](t) − M[r−j2,n−i2](t) = α[C∗(r − j1, n− i1, 0, 1)

− C∗(r − j2, n− i2, 0, 1)][M2,2(t)−M1,1(t)].
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Balasubramanian and Beg (1997) studied the concomitants of order statis-
tics for Morgenstern type bivariate exponential distributions. Their results
can be obtained from the results of this section with FX(x) = 1− exp(−x),
x > 0 and FY (y) = 1−exp(−y), y > 0. Recently, Bairamov and Bekci (1999)
have studied distribution and recurrence relations between moments of con-
comitants of order statistics in the bivariate FGM distributions with uniform
marginals. Their results are special cases of the results of this section with
FX(x) = x, 0 < x < 1 and FY (y) = y, 0 < y < 1. The results on concomi-
tants of order statistics corresponding to other marginals in FGM family can
be obtained from the results of this section. More recently, Bairamov et al.
(2001) have studied the concomitants of order statistics of the bivariate FGM
distributions with uniform marginals by introducing additional parameters.
For some subset of the parameters their results can be obtained from the
results of this section.

5.2. Record Values.

Consider (X1, Y1), (X2, Y2), . . . a sequence of iid bivariate random vari-
ables. Variate Yi corresponding to Xi = Rr (r-th upper record) which will
be represented by Y[Rr] is the concomitant of the r-th upper record. The pdf
of Y[Rr] is given by

g[Rr](y) =
∫ ∞

−∞
fY |X(y|x)fRr(x) dx,

where fRr(x) is the pdf of Rr.

If we take m = −1 and k = 1, then

C∗(r, n,m, k) = 1− 2C(r, n, m, k) = 1− 2

[
γ1γ2 · · · γr

(γ1 + 1)(γ2 + 1) · · · (γr + 1)

]
,

where γr = k + (n− r)(m + 1) = 1, reduces to

(5.25) C∗(r, n,−1, 1) = 1− 2C(r, n,−1, 1) = 1− 1

2r−1
.

Hence, from (2.3), the pdf of the concomitant of the r-th record Y[Rr] is given
by

(5.26) g[Rr](y) = fY1,1(y) + α
(
1− 1

2r−1

)
][fY2,2(y)− fY1,1(y)],
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which does not depend on FX(x). The l-th moment and mgf of Y[Rr] can be
easily obtained from (3.1) and (3.3) respectively

(5.27) µ
(l)
[Rr] =

[
1− α

(
1− 1

2r−1

)]
µ

(l)
1,1 + α

(
1− 1

2r−1

)
µ

(l)
2,2

and

(5.28) M[Rr](t) =
[
1− α

(
1− 1

2r−1

)]
M1,1(t) + α

(
1− 1

2r−1

)
M2,2(t),

where µ
(l)
[Rr] = E{Y l

[Rr]} is the l-th moment of Y[Rr] and M[Rr](t) = E{exp(tY[Rr])}
is the mgf of Y[Rr]. Thus µ

(l)
[Rr] (M[Rr](t)) is known for all r if we know µ

(l)
1,1

and µ
(l)
2,2 (M1,1(t) and M2,2(t)).

Furthermore, we can deduce several recurrence relations between pdf’s,
moments and mgf’s of concomitants of record values from the results of
Section 4. We have the following theorems.

THEOREM 5.4. Let 1 ≤ j1 ≤ j2 ≤ r−1. For a bivariate random variable
(X, Y ) having pdf (1.2) the following recurrence relations between pdf’s of
concomitants of record values (with m = −1 and k = 1) can be deduced using
equations (4.6) and (4.8).

(5.29)
g[Rr](y)− g[Rr−j1

](y) = α[C∗(r, n,−1, 1)− C∗(r − j1, n,−1, 1)]

×[fY2,2(y)− fY1,1(y)]

and in general

(5.30)
g[Rr−j1

](y) − g[Rr−j2
](y) = α[C∗(r − j1, n,−1, 1)

− C∗(r − j2, n,−1, 1)][fY2,2(y)− fY1,1(y)].

In particular with j1 = 1, (5.29) gives

(5.31) g[Rr](y)− g[Rr−1](y) = α
(

1

2r−1

)
[fY2,2(y)− fY1,1(y)].

THEOREM 5.5. Under the conditions of Theorem 5.4, the relation be-
tween moments of concomitants of record values are given by

(5.32)
µ

(l)
[Rr] − µ

(l)
[Rr−j1

] = α[C∗(r, n,−1, 1)− C∗(r − j1, n,−1, 1)]

×[µ
(l)
2,2 − µ

(l)
1,1]
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and in general

(5.33)
µ

(l)
[Rr−j1

] − µ
(l)
[Rr−j2

] = α[C∗(r − j1, n,−1, 1)

− C∗(r − j2, n,−1, 1)][µ
(l)
2,2 − µ

(l)
1,1].

In particular with j1 = 1, (5.32) reduces to

(5.34) µ
(l)
[Rr] − µ

(l)
[Rr−1] =

(
α

2r−1

)
[µ

(l)
2,2 − µ

(l)
1,1].

Moreover, if h(y) is a measurable function of y, then from (5.31) we get

(5.35) E{h(Y[Rr])} − E{h(Y[Rr−1])} =
(

α

2r−1

)
][E{h(Y2,2)} − E{h(Y1,1)}].

Hence, if we know E{h(Y[R1])}, E{h(Y2,2)} and E{h(Y1,1)}, then E{h(Y[Rr])}
is known for all r.
Furthermore, from (5.34) by induction we get the following identity

(5.36) µ
(l)
[Rr] = µ

(l)
[R1] + α

(
1− 1

2r−1

)
[µ

(l)
2,2 − µ

(l)
1,1].

THEOREM 5.6. Under the conditions of Theorem 5.4, the relation be-
tween mgf’s of concomitants of record values are given by

(5.37)
M[Rr](t)−M[Rr−j1

](t) = α[C∗(r, n,−1, 1)− C∗(r − j1, n,−1, 1)]

×[M2,2(t)−M1,1(t)]

and in general

(5.38)
M[Rr−j1

](t) − M[Rr−j2
](t) = α[C∗(r − j1, n,−1, 1)

− C∗(r − j2, n,−1, 1)][M2,2(t)−M1,1(t)].

If we take m = −1 and k is a positive integer greater than 1, then we get
the corresponding results of k records.

5.3. Relation between distributions of the concomitants of recard values
and order statistics.

The two expressions (5.2) and (5.26), for the concomitant of the q-th
record and the concomitant of the r-th order statistic respectively are equiv-
alent if [

1− 1

2q−1

]
= −

[
n− 2r + 1

n + 1

]
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or,

r = (n + 1)
[
1− 1

2q

]
.

Since r is an integer, 2q should divide (n+1). We can in fact take n+1 = 2q,
then r = 2q − 1. Hence

(5.39) g[Rm](y) = g[2q−1,2q−1](y).

Thus, the distribution of concomitant of the q-th record of X is the same as
that of the concomitant of the maximum order statistic of 2q−1 observations
of X for the MGF distributions given in (1.1).

6. Joint distribution of two concomitants. In this section, we derive
the joint distribution of concomitants of two generalized order statistics.

Let Y[r,n,m,k] and Y[s,n,m,k] be concomitants of the r-th and s-th general-
ized order statistics, respectively. Then the joint df and pdf of Y[r,n,m,k] and
Y[s,n,m,k] are respectively given by
(6.1)

G[r,s,n,m,k](y1, y2) =
∫ ∞

−∞

∫ x2

−∞
FY |X(y1|x1)FY |X(y2|x2)fr,s,n,m,k(x1, x2) dx1dx2

and
(6.2)

g[r,s,n,m,k](y1, y2) =
∫ ∞

−∞

∫ x2

−∞
fY |X(y1|x1)fY |X(y2|x2)fr,s,n,m,k(x1, x2) dx1dx2,

where fr,s,n,m,k(x1, x2) is the joint pdf of (X(r, n,m, k), X(s, n, m, k)), 1 ≤
r < s ≤ n.

We first prove a lemma which will be useful in the sequel.

LEMMA 6.1. Let p and q be real numbers, then using notations of the
previous sections, it is shown that
(6.3)

Ip,q = cs−1

(r−1)!(s−r−1)!(m+1)s−2

∫∞
−∞

∫ x2
−∞(FX(x1))

p(FX(x1))
m

[
1− (FX(x1))

m+1
]r−1

×
[
(FX(x1))

m+1 − (FX(x2))
m+1

]s−r−1

×(FX(x2))
γs−1(FX(x2))

qfX(x1)fX(x2) dx1dx2

= γ1γ2···γs

(γ1+p+q)(γ2+p+q)···(γr+p+q)(γr+1+q)···(γs+q)
.
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PROOF. Making transformations u = (FX(x1))
m+1 and v = (FX(x2))

m+1

in (6.3), we get

Ip,q =
cs−1

(r − 1)!(s− r − 1)!(m + 1)s

∫ 1

0

∫ u

0
u

p
m+1 (1− u)r−1

×(u− v)s−r−1v(γs+1+q)/(m+1) dvdu.

Further, using transformation v = ut, the above equation gives

Ip,q =
cs−1

(r − 1)!(s− r − 1)!(m + 1)s

∫ 1

0

∫ 1

0
u

p
m+1 (1− u)r−1us−r−1

×(1− t)s−r−1(ut)
γs+1+q

m+1 u dtdu

=
cs−1

(r − 1)!(s− r − 1)!(m + 1)s

∫ 1

0
(1− u)r−1u

γr+p+q
m+1

−1 du

×
∫ 1

0
(1− t)s−r−1t

γs+q
m+1

−1 dt

=
cs−1

(r − 1)!(s− r − 1)!(m + 1)s
B

(
r,

γr + p + q

m + 1

)
B

(
s− r,

γs + q

m + 1

)

=
cs−1

(r − 1)!(s− r − 1)!(m + 1)s

Γ(r)Γ(γr+p+q
m+1

)Γ(s− r)Γ(γs+q
m+1

)

Γ(r + γr+p+q
m+1

)Γ(s− r + γs+q
m+1

)

=
cs−1

(r − 1)!(s− r − 1)!(m + 1)s

(r − 1)!(s− r − 1)!

(γ1+p+q
m+1

)(γ2+p+q
m+1

) · · · (γr+p+q
m+1

)

× 1

(γr+1+q
m+1

)(γr+2+q
m+1

) · · · (γs+q
m+1

)

=
γ1γ2 · · · γs

(γ1 + p + q)(γ2 + p + q) · · · (γr + p + q)(γr+1 + q) · · · (γs + q)
.

Utilizing (1.3) and (1.7) in (6.1) and simplifying, we get

(6.4)

G[r,s,n,m,k](y1, y2) = FY (y1)FY (y2)
[
1 + αF Y (y2)

×
{
2

∫∞
−∞

∫ x2
−∞ FX(x2)fr,s,n,m,k(x1, x2) dx1dx2 − 1

}

+αF Y (y1)
{∫∞
−∞

∫ x2
−∞(2FX(x1)− 1)fr,s,n,m,k(x1, x2) dx1dx2

}

+α2F Y (y1)F Y (y2)
{ ∫∞

−∞
∫ x2
−∞(2FX(x1)− 1)(2FX(x2)− 1)

×fr,s,n,m,k(x1, x2) dx1dx2

}]
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= FY (y1)FY (y2)
[
1 + αF Y (y2)

{
2

∫∞
−∞

∫ x2
−∞ FX(x2)

×fr,s,n,m,k(x1, x2) dx1dx2 − 1
}

+αF Y (y1)
{
2

∫∞
−∞

∫ x2
−∞ FX(x1)fr,s,n,m,k(x1, x2) dx1dx2 − 1

}

+α2F Y (y1)F Y (y2)
{ ∫∞

−∞
∫ x2
−∞[4FX(x1)FX(x2)− 2FX(x1)− 2FX(x2) + 1]

×fr,s,n,m,k(x1, x2) dx1dx2

}]

= FY (y1)FY (y2)
[
1 + αF Y (y2)[2I0,1 − 1] + αF Y (y1)[2I1,0 − 1]

+α2F Y (y1)F Y (y2)[4I1,1 − 2I1,0 − 2I0,1 + 1]
]
.

Substituting values of I0,1, I1,0 and I1,1, respectively, from Lemma 6.1 in (6.4),
we obtain the joint df of Y[r,n,m,k] and Y[s,n,m,k],
(6.5)

G[r,s,n,m,k](y1, y2) = FY (y1)FY (y2)
[
1 + αF Y (y2)[2{ γ1γ2···γs

(γ1+1)(γ2+1)···(γs+1)
} − 1]

+αF Y (y1)[2{ γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
} − 1]

+α2F Y (y1)F Y (y2)[4{ γ1γ2···γrγr+1···γs

(γ1+2)(γ2+2)···(γr+2)(γr+1+1)···(γs+1)
}

−2{ γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
} − 2{ γ1γ2···γs

(γ1+1)(γ2+1)···(γs+1)
}+ 1]

]
.

The pdf corresponding to (6.5) is
(6.6)

g[r,s,n,m,k](y1, y2) = fY (y1)fY (y2)
[
1 + α(2F Y (y2)− 1)[2{ γ1γ2···γs

(γ1+1)(γ2+1)···(γs+1)
} − 1]

+α(2F (y1)− 1)[2{ γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
} − 1]

+α2(2F (y1)− 1)(2F (y2)− 1)

×[4{ γ1γ2···γrγr+1···γs

(γ1+2)(γ2+2)···(γr+2)(γr+1+1)···(γs+1)
}

−2{ γ1γ2···γr

(γ1+1)(γ2+1)···(γr+1)
} − 2{ γ1γ2···γs

(γ1+1)(γ2+1)···(γs+1)
}+ 1]

]
.

6.1. Applications.

The joint df and pdf of concomitants of the r-th and s-th order statistics,
Y[r,n] and Y[s,n], can easily be deduced from (6.5) and (6.6) respectively, with
m = 0, k = 1 and γj = n− j + 1.

First we evaluate I0,1, I1,0 and I1,1 for order statistics.

I0,1 =
γ1γ2 · · · γrγr+1 · · · γs

(γ1 + 1)(γ2 + 1) · · · (γr + 1)(γr+1 + 1) · · · (γs + 1)
=

(n− s + 1)

(n + 1)
,
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I1,0 =
γ1γ2 · · · γr

(γ1 + 1)(γ2 + 1) · · · (γr + 1)
=

(n− r + 1)

(n + 1)

and

I1,1 =
γ1γ2 · · · γr−1γrγr+1 · · · γs−1γs

(γ1 + 2)(γ2 + 2) · · · (γr−1 + 2)(γr + 2)(γr+1 + 1) · · · (γs + 1)

=
(n− s + 1)(n− r + 2)

(n + 1)(n + 2)
.

We now have

2I0,1 − 1 =
(n− 2s + 1)

(n + 1)
,

2I1,0 − 1 =
(n− 2r + 1)

(n + 1)

and

4I1,1 − 2I0,1 − 2I1,0 + 1 = 4

[
(n− r + 2)(n− s + 1)

(n + 1)(n + 2)

]
− 2

[
(n− s + 1)

(n + 1)

]

− 2

[
(n− r + 1)

(n + 1)

]
+ 1

=
2(n− s + 1)

(n + 1)

[
2(n− r + 2)

(n + 2)
− 1

]

− 2(n− r + 1)

(n + 1)
+ 1

=
(n− 2s + 1)

(n + 1)(n + 2)
[(n + 2)− 2r] +

2r

(n + 1)(n + 2)

=
(n− 2s + 1)

(n + 1)
− 2r(n− 2s)

(n + 1)(n + 2)
.

Substituting the above values in (6.5) and (6.6), we get the joint df and pdf
of Y[r,n] and Y[s,n], respectively [Nair and Scaria (1999)]
(6.7)

G[r,s,n](y1, y2) = FY (y1)FY (y2)
[
1 + αF Y (y1)

(n−2r+1)
(n+1)

+ αF Y (y2)

× (n−2s+1)
(n+1)

+ α2F Y (y1)F Y (y2){ (n−2s+1)
(n+1)

− 2r(n−2s)
(n+1)(n+2)

}
]

and

(6.8)

g[r,s,n](y1, y2) = fY (y1)fY (y2)
[
1 + α(2F Y (y1)− 1) (n−2r+1)

(n+1)

+α(2F Y (y2)− 1) (n−2s+1)
(n+1)

+ α2(2F Y (y1)− 1)(2F Y (y2)− 1)

×{ (n−2s+1)
(n+1)

− 2r(n−2s)
(n+1)(n+2)

}
]
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Also, the joint df and pdf of the concomitants of the r-th and s-th record
values, Y[Rr] and Y[Rs], can be deduced from (6.5) and (6.6), respectively, with
m = −1, k = 1 and γj = 1.

First we evaluate I0,1, I1,0 and I1,1 for record values.

I0,1 =
γ1γ2 · · · γrγr+1 · · · γs

(γ1 + 1)(γ2 + 1) · · · (γr + 1)(γr+1 + 1) · · · (γs + 1)
=

1

2s
,

I1,0 =
γ1γ2 · · · γr

(γ1 + 1)(γ2 + 1) · · · (γr + 1)
=

1

2r

and

I1,1 =
γ1γ2 · · · γr−1γrγr+1 · · · γs−1γs

(γ1 + 2)(γ2 + 2) · · · (γr−1 + 2)(γr + 2)(γr+1 + 1) · · · (γs + 1)

=
1

3r2s−r
.

We now have

2I0,1 − 1 =
1

2s−1
− 1,

2I1,0 − 1 =
1

2r−1
− 1

and

4I1,1 − 2I0,1 − 2I1,0 + 1 =
1

3r2s−r−2
− 1

2s−1
− 1

2r−1
+ 1.

Substituting the above values in (6.5) and (6.6), we get the joint df and pdf
of Y[Rr] and Y[Rs], respectively
(6.9)

G[Rr,Rs](y1, y2) = FY (y1)FY (y2)
[
1 + αF Y (y1){ 1

2r−1 − 1}
+αF Y (y2){ 1

2s−1 − 1}+ α2F Y (y1)F Y (y2){ 1
3r2s−r−2 − 1

2s−1 − 1
2r−1 + 1}

]

and

(6.10)

g[Rr,Rs](y1, y2) = fY (y1)fY (y2)
[
1 + α(2F Y (y1)− 1){ 1

2r−1 − 1}
+α(2F Y (y2)− 1){ 1

2s−1 − 1}+ α2(2F Y (y1)− 1)

×(2F Y (y2)− 1){ 1
3r2s−r−2 − 1

2s−1 − 1
2r−1 + 1}

]
.

7. Product moments of Y[r,n,m,k] and Y[r,n,m,k]. With the joint density
g[r,s,n,m,k](y1, y2) of Y[r,n,m,k] and Y[s,n,m,k], the product moments
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E{Y l1
[r,n,m,k]Y

l2
[s,n,m,k]}, denoted by µ

(l1,l2)
[r,s,n,m,k], l1, l2 > 0, are given by

(7.1). µ
(l1,l2)
[r,s,n,m,k] =

∫ ∞

−∞

∫ ∞

−∞
g[r,s,n,m,k](y1, y2) dy1dy2

Utilizing (6.6) in (7.1) and simplifying, we get

(7.2)

µ
(l1,l2)
[r,s,n,m,k] = µl1

1,1µ
l2
1,1 + α[µl1

1,1µ
l2
1,1 − µl1

1,1µ
l2
2,2][2I0,1 − 1]

+ α[µl1
1,1µ

l2
1,1 − µl1

2,2µ
l2
1,1][2I1,0 − 1]

+ α2[µl1
1,1 − µl1

2,2][µ
l2
1,1 − µl2

2,2][4I1,1 − 2I0,1 − 2I1,0 + 1].

Furthermore, using (3.1) and (7.2), the covariance of Y[r,n,m,k] and Y[r,n,m,k]

(7.3) Cov
(
Y[r,n,m,k], Y[r,n,m,k]

)
= µ[r,s,n,m,k] − µ[r,n,m,k]µ[s,n,m,k], r 6= s

The joint mgf of Y[r,n,m,k] and Y[r,n,m,k], is given by
(7.4)

M[r,s,n,m,k](t1, t2) = E
{
exp

(
t1Y[r,n,m,k] + t2Y[s,n,m,k]

)}

=
∫∞
−∞

∫∞
−∞ exp{t1y1 + t2y2}g[r,s,n,m,k](y1, y2) dy1dy2.

Utilizing (6.6) in (7.4) and simplifying, we get
(7.5)

M[r,s,n,m,k](t1, t2) = MY1,1(t1)MY1,1(t2)

+α[MY1,1(t1)MY1,1(t2)−MY1,1(t1)MY2,2(t2)][2I0,1 − 1]

+α[MY1,1(t1)MY1,1(t2)−MY2,2(t1)MY1,1(t2)][2I1,0 − 1]

+α2[MY1,1(t1)−MY2,2(t1)][MY1,1(t2)−MY2,2(t2)][4I1,1 − 2I0,1 − 2I1,0 + 1].

Differentiating (7.5) with respect to t1 and t2, l1 times and l2 times, respec-
tively, and putting t1 = t2 = 0, we get (7.2).

From (7.2) and (7.5) one can deduce product moments and joint mgf’s
for order statistics (with m = 0 and k = 1) and record values (with m = −1
and k = 1), respectively.

REMARK. We can obtain results for concomitants of generalized order
statistics, order statistics and record values corresponding to different bi-
variate distributions of FGM family by specifying the respective marginal
distributions from the general results of this paper.
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64. Yi Lu and José Garrido, Double Periodic Non-Homogeneous Poisson
Models for Hurricanes Data, September 2004.

65. M.I. Beg and M. Ahsanullah, On Characterizing Distributions by
Conditional Expectations of Functions of Generalized Order Statistics,
September, 2004.

66. M.I. Beg and M. Ahsanullah, Concomitants of Generalized Order Statis-
tics from Farlie-Gumbel-Morgenstern Distributions, September, 2004.

Copies of technical reports can be requested from:

Prof. Xiaowen Zhou
Department of Mathematics and Statistics
Concordia University
7141, Sherbrooke Street West
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